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ABSTRACT 

 This dissertation investigates two long standing issues in nonlinear optics: complete char-

acterization of the ultrafast dynamics of simple molecules, and the potential of a two-photon laser 

using a bulk semiconductor gain medium.  

 Within the Born-Oppenheimer approximation, nonlinear refraction in molecular liquids 

and gases can arise from both bound-electronic and nuclear origins. Knowledge of the magnitudes, 

temporal dynamics, polarization and spectral dependences of each of these mechanisms is im-

portant for many applications including filamentation, white-light continuum generation, all-opti-

cal switching, and nonlinear spectroscopy. In this work the nonlinear dynamics of molecules are 

investigated in both liquid and gas phase with the recently developed beam deflection technique 

which measures nonlinear refraction directly in the time domain. Thanks to the utility of the beam 

deflection technique we are able to completely determine the third-order response function of one 

of the most important molecular liquids in nonlinear optics, carbon disulfide. This allows the pre-

diction of essentially any nonlinear refraction or two-photon absorption experiment on CS2. Meas-

urements conducted on air (N2 and O2) and gaseous CS2 reveal coherent rotational revivals in the 

degree of alignment of the ensemble at a period that depends on its moment of inertia. This allows 

measurement of the rotational and centrifugal distortion constants of the isolated molecules. Ad-

ditionally, the rotational contribution to the beam deflection measurement can be eliminated thanks 

to the particular polarization dependence of the mechanism. At a specific polarization, the domi-

nant remaining contribution is due to the bound-electrons. Thus both the bound-electronic nonlin-

ear refractive index of air, and second hyperpolarizability of isolated CS2 molecules, are measured 

directly. The later agrees well with liquid CS2 measurements, where local field effects are signifi-

cant.  
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 The second major portion of this dissertation addresses the possibility of using bulk semi-

conductors as a two-photon gain medium. A two-photon laser has been a goal of nonlinear optics 

since shortly after the original laser’s development. In this case, two-photons are emitted from a 

single electronic transition rather than only one. This processes is known as two-photon gain 

(2PG). Semiconductors have large two-photon absorption coefficients, which are enhanced by ~2 

orders of magnitude when using photons of very different energies, e.g., ℏ𝜔𝑎 ≈ 10ℏ𝜔𝑏. This en-

hancement should translate into large 2PG coefficients as well, given the inverse relationship be-

tween absorption and gain. Here, we experimentally demonstrate both degenerate and nondegen-

erate 2PG in optically excited bulk GaAs via pump-probe experiments. This constitutes, to my 

knowledge, the first report of nondegenerate two-photon gain. Competition between 2PG and com-

peting processes, namely intervalence band and nondegenerate three-photon absorption (ND-

3PA), in both cases are theoretically analyzed. Experimental measurements of ND-3PA agree with 

this analysis and show that it is enhanced much more than ND-2PG. It is found for both degenerate 

and nondegenerate photon pairs that the losses dominate the two-photon gain, preventing the pos-

sibility of a two-photon semiconductor laser.  
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CHAPTER 1: INTRODUCTION 

 Typically, the optical properties (e.g., refractive index and absorption coefficient) of mate-

rials are independent of the irradiance (optical power per unit area). In nonlinear optics, however, 

these properties are altered by the presence light itself, which can give rise to a wide range of novel 

phenomena. Two principle nonlinear interactions are nonlinear refraction and nonlinear absorp-

tion, which are the changes in refractive index and absorption coefficient due to high irradiance. 

This thesis covers two main bodies of work within the realm of nonlinear optical spectroscopy. 

The first is on the development of a novel nonlinear optical spectroscopic technique, beam deflec-

tion, and its application to study the ultrafast nonlinear dynamics of molecules. This work includes 

a complete characterization the nonlinear refractive dynamics of liquid carbon disulfide as well as 

molecular gases such as air. The second is an experimental investigation of two-photon gain in 

bulk semiconductors, specifically GaAs, for the purpose of determining the possibility of a two-

photon semiconductor laser. 

 

1.1. Ultrafast Nonlinear Dynamics of Molecules 

 The dynamics of molecules can give rise to large nonlinear refraction. Simple linear mol-

ecules that have a larger polarizability 𝛼 along their axis than in the perpendicular directions, as 

shown in Figure 1.1. An incident electric field, which in general is at some angle 𝜃 with respect to 

the molecular axis, loosely speaking, displaces the electrons along this axis thereby inducing a 

dipole. The electric field then applies a torque to this dipole, causing the molecules to rotate to-

wards the field direction. With the molecules aligned with it, the field now experiences an in-

creased polarizability and therefore an increased refractive index. This can be the dominant mech-

anism of nonlinear refraction in simple molecular gases and liquids.  
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Figure 1.1 Ellipsoidal model polarizability of molecule with three independent axes. 

 

 There is, however, a time delay between the arrival of the electric field to the sample and 

the resulting change in refractive index due to inertia. It takes some time for the molecules to align 

towards the incident field direction. In liquids, where the density is high, the molecules collide 

with one another causing decay of the alignment back to a random thermal distribution that occurs 

on a picosecond timescale. In dilute gases the collision rate is orders of magnitude lower, and so 

the molecules continue to rotate, giving rise to periodic oscillations, or “revivals”, in the refractive 

index change. For the molecules studied here, the revival period is on the order of 10 to 100 ps, 

depending on the moment of inertia.  

 This dynamical nature of nonlinear refraction makes measurements difficult to analyze. 

Practically, the high irradiances necessary to induce significant changes in refractive index requires 

the use of ultrashort optical pulses. Measurements of the refractive index change are generally 

indirect in the sense that the induced phase change itself is not directly measurable. Its impact on 
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measurable quantities, such as the irradiance distribution upon propagation or on the spectrum of 

the pulse, allows the phase change to be inferred. However, measurement of material properties 

depends on the assumed formulation of the induced refractive index change. Neglect of the tem-

poral dynamics exhibited by molecular systems can lead to perceived material properties that de-

pend on the experimental parameters, specifically, pulse width dependent nonlinear refractive in-

dices. This is, of course, not an accurate description of the actual underlying physical processes. 

 To correctly determine the dynamics of these molecular systems, we developed a pump-

probe measurement technique capable of measuring nonlinear refraction in the time-domain, beam 

deflection. The technique consists of an ultrashort pump pulse that induces a temporally varying 

refractive index change in the material, which is measured by a probe pulse that is displaced to the 

wings of the pump beam in the sample. The probe experiences a spatial gradient in the refractive 

index, much like a thin prism, and is deflected by a small angle. Upon propagation, the deflection 

angle causes a shift in the far-field, which is measured with a position sensitive detector. The 

technique is very robust, capable of measuring polarization dependences, nondegenerate nonline-

arities, and temporal dynamics. This allows the complete determination of the time dependent 

nonlinear response function, including sign and absolute magnitudes of each mechanism, their rise 

and fall time constants, and polarization dependencies. Knowledge of the response function allows 

prediction of any nonlinear refraction measurement on the material, truly establishing it as a proper 

reference material. 
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1.2. Two-Photon Emission 

 Multi-photon processes, predicted by Dirac [1], have been understood theoretically since 

the foundational work of Göppert-Mayer [2], in which the both the simultaneous emission or ab-

sorption of two quanta by a single electronic transition was described by second-order perturbation 

theory. The latter has become known as two-photon absorption (2PA) (see Figure 1.2 (a)). The 

opposite process, where an excited electron decays with the simultaneous emission of two-pho-

tons, is also possible as illustrated in Figure 1.2 (b). Breit and Teller [3] first showed that the 

lifetime of the metastable 2𝑠 level of hydrogen is dominated by spontaneous two-photon emission 

(2PE). A major difference from one-photon decay is that the individual photons may take on any 

energy value so long as the sum matches the transition energy, i.e., ℏ𝜔𝑎 + ℏ𝜔𝑏 = 𝐸𝑓𝑖. Thus, spon-

taneous 2PE produces a continuous spectrum of photon energies less than 𝐸𝑓𝑖. It was found that 

this form of emission could explain a portion of the continuum from planetary nebulae and other 

celestial bodies composed predominantly of atomic hydrogen. 

 The relation between the absorption and stimulated emission of a single photon also exists 

in the two-photon case. When two photons interact with an electron in an excited state, there is a 

probability that they will stimulate a transition to the ground state producing two additional pho-

tons. These stimulated photons have all the same properties as one-photon stimulated emission, 

i.e. equal energy, polarization, phase, direction, etc. as the stimulating photons. Again, the indi-

vidual photon energies are not determined, so long as their sum matches the transition energy. 

Thus, stimulated 2PE may not only be observed for equal, or degenerate (D-2PE), photon energies, 

but also for unequal, or nondegenerate (ND-2PE), photon energies as well. Therefore, an amplifier 

based on this process may be continuously tunable for photon energies less than 𝐸𝑓𝑖. In addition, 

if a single photon with energy ℏ𝜔𝑎 < 𝐸𝑓𝑖 interacts with an excited electron there is a probability 
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that a stimulated photon at ℏ𝜔𝑎 and a spontaneous photon at the complementary energy ℏ𝜔𝑏 will 

be emitted (see Figure 1.2 (c)). While the stimulated photon at ℏ𝜔𝑎 has the same stimulated emis-

sion properties listed above, the complementary photon does not, but rather has characteristics just 

as one-photon spontaneous emission. This is referred to as singly-stimulated 2PE, in contrast to 

doubly-stimulated 2PE, or two-photon gain (2PG), shown in Figure 1.2 (d), involving two input 

photons.  

 

 
Figure 1.2 Energy level transitions for a) 2PA, b) spontaneous 2PE, c) singly-stimulated 2PE, and d) doubly-stimu-

lated 2PE 

  

 There has been theoretical interest [4, 5] in making use of stimulated 2PE to create an 

amplifier and ultimately a two-photon laser (2PL). Numerous studies have suggested that a two-

photon gain (2PG) medium will exhibit many interesting traits, owing to the intrinsic nonlinearity 

of the process, including pulse compression [6], self-mode-locking [7], and the requirement of an 

injection signal to initiate lasing [5]. In addition, several quantum properties of 2PL’s have also 

been explored, including unique photon statistics [8], the production of squeezed states [9], and 

entanglement [10]. The majority of work has been done with discrete atomic systems in mind, due 

to the initial observations of spontaneous 2PE in atomic hydrogen, and two-photon amplifiers and 

lasers have been demonstrated in atomic systems [11, 12].  
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 Most experimental work on 2PE has been done in dilute atomic beams, which suffer from 

the problem of low densities which limit the potential gain. Semiconductors, on the other hand, 

are advantageous in this regard benefiting from large carrier concentrations, meaning they have 

great potential for large power output. Moreover, they lack electronic states within the band gap 

that would allow cascaded one-photon emission to compete with 2PE. Recently, semiconductors 

have become of interest for use as 2PG media, and spontaneous as well as both singly- and doubly-

stimulated 2PE have been reported [13]. Direct-gap semiconductors also have a large and well 

characterized 2PA coefficient which is greatly enhanced for nondegenerate photon pairs. Thus a 

2PL with a bulk, direct gap, semiconductor gain medium may be continuously tunable from the 

band gap energy far out into the infrared. We are particularly motivated by the predicted [14] and 

recently observed [15] enhancement of the two-photon absorption coefficient when using ex-

tremely nondegenerate (END) photon pairs. This enhancement of the 2PA should also translate 

into enhancement of the 2PG. There are, of course, a multitude of competing processes that will 

limit the applicability of such a device, including free-carrier absorption (FCA) and higher order 

absorption such as three-photon absorption (3PA). The goal of this work is to observe 2PG in bulk 

GaAs, both in the degenerate and nondegenerate cases, to determine whether net gain > losses is 

possible, and thus determine the viability of a semiconductors 2PL. 

 

1.3. Dissertation Outline 

This dissertation, the nonlinear response of materials, including nearly instantaneous bound-elec-

tronic nonlinear refraction and two-photon absorption as well as and noninstantaneous nuclear 

nonlinear refraction, is discussed in CHAPTER 2:  CHAPTER 3: discusses the laser sources and 

the experimental methods used in this work, including Z-scan, pump-probe, and beam deflection 
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techniques. The origin of the ultrafast nonlinear response of simple molecules is discussed in 

CHAPTER 4: in liquid CS2 and gaseous media. Discussion of 2PG in CHAPTER 5: includes an 

overview on the work done on two-photon emission, including spontaneous, singly-, and doubly-

stimulated, followed by experimental observations of D- and ND-2PG follow in bulk GaAs in § 

5.2.  The dominant competing processes, specifically free-carrier, intervalence band, and three-

photon absorption, are also discussed in § 5.3. , and the latter two are theoretically analyzed based 

on Kane’s band structure. § 5.4. contains analysis of the viability of a GaAs 2PL in light of these 

results, as well as other potential materials. CHAPTER 6: provides conclusions and summary of 

the report, and discusses future possible directions to continue perusing.  
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CHAPTER 2: NONLINEAR OPTICAL INTERACTIONS 

 The group of phenomena involving the manipulation of light with light through some in-

termediary material is known as nonlinear optics. It can usually be thought of in the sense that a 

light beam interacts with a material and changes its properties that another light beam observes. 

This group of phenomena covers a large span of time domains, from relatively slow effects such 

as thermal (~ms), or electrostriction (~ns), to nearly instantaneous bound-electronic nonlinearities 

(limited by uncertainty relations, < fs). In addition, an entire regime known as nonlocal nonlinear-

ities, where a light beam in one location influences the properties of the material that another beam 

observes elsewhere, usually via some diffusion mechanism, is not addressed here. 

 

2.1. Power Series Expansion of Polarization 

 In a source free, nonmagnetic material, from Maxwell’s equations we can arrive at [16-18] 

 
∇ × ∇ × 𝐄̃(𝑡) = −𝜇0𝜀0

𝜕2𝐄̃(𝑡)

𝜕𝑡2
− 𝜇0

𝜕2𝐏̃(𝑡)

𝜕𝑡2
 (2.1) 

where 𝐄̃(𝑡) and 𝐏̃(𝑡) are the real, time varying electric field and polarization vectors, respec-

tively, 𝑡 is time, and 𝜇0 and 𝜀0 are the permeability and permittivity or free space, respectively. 

We may use the vector identity ∇ × ∇ × 𝐀 = ∇(∇ ∙ 𝐀) − ∇2𝐀, along with the Gauss’s law ∇ ∙

𝐃̃(𝑡) = 𝜌𝑓 = 0, and the definition 𝐃̃(𝑡) = 𝜀0𝐄̃(𝑡) + 𝐏̃(𝑡) to write the left hand side (LHS) of 

Equation (2.1) as 

 
∇ × ∇ × 𝐄̃(𝑡) = −

1

𝜀0
∇ (∇ ∙ 𝐏̃(𝑡)) − ∇2𝐄̃(𝑡). (2.2) 
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Typically one assumes |
1

𝜀0
∇ (∇ ∙ 𝐏̃(𝑡))| ≪ |∇2𝐄̃(𝑡)|, meaning that the material polarization (both 

linear and nonlinear) changes more slowly in space than the electric field oscillates. Neglecting 

this first term, we then arrive at the wave equation 

 
∇2𝐄̃(𝑡) −

1

𝑐2
𝜕2𝐄̃(𝑡)

𝜕𝑡2
= 𝜇0

𝜕2𝐏̃(𝑡)

𝜕𝑡2
, (2.3) 

where 𝑐 = 1/√𝜇0𝜀0 is the speed of light. The polarization of the material may be expressed as a 

sum of convolutions of the material susceptibility tensor functions 𝛘(𝑖)(𝑡) with the electric field 

 

         𝐏̃(𝑡) = 𝜀0 ∫ 𝛘
(1)(𝑡 − 𝑡1) ∙ 𝐄̃(𝑡1)d𝑡1

∞

−∞

+ 𝜀0 ∬𝛘(2)(𝑡 − 𝑡1, 𝑡 − 𝑡2): 𝐄̃(𝑡1)𝐄̃(𝑡2)d𝑡1d𝑡2

∞

−∞

+ 𝜀0∭𝛘(3)(𝑡 − 𝑡1, 𝑡 − 𝑡2, 𝑡 − 𝑡3): 𝐄̃(𝑡1)𝐄̃(𝑡2)𝐄̃(𝑡3)d𝑡1d𝑡2d𝑡3

∞

−∞

+⋯  

(2.4) 

where 𝛘(1), 𝛘(2), and 𝛘(3) are the first, second, and third order susceptibility tensors, and : denotes 

the tensor product. Each term represents the response of the material to the incident electric field 

to successively higher order; the first term is linearly dependent on the electric field, the second 

term depends on the square of the electric field, and so on. The polarization then acts a source, or 

driving term, which via Equation (2.3) impacts the electric field itself. In this way both the linear 

and nonlinear interaction of light with a material can be described. The first term in Equation (2.4) 

gives rise to linear refraction and one-photon absorption, while the second is responsible for para-

metric processes such as second harmonic generation. The third term can be used to describe a 

number of processes, including third harmonic generation, four-wave mixing, Raman scattering, 
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as well as both nonlinear refraction and two-photon absorption. Higher order terms are of decreas-

ing interest, but may still result in observable phenomenon. For example the fifth term which con-

tains 𝛘(5), describes (among other things) three-photon absorption.  

 For bound-electronic nonlinearities, it is often convenient to work in the frequency domain, 

rather than in the time domain since the convolutions appearing in Equation (2.4) simply become 

products. The Fourier transform of Equation (2.4) yields 

 𝐏(𝜔) = 𝜀0𝛘
(1)(𝜔) ∙ 𝐄(𝜔) 

      + 𝜀0 ∬𝛘(2)(𝜔;𝜔𝑛, 𝜔𝑚): 𝐄(𝜔𝑛)𝐄(𝜔𝑚)𝛿(𝜔 − 𝜔𝑛 − 𝜔𝑚)d𝜔𝑛d𝜔𝑚

∞

−∞

 

      + 𝜀0∭𝛘(3)(𝜔;𝜔𝑛, 𝜔𝑚, 𝜔𝑜): 𝐄(𝜔𝑛)𝐄(𝜔𝑚)𝐄(𝜔𝑜)𝛿(𝜔 − 𝜔𝑛 − 𝜔𝑚

∞

−∞

− 𝜔𝑜)d𝜔𝑛d𝜔𝑚d𝜔𝑜 

      +⋯ 

(2.5) 

where 𝐄(𝜔) and 𝐏(𝜔) are Fourier transforms of the real, time varying electric field and polariza-

tion, respectively, and 𝜔 is the optical frequency (typically of the order 1015 rad/s). The notation 

used here for the arguments of 𝛘(𝑖) indicates that the frequency argument appearing before the 

semicolon is given by the sum of those appearing after, e.g., for the second term 𝜔 = 𝜔𝑛 + 𝜔𝑚, 

as indicated by the Dirac delta function.  

If we assume the linear term dominates the response of the material, as is usually the case, 

we may approximate the solutions to Equation (2.3) as plane waves oscillating at a particular fre-

quency. We may then write the total field as a sum of these plane waves 
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𝐄̃(𝑡) =∑𝐄̃𝑛(𝑡)

𝑛

=∑
1

2
ℰ𝑖(𝜔𝑛)𝑒

𝑖(𝐤𝑛∙𝐫−𝜔𝑛𝑡) + 𝑐. 𝑐.

𝑛

  (2.6) 

where ℰ𝑖 is the complex electric field amplitude, 𝐤𝑛 is the real wavevector of magnitude |𝐤𝑛| =

𝑘𝑛 = Re{√1 + 𝜒𝑖𝑖
(1)(𝜔𝑛)}𝜔𝑛/𝑐 = 𝑛𝑖(𝜔𝑛)𝜔𝑛/𝑐, where 𝑛𝑖(𝜔𝑛) is the refractive index, 𝐫 is the 

unit direction vector, the subscript 𝑖 indicates the field direction (𝑥, 𝑦, or 𝑧 directions), and 𝑐. 𝑐. 

indicates the complex conjugate of the preceding term. We also assume the polarization to consist 

of plane waves 

 
𝐏̃(𝑡) =∑𝐏̃𝑛(𝑡)

𝑛

=∑
1

2
𝒫𝑖(𝜔𝑛)𝑒

𝑖(𝐤𝑛∙𝐫−𝜔𝑛𝑡) + 𝑐. 𝑐.

𝑛

  (2.7) 

 where 𝒫𝑖(𝜔𝑛) is the complex polarization amplitude. We assume that both ℰ𝑖(𝜔𝑛) and 𝒫𝑖(𝜔𝑛) 

vary slowly in space with respect to the wavelength 𝜆𝑛, and in time with respect to the optical 

period 2𝜋/𝜔𝑛. This allows us to neglect their second derivatives in both time and space. The com-

plex polarization amplitude can be expanded in terms of orders of the field, 𝒫𝑖(𝜔𝑛) = 𝒫𝑖
(1)(𝜔𝑛) +

𝒫𝑖
(𝑁𝐿)(𝜔𝑛), where linear term is 

 𝒫𝑖
(1)(𝜔𝑛) = 𝜀0𝜒𝑖𝑗

(1)(𝜔𝑛; 𝜔𝑛)ℰ𝑗(𝜔𝑛), (2.8) 

where a summation over the subscript 𝑗 is implied (so called Einstein notation). Furthermore, we 

use √1 + 𝜒𝑖𝑖
(1)(𝜔𝑛; 𝜔𝑛) = 𝑛𝑖(𝜔𝑛) + 𝑖κ𝑖(𝜔𝑛), where κ𝑖(𝜔𝑛) is the imaginary portion of the com-

plex refractive index, and is related to the one-photon absorption coefficient 𝛼1(𝜔𝑛) =

2𝜅(𝜔𝑛)𝜔𝑛/𝑐. If we assume the plane waves to be propagating in the 𝑧 direction, Equation (2.3) 

then becomes (suppressing frequency arguments and subscripts) 



12 

 
𝑖2𝑘 {

𝜕ℰ

𝜕𝑧
+
𝑛

𝑐

𝜕ℰ

𝜕𝑡
+
𝛼1
2
ℰ} 𝑒𝑖𝑘𝑧 = −𝜇0𝜔 {𝑖2

𝜕𝒫

𝜕𝑡
+ 𝜔𝒫} 𝑒𝑖𝑘𝑁𝐿𝑧 (2.9) 

 where 𝒫 = 𝒫(𝑁𝐿)(𝜔𝑛), and we have assumed 𝜅2 ≪ 𝑛2, 2𝑛𝜅, and thus neglected these terms. 

Since 𝒫 is assumed to be slowly varying in time, and 𝜔 is very large (~1015 rad/s), 2|𝜕𝒫/𝜕𝑡| ≪

𝜔|𝒫|, we neglect the first term on the right hand side (RHS). Furthermore, the second term on the 

LHS may be neglected for continuous waves (CW) or long pulses. For short pulses, however, we 

may always transform into the reference frame of the moving pulse, which causes the second term 

to cancel. Finally, we neglect one-photon absorption, which is typically the case in practice since 

it would necessarily reduce the nonlinear interaction by depleting the electric field. In either case, 

the result is the slowly varying envelope approximation (SVEA) nonlinear wave equation 

 𝜕ℰ

𝜕𝑧
= 𝑖

𝜔

2𝑛𝑐𝜀0
𝒫𝑒𝑖(𝑘𝑁𝐿−𝑘)𝑧 . (2.10) 

The evolution of ℰ is then found by substituting the expression for 𝒫 given by Equation (2.5) that 

corresponds to the frequency 𝜔, and solving. For example, for second harmonic generation of a 

particular input frequency 𝜔𝑏 = 2𝜔𝑎, 𝒫 = 𝒫𝑏
(2) =

𝜀0

2
𝜒𝑥𝑦𝑦
(2) (𝜔𝑏; 𝜔𝑎, 𝜔𝑎)ℰ𝑏

2, where the subscript on 

𝜒𝑥𝑦𝑦
(2)

 indicates that the electric field at 𝜔𝑎 is polarized along the 𝑦 direction, and the second har-

monic polarization is along the 𝑥 direction, and the SVEA equation becomes 

 𝜕ℰ𝑏
𝜕𝑧

= 𝑖
𝜔𝑏
2𝑛𝑏𝑐

𝜒𝑥𝑦𝑦
(2) (𝜔𝑏; 𝜔𝑎, 𝜔𝑎)ℰ𝑎

2𝑒𝑖(2𝑘𝑎−𝑘𝑏)𝑧 . (2.11) 

Likewise, the SVEA equation governing the evolution of the electric field at 𝜔𝑎 is 

 𝜕ℰ𝑎
𝜕𝑧

= 𝑖
𝜔𝑎
2𝑛𝑎𝑐

{𝜒𝑦𝑥𝑦
(2) (𝜔𝑎; 𝜔𝑏 , −𝜔𝑎) + 𝜒𝑦𝑦𝑥

(2) (𝜔𝑎; −𝜔𝑎, 𝜔𝑏)}ℰ𝑏ℰ𝑎
∗𝑒−𝑖(2𝑘𝑎−𝑘𝑏)𝑧 . (2.12) 

Thus the two field amplitudes are coupled through a set of equations. It is important to notice that 

this coupling depends strongly on the wavevectors of the two fields appearing in the exponential 
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phase term. If this phase mismatch, here 2𝑘𝑎 − 𝑘𝑏, is large, meaning that the two waves propagate 

with different phase velocities, the coupling will be weak. This occurs because the field ℰ𝑏 gener-

ated at a particular location, say 𝑧 = 0, will, upon propagation, have a different phase than the 

field generated at a further distance, and thus does not add constructively. The optimum condition 

for the greatest interaction, known as the phase matching condition, occurs here when 2𝑘𝑎 − 𝑘𝑏 =

0, and thus the waves add constructively throughout the material.   

In general Equation (2.10) may also be used to describe higher order processes, such as 

third-order nonlinearities, which will be discussed in the following section. 

 

2.2. Bound-electronic Third-Order Nonlinearities 

 We now look specifically at the material response that depends on the field amplitude to 

third order. As mentioned above, third-order processes include third harmonic generation, four-

wave mixing, and Raman scattering. However, we are particularly interested in the material re-

sponse which directly influences the incident field itself, meaning we look at terms in the third-

order polarization which oscillate at the same frequency as the incident electric field. One special 

feature of this type of third-order nonlinearity is that it is automatically phase matched, since the 

generated field is at the same frequency of the incident field, and thus has the same wavevector.  

For two input fields, at 𝜔𝑎 and 𝜔𝑏, and an instantaneous material response, the third-order 

polarization amplitude at frequency 𝜔𝑎 is given by 

 

𝒫𝑎
(3) =

𝜀0
4
{3𝜒𝑦𝑦𝑦𝑦

(3) (𝜔𝑎; 𝜔𝑎, −𝜔𝑎, 𝜔𝑎)|ℰ𝑎|
2ℰ𝑎

+ 6𝜒𝑦𝑦𝑦𝑦
(3) (𝜔𝑎; 𝜔𝑎, −𝜔𝑏 , 𝜔𝑏)|ℰ𝑏|

2ℰ𝑎}, 

(2.13) 
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It has been assumed that the polarization is oriented along the same direction as the applied electric 

field, and propagates in the same direction. Intrinsic permutation symmetry, i.e. the fact that the 

order in which the fields are multiplied makes no physical difference (they commute), has been 

utilized. The first term in brackets of Equation (2.13) corresponds to self-nonlinearities where the 

single wave at frequency 𝜔𝑎 acts upon itself, while the second term corresponds to cross-nonline-

arities where a second wave acts upon the first. Note that the cross term is twice that of the self 

term. This arises from the fact that there are more permutations of the third-order susceptibility, 6 

versus 3, which need to be added. 

It is often very useful to separate the field into amplitude and phase ℰ𝑎(𝑧) =

√
2

𝜀0𝑛𝑎𝑐
𝐼𝑎(𝑧)𝑒

𝑖Δ𝜙𝑎(𝑧), where 𝐼𝑎(𝑧) is the irradiance, and Δ𝜙𝑎(𝑧) is the induced nonlinear phase 

change. Using this, and substituting Equation (2.13) into (2.10), we can arrive at  

 

𝜕Δ𝜙𝑎(𝑧)

𝜕𝑧 
= 𝑘0,𝑎𝑛2(𝜔𝑎; 𝜔𝑎)𝐼𝑎(𝑧) + 2𝑘0,𝑎𝑛2(𝜔𝑎; 𝜔𝑏)𝐼𝑏(𝑧), 

𝜕𝐼𝑎(𝑧)

𝜕𝑧
= −𝛼2(𝜔𝑎; 𝜔𝑎)𝐼𝑎

2(𝑧) − 2𝛼2(𝜔𝑎; 𝜔𝑏)𝐼𝑏(𝑧)𝐼𝑎(𝑧), 

(2.14) 

 

(2.15) 

and likewise for wave 𝑏. In Equations (2.14) and (2.15) 𝑘0 is the free space wavenumber, 𝑛2 is the 

nonlinear refractive index, and 𝛼2 is the two-photon absorption (2PA) coefficient, and the fre-

quency argument (𝜔𝑎; 𝜔𝑏) specifies the nonlinearity observed by the wave at 𝜔𝑎 due to the wave 

at 𝜔𝑏. In the absence of linear absorption [19, 20], these parameters are related to 𝜒(3) by 

 

𝑛2,𝑒𝑙(𝜔𝑎; 𝜔𝑏) =
3

4𝜀0𝑛𝑎𝑛𝑏𝑐
Re{𝜒𝑒𝑙

(3)(𝜔𝑎; 𝜔𝑎, −𝜔𝑏 , 𝜔𝑏)}, 

𝛼2(𝜔𝑎; 𝜔𝑏) =
3𝜔𝑎

2𝜀0𝑛𝑎𝑛𝑏𝑐2
Im{𝜒𝑒𝑙

(3)(𝜔𝑎; 𝜔𝑎, −𝜔𝑏 , 𝜔𝑏)}. 

(2.16) 

 

(2.17) 
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We can think of Equations (2.14) and (2.15) in terms of the change in refractive index and absorp-

tion coefficient, respectively, 

 

𝜕Δ𝜙𝑎(𝑧)

𝜕𝑧 
= 𝑘0,𝑎Δ𝑛, 

𝜕𝐼𝑎(𝑧)

𝜕𝑧
= −Δ𝛼𝐼𝑎(𝑧), 

(2.18) 

 

(2.19) 

where, in for the bound-electronic nonlinear treated here 

 

Δ𝑛𝑒𝑙  = 𝑛2,𝑒𝑙(𝜔𝑎; 𝜔𝑎)𝐼𝑎(𝑧) + 2𝑛2,𝑒𝑙(𝜔𝑎; 𝜔𝑏)𝐼𝑏(𝑧), 

Δ𝛼𝑒𝑙 = 𝛼2(𝜔𝑎; 𝜔𝑎)𝐼𝑎(𝑧) + 2𝛼2(𝜔𝑎; 𝜔𝑏)𝐼𝑏(𝑧). 

(2.20) 

 

(2.21) 

This formulation, can be useful to generalize to other effects that change the refractive index or 

absorption coefficient directly. Terms of higher even orders give rise to similar type nonlinearities. 

For example 𝜒(5) gives rise to higher order nonlinear refraction, 𝑛4, and three-photon absorption 

𝛼31. 

 

2.2.1. Origins of bond-electronic third-order response 

 The material response depends on the electronic energy levels, as well as the transition 

dipole moments between them. Therefore, with knowledge of the energy levels and wave func-

tions, predictions of the dispersion of 𝑛2 and spectrum of 𝛼2 can be made. Alternatively, measure-

ments of 𝑛2 and 𝛼2 can provide information about the energy levels and wave functions. In this 

                                                 

1 It is unfortunate that the subscript notation for 5th order (in the field) NLR and 3PA is different, 𝑛4 versus 𝛼3, but 

this is the common notation in the literature. 
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section, we briefly describe the relationship between the bound-electronic NLR and 2PA and the 

quantum mechanical wave functions of the material system.  

 For an unperturbed time-independent Hamiltonian 𝐻̂0, a system satisfies the time-inde-

pendent Schrödinger equation (TISE) 𝐻̂0|𝜓𝑛⟩ = 𝐸𝑛|𝜓𝑛⟩, where |𝜓𝑛⟩ and 𝐸𝑛 are the eigenstates 

and eigenvalues, respectively, of 𝐻̂0. In general, an arbitrary time-dependent state |Ψ(𝑡)⟩, which 

satisfies the time-dependent Schrödinger equation (TDSE) 

 𝑖ℏ
𝜕

𝜕𝑡
|𝛹(𝑡)⟩ = 𝐻̂|𝛹(𝑡)⟩ (2.22) 

can be written in the form of a linear superposition of the eigenstates  

 |𝛹(𝑡)⟩ = ∑𝑐𝑛|𝜓𝑛⟩𝑒
−𝑖𝐸𝑛𝑡/ℏ

𝑛

 (2.23) 

where 𝑐𝑛 are the complex probability amplitudes, and |𝑐𝑛|
2 gives the probability of finding the 

system in the 𝑛th state. If a small time-dependent perturbation 𝐻̂𝑖𝑛𝑡(𝑡) is then applied to the system 

the resulting state can be expressed in the same manner, but with the normalized expansion coef-

ficients taking on time dependence, 𝑐𝑛 → 𝑐𝑛(𝑡). The TDSE, Equation (2.22), then becomes 

 𝑖ℏ
𝜕

𝜕𝑡
∑𝑐𝑛(𝑡)|𝜓𝑛⟩𝑒

−𝑖𝐸𝑛𝑡/ℏ

𝑛

= (𝐻̂0 + 𝐻̂𝑖𝑛𝑡(𝑡))∑𝑐𝑛(𝑡)|𝜓𝑛⟩𝑒
−𝑖𝐸𝑛𝑡/ℏ

𝑛

 (2.24) 

Since |𝜓𝑛⟩ are the eigenstates of 𝐻̂0, the second term in the chain rule expansion of the LHS can 

be cancelled with the term on the RHS proportional to 𝐻̂0. Taking the inner product with 

𝑒−𝑖𝐸𝑚𝑡/ℏ|𝜓𝑚⟩ on both sides yields 

 𝑖ℏ
𝜕𝑐𝑚(𝑡)

𝜕𝑡
 =∑𝑐𝑛(𝑡)⟨𝜓𝑚|𝐻̂𝑖𝑛𝑡(𝑡)|𝜓𝑛⟩𝑒

𝑖𝐸𝑚𝑛𝑡/ℏ

𝑛

 (2.25) 

where 𝐸𝑚𝑛 = 𝐸𝑚 − 𝐸𝑛 is the energy difference between the two states |𝜓𝑚⟩ and |𝜓𝑛⟩. The term 

⟨𝜓𝑚|𝐻̂𝑖𝑛𝑡(𝑡)|𝜓𝑛⟩ ≡ 𝑀𝑚𝑛, and is referred to as the matrix elements of the interaction. Thus we now 
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have the ability to determine the evolution of the system when a perturbation is applied. However, 

for a complicated system with many states, and for an arbitrary 𝐻̂𝑖𝑛𝑡(𝑡), Equation (2.25) may be-

come very difficult to solve. To simplify the problem, we expand 𝑐𝑚(𝑡) in a series 𝑐𝑚(𝑡) = 𝑐𝑚
(0) +

𝑐𝑚
(1)(𝑡) + 𝑐𝑚

(2)(𝑡) + ⋯ , where the zeroth order term corresponds to the unperturbed solution to 

Equation (2.22), and higher order terms calculated iteratively give corrections.  

 The above approach is true in general for any sort of perturbation. Of interest to us is the 

perturbation due to a light wave, in which case the first order term 𝑐𝑚
(1)(𝑡) corresponds to an elec-

tronic transition involving a single photon, the second order term 𝑐𝑚
(2)(𝑡) corresponds to two-pho-

ton transitions, and so on. Fermi’s Golden Rule, which expresses the transition rate 𝑊 from an 

initial state |𝜓𝑖⟩ to a final state |𝜓𝑓⟩, for a two-photon process can be found [2] from the time 

derivative of |𝑐𝑓
(2)(𝑡)|

2

, and is given by 

 𝑊𝑓𝑖
(2)
=
2𝜋

ℏ
|∑

𝑀𝑓𝑗
𝑏 𝑀𝑗𝑖

𝑎

𝐸𝑗𝑖 − ℏ𝜔𝑎
+

𝑀𝑓𝑗
𝑎𝑀𝑗𝑖

𝑏

𝐸𝑗𝑖 − ℏ𝜔𝑏
𝑗

|

2

𝛿(𝐸𝑓𝑖 − ℏ𝜔𝑎 − ℏ𝜔𝑏) (2.26) 

where the indices 𝑎 and 𝑏 indicate the two photons involved, which in general may be of different 

frequency, and the summation is over all intermediate states |𝜓𝑗⟩. The 2PA coefficient is related 

to the transition rate by 

 𝛼2(𝜔𝑎; 𝜔𝑏) =
𝑁ℏ𝜔𝑎𝑊𝑓𝑖

(2)

2𝐼𝑎𝐼𝑏
 (2.27) 

where 𝑁 is the number density of absorbers. While only terms related to the energy difference 

between initial and intermediate states 𝐸𝑗𝑖 are shown explicitly, the sum does include terms related 

to the energy difference between the intermediate and final states 𝐸𝑓𝑗 owning to the fact that, on 
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resonance, 𝐸𝑓𝑗 − ℏ𝜔𝑎 = 𝐸𝑗𝑖 − ℏ𝜔𝑏, and likewise if the photon energies are reversed. These inter-

mediate states can greatly affect the transition rate, given the resonance terms in the denominators 

of Equation (2.26), as one of the photon energies approaches either energy difference 𝐸𝑗𝑖 or 𝐸𝑓𝑗 

(see Figure 2.1). 

 

 
Figure 2.1 Energy diagram for perturbation approach to two-photon transitions 

 

 For states with definite parity, i.e., |𝜓𝑛(𝐫)⟩ are strictly either even or odd functions of 𝐫, 

within the dipole approximation one-photon transitions may only occur between states of opposite 

parity. Such transitions are called one-photon allowed transitions, while transitions between equal 

parity states are one-photon forbidden. This can easily be seen in the one dimensional case by 

analyzing the electric dipole operator 𝛍̂ = −𝑒𝐫̂, which in one dimension means the matrix ele-

ments 𝑀𝑚𝑛 ∝ ⟨𝜓𝑚(𝑥)|𝑥̂|𝜓𝑛(𝑥)⟩. If |𝜓𝑛(𝑥)⟩ and |𝜓𝑚(𝑥)⟩ are even and odd functions of 𝑥, respec-

tively, 𝑀𝑚𝑛 ≠ 0. This is because the product of an even function (|𝜓𝑛(𝑥)⟩), an odd function (𝑥), 

and a second odd function (|𝜓𝑚(𝑥)⟩), yeilds an even function, which when integrated over 𝑥 =

±∞ is non-zero. However, if |𝜓𝑚(𝑥)⟩ is an even function of 𝑥, the product is now odd, giving 

zero upon integration. 
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This concept also impacts the two-photon transition rate since the matrix elements 𝑀𝑗𝑖 in 

Equation (2.26) correspond to virtual one-photon transitions between initial (or final) and inter-

mediate states. Thus only intermediate states possessing opposite parity from both the initial and 

final states will contribute to the two-photon transition rate. These contributions are said to be from 

virtual transitions because one way to interpret the process is that the electron in the initial state 

|𝜓𝑖⟩ is excited by one photon to the intermediate state |𝜓𝑗⟩. However, because the photon energy 

is not equal to the transition energy 𝐸𝑗𝑖, it may only remain in |𝜓𝑗⟩ for a time Δ𝑡 given by the 

uncertainty relation Δ𝐸Δ𝑡 ≥ ℏ/2 [21], where in this case Δ𝐸 = 𝐸𝑗𝑖 − ℏ𝜔𝑎. The quantity Δ𝑡 is typ-

ically less than one femtosecond and much shorter than the shortest laser pulses used; thus the 

process is considered nearly instantaneous. The second photon must come along within this time 

to cause a second transition from |𝜓𝑗⟩ to the final state |𝜓𝑓⟩. This uncertainty relation is reflected 

in the resonance energy denominators of Equation (2.26). As the photon energy comes close to the 

intermediate state transition energy, i.e. as Δ𝐸 → 0, the time window for the second photon to 

arrive is greatly increased, resulting in an enhanced two-photon transition rate. This is known as 

intermediate state resonance enhancement (ISRE) [22]. Virtual transitions stand in contrast to real 

transitions in which, for Δ𝐸 ≈ 0 (or at least less than the linewidth), the electron goes directly into 

|𝜓𝑗⟩ via a one-photon transition where it may stay for roughly its lifetime, and from which the 

second photon may cause another transition to |𝜓𝑓⟩. This is typically referred to as a cascaded 

process, and is distinct from the instantaneous two-photon transition. Equation (2.26) may describe 

any two-photon transition between two states. If the initial state is of lower energy than the final 

state, this corresponds to 2PA. However, if the initial state is of higher energy than the final, it 

describes doubly-stimulated 2PE. 
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This analysis can also give insight into the dispersion of 𝑛2. If the two-photon energy sum 

is not resonant, 𝐸𝑓𝑖 ≠ ℏ𝜔𝑎 + ℏ𝜔𝑏, (or rather detuned many linewidths) there will be no two-pho-

ton absorption. However, the lifetime of the virtual state does still have a real impact on the mate-

rial response. Loosely speaking, the electron in the virtual state takes a longer time to transition 

back down to the ground state and reradiate the incident fields. The longer the virtual state lifetime, 

the greater the phase shift between the reradiated field and the incident one, and the larger the 

nonlinear refractive index. Therefore, large magnitudes of 𝑛2 (typically negative in sign) are found 

near linear absorption resonances [20]. 

 

2.3. Noninstantaneous Third-order Nonlinearities 

 In the Born-Oppenheimer approximation, the nonlinear optical response of the bound-elec-

tron and nuclei of the material may be separated. This allows us to write the [23] 

 𝛘(3) = 𝛘𝑒𝑙
(3) + 𝛘𝑛𝑢

(3), (2.28) 

where the subscripts 𝑒𝑙 and 𝑛𝑢 indicate the bound-electronic and nuclear origins, respectively. 

Nonresonant Raman type nonlinearities give rise to a noninstantaneous third-order susceptibility 

of the form [18, 23] 

 𝛘𝑛𝑢
(3)(𝑡 − 𝑡1, 𝑡 − 𝑡2, 𝑡 − 𝑡3) = 𝛘𝑛𝑢

(3)(𝑡 − 𝑡1)𝛿(𝑡 − 𝑡2)𝛿(𝑡1 − 𝑡3). (2.29) 

Substituting this expression into Equation (2.4) yields 

 𝐏̃𝑛𝑢
(3)(𝑡) = 𝜀0𝐄̃(𝑡) ∫ 𝛘𝑛𝑢

(3)(𝑡 − 𝑡1)𝐄̃(𝑡1)𝐄̃(𝑡1)d𝑡1

∞

−∞

.  (2.30) 

We refer to this as a Raman type nonlinearities since it is related to the Raman spectrum by Fourier 

transform ℱ{𝜒𝑛𝑢
(3)(𝑡)} ∝ 𝜒𝑛𝑢

(3)(Δ𝜔) [24]. We assume the optical frequencies are far from nuclear 
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resonances, so the only terms of the product of the two fields within the integrand that survive 

integration are those that are complex conjugates of one another, e.g., 𝑒±𝑖𝜔𝑡𝑒∓𝑖𝜔𝑡 = 1. This es-

sentially says that the material response is too slow to respond to the rapid variations of the field, 

and terms of the integrand containing the second harmonic, i.e., 𝑒±𝑖𝜔𝑡𝑒±𝑖𝜔𝑡 = 𝑒±𝑖2𝜔𝑡, integrate to 

zero. For the case of a single beam input, the third-order polarization amplitude is 

 𝒫𝑛𝑢
(3)(𝑡) =

𝜀0
2
ℰ(𝑡) ∫ 𝜒𝑛𝑢

(3)(𝑡 − 𝑡1)|ℰ(𝑡1)|
2d𝑡1

∞

−∞

. (2.31) 

 In the two beam case, things become a bit more complicated. The electric fields of the two 

beams interfere where they are overlapped in the medium. In the degenerate case this interference 

pattern is stationary, while in the nondegenerate case, the pattern moves at the frequency difference 

between the two input beams. The interference pattern results in a sinusoidal grating (e.g., refrac-

tive index grating) created in the material. We can see this if we imagine two beams at frequency 

inputs, 𝜔𝑎 and 𝜔𝑏, propagating at a slight angle with respect to one another (𝐤̂𝑎 ≠ 𝐤̂𝑏). The prod-

uct of the fields appearing in the integrand of Equation (2.30) (keeping only slowly varying terms) 

is 

 

1

2
(|ℰ𝑎|

2 + |ℰ𝑏|
2 + ℰ𝑎ℰ𝑏

∗𝑒𝑖((𝐤𝑎−𝐤𝑏)∙𝐫−(𝜔𝑎−𝜔𝑏)𝑡)   

+ ℰ𝑎
∗ℰ𝑏𝑒

−𝑖((𝐤𝑎−𝐤𝑏)∙𝐫−(𝜔𝑎−𝜔𝑏)𝑡) ). 

(2.32) 

Here we can see that there are both “smooth” terms given by only the square moduli of the field 

amplitudes, as well as “grating” terms due to the interference of the two fields that oscillate at the 

frequency difference 𝜔𝑎 − 𝜔𝑏. When this difference is close to nuclear resonances in the material 

there can be energy transfer from the high frequency beam to the low frequency beam [16]. This 

is stimulated Raman scattering. In the degenerate case the “grating” terms result in an additional 



22 

phase shift at zero delay when the two pulses are overlapped [25]. In addition, if the pulses are 

chirped, there is a small difference between the frequencies on either side of zero delay. This will 

give energy transfer from one beam to the other at positive delay, and the other way around at 

negative delay, depending on the sign of the chirp [26]. This effect is often called two-beam cou-

pling [16]. 

 To avoid these issues, and only retain the “smooth” terms in Equation (2.32) we must op-

erate in the nondegenerate case far from nuclear resonances. So long as the frequency difference 

𝜔𝑎 − 𝜔𝑏 is sufficiently large, the “grating” terms will integrate to zero, leaving only the “smooth” 

terms. In this case, the polarization amplitude, oscillating at 𝜔𝑎 and propagating in the 𝐤𝑎 direction 

is 

 𝒫𝑛𝑢
(3)(𝑡) =

𝜀0
2
ℰ𝑎(𝑡) ∫ 𝜒𝑛𝑢

(3)(𝑡 − 𝑡1)|ℰ𝑏(𝑡1)|
2d𝑡1

∞

−∞

. (2.33) 

Note that that for the noninstantaneous nuclear nonlinearity, the two beam case is the same as for 

the single beam case, Equation (2.31). This stands in contrast to the bound-electronic third-order 

response where there is a factor of two difference between the one- and two-beam cases, Equation 

(2.13). This is because instantaneous bound-electronic response is able to follow the rapidly mov-

ing interference pattern. The noninstantaneous nuclear component, however, is too slow to follow 

the interference pattern, and does not add to the nonlinear polarization [62].  

 Substituting Equation (2.33) into (2.10), we have 

 𝜕ℰ𝑎
𝜕𝑧

= 𝑖
𝜔𝑎
4𝑛𝑎𝑐

ℰ𝑎 ∫ 𝜒𝑛𝑢
(3)(𝑡 − 𝑡1)|ℰ𝑏(𝑡1)|

2d𝑡1

∞

−∞

. (2.34) 

Converting the complex field amplitude to irradiance and phase 
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 𝜕Δ𝜙𝑎
𝜕𝑧

=
𝜔𝑎
𝑐
∫
2𝜒𝑛𝑢

(3)(𝑡 − 𝑡1)

4𝑛𝑎𝑛𝑏𝜀0𝑐
𝐼𝑏(𝑡1)d𝑡1

∞

−∞

, (2.35) 

 𝜕𝐼𝑎
𝜕𝑧
= 0. (2.36) 

We can thus see that we only have a change in the phase of the beam, and no change in the irradi-

ance. We can therefore define a response function for the noninstantaneous nonlinear refraction in 

terms of the nuclear component of the third-order susceptibility, 

 
𝑅(𝑡) =

2𝜒𝑛𝑢
(3)(𝑡)

4𝑛𝑎𝑛𝑏𝜀0𝑐
. (2.37) 

Equation (2.35) then becomes 

 𝜕Δ𝜙𝑎
𝜕𝑧

= 𝑘0,𝑎 ∫ 𝑅(𝑡 − 𝑡1)𝐼𝑏(𝑡1)d𝑡1

∞

−∞

. (2.38) 

Comparing this to Equation (2.18) reveals that the integral is simply the refractive index change  

 

Δ𝑛𝑎(𝑡) = ∫ 𝑅(𝑡 − 𝑡1)𝐼𝑏(𝑡1)d𝑡1

∞

−∞

. (2.39) 
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CHAPTER 3: EXPERIMENTAL METHODS 

 The purpose of this chapter is to describe the experimental approaches used to measure the 

nonlinear optical properties of various media within this work.  

 

3.1. Linear Characterization 

 The first, and perhaps most important, part of characterizing the nonlinear optical proper-

ties of a material is to first determine its linear optical properties.2 Here, the main characteristics 

of interest are the dispersion of the linear refractive index 𝑛0(𝜔), and the spectrum of the linear 

(one-photon) absorption coefficient 𝛼1(𝜔). The materials concentrated on in this work, liquid CS2, 

air, and GaAs, are generally well characterized, and references for their linear optical properties 

can be found in the literature. Sources used for the linear optical properties of CS2 are [27, 28], for 

air [29], and for GaAs [30-36]. In addition, the spectrum of the absorption coefficient of both CS2 

and GaAs samples used were measured using a Cary 500 spectrophotometer. 

 

3.2. Nonlinear Characterization 

 Measurement of the nonlinear optical characteristics of materials differs significantly from 

the procedures used to characterize the linear optical properties. This is principally due to the re-

quirement of high irradiances in order to induced changes in the materials. For this purpose high 

peak power pulsed laser sources are used throughout this work. The following discusses the laser 

                                                 

2 The website http://refractiveindex.info/ is an excellent resource for linear optical properties of a wide range of ma-

terials. Also, http://www.ioffe.ru/SVA/NSM/ has a wealth of information about semiconductor materials. 

http://refractiveindex.info/
http://www.ioffe.ru/SVA/NSM/
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systems used as well as several measurement techniques including Z-scan, pump-probe, and two-

photon stimulated emission depletion. Novel techniques that were developed over the course of 

this work, namely the Dual-arm Z-scan and Beam Deflection techniques, are described in detail. 

 

3.2.1. Light Sources 

 Two laser systems were used for the majority of this work. Both were Ti:sapphire [37] 

based regenerative amplifier systems operating at 1 kHz repetition rate that were used to pump 

optical parametric generator/amplifiers capable of tuning the output wavelength from 300 nm to 

10 μm.  

 

3.2.1.1. Laser Sources 

 
Figure 3.1. Schematic diagram of Clark-MXR CPA-2010 laser system. 

 

 The first laser system was a Clark-MXR model CPA 2010 with 1 mJ output energy, a 

central wavelength of 776 nm, with a bandwidth of 7 nm (FWHM), which produced 150 fs pulses. 

The laser system consists of a dual level design, consisting of six sections; a diode laser, Er fiber 

oscillator, pulse stretcher, Nd:YAG pump laser, regenerative amplifier, and pulse compressor (see 

Figure 3.1). The systems starts with a diode laser at 980 nm, which pumps an erbium doped uni-

directional, polarization rotation additively pulsed mode-locked fiber ring laser at a wavelength of 
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1550 nm and a repetition rate of 27 MHz. A periodically poled lithium niobate (PPLN) crystal 

generates the second harmonic at 775 nm, which is sent to a diffraction grating pulse stretcher to 

temporally extend the pulse before amplification. This is done to minimize the peak irradiance 

within the optical components to prevent damage. A single pulse is switched into the amplifier 

cavity through the use of a Pockels cell, which is then amplified by the Ti:sapphire gain medium. 

The gain medium is pumped by a Q-switched Nd:YAG laser, which itself is pumped by a flash-

lamp, that has been doubled by a lithium triborate (LBO) crystal from 1064 nm to 532 nm to 

coincide with the absorption band of the Ti ions, and synchronized to the system at 1 kHz repetition 

rate. After several amplification passes, a second Pockels cell is used to switch the amplified pulse, 

which is now at the mJ energy level, out of the cavity. The pulse is then sent to a diffraction grating 

compressor to yield 150 fs pulses (FWHM) at the output. 

 

 
Figure 3.2 Schematic diagram of Coherent Legend Elite Duo HE+ laser system. 

  

 The second laser systems was a Coherent model Legend Elite Duo HE+ chirped pulse am-

plifier system with 12 mJ output energy at 800 nm, with a bandwidth of 28 nm (FWHM), and a 

repetition rate of 1 kHz, and capable of producing pulses as short as 35 fs (FWHM) (see Figure 

3.2). The system is seeded with a Coherent Vitara mode-locked Ti:sapphire laser. This consists of 
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a Coherent Verdi G-Series laser head, which has a CW diode laser at 808 nm that optically pumps 

a semiconductor quantum well chip that acts as the gain medium for a vertical-external-cavity 

surface-emitting-laser (VECSEL) operating at 1064 nm. The output coupler is highly reflective at 

1064 nm, so the beam is doubled within the cavity by a LBO crystal to 532 nm, where the output 

coupler is transmissive. This beam is then used to pump the Ti:sapphire gain medium in the Vitara. 

The Vitara laser itself is a passively Kerr lens mode-locked laser that operates at 800 nm with a 

tunable bandwidth and a repetition rate of 80 MHz. A Pockels cell picks off one pulse and sends 

it to the Legend Elite Duo HE+ amplifier. The pulse is first sent into a diffraction grating stretcher 

to reduce the peak irradiance and minimize damage to the gain medium and optical components. 

The pulse is then sent through a Ti:sapphire crystal within the regenerative amplification cavity. 

The Ti:sapphire gain medium is optically pumped by a Coherent Evolution-45 laser system. This 

system is similar to the Vergi G-series pump laser within the Vitara. It is semiconductor diode 

pumped, acousto-optic Q-switched Nd:YLF laser that is intra-cavity frequency doubled (with a 

temperature tuned LBO crystal). The output at a wavelength of 527 nm, an energy of 28 mJ, and 

pulse width of less than 250 ns is synchronized to the 1 kHz repetition rate of the pulse selector 

from the Vitara. The seed pulse is amplified through several passes of the regenerative amplifier 

up to an energy of 7 mJ. It is then switched to a second Ti:sapphire crystal constituting the single 

pass amplifier (SPA), which is pumped by a second Coherent Evolution (model HE) with 45 mJ 

of energy. The pulse is then sent to a grating compressor which compresses the pulse down to 35 

fs. 
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3.2.1.2. Optical Parametric Generators/Amplifiers 

 Nonlinear spectroscopy requires a broadly tunable source of high peak power radiation. 

Currently, the best way to do this is by use of optical parametric generators/amplifiers OPG/A, 

which, through 𝜒(2) nonlinearities, alter the frequency of an input to generate potentially any wave-

length from 300 nm to 10 μm. Three OPG/A’s were used in this work, each Light Conversion’s 

Traveling wave Optical Parametric Amplifier of Superfluorescence (TOPAS), models -800, -C, 

and -HE. 

 

 
Figure 3.3 Principle of operation of Light Conversion TOPAS. 

  

 The TOPAS-800 is really the only one of the three that is true to its name. Approximately 

1.3 mJ of the Coherent laser output pumps the system. A small portion (~2%) is transmitted 

through the first two beam splitters and focused into a barium borate (BBO) crystal where photons 

at 800 nm are split into a signal photon and an idler photon via spontaneous parametric down 

conversion, which are then amplified as they co-propagate within the crystal (see Figure 3.3). This 

process is sometimes referred to as superfluorescence [38] (not to be confused with cooperative 

radiation emitted from an excited atomic system, which is also called superfluorescence [39]). 

Determination of the wavelengths is selected by angle tuning the BBO crystal to phase match the 



29 

desired wavelength. The generated superfluorescence signal (and idler) reflected off mirrors and 

sent back through the same crystal another two times. Approximately ~2 % of the input energy is 

reflected from the second beam splitter and is used as a pre-amplifier, which is temporally and 

spatially overlapped in the same BBO crystal with the fourth pass of the initial seed. The remaining 

pump energy was split off from the first beam splitter to act as a main amplifier, which is then 

overlapped in a second BBO crystal within the same mount housing. The system is tunable with 

computer controlled delay stages for timing the arrival of the pre- and main-amplifier pulses, as 

well as the orientation angle of the BBO crystal. There are also several attachments to the output 

that produce the second and fourth harmonics of both signal and idler, the sum frequency between 

signal (or idler) and the remaining 800 nm pump beam, and the difference frequency between 

signal and idler. All but the DFG crystal, which is AgGaSe, are BBO. The TOPAS-800 is difficult 

to align, since the generation and both amplification passes happen through the same crystal and 

troubleshooting can be problematic. In addition, due to the inherently noisy nature of the sponta-

neous parametric down conversion process, the TOPAS-800 suffers from large energy instability. 

 Both the TOPAS-C and the TOPAS-HE have white-light continuum (see section 3.2.1.3. ) 

seed generation stages, each using ~2 μJ of pump energy in a 5 mm sapphire plate. This seed 

generation process is inherently more stable than spontaneous parametric down conversion. The 

wavelength selection is done by chirping the generated white light by passing it through a ZnSe 

plate and pre-amplifying only the desired spectral range. Additionally, the pre-amplification and 

main-amplification stages are done in different BBO crystals, making alignment troubleshooting 

much simpler. The TOPAS-HE (high energy) accepts 10 mJ input from the Coherent laser system, 

and has an additional amplification stage to boost the total output energy of the signal plus idler 

pulses up to 4 mJ.  
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3.2.1.3. White-Light Continuum 

 When an ultrashort pulse propagates through a medium, it experiences a temporal gradient 

in the refractive index due to nonlinear refraction (optical Kerr effect) at its leading and trailing 

edges. This induces a temporally varying phase change on the pulse. Since the instantaneous fre-

quency is defined as the temporal derivative of the phase, this results in phase shifts at the edges 

of the pulse. This effect, known as self-phase modulation, leads to a broadening of the frequency 

content of the pulse. In addition, self-focusing can overcome diffraction and cause the beam to 

collapse, increasing the irradiance, and further enhancing the nonlinear interaction. This effect is 

arrested by multiphoton absorption generating a plasma (or excited states in solid-state media) 

causing a reduction in the refractive index [40]. The interplay between diffraction, Kerr-lens self-

focusing, and multiphoton ionization induced defocusing yielding a narrow beam of high irradi-

ance over a long distance, known as filamentation [41-44]. The output of such a filament is an 

ultra-broadband white-light continuum that may span several octaves [44, 45].  

 

3.2.2. Dual-arm Z-scan 

 Since is invention in 1989 [46] and expansion in 1990 [47], Z-scan has been a staple of 

nonlinear optical materials characterization and spectroscopy, owing to its simplicity and ease of 

implementation. It is a single beam technique capable of measuring both the nonlinear refraction 

and absorption of a wide variety of materials. The technique relies on focusing a single beam into 

a nonlinear sample, and measuring its transmission through both a partially closed and fully open 

aperture in the far-field (see Figure 3.4) as the sample is scanned through the focus of the beam.  
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Figure 3.4 Z-scan schematic showing a sample with positive 𝑛2 showing (top) an increased beam size at the aperture 

when the sample is before focus, and (bottom) a reduced beam size when the sample is after focus. 

 

 To measure nonlinear absorption, e.g., 2PA, the entire beam is measured, which is known 

as the Open-Aperture (OA) Z-scan, which shows the largest reduction in transmission at focus, 

where the irradiance is maximum (see left plot in Figure 3.5). Nonlinear refraction can be measured 

by closing the aperture partially (this research group typically reduces the transmission to ~33%), 

so that the measurement is now sensitive to changes in the beam size on the aperture. For a TEM00 

Gaussian beam, a sample with positive 𝑛2 will have an increased refractive index in the center of 

the beam, where the irradiance is greatest, more than in the wings. The sample now looks like a 

positive lens, in the sense that the optical path length (OPL) is greatest in the center and smaller 

towards the edge. Therefore, the beam experiences self-focusing, since it “wrote” a positive lens 

into the material, and caused itself to focus. When the sample is placed before focus, this causes 

the beam to focus sooner than it would normally, and diverge more on the other side of focus, 

causing the spot size on the aperture to be larger, so less energy is transmitted. When the sample 
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is on the other side of focus, self-focusing tends to collimate the beam, reducing the spot size on 

the aperture, and increasing the transmission. The result is a characteristic antisymmetric Closed-

Aperture (CA) Z-scan curve demonstrated in the middle plot of Figure 3.5. For a negative 𝑛2, or 

self-defocusing nonlinearity, this signal is flipped in sign. The difference between the normalized 

transmissions at the peak and valley Δ𝑇𝑝−𝑣 ∝ Δ𝑛 is a characteristic feature.  

 

 
Figure 3.5 Examples of Z-scan signals (left) CA for positive NLR and zero NLA, (middle) OA signal for 2PA, and 

(right) open, closed, and divided signals with both positive NLR and 2PA. 

 

 If there is significant NLA, it will contaminate the CA Z-scan signal, and yield a distorted 

curve, such as the black curve on the right plot of Figure 3.5. However, if we divide the CA scan 

by the OA scan (red), which we have also measured, we find that the division (blue) is very similar 

to what would have been measured if the sample had no NLA. This of course fails if the NLA 

completely dwarfs the NLR signal, and can make determination of 𝑛2 in the presence of large 

NLA very difficult. 

 In general the analysis of a Z-scan experiment requires numerical propagation of the elec-

tric field of the beam through the sample, followed by Fresnel propagation to the aperture plane 

[48]. However, approximations can simplify the analysis if the sample is sufficiently thin, meaning 

less than the Rayleigh range, 𝐿 ≪ 𝑧0, such that the beam size doesn’t change within the sample. 

Additionally, the nonlinear refraction must also be sufficiently small, 𝐿 ≪ 𝑧0/Δ𝜙0, meaning self-
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focusing does not cause the beam size to change within the sample itself. This is the thin sample 

approximation, and allows the separation of the electric field into irradiance and phase, as in Equa-

tions (2.14) and (2.15). In this case, the effect of the sample on the beam is the same as if it were 

simply a thin phase (and/or amplitude) mask, which is sometimes referred to as “external self-

action”. In this case, standard Z-scan analysis based on analytical and/or numerical solutions to 

Equations (2.14) and (2.15) may be applied to extract the material properties from the measure-

ments [47]. 

 Z-scan only measures the total NLA and NLR; it does not give information about the un-

derlying physical mechanism. This can be particularly problematic during analysis, since there are 

many different means to alter the absorption coefficient or refractive index. Care must be taken 

when analyzing data, and several scans at multiple energies should be performed to ensure the 

correct energy dependence the applied model. For example, the Z-scan signals from bound-elec-

tronic third-order nonlinear refraction and 2PA scale linearly with input energy. Noninstantaneous 

nonlinearities, including excitation effects such as saturable and excited state absorption, thermal 

effects, and molecular dynamics must be analyzed with care, and typically other time domain ex-

periments are required. 

 Another issue arises when trying to measure the nonlinearities of solutes dissolved in so-

lution or thin films on thick substrates. Typically solvents and substrates may be selected which 

have negligible NLA in the spectral range of interest. However, NLR is always present, and the 

resulting CA Z-scan signal from the solvent/substrate can completely mask that from the material 

being studied. This can become particularly problematic when limited to low solute concentra-

tions, thin film thickness, or when the nonlinearity is very small. Figure 3.6 shows an example of 

a sequential Z-scan measurements of a thin film of ZnO deposited on a fused silica substrate (left 
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figure, red curve) and a bare substrate (left figure, blue curve). The differences between these two 

scans is very small, such that when taking the difference (right figure), the signal due to only this 

thin film is buried within the noise. To overcome this problem, we developed the Dual-arm Z-

scan, which is differential method that measures both the solution (thin film on substrate) and 

solvent (bare substrate) simultaneously to determine only the nonlinearity of the solute (thin film) 

itself [49-51].  

 

 
Figure 3.6 Example of problems with measuring NLR of a thin film on a thick substrate. (left) Sequential Z-scan 

measurements of (red) a 3 μm film of ZnO on a 1 mm fused silica substrate, and (blue) bare fused silica substrate. 

(right) Difference between the two measurements.  

 

 A schematic of the experimental setup is shown in Figure 3.7. A small portion of the laser 

pulse energy is split off and sent to a reference detector which is used to window pulses of a desired 

energy range. The remainder of the pulse is split into two arms, one with a cuvette containing the 

solution, and the other with a cuvette containing only the solvent. Both CA and OA Z-scans are 

measured simultaneously. To ensure that the resulting difference between the two signals origi-

nates only from the nonlinearity of the solute itself much care needs to be taken. The irradiance 
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distribution in each beam needs to be identical. The OPLs between the beam splitter and the fo-

cusing lenses in each arm are matched to account for any slight vergence of the beam that would 

otherwise result in different beam waist locations and radii. A continuously variable neutral density 

(ND) filter is placed in one arm to make sure the energies are equal. A compensation plate may 

also be used to compensate the dispersion in the ND filter and beam splitter which could alter the 

pulse width in one arm. Furthermore, matched best form lenses and cuvettes are used. Much over-

head is required to guarantee that the two arms are balanced. This is done by scanning identical 

samples (usually cuvettes filled with CS2 due to its large nonlinearity) in each arm, and balancing 

the sample z-position and pulse energy iteratively until the subtraction of the CA Z-scan signals 

yields a uniform trace.  

 

 
Figure 3.7. Schematic diagram of Dual-arm Z-scan setup (reproduced with permission from Ref. [49]). 

 

 Once the system is properly balanced cuvettes filled with solution and solvent are placed 

in each arm. Figure 3.8 shows an example of the procedure for measurement. The first step in the 
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procedure is to first perform a scan at low energy such that no nonlinearity is observed (see Figure 

3.8 (a)). The resulting difference between the two arms yields the Low Energy Background (LEB), 

which is due to linear differences between the two arms, such as cell mismatch (see Figure 3.8 

(b)). The LEB is minimized by using matched optics and cuvettes, and then translating the sample 

positions until a sufficiently small LEB signal is found (typically < 3% is acceptable, but as below 

the noise floor is desirable). Next, the energy is increase such that the nonlinearity of both the 

solvent and solution can be seen (see Figure 3.8 (c)), and the difference between the two arms is 

taken (see Figure 3.8 (d)). This difference contains both the nonlinear signal from only the solute, 

as well as the LEB, as can be seen in Figure 3.8 (e) where the two are overlaid. Subtracting the 

LEB from the uncorrected scan yields the Dual-arm Z-scan trace with only the nonlinearity of the 

solute, Figure 3.8 (f), which has been corrected for by residual linear differences in the two arms. 

This curves may then be fit, along with the OA Z-scans, to obtain 𝛼2 and 𝑛2 due to the solute. This 

procedure clearly reduces the noise floor of the measurement of the nonlinear refraction due to the 

solute itself, and greatly improves our ability to distinguish small solute nonlinearities in the pres-

ence of large backgrounds. For example, at a signal-to-noise ratio of unity, with a noise floor of 

standard deviation 0.1% (which are typical best results) the peak on axis phase change Δ𝜙0 =

4 mrad (OPL change of 𝜆/1600). Additionally, this technique has been expanded to measuring 

NLR of thin films on thick substrates [51, 52].  
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Figure 3.8 Procedure of processing dual-arm Z-scan. (a) low energy scan of the (red) solution and (lack) solvent and 

(b) their difference which is the LEB, (c) high energy (11 nJ, 𝐼0 = 18 GW/cm2) and (d) their difference, (e) direct 

comparison of (b) and (d), and (f) corrected solute signal and fit with 𝑛2 = −0.4 × 10
−19 m2/W, and 𝛼2 =

0.02 cm/GW [49]. 

 

3.2.3. Pump-probe 

A complementary technique to Z-scan for measuring NLA is known as the pump-probe 

technique. It involves two individual beams, a strong pump, which induces a change in the absorp-

tion in a sample, and weak probe, whose transmission is then measured (see Figure 3.9). With 

femtosecond pulses, a temporal delay between the two beams is added by means of a delay stage 

to allow temporally resolved NLA measurements. This allows isolation of various NLA mecha-

nisms that may be difficult to distinguish in Z-scan experiments. For example, 2PA will yield a 

reduction in the probe transmission only when the two pulses are temporally overlapped within 

the sample, while when the probe arrives after the pump (positive delay) FCA/ESA will reduce 

the probe’s transmission.  
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Figure 3.9 Diagram of Pump-probe experiment 

 

Figure 3.10 shows an example of a pump-probe measurement on a sample that exhibits 

both 2PA and FCA/ESA. The black curve shows the signal due to 2PA of the probe with the pump 

(one photon from each pulse). The red curve shows the signal due to 2PA of the pump itself pop-

ulating exited states within the material, which then increases the absorption coefficient of the 

sample, reducing the probe transmission at positive delays. The blue curve shows the sum of the 

two contributions, which is what is actually measured. While the 2PA signal is only about zero 

delay, due to its nearly instantaneous nature, the ESA signal will remain for the lifetime of the 

excited state.  
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Figure 3.10 Pump-probe measurement example showing normalized probe transmission versus delay where the sig-

nal originates from (black) 2PA with the pump, (red) 2PA induced FCA/ESA, and (blue) total. 

 

This experiment can be expressed in terms of the equations 

 𝜕𝐼𝑎
𝜕𝑧
= −𝛼2(𝜔𝑎; 𝜔𝑎)𝐼𝑎

2 − 2𝛼2(𝜔𝑎; 𝜔𝑏)𝐼𝑎𝐼𝑏 − 𝜎𝐹𝐶𝐴(𝜔𝑎)𝑁𝐼𝑎, (3.1) 

 𝜕𝐼𝑏
𝜕𝑧
= −𝛼2(𝜔𝑏; 𝜔𝑏)𝐼𝑏

2 − 2𝛼2(𝜔𝑏; 𝜔𝑎)𝐼𝑏𝐼𝑎 − 𝜎𝐹𝐶𝐴(𝜔𝑏)𝑁𝐼𝑏 , (3.2) 

 𝜕𝑁

𝜕𝑡
=
𝛼2(𝜔𝑎; 𝜔𝑎)

2ℏ𝜔𝑎
𝐼𝑎
2 +

𝛼2(𝜔𝑏; 𝜔𝑏)

2ℏ𝜔𝑏
𝐼𝑏
2 + 2

𝛼2(𝜔𝑎; 𝜔𝑏)

ℏ𝜔𝑎
𝐼𝑎𝐼𝑏 −

𝑁

𝜏
. (3.3) 

Here 𝐼𝑎 and 𝐼𝑏 are the probe and pump irradiances, respectively, and 𝑁 is the number density of 

excited electrons. In general, the probe irradiance is kept small, allowing us to neglect the first 

term in both Equations (3.1) and (3.3), as well as the second term in Equation (3.2). The third term 

in Equation (3.3) is only nonzero about zero delay, and generally much smaller than the second 

term, and may also be neglected. Also, for ultrashort pulses, the 2PA of the strong pump is much 

greater than FCA/ESA, so the third term in (3.2) is typically dropped. We can see in Equation (3.1) 



40 

the 2PA (second term) contains the product of the pump and probe irradiances, thus only influenc-

ing the probe when it is temporally overlapped with the pump. Additionally FCA/ESA (third term) 

depends on 𝑁 which is generated by 2PA of the pump itself, represented by the first term in Equa-

tion (3.2). The measurement should be performed at several pump irradiances to ensure the correct 

dependence of each mechanism. For 2PA, the signal will be linear in the pump irradiance, while 

for FCA/ESA it will be quadratic. Fitting all measurements allows the determination the material 

properties 𝛼2(𝜔𝑎; 𝜔𝑏), 𝛼2(𝜔𝑏; 𝜔𝑏), and 𝜎𝐹𝐶𝐴(𝜔𝑎). Measuring the signal out to longer delays also 

allows the determination of the excited state lifetime 𝜏. 

Thus far, the analysis assumes several things about the sample being measured. One as-

sumption is that the group velocities 𝑣𝑔 of the two pulses are identical such that they remain over-

lapped throughout the entire sample thickness. When different frequencies are used, the material 

dispersion may cause the group velocities to differ significantly from one another. This is charac-

terized by the group index 𝑛𝑔 = 𝑐/𝑣𝑔 given by 

 
𝑛𝑔 = 𝑛 + 𝜔

𝜕𝑛

𝜕𝜔
. (3.4) 

To account for this group velocity mismatch (GVM) we follow Negres et al. [53] and go back to 

Equation (2.9). This wave equation governing the weak probe field in the case of only (nearly) 

instantaneous bound-electronic third-order nonlinearities, Equation (2.13), due to the strong pump 

(which is assumed to be undepleted)  

 
𝑖 {
𝜕ℰ𝑎
𝜕𝑧

+
𝑛𝑔,𝑎

𝑐

𝜕ℰ𝑎
𝜕𝑡
} = −3

𝜔𝑎
4𝑛𝑎𝑐

𝜒𝑎𝑎𝑏𝑏
(3) (𝜔𝑎; 𝜔𝑎, −𝜔𝑏 , 𝜔𝑏)|ℰ𝑏|

2ℰ𝑎, (3.5) 

where we have neglected the 𝜕𝒫/𝜕𝑡 term. We now transform in to a dimensionless coordinate 

system that travels with the group velocity of the pump pulse, 𝑇 = (𝑡 − 𝑧/𝑣𝑔,𝑏)/𝜏𝑏, where 𝜏𝑏 is 
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the pulse width (HW1/eM) of the pump, and 𝑍 = 𝑧/𝐿, where 𝐿 is the sample thickness. The spatial 

derivative becomes 
𝜕

𝜕𝑧
=
1

𝐿

𝜕

𝜕𝑍
−

1

𝑣𝑔,𝑏𝜏𝑏

𝜕

𝜕𝑇
 , and the temporal derivative becomes 

𝜕

𝜕𝑡
=

1

𝜏𝑏

𝜕

𝜕𝑇
, and 

Equation (3.5) becomes 

 
𝑖 {
𝜕ℰ𝑎
𝜕𝑍

+ 𝜌
𝜕ℰ𝑎
𝜕𝑇
} = −3

𝜔𝑎𝐿

4𝑛𝑎𝑐
𝜒𝑎𝑎𝑏𝑏
(3) (𝜔𝑎; 𝜔𝑎, −𝜔𝑏 , 𝜔𝑏)|ℰ𝑏|

2ℰ𝑎, (3.6) 

where 

 
𝜌 =

𝐿

𝜏𝑏𝑐
Δ𝑛𝑔 =

𝐿

𝜏𝑏𝑐
(𝑛𝑔,𝑎 − 𝑛𝑔,𝑏), (3.7) 

is the GVM parameter. Converting the pump field to irradiance, and 𝜒(3) to 𝑛2 and 𝛼2 via Equa-

tions (2.16) and (2.17), respectively, yields 

 
𝑖 {
𝜕ℰ𝑎
𝜕𝑍

+ 𝜌
𝜕ℰ𝑎
𝜕𝑇
} = −(2𝑘0,𝑎𝑛2(𝜔𝑎; 𝜔𝑏) + 𝑖α2(𝜔𝑎; 𝜔𝑏)) 𝐼𝑏𝐿ℰ𝑎. (3.8) 

The first term on the RHS of Equation (3.8) is NLR that causes phase change in the probe, and the 

second term is 2PA which reduced the its transmission. Since in a pump-probe experiment 

measures only the probe’s transmission, we neglect the phase change terms, yielding 

 
{
𝜕ℰ𝑎
𝜕𝑍

+ 𝜌
𝜕ℰ𝑎
𝜕𝑇
} = −α2(𝜔𝑎; 𝜔𝑏)𝐼𝑏𝐿ℰ𝑎. (3.9) 

For Gaussian shaped pulses, Equation (3.9) may be solved analytically to yield [53] (suppressing 

the frequency argument of the 2PA coefficient) 

 
ℰ𝑎(𝐫, 𝑇) = ℰ0,𝑎(𝐫) exp (−

(𝑇 + 𝑇𝑑 − 𝜌)
2

2𝒯2
−
𝛼2𝐿

𝜌
𝐼0,𝑏(𝐫)[erf 𝑇 − erf(𝑇 − 𝜌)]) , (3.10) 

where 𝐫 is the radial coordinate, ℰ0,𝑎(𝐫) is the spatial distribution of the probe field, and 𝐼0,𝑏(𝐫) is 

the spatial distribution of the pump irradiance. Equation (3.10) may then be integrated over time 

and space to find the total energy of the probe transmitted.  
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Figure 3.11 Example of Pump-probe measurement of 2PA with varying GVM for (black) 𝜌 = 0, (red) 𝜌 = ±5, and 

(blue) 𝜌 = ±10, where solid curves are positive 𝜌 and dashed curves are negative 𝜌. 

  

Examples of the probe transmission for various values of 𝜌 are shown in Figure 3.11. Com-

pared to the case of zero GVM (𝜌 = 0), shown in black, increasing GVM results in a reduced 

signal magnitude. This is because the pulses only interact in a smaller region of the sample, rather 

than throughout its entire thickness. Additionally, the signal broadens in delay with increasing |𝜌|. 

At zero delay, when both pulses arrive at the front of the sample simultaneously, the pulse with 

the higher group velocity (lower 𝑛𝑔) propagates faster through the sample, causing the pulses to 

walk off of one another. For a positive 𝜌 the pump travels faster than the probe. At negative delay, 

where the probe arrives at the front of the sample first, the pump is able to catch up with it within 

the sample. This causes a the signal to broaden towards negative delay for positive 𝜌 and towards 

positive delay for negative 𝜌.  
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The pump-probe technique has distinct advantages over the Z-scan technique. The use to 

two beams allows it to measure the spectrum of nondegenerate NLA (where there may be signifi-

cant GVM) [15, 53]. Additionally it is also able to more directly measure noninstantaneous NLA 

(e.g. FCA) due to the ability to temporally delay the pump and probe. Additionally, pump-probe 

benefits greatly from the use of a lock-in amplifier, where the pump beam is externally modulated, 

and the signal at the modulation frequency is detected [54-56]. This eliminates extraneous signals, 

reduces the noise level, and only shows changes in the probe transmission due to the modulated 

pump beam. The technique is readily generalizable to measure different processes with the addi-

tion of more beams, such as in the Double Pump-Probe technique [57]. In § 5.2. a generalization 

of the pump-probe technique used to measured two-photon gain, with the addition of a third pulse 

to provide population inversion, is described. There are, however, disadvantages as well, for pump-

probe only measures NLA, and is incapable of measuring NLR.  

 

3.2.4. Degenerate Four-Wave Mixing 

Degenerate Four-Wave Mixing is a similar pump-probe type technique, where two pump 

beams are overlapped in a sample at a small angle, such that they interfere and generate an irradi-

ance grating within the sample. The material response then causes a refractive index grating in the 

material. A third beam, the probe, is diffracted off of the refractive index grating, and the diffracted 

energy is measured [16, 17, 58, 59]. In this sense, it is capable of measuring not only NLA, but 

NLR as well. Here we derive the signal measured in a DWFM measurement on a sample that 

includes both nearly instantaneous bound-electronic and noninstantaneous nuclear responses. 
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When three beams overlap in a sample, the resulting third-order nonlinear interaction de-

pends on 𝐄̃3(𝑡), and results in a whole host of nonlinear effects, including self- and cross-phase 

modulation (and/or NLA), third-harmonic generation, as well as the generation of new beams. The 

incident electric field may be written as 

 

𝐄̃(𝑡) = ∑ 𝐄̃𝑛(𝑡)

3

𝑛=1

= ∑
1

2
ℰ𝑛(𝑡)𝑒

𝑖(𝐤𝑛∙𝐫−𝜔𝑛𝑡)𝐱̂ + 𝑐. 𝑐.

3

𝑛=1

,  (3.11) 

where we have assumed that all three beams are linearly polarized in the x-direction. Here, beams 

1 and 2 are considered the pumps, and 3 is the probe. When the field is cubed we get a total of 

63 = 216 terms. Given the complexity of the problem, we shall try to simplify it by only dealing 

with those that end up yielding new beams. We assume that the three beams are all at the same 

frequency (thus the “degenerate” in degenerate four-wave mixing). The field cubed is then 

 
𝐄̃3(𝑡) =

1

8
{(𝑒−𝑖3𝜔𝑡[THG] + 𝑐. 𝑐. )

+ (𝑒−𝑖𝜔𝑡[Self‐  and Cross‐  Nonlinearities] + 𝑐. 𝑐. )

+ (𝑒−𝑖𝜔𝑡[New Beams] + 𝑐. 𝑐. )} . 

(3.12) 

The first term, [THG], includes 2 × 33 = 54 products (when you include the 𝑐. 𝑐.) that result in 

frequencies at 3𝜔, including those that do not propagate in the same direction as the initial beams, 

for example ℰ1ℰ2ℰ3𝑒
𝑖(𝐤1+𝐤2+𝐤3)∙𝐫. The second term, [Self‐  and Cross‐  Nonlinearities], includes 

90 terms(when you include the 𝑐. 𝑐 that propagate in the same direction as the initial beams, for 

example |ℰ1|
2ℰ1𝑒

𝑖𝐤1∙𝐫 and |ℰ1|
2ℰ2𝑒

𝑖𝐤2∙𝐫. The third term, [New Beams], contains 216 − 54 −

90 = 72 terms that propagate in new directions (i.e., not along 𝐤1, 𝐤2, or 𝐤3) at frequency 𝜔. We 

are particularly interested in those new beams that are due to an interaction of all incident three 

beams, which not all 72 terms are, for example, terms such as ℰ1
2ℰ2

∗𝑒𝑖(2𝐤1−𝐤2)∙𝐫. Only half of the 
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terms in [New Beams] originate from products of all three incident beams, leaving a total of 36 

(when you include the 𝑐. 𝑐.). Since many of these terms are equal, they can be written simply as 

 3

4
[ℰ1ℰ2ℰ3

∗𝑒𝑖(𝐤1+𝐤2−𝐤3)∙𝐫 + ℰ1ℰ2
∗ℰ3𝑒

𝑖(𝐤1−𝐤2+𝐤3)∙𝐫

+ ℰ1
∗ℰ2ℰ3𝑒

𝑖(−𝐤1+𝐤2+𝐤3)∙𝐫]𝑒−𝑖𝜔𝑡 + 𝑐. 𝑐.  

(3.13) 

We now introduce a particular experimental geometry, known as the “boxcar” geometry, as illus-

trated in Figure 3.12. Only the last term explicitly shown in Equation (3.13) results in a beam that 

propagates in the 𝐤4 direction.  

  

 
Figure 3.12 Boxcar phase matching geometry 

 

 The bound-electronic contribution to the third-order polarization in the 𝐤4 = −𝐤1 + 𝐤2 +

𝐤3 direction is then given by 

 𝐏𝑒𝑙,𝑥
(3) (𝜔) =

3

4
𝜀0𝜒𝑒𝑙

(3)ℰ1
∗(𝑡)ℰ2(𝑡)ℰ3(𝑡)𝑒

𝑖(𝐤4∙𝐫−𝜔𝑡)  + 𝑐. 𝑐.. (3.14) 

The nuclear contribution is  
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 𝐏̃𝑛𝑢
(3)(𝑡) = 𝜀0𝐄̃(𝑡) ∫ 𝛘𝑛𝑢

(3)(𝑡 − 𝑡2): 𝐄̃
2(𝑡2)𝑑𝑡2

∞

−∞

 (3.15) 

When the field is squared in the integrand we get a total of 62 = 64 terms, which have frequencies 

that are either at 0 or 2𝜔. 

 
𝐄̃2(𝑡) =

1

4
{(𝑒−𝑖2𝜔𝑡[SH] + 𝑐. 𝑐. ) + ([DC] + 𝑐. 𝑐. )}  (3.16) 

The first term, [SH], includes 36 terms (when you include the 𝑐. 𝑐.) that result in frequencies at 

±2𝜔, and the second term, [DC] contains the remaining 36 terms (again when including the 𝑐. 𝑐.). 

Terms within the integrand with at frequency 𝜔 ≠ 0 integrate to zero assuming we are far from 

any resonances with 𝛘𝑛𝑢
(3)(𝑡). This is equivalent to assuming that the frequency range where 

ℱ{𝛘𝑛𝑢
(3)(𝑡)} = 𝛘𝑛𝑢

(3)(𝜔) is appreciable is much less than the optical frequency. These terms can be 

written as (where we temporarily drop the time argument) 

 1

2
[ℰ1ℰ2

∗𝑒𝑖(𝐤1−𝐤2)∙𝐫 + ℰ1ℰ3
∗𝑒𝑖(𝐤1−𝐤3)∙𝐫 + ℰ2ℰ3

∗𝑒𝑖(𝐤2−𝐤3)∙𝐫 + 𝑐. 𝑐. ]  (3.17) 

Substituting Equations (3.17) into the integrand of Equation (3.15) 

 

𝐏̃𝑛𝑢,𝑥
(3) (𝑡) =

𝜀0
4
(∑ℰ𝑛(𝑡)𝑒

𝑖(𝐤𝑛∙𝐫−𝜔𝑡)𝐱̂ + 𝑐. 𝑐.

3

𝑛=1

) ∫ 𝛘𝑛𝑢
(3)(𝑡 − 𝑡2)

∞

−∞

∙ (ℰ(𝑡2)ℰ2
∗(𝑡2)𝑒

𝑖(𝐤1−𝐤2)∙𝐫 + ℰ1(𝑡2)ℰ3
∗(𝑡2)𝑒

𝑖(𝐤1−𝐤3)∙𝐫

+ ℰ2(𝑡2)ℰ3
∗(𝑡2)𝑒

𝑖(𝐤2−𝐤3)∙𝐫 + 𝑐. 𝑐. )d𝑡2. 

(3.18) 

Keeping only terms that end up propagating in the 𝐤4 = −𝐤1 + 𝐤2 + 𝐤3 direction 
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𝐏̃𝑛𝑢
(3)(𝑡) =

𝜀0
4
𝑒𝑖(𝐤4∙𝐫−𝜔𝑡) (ℰ3(𝑡) ∫ 𝜒𝑛𝑢

(3)(𝑡 − 𝑡2)ℰ1
∗(𝑡2)ℰ2(𝑡2)d𝑡2

∞

−∞

+ ℰ2(𝑡) ∫ 𝜒𝑛𝑢
(3)(𝑡 − 𝑡2)ℰ1

∗(𝑡2)ℰ3(𝑡2)d𝑡2

∞

−∞

) + 𝑐. 𝑐. 

(3.19) 

It is interesting here to note that there are only two terms (plus the 𝑐. 𝑐.) in Equation (3.19), as 

compared to Equation (3.14) which has three (plus the 𝑐. 𝑐.). This is because even though the 

equivalent “missing” term  

 
𝜀0
4
𝑒𝑖𝐤4∙𝐫 (ℰ1

∗(𝑡)𝑒𝑖𝜔𝑡 ∫ 𝜒𝑛𝑢
(3)(𝑡 − 𝑡2)ℰ2(𝑡2)ℰ3(𝑡2)𝑒

−𝑖2𝜔𝑡2𝑑𝑡2

∞

−∞

) + 𝑐. 𝑐., (3.20) 

does propagate in the 𝐤4 = −𝐤1 + 𝐤2 + 𝐤3 direction, the integrand contains 𝑒−𝑖2𝜔𝑡, and therefore 

integrates to zero.  

 The two terms in Equation (3.19) may be thought of as coming from two distinct origins. 

In the first term, pump fields ℰ1
∗ and ℰ2 interfere and generate a refractive index (assuming 𝜒(3) is 

real) grating, of which the prove field ℰ3 diffracts. The delay between the two pump pulses is 

always kept fixed, so this term contributes to the measured signal for all probe delays. However, 

the second term results from the interference of the first pump field ℰ1
∗ with the probe field ℰ3, and 

the second pump field ℰ2 diffracts off of the resulting grating. This term will only contribute to the 

signal when the probe and pump fields are temporally overlapped within the sample, i.e., at zero 

delay. 

 The total third-order polarization amplitude, using Equation (2.7) is then given by 
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𝒫(3)(𝑡) =
𝜀0
4
{3𝜒𝑒𝑙

(3)ℰ1
∗(𝑡)ℰ2(𝑡)ℰ3(𝑡)

+ ℰ3(𝑡) ∫ 𝜒𝑛𝑢
(3)(𝑡 − 𝑡2)ℰ1

∗(𝑡2)ℰ2(𝑡2)d𝑡2

∞

−∞

+ ℰ2(𝑡) ∫ 𝜒𝑛𝑢
(3)(𝑡 − 𝑡2)ℰ1

∗(𝑡2)ℰ3(𝑡2)d𝑡2

∞

−∞

}. 

(3.21) 

The SVEA equation governing the evolution of the diffracted field ℰ4 (the fourth wave in DWFM), 

Equation (2.10), may then be integrated for low efficiency (assuming none of the initial three 

beams are depleted, or change irradiance distributions), we may simply approximate ℰ4 at the 

output the (thin) sample as  

 

     ℰ4(𝐿, 𝑡) ≈ 𝑖
𝜔𝐿

8𝑛0𝑐
{3𝜒𝑒𝑙

(3)ℰ1
∗(𝑡)ℰ2(𝑡)ℰ3(𝑡)

+ ℰ3(𝑡) ∫ 𝜒𝑛
(3)(𝑡 − 𝑡2)ℰ1

∗(𝑡2)ℰ2(𝑡2)d𝑡2

∞

−∞

+ ℰ2(𝑡) ∫ 𝜒𝑛
(3)(𝑡 − 𝑡2)ℰ1

∗(𝑡2)ℰ3(𝑡2)d𝑡2

∞

−∞

}. 

(3.22) 

The signal is then given by the diffracted energy 

 𝐸4 =
2

𝜀0𝑛0𝑐
∭|ℰ4(𝐫, 𝐿, 𝑡)|

2d2𝐫d𝑡

∞

−∞

. (3.23) 

 By measuring only the diffracted energy, only information about the square magnitude of 

the nonlinearity is gained, meaning the sign and phase (real vs. imaginary) information is lost. The 

phase of the diffracted field does depend on these parameters, but their measurement requires in-

terferometric techniques [60].  
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3.2.5. Beam Deflection 

To measure NLR we have developed the Beam Deflection (BD) technique [50, 61, 62]. It 

was originally motivated by the photothermal beam deflection technique, where a strong pump 

source would undergo weak absorption in a sample, and a probe beam would be deflected by the 

resulting thermal refractive index change. The concept was based on a thin prism, which causes a 

beam to be deflected by an angle 𝜃 ≈ (𝑛 − 1)𝛼, which depends on the difference in refractive 

index 𝑛 of the glass of the prism and the surrounding air, and the angle of the prism 𝛼 (see Figure 

3.13). This can easily be seen from a geometrical optics point of view, but may also be thought of 

as a linear phase gradient applied to the beam causing deflection.  

 

 
Figure 3.13 Illustration of beam deflected due to a thin prism. 

 

 In the case of photo thermal beam deflection, a CW Gaussian beam is incident on a weakly 

absorbing sample, and induce a refractive index change that followed the irradiance distribution 

via thermal nonlinearity [63, 64]. The angle of deflection is then measured by a position sensitive 

detector (e.g. segmented photodiode, or camera) placed in the far-field. The extension we have 

made is to use femtosecond pulsed lasers, rather than CW, to look at ultrafast NLR, rather than 

photothermal. Figure 3.14 shows a diagram of the BD experimental setup. It is very similar to that 

of pump-probe, with two significant differences. A spatially Gaussian pump beam will induce a 
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refractive index change that follows its irradiance distribution (see Figure 3.14 (c)). There is a 

region towards the wings of this index change where the refractive index gradient is linear and 

appears very similar to the spatially linear phase gradient of a thin prism. A probe beam is then 

focused to this location to a much smaller spot size than the pump (~ 4-10×), and essentially ex-

periences a thin prism and is deflected by a small angle. This deflection causes the beam to shift 

on a segmented quad-cell detector placed in the far-field, such that there is now a difference be-

tween the energy falling on the two sides. The quad-cell detectors used are the same as those in 

atomic force microscopes, which have been well refined for high performance and low noise [65]. 

 

 
Figure 3.14 (a) Diagram of Beam Deflection experimental setup. (b) Irradiance profile at sample plane showing po-

sition relative positioning and size of (red) excitation and (green) probe beams. (c) Zoom in of the beam overlapping 

within the sample from (a) showing irradiance dependent refractive index change and probe deflection. (d) Probe 

beam location on segmented quad-cell detector without and with deflection. (Reproduced with permission from Ref. 

[62]). 

 

 The phase change accumulated by the weak probe beam due to the strong pump is (within 

the thin-sample approximation) 

 Δ𝜙𝑎(𝐫, 𝑡) = 𝑘0,𝑎Δ𝑛(𝐫, 𝑡)𝐿. (3.24) 
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If the probe spot size is much smaller than the pump’s, the spatially Gaussian refractive index 

change may be expanded about the location of the probe, 

 Δ𝑛(𝐫, 𝑡) = Δ𝑛(𝑡) exp(−2
(𝑥 + 𝑥0)

2 + 𝑦0
2

𝑤𝑏
2 ) , (3.25) 

 Δ𝑛(𝐫, 𝑡) ≈ Δ𝑛(𝑡) (1 −
4𝑥0

𝑤𝑏
2 𝑥) exp (−2

𝑥0
2

𝑤𝑏
2). (3.26) 

Here 𝑥0 = 𝑤𝑏/2 is the displacement of the probe from the pump’s center, which is selected where 

the spatial gradient of 𝐼𝑏 (and thus Δ𝑛) is maximized, and 𝑤𝑏 is the pump spot size (HW1/e2M). 

The phase change is then given by 

 Δ𝜙𝑎(𝐫, 𝐿, 𝑡) = 𝑘0,𝑎Δ𝑛(𝑡)𝐿 (1 −
2

𝑤𝑏
𝑥) 𝑒−1/2, (3.27) 

and the probe field distribution given by 

 ℰ𝑎(𝐫, 𝐿, 𝑡) = ℰ𝑎(𝐫, 0, 𝑡) exp (𝑖𝑘0,𝑎Δ𝑛(𝑡)𝐿 (1 −
2

𝑤𝑏
𝑥) 𝑒−1/2). (3.28) 

Equation (3.28) shows the field has a phase shift imposed on it by the pump. Fourier transforming 

the field distribution to the detector plane in the far-field alters the phase shift into a displacement 

[66] 

 ℰ𝑎(𝐫, 𝑑, 𝑡) = ℰ𝑎(𝑥 + Δ𝑥, 𝑦, 𝑑, 𝑡), (3.29) 

where 𝑑 is the distance from the sample plane to the detector plane, and the displacement Δ𝑥 is 

given by 

 Δ𝑥 =
2𝐿

𝑤𝑏√𝑒
Δ𝑛(𝑡)𝑑. (3.30) 

Thus we see that the gradient in the induced refractive index change leads to a displacement of the 

probe beam on the detector.  
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A quad-segmented detector is unable to measure this displacement directly, but rather 

measures the amount of energy falling on each segment. For a TEM00 Gaussian probe beam with 

the beam waist located at the sample, the irradiance at the detector in the absence of the deflection 

is given by 

 𝐼𝑎(𝑥, 𝑦, 𝑑, 𝑡 − 𝜏𝑑) = 𝐼0.𝑎 (
𝑤0,𝑎
𝑤𝑎(𝑑)

)
2

exp(−2
𝑥2 + 𝑦2

𝑤𝑎2(𝑑)
−
(𝑡 − 𝜏𝑑)

2

𝜏𝑎2
) (3.31) 

where 𝑤𝑎 and 𝜏𝑎 are the spot size and pulse width of the probe, respectively, 𝜏𝑑 is the temporal 

delay of the probe with respect to the pump, and  

 𝑤𝑎(𝑑) = 𝑤0,𝑎√1 + (
𝑑

𝑧0,𝑎
)

2

≈ 𝑤0,𝑎
𝑑

𝑧0,𝑎
, (3.32) 

where 𝑧0,𝑎 = 𝑘0,𝑎𝑤0,𝑎
2 /2 is the Rayleigh range of the probe beam. In the far-field 𝑑 ≫ 𝑧0,𝑎, and 

the probe spot size may be approximated by 

 𝑤𝑎(𝑑) ≈
2𝑑

𝑘0,𝑎𝑤0,𝑎
. (3.33) 

The BD signal is taken to be the energy falling on the left half of the detector minus that on the 

right half, Δ𝐸 = 𝐸𝑙𝑒𝑓𝑡 − 𝐸𝑟𝑖𝑔ℎ𝑡. We first calculate the difference in power falling on each side of 

the detector by integrating over the xy-plane 

 Δ𝑃𝑎(𝑡 − 𝜏𝑑) = ∫ ( ∫ 𝐼𝑎(𝑥 + Δ𝑥, 𝑦, 𝑑, 𝑡)

0

−∞

d𝑥 − ∫ 𝐼𝑎(𝑥 + Δ𝑥, 𝑦, 𝑑, 𝑡)

∞

0

d𝑥) d𝑦

∞

−∞

, (3.34) 

which simplifies to 

 Δ𝑃𝑎(𝑡 − 𝜏𝑑) = erf (√
2

𝑒

𝑤0,𝑎
𝑤𝑏

𝑘0,𝑎Δ𝑛(𝑡)𝐿)𝑃𝑎(𝑡 − 𝜏𝑑), (3.35) 
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where 𝑃𝑎(𝑡 − 𝜏𝑑) =
𝜋𝑤0,𝑎

2

2
𝐼0,𝑎𝑒

−
(𝑡−𝜏𝑑)

2

𝜏𝑎
2

. We now assume the refractive index change is sufficiently 

small that we may approximate erf(𝑥) ≈ 2𝑥/√𝜋. Applying this small signal approximation yields 

 Δ𝑃𝑎(𝑡 − 𝜏𝑑) =
2√2

√𝑒𝜋

𝑤0,𝑎
𝑤𝑏

∙ 𝑘0,𝑎Δ𝑛(𝑡)𝐿 ∙ 𝑃𝑎(𝑡 − 𝜏𝑑) (3.36) 

The BD signal is then found by integrating Equation (3.36) and dividing by the total energy 

 
Δ𝐸𝑎(𝜏𝑑)

𝐸𝑎
=
2√2

√𝑒𝜋

𝑤0,𝑎
𝑤𝑏

∙ 𝑘0,𝑎𝐿〈Δ𝑛(𝜏𝑑)〉, (3.37) 

where  

 〈Δ𝑛(𝜏𝑑)〉 ≡ ∫ Δ𝑛(𝑡)𝐼𝑎(𝑡 − 𝜏𝑑)d𝑡

∞

−∞

/ ∫ 𝐼𝑎(𝑡 − 𝜏𝑑)d𝑡

∞

−∞

 (3.38) 

is the change in refractive index averaged over the probe pulse duration. Thus far we have not 

assumed a functional form of the refractive index change, only that it is third-order in the field. 

This allows us to treat noninstantaneous NLR, as we will in CHAPTER 4: . Here, we assume 

bound-electronic NLR, where Δ𝑛(𝑡) = 2𝑛2(𝜔𝑎; 𝜔𝑏)𝐼𝑏(𝑡). Substituting this into Equation (3.38) 

gives 

 〈Δ𝑛(𝜏𝑑)〉 =
2𝑛2(𝜔𝑎; 𝜔𝑏)𝐼0,𝑏

√1 + 𝜏𝑏
2/𝜏𝑎2

exp(−
𝜏𝑑
2

𝜏𝑎2 + 𝜏𝑏
2), (3.39) 

and Equation (3.37) becomes 

 
Δ𝐸𝑎(𝜏𝑑)

𝐸𝑎
=
√2

√𝑒𝜋

𝑤0,𝑎
𝑤𝑏

𝑘0,𝑎𝐿
4𝑛2(𝜔𝑎; 𝜔𝑏)𝐼0,𝑏

√1 + 𝜏𝑏
2/𝜏𝑎2

exp (−
𝜏𝑑
2

𝜏𝑎2 + 𝜏𝑏
2). (3.40) 
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This signal is proportional to the 𝑛2, and thus both the sign and amplitude of the NLR can be 

measured directly. This has distinct advantages over other multi-beam techniques, such at OKE 

and DFWM, which require heterodyne (interferometric) detection to get the sign of the nonlinear-

ity [67, 68].  

 This analysis may be generalized to the case where many of the approximations made here 

are not valid, including when 𝑤0,𝑎 approaches 𝑤𝑏, the signal is not small, and in the presence of 

2PA. A numerical analysis program has been written to take into account the actual irradiance 

distributions of both beams within the sample, which calculates induced changes in both the phase 

and amplitude of the probe field at the back of the sample. It then performs a Fresnel propagation 

[66] to the detector plane where it then integrates the irradiance distribution on the each detector 

segment to calculate Δ𝐸(𝜏𝑑)/𝐸(𝜏𝑑). 

 Figure 3.15 shows an example of BD measurements on a 1 mm sample of fused silica 

where the NLR is predominantly bound-electronic in origin [69]. These measurements were made 

using the fundamental output from the Clark-MXR laser as the pump (with parameters 𝜆𝑏 =

780 nm, 𝑤𝑏 = 170 μm, 𝜏𝑏 = 241 fs) and probe generated from the TOPAS-C (with parameters 

𝜆𝑎 = 650 nm, 𝑤𝑏 = 35 μm, 𝜏𝑏 = 170 fs). The signal from the quad-cell was sent through a lock-

in amplifier (SR830) that detected at the 286 Hz modulation frequency of an optical chopper in 

the pump beam. The polarization of the pump and the probe were both linear, but the angle between 

the two was changed from parallel to perpendicular. In Figure 3.15 (a) 𝐼0,𝑏 = 51 GW/cm
2 (𝐸𝑏 =

9.9 μJ), and the fitting shown in corresponds to 𝑛2,∥ = (0.24 ± 0.05) × 10
−19 m2/W and 𝑛2,⊥ =

(0.08 ± 0.02) × 10−19 m2/W, which agrees both with literature values [69], and the theoretical 

ratio for isotropic medium 𝑛2,∥/𝑛2,⊥ = 3 [16, 17].  
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Figure 3.15 (b) shows the measurement (with parallel polarizations) where the pump irra-

diance has been reduced to 𝐼0,𝑏 = 0.35 GW/cm
2 (𝐸𝑏 = 68 nJ) such that the noise floor can be 

observed. The standard deviation of the noise is 𝜎(Δ𝐸/𝐸) = 5 × 10−5 (0.005 %), which corre-

sponds to a peak on axis (center of pump beam) phase change Δ𝜙0,𝑎 = 0.3 mrad, or an OPL 

change of 𝜆𝑎/20,000 = 32.5 pm. This high sensitivity is largely due to the advances in the elec-

tronics used in quad-segmented detectors that have been developed primarily for atomic-force mi-

croscopy applications [65], which do an excellent job of subtracting out probe energy fluctuations. 

  

 
Figure 3.15 Beam deflection measurements of a 1 mm sample of fused silica. (left) Measurement (circles) and fit 

(curves) for parallel (black) and perpendicular (red) polarizations. (right) Reduced pump irradiance to observe noise 

floor. (Modified with permission from Ref. [61]) 

 

Furthermore, BD can measure the total probe transmission, from which NLA may be de-

termined. It can be shown that the BD signal is very well adapt at measuring NLR and NLA sim-

ultaneously [50, 70]. BD is able to measure small NLR even in the presence of large 2PA without 

contamination of the NLR signal, as with Z-scan. The inclusion of GVM is also possible, and is a 
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straightforward application of the analysis in § 3.2.3.  This analysis has assumed only nearly in-

stantaneous bound-electronic NLR. The true strength of this technique its capability to measure 

temporally varying NLR, as will be discussed in CHAPTER 4: . 

 

3.2.6. Two-photon Stimulated Emission Depletion 

 Observing the fluorescence from a material can provide information on the way the elec-

trons were excited. Specifically, by measuring the dependence of the fluorescence on the irradiance 

of the excitation can distinguish 2PA, which will present a quadratic dependence, from one-pho-

ton, which has a linear dependence.  

 Two-photon induced fluorescence (2PF) utilizes a pump beam that experiences significant 

2PA to generate an excited state population. To verify that the carrier generation is indeed due to 

2PA, the fluoresced energy is observed as a function of the pump irradiance and the dependence 

is checked to be quadratic, that is 

 𝐸2𝑃𝐹 ∝ ∫ 𝐼
2d𝑡. (3.41) 

This allows much more rapid characterization of the 2PA spectrum of materials (compared to Z-

scan), so long as they are sufficiently fluorescent [71, 72]. This method has been used to measure 

the 2PA coefficients of various materials [71], and has been applied to observe two-photon gain 

as well [73, 74].  

Stimulated emission depletion (STED) experiments rely on observing the reduction in flu-

orescence due to one-photon stimulated emission removing electrons from the excited state so that 

there are fewer remaining to fluoresce. This first requires a population inversion, typically gener-

ated optically by a laser beam of higher photon energy than the stimulating beam, which then 
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stimulates emission and depletes the excited state. The technique has been applied to microscopy 

to beat the classical diffraction resolution limit [75]. 

 

 
Figure 3.16 Illustration of 2P-STED experimental setup. 

 

The same approach may be applied to the two-photon case. Doubly-stimulated two-photon 

emission may be induced in a material with an inverted population between excited and ground 

states. This stimulated 2PE removes the population from the excited states, so that there are fewer 

electrons remaining to fluoresce. By measuring the irradiance dependence of the reduction in flu-

orescence the nature of the stimulated emission, one-photon (linear) or two-photon (quadratic), 

can be determined.  

Experimentally, this involves exciting a large population to the excited state via one-photon 

absorption, and then stimulating emission via two-photon gain with a femtosecond pulse with pho-

ton energy that is half of the transition energy, 2ℏ𝜔 = 𝐸𝑒𝑔. The temporal delay may be adjusted 

between the excitation and stimulation pulses to maximize the change in fluorescence, or observe 
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the decay rate of the excited state. The emitted fluorescence at the transition energy is then col-

lected, typically at a 90° angle with respect to the excitation and stimulating laser beams to reduce 

the detection of scattered light (see Figure 3.16). A spectral fitter is used to collect only the wave-

lengths of fluorescence, and block those of the excitation and stimulation beams. Furthermore, 

lock-in detection may be utilized, where the detection is synchronized to the modulation frequency 

of the optical chopper in the stimulating beam. This is done to directly measure the changed in-

duced by the 2P-STED, and help eliminate the large fluorescence signal from the excitation beam 

itself. This technique is complementary to the pump-probe measurements of doubly-stimulated 

two-photon emission, which will be discussed in § 5.2.   
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CHAPTER 4: ULTRAFAST NONLINERA DYNAMICS OF MOLECULES 

 Understanding of the temporal dynamics of the nonlinear refraction is important for non-

linear photonics applications, such as ultrafast time-resolved imaging [76], soliton propagation 

[77, 78], filamentation and supercontinuum generation [79], slow light [80], and all-optical switch-

ing [81]. The nonlinear optical properties of simple molecules may be drastically different than 

those of atomic systems. This is because the dynamics of the molecules themselves may play a 

large role in the material’s response to an applied electric field. This can lead to large non-instan-

taneous nonlinear refractive responses, as discussed in § 2.3.   

 Here we present a thorough experimental study of the ultrafast nonlinear refractive dynam-

ics of molecular systems, focusing primarily on liquid carbon disulfide. Carbon disulfide is the 

most popular material for applications of nonlinear optical liquids, and is frequently used as a 

reference standard for NLO measurements. However, its nonlinearity varies by over an order of 

magnitude depending on pulse duration [82]. The application of our recently developed beam de-

flection technique [61] provides complete determination of the ultrafast response function, includ-

ing absolute magnitudes, temporal dynamics, and symmetry properties of each mechanisms’ con-

tribution [62]. The response function allows prediction of any nonlinear refractive measurement 

on CS2, and establishes it as a proper reference material. This experimental approach may also be 

applied to a wide variety of other materials, including molecular gases such as air. 
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4.1. Origin of noninstantaneous third-order response of molecular liquids 

 The optical properties of individual molecules depend primarily on both permanent dipoles 

and those induced by the applied electric field [16, 17]. This may be expanded as a power series 

of the local field, much like the macroscopic polarization3 [83] 

 𝛍 = 𝛍(0) + 𝛂 ∙ 𝐄𝑙𝑜𝑐 + 𝛃: 𝐄𝑙𝑜𝑐
2 + 𝛄: 𝐄𝑙𝑜𝑐

3 +⋯, (4.1) 

where 𝜇(0) is the permanent dipole moment, 𝛼 is the (linear) polarizability, 𝛽 is the (first) hyperpo-

larizability, 𝛾 is the second hyperpolarizability, and 𝐄𝑙𝑜𝑐 = 𝑓
(1)𝐄, where 𝑓(1) is the local field 

correction factor [16, 17], which is the local electric field experienced by the molecule. In general 

these molecular response depends on the orientation of the field with respect to the molecular axis. 

For example, molecules that to not possess spherical symmetry have a polarizability 𝛼 that depends 

on the molecular axis. The dipole moment is related to the macroscopic polarization by 𝐏 = 〈𝛍〉𝑁, 

where the angular brackets indicates ensemble averaging [16, 17]. From this, and Equations (2.5) 

and (4.1), the linear susceptibility is given by 

 𝛘(1) =
𝑁

𝜀0
𝑓(1)〈𝛂〉, (4.2) 

and, using 𝐧2 = 1 + 𝛘(1), 

 𝐧2 = 1 +
𝑁

𝜀0
𝑓(1)〈𝛂〉. (4.3) 

Similarly the third-order susceptibility is related to the second hyperpolarizability by 

                                                 

3 Equation (4.1) as written assume that the induced dipole is always exactly in phase with the applied local field, i.e., 

there is no dispersion or absorption. A more general treatment would appear similar to the treatment of the macroscopic 

polarization in Equation (2.4). Additionally, it is common to use a Taylor series expansion, rather than a power series 

expansion, in which case there is a factor of 1/2 on the 𝐄2 term, and 1/6 on the 𝐄3 term 
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 𝛘(3) =
𝑁

𝜀0
𝑓(3)〈𝛄〉, (4.4) 

where 𝑓(3) is the Lorentz-Lorenz local field correction factor for third-order nonlinearities, which 

for the degenerate case is simply (𝑓(1))
4
 [16, 17, 20]. The first hyperpolarizability leads to 𝜒(2) in 

a similar fashion. 

 Changes in the refractive index of a molecular ensemble may arise from not only the 

bound-electronic response, via 𝛾, but also through changes in 〈𝛂〉 by either changes in the ampli-

tude of individual tensor elements or orientational effects. There are several mechanism by which 

an incident optical field can alter the refractive index of an ensemble of molecules in liquid or gas 

phase. Here we give a detailed description of the dominant processes observed in this work. The 

noninstantaneous third order response of the form in Equation (2.29) may be further decomposed 

into the various mechanisms, each corresponding to a particular type of molecular motion. Strictly 

speaking, these motions are not linearly independent, and there have been many theoretical studies 

of their correlation [84, 85]. However, many experiments have been successfully analyzed by 

treating them as linearly independent [67, 86, 87], and we take the same approach here. In this 

case, the nonlinear response function may be written [62] 

 𝑅(𝑡) =∑𝑛2,𝑚𝑟𝑚(𝑡)

𝑚

, (4.5) 

where 𝑛2,𝑚 is the magnitude of the 𝑚th mechanism, and 𝑟𝑚(𝑡) is the temporal response function, 

which is normalized by 

 ∫ 𝑟𝑚(𝑡)d𝑡

∞

−∞

= 1. (4.6) 
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 In the following we describe a total of four nuclear mechanisms that contribute to the non-

instantaneous nonlinear optical response of molecular liquids; diffusive reorientation, libration, 

vibration, and collision. For each mechanism, the underlying physical origin that gives rise to the 

response, and the temporal response functions that may be used to model them are discussed. 

 

4.1.1. Diffusive Reorientation 

 For linear molecules, e.g. CS2, O2, N2, etc., the polarizability along the molecular axis 𝛼∥ 

is greater than that along the perpendicular directions 𝛼⊥. At thermal equilibrium, the ensemble 

has a random (isotropic) distribution of orientations, and the orientational averaging of the polar-

izability is  

  〈𝛂〉 = 〈cos2 𝜃〉Δ𝛼 + 𝛼⊥, (4.7) 

where Δ𝛼 = 𝛼∥ − 𝛼⊥, and 𝜃 is the angle between the molecular axis and the incident field. 〈cos2 𝜃〉 

is a measure of the degree of alignment of the molecules, and reduces to 1/3 for an isotropic, 

randomly distributed, system. From Equations (4.3) and (4.7) we see that changes in the degree of 

alignment of a system of linear molecules can induced large changes in the refractive index. 
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Figure 4.1 Ellipsoidal molecule showing (left) polarizability and (right) local field induced dipole moment 

 

 These changes can be brought about by an applied electric field. Given the anisotropic 

polarizability, an applied field at angle 𝜃 with respect to the molecular axis will displace the elec-

tron distribution more so along the molecular axis than perpendicular to it (see Figure 4.1). There-

fore the induced dipole is not parallel to the applied field and a torque 

 𝛕 = 𝛍 × 𝐄𝑙𝑜𝑐 (4.8) 

 is applied to the molecule. In the case of a permanent dipole, the time variation of the field would 

cause the torque to be in one direction for half a period, and then the opposite for the next half 

period, such that over many optical cycles the toque would cancel out. However, for an induced 

dipole of the form 𝛍 = 𝛂 ∙ 𝐄𝑙𝑜𝑐, the dipole oscillates in phase with the applied field, and thus the 

torque over an optical cycle is all of the same sign. The dipole induced dipole on an individual 

molecule by an applied field is 

 𝛍 = 𝛂 ∙ 𝐄𝑙𝑜𝑐 = 𝛼∥𝐄𝑙𝑜𝑐 cos(𝜃) ∥̂+ 𝛼⊥𝐄𝑙𝑜𝑐 sin(𝜃) ⊥̂1, (4.9) 

where ∥̂ is the unit vector in the direction parallel to the molecular axis, and ⊥̂1 is the unit vector 

perpendicular to the molecular axis in the plane of ∥̂ and 𝐄𝑙𝑜𝑐. This results in a torque 
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 𝛕 = 𝛍 × 𝐄𝑙𝑜𝑐 = Δ𝛼𝐄𝑙𝑜𝑐
2 cos(𝜃) sin(𝜃) ⊥̂2, (4.10) 

where ⊥̂2 is the unit vector perpendicular to both ∥̂ and ⊥̂1. Because 𝛕 depends on 𝐄𝑙𝑜𝑐
2 , it is always 

positive over an optical cycle.  

This torque causes the molecules to rotate towards the field direction. With the orientation 

of the molecules now different from their initially isotropic distribution, the degree of alignment 

〈cos2 𝜃〉 now deviates from 1/3, and the refractive index changes. For an ultrashort pulse, the 

molecules will continue to rotate even after the field has passed simply due to inertia. In liquids, 

where the number density of molecules is high, this rotation with cease once they begin colliding 

with one another, and the orientation will return to its initial isotropic distribution. The rate of 

thermal randomization depends on the viscosity of the liquid, and follows a diffusive relaxation 

according to the Debye-Stoke-Einstein relation [88]. For this reason this mechanism is often re-

ferred to as diffusive reorientation.  

 The applied field induces a change in the angle of orientation of the molecule by 𝛿𝜃. The 

evolution of the orientation angle of an individual molecule may be modelled as a classical driven 

damped harmonic oscillator [67, 89]. In the liquid, averaging over the isotropic distribution of 

molecular orientations in the ensemble allows a description of the refractive index change due to 

this reorientation [67]. The overdamped solution may we written in the form of Equation (2.39) 

where the normalized response function is 

 𝑟𝑑(𝑡) = 𝐶𝑑 (1 − 𝑒
−
𝑡
𝜏𝑟,𝑑)𝑒

−
𝑡
𝜏𝑓,𝑑Θ(𝑡). (4.11) 

where 𝐶𝑑 = (𝜏𝑟,𝑑 + 𝜏𝑓,𝑑)/𝜏𝑓,𝑑
2  is a normalization constant, 𝜏𝑟,𝑑 and 𝜏𝑓,𝑑 are the rise and fall times, 

respectively, and Θ(𝑡) is the Heaviside (step) function, which ensures causality, and the subscript 
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𝑑 indicates the diffusive reorientation mechanism. The time constants and magnitude, 𝑛2,𝑑, are 

then fit parameters based on experimental measurements. 

 

4.1.2. Libration 

The diffusive reorientation dominates on long time scales, but during the first few 100 fs, 

the molecules may oscillate in their local potential as they collide and rebound off neighboring 

molecules. This results in an oscillatory rocking motion causing a change in the refractive index 

due to the coherent oscillation of many molecules in the ensemble. This mechanism may be mod-

eled by and underdamped oscillator, which retains oscillatory character. However, loss of coher-

ence among the many oscillating molecules in the ensemble, rather than damping of the oscillation 

of individual molecules, is the dominant decay mechanism of the induced refractive index change 

[24, 67]. Thus the distribution of libration frequencies must be included. The librational response 

function may be more accurately modeled by a quantum harmonic oscillator, and is given by [24]  

 𝑟𝑙(𝑡) = 𝐶𝑙𝑒
−
𝑡
𝜏𝑓,𝑙Θ(𝑡)∫

sin(𝜔𝑡)

𝜔
𝑔(𝜔)d𝜔

∞

0

, (4.12) 

where the subscript 𝑙 refers to the librational response, and 𝑔(𝜔) is the distribution function of 

librational frequencies. Each molecule experiences its own local environment based on its relative 

orientation and separation from neighboring molecules. Since the oscillatory librational response 

depends heavily on the interaction of molecules with their local environment, the total response is 

inhomogeneously broadened. Following McMorrow et al. [24], we model this distribution with an 

“antisymmeterized” Gaussian distribution function 
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 𝑔(𝜔) = exp (−
(𝜔 − 𝜔0)

2

2𝜎2
) − exp(−

(𝜔 + 𝜔0)
2

2𝜎2
), (4.13) 

where 𝜔0 is the central oscillation frequency, and 𝜎 is the standard deviation. 

 

4.1.3. Vibration 

On top of motions of the molecule as a whole, the nuclei within a molecule may move with 

respect to one another. This causes a vibrational motion of the molecule that alters the components 

of the polarizability tensor 𝛂, and therefore changes the refractive index via Equation (4.3). The 

vibrational modes of molecules are quantized, where each mode oscillates at a specific frequency. 

For example, in CS2, the possible vibrational modes include symmetric stretch modes, where both 

S nuclei move away from and then back towards the central C nucleus.  

Not all vibrational modes may be excited by a femtosecond pulse; the mode must be Raman 

active [17]. Additionally, these modes will not contribute significantly to the refractive index 

change [25, 90], and the pulse width of the pump pulse is less than half the vibration period. This 

may be thought of in the time domain by the first portion of the pulse exciting a vibration, and then 

the second portion of a pulse exciting another vibration, but which now has the opposite phase as 

the initial one. Thus over the duration of a long pulse, the vibrations cancel one another.  

When the pulse is shorter than the vibrational period of a Raman active mode, it results in 

a coherent (impulsive) excitation. This may alternatively be thought of in the frequency domain as 

stimulated Raman scattering. Since the pulse width is shorter than the vibrational period it has a 

bandwidth that is greater than the vibrational frequency. Different frequency components within 

the pulse may excite and stimulate Raman transitions from the vibrational ground state to the ex-

cited modes.  
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Since the vibration of the molecules alters the polarizability tensor, the corresponding re-

fractive index change oscillates at the same frequency. The response function may be modeled as 

 𝑟𝑣(𝑡) = 𝐶𝑣 sin(𝜔𝑣𝑡) 𝑒
−
𝑡
𝜏𝑓,𝑣Θ(𝑡), (4.14) 

where the subscript 𝑣 refers to the vibrational mechanism, and 𝜔𝑣 is the frequency of the vibra-

tional mode.  

 

4.1.4. Collision 

In addition to libration, another bulk liquid phenomena having to do with the interaction of 

neighboring molecules are collisions. As molecules collide with one another within the dense liq-

uid, they alter their distributions via dipole-induced dipole and electron overlap effects [67, 87, 

91]. These effects change the refractive index, since a strong incident electric field induces a large 

dipole in a molecule, which is then experienced by the neighboring molecules in its vicinity. This 

results in a distortion of the electron distribution in the surrounding molecules and therefore 

changes the polarizability [92]. This causes variations in the average equilibrium molecular sepa-

ration (and thus density), and is thus described by a local translational anisotropy that decays away 

on the timescale of the density fluctuations [67]. The corresponding response function may be 

modelled by a simple exponential rise and decay in the same form of Equation (4.11) 

 𝑟𝑐(𝑡) = 𝐶𝑐 (1 − 𝑒
−
𝑡
𝜏𝑟,𝑐) 𝑒

−
𝑡
𝜏𝑓,𝑐Θ(𝑡), (4.15) 

where the subscript 𝑐 refers to the collision induced mechanism. This effect has been observed in 

a number of liquid systems, including atomic liquids of Ar and Xe, which possess isotropic polar-

izabilities [91]. 
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4.2. Noninstantaneous response in Beam Deflection measurements 

 The analysis presented in § 3.2.5. assumed the material response was instantaneous. Here 

we expand this analysis to include the noninstantaneous third-order response of the form presented 

in § 2.3.  In addition, since the molecular liquid studied experimentally, CS2, is highly dispersive 

[27, 28], GVM is included. Similar to the derivation presented in § 3.2.3. we begin with the wave 

equation governing the weak probe field due to the strong pump (which is assumed to be un-

depleted) Equation (2.9)(2.13). The nonlinear polarization originates from both nearly instantane-

ous bound-electronic response, Equation (2.13), as well as noninstantaneous nuclear contributions, 

Equation (2.33). We assume negligible linear absorption (𝛼1(𝜔𝑎) ≈ 0, although including it is 

straightforward [53]), and |𝜕𝒫𝑎/𝜕𝑡| ≪ 𝜔𝑎𝒫𝑎.  Based on these assumptions, Equation (2.9) be-

comes 

 
𝑖 (
𝜕ℰ𝑎
𝜕𝑧

+
1

𝑣𝑔,𝑎

𝜕ℰ𝑎
𝜕𝑡
) = −

𝜇0𝜔𝑎
2

2
(𝒫𝑒𝑙,𝑎

(3) + 𝒫𝑛𝑢,𝑎
(3) ), (4.16) 

where  

 𝒫𝑒𝑙,𝑎
(3) = 3

𝜀0
2
𝜒𝑒𝑙
(3)(𝜔𝑎; 𝜔𝑎, 𝜔𝑏 , −𝜔𝑏)ℰ𝑎|ℰ𝑏|

2, (4.17) 

and 

 𝒫𝑛𝑢,𝑎
(3) (𝑡) =

𝜀0
2
ℰ𝑎(𝑡) ∫ 𝜒𝑛𝑢

(3)(𝑡 − 𝑡1)|ℰ𝑏(𝑡1)|
2d𝑡1

∞

−∞

. (4.18) 

Equation (4.16) may be simplified using the definitions in Equations (2.16) and (2.37) (assuming 

no NLA), 



69 

 𝜕ℰ𝑎
𝜕𝑧

+
1

𝑣𝑔,𝑎

𝜕ℰ𝑎
𝜕𝑡

= 𝑖𝑘0,𝑎 (2𝑛2,𝑒𝑙𝐼𝑏(𝑡) + ∫ 𝑅(𝑡 − 𝑡′)𝐼𝑏(𝑡
′)d𝑡′

∞

−∞

)ℰ𝑎, (4.19) 

where the frequency arguments of 𝑛2,𝑒𝑙 has been suppressed. The factor within the parenthesis on 

the RHS of Equation (4.19) is the time dependent refractive index change experienced by the 

probe, Δ𝑛𝑎(𝑡). Note that, as discussed in § 2.2. and 2.3. in this two-beam experiment the bound-

electronic contribution yields twice the index change as a single beam, while the noninstantaneous 

nuclear contribution is the same.  

 We now follow Negres et al. [53], and transform into a dimensionless coordinate system 

that travels with the group velocity of the pump pulse (see § 3.2.3.  

 𝜕ℰ𝑎
𝜕𝑍

+ 𝜌
𝜕ℰ𝑎
𝜕𝑇

= 𝑓(𝑇)ℰ𝑎, (4.20) 

where 

 

𝑓(𝑇) = 𝑖𝑘0,𝑎𝐿 (2𝑛2,𝑒𝑙𝐼𝑏(𝑇)  + ∫ 𝑅(𝑇 − 𝑇′)𝐼𝑏(𝑇
′)d𝑇′

∞

−∞

). (4.21) 

With a change of variables 𝜉 = 𝑍 − 𝑇/𝜌, and 𝜁 = 𝑇, Equation (4.20) becomes 

 
𝜌
𝜕ℰ𝑎
𝜕𝜁

= 𝑓(𝜁)ℰ𝑎(𝜉, 𝜁). (4.22) 

Substituting ℰ𝑎(𝜉, 𝜁) = exp(𝑢(𝜉, 𝜁)), the solution to Equation (4.22) is 

 

𝑢(𝜉, 𝜁) = 𝑢0(𝜉) +
1

𝜌
∫𝑓(𝜁′)d𝜁′

𝜁

−∞

, (4.23) 

where 𝑢0(𝜁) depends on the initial incident probe field. Transforming back to the variables 𝑇 and 

𝑍, 
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ℰ𝑎(𝐫, 𝑍, 𝑇) = ℰ𝑎(𝐫, 0, 𝑇) exp(𝑖
𝑘0𝐿

𝜌
∫ {2𝑛2,𝑒𝑙𝐼𝑏(𝑇2)

𝑇

𝑇−𝜌𝑍

+ ∫ 𝑅(𝑇2 − 𝑇1)𝐼𝑏(𝑇1)d𝑇1

∞

−∞

} d𝑇2 ). 

(4.24) 

For Gaussian temporal profiles 

 
ℰ𝑎(𝐫, 0, 𝑇) = ℰ𝑎(𝐫, 0) exp(−

(𝑇 + 𝑇𝑑 − 𝜌)
2

2𝒯2
), (4.25) 

 𝐼𝑏(𝐫, 𝑇) = 𝐼0,𝑏(𝐫) exp(−𝑇
2), (4.26) 

and evaluating the solution at the back of the sample, 𝑍 = 1 (𝑧 = 𝐿), Equation (4.24) becomes 

 

ℰ𝑎(𝐫, 1, 𝑇) = ℰ𝑎(𝐫, 0) exp(−
(𝑇 + 𝑇𝑑 − 𝜌)

2

2𝒯2
+ 𝑖
𝑘0𝐿

𝜌
𝐼0,𝑏(𝐫)

∙ {2𝑛2,𝑒𝑙[erf(𝑇) − erf(𝑇 − 𝜌)]

+ ∫ ∫ 𝑅(𝑇2 − 𝑇1)𝑒
−𝑇1

2
d𝑇1

∞

−∞

d𝑇2 

𝑇

𝑇−𝜌𝑍

}). 

(4.27) 

This is similar to the solution for a pump-probe measurement in the presence of GVM, see Equa-

tion (3.10), but accounts for phase changes in the probe field due to both instantaneous and non-

instantaneous NLR. The effect of 2PA of the probe due to the pump is straightforward to include, 

and gives an additional term within the exponential that is the same as in Equation (3.10). The 

field distribution at the end of the sample may then be Fresnel propagated to the detector plane and 

analyzed the same way as previous BD measurements. 
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 With the inclusion of time dynamics, evaluating the temporal resolution of a given beam 

deflection experiment becomes of interest. In typical pump-probe experiments where GVM is ne-

glected, the temporal resolution is simply the width of the cross-correlation of the pump and probe 

pulses. The effect of GVM is to cause the two pulses to overlap at different positions within the 

sample at different time delays, which results in a broadening and smoothing of the measured 

signal in delay [93]. Thus the temporal resolution of a given experiment depends not only on the 

pulse widths, but also on the GVM parameter 𝜌, and is no longer simply a specification of the 

experimental apparatus, but now depends on dispersion of the material under investigation.  

 

 
Figure 4.2 (a) Calculated BD signal with only instantaneous material response with varying GVM for (black) 𝜌 = 0, 

(red) 𝜌 = ±5, and (blue) 𝜌 = ±10, where solid curves are positive 𝜌 and dashed curves are negative 𝜌. (b) Calcu-

lated (black circles) normalized temporal resolution 𝑇𝑟𝑒𝑠 as a function of |𝜌| and approximated by Equation (4.28) 

(red curve). 

 

 Figure 4.2 (a) shows the response of a BD experiment with only an instantaneous nonline-

arity for various values of 𝜌. The magnitude of the BD signal is reduced for nonzero 𝜌 due to the 

reduced extent of pulse overlap over the thickness of the sample. In addition, the peak of the signal 

is also shifted with respect to zero delay, where the pulses are overlapped in time at the entrance 
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surface. For positive 𝜌 (𝑣𝑔,𝑎 < 𝑣𝑔,𝑏), when the probe arrives at the front surface of the sample first 

(negative delay, 𝑇𝑑 < 0), the pump pulse travels faster and is able to catch up to the excitation at 

the back of the sample, giving a signal at negative delays. For negative 𝜌 (𝑣𝑔,𝑎 > 𝑣𝑔,𝑏) the opposite 

occurs; when the pump pulse arrives at the front surface of the sample first (positive delay, 𝑇𝑑 <

0), the probe pulse travels faster and catches up to the pump. For equal probe and pump pulse 

widths, the normalized temporal resolution 𝑇𝑟𝑒𝑠 = 𝑡𝑟𝑒𝑠/𝜏𝑏 resulting from GVM may be approxi-

mated by the full width at half maximum (FWHM) of the signal by 

 𝑇𝑟𝑒𝑠 = √4 ln 2 (1 + 𝒯2) + 𝜌2. (4.28) 

Figure 4.2 (b) shows the calculated FWHM as a function of |𝜌| in black circles, and Equation 

(4.28) as a red curve.  

 

 
Figure 4.3 Calculated BD signal including both instantaneous and noninstantaneous response with varying GVM; 

(black) 𝜌 = 0, (red) 𝜌 = −5, and (blue) 𝜌 = −10. 
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 One consequence of this broadening is to reduce the ability for measuring time constants 

of the noninstantaneous response of materials. Figure 4.3 shows example calculations that include 

a noninstantaneous material response of the form  

 
𝑅(𝑡) ∝ (1 − exp (−

𝑡

𝜏𝑟
)) exp(−

𝑡

𝜏𝑓
)Θ(𝑡), (4.29) 

Here with 𝜏𝑎 = 𝜏𝑏 = 30 fs, 𝜏𝑟 = 𝜏𝑓 = 200 fs. In the 𝜌 = 0 case (black curve), the rise time of the 

non-instantaneous component can be just resolved, giving the dip in Δ𝐸/𝐸 at about 𝜏𝑑 = 75 fs. 

However, for 𝜌 = −5 (red curve) the dip is no longer resolved, and for 𝜌 = −10 (blue curve) the 

rise time of the noninstantaneous component is washed out. It is very important, therefore, to con-

sider GVM in the preparation of a BD experiment intent on measuring rise times, for the improper 

choice of wavelengths and sample thickness may cause a loss of temporal resolution. 

 

4.3. Response Function of Carbon Disulfide 

In this section we present a complete characterization of the nonlinear response function 

of liquid carbon disulfide (CS2), done by application of the BD technique. Additionally, the result-

ing response function was verified by predicting the results of two independent NLR measure-

ments: degenerate four-wave mixing (DWFM), and Z-scans at many pulse widths. Confirmation 

of the response function confirms that we are able to predict the outcome of essentially any non-

linear refraction measurement of liquid CS2. 

 

4.3.1. Beam Deflection Measurements 

Here we apply the BD technique to measure the response function of liquid carbon disul-

fide. The experimental setup utilized the Coherent laser system (see § 3.2.1.1. ) where the 800 nm 
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fundamental from the laser was used as a pump. A white-light continuum was generated by split-

ting off a portion of the fundamental energy and focusing into a 1 cm cuvette filled with water. A 

narrow bandpass filter was then used to select a probe wavelength of 650 nm. The pulse energy of 

each beam was controlled by a half-wave plate and polarizer pair, and the polarization angle of the 

probe was controlled by a second half-wave plate. The pump pulse width was determined to be 50 

fs (FWHM) by autocorrelation measurements [94]. The spot sizes at the location of the probe beam 

waist were measured via knife-edge scan [95] to be 𝑤0,𝑎 = 38 μm and 𝑤𝑏 = 170 μm (each 

HW1/e2M) for the probe and pump, respectively. The probe beam was aligned to be centered on 

the quad-cell, which was placed ~17 cm past the sample plane. The crossing angle between the 

pump and probe was kept small, < 2°, to prevent walk-off of the beams throughout the thickness 

of the sample. The pump beam was shifted with respect to the probe by 𝑤𝑏/2 to maximize the 

deflection of the probe.  

Measurements were first performed on a 1 mm sample of fused silica, which serves a dual 

purpose. In the absence of GVM, the BD signal is proportional to the cross-correlation of the 

pulses, and since the pump pulse width is known, provides an in situ measure of the probe pulse 

width. In this case, 𝜌 = 1.35 for fused silica [96], which requires GVM to be included in the anal-

ysis. The pulse width of the probe was determined to be 158 fs (FWHM). Additionally, the non-

linear refractive index may be determined and compared to literature, finding good agreement, 

which ensures that the system is properly aligned and calibrated. 

Beam deflection measurements of CS2 (Sigma-Aldrich, 270660, ≥99.9%) were conducted 

at three different polarizations of the probe with respect to that of the pump. The symmetry prop-

erties of each mechanism giving rise to a refractive index change causes an interesting polarization 
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dependence of the BD signal. The refractive index of a (uniaxial) birefringent material may be 

described by an index ellipsoid [16, 97] 

 1

𝑛2(𝜑)
=
cos2(𝜑)

𝑛∥
2 +

sin2(𝜑)

𝑛⊥
2 . (4.30) 

where 𝑛∥ and 𝑛⊥ are the refractive indices experienced by a field polarized parallel and perpendic-

ular to the optic axis, and 𝜑 is the angle between the field and the optic axis. Since the birefringence 

here is induced in an otherwise isotropic media, 𝑛(𝜑) = 𝑛0 + Δ𝑛(𝜑), 𝑛∥ = 𝑛0 + Δ𝑛∥, and 𝑛⊥ =

𝑛0 + Δ𝑛⊥. For small refractive index changes, Δ𝑛(𝜑) may be approximated by 

 Δ𝑛(𝜑) = Δ𝑛∥ cos
2(𝜑) + Δ𝑛⊥ sin

2(𝜑). (4.31) 

The relationship between Δ𝑛∥ and Δ𝑛⊥ depends on the symmetry properties of the response 

mechanism. We can decompose the refractive index change into its symmetry components by 

 Δ𝑛(𝜑) = Δ𝑛𝑖𝑠𝑜(𝜑) + Δ𝑛𝑟𝑒(𝜑), (4.32) 

where the superscripts 𝑖𝑠𝑜 and 𝑟𝑒 refer to isotropic and reorientational symmetries, respectively. 

Both the bound-electronic and collision induced mechanisms do not arise from changes in the 

molecular orientation, and therefore follow the isotropic symmetry of the bulk liquid. Third-order 

nonlinear refraction in isotropic media (in the nonresonant Kleinman limit) follows Δ𝑛⊥
𝑖𝑠𝑜 =

Δ𝑛∥
𝑖𝑠𝑜/3 [16, 17]. 
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Figure 4.4 Three CS2 molecules of (top row) different initial orientations. When a field polarized in the 𝑦 axis is ap-

plied, (bottom row) all of three align towards the 𝑦 axis. 

 

Both diffusive orientation and libration have reorientational symmetry, since they originate 

from reorientation of the molecules themselves, for which Δ𝑛⊥
𝑟𝑒 = −Δ𝑛∥

𝑟𝑒/2. The factor of nega-

tive two difference in the reorientational nonlinearities may be understood by examining three 

sample molecules. Take each molecule to be oriented mostly along the three principle axis 𝑥, 𝑦, 

and 𝑧, as shown in the top row of Figure 4.4. For a pump field polarized in the y-direction, the 

molecules oriented in the 𝑥 and 𝑧 directions will rotated towards the 𝑦-axis and change the refrac-

tive index. However, the molecule that is already oriented along the y-axis doesn’t experience any 

torque and doesn’t rotate. This means that only two of the three molecules, those initially not along 

the pump field polarization contribute to the refractive index change. For a probe field polarized 

along the y-axis (parallel to the pump), the rotation of these molecules increases the refractive 

index. For a probe field polarized perpendicular to the pump, say along the 𝑥-axis, the molecule 

initially oriented along the 𝑥-axis rotates away from the probe polarization direction. This reduces 
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the polarizability along the 𝑥-direction, and decreases the refractive index. However, the molecule 

initially oriented along the 𝑧-axis, is rotated towards the y-axis, but it is still orthogonal to the 𝑥-

axis, and has the same polarizability in the 𝑥-direction. This means only the single molecule (the 

one initially oriented in the 𝑥-axis) contributes to the refractive index change for perpendicular 

polarization. Since there are half as many molecules that contribute, and the polarizability is re-

duced rather than increased, the refractive index change for perpendicular polarizations is −1/2 × 

that of the parallel case. 

 We can now apply the symmetry properties to write the angular dependent refractive index 

change by combining Equations (4.31) and (4.32) as  

 
Δ𝑛(𝜑) = Δ𝑛∥

𝑖𝑠𝑜 (cos2(𝜑) +
1

3
sin2(𝜑)) + Δ𝑛∥

𝑟𝑒 (cos2(𝜑) −
1

2
sin2(𝜑)). (4.33) 

Because the reorientational nonlinearity has the opposite sign for parallel and perpendicular polar-

izations, there is some angle where the two contributions cancel, and it does not contribute to the 

refractive index change experienced by the probe. This angle can be found by setting cos2(𝜑) −

1

2
sin2(𝜑) = 0 and solving for the angle, which yields 𝜑 = arctan(√2) ≈ 54.7°. This angle is 

known as the “magic angle” [98]. At this angle, only the isotropic components contribute. Meas-

urements were performed on CS2 for parallel (𝜑 = 0°), magic angle (𝜑 = 54.7°), and perpendic-

ular (𝜑 = 90°) polarizations. For these angles 

 Δ𝑛(0°) = Δ𝑛∥
𝑖𝑠𝑜 + Δ𝑛∥

𝑟𝑒 , (4.34) 

 
Δ𝑛(54.7°) =

5

9
Δ𝑛∥

𝑖𝑠𝑜 , (4.35) 

 
Δ𝑛(90°) =

1

3
Δ𝑛∥

𝑖𝑠𝑜 −
1

2
Δ𝑛∥

𝑟𝑒. (4.36) 
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 Figure 4.5 shows the (circles) measured BD signal for a 1 mm cuvette filled with CS2 that 

includes (black) parallel, (red) perpendicular, and (blue) magic angle polarizations. Here 𝜌 = 4.7 

[27, 28]. For these data the peak pump irradiance was 𝐼𝑏,0 = 28.5 GW/cm
2 (𝐸𝑏 = 730 nJ). The 

large positive signal in the parallel case is dominated by the libration and diffusive reorientation 

responses, especially at long delays. For perpendicular polarizations (red) the signal initially is 

positive, where the (nearly) instantaneous bound-electronic response dominates, but quickly turns 

negative as the reorientational nonlinearities turn on. These mechanisms even dominate the signal 

at zero delay, where for perpendicular polarizations the BD signal is negative. The polarization 

dependence for the reorientational symmetry components can readily be observed out at large de-

lay, where the parallel polarization measurement is twice the amplitude and opposite sign of the 

perpendicular polarization measurement. At the magic angle the mechanisms with reorientational 

symmetries are completely eliminated, leaving only those with isotropic symmetry. Clearly the 

bound-electronic response dominates the magic angle measurement. However, there is a small 

noninstantaneous response, which we attribute to the collision induced mechanism, and is con-

sistent with other previous observations [98-100].  
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Figure 4.5 Measure (circles) beam deflection signal of CS2 for (black) parallel, (red) perpendicular, and (blue) magic 

angle polarizations. Solid curves are fits for the response function. (Reproduced with permission from Ref. [62].) 

 

 The solid curves in Figure 4.5 represent fits that include four responses: bound-electronic, 

collision, libration, and diffusive reorientation. A vibrational component was not included because 

there was no oscillatory behavior observed for any of the measurements. This is due to the fact 

that the lowest Raman active vibrational mode of CS2 has a frequency of 19.7 THz (658 cm-1) 

[101], and a period of 51 fs, which is less than the cross-correlation width of the pump and probe 

(see § 4.1.3. ). In this case it effectively acts as an instantaneous response, but is expected to be 

small [25, 90]. The BD measurements were fit using Equation (4.27) by the following procedure. 

The magic angle data was fit first since it only has contributions from the bound-electronic, 𝑛2,𝑒𝑙 

and collisional response, Equation (4.15) first, since both the libration and diffusive reorientation 

responses do not contribute to the measurement. The magnitudes were scaled by 9/5 to find Δ𝑛∥
𝑖𝑠𝑜 

in accordance with Equation (4.35). This was then applied to the parallel and perpendicular meas-

urements with the addition of the librational and diffusive reorientational responses (Equations 
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(4.11) and (4.12), respectively), which have reorientational symmetry. The best fit of both the 

parallel and perpendicular data were used to determine the final response function.  

 

Table 4.1. Fit Parameters of Third-Order Response of CS2. 𝑛2,𝑚 are given in units of 10-19 m2/W 

Mechanism 𝑛2,𝑚  𝜏𝑟,𝑚 (fs) 𝜏𝑓,𝑚 (fs) Symmetry 

Electronic 2.0 ± 0.4 Instantaneous 𝑖𝑠𝑜  

Collision 1.0 ± 0.2 150 ± 50 140 ± 50 𝑖𝑠𝑜 

Libration 7.6 ± 1.5 * 450 ± 100 𝑟𝑒 

Diffusive 18 ± 3 150 ± 50 1610 ± 50 𝑟𝑒 

* 𝜔0 = 8.5 ± 1.0 ps−1, 𝜎 = 5 ± 1 ps−1 

 

 We do not resolve the rise times for either the collision or diffusive reorientation mecha-

nisms since the cross-correlation is relatively long. We therefore follow McMorrow et al. [67] and 

assume them both to be equal since the inertial delay effects should effect both equally, and chose 

150 fs in accordance with [67]. Table 4.1 shows the results of the fitting procedure of the BD data, 

including the magnitude, response times, and symmetries of each mechanism. The error quoted in 

Table 4.1 for 𝑛2,𝑚 are estimated from the uncertainty in the irradiance (~20%) as well as the noise 

level of the BD measurements. Error bars on the remaining parameters were determined by allow-

ing a single variable to change, while keeping the others constant, until the calculated cures no 

longer agreed with experimental measurements. The results agree well with previous relative 

measurements that have applied similar models, but we include absolute measurements of the 

magnitudes of each individual mechanism in addition to the response times [24, 67, 86, 102, 103]. 

The bound-electronic third-order susceptibility may be calculated from 𝑛2,𝑒𝑙 in Table 4.1 using 
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Equation (2.16). Furthermore, the values of the orientationally averaged second hyperpolarizabil-

ity 〈𝛄〉 may be calculated using Equation (4.4). These results are given in Table 4.2. 

 

Table 4.2 Bound-electronic third-order susceptibility and second hyperpolarizability of liquid CS2 

Element 𝜒(3) (10-21 m2/V2)  𝜒(3) (10-13 esu) 〈𝛄〉 (10-61 C4m4/J3)4 [90] 〈𝛄〉 (10-36 esu) 

𝑥𝑥𝑥𝑥 1.8 ± 0.4 1.3 ± 0.3 2.9 ± 0.6 2.3 ± 0.5 

𝑥𝑥𝑦𝑦5 [16] 0.6 ± 0.1 0.4 ± 0.1 1.0 ± 0.2 0.8 ± 0.2 

 

A plot of the noninstantaneous response function is shown in Figure 4.6. The libration 

mechanism dominates the noninstantaneous response at short times, but it dampens quickly due to 

dephasing of the broad distribution of oscillator frequencies. The diffusive reorientation mecha-

nism has the slowest decay time due to its Debye-Stoke-Einstein diffusive decay nature. Because 

of this, it has the greatest impact on the nonlinear refraction of long pulses, i.e., it has the greatest 

𝑛2,𝑚 (see Equation (4.5) and Table 4.1). The collisional response is relatively small, and quickly 

damped. It is only measureable thanks to the measurements at the magic angle, since it has iso-

tropic symmetry. 

 

                                                 

4 𝛾𝑀𝐾𝑆 =
𝑒4𝑎0

4

𝐸ℎ
3 𝛾𝑎𝑢 = 6.23538063 × 10

−65𝛾𝑎𝑢 =
400𝜋𝜀0

𝑐2
𝛾𝑒𝑠𝑢 = 1.23799015 × 10

−25𝛾𝑒𝑠𝑢  

5 In isotropic media in the nonresonant (Kleinman) limit, 𝜒𝑥𝑥𝑦𝑦
(3) = 𝜒𝑥𝑦𝑥𝑦

(3) = 𝜒𝑥𝑦𝑦𝑥
(3)
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Figure 4.6 Noninstantaneous response function 𝑅(𝑡) of CS2 (see Table 4.1) decomposed into (blue) collision, 

(green) libration, (red) diffusive reorientation, as well as the (black) total. (Reproduced with permission from Ref. 

[62]) 

 

 The Raman spectrum of a material is related to the noninstantaneous third-order response 

function via [24] 

 𝑅(Δ𝜔) ∝ ℱ{𝑅(𝑡)}, (4.37) 

where Δ𝜔 is the frequency shift, and ℱ indicates the Fourier transform. In a Raman scattering 

measurement, the spectral power density measured is depends only on Im{𝑅(Δ𝜔)} [23, 24]. Figure 

4.7 shows the Im{𝑅(Δ𝜔)} for each mechanism of the response of CS2 as well as the total. This 

spectrum agrees well with measurements from [104] and [105]. 
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Figure 4.7 Fourier transform of response function of CS2, including (blue) collision, (green) libration, (red) diffusive 

reorientation, and (black) total.  

  

4.3.2. Degenerate Four-Wave Mixing Measurements 

To verify the response function measured by the BD technique, degenerate four-wave mix-

ing (DFWM) measurements were also performed (see § 3.2.4. ). This experiment was conducted 

using the Clark-MXR laser system (see § 3.2.1.1. ) with the TOPAS-C (see § 3.2.1.2. ) tuned to 

700 nm, which was sent to a prism compressor (SF10) to compress the pulse [106]. A 50/50 beam 

splitter was used to split the single bean into pump and probe, and the probe beam was sent to a 

delay line. The beams were then aligned parallel to one another, but displaced vertically by ~ 1 

cm. A 15 cm focal length mirror was then used to focus both beams through a transmissive dif-

fraction grating, and diffracted orders ±1 of the top beam were used as the pump (ℰ1 and ℰ2 in § 

3.2.4. ), and the diffracted order +1 in the lower beam was used as the probe. A second 15 cm focal 

length mirror was used to collect and collimate the three beams, and a third focused them into the 
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sample in the so called “boxcars” geometry [59, 107]. The energy of the diffracted beam, ℰ4, was 

measured as a function of delay between the pumps and probe. The prism compressor was itera-

tively optimized to yield the narrowest signal about zero delay (see Figure 4.8). 

 

 
Figure 4.8 (circles) Measured normalized DFWM signal, and (red) prediction from the response function, using 

Equation (3.22), on both (left) linear and (right) logarithmic scale. (Modified with permission from Ref. [62].) 

 

Figure 4.8 shows the normalized signal from the DWFM measurement of CS2 in black 

circles, on both a linear and logarithmic scale. The red curve shows the prediction based on the 

response function measured by beam deflection as calculated via Equations (2.16), (2.37), (3.22), 

and (3.23). The pulse widths used in the prediction were 88 fs and 42 fs (both FWHM) for the 

pump and probe pulses, respectively. This is consistent with the minimization of the DWFM signal 

procedure when the dispersion through the ~11 mm of glass (8 mm thick beam splitter at 45°) is 

included in the probe path (ThorLabs BSW16) [96]. The excellent agreement between the meas-

urement and prediction validates the response function determined from the BD technique 
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4.3.3. Z-scan Measurements 

CS2 is a standard reference material for Z-scan measurements, even though its large non-

instantaneous NLR makes its effective nonlinearity pulse width dependent. Typically, an effective 

nonlinear refractive index, defined by 

 Δ𝑛(𝑡) = 𝑛2,eff𝐼(𝑡), (4.38) 

is used to fit the Z-scan measurements. This completely neglects the temporal dynamics of the 

underlying mechanisms that cause NLR, and the resulting 𝑛2,eff is therefore pulse width dependent. 

Using the response function, however, we may predict 𝑛2,eff for any pulse width.  

The Z-scan technique measures the changes in phase that a single pulse induces on itself. 

Thus the CA Z-scan signal depends on the refractive index change weighted over the temporal 

profile of the irradiance [47], 

 
〈Δ𝑛(𝑡)〉 ≡

∫Δ𝑛(𝑡′)𝐼(𝑡′)d𝑡′

∫ 𝐼(𝑡′)d𝑡′
. (4.39) 

Treating the response as if it were instantaneous, i.e., Equation (4.38), yields 

 
〈Δ𝑛(𝑡)〉 ≡ 𝑛2,eff

∫ 𝐼2(𝑡′)d𝑡′

∫ 𝐼(𝑡′)d𝑡′
. (4.40) 

Using Equations (2.20) and (2.39), the actual refractive index change for a single-beam experi-

ment, such as Z-scan, is 

 

Δ𝑛(𝑡) ≡ 𝑛2,𝑒𝑙𝐼(𝑡) + ∫ 𝑅(𝑡 − 𝑡1)𝐼(𝑡1)d𝑡1

∞

−∞

. (4.41) 

Combining Equations (4.39), (4.40), and (4.41) and solving for 𝑛2,eff gives 

 
𝑛2,eff ≡ 𝑛2,𝑒𝑙 +

∫ 𝐼(𝑡) ∫ 𝑅(𝑡 − 𝑡1)𝐼(𝑡1)d𝑡1
∞

−∞

∞

−∞
d𝑡

∫ 𝐼2(𝑡)d𝑡
∞

−∞

. (4.42) 
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To verify this prediction, we perform Z-scan measurements on a 1 mm cuvette filled with 

CS2 using the same laser, TOPAS, and prism compressor as the DFWM experiments, at wave-

lengths of both 700 nm and 1064 nm. The prism was adjusted to give pulse widths ranging from 

bandwidth limited at 32 fs, up to 2.3 ps (both FWHM), which was limited by the available table 

space for the setup and pulse energy. The beam was then spatially filtered to produce a TEM00 

Gaussian beam [108]. Approximately 10 % of the pulse energy was split off and sent to a reference 

detector used to window the pulse energy. A half-wave plate and polarizer was used to adjust the 

energy, and a quarter-wave plate was used to select either linear or circular polarization. A beam 

splitter located after the sample allowed for the simultaneous measurement of the OA and CA Z-

scans. Additionally, a Q-switched mode-locked Nd:YAG laser system (ESKPLA PL2143), at 1064 

nm, with a repetition rate of 10 Hz, was also used to measure out to a pulse width of 25 ps. An 

OPA/G (EKSPLA, PG401) pumped by the third harmonic was tuned to 700 nm to give measure-

ments at 8 ps. For all measurements, the CA linear transmission 𝑆 = 0.33 ± 0.01. 

 

 
Figure 4.9 Example (open shapes) measurements and (curves) fits of (left) OA Z-scan of ZnSe, and (right) CA Z-

can of CS2 where the energies are (black squares) 3.5 nJ, (blue cirles) 7.4 nJ, and (red triangles) 11 nJ. (Reproduced 

with permission from [62].)  
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Determination of the pulse width and spot sizes for each wavelength was done by perform-

ing OA Z-scans on samples of known 2PA coefficient. For 700 nm, a 511 μm thick sample of 

ZnSe was used, where 𝛼2 = 5.6 × 10
−11 m/W, and for 1064 nm CdSe was used with 𝛼2 = 23 ×

10−11 m/W [14]. Additionally CA Z-scans measurements of fused silica were also performed as 

a verification, with 𝑛2 = 0.25 × 10
−19 m2/W [69]. An example of the OA Z-scan of ZnSe is 

shown in Figure 4.9, where 𝜆 = 700 nm, the energy was 1.5 nJ, 𝐼0 = 1.3 GW/cm
2, from which 

the spot size and pulse width were determined to be 19.5 μm (HW1/e2M) and 180 fs (FWHM), 

respectively. This method of determining the spot sizes and pulse widths minimizes the relative 

error between successive measurements in the same Z-scan setup.  

  

 
Figure 4.10 𝑛2,eff of liquid CS2 for linear polarization from both (points) Z-scan measurements at (black) 700 nm 

and (green) 1064 nm, using both (closed) Clark-MXR and (open) EKSPLA laser systems, and (red curve) prediction 

from response function using Equation (4.42). The pink shaded region corresponds to errors in the response function 

(see Table 4.1). (Reproduced with permission from [62].) 
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 CA Z-scan measurements of CS2 were performed at multiple energies to ensure the linear-

ity of Δ𝑇𝑝−𝑣 with irradiance, all of which were used to determine the best fit value of 𝑛2,eff at each 

pulse width. Figure 4.9 shows an example measurement, with the same wavelength, spot size, and 

pulse width as above. The fit of these data corresponds to 𝑛2,eff = 6.9 × 10
−19 m2/W. Figure 4.10 

shows the Z-scan measurements of 𝑛2,eff versus pulse width for linear polarizations as well as the 

prediction from the response function using Equation (4.42). We observe excellent agreement be-

tween the measurements and the prediction, further validating the response function measured by 

beam deflection. For short pulses, less than ~50 fs, 𝑛2,eff = 𝑛2,𝑒𝑙, since only the bound electronic 

response is fast enough to significantly contribute. For increasing pulse width, the noninstantane-

ous contributions adds more and more to 𝑛2,eff and quickly dominate. For long pulses, greater than 

~10 ps, 𝑛2,eff plateaus to a value given simply by the sum of each component’s magnitude 

 𝑛2,eff|long =∑𝑛2,𝑚
𝑚

= (28.6 ± 3.4) × 10−19 m2/W. (4.43) 

 Circular polarization measurements were also performed. The ratio of 𝑛2,eff for linear and 

circular polarizations depends on the symmetry of the underlying mechanism. For isotropic sym-

metry this ratio is 1.5, while for reorientational it is 4 [16]. Thus, we can predict result of a Z-scan 

measurement with circular polarization from the response function using Δ𝑛𝑐𝑖𝑟𝑐 = Δ𝑛∥
𝑖𝑠𝑜/1.5 +

Δ𝑛∥
𝑟𝑒/4. Figure 4.11 shows the ratio of 𝑛2,eff

𝑙𝑖𝑛 /𝑛2,eff
𝑐𝑖𝑟𝑐  versus pulse width for both the Z-scan meas-

urements and the prediction from the response function. At short pulse widths the ratio becomes 

1.5 since the bound-electronic response follows isotropic symmetry in the liquid. As the pulse 

width increases, the ratio increases as the libration and diffusive reorientation mechanism, which 

follow reorientational symmetry, contribute more. This ratio eventually plateaus at 
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 𝑛2,eff
𝑙𝑖𝑛

𝑛2,eff
𝑐𝑖𝑟𝑐

=
𝑛2,eff|long

(𝑛2,𝑒𝑙 + 𝑛2,𝑐)
1.5

+
(𝑛2,𝑙 + 𝑛2,𝑑)

4

= 3.40 ± 0.06, (4.44) 

where the numerator is given by Equation (4.43). The weighting factors in the denominator corre-

spond to the polarization dependence of each mechanism. The agreement between measurement 

and prediction validates not only the magnitudes and time constants, but also the symmetries of 

the response function measured by beam deflection. 

 

 
Figure 4.11 Ratio of 𝑛2,eff of CS2 for circular and linear polarizations from both (black circles) Z-scan measurements 

at 700 nm and (red curve) prediction from response function. (Reproduced with permission from [62].) 

 

 Additionally, Z-scan measurements were preformed over a broad spectral range from 390 

nm to 1550 nm. The shortest pulse width achieved by the prism compressor depended on the 

wavelength, which varied from 32 fs to 165 fs. For these pulse widths the bound-electronic re-

sponse dominates, but for the longer pulse widths the noninstantaneous mechanisms can contribute 
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up to a factor of 2 increase in 𝑛2,eff. The bound-electronic nonlinear response can still be isolated 

for relatively long pulses if we assume the noninstantaneous response is independent of wave-

length. We can then simply subtract off the noninstantaneous contribution to 𝑛2,eff, and thus obtain 

the dispersion of 𝑛2,𝑒𝑙. To validate this assumption, Z-scan measurements were made using long 

pulses where the noninstantaneous mechanisms dominate. Both ps (EKSPLA) and ns (Continuum 

PL9010) Nd:YAG laser systems, which pumped optical parametric devices were used, where ef-

fects of electrostriction were extracted in the ns measurements [109]. The right plot in Figure 4.12 

shows 𝑛2,eff for both ns (open) and ps (closed) pulses is independent of wavelength to within the 

measurement error. The prediction from the response function measured by BD, shown in the blue 

diamond, also agrees with these measurements. Therefore, subtracting out the noninstantaneous 

response from the short fs pulse measurements is a valid method of extracting 𝑛2,𝑒𝑙.  

 

 
Figure 4.12 (left) Z-scan measurements (points) of (black) NLR of CS2 with the noninstantaneous contribution sub-

tracted, and (blue) 2PA. Curves are fit with sum-over-states model, where the prediction of 𝑛2,𝑒𝑙 has been multiplied 

by 2. (right) Measurements of 𝑛2,eff|long for (open) 13-20 ps pulses (closed) 2.5-17 ns pulses, and (blue) prediction 

from BD measurements of response function [62]. 
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 The plot in Figure 4.12 shows the measured values of (black) 𝑛2,𝑒𝑙 and (blue) 𝛼2 over the 

spectral range measured. For photon energies above 2.5 eV (wavelengths below 500 nm) 2PA is 

possible, since linear absorption occurs for photon energies >5 eV (wavelengths <250 nm) [110]. 

The curves represent fits based a simplified quantum mechanical sum-over-states model relating 

the third-order nonlinearity to the energy levels and transition dipole moments between electronic 

states of the molecule [20, 110-112]. Only three state are included in the fit, the ground state 𝑔, 

one-photon allowed excited state 𝑒, and two-photon allowed excited state 𝑒′. Given the symmetry 

of the molecule, definite parity is assumed, where wave functions of the states 𝑔 and 𝑒′ have the 

same symmetry (either even or odd) and 𝑒 has the opposite. This means the only nonzero transition 

dipole moments are those between the ground and one-photon allowed state, 𝜇𝑔𝑒, and between the 

two excited states, 𝜇𝑒𝑒′. Both the linear and 2PA spectrum were used to determine the energy 

levels and values of the transition dipole moments, the results of which are shown in Table 4.3. 

The corresponding prediction of the dispersion of 𝑛2,𝑒𝑙 agrees with the measured trend, but it is 

smaller by a factor of two, which may be due to the over simplicity of the model. Based on this fit, 

the parameters may be used to calculate predictions of 𝜒(3) for other frequencies, including third-

harmonic generation [113]. 

 

Table 4.3 CS2 sum-over-states model fit Parameters  

State Energy (eV) HWHM (eV) 𝜇 (D) 

𝑒 6.00 ± 0.01 0.17 ± 0.01 𝜇𝑔𝑒 = 3.6 ± 0.2 

𝑒′ 5.95 ± 0.05 0.40 ± 0.05 𝜇𝑔𝑒′ = 8.7 ± 0.9 
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4.4. Nonlinear Response of Molecular Gases 

 Similar third-order nonlinear effects to those observed in liquid CS2 occur in gases made 

up of simple linear molecules. Due to the low density, the many-body effects, including libration 

and collision mechanisms, do not contribute to the nonlinear response. However, thanks to the low 

collision rate in dilute gases, the induced rotation is not damped nearly as much as it is in liquids, 

and the molecules may continue to rotate for over 100 ps. Because the rotational energy levels are 

quantized, and separated in energy appropriately, this results in periodic revivals of the degree of 

alignment, and therefore refractive index.  

 

4.4.1. Theory of Rotational Revivals 

 One must treat the rotation quantum mechanically. The rotational eigenstates are |𝐽,𝑀⟩, 

where 𝐽 is the total angular momentum (rotational) quantum number, and 𝑀 is the second total 

angular momentum quantum number, which is the projection of 𝐽 along the axis of the pump po-

larization. The energy of each rotational state is given by [114] 

 𝐸𝐽 = ℎ𝑐𝐵𝐽(𝐽 + 1) − ℎ𝑐𝐷𝐽
2(𝐽 + 1)2, (4.45) 

where ℎ is Planck’s constant, 𝐵 is the rotational constant related to the average moment of inertia 

ℐ 

 
𝐵 =

ℎ

8𝜋2𝑐
⟨
1

ℐ
⟩
𝑎𝑣
, (4.46) 

and D is the centrifugal distortion constant [114]. In general, these constants depend on the vibra-

tional state of the molecule. Here we are interested in O2, N2, and CS2, which predominantly pop-

ulate the lowest vibrational level [115]. The classical explanation for the rotational nonlinearity 

given in § 4.1.1.  now must be quantized, where the induced rotation can be thought of as rotational 
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Raman scattering from one rotational state to another. Due to the definite parity of the rotational 

wave functions, which are spherical harmonics, the selection rules for such a two-photon Raman 

process are Δ𝐽 = ±2, and Δ𝑀 = 0 due to the symmetry about the molecular axis. If the pump field 

is sufficiently short, less than half the rotational period (of bandwidth greater than the transition 

frequency), it will excite a coherent superposition between states |𝐽,𝑀⟩ and |𝐽 ± 2,𝑀⟩.  

 The density matrix approach is now applied to find the coherence between the two states. 

The density matrix associated with a combination of eigenstates states 𝑎 and 𝑏 (which depend on 

𝐽 and 𝑀) is  

 𝜌 = (
𝜌𝑎𝑎 𝜌𝑎𝑏
𝜌𝑏𝑎 𝜌𝑏𝑏

), (4.47) 

which evolves according to 

 
𝜌̇ =

𝑖

ℏ
[𝐻̂, 𝜌]. (4.48) 

where [ , ] denotes the commutator. Here the Hamiltonian 𝐻̂ is given by 

 
𝐻̂ = (

𝐸𝑎 −𝛍 ∙ 𝐄(𝑡)

−𝛍 ∙ 𝐄(𝑡) 𝐸𝑏
). (4.49) 

Equation (4.48) then becomes 

 
𝜌̇ =

𝑖

ℏ
(

𝛍 ∙ 𝐄(𝜌𝑏𝑎 − 𝜌𝑎𝑏) 𝛍 ∙ 𝐄(𝜌𝑏𝑏 − 𝜌𝑎𝑎) − (𝐸𝑎 − 𝐸𝑏)𝜌𝑎𝑏
𝛍 ∙ 𝐄(𝜌𝑎𝑎 − 𝜌𝑏𝑏) − (𝐸𝑏 − 𝐸𝑎)𝜌𝑏𝑎 𝛍 ∙ 𝐄(𝜌𝑎𝑏 − 𝜌𝑏𝑎)

). (4.50) 

Since we are interested in the evolution of the coherence, we look specifically at the off diagonal 

elements 

 
𝜌̇𝑎𝑏 =

𝑖

ℏ
(𝛍 ∙ 𝐄(𝜌𝑏𝑏 − 𝜌𝑎𝑎) − (𝐸𝑎 − 𝐸𝑏)𝜌𝑎𝑏). (4.51) 

We now define 𝜔𝑎𝑏 = (𝐸𝑎 − 𝐸𝑏)/ℏ, and phenomenologically add damping, of rate Γ𝑎𝑏. The off-

diagonal elements of the Hamiltonian are  
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 𝐻̂𝑎𝑏 = −Δ𝛼|𝐄(𝑡)|
2⟨𝑎| cos2(𝜃) |𝑏⟩, (4.52) 

where 𝜃 is the angle between the pump polarization and the molecular axis (see Equation (4.7) and 

Figure 4.1). With this, Equation (4.51) becomes 

 
𝜌̇𝑎𝑏 =

𝑖

ℏ
Δ𝛼|𝐄(𝑡)|2⟨𝑎| cos2(𝜃) |𝑏⟩(𝜌𝑏𝑏 − 𝜌𝑎𝑎) − (𝑖𝜔𝑎𝑏 + Γ𝑎𝑏)𝜌𝑎𝑏 . (4.53) 

 We now solve Equation (4.53) using first order perturbation theory where [116] 

 
𝜌𝑎𝑏
(1)(𝑡) =

𝑖

ℏ
Δ𝛼⟨𝑎| cos2(𝜃) |𝑏⟩(𝜌𝑏𝑏

(0) − 𝜌𝑎𝑎
(0))

∙ ∫|𝐄(𝑡′)|2𝑒−(𝑖𝜔𝑎𝑏+Γ𝑎𝑏)(𝑡−𝑡
′)d𝑡′

𝑡

−∞

. 

(4.54) 

where the 𝜌𝐽𝐽
(0)

 are the initial populations of the rotational states. At thermal equilibrium the popu-

lations are described by a Boltzmann distribution [117] 

 

𝜌𝐽𝐽
(0) =

𝑔𝐽𝑒
−
𝐸𝐽
𝑘𝐵𝑇

∑ 𝑔𝐾(2𝐾 + 1)𝑒
−
𝐸𝐾
𝑘𝐵𝑇𝐾

 , (4.55) 

where 𝑔𝐽 is a statistical weighting factor based on the nuclear spin statistics, which will be elabo-

rated on below. The electric field is given by 𝐄(𝑡) = ℰ𝐞̂ cos(𝜔𝑡), and the square will result in a 

component at zero frequency, and one at 2𝜔. Since 2𝜔 ≫ 𝜔𝑎𝑏, this term integrates to zero, and 

does not significantly contribute to the result [117]. We therefore approximate |𝐄(𝑡′)|2 ≈

|ℰ(𝑡)|2/2.  

 We are interested in changes in the degree of alignment of the molecular ensemble, which 

is given by [116] 

 〈cos2(𝜃)〉 = tr[𝜌(𝑡) cos2(𝜃)] , (4.56) 
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where tr[ ] indicates the trace operation. Before the interaction, 〈cos2(𝜃)〉 = tr[𝜌(0) cos2(𝜃)] =

1/3, while after the interaction 

 
𝜌(1) cos2(𝜃) =  (

𝜌𝑎𝑏
(1)⟨𝑏| cos2(𝜃) |𝑎⟩ 𝜌𝑎𝑏

(1)⟨𝑏| cos2(𝜃) |𝑏⟩

𝜌𝑏𝑎
(1)⟨𝑎| cos2(𝜃) |𝑎⟩ 𝜌𝑏𝑎

(1)⟨𝑎| cos2(𝜃) |𝑏⟩
), (4.57) 

and therefore Equation (4.56) becomes 

 
〈cos2(𝜃)〉 =

1

3
+ 𝜌𝑎𝑏

(1)⟨𝑏| cos2(𝜃) |𝑎⟩ + 𝜌𝑏𝑎
(1)⟨𝑎| cos2(𝜃) |𝑏⟩. (4.58) 

The second and third terms are simply complex conjugates of one another, and the sum of some-

thing plus its conjugate is simply twice its real part. Substituting Equation (4.54) into Equation 

(4.58), the deviation of the degree of alignment from thermal equilibrium becomes 

 
〈cos2(𝜃)〉 −

1

3
= −

1

ℏ
Δ𝛼|⟨𝑎| cos2(𝜃) |𝑏⟩|2(𝜌𝑎𝑎

(0) − 𝜌𝑏𝑏
(0))

∙ Im{ ∫|ℰ(𝑡′)|2𝑒−(𝑖𝜔𝑎𝑏+Γ𝑎𝑏)(𝑡−𝑡
′)d𝑡′

𝑡

−∞

}. 

(4.59) 

Since the only coupling is between states of 𝐽 and 𝐽 ± 2 of the same 𝑀, we let |𝑎⟩ = |𝐽, 𝑀⟩ and 

|𝑏⟩ = |𝐽 − 2,𝑀⟩, for which the matrix element summed over 𝑀 is [117, 118] 

 
∑⟨𝐽,𝑀| cos2(𝜃) |𝐽 − 2,𝑀⟩

𝑴

=
2

15

𝐽(𝐽 − 1)

2𝐽 − 1
. (4.60) 

Equation (4.59) then becomes 

 

(〈cos2(𝜃)〉 −
1

3
) = −Δ𝛼∑𝑇𝐽Im{ ∫|ℰ(𝑡

′)|2𝑒−(𝑖𝜔𝐽,𝐽−2+Γ𝐽,𝐽−2 )(𝑡−𝑡
′)d𝑡′

𝑡

−∞

}

𝐽

, (4.61) 

where  

 
𝑇𝐽 =

2

15ℏ

𝐽(𝐽 − 1)

2𝐽 − 1
(𝜌𝐽𝐽
(0) − 𝜌𝐽−2,𝐽−2

(0) ). (4.62) 
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The resulting degree of alignment modulation causes a refractive index change via Equations (4.3) 

and (4.7), which for small refractive index changes is given by 

 
Δ𝑛(𝑡) =

𝑁Δ𝛼

2𝜀0𝑛0
(〈cos2(𝜃)〉 −

1

3
). (4.63) 

 

  
Figure 4.13 Calculated normalized refractive index change from coherent rotational revivals from O2 for (dashed) 

only the rotational ground state, and (solid) a thermal distribution at 300 K. Insets illustrate probability distribution 

of molecular ensemble for positive (top) and negative (bottom) Δ𝑛(𝑡). 

 

 For a delta function pulse the refractive index change becomes a sum of damped sinusoids, 

each equally spaced in frequency since (neglecting centrifugal distortion) 

 𝜔𝐽,𝐽−2 = 2ℎ𝑐𝐵(2𝐽 − 1). (4.64) 

For an initial distribution entirely in the ground rotational state, the degree of alignment, and thus 

refractive index change, oscillates sinusoidally as in Figure 4.13. As the number of initially occu-

pied states increases, more sinusoids are added together and interfere, resulting in periodic beats 

or “revivals” in the degree of alignment. The full revival period is given by 𝑇 = (2𝑐𝐵)−1 which 

in O2 is 11.59 ps, and revival features can also occur at half and quarter multiples of 𝑇. Figure 4.13 

shows a comparison of the refractive index change for O2 of only the ground state occupied 

(dashed) with a distribution at room temperature with over 14 states initially occupied (solid). The 
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rotational states are coherent with an ensemble average degree of alignment that arises from quan-

tum interference of the many contributing rotational eigenstates. Due to their equally spaced rota-

tional frequencies, the components share a constant phase such that the molecules periodically 

realign along the polarization vector of the excitation pulse. As a result of the periodic dephasing 

and rephasing of the rotational eigenstates, a modulation of the refractive index occurs with a 

change in alignment distribution between aligned and anti-aligned events. This is the result of the 

spectral lines for rotational transitions being evenly spaced, much like frequency comb. The short 

excitation pulse then imposes a fixed phase relationship between them the modes, resulting in 

periodic revivals. This is analogous to a mode-locked laser, where the longitudinal modes of a 

cavity are evenly spaced, and the mode-locking imposes a fixed spectral phase between them, 

resulting in a pulse laser output [119]. 

 When the excitation and probe beams are co-polarized (parallel), an increase in the refrac-

tive index occurs when the net alignment of the molecular ensemble is parallel to the probe polar-

ization axis. The angular distribution of rotational states forms a dumbbell-like shape, as shown in 

the inset in Figure 4.13 in the positive Δ𝑛(𝑡) region. A decrease in the refractive index occurs 

when the molecules are anti-aligned, or perpendicular, to the probe polarization axis, forming a 

disc-like distribution, as shown in the inset in Figure 4.13 in the negative Δ𝑛(𝑡) region. In between 

events, the rotational states walk out of phase resulting in an isotropic ensemble similar to that 

before the pump pulse.  
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Table 4.4 Weighting factor 𝑔𝐽 based on nuclear spin statistics  

Molecule Even 𝐽 Odd 𝐽 

14N2 2/3 1/3 

16O2 0 1 

12C32S2
 1 0 

12C32S2
 (𝜈2) 1/2 1/2 

12C32S34S 1/2 1/2 

 

 The spin statistics of the nuclei affect the coherent rotational revivals through the occupa-

tion probability characterized by 𝑔𝐽. The population distribution between odd and even rotational 

levels is determined by the symmetry of the total molecular wave function, which may be written 

as a product of the electronic, vibrational, rotational, and nuclear spin wave functions [114] 

 𝜓𝑡𝑜𝑡𝑎𝑙 = 𝜓𝑒𝑙𝜓𝑣𝑖𝑏𝜓𝑟𝑜𝑡𝜓𝑛𝑠. (4.65) 

Bosons have an integer nuclear spin, 𝑆𝑛, where 𝜓𝑡𝑜𝑡𝑎𝑙 must be symmetric upon nuclear inter-

change. The number of nuclear states which can populate a given even or odd rotational level can 

be determined by evaluating the symmetry of each constituent wave function with respect to nu-

clear interchange. The wave function symmetry for the ground electronic and vibrational states of 

the most abundant isotopologues of N2, O2, and CS2 is shown in Table 1 [114]. Figure 4.14 illus-

trates the impact of nuclear spin statistics on 𝜌𝐽
(0)

 and 𝑇𝐽 for both 14N2 (red) and 16O2 (blue) calcu-

lated at 300 K using Equations (4.55) and (4.62), respectively. For 16O2 only even 𝐽 states are 

occupied, while for 14N2 odd states are occupied twice as much as even. See APPENDIX C:  more 

information.  
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Figure 4.14 (top) Occupation probability and (bottom) 𝑇𝐽 versus 𝐽 of (red) 14N2 and (blue) 16O2 at 300 K via Equa-

tions (4.55) and (4.62), respectively. 

 

4.4.2. Beam Deflection Measurement of Coherent Rotational Revivals 

 To demonstrate the applicability of the BD technique for measuring the optical nonlinearity 

of gases, including both the instantaneous bound-electronic and rotational responses, we first per-

form experiments on ambient air (predominantly N2 and O2) [118]. The BD experimental setup to 

measure coherent rotational revivals in air was very similar to that used for the measurements of 

liquid CS2. A 30 cm motorized translation stage, providing up to 2 ns of delay, was used to delay 

the pump pulse with respect to the probe pulse. The pump and probe beams were focused to spot 

sizes 𝑤𝑏 = 160 μm and 𝑤0,𝑎 = 60 μm (both HW1/e2M), respectively. The crossing angle of the 

pump and the probe was kept small (< 1°) to maximize the interaction length (~ 2 cm) while still 

being able to spatially separate the excitation from the probe at the detector. As illustrated in Figure 

4.15, the excitation beam crossed the probe beam in the vertical (yz-) plane, but was displaced in 
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the horizontal (xz-) plane, causing deflection in the x-direction. This was done to maximize the 

probe deflection and prevent the cancelation of the deflection by different regions along the length 

of overlap.  

 

 
Figure 4.15 Illustration of BD geometry where the (red) pump and (blue) probe cross in the vertical (𝑦𝑧) plane (top 

left) but the deflection is in the horizontal (𝑥𝑧) plane (bottom left). (Left) Beam profiles at overlap [120]. 

 

 In gaseous samples, the resulting total NLR transients occur at zero delay as well as at 

quarter multiples of the revival period (see Figure 4.13). Fitting was conducted by numerically 

evaluating the degree of alignment via Equation (4.61), where ℰ(𝑡) is taken to be the pump field, 

and then calculating the refractive index change via Equations (2.20) and (4.63) considering both 

bound-electronic and nuclear rotational contributions. The BD signal was then calculated as a 

function of delay by Equations (3.37) and (3.38). This assumes small interaction lengths such that 

the probe and pump do not spatially walk off one another and the phase change induced in the 

probe is uniform across the sample thickness. For our gaseous samples that assumption is no longer 

valid given the large thickness. To quantitatively measure the bound-electronic NLR of gases, we 

therefore perform relative measurements using the well-known values of Δ𝛼 measured from gas 

phase Raman spectroscopy. The relative contribution between the second hyperpolarizability 𝛾 

and Δ𝛼 can be obtained by evaluating the ratio of the magnitudes of the bound-electronic and 
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rotational contributions to the BD signal. It can be shown from Equations (2.16), (2.20), and (4.4), 

as well as Equations, (4.61) and (4.63) that  

 Δ𝑛𝑒𝑙
Δ𝑛𝑟𝑜𝑡

∝
〈𝛾〉

(Δ𝛼)2
 . (4.66) 

Within one self-consistent BD measurement, where Δ𝑛𝑒𝑙 and Δ𝑛𝑟𝑜𝑡 are intrinsically separated, 𝛾 

can be more precisely determined by using Δ𝛼 as a reference, such that the errors from a determi-

nations of the interaction length, number density and focusing conditions, that exist in absolute 

measurements, will not affect the result. With a known number density 𝑁, 𝑛2,𝑒𝑙  can be calculated 

from Equations (2.16) and (4.4).  

 

 
Figure 4.16 (top) Measured (black) BD signal from air and fit (violet), which is a sum of both the individual contri-

butions of (bottom left, red) N2 and (bottom right, blue) O2 [120].  

 



102 

 Figure 4.16 (a) shows the measured BD signal (black) of the ambient lab air for co-polar-

ized excitation and probe over a 28 ps delay range, along with a numerical fit (violet) which in-

cludes contributions of both N2 and O2 weighted by their relative atmospheric concentrations at 1 

atm. The total BD signal for the gas phase mixture can be decomposed into a sum of the individual 

contributions from the individual molecular species. We therefore obtain a good measure of 

Δ𝛼(O2)/Δ𝛼(N2) since we measure both at the same time, which agrees well with the values in 

Table 4.5.  The first 12 ps of delay of the measured air signal contains the first revival periods of 

both molecules, where the fits of the individual contributions from O2 (blue) and N2 (red) are 

shown in the lower plots of Figure 4.16. The rotational constants were found to be B(O2) = 

1.4381(2)6 cm-1, and B(N2) = 1.9901(2) cm-1, respectively, corresponding to full revival periods 

𝑇(O2) = 11.597(2) ps and 𝑇(N2) = 8.3806(9) ps, which agree well with literature values [114, 121]. 

From these measurements we can determine the bond length via Equation (4.46) and ℐ = 𝑚𝑙2/2, 

where 𝑚 is the mass of the atoms, and 𝑙 is their separation. This results in 𝑙(16O2) = 121.048(8) 

pm, and 𝑙(14N2) = 110.005(5) pm, which agrees well with [122, 123] (see Table 4.5). Due to the 

contributions of both molecules to the total measured signal, certain revivals display features from 

the sum of each constituent. At a delay of 6.2 ps, the feature in the signal arises from the ½ revival 

of O2 and the ¾ revival of N2. The positive signal, due to the aligned distribution of the N2 ensem-

ble increasing the refractive index, is enhanced by the aligned O2 ensemble increasing the refrac-

tive index. At other delays, for example about 4 ps, only one species contributes to the BD signal, 

in this case N2.  

                                                 

6 The number in parenthesis indicates the error (one standard deviation) in the last reported digit. 
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Table 4.5 Molecular parameters for Coherent Rotational Revivals  

Molecule Δ𝛼 (10-40 Fm2) 𝐵 (cm-1) 𝑙 (pm) 𝐷 (10-4 cm-1) Δ𝑙 (fm) 

14N2   0.77 [124] 1.9901(2) 110.005(5) 5.1(4) 29(2)    (𝐽=14) 

16O2   1.21 [124] 1.4381(2) 121.048(8) 5.6(6) 90(10)  (𝐽=19) 

12C32S2
 10.53 [125] 0.10945(10) 155.13(7) 0.010(5) 71(36)  (𝐽=100) 

12C32S2 (𝜈2) 10.53 [125] 0.1096(1) 155.03(7) 0.010(5) 72(36)  (𝐽=100) 

12C32S34S  10.53 [125] 0.1062(1) 155.08(7) 0.010(5) 74(37)  (𝐽=100) 

  

 
Figure 4.17 Measured (black) and fit (violet) BD signal of air out to 300 ps of delay.  Inset shows revival signal and 

fit about 197 ps. (Reproduced with permission from Ref. [120]). 

 

 To obtain information about the dephasing rate Γ in air, a BD measurement was performed 

out to 300 ps of delay. Figure 4.17 shows the measured revival signal from 1 to 300 ps in black, 

and the fit in violet. Additionally, the Fourier transform of such a long scan provides the rotational 

Raman spectrum (see Equation (4.37)), which is shown in black Figure 4.18 (calculated after zero-

padding to a delay of 1.5 ns) along with fits for O2 (blue) and N2 (red). In addition to the thermal 

distribution, the consequence of nuclear spin statistical effects can be seen in the amplitude of the 
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rotational Raman peaks (see Table 4.4). The nuclear statistics of O2 dictate that the rotational levels 

have only odd 𝐽 values. For a molecule with both odd and even rotational levels populated, the 

amplitudes of adjacent peaks will alternate at a ratio determined by the nuclear statistics of the 

molecule. As seen in the N2 spectrum fitting where the intensity of adjacent peaks follows the ratio 

of symmetric to antisymmetric states, 6even:3odd.  

 

 
Figure 4.18 (top) Fourier transform of the BD signal for air (black) with the fitting for N2 (red) and O2 (blue). 

Zoomed in plots for (lower left) low and (lower right) high rotational states along with fits both neglecting (dashed) 

and including (solid) centrifugal distortion. (Reproduced with permission from Ref. [120].) 

 

The spectral lines for rotational transitions are evenly spaced until the higher rotational 

levels where a centrifugal distortion lengthens the bond and decreases the rotational frequency. 

This causes the lines to not all be evenly spaced, making the system not a true frequency comb. In 

Equation (4.45) the centrifugal distortion constant D characterizes the reduction in energy of large 
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𝐽 (rapidly rotating) rotational states as centrifugal forces cause the atomic separation to increase 

[114]. Because of the large bond strength, D is typically several orders of magnitude smaller than 

B, and thus centrifugal distortion only impacts high rotational states. The results can be seen in the 

lower plots of Figure 4.18, where fits for low rotational states with (solid lines) and without (dashed 

lines) D lie on top of each other. However, for higher rotational states there is a significant dis-

crepancy from the measurement when neglecting centrifugal distortion. From the fitting we find 

𝐷(O2) = 5.6(6) × 10-4 cm-1 and 𝐷(N2) = 5.1(4) × 10-4 cm-1, which agree well with [121] (see Table 

4.5). In 16O2 , at 𝐽 = 19, this gives a bond length increase of 90(10) fm, and for 14N2 at 𝐽 = 14, it 

gives a bond length increase of 29(6) fm.7 

A 𝐽 dependence of the linewidths, and thus dephasing rates Γ𝐽,𝐽−2, can be seen by comparing 

the widths of the peaks at low and high frequency in the lower left and lower right plots in Figure 

4.18, respectively. Fitting each peak in the rotational Raman spectrum with a Lorentzian function 

yields Γ𝐽,𝐽−2, which is plotted versus 𝐽 in Figure 4.19. State-changing collisions, of energy change 

Δ𝐸𝐽,𝐽′ = |𝐸𝐽 − 𝐸𝐽′| (where 𝐽 ≠ 𝐽′) that increases with 𝐽 [16, 40, 41], cause decay of the rotational 

ensemble’s coherence. Higher 𝐽 rotational states require a high energy collision to change states, 

which are less common than lower energy collisions. Thus higher rotational states are more resil-

ient to collisions and have a narrower linewidth. We fit the linewidths following [115] including 

only the minimum Δ𝐽 transitions (one for N2, two for O2) in the exponential gap law, where the 

probability of collision transition is 𝑃𝐽,𝐽′ = 𝑎𝑒
−𝑐𝐵𝐽, where 𝑎 and 𝑐 are fitting parameters.  

                                                 

7 The errors quoted here are relative to the value of 𝐵, that is they do not include the uncertainty in the total bond 

length, as quoted after the measurement of 𝐵 and in Table 4.5. 
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Figure 4.19 (circles) Measurements of linewidth Γ𝐽,𝐽−2 versus 𝐽 for (red) N2 and (blue) O2, with (curves) exponential 

fits. (Reproduced with permission from [120].) 

 

 Coherent rotational revivals have the same polarization dependence as the libration and 

diffusive reorientation mechanisms in liquid CS2. In the same manner in that case, the application 

of the magic angle in BD measurements allows for an unambiguous determination of the bound-

electronic nonlinearity of gases. Using a half-wave plate, the angle of the polarization of the probe 

with respect to the pump beam was varied for angles, 𝜑 = 0° (parallel, black), 90° (perpendicular, 

red), and 54.7° (magic angle, blue) with the data (circles) and fit (solid lines) shown in Figure 4.20 

for air. For perpendicular polarizations the BD signal from the coherent rotational revivals changes 

sign and reduces to half the amplitude of the signal with parallel polarizations. At the magic angle, 

the revival signal is suppressed below the noise floor and only the bound-electronic signal remains 

about zero delay. This provides measurement of 𝑛2,𝑒𝑙 of air. Although we have a relative measure-

ment, as discussed above, the use of known Δ𝛼’s allows the signal from the coherent rotational 
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revivals to be used as a reference. We therefore obtain 𝑛2,𝑒𝑙 of air relative to the Δ𝛼’s of N2 and 

O2, as shown in Table 4.5. The fit at the magic angle in Figure 4.20 corresponds to 𝑛2,𝑒𝑙(air) = (1.0 

± 0.1) × 10-23 m2/W which agrees well with literature values [126, 127]. Because of the gaseous 

mixture, we are unable to extract separate values of 𝛾 of the two individual molecules.  

 

 
Figure 4.20 Polarization dependence of BD signal from air for (black) parallel, (red) perpendicular, and (blue) magic 

angle polarizations. Inset shows signal about a delay of 6 ps. (Reproduced with permission from [120].) 

 

 Gaseous CS2 was also measured by filling a 10 cm fused silica cell ~1/3 full with the liquid 

CS2 (Sigma-Aldrich, 270660, ≥ 99.9 %) and heating the cell windows to approximately 50 °C to 

help evaporate the liquid and to prevent condensation on the cell windows. The sample cell was 

positioned such that the beams crossed just above the liquid CS2 surface. The pump, generated 

from the TOPAS-HE, at 1250 nm had an irradiance 𝐼0,𝑏 = 140 GW/cm
2 (𝐸𝑏 = 62 μJ), and the 
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probe was generated from WLC and filtered to 950 nm, with spot sizes of 468 μm and 90 μm, 

respectively. 

 

 
Figure 4.21 Measured (black) BD signal from gaseous CS2 and fit (red), including (top) full delay range, as well as 

zoom ins at the (bottom left) 1/4, (bottom center) 1/2, and (bottom right) 1/2 revival of 12C32S34S. (Modified with 

permission from [120].) 

 

 Figure 4.21 shows the measured BD signal for the coherent rotational revivals in gaseous 

CS2 with co-polarized pump and probe beams. The finer structure of the signal can be seen in the 

lower plots, with the fractional revivals occurring at ¼𝑇, ½𝑇, and ¾𝑇. The fit corresponds to 

𝐵(12C32S2) = 0.10945 ± 0.0001 cm-1 and 𝑇(12C32S2) = 152.4 ± 0.1 ps which agrees well with [115, 

128, 129]. Based on this, the bond length, via Equation (4.46) , is 155.2 ± 0.4 pm (see Table 4.5), 

which agrees well with [115]. Additionally, the ½𝑇 revival of the isotopologue 12C32S34S can be 

seen in in the bottom right plot in Figure 4.21, which was fit assuming 8 % concentration (deter-

mine from natural abundance of S isotopes, see APPENDIX C:  [115]) with 𝐵(12C32S34S) = 0.1062 
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± 0.0001 cm-1. We are therefore able to use BD to identify different isotopologues within a gas. 

Additionally, 15 % of the molecules are in the first excited vibrational state, the doubly-degenerate 

bending mode at 𝜈2 = 397 cm-1 [115]. These two modes oscillate in the plane either perpendicular 

or parallel to the axis of rotation, and are symmetric and antisymmetric upon nuclear interchange, 

respectively, and therefore have opposite spin statistics [130]. We treat the modes with a single 

rotational constant and equal weighting of even and odd 𝐽 states. The rotational and centrifugal 

distortion constants found from the fit, which agree with [115, 128, 129], are given in Table 4.5.  

 

 
Figure 4.22 (circles) Measured and (curves) fit BD measurements of CS2 gas. (left) Polarization dependence for 

(black) parallel, (red) perpendicular, and (blue) magic angle with (right) zoomed in plot at the magic angle [120]. 

 

 Because Δ𝑛 depends on (Δ𝛼)2, which for N2 and O2 is approximately two orders of mag-

nitude less than CS2 (see Table 4.5), we do not observe any contribution from air in the measure-

ments of gaseous CS2, since a much lower irradiance was used. In the CS2 measurements, there-

fore, only the single species contributes to the BD signal. Thus we may extract the orientationally 

averaged second hyperpolarizability from the measurements at the magic angle, yielding 𝛾(CS2 

gas) = (1.9 ± 0.4) × 10-61 C4m4/J3 [(1.5± 0.3) × 10-36 esu]. This is close to the value obtained from 

BD measurements on liquid CS2 (from Figure 4.12) at the same average photon energy (1.15 eV, 
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1080 nm), where 𝛾(CS2 liquid) = (2.3 ± 0.5) × 10-61 C4m4/J3 [(1.8 ± 0.4) × 10-36 esu]. It is important 

to note that in liquid phase the local field correction factor 𝑓(3) = 5.35 [27, 28]. Thus local field 

effects have a significant impact on 𝑛2,𝑒𝑙 in liquid phase, (see Equations (2.16) and (4.4)). This is 

of interest for theoretical purposes to compare calculated values of 𝛾, which are typically per-

formed for isolated molecules [131], as well as testing local field correction factors [16, 17]. Given 

the agreement between the liquid and gas phase measurements, the Lorentz local field corrections 

appear to work well. 
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CHAPTER 5: TWO-PHOTON GAIN IN SEMICONDUCTORS 

As discussed in § 1.2. , 2PE comes in three varieties; spontaneous, singly-stimulated and 

doubly-stimulated. Here we give a brief overview and historical perspective of each, as well as a 

discussion of the potential of two-photon lasers. 

 

5.1. Two-Photon Emission 

Spontaneous 2PE, also called two-photon decay, is the process by which an electron in an 

excited state spontaneously transitions to a lower level by simultaneous emission of two photons. 

The sum of the photon energies is given by the energy difference between the two levels. Maria 

Göppert-Mayer was the first to recognize that spontaneous 2PE was possible, and that the individ-

ual photon energies are not determined and may take on any value less than the transition energy 

[2]. Initial interest in spontaneous 2PE came from a problem in astronomy. Planetary nebulae are 

primarily composed of atomic hydrogen, and one would expect their emission spectrum to consist 

of these spectral lines which are very discrete. However, as early as the 1930’s it was observed 

that they exhibited a continuous emission spectrum over the range of 390-480 nm [132]. Attempts 

to explain this feature by several methods, including ion formation, free-electron captures, and 

scattering, were all unsuccessful [133]. Breit and Teller [3] found that spontaneous 2PE was the 

dominant decay mechanism of the metastable 2𝑠 level of hydrogen, and that an emission spectrum 

was very broad, covering wavelengths greater than 122 nm including the observed spectrum from 

planetary nebulae. Since then, spontaneous 2PE has been shown to produce polarization [10] and 

energy [134] entangled photon pairs, and has been measured in a variety of ions, including helium 

[135], neon [136], argon [137, 138], krypton [138], and sulfur [139], K-shell vacancies in molyb-

denum [140], and InAs quantum dots [141], and bulk GaAs [13]. 
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Göppert-Mayer also demonstrated that, in addition to spontaneous 2PE, both singly- and 

doubly-stimulated 2PE were also possible [2]. A photon of energy less than the transition’s ℏ𝜔 <

𝐸𝑓𝑖 may singly-stimulated the emission of a duplicate photon plus a second photon of complemen-

tary energy. Göppert-Mayer stated that this complementary photon behaves as if it was produced 

by a “virtual oscillator”, i.e., spontaneously, with amplitude that is dependent on the incident irra-

diance. Lambropoulos described singly-stimulated 2PE as “a process in which the emission of one 

of the photons is induced and the other spontaneous… this process is half noise and half signal.” 

[8]. This process, of course, is observable even without population inversion, simply due to the 

fact that there is no competing absorption process. The first direct observation of singly-stimulated 

2PE was conducted by Yatsiv et al. [142] who spectrally resolved the 6𝑠 → 4𝑠 two-photon transi-

tion of potassium. With and excited 6𝑠 state, and “priming” (singly-stimulating) with a 3.68 μm 

beam, the authors spectrally distinguished the complementary 2PE from the cascaded one-photon 

emission involving the 5𝑝 state at 404 nm. Because of the close tuning of the 3.68 μm priming 

beam to the 6𝑠 → 5𝑝3/2 transition (Δ𝐸 < 2 meV, Δ𝐸/ℏ𝜔𝑏 < 0.5 %), the 2PE was resonantly en-

hanced to a great extent. Singly-stimulated 2PE has also been observed in deuterium [143], helium 

[144], sodium [145], and bulk GaAs [13]. 

Just as one-photon stimulated emission is the reverse process of one-photon absorption, 

doubly-stimulated 2PE is the reverse of 2PA. An electron in the excited state, when perturbed 

simultaneously by two photons whose energy sum matches the transition energy, has a certain 

probability of transitioning to the ground state. This produces two additional photons that are rep-

licas of the incident two, having equal energy, phase, direction, etc. Doubly-stimulated 2PE was 

first demonstrated by Loy in ammonia vapor [146], and later by others in lithium [147], Rydberg 

states of rubidium [148], and a bulk AlGaAs waveguide [74]. Utilizing this process, Sorokin and 
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Braslau [5] suggested the development of a degenerate 2PL (D-2PL). Almost simultaneously, 

Prokhorov [4], in his Nobel lecture, noted that the frequencies of the two incident photons could 

be different and indicated that a 2PL could potentially be tunable to any frequency less than that 

of the transition used, i.e., they could be made nondegenerate. He also pointed out that, while they 

would require an external trigger to initialize, D-2PL’s had a much more rapid increase in photon 

density than traditional one-photon lasers due to the inherent nonlinearity of the gain processes. In 

addition to the suggestion to use doubly-stimulated 2PE as a light source itself, it was also proposed 

that it may be useful for amplification. Letokhov [6] showed that a material exhibiting 2PG will 

compress an incident pulse. The peak of the pulse, where the photon concentration is highest, 

experiences large 2PG while the wings on the pulse experience less. Pulse compression will occur 

regardless of whether or not there is net amplification of the pulse energy. This was recently 

demonstrated in a bulk AlGaAs waveguide [149]. These initial phenomenological investigations 

of stimulated 2PE lead to a wealth of theoretical studies and eventually physical realization of two-

photon amplifiers and lasers. Thus far, only one group has demonstrated a two-photon laser using 

dressed states of barium [11] and potassium [150], but involved transitions from dressed states of 

the atom plus laser field system rather than eigenstates of the unperturbed atoms. This is due to the 

fact that most other materials suffer from various completing processes, e.g. excited state absorp-

tion, one-photon lasing, stimulated anti-Stokes Raman scattering, and parametric wave mixing 

[151]. 

Ironside [152] was the first to suggest the use to bulk semiconductors for doubly-stimulated 

D-2PE. He argued that for a particular carrier concentration, doubly-stimulated 2PE would become 

more probable than 2PA for an energy region above the band gap. The 2PG coefficient can be 

expressed as a modification of 𝛼2 by the distribution of carrier populations  
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 𝛾2(𝜔𝑎; 𝜔𝑏) = 𝛼2(𝜔𝑎; 𝜔𝑏) ∙ (𝑓𝑐(ℏ𝜔𝑎, ℏ𝜔𝑏) − 𝑓𝑣(ℏ𝜔𝑎, ℏ𝜔𝑏)) (5.1) 

where 

 
𝑓𝑐,𝑣(ℏ𝜔𝑎, ℏ𝜔𝑏) =

1

1 + 𝑒

𝐸𝑐,𝑣±
𝑚𝑟
𝑚𝑐,𝑣

(ℏ𝜔𝑎+ℏ𝜔𝑏−𝐸𝑔)−𝐸𝐹𝑐,𝑣

𝑘𝐵𝑇
 

 
(5.2) 

are the non-equilibrium Fermi functions for electrons in the conduction band (subscript 𝑐) and 

valence band (subscript 𝑣), where 𝐸𝑐 = 𝐸𝑔 is minimum energy of the conduction band, 𝐸𝑣 = 0 is 

the maximum energy of the valence band, 𝑚𝑐,𝑣 are the effective masses of electrons and holes, 

𝑚𝑟 = (1/𝑚𝑐 + 1/𝑚𝑣)
−1 is the reduced mass, 𝐸𝐹𝑐,𝑣  are the quasi-Fermi energies, 𝑘𝐵 is the Boltz-

mann constant, and 𝑇 is the temperature. Equations (5.1) and (5.2) have been generalized from 

Ironside [152] to allow the two photons to be of unequal energy [153]. In the low temperature limit 

all of the energy levels in the conduction and valence bands are full to 𝐸𝐹𝑐  and 𝐸𝐹𝑣 , respectively. 

This gives complete population inversion for the energy range 

 𝐸𝑔 < ℏ𝜔𝑎 + ℏ𝜔𝑏 < 𝐸𝐹𝑐 − 𝐸𝐹𝑣  (5.3) 

where doubly-stimulated 2PE will occur with maximum 2PG coefficient 𝛾2 = 𝛼2. 

Ironside went on to suggest a two-photon amplifier device based on a double heterostruc-

ture similar to that of traditional one-photon semiconductor lasers. He proposed using an injection 

current to obtain population inversion which would allow and an incident beam to experience D-

2PG as it propagated through the active waveguiding region. However, one-photon emission 

would need to be suppressed, which could be achieved with the addition of anti-reflection or ab-

sorption coatings to the end facets of the structure designed for photon energies at and above the 

band gap energy. The structure has all the benefits of traditional one-photon semiconductors lasers 

where the active layer acts simultaneously as a gain medium as well as a waveguide.  
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 Optical pumping was also considered by Marti et al. [154] in semiconductor quantum wells 

(QWs) confined in a microcavity. A pump pulse of with photon energy greater than the band gap 

energy would excite carriers high up into the conduction band, which would then non-radiatively 

decay through intraband scattering to the band-edge. A second pulse with photon energy slightly 

greater than 𝐸𝑔/2 which is resonant in the cavity would then be injected before significant inter-

band relaxation could occur. Relaxation times of different regions of the bands were considered, 

and the resulting 2PL behavior was similar to previous findings discrete leveled systems in terms 

of gain increasing with photon density until saturation [5, 155].  

 There have been several of publications dealing with 2PE from semiconductors from Oren-

stein and collaborators who were the first to report observations of spontaneous, singly-stimulated 

[13], and doubly-stimulated [74] 2PE in semiconductors. The first of these experiments used a 200 

µm thick sample of GaAs, in which carriers were generated by optically exciting with a 100 mW 

514 nm CW argon laser. Spontaneous 2PE was spectrally resolved via a monochromator and de-

tected with lock-in amplification. To ensure that the detected light originated from 2PE, singly-

stimulated 2PE was observed by launching a stimulating beam into the pumped medium and meas-

uring the emission at the complementary photon energy. The authors spectrally resolved sponta-

neous 2PE, and singly-stimulated 2PE from stimulating beams of photon energies 0.761 eV and 

0.775 eV with complementary peaks at 0.854 eV and 0.840 eV; in both cases the photon energy 

sum was approximately 1.62 eV. In addition, when the stimulating beam was present, emission at 

other photon energies, which the authors attributed to spontaneous 2PE, was suppressed. After 

increasing the power of the excitation laser to 180 mW, the authors observed the dependence of 

singly-stimulated 2PE on the power of a stimulating beam with photon energy of 0.946 eV. The 

spectral width of the complementary emission was determined by the distribution of carriers in the 
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bands due to the fact that for a given the photon energy ℏ𝜔𝑎 of the stimulating beam, the comple-

mentary photon energy ℏ𝜔𝑏 need only satisfy Equation (5.3). The authors also measured sponta-

neous and singly-stimulated 2PE in an electrically pumped GaInP/AlGaInP QW waveguide via 

coincidence counting techniques, and obtained similar spectrally resolved results. 

 The group then observed D-2PG in an electrically pumped AlGaAs p-i-n heterostructure 

[74]. A stimulating pulse at 1560 nm, corresponding to photon energy slightly larger than 𝐸𝑔/2, 

was coupled into the guiding layer, and 2PG (doubly-stimulated 2PE) was observed in two man-

ners. The first was by measuring spontaneous one-photon emission as both the input irradiance of 

the stimulating pulse and the injection current were varied. For zero injection current, the stimu-

lating pulse underwent 2PA which generated carriers. These carriers then decayed via spontaneous 

one-photon emission at wavelength around 800 nm. This technique is equivalent to two-photon 

absorption induced fluorescence spectroscopy [156]. With no injection current, one-photon emis-

sion increased quadratically with input irradiance, indicating that carriers were generated by 2PA. 

For increasing injection current, the one-photon emission (fluorescence) induced by 2PA was re-

duced, with two-photon transparency, i.e. Δ𝑁 = 0, at an injection current near 1300 A/cm2 µm. 

Injection currents above this level produced a reduction in one-photon emission, which the authors 

attributed to a reduction in the carrier concentration due to recombination by doubly-stimulated 

2PE. To verify that this was indeed due to 2PG, they measured the output irradiance of the stimu-

lating beam as a function of input irradiance. To correct for linear losses that depended on the 

injection current such as free-carrier absorption (FCA), the output irradiance was normalized to a 

linear slope of one at low input irradiances. For injection currents above the two-photon transpar-

ency threshold, the output increased quadratically with input. For high injection currents, the effect 

of 2PG on the output irradiance exceeded that of 2PA for zero injection current, indicating 𝛾2 >
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𝛼2. The authors attributed this to band gap renormalization, which caused a decrease in band gap 

energy with carrier concentration, and in turn caused a drastic increase in 𝛾2 due to the 𝐸𝑔
−3 de-

pendence (see Equation (5.4)). The group was also the first to demonstrate compression of ultrafast 

pulses [149] as predicted by Letokhov [6] using the same system. It should be noted that Orenstein 

and coworkers did not report net 2PG that exceeded the losses. 

 Several other aspects of 2PE in semiconductors have also been considered. In particular, 

Orenstein and collaborators were initially interested in semiconductor QWs as an efficient source 

of entangled photon pairs. The showed theoretically that, with the aid of a microcavity to suppress 

one-photon emission, spontaneous 2PE from semiconductor QWs could produce polarization en-

tangled photon pairs at a rate orders of magnitude higher than standard SPDC sources [157]. Ad-

ditionally, they theoretically examined spontaneous 2PE from intersubband transitions in semi-

conductor QWs, and found that the photon pairs were hyperentangled, i.e., entangled in both po-

larization and energy [134]. 2PE in semiconductor QDs has undergone numerous theoretical stud-

ies, including enhancement within photonic crystal nanocavities [158, 159], and suggestion of 

2PLs [160]. 

 Despite this host of work on the subject, a 2PL involving doubly-stimulated 2PE from one 

unperturbed eigenstate to another (in contrast to that of Gauthier and coworkers [11, 12, 150, 151, 

155, 161]) has yet to be reported. This is primarily due to the fact that the 2PG processes is weak 

(in comparison to 1PG), and requires high irradiances, which gives rise to a host of competing 

processes. There are, however, means to enhances the 2PG coefficients of materials, for example, 

via intermediate state resonance enhancement (see § 2.2.1. ). In semiconductors this enhancement 



118 

is greatest for extremely nondegenerate photon pairs. The second-order perturbation theory ap-

proach has been applied to calculate the 2PA spectrum of direct-gap semiconductors. For a two-

parabolic band model, this gives a 2PA coefficient [14] 

 𝛼2(𝜔𝑎; 𝜔𝑏) = 𝐾
√𝐸𝑝

𝑛𝑎𝑛𝑏𝐸𝑔
3 𝐹2 (

ℏ𝜔𝑎
𝐸𝑔

;
ℏ𝜔𝑏
𝐸𝑔
), (5.4) 

where 𝐾 = 3100 cm GW-1 eV5/2 [162] is a material independent constant in units such that 𝐸𝑝, 

the Kane energy parameter, and 𝐸𝑔, the band gap, are have units of eV and 𝛼2 has units of cm/GW, 

and the spectral function 𝐹2 is given by  

 𝐹2(𝑥1; 𝑥2) =
(𝑥1 + 𝑥2 − 1)

3/2

27𝑥1𝑥2
2 (

1

𝑥1
+
1

𝑥2
)
2

. (5.5) 

Equation (5.5) reduces to that for D-2PA as 𝜔𝑏 → 𝜔𝑎, which was calculated by Wherrett [163] 

 𝐹2(𝑥) =
(2𝑥 − 1)3/2

(2𝑥)5
 (5.6) 

 

 
Figure 5.1 (left) Possible paths for 2PA in semiconductors interband (line) followed by intraband (circle), or vice 

versa. (right) Spectral dependence of 2PA in direct gap semiconductors for (black) degenerate, Equation (5.6), and 

nondegenerate, Equation (5.5), for (red) ℏ𝜔𝑏 = 0.2𝐸𝑔, and (blue) ℏ𝜔𝑏 = 0.1𝐸𝑔. 
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Figure 5.1 shows an enhancement of several orders of magnitude for decreasing values of 

𝑥2 in Equation (5.5), i.e., greater nondegeneracy, over the degenerate case. This has been examined 

experimentally for several direct-gap semiconductors by Cirloganu et al. [15], who found an en-

hancement of 𝛼2 of 270 times in ZnO for ℏ𝜔𝑏 = 0.08𝐸𝑔 compared to the degenerate value at equal 

photon energy sum. In addition, this enhancement has been utilized in photodiodes for detection 

sub-band gap light including infrared pulses of photon energy much less than the band gap [164].  

 

 
Figure 5.2 (left) Energy-momentum diagram illustrating doubly-stimulated ND-2PE (ND-2PG) in semiconductors 

[152]. (right) 2PG spectrum for GaAs at 𝑇 = 20 K, 𝑁 = 2 × 1018 cm−3 for (black) degenerate, for (red) ℏ𝜔𝑏 =
0.2𝐸𝑔, and (blue) ℏ𝜔𝑏 = 0.1𝐸𝑔. 

 

The observed enhancement in the 2PA coefficient of semiconductors when using extremely 

nondegenerate photon pairs should also translate to 2PG, since they are simply inverse processes. 

Shown in Figure 5.2 is a calculation of the 2PG coefficient 𝛾2 in GaAs based on Equations (5.1) 

and (5.2), at temperature 𝑇 = 20 K and carrier concentration 𝑁 = 2 × 1018 cm−3. This large en-

hancement of over two orders of magnitude from the degenerate case, gives reason to believe that 

a semiconductor based 2PL could operate in the extremely nondegenerate regime. This may allow 
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for a broad tunability range, from just below the band gap energy to the mid-infrared; in GaAs for 

example from 900 nm to 11 μm.  

 

5.2. Experimental Observation of Two-Photon Gain 

This section provides an overview of the work done towards the goal of observing and 

measuring the 2PG in bulk semiconductors. Experiments were conducted on GaAs samples pro-

vided by Gregory Salamo at the University of Arkansas, which were grown by molecular beam 

epitaxy. As shown in Figure 5.3 (a), the received sample consisted of the GaAs layer of interest 

(either 1 μm or 4 μm thick) sandwiched between buffer layers of AlGaAs intended to protect the 

GaAs surfaces to prevent surface recombination of the excited carriers. AlGaAs has a larger band 

gap energy than GaAs and therefore appears transparent to all of the wavelengths used in this 

work. A 2.5 nm GaAs cap layer was applied to prevent oxidation of the topmost AlGaAs layer. 

The entire structure was grown on a GaAs wafer which was etched off using a solution of H2O2, 

ammonia, and water which selectively etches GaAs over AlGaAs [165]. The structures were 

mounted either free standing by adhering to a metal ring, or glued to a sapphire plate using opti-

cally transparent adhesive (NOA 81, Norland Products). Figure 5.3 (b) shows the linear transmis-

sion spectrum of the 1 μm sample after processing. The reduced transmission for photon energies 

greater than the band gap energy of GaAs, 𝐸 > 1.42 eV (𝜆 < 875 nm), is due to linear absorption 

in the 1 μm GaAs layer. At smaller photon energies (longer wavelengths), oscillatory behavior is 

observed, indicative of Fabry-Perot (thin film) interference. The AlGaAs band-edge can also be 

seen, which for 𝑥 = 0.47 𝐸𝑔(AlGaAs) = 2 eV (𝜆𝑔(AlGaAs) = 620 nm), which gives the sharp cut 

off in transmission for higher photon energies (short wavelengths). 
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Figure 5.3 (a) Example structure of unprocessed GaAs samples. Here, 𝑥 = 0.47 for the Al concentration of the Al-

GaAs buffer layers. The 4 μm thick GaAs was very similar. (b) Transmission spectrum of 1 μm thick GaAs sample 

glued to sapphire after processing 

 

5.2.1. Degenerate Two-Photon Gain 

The first task was to generate population inversion, which was required to observe 2PG. 

The 1.59 eV (780 nm) fundamental from the Clark-MXR Ti:sapphire laser itself was used as an 

optical excitation to generate carriers and achieve population inversion near the band-edge. The 

reason for this sort of excitation method was to allow for rapid generation of the gain, and to allow 

a study of the temporal dynamics, which would not be possible with CW excitation. After the pulse 

arrived, the carriers very rapidly relaxed to the band-edge, and remained there for the duration of 

their lifetime. This allowed us to take advantage of the generated gain before recombination began 

to deplete the population inversion. 
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Figure 5.4 Plot of the transmission of the 1.59 eV (780 nm) excitation pulse versus input fluence. 

 

To determine the required fluence necessary to generate population inversion, the trans-

mission of the 1.59 eV (780 nm) excitation pulse as a function of fluence was measured (see Figure 

5.4). At low fluence, the transmission was 14 %, which agrees with the measured transmission 

spectrum in Figure 5.3 (b). This value was due to a combination of both Fresnel reflections from 

the sample surfaces and one-photon absorption in the GaAs layer. As the fluence was increased, 

the leading edge of the pulse began to generate a sufficient carrier concentration to start saturating 

the absorption, thereby reducing the absorption that the remainder of the pulse experienced. 

Clearly, we started to see a drastic increase in the transmission for excitation fluences above sev-

eral hundred μJ/cm2, and by the time we reached the maximum fluence used, 2100 μJ/cm2, the 

transmission more than doubled, indicating that a rather large carrier concentration was generated.  
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Figure 5.5 Illustration of setup for one-photon gain excite-probe experiments 

 

The next step in the process was to determine the spectral region that experienced the great-

est carrier concentration, which determined the photon energy that experienced the greatest gain. 

To do this, an excite-probe experiment was conducted, where the 1.59 eV (780 nm) excitation 

pulse was used to generate a carrier population in the 4 μm thick GaAs sample, and the change in 

transmission of a weak probe pulse, with photon energy close to the band gap energy, from 1.55 

eV to 1.39 eV (800 nm to 890 nm), was observed. Here, the probe was focused to a smaller spot 

size than that of the excitation such that the probe experienced an approximately uniform carrier 

distribution. The probe pulse was delayed with respect to the excitation pulse, and the change in 

transmission was measured for several probe photon energies (wavelengths), as shown in Figure 

5.6. The differential transmission was proportional to the change in the absorption coefficient, and 

thus to the carrier concentration within the regions of the band that were coupled by the probe. 

Figure 5.6 therefore shows a measure of the energy distribution of carriers as a function of time 

delay after the excitation. Shortly after zero delay there was an increase in the transmission (de-

crease in absorption) due to carriers filling the bands. Over the entire delay range, there was a 

noticeable reduction in the energy of maximum transmission change, indicated in Figure 5.6 by 

the black curve. This is most likely attributable to the diffusion of carriers throughout the thickness 

of the sample [166]. Since the absorption coefficient of the 1.59 eV (780 nm) excitation pulse is 
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so large (>104 cm-1), the skin depth 1/𝛼1 is less and 1 μm. Thus carriers were only generated 

within the first 1 μm or so and then diffused throughout the remainder of the 4 μm thick GaAs 

layer. As electrons higher up in the band diffused they were able to relax down closer to the band-

edge since these states were not occupied deeper within the sample. This resulted in an overall 

shift in the photon energy of maximum transmission change over time. Clearly, the photon energy 

that experienced the greatest increase in transmission was at 1.45 eV (855 nm), which reached a 

maximum at a delay of about 300 ps. We thus selected this energy to use for future experiments, 

since here we will have the greatest carrier concentration and therefore potentially the largest gain. 

After 500 ps, the transmission change dropped off back towards zero as the carriers recombined. 

 

 
Figure 5.6 Results of excite-probe experiment showing change in transmission (color axis) of probe versus delay 

(horizontal axis) for several photon energies (vertical axis). The black line indicates the photon energy (wavelength) 

of maximum transmission change versus delay. 
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 While this experiment showed an increase in transmission, it did not generate a sufficient 

carrier concentration to yield net gain, which is necessary to guarantee that stimulated emission 

occurs. The excitation fluence was increased well above the levels used in the previous experiment 

to attempt to observe net gain, meaning a transmission greater than 100 %. Figure 5.7 (a) shows 

the total transmission of the 1.46 eV (850 nm) probe (measured as the ratio of the detector signal 

with the sample to without it) as a function of time delay after the excitation pulse. The corre-

sponding absorption coefficient 𝛼1, calculated by 

 𝛼1 = −
1

𝐿
ln (

𝑇

(1 − 𝑅)2
), (5.7) 

where 𝑅 is the reflectivity which was estimated by the transmission of photon energies below the 

band gap, and 𝐿 is the sample thickness, is shown in Figure 5.7 (b). The solid line with the error 

bar indicates the gain threshold, i.e., transmission above which stimulated emission dominates 

absorption. For low excitation fluences (black curve) there was a monotonic increase in transmis-

sion with delay, though not sufficient to demonstrate gain. Once the excitation fluence exceeded 

0.8 mJ/cm2 (orange curve) the probe transmission exceeded gain threshold, but only for a short 

duration within the first picosecond, after which the transmission reduced to near the threshold. 

Yet higher fluences increased the transmission further, eventually showing net gain (transmission 

> 100 %) at 3.2 mJ/cm2 where the gain was able to overcome the other losses in the sample, in-

cluding reflections and scattering. However the gain still only remained for about one picosecond.  
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Figure 5.7 Results of excite-probe experiment to observe net one-photon gain, where (a) is the directly measured 

total transmission, and (b) is the absorption coefficient calculated from (a) using Equation (5.7). The straight line 

with error indicates gain threshold where stimulated emission dominates absorption. 

 

One possible explanation for the short-lived gain is that it was rapidly depleted by ASE. 

Once excited carriers relax the band-edge they may radiatively recombine. Since the gain is so 

large (𝛾1 ~ 10
3 cm−1), each spontaneously emitted photon stimulates the emission of many more, 

each time removing an electron-hole pair that would have interacted with the probe pulse. This 

effect occurs until stimulated emission is no longer favored over absorption, which is exactly what 

was observed as the transmission settled to the gain threshold after 2 ps. This behavior was not 

observed at low excitation fluence, where population inversion was not achieved, which further 

supports the possibility that ASE depleted the gain.  

Since we have observed one-photon gain at a probe energy of 1.46 eV (850 nm), at least 

over a short delay range after the excitation pulse, we moved to two-photon experiments with the 

same energy sum. In addition, the delay at which the maximum one-photon gain was observed was 

used for two-photon experiments as well. 
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The next objective was to measure two-photon gain in the sample. Initially, degenerate experi-

ments were chosen since the pump photon energy would be the greatest (shortest wavelength), 

where free-carrier absorption (FCA) losses were expected to be the smallest [167, 168]. For these 

degenerate two-photon experiments, half the photon energy of that used for one-photon gain, 0.73 

eV (1700 nm), was used. 

 Observing the fluorescence from a material can provide information on the way the elec-

trons were excited. Specifically, by measuring the dependence of the fluorescence on the irradiance 

of the excitation can distinguish 2PA, which will present a quadratic dependence, from one-pho-

ton, which has a linear dependence. Here, a pump beam at half the photon energy of that used for 

one-photon experiments, 0.73 eV (1700 nm), was used to generate a carrier population, and the 

fluorescence was observed as a function of the pump irradiance. The addition of the 1.59 eV (780 

nm) excitation pulse produced a population inversion via one-photon absorption. The temporal 

delay between the excitation and pump pulses was set to where the peak in the one-photon gain 

was observed (see Figure 5.7). The fluorescence was measured at a 90° angle with respect to the 

incident beams to help minimize scattering from the excitation and pump pulses and also to ensure 

that the measured signal was indeed fluorescence and not SHG. In addition, spectral filters were 

used to isolate only photon energies in the region of the fluorescence spectrum of GaAs. A typical 

spectrum, taken with only the 0.73 eV (1700 nm) pump beam (excitation beam blocked) is shown 

in Figure 5.8 (b). Lock-in amplification was used to isolate the change in the fluorescence signal 

due only to the pump pulse by modulating the beam with a mechanical chopper (see Figure 5.8 

(a)). 
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Figure 5.8 (a) Illustration of experimental setup for fluorescence experiments, and (b) measured fluorescence spec-

trum of 4 μm thick GaAs sample with only 0.73 eV (1700 nm) pump beam. 

 

The measured change in the fluorescence signal versus input pump irradiance is plotted in 

Figure 5.9 for several excitation fluences. Without any excitation pulse (black), there was an in-

crease in fluorescence since the pump pulse was generating carriers through multiphoton absorp-

tion. For an excitation fluence of 0.5 mJ/cm2 (red), the fluorescence was actually reduced for low 

pump irradiances. This was due to the excitation pulse generating a population inversion, which 

caused 2PG. Thus the pump pulse depleted the population by stimulating carriers to recombine 

through doubly-stimulated 2PE, which left fewer electrons fluoresce. However, for pump irradi-

ances greater than 8 GW/cm2, the fluorescence actually increased. For higher excitation fluence 

(blue), the same trend was observed, but the irradiance where the signal changed sign from nega-

tive to positive increased. This increase in fluorescence must have been due to a higher order non-

linear absorption mechanism, i.e., three-photon absorption, since it only becomes dominant for 

sufficiently high irradiances. We thus have a combination of 2PG, which goes as 𝐼2, and 3PA, 

which goes as 𝐼3. The solid curves are fits to third-order polynomials. There is a window of irra-

diances where 2PG results in a net reduction in fluorescence, but 3PA wins out at large irradiances 

given the higher order dependence.   
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Figure 5.9 Measured (symbols) change in fluorescence due to the 0.73 eV (λ = 1700 nm) pump beam versus irradi-

ance for several 1.59 eV (780 nm) excitation fluences. Curves are third order polynomial fits. 

 

 In addition to measuring the change in fluorescence, direct transient transmission measure-

ments were also conducted. To do this, the change in transmission of a weak probe beam due to a 

strong pump beam, each at 0.73 eV (1700 nm), was monitored as illustrated in Figure 5.10. Initially 

the experiment was performed without the 1.59 eV (780 nm) excitation pulse to observe only the 

nonlinear effects due to the 0.73 eV (1700 nm) pump pulse. To mitigate the effects of scattering 

of the pump pulse to the detector, the probe was polarized orthogonally to the pump, and a polarizer 

was placed in front of the detector to block out the pump pulse (not shown).  
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Figure 5.10 Illustration of setup for degenerate excite-pump-probe experiments. 

 

The measurement results are shown in Figure 5.11, where the normalized transmission of 

the probe was measured for several values of the pump irradiance 𝐼𝑏. As can be seen at low pump 

irradiance, see Figure 5.11 (b), there was a reduction in transmission at zero delay when the pump 

and probe pulses were temporally overlapped within the sample due to 2PA. At positive delays, 

the transmission was also reduced, though to a lesser extent, due to the fact that the pump itself 

generated free carriers via 2PA that then absorb probe photons via FCA. Since 2PA of the pump 

itself has a quadratic irradiance dependence, while 2PA of the probe due to the pump has a linear 

dependence on 𝐼𝑏, the 2PA induced FCA dominates the 2PA of the probe for high pump irradi-

ances. The fluctuations/oscillations on the signal (see Figure 5.11 (b)) are believed to be due to 

aliased interference between a small leakage of the pump to the detector and the probe. The solid 

curves represent theoretical fits to the data using  

 
𝜕𝐼𝑎
𝜕𝑧
= −2𝛼2,⊥𝐼𝑏𝐼𝑎 − 𝜎𝐹𝐶𝐴𝑁𝐼𝑎, (5.8) 

 
𝜕𝐼𝑏
𝜕𝑧
= −2𝛼2,⊥𝐼𝑎𝐼𝑏  − 𝛼2,∥𝐼𝑏

2 − 𝛼3𝐼𝑏
3 − 𝜎𝐹𝐶𝐴𝑁𝐼𝑏 , (5.9) 

 
𝜕𝐼𝑏
𝜕𝑧
= −2𝛼2,⊥𝐼𝑎𝐼𝑏  − 𝛼2,∥𝐼𝑏

2 − 𝛼3𝐼𝑏
3 − 𝜎𝐹𝐶𝐴𝑁𝐼𝑏 , (5.10) 
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where 𝐼𝑎 (𝐼𝑏) is the probe (pump) irradiance, 𝛼2,⊥ (𝛼2,∥) is the 2PA coefficient for the perpendicular 

(parallel) polarizations, 𝛼3 is the (degenerate) 3PA coefficient, 𝑁 is the carrier concentration, and 

𝜎𝐹𝐶𝐴 is the free-carrier absorption cross section. Also included was the saturation effects of the 

2PA coefficients since the region of the band was close to the band gap. The values for the 2PA 

coefficients used in the fit were 𝛼2,∥ = 3 cm/GW, 𝛼2⊥ = 1.2 cm/GW, 𝛼3 = 0.1 cm3/GW2, and 𝜎𝐹𝐶𝐴 

= 1.4×10-16 cm2 , each of which agree well with theory [14, 167, 169, 170] and previous measure-

ments [15, 171, 172]. This simplistic model, which does not include the distribution of the carriers 

within the bands, is meant to show a consistency of the mechanisms, rather than an accurate meas-

urement of material properties. It does show that there are many competing processes that domi-

nate the 2PA of the probe and limit the pump irradiance that can be used.  

 

 
Figure 5.11 Measured transient normalized transmission from a degeneate pump-probe. Curves represent fits from 

Equations (5.8) - (5.10). 

 

 Next, the excitation beam was added back to the experiment, and was set to arrive ~1.2 ps 

before the pump and probe pulses. Using lock-in detection and modulating the pump beam isolated 

the effect of the pump on the probe transmission, and eliminated the FCA induced by the excitation 
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pulse from the measured signal. Given the large FCA observed in the pump-probe measurements, 

the irradiance of the pump was kept low to ensure FCA did not contaminate the 2PG signal. Figure 

5.12 shows the measured change in normalized transmission Δ𝑇 (in %) of the probe for a pump 

irradiance of 12 GW/cm2. The data taken with the excitation blocked (black), shows a reduction 

in transmission only at zero delay due to 2PA. The addition of the excitation, at a fluence of 0.4 

mJ/cm2, results in an observed increase in normalized transmission at only at zero delay, indicative 

of 2PG.  

  

 
Figure 5.12 Results of excite-pump-probe experiment showing change in normalized transmisison Δ𝑇 demonstrating 

(black) 2PA and (blue) 2PG. 

 

 The excitation fluence was increased to 1.3 mJ/cm2, and the pump-probe measurement was 

repeated for various pump irradiances, the results of which are shown in Figure 5.13. At zero delay 

there was an increase in transmission that scaled linearly with the pump irradiance (see Figure 5.13 

(b)) which was consistent with 2PG. However, the increased transmission remained for longer than 
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the pulse duration, extending as long as 0.5 ps, after which a net reduction in normalized transmis-

sion was observed. These non-instantaneous effects may perhaps be due to changes in the observed 

total linear absorption coefficient by the probe. For example, the pump itself may undergo 2PG, 

which will deplete the total carrier concentration, and therefore reduce intervalence band and free-

carrier absorption. However, more complicated dynamics, involving the various valence and con-

duction bands, have a larger impact (see § 5.3.3. ). The pump may also be absorbed via direct 

heavy-hole to split-off band transitions, which take some time to relax (𝜏𝑆𝐻 ~ 0.4 ps [173, 174]) 

back to the heavy-hole band. During this time period, the FCA observed by the probe is saturated, 

yielding an increased transmission. The conduction band may also contribute to these dynamics 

when electrons in the Γ-valley are excited to the X-valley by the pump via phonon-assisted FCA. 

Direct absorption from the X-valley to the next higher conduction band greatly increases the ab-

sorption of the probe. Clearly these dynamical loss mechanisms represent a complicated many-

body problem. Additionally, thermal cooling of the excited carrier may play an important role, 

especially during the first ~1.5 ps after zero delay. 
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Figure 5.13 (left) Normalized probe transmission with an excitation fluence of 1.3 mJ/cm2 for pump irradiances 

(black) 7 GW/cm2, (red) 10 GW/cm2, (red) 22 GW/cm2, and (blue) change in normalized transmission at zero delay 

versus pump irradiance where circles are data, and solid line is a linear fit. 

 

 These observations provided evidence of degenerate 2PG in bulk GaAs. However, there 

were evidently very strong competing processes in the form of FCA and 3PA that not only com-

plicated the measurements, but also made the possibility of obtaining net 2PG (gain > losses) 

highly unlikely. For this purpose, the enhancement of 2PG when using nondegenerate photons 

seemed necessary to overcome the significant losses. 

 

5.2.2. Extremely Nondegenerate Two-Photon Gain 

 To see if the predicted and observed enhancement in 2PA for END photon pairs carries 

over to enhancement of 2PG, a second experimental setup was constructed using the Coherent 

laser system. Here the DFG attachment to the TOPAS-800 was used to generate a pump beam in 

the mid-IR. However, the spectrum of the emission from the DFG was found to be incredibly 

broad. Measurements of the spectrum were performed using an Oriel monochromator (Corner-

stone 130 1/8m), which had a grating with 150 lines/mm. Figure 5.14 shows measurements at a 

centered wavelength of 3.75 µm (333 meV), the FWHM is 0.6 µm (55 meV), while at 7.86 µm 
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(163 meV), the FWHM is 2.9 µm (55 meV). This large bandwidth would make measurements 

difficult, since the photon energy sum with a probe pulse in the near-IR would be very broad, and 

straddle the band gap of GaAs. For this purpose, a narrow bandpass filter from Iridian Spectral 

Technologies Ltd., centered at 7.75 µm (160 meV), with FWHM 195 nm (4 meV), were used to 

reduce the bandwidth and increase the spectral resolution. 

 

 
Figure 5.14 Measured spectrum of DFG output using Orielt Monochromator (Cornerstone 130 1/8m) and HgCdTe 

detector for a nominal wavelength of (left) 3.7 µm and (right) 8 µm. Black curves are measured data, and red curves 

are smoothed. 

 

 A WLC is generated by focusing a small portion of the 800 nm fundamental (~4.4 µJ) into 

a 5 mm thick sapphire plate. 977 nm (1.27 eV) was selected using a narrow (FWHM 10 nm, 13 

meV) bandpass filter to be used as the probe. A half-wave plate and polarizer was used to ensure 

linear polarization of the probe, and a second half-wave plate was use to rotate the polarization to 

be either parallel or perpendicular to the pump. The pump and probe were focused to 30 µm and 

20 µm (both HW1/e2M), respectively, and overlapped on the 4 µm thick GaAs sample. The sum 

of the pump and probe photon energies is 1.43 eV (14 meV FWHM), which is slightly greater than 
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the band gap energy of GaAs, where population inversion is expected. The change in transmission 

of the probe is monitored via a lock-in amplifier, set to the frequency of an optical chopper that 

modulates the pump, as the temporal delay between the pulses is varied. 

 Initially, the excitation is blocked, and the measurements yield a signal that is proportional 

to the cross-correlation of the pump and probe pulses due to ND-2PA. Figure 5.15 shows the nor-

malized probe transmission for parallel pump and probe polarizations in the solid black curve, 

from which 𝛼2,∥ is determined. A half-wave plate is then used to rotate the probe’s polarization to 

be perpendicular to the pump’s (dashed black curve) to give 𝛼2,⊥. The ratio 𝛼2,∥/𝛼2,⊥ ≈ 2.4, which 

is consistent with the theory of Ref. [170]. A peak excitation fluence of 2.8 mJ/cm2 is then added 

approximately 1.2 ps before the pump to generate a population inversion near the band edge, and 

the pump-probe measurement is repeated for both polarizations of the probe. At zero pump-probe 

delay we now observe an increase in transmission for both parallel (solid red curve) and perpen-

dicular (dashed red curve) polarizations, however the ratio of the increases is less than 2.4. Addi-

tionally there is a reduction in transmission at positive delay that is consistent with the measure-

ments in the degenerate case. However, here the photon energy of the pump is only 163 meV, 

which is less than both the split-off energy, Δ = 341 meV, and the energy difference between the 

bottom of the Γ and X valleys, 480 meV, and Γ and L valleys, 280 meV [175]. Therefore, the pump 

does not have sufficient energy to transfer carriers either from the heavy-hole band to the split-off 

band, or from the Γ-valley to the X-valley. The cause of theses dynamics may be due to carrier 

heating (see § 5.3.3.  and Figure 5.28). Notice that this signal at positive delays is identical for both 

parallel and perpendicular polarizations. This indicates that the mechanism that causes the trans-

mission change is independent of polarization, which is consistent with intervalence band and free-

carrier absorption induced carrier heating.  
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We can eliminate this effect from the measurement by defining Δ𝑇 = 𝑇∥ − 𝑇⊥, i.e., the 

difference between transmission for parallel and perpendicular polarizations, and isolate the effect 

of 2PG. Figure 5.15 shows Δ𝑇 both without (black) and with (red) the excitation, where the change 

in transmission is only present near zero delay and follows the same cross-correlation shape in 

both cases. These measurements may then be fit for the 2PA/G coefficient, which will be related 

to the parallel case by 𝛼2,∥/2.4. Without the excitation the measurement yields 𝛼2,∥ = 38 ± 8 

cm/GW, which is in agreement with both theoretical [14] and measured [15] values and is signif-

icantly enhanced over the degenerate case of the same photon energy sum. With the excitation 

providing population inversion, we fit the data with 𝛾2,∥ = 12 ± 5 cm/GW. 

 

 
Figure 5.15 (left) Normalized probe transmission versus pump-probe delay for parallel (solid) and perpendicular 

(dashed) polarizations both with excitation fluence 𝐹0 of zero (black) and 2.8 mJ/cm2 (red). (right) Difference in nor-

malized probe transmission Δ𝑇 for parallel and perpendicular polarizations versus pump-probe delay with (red) and 

without (black) excitation. 

 

The conversion of absorption to gain depends on the population inversion. To demonstrate 

this, we repeat the experiment for several lower excitation fluences and plot Δ𝑇 at zero delay in 

Figure 5.16. Without the excitation, i.e., zero fluence, Δ𝑇 = −2 %, corresponding to 2PA. As the 
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excitation fluence is increased, the carrier population near the band edge grows, causing a reduc-

tion in the 2PA, which eventually changes into 2PG above ~1 mJ/cm2. At higher fluences the 2PG 

saturates due to the saturation of absorption of the excitation. We only expect gain where popula-

tion inversion is present near the band edge. To further verify the presence of 2PG, we increase 

the photon energy sum by changing the probe wavelength. At higher energy sums, Δ𝑇 with and 

without the excitation is the same, indicating the carrier density at these energies is insufficient to 

produce inversion. These observations provided evidence of 2PG in bulk GaAs, and constitutes 

the first report, to my knowledge, of nondegenerate two-photon gain in any medium.  

 

 
Figure 5.16 (left) Difference in normalized probe transmission Δ𝑇 for parallel and perpendicular polarizations versus 

excitation fluence at zero pump-probe delay. (right) Ratio of Δ𝑇 at 𝐹0 = 2.8 mJ/cm2 to 𝐹0 = 0 versus photon energy 

sum. 

 

5.3. Competing Processes 

Like many other proposed 2PG media, semiconductors suffer from a variety of effects that 

may limit their applicability for a 2PL. Here we discuss both those effects that directly impact the 

optical losses of the material, the dominant ones being linear absorption in the form on free-carrier 
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(phonon-assisted) and intervalence band (direct) absorption, as well as the next higher order ab-

sorption process, three-photon absorption (3PA) (see Figure 5.17). Free-carrier absorption occurs 

when an excited electron or hole absorbs a photon, but requires the simultaneous absorption or 

emission of a phonon to conserve momentum, and is therefore referred to as an indirect process. 

The direct band-to-band absorption processes, including both intervalence band and three-photon 

absorption, depend only on the band structure of the material, and the coupling of these states via 

the electric field. A detailed description of each of these mechanisms is provided in this section. 

 

 
Figure 5.17 Energy band diagram including heavy-hole, light-hole, and split-off valence bands showing phonon as-

sisted FCA, intervalence band absorption, and 3PA. 

 

5.3.1. Kane’s Band Structure 

 The absorption coefficient of a material may be derived from the electronic structure of the 

material via Fermi’s Golden rule, which may be applied to one-, two-, and three-photon absorption 

as well [116, 169, 170, 176]. Evaluation of the coefficients requires knowledge of the electronic 

structure, as well as the coupling between states, meaning we need to know the energies and wave 

functions of the electronic states of the material. For direct-gap semiconductors we use Kane’s 
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band structure [177, 178], which models the electronic states of the direct gap materials with four 

(each doubly spin degenerate) bands: a single conduction band, and three valence bands, heavy-

hole, light-hole, and split-off bands.  

Calculation of Kane’s band structure begins with the Hamiltonian  

 𝐻̂ =
𝑝2

2𝑚0
+ 𝑉 − 𝛍𝑚 ∙ 𝐁, (5.11) 

where 𝑝 = −𝑖ℏ∇ is the momentum operator, 𝑉 is the potential energy, −𝑒 is the electron charge, 

𝛍𝑚 is the magnetic dipole moment of the electron (not to be confused with the electric dipole 

moment), and 𝐁 is the magnetic field. In addition to the standard kinetic and potential energy 

terms, the energy associated with the interaction of the magnetic dipole moment of the electron 

with the magnetic field is also included. In the laboratory (or lattice) frame, there is no magnetic 

field, however in the electron frame, which is in orbit about the nuclei, there is a magnetic field of 

the form [179] 

 𝐁 = −
𝐯 × 𝐄

𝑐2
, (5.12) 

where 𝐯 = 𝐩/𝑚0 is the velocity of the electron, and 𝐄 = ∇𝑉/𝑒 is the electric field produced by 

the nuclei. Additionally, the magnetic dipole moment of an electron is 

 𝛍𝑚 = −
𝑒ℏ

2𝑚0
𝛔. (5.13) 

where 𝛔 the Pauli spin matrix. The electron wave functions in a periodic potential, such as a crys-

talline lattice may be expressed using the Bloch theorem 

 𝜓𝑛,𝐤  =
1

𝐿3/2
𝑢𝑛,𝐤(𝐫)𝑒

𝑖𝐤∙𝐫, (5.14) 

where 𝐿3 is the volume. Substituting Equations (5.11) - (5.14) into the time-independent Schrö-

dinger equation (TISE) gives [177, 178] 
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 (
𝑝2

2𝑚0
+
ℏ

𝑚0
𝐤 ∙ 𝐩 + 𝑉 +

ℏ

4𝑚0
2𝑐2

[∇𝑉 × (𝐩 + ℏ𝐤)] ∙ 𝛔) 𝑢𝑛,𝐤(𝐫) = 𝐸𝑛,𝐤
′ 𝑢𝑛,𝐤(𝐫) (5.15) 

where 𝐸𝑛,𝐤
′ = 𝐸𝑛,k − ℏ

2𝑘2/2𝑚0. The second term on the LHS is the 𝐤 ∙ 𝐩 interaction, and the 

fourth (proportional to 𝐩) is the k-independent (atomic like) spin-orbit interaction. The fifth term 

(proportional to ℏ𝐤) is a k-dependent spin-orbit interaction, which we may neglect because it is 

small compared to the fourth term, since ℏ|𝐤| ≪ |𝐩|.  

 We now wish to find solutions to Equation (5.15) for both the energies 𝐸𝑛,𝐤
′  and the asso-

ciated Bloch wave functions 𝑢𝑛,𝐤(𝐫). Do to so, we assume a known solution to the TISE in the 

absence of the magnetic dipole interaction, of which the wave functions are  

 

|𝑖𝑆 ↓⟩,
1

√2
|(𝑋 − 𝑖𝑌) ↑⟩, |𝑍 ↓⟩,

1

√2
|(𝑋 + 𝑖𝑌) ↑⟩, 

|𝑖𝑆 ↑⟩,
−1

√2
|(𝑋 + 𝑖𝑌) ↓⟩, |𝑍 ↑⟩,

1

√2
|(𝑋 − 𝑖𝑌) ↓⟩, 

(5.16) 

𝑆 denotes a wave function of spherical symmetry, much like the s orbital of hydrogen (spherical 

harmonic 𝑌0
0), corresponds to the conduction band with energy 𝐸𝑐, and 𝑋, 𝑌, and 𝑍 denotes wave 

function which have symmetry of the p orbitals of hydrogen oriented in the 𝑥, 𝑦, and 𝑧 directions 

(spherical harmonics 𝑌1
−1, 𝑌1

0, and 𝑌1
1), respectively and correspond to the valence band with en-

ergy 𝐸𝑣. The up and down arrows indicate the electron spin, and the top four wave functions are 

degenerate with the bottom four, respectively. We can therefore write the Hamiltonian as a matrix 

with elements 

 𝐻̂𝑚𝑛 = ⟨𝜓𝑛|𝐻̂|𝜓𝑚⟩, (5.17) 

where the |𝜓𝑚⟩ are those of (5.16), and 𝐻̂ is the factor in parenthesis on the LHS of Equation 

(5.15). The Hamiltonian, choosing 𝐤 along the z-axis, is then 
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 (𝐻̂ 0
0 𝐻̂

) , where 𝐻̂ =

(

 
 

𝐸𝑔 0 𝑘𝑃 0

0 −2Δ/3 √2Δ/3 0

𝑘𝑃 √2Δ/3 −Δ/3 0
0 0 0 0)

 
 
, (5.18) 

where  

 𝑃 ≡ −𝑖
ℏ

𝑚0
⟨𝑆|𝑝𝑧|𝑍⟩, (5.19) 

is the Kane momentum parameter, and  

 Δ ≡ 𝑖
3ℏ

4𝑚0
2𝑐2

⟨𝑋|
𝜕𝑉
𝜕𝑥
𝑝𝑦 −

𝜕𝑉
𝜕𝑦
𝑝𝑥|𝑌⟩, (5.20) 

is the split-off energy, and we have let 𝐸𝑐 = 𝐸𝑔, and 𝐸𝑣 = −Δ/3. We may generalize to arbitrary 

𝐤 by the rotation transformations 

  (
𝑋′

𝑌′

𝑍′
) = (

cos 𝜃 cos𝜙 cos 𝜃 sin𝜙 −sin 𝜃
− sin𝜙 cos𝜙 0
sin 𝜃 cos𝜙 sin 𝜃 cos𝜙 cos 𝜃

)(
𝑋
𝑌
𝑍
), (5.21) 

and  

 (
↑′

↓′
) = (

𝑒−𝑖𝜙/2 cos 𝜃/2 𝑒𝑖𝜙/2 sin 𝜃/2

−𝑒−𝑖𝜙/2 sin 𝜃/2 𝑒𝑖𝜙/2 cos 𝜃/2
) (
↑
↓
), (5.22) 

and 𝑆′ = 𝑆, since it is spherically symmetric, where 𝜃 and 𝜙 are the polar and azimuthal angles of 

spherical coordinates, respectively.  

 The energies of the bands may be found by solving the eigenvalue problem, which is equiv-

alent to solving  

 |𝐻̂ − 𝐸′𝐼| = 0, (5.23) 

where 𝐼 is the identity matrix. This gives 

 𝐸′ = 0, (5.24) 
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 𝐸′
3
+ 𝑎2𝐸

′2 + 𝑎1𝐸
′ + 𝑎0 = 0, (5.25) 

where 

 𝑎0 = −𝑘
2𝑃2

2Δ

3
, (5.26) 

 𝑎1 = −(𝐸𝑔Δ + 𝑘
2𝑃2), (5.27) 

 𝑎2 = Δ − 𝐸𝑔, (5.28) 

Equation (5.24) gives the energy of the heavy-hole band, and the three solutions to Equation (5.25) 

correspond to the conduction, light-hole, and split-off bands. This may be solved using the trigo-

nometric method by [180] 

 𝐸′ = 2√𝑄 cos (
1

3
arccos (

𝑅

√𝑄3
) −𝑚

2𝜋

3
) −

𝑎2
3
, (5.29) 

where  

 𝑅 =
1

2

9𝑎1𝑎2 − 27𝑎0 − 2𝑎2
3

27
, (5.30) 

 𝑄 =
𝑎2
2 − 3𝑎1
9

. (5.31) 

The corresponding eigenstates are 

 𝜙𝑖𝛼 = 𝑎𝑖|𝑖𝑆 ↓⟩
′ +

𝑏𝑖

√2
|(𝑋 − 𝑖𝑌) ↑⟩′ + 𝑐𝑖|𝑍 ↓⟩

′, (5.32) 

 𝜙𝑖𝛽 = 𝑎𝑖|𝑖𝑆 ↑⟩
′ −

𝑏𝑖

√2
|(𝑋 + 𝑖𝑌) ↓⟩′ + 𝑐𝑖|𝑍 ↑⟩

′, (5.33) 

 𝜙ℎℎ𝛼 =
1

√2
|(𝑋 + 𝑖𝑌) ↑⟩′, (5.34) 

 𝜙ℎℎ𝛼 =
1

√2
|(𝑋 − 𝑖𝑌) ↓⟩′, (5.35) 
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where the subscript 𝑖 refers to the conduction (𝑐), light-hole (𝑙ℎ), and split-off (𝑠𝑜) bands, and 𝛼 

and 𝛽 refer to the two spins. The 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are k-dependent coefficients, related to the energies 

by 

 𝑎𝑖 =
𝑘𝑃 (𝐸𝑖

′ +
2Δ
3 )

𝑁𝑖
 , (5.36) 

 𝑏𝑖 =
(
2Δ
3
) (𝐸𝑖

′ − 𝐸𝑔)

𝑁𝑖
 , (5.37) 

 𝑐𝑖 =
(𝐸𝑖

′ − 𝐸𝑔) (𝐸𝑖
′ +
2Δ
3 )

𝑁𝑖
 , (5.38) 

where 𝑁𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2 + 𝑐𝑖
2 provides normalization.  

 

 
Figure 5.18 Kane’s band structure of GaAs including (black) condition, (red) heavy-hole, (blue) light-hole, and (ma-

genta) split-off bands. 
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 The band structure and wave functions depend only on three parameters, the band gap 

energy 𝐸𝑔, split-off energy Δ, and Kane energy parameter 

 𝐸𝑝 =
2𝑚0𝑃

2

ℏ2
. (5.39) 

The calculated band structure of GaAs, with 𝐸𝑔 = 1.424 eV, Δ = 0.34 eV, and 𝐸𝑝 = 28.9 eV [181, 

182], is shown in Figure 5.18. Since we now know both the energies and wave functions of the 

electronic eigenstates of any zinc blende direct gap semiconductor, we can calculate various band-

to-band absorption coefficients. 

 

5.3.2. Three-Photon Absorption 

 The 3PA coefficient of a material may be derived from the electronic structure of the ma-

terial via Fermi’s Golden rule, which for the nondegenerate 3PA where one photon at 𝜔𝑎 and two 

at 𝜔𝑏 are absorbed is 

 

𝑅3 =
2𝜋

𝑉ℏ
∑|∑[

⟨𝜓𝑓|𝐻̂𝑎|𝜓𝑙⟩⟨𝜓𝑙|𝐻̂𝑏|𝜓𝑗⟩⟨𝜓𝑗|𝐻̂𝑏|𝜓𝑖⟩

(𝐸𝑙𝑖 − ℏ𝜔𝑏 − ℏ𝜔𝑏)(𝐸𝑗𝑖 − ℏ𝜔𝑏)𝑗,𝑙𝑖,𝑓

+
⟨𝜓𝑓|𝐻̂𝑏|𝜓𝑙⟩⟨𝜓𝑙|𝐻̂𝑎|𝜓𝑗⟩⟨𝜓𝑗|𝐻̂𝑏|𝜓𝑖⟩

(𝐸𝑙𝑖 − ℏ𝜔𝑎 − ℏ𝜔𝑏)(𝐸𝑗𝑖 − ℏ𝜔𝑏)

+
⟨𝜓𝑓|𝐻̂𝑏|𝜓𝑙⟩⟨𝜓𝑙|𝐻̂𝑏|𝜓𝑗⟩⟨𝜓𝑗|𝐻̂𝑎|𝜓𝑖⟩

(𝐸𝑙𝑖 − ℏ𝜔𝑏 − ℏ𝜔𝑎)(𝐸𝑗𝑖 − ℏ𝜔𝑎)
]|

2

𝛿(𝐸𝑓𝑖 − ℏ𝜔𝑎 − 2ℏ𝜔𝑏). 

(5.40) 

where |𝜓𝑗⟩ are the electronic eigenstates of the material, 𝑅3 is the three-photon transition rate per 

unit volume, which is expressed in terms of a summation over all possible initial and final states 𝑖 

and 𝑓 that are separated in energy by 𝐸𝑓𝑖 = ℏ𝜔𝑎 + 2ℏ𝜔𝑏, via all possible permutations of two 
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intermediate states 𝑗 and 𝑙. For the absorption process, the final state is within the conduction band, 

the initial state is within one of the valence bands, either heavy-hole, light-hole, or split-off band, 

and the intermediate states may be any of these. There are many possible pathways included in 

Equation (5.40), some of which are illustrated in Figure 5.19 Some possible pathways for 3PA. 

Evaluation of Equation (5.40) requires knowledge of the electronic structure, that is the 𝐸𝑗, as well 

as the coupling between states, ⟨𝜓𝑙|𝐻̂𝑎|𝜓𝑗⟩. 

 

 
Figure 5.19 Some possible pathways for 3PA. 

 

 The interaction Hamiltonian is given by (neglecting the 𝐴2 term) [116] 

 𝐻̂𝑎 = −
𝑒

𝑚0
𝐀𝑎 ∙ 𝐩̂, (5.41) 
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and likewise for 𝐻̂𝑏. Since the vector potential is related to the irradiance by 𝐀 =
1

2𝜔
√

2𝐼

𝜀0𝑛𝑎𝑐
, the 

matrix elements become 

 ⟨𝜓𝑙|𝐻̂𝑎|𝜓𝑗⟩ = −
𝑒

𝑖2𝑚0𝜔𝑎
√
2𝐼𝑎
𝜀0𝑛𝑎𝑐

⟨𝜓𝑙|𝐚̂𝑎 ∙ 𝐩̂|𝜓𝑗⟩. (5.42) 

We now want to write the matrix element in terms of scaled momentum matrix elements 

  𝑀𝑙𝑗
(𝑎) =

ℏ

𝑚0𝑃
𝐚̂𝑎 ∙ ⟨𝜓𝑙|𝐩̂|𝜓𝑗⟩, (5.43) 

which may be evaluated using Kane’s model (see § 5.3.1. ). With these substitutions, Equation 

(5.42) becomes 

 ⟨𝜓𝑙|𝐻̂𝑎|𝜓𝑗⟩ = −
𝑒𝑃

𝑖2ℏ𝜔𝑎
√
2𝐼𝑎
𝜀0𝑛𝑎𝑐

𝑀𝑓𝑖
(𝑎). (5.44) 

The ND-3PA coefficient 𝛼3 is related to the three-photon transition rate by 

 
𝜕𝐼𝑎
𝜕𝑧
= −3𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏)𝐼𝑎𝐼𝑏

2 = −ℏ𝜔𝑎𝑅3, (5.45) 

where the factor of 3 serves the same purpose as the factor of 2 in Equation (2.15), and ensures the 

results of two-beam and single-beam experiments yield the same results (see APPENDIX D: ). 

Equations (5.40) - (5.45) may be combined to express the ND-3PA coefficient 

 

𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) =
𝜋𝑒6𝐸𝑝

3

𝑉253𝜀0
3𝑛𝑎𝑛𝑏

2𝑐3𝜔𝑎𝜔𝑏
4𝑚0

3 ∙ 

(5.46) 
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        ∑|∑[
𝑀𝑓𝑙
(𝑎)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑖
(𝑏)

(𝐸𝑙𝑖 − ℏ𝜔𝑏 − ℏ𝜔𝑏)(𝐸𝑗𝑖 − ℏ𝜔𝑏)𝑗,𝑙𝑖,𝑓

+
𝑀𝑓𝑙
(𝑏)𝑀𝑙𝑗

(𝑎)𝑀𝑗𝑖
(𝑏)

(𝐸𝑙𝑖 − ℏ𝜔𝑎 − ℏ𝜔𝑏)(𝐸𝑗𝑖 − ℏ𝜔𝑏)

+
𝑀𝑓𝑙
(𝑏)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑖
(𝑎)

(𝐸𝑙𝑖 − ℏ𝜔𝑏 − ℏ𝜔𝑎)(𝐸𝑗𝑖 − ℏ𝜔𝑎)
]|

2

𝛿(𝐸𝑓𝑖 − ℏ𝜔𝑎 − 2ℏ𝜔𝑏), 

where we have substituted 𝑃2 = ℏ2𝐸𝑝/2𝑚0 [170, 182]. 

 Currently, the summations are over all possible states. In bulk semiconductors, these states 

are very closely spaced in energy (closer than their own linewidths) [116]. We may simplify the 

summation to be only over the relevant bands if we assume the bands to be continuous. This allows 

the summation over a given band to become an integral over the continuous distribution of states 

within that band. Taking the limit of the summation over states (in one dimension), as the length 

goes to infinity allows the summation over states to become an integral over states 

 ∑ 𝑓𝑚𝑥

∞

𝑚𝑥=−∞

|

𝐿𝑥→∞

= ∫ 𝑓(𝑚𝑥)d𝑚𝑥

∞

−∞

. (5.47) 

Choosing to integrate in k-space, we have 𝑘𝑥 = 2𝜋𝑚𝑥/𝐿𝑥, or 𝑚𝑥 = 𝑘𝑥𝐿𝑥/2𝜋 

 ∫ 𝑓(𝑚𝑥)d𝑚𝑥

∞

−∞

=
𝐿𝑥
2𝜋

∫ 𝑓(𝑘𝑥)d𝑘𝑥

∞

−∞

. (5.48) 

In three dimensions 

 ∫ 𝑓(𝑚𝑥,𝑚𝑦, 𝑚𝑧)d
3𝑚

∞

−∞

=
𝑉

(2𝜋)3
∫ 𝑓(𝐤)d3𝐤

∞

−∞

, (5.49) 
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where we have used 𝐿𝑥𝐿𝑦𝐿𝑧 = 𝑉. Thus, the absorption coefficient becomes an integral over the 

states within each band, and a summation over the bands, assuming the initial state is within one 

of the (spin-degenerate) valence bands (heavy-hole, light-hole, and split-off), and the final state is 

within the (spin-degenerate) conduction band. Since Kane’s band structure assumes spherically 

symmetry (in k-space), meaning that the energy of each band to only depends on |𝐤| = 𝑘, it is 

convenient to integrate in spherical coordinates, where d3𝐤 = 𝑘2 sin(𝜃) d𝑘d𝜃d𝜙. With these sub-

stitutions into Equation (5.46) becomes 

 

𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) =
𝜋𝑒6𝐸𝑝

3

𝑉253𝜀0
3𝑛𝑎𝑛𝑏

2𝑐3𝜔𝑎𝜔𝑏
4𝑚0

3 ∙ 

𝑉

(2𝜋)3
∫∑| ∑ [

𝑀𝑐𝑙
(𝑎)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑣
(𝑏)

(𝐸𝑙𝑣(𝑘) − ℏ𝜔𝑏 − ℏ𝜔𝑏)(𝐸𝑗𝑣(𝑘) − ℏ𝜔𝑏)𝑗,𝑙=𝑣,𝑐𝑣,𝑐

+
𝑀𝑐𝑙
(𝑏)𝑀𝑙𝑗

(𝑎)𝑀𝑗𝑣
(𝑏)

(𝐸𝑙𝑣(𝑘) − ℏ𝜔𝑎 − ℏ𝜔𝑏)(𝐸𝑗𝑣(𝑘) − ℏ𝜔𝑏)

+
𝑀𝑐𝑙
(𝑏)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑣
(𝑎)

(𝐸𝑙𝑣(𝑘) − ℏ𝜔𝑏 − ℏ𝜔𝑎)(𝐸𝑗𝑣(𝑘) − ℏ𝜔𝑎)
]|

2

∙ 𝛿(𝐸𝑐𝑣(𝑘) − ℏ𝜔𝑎 − 2ℏ𝜔𝑏) 𝑘
2 sin(𝜃) d𝑘d𝜃d𝜙, 

(5.50) 

where the scaled momentum matrix elements, e.g., 𝑀𝑙𝑗
(𝑎)

, depend on 𝑘, 𝜃, and 𝜙. 

 The delta function within the integral in Equation (5.50) can be simplified using the relation 

 
𝛿(𝑓(𝑥)) =∑

𝛿(𝑥 − 𝑥𝑖)

|
𝜕𝑓(𝑥)
𝜕𝑥

|
𝑥=𝑥𝑖

𝑖

 
(5.51) 

where 𝑥𝑖 are the roots of 𝑓(𝑥). This allows us to rewrite 
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𝛿(𝐸𝑐𝑣(𝑘) − ℏ𝜔𝑎 − 2ℏ𝜔𝑏) =

𝛿(𝑘 − 𝑘𝑟)

|
𝜕𝐸𝑐𝑣(𝑘)
𝜕𝑘

|
𝑘=𝑘𝑟

 
(5.52) 

where 𝑘𝑟 is the electron wavenumber of resonance that satisfies 𝐸𝑐𝑣(𝑘𝑟) = ℏ𝜔𝑎 + 2ℏ𝜔𝑏. For cal-

culation purposes it is convenient to make the substitution 𝑥 = ℏ2𝑘2/2𝑚0, meaning 𝑘2 =

2𝑚0𝑥/ℏ
2. Then 

 
𝜕

𝜕𝑘
=
𝜕

𝜕𝑥

𝜕𝑥

𝜕𝑘
=
√2ℏ√𝑥

√𝑚0

𝜕

𝜕𝑥
. (5.53) 

With this, Equation (5.50) becomes 

 

𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) =
1

3

𝑒6𝐸𝑝
3ℏ2

27√2𝜋2𝜀0
3𝑛𝑎𝑛𝑏

2𝑐3𝑚0

3
2

∙
1

ℏ𝜔𝑎

1

(ℏ𝜔𝑏)4
 

 ∙ ∫∑| ∑ [
𝑀𝑐𝑙
(𝑎)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑣
(𝑏)

(𝐸𝑙𝑣(𝑥𝑟) − ℏ𝜔𝑏 − ℏ𝜔𝑏)(𝐸𝑗𝑣(𝑥𝑟) − ℏ𝜔𝑏)𝑗,𝑙=𝑣,𝑐𝑣,𝑐

+
𝑀𝑐𝑙
(𝑏)𝑀𝑙𝑗

(𝑎)𝑀𝑗𝑣
(𝑏)

(𝐸𝑙𝑣(𝑥𝑟) − ℏ𝜔𝑎 − ℏ𝜔𝑏)(𝐸𝑗𝑣(𝑥𝑟) − ℏ𝜔𝑏)

+
𝑀𝑐𝑙
(𝑏)𝑀𝑙𝑗

(𝑏)𝑀𝑗𝑣
(𝑎)

(𝐸𝑙𝑣(𝑥𝑟) − ℏ𝜔𝑏 − ℏ𝜔𝑎)(𝐸𝑗𝑣(𝑥𝑟) − ℏ𝜔𝑎)
]|

2

∙
√𝑥𝑟

|
𝜕𝐸𝑐𝑣(𝑥)
𝜕𝑥

|
𝑥=𝑥𝑟

sin(𝜃) d𝜃d𝜙. 

(5.54) 

where the scaled momentum matrix elements, e.g., 𝑀𝑙𝑗
(𝑎)

, depend on 𝑥𝑟, 𝜃, and 𝜙. Equation (5.54) 

may be evaluated for specific polarizations of the two input beams. For the case of parallel polar-

izations, we may take both to be in the 𝑧-direction [170], in which case the 𝑀’s are independent 
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of 𝜙, and integration over 𝜙 simply gives a factor of 2𝜋. In the case of arbitrary linear polariza-

tions, we can choose the pump (at 𝜔𝑏) to be polarized in the 𝑧-direction, and then find the matrix 

elements that corresponding probe polarization. 

 

Table 5.1 Parameters for zinc blende semiconductors 

Semiconductor 𝐸g (eV) Δ (eV) 𝐸𝑝 (eV) Reference 

GaAs 1.424 0.34 28.9 [175, 182] 

ZnSe 2.7 0.37 24.2 [170] 

GaN 3.2 0.017 25.0 [175] 

ZnS 3.7 0.07 20.4 [170] 

 

 A MATLAB script was written to evaluate the ND-3PA coefficient using Equation (5.54) 

in terms of only four input parameters, 𝐸𝑔, Δ, 𝐸𝑝, and the refractive indices, which allows for rapid 

calculation for several semiconductors. Table 5.1 shows these parameters for a few zinc blende 

semiconductors. Figure 5.20 shows the calculated D-3PA spectrum of GaAs, including the contri-

butions from when each of the three valence bands as the initial state. The oscillatory behavior, 

observed particularly when the initial band is the light-hole band, is due to quantum interference 

between the many pathways (see Figure 5.19).  
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Figure 5.20 Calculated D-3PA spectrum of GaAs including individual contributions from each initial band (red) 

heavy-hole, (blue) light-hole, (magenta) split-off, and (black) total.  

 

 Previously, Claudiu Cirloganu [169, 171], Peter Olszak [183], and Davorin Peceli [172] 

preformed Z-scan measurements on GaAs, ZnSe and ZnS samples to determine the D-3PA coef-

ficients to compare them to the theoretical model employed here. The analysis was similar to that 

of the standard OA Z-scan for 2PA [47], but the equation governing the evolution of the irradiance 

was  

 
∂𝐼

𝜕𝑧
= −𝛼3(𝜔;𝜔,𝜔)𝐼

3. (5.55) 

Figure 5.21 shows a comparison of the results of these Z-scan measurements performed using both 

the femtosecond Clark-MXR system, in closed circles, as well as the picosecond EKSPLA system, 

in open circles. The picosecond system was used for GaAs measurements since the large band-

width of the femtosecond system prevented high spectral resolution measurements, making the 

measurements near the band edge unreliable. In each plot, the solid curve shows the theory as 
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calculated via Equation (5.54) in the case when 𝜔𝑏 = 𝜔𝑎 using the parameters in Table 5.1. The 

dashed curves are a scaling of the calculating by a factor of 4.5 for GaAs, 2 for ZnSe, and 2.5 for 

ZnS. 

 

 
Figure 5.21 (circles) Z-scan measurements, (black curves) theory, as well as (red curve) scaled theory of D-3PA 

spectrum of (left) GaAs, (middle) ZnSe, and (right) ZnS, with scaling factors 4.5, 2, and 2.5, respectively. 

 

 The ND-3PA spectrum was also calculated for GaAs, as shown in Figure 5.22, plotted on 

a logarithmic scale versus three-photon energy sum and the nondegeneracy, which is the ratio of 

the photon energies ℏ𝜔𝑎/ℏ𝜔𝑏. Plotting in this way readily allows observation of the effects of 

nondegeneracy at the same photon energy sum. The peaks in the spectrum are due to resonance 

between valence bands. For example, the peak at a nondegeneracy of about 3 for three-photon 

energy sums greater than 1.8 correspond to intermediate state resonance between the split-off and 

heavy-hole bands. This region of the spectrum, however, is where 2PA occurs, since here ℏ𝜔𝑎 +

ℏ𝜔𝑏 > 𝐸𝑔, as indicated by the shaded white region in the right plot of Figure 5.22 
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Figure 5.22 (left) 3D plot and (right) 2D projection of the ND-3PA spectrum of GaAs plotted versus three-photon 

energy sum and nondegeneracy factor. The white-shaded region in the left plot is where 2PA is possible. 

 

 We can clearly see that the lowest value of 𝛼3 is at the degenerate case, when ℏ𝜔𝑎/ℏ𝜔𝑏 =

1. As the nondegeneracy is increased, i.e., as ℏ𝜔𝑏 decreases while ℏ𝜔𝑎 increases such that the 

sum ℏ𝜔𝑎 + 2ℏ𝜔𝑏 remains constant, 𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) increases drastically. Pathways involving two 

intraband (self) transitions, which have a zero frequency resonance, are greatly enhanced. In fact, 

this enhancement is even greater than that observed in 2PA. For example, the term in Equation 

(5.54) containing a denominator (𝐸𝑙𝑣 − ℏ𝜔𝑏 − ℏ𝜔𝑏)(𝐸𝑗𝑣 − ℏ𝜔𝑏) is most greatly enhanced for 

nondegenerate photon pairs. When 𝑙 = 𝑗 = 𝑣 = 𝑙ℎ𝛼, for example, 𝐸𝑙𝑣 = 𝐸𝑗𝑣 = 0, and the denom-

inator simplifies to −2(ℏ𝜔𝑏)
2. This term therefore grows much faster than the equivalent term in 

the 2PA case, which goes as −ℏ𝜔𝑏. The addition of a third-photon yields another intermediate 

state that may be near resonance and give additional enhancement. A direct comparison of this 

enhancement between the two- and three-photon absorption cases is shown in Figure 5.23. The 

equivalent ND-2PA calculation based on Kane’s band structure was used [170]. Nondegenerate 
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𝛼2 and 𝛼3 were calculated for GaAs, for fixed photon energy sums of 1.44 eV and 1.6 eV, respec-

tively. The coefficients were then normalized to their values in the degenerate case. For a 

nondegeneracy of 10, 𝛼2 is enhanced by a factor of 134, while 𝛼3 is enhanced by a factor of 2410.  

 

 
Figure 5.23 Enhancement of (black) 2PA (at ℏ𝜔𝑎 + ℏ𝜔𝑏 = 1.44 eV) and (red) 3PA (at ℏ𝜔𝑎 + 2ℏ𝜔𝑏 = 1.6 eV) ver-

sus photon energy ratio. 

 

 The same pump-probe experiment (without the excitation) used to measure END-2PG (see 

§ 5.2.2. ) was used to measure the END-2PA coefficient of GaAs, in the same 4 μm thick sample. 

The probe wavelength was increased slightly such that ℏ𝜔𝑎 + ℏ𝜔𝑏 < 𝐸𝑔 to prevent ND-2PA. Fig-

ure 5.24 shows the normalized transmission change as a function of delay with respect to the 7.75 

μm pump for both probe wavelengths of 1020 nm and 1040 nm. Fits were done using  

 
∂𝐼𝑎
𝜕𝑧
= −3𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏)𝐼𝑎𝐼𝑏

2, (5.56) 

and assumed that the pump was undepleted. Also shown is the 3PA spectrum for GaAs for two 

cases. In black is the D-3PA coefficient together with Z-scan measurements (see Figure 5.21), and 

in red is the ND-3PA coefficient for a fixed pump frequency, corresponding 7.75 μm. The solid 

curves are calculated from theory, and the dotted lines are the theory scaled by a factor of 2.5. This 



156 

experimentally shows that the Kane’s band structure calculations correctly predict enhancement 

of the ND-3PA coefficient over the degenerate case. This constitutes, to my knowledge, both the 

first theoretical investigation and the first experimental measurement of nondegenerate three-pho-

ton absorption in solid state media. The observed increase in 𝛼3 with nondegeneracy implies 3PA 

will be a major competing process for a 2PSL, and will limit the maximum irradiance possible.  

 

 
Figure 5.24 (top) Pump-probe measurements of 𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) in GaAs. (black) D- and (red) END-3PA coefficient 

where 𝜆𝑏 = 7.75 μm. (bottom) Comparison of (circles) measurement results to both (solid curves) theory and 

(dashed curves) theory ×2.5. 
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5.3.3. Intervalence Band Absorption 

 While 3PA will dominate 2PG in the high irradiance limit, on the low irradiance limit, 

linear losses dominate. The primary linear loss is due to intervalence band absorption, which be-

comes especially large for longer wavelengths, when the photon energy becomes resonant with 

the energy difference between the bands where the greatest carrier concentration is located. Unlike 

in the case of 3PA, intervalence band absorption will not be present at thermal equilibrium, where 

there is not a significant population of holes in the valence bands. Upon excitation, however, the 

holes will predominantly occupy the top of the heavy-hole band, from which they may absorb a 

photon and be promoted to the light-hole or split-off bands. The intervalence band absorption co-

efficient depends on the occupation probabilities of the two bands involved. For example, the ab-

sorption coefficient for the absorption between the split-off and heavy-hole bands is given by 

 𝛼𝑠𝑜ℎℎ(𝜔) = 𝛼𝑠𝑜ℎℎ,0(𝜔) (𝑓ℎℎ(𝐸ℎℎ(𝑘𝑟)) − 𝑓𝑠𝑜(𝐸𝑠𝑜(𝑘𝑟))), (5.57) 

where 𝛼𝑠𝑜ℎℎ,0(𝜔) is the absorption coefficient assuming the initial state is occupied and the final 

state is empty, 𝑓ℎℎ and 𝑓𝑠𝑜 are the Fermi-Dirac distribution of carriers in the heavy-hole and split-

off bands, respectively, and 𝑘𝑟 is the electron wavenumber at resonance when 𝐸ℎℎ(𝑘𝑟) −

𝐸𝑠𝑜(𝑘𝑟) = ℏ𝜔. The same holds true for the other absorption processes, i.e., heavy-hole to light-

hole and light-hole to split off. Figure 5.25 shows the calculated energy difference between valence 

bands versus both electron wavenumber (see Figure 5.18). The heavy-hole to light-hole has a small 

energy difference close to 𝑘 = 0, and increases and becomes constant at large 𝑘, which gives rise 

to a large density of states at about 0.2 eV. Transitions from the light-hole to split-off band begins 

at Δ = 0.34 eV, and decreases to 0.31 eV at 𝑘 = 500 μm-1 due to the smaller effective mass of the 

light-hole band near 𝑘 = 0. 
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Figure 5.25 Energy difference for (black) heavy-hole to light-hole, (red) heavy-hole to split-off, and (blue) light-hole 

to split-off intervalence band absorption. 

 

 These coefficients may be calculated using the same approach we used for calculating 𝛼3, 

only must simpler. Since it is only a one-photon absorption process, we can start with the familiar 

Fermi’s Golden Rule for one-photon absorption 

 𝑅1 =
1

𝑉

2𝜋

ℏ
∑|⟨𝜓𝑓|𝐻̂|𝜓𝑖⟩|

2
𝛿(𝐸𝑓𝑖 − ℏ𝜔)

𝑖,𝑓

, (5.58) 

where we are interested in the initial states of the holes being either within the heavy-hole or light-

hole band, and the final states being either in the light-hole or split-off band. We then follow the 

same analysis presented in § 5.3.2. , using 

 
𝜕𝐼

𝜕𝑧
= −𝛼𝑠𝑜ℎℎ,0(𝜔)𝐼 = −ℏ𝜔𝑅1,𝑠𝑜ℎℎ, (5.59) 

and arrive with an expression for the intervalence absorption coefficient  
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𝛼𝑠𝑜ℎℎ,0(𝜔) =
𝑒2𝐸𝑝√𝑚0

4√2𝜋𝜀0𝑛0𝑐ℏ2
(
1

ℏ𝜔
)

∙ ∫∑|𝑀𝑠𝑜ℎℎ(𝑥𝑟 , 𝜃)|
2 √𝑥𝑟

|
𝜕
𝜕𝑥
𝐸𝑠𝑜ℎℎ(𝑥)|

𝑥=𝑥𝑟

sin(𝜃) d𝜃

𝛼,𝛽

,  

(5.60) 

and likewise for the other terms, where we have chosen the polarization to be along the 𝑧-axis of 

the crystal. We can now apply Kane’s band structure and calculate the various intervalence band 

absorption processes via Equation (5.60). Figure 5.26 shows the calculations of 𝛼0(𝜔) for each 

intervalence absorption.  

 

 
Figure 5.26 Intervalence band absorption coefficients (neglecting carrier distributions) on (left) linear and (right) 

logarithmic scales, for (red) heavy-hole to split-off, (blue) light-hole to split-off, and (black) heavy-hole to light-hole 

transitions. Vertical dashed lines indicate cut off wavelengths. 

 

We can take into account carrier distributions with Equation (5.57), and assume the three 

bands are described by a single Fermi distribution. The quasi-Fermi level for the valence bands 

were calculated using the Unger approximation relating the hole number density 𝑁ℎto the quasi-
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Fermi energy 𝐸𝐹𝑣  [184, 185]. Figure 5.27 shows the calculated intervalence band absorption coef-

ficient in GaAs with a carrier concentration of 2 × 1018 cm-3, at a temperature of 300 K, include 

the heavy-hole to split-off band in red, light-hole to split-off band in blue, and heavy-hole to light-

hole band in black. Since the excited holes are located near the band edge about k = 0, only photons 

of energies that interact with these regions of the bands experience significant absorption. For this 

reason, even though the joint density of states for heavy-hole to light-hole transitions is very large 

at 0.21 eV (5.9 μm), the absorption coefficient is quite small since these regions of the bands are 

far from 𝑘 = 0 where no holes present.  

 

 
Figure 5.27 Calculated intervalence band (left) absorption coefficient and (right) coefficient divided by hole number 

density for (solid) 2×1018 cm-3 and (dotted) 1015 cm-3 at 300 K for (red) heavy-hole to split-off, (blue) light-hole to 

split-off, and (black) heavy-hole to light-hole transitions. 

 

 For energies several 𝑘𝐵𝑇 less than Fermi energy, the Fermi distributions may be approxi-

mated by  

 
𝑓(𝐸) =

1

1 + exp (
𝐸 − 𝐸𝐹
𝑘𝐵𝑇

)
≈ 1 − exp (

𝐸 − 𝐸𝐹
𝑘𝐵𝑇

). 
(5.61) 
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In this case Equation (5.57) may be simplified, since the split-off band is not occupied by holes,  

 𝛼𝑠𝑜ℎℎ(𝜔) = 𝛼𝑠𝑜ℎℎ,0(𝜔) exp (
𝐸 − 𝐸𝐹𝑣
𝑘𝐵𝑇

). (5.62) 

For small carrier densities, the hole concentration may be approximated by a Boltzmann distribu-

tion [186] which allows the quasi-Fermi level to be expressed as 

 𝐸𝐹𝑣 = −𝑘𝐵𝑇 ln (√2(
𝜋ℏ2

𝑚𝑣
∗𝑘𝐵𝑇

)

3/2

𝑁ℎ), (5.63) 

where 𝑚𝑣
∗  is the effective mass of the density of states for the valence bands. In this case, the 

absorption coefficient is proportional to the number density and may be expressed in terms a cross 

section 𝛼𝐼𝑉𝐵 = 𝜎𝐼𝑉𝐵𝑁ℎ, where 

 𝜎𝑠𝑜ℎℎ(𝜔) = 𝛼𝑠𝑜ℎℎ,0(𝜔) [√2(
𝜋ℏ2

𝑚𝑣∗𝑘𝐵𝑇
)

3
2

𝑒
𝐸
𝑘𝐵𝑇]. (5.64) 

The right plot in Figure 5.27 shows the calculated intervalence band absorption coefficient divided 

by the hole number density (i.e., the absorption cross section) for both (solid) 2 × 1018 cm-3 and 

(dashed) 1015 cm-3. The cross sections in Figure 5.27 agree fairly well with calculations of Krish-

namurthy et al. [167], but neglect line broadening. We can see that even for large carrier densities, 

the variation in 𝛼𝐼𝑉𝐵/𝑁ℎ between low and high carrier concentration is relatively small. Because 

𝑚𝑣
∗  is large (0.53𝑚0 in GaAs) [175], the quasi-Fermi energy 𝐸𝐹𝑣 ≈ 39 meV, which is still greater 

than the top of the valence band edge. This means approximating of the Fermi distribution as a 

Boltzmann function is still fairly valid.  

 This cross section is of course temperature dependent, since the distribution of the carriers 

in the bands depend on their temperature. Carrier heating therefore affects the losses in the system, 

and impacts the performance of a potential 2PL. To demonstrate the temperature dependence of 
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this loss mechanism, we calculate the absorption coefficients for various carrier temperatures (as-

suming constant lattice temperature of 300 K). Increasing the carrier temperature reduces the loss 

at long wavelengths, while increasing it at short wavelengths. This is consistent with the observa-

tions in Figure 5.15, where the 7.75 µm pump was absorbed both via intervalence band and free-

carrier absorption, resulting in an increase in the carrier temperature. This in turn raised the heavy-

hole to split-off band absorption coefficient, yielding the reduced transmission at 977 nm observed 

at positive delays in Figure 5.15. 

 

 
Figure 5.28 Temperature dependence of intervalence band absorption on (left) linear and (right) logarithmic scales. 

Carrier temperatures of (solid) 300 K, (dash-dot) 500 K, (dash) 700 K, and (dot) 900 K are shown for (red) heavy-

hole to split-off, (blue) light-hole to split-off, and (black) heavy-hole to light-hole transitions. 

 

5.3.4. Free-carrier Absorption 

In addition to direct band-to-band absorption, indirect absorption is also possible. Excited 

carriers act as though they were free (albeit with reduced masses based on the band structure), and 

form a sort of electron (or hole) plasma. The classical Drude model can be used to calculate the 
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susceptibility of such a system, which is treated as a classical oscillator with a zero frequency 

resonance. The equation of motion in the frequency domain may be written as 

 (𝑚∗𝜔2 + 𝑖Γ𝑚∗𝜔) ∙ 𝐫(𝜔) = 𝑒𝐄(𝜔) , (5.65) 

where 𝑚∗ is the effective carrier mass, Γ is the damping rate, 𝐫(𝜔) is the displacement vector, and 

𝑒 is the elementary charge. The linear susceptibility 𝜒(1)(𝜔) of is related to the displacement by 

−𝑒𝐫(𝜔) = 𝜀0𝜒
(1)(𝜔) ∙ 𝐄(𝜔), which becomes 

 𝜒(1)(𝜔) = −
𝑁𝑒2

𝜀0𝑚

1

𝜔2 + 𝑖Γ𝜔
= −

𝜔𝑝
2

𝜔2 + Γ2
+ 𝑖

Γ

𝜔

𝜔𝑝
2

𝜔2 + Γ2
 (5.66) 

where 𝜔𝑝
2 = 𝑁𝑒2/𝜀0𝑚 is the plasma frequency, 𝑁 is the carrier concentration. The absorption 

coefficient is related to the imaginary part of the susceptibility by 𝛼(𝜔) = Im{𝜒(1)}𝜔/𝑛𝑐, which 

becomes 

 𝛼𝐹𝐶𝐴(𝜔) =
Γ

𝑛(𝜔)𝑐

𝜔𝑝
2

𝜔2 + Γ2
 (5.67) 

Thus, for high frequencies, i.e., 𝜔 ≫ Γ, we thus get 𝛼𝐹𝐶𝐴(𝜔) ∝ 1/𝜔
2 ∝ 𝜆2, yielding a simple re-

lation for the spectral behavior of FCA. 

Unfortunately, excited carriers in semiconductors do not behave precisely as the Drude 

model would predict. There is indeed a trend of increasing FCA with wavelength, but the details 

differ significantly. If a photon is not resonant with the energy difference between bands, it may 

be assisted by a phonon, a quasiparticle of vibrational energy of the crystal lattice. Phonons possess 

much more momentum than photons, but much less energy, and can aid in the absorption process 

by providing extra momentum to an electron (or hole) to excite it to a higher energy within the 

same band with a larger momentum (see Figure 5.17). The same process can also happen to holes 

in the valence band. Fan et al. [187], using second-order perturbation theory (as with 2PA above), 
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calculated 𝛼𝐹𝐶𝐴(𝜔) ∝ 𝜆
1.5. This process of FCA is still found to be proportional to the carrier 

concentration, and thus a cross section description is valid, where 𝛼𝐹𝐶𝐴 = 𝜎𝐹𝐶𝐴𝑁. In GaAs, phonon 

assisted FCA of electrons in the Γ-valley have values of 𝜎𝐹𝐶𝐴 at 𝜆 = 2 μm of ~4 × 10−18 cm2 

[188]. These cross sections are typically smaller than the effects of direct intervalence band ab-

sorption, but can become problematic for a ND-2PSL as the cross section grows for longer wave-

lengths. 

 

5.4. Prospect of a Semiconductor Two-Photon Laser 

As we have found, there are many competing processes that greatly complicate the inves-

tigation of two-photon gain in bulk GaAs. The long-term goal and original motivation for this 

work was to demonstrate a two-photon semiconductor laser. In light of these complications, how-

ever, this may be more difficult than originally presumed. Indeed, in none of the above experiments 

was net 2PG (gain > losses) observed. In this chapter, we step back and look at the prospect of 

using bulk GaAs for a 2PL in various regimes.  

 

5.4.1. Degenerate Two-Photon Laser 

 We start in the degenerate case, with two photons of equal energy, and include the domi-

nant loss terms of linear (both intervalence band and free-carrier) absorption and 3PA, in the SVEA 

equation for the evolution of the irradiance 

 
𝜕𝐼

𝜕𝑧
= (−𝛼1 + 𝛾2I − 𝛼3𝐼

2)𝐼. (5.68) 
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The operating principle of any laser action is that the gain must exceed the losses. In this case that 

means, that the D-2PG term, 𝛾2𝐼
2, must be greater than the sum of the linear and 3PA losses 

(assuming other losses are negligible). 

 In the low irradiance limit, such that 3PA may be neglected (i.e., 𝛾2𝐼 ≫ 𝛼3𝐼
2), the domi-

nant loss mechanism is linear absorption. Given the linear nature, and the nonlinear nature of 2PG, 

we may overcome this loss mechanism with sufficiently high irradiance. The condition for the 

minimum irradiance for laser action is 

 𝐼 >
𝛼1
𝛾2
 . (5.69) 

Likewise, in the high irradiance limit, such that linear losses may be neglected (i.e., 𝛾2𝐼
2 ≫ 𝛼1𝐼), 

the dominant loss mechanism is 3PA. Since this loss mechanism has a higher order irradiance 

dependence than the gain, for sufficiently high irradiances, 3PA will always win out over 2PG. 

Thus, 3PA sets a condition for the maximum irradiance limit for laser action, namely 

 𝐼 <
𝛾2
𝛼3
 . (5.70) 

In the case where neither limit is applicable, the conditions are 

 
𝛾2 −√𝛾2

2 − 4𝛼𝐹𝐶𝐴𝛼3 

2𝛼3
< 𝐼 <

𝛾2 +√𝛾2
2 − 4𝛼𝐹𝐶𝐴𝛼3 

2𝛼3
 , (5.71) 

which are more restrictive than Equations (5.69) and (5.70).  

The two different loss mechanisms give an operation range for the irradiance which may 

be calculate based on the relevant values of 𝛼1, 𝛾2, and 𝛼3. We can estimate these numbers from 

calculations and previous measurements either presented here or available in the literature. In the 

following we intentionally choose conservative estimates of the uncertainty in these values. In 

GaAs, at 0.73 eV (1700 nm), based on previous 2PA measurements, 𝛼2 = 3 ± 1 cm/GW [15], 
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which we will assume to be the maximum value that 𝛾2 may take for the degenerate case. This is 

an idealization, since there won’t be perfect population inversion at finite temperature. In reality, 

𝛾2 should be calculated at a specific carrier density and temperature to include the proper Fermi-

Dirac distributions of carriers. Here, however, we choose a best case scenario to determine if under 

ideal conditions a 2PSL is possible.  

The linear absorption depends on the carrier concentration and, for high carrier concentra-

tions 𝑁, 𝛼𝐹𝐶𝐴 also becomes nonlinear in the 𝑁 [188], particularly with regard to the direct transi-

tions, e.g. heavy-hole to split-off band, which depend on the occupation of the initial and final 

states. However, given the complexity of these relationships, we approximate 𝛼𝐹𝐶𝐴 to be linear in 

𝑁 such that we may use cross sections. This approximation has been validated by the calculations 

in § 5.3.3.  where we showed that, for the carrier concentrations used, the 𝛼𝐼𝑉𝐵/𝑁 depends little 

on 𝑁 (see Figure 5.27). Based on the above calculations as well as measurements by Peceli [172, 

189] and theory by Krishnamurthy et al. [167], 𝜎1 = (1.0 ± 0.5) × 10
−16 cm2. For a carrier con-

centration of 𝑁 = 2 × 1018 cm−3, 𝛼1 = (200 ± 100) cm
−1. Equation (5.69) give a minimum 

necessary irradiance for 2PG to overcome the linear losses of 𝐼 > 70 ± 40 GW/cm2. 

The 3PA coefficient 𝛼3 has been measured via Z-scan by both Cirloganu [171] and Peceli 

[172, 189]. Extrapolating from their plots (Figure 6.8 (c) from Cirloganu [171], and Figure 1 (a) 

from Peceli et al. [189]), 𝛼3 is between 0.1 and 1.0 cm3/GW2, which is comparable with the cal-

culation presented in § 5.3.2. (see Figure 5.21). Thus, by Equation (5.70), the maximum value of 

𝐼 is between 1.0 and 30 GW/cm2. However, this entire range is less than the minimum threshold 

determined from the linear losses, even given the large uncertainty, which means that there is no 

irradiance where the gain exceeds the losses, and thus two-photon laser action will not occur in 

the degenerate case. Another way to see this is by inspecting the term within the square root of 
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Equation (5.71), 𝛾2
2 − 4𝛼𝐹𝐶𝐴𝛼3. This term must be positive to yield an irradiance window where 

lasing may occur; thus, we require 𝛾2 > √4𝛼𝐹𝐶𝐴𝛼3 . However, given the above values, √4𝛼𝐹𝐶𝐴𝛼3 

lies between 6.7 and 35 cm/GW, which exceeds the actual value (assuming complete population 

inversion, i.e., 𝑓𝑐 − 𝑓𝑣 = 1) of 𝛾2 = 3 ± 1 cm/GW. Thus, the losses are always larger than the 

gain. Figure 4.1 shows term in parenthesis in the right-hand-side of Equation (5.68), that is, the 

net gain, as a function of irradiance. The black curve shows the average value, and the grey shaded 

regions represented the errors in the material parameters. For no value of the irradiance is the two-

photon gain ever able to yield net gain. 

 

 
Figure 5.29 Plot of the RHS of Equation (5.68) divided by 𝐼 (i.e., the net gain) versus irradiance. The shaded region 

represents the error based on literature values quoted in the text. 

 

We may ask if we can decrease the wavelength (increase the photon energy) to interact 

with regions of the bands with higher densities of states such that 𝛾2 increases enough to overcome 

this problem. In practice we are limited to the region near the band-edge in which we can generate 



168 

population inversion. Hence, to increase the wavelength, and thus 𝛾2, we must also increase the 

carrier concentration in order to maintain population inversion. Doing so increases the FCA coef-

ficient 𝛼𝐹𝐶𝐴. For example, say we wanted to double the excess photon energy above the band-edge 

Δ𝐸 = ℏ𝜔 − 𝐸𝑔 from 39 meV (1700 nm) to 78 meV (1656 nm). The 2PG coefficient could then be 

increased from 3 ± 1 cm/GW to 6 ± 1 cm/GW , a factor for 2. But the number of carriers required 

to maintain population inversion increases drastically. To achieve the same population inversion, 

the carrier density has to be increased by a factor of (Δ𝐸)3/2 [190].  In this case, to double the 

excess energy requires 2√2 ≈ 2.83 times the carrier concentration. This means that there will also 

be about 2.83 times the amount of FCA as well, from 𝛼𝐹𝐶𝐴 = 200 ± 100 cm
−1 to 𝛼𝐹𝐶𝐴 = 566 ±

282 cm−1. Using these new numbers, the value of √4𝛼𝐹𝐶𝐴𝛼3 is now between 11 and 59 cm/GW, 

which is still larger than 𝛾2. Therefore, changing the photon energy does not allow the gain to 

overcome the losses. 

 

5.4.2. Nondegenerate Two-Photon Laser 

If a degenerate 2PL in bulk GaAs is not possible, then how about a nondegenerate one. The 

coupled SVEA propagation equations for the irradiances of the two beams at frequencies 𝜔𝑎 and 

𝜔𝑏 (where 𝜔𝑎 > 𝜔𝑏) are 

 

𝜕𝐼𝑎
𝜕𝑧
= −𝛼1(𝜔𝑎)𝐼𝑎 + 2𝛾2(𝜔𝑎; 𝜔𝑏)𝐼𝑏𝐼𝑎 − 𝛼2(𝜔𝑎; 𝜔𝑎)𝐼𝑎

2 − 3𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏)𝐼𝑎𝐼𝑏
2

− 6𝛼3(𝜔𝑎; 𝜔𝑎, 𝜔𝑏)𝐼𝑎
2𝐼𝑏 , 

(5.72) 
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𝜕𝐼𝑏
𝜕𝑧
= −𝛼1(𝜔𝑏)𝐼𝑏 + 2𝛾2(𝜔𝑏; 𝜔𝑎)𝐼𝑎𝐼𝑏 − 3𝛼3(𝜔𝑏; 𝜔𝑎, 𝜔𝑎)𝐼𝑎

2𝐼𝑏  

− 6𝛼3(𝜔𝑏; 𝜔𝑏 , 𝜔𝑎)𝐼𝑏
2𝐼𝑎. 

(5.73) 

APPENDIX D:  contains a derivation of the factors of 2, 3 and 6 for the two-beam interaction 

terms. Competing with the 2PG, we have included linear, degenerate two-photon, and two differ-

ent three-photon absorption terms. For the high photon energy, ℏ𝜔𝑎, the included losses are FCA 

and degenerate 2PA, which, since 2ℏ𝜔𝑎 > 𝐸𝑔, is expected to be the limiting loss for high irradi-

ances well before 3PA. For the low energy photon, ℏ𝜔𝑏, the losses include only FCA. In principle 

the lowest order N-photon absorption that is allowed, i.e., 𝑁ℏ𝜔𝑏 > 𝐸𝑔, where 𝑁 is the number of 

photons, will also contribute to the losses. However, this is expected to be small compared to the 

other losses, and will not dominate until much higher irradiances, where 3PA dominates the 2PG 

anyway, and is therefore neglected for simplicity.  

In a sustained 2PL, the number of photons in each beam should be the same, since the gain 

mechanism creates one at each frequency simultaneously. Thus we have the good ND-2PL condi-

tion 

 
𝐼𝑎
ℏ𝜔𝑎

=
𝐼𝑏
ℏ𝜔𝑏

 . (5.74) 

Solving Equation (5.74) for 𝐼𝑏 and substituting it into Equation (5.72) allows us to rewrite our 

propagation equation for the beam at 𝜔𝑎 

 

𝜕𝐼𝑎
𝜕𝑧
= (−𝛼1(𝜔𝑎) + {2𝛾2(𝜔𝑎; 𝜔𝑏) (

𝜔𝑏
𝜔𝑎
) − 𝛼2(𝜔𝑎; 𝜔𝑎)} 𝐼𝑎

− {3𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) (
𝜔𝑏
𝜔𝑎
)
2

+ 6𝛼3(𝜔𝑎; 𝜔𝑎, 𝜔𝑏) (
𝜔𝑏
𝜔𝑎
)} 𝐼𝑎

2) 𝐼𝑎, 

(5.75) 

or alternatively for the beam at 𝜔𝑏, via Equation (5.73), 
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𝜕𝐼𝑏
𝜕𝑧
= (−𝛼1(𝜔𝑏) + 2𝛾2(𝜔𝑎; 𝜔𝑏)𝐼𝑏

− {6𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) + 3𝛼3(𝜔𝑏; 𝜔𝑎, 𝜔𝑎) (
𝜔𝑎
𝜔𝑏
)
2

} 𝐼𝑏
2) 𝐼𝑏 . 

(5.76) 

where we have used the relations 𝛾2(𝜔𝑏; 𝜔𝑎) = 𝛾2(𝜔𝑎; 𝜔𝑏)𝜔𝑏/𝜔𝑎 and 𝛼3(𝜔𝑏; 𝜔𝑏 , 𝜔𝑎) =

𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏)𝜔𝑏/𝜔𝑎 (see APPENDIX D: ). 

 The first requirement is that the 2PG term, i.e., the coefficient in the second term (multi-

plying 𝐼𝑎) in Equation (5.75), be positive in order to have the ND-2PG beat out the D-2PA. The 

photon energy sum is fixed to the region of population inversion, in this case ℏ𝜔𝑎 + ℏ𝜔𝑏 = 1.03 ×

𝐸𝑔, where the density of states is relatively low. These two terms, plotted as a function of the 

nondegeneracy factor ℏ𝜔𝑎/ℏ𝜔𝑏, is shown in Figure 5.30. Close to degeneracy, the degenerate 

2PA of the large photon energy beam (blue) increases drastically as ℏ𝜔𝑎 increases since these 

photons interact with regions of the bands of increasing density of states. The ND-2PG term (red) 

remains less than the D-2PA term for relatively small nondegeneracies (ℏ𝜔𝑎/ℏ𝜔𝑏 < 6) since the 

resonance effects of the intermediate states do not become significant until extreme nondegener-

acy. ND-2PG only wins out over D-2PA for extremely nondegenerate photon pairs, i.e., 

ℏ𝜔𝑎/ℏ𝜔𝑏 > 6, which requires ℏ𝜔𝑏 < 0.21 eV (𝜆𝑏 > 6 μm). 
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Figure 5.30 Plot of the (red) ND-2PG and (blue) D-2PA terms in Equation (5.75) versus nondegeneracy. 

 

We can now perform the same analysis as we did above for the degenerate case, and plot 

the net gain (including both linear and 3PA losses) versus the irradiance to see if there is a window 

where ND-2PG exceeds the losses. For lasing to occur, the gain must exceed the losses for both 

beams simultaneously. For a nondegeneracy factor ℏ𝜔𝑎/ℏ𝜔𝑏 = 10, and a photon energy sum of 

1.45 eV the two photon energies are then ℏ𝜔𝑎 = 1.32 eV (𝜆𝑎 = 941 nm) and ℏ𝜔𝑎 = 0.132 eV 

(𝜆𝑏 = 9.41 μm). At 9.41 μm, Mayer et al. [168] measured photoexcited linear absorption corre-

sponding to a cross section of 𝜎1(𝜔𝑏) = 2.9 × 10
−16 cm2, while Krishnamurthy et al. [167] cal-

culate 𝜎𝐼𝑉𝐵(𝜔𝑏) = 6 × 10
−16 cm2, which is consistent with the calculations presented in § 5.3.3. 

(see Figure 5.27). We therefore let 𝜎1(𝜔𝑏) = (5 ± 2) × 10
−16 cm2. From the standard two-para-

bolic band model, we can calculate (naïvely assuming complete population inversion) 

𝛾2(𝜔𝑎; 𝜔𝑏) = 200 cm/GW in this case, and allow an uncertainty of 100 cm/GW. The ND-3PA 

losses are calculated (see § 5.3.2. ) 𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) = 200 cm
3/GW2 and 𝛼3(𝜔𝑏; 𝜔𝑎, 𝜔𝑎) =
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0.4 cm3/GW2. The uncertainty in these numbers can be estimated by comparing the calculations 

to measurements, as shown in Figure 5.21 and Figure 5.24. Nearly all of these measurements have 

been greater than the calculated, typically by a factor of 2-3. We therefore allow a factor of 4 (to 

be conservative) uncertainty in the 3PA coefficients, and let 𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) = 50 −

800 cm3/GW2, and 𝛼3(𝜔𝑏; 𝜔𝑎, 𝜔𝑎) = 0.1 − 1.6 cm
3/GW2. Using these parameters, the result-

ing net gain is plotted in Figure 5.31, which can be seen to be negative across the entire irradiance 

range. Even though the 2PG coefficient is greater enhanced when using extremely nondegenerate 

photon pairs, both linear and nonlinear losses are increased as well.  Just like the degenerate case, 

the END-2PG is unable to overcome both the linear absorption and 3PA. Therefore, within the 

rate-equation model we have presented (neglecting temperature, many body, coherent effects, 

etc.), we have found that an END-2PSL of bulk GaAs is not possible. 

 

 
Figure 5.31 Net gain for an END-2PSL (ℏ𝜔𝑎/ℏ𝜔𝑏 = 10) in GaAs, via Equation (5.76), versus irradiance. The 

shaded region represents the error based on values quoted in the text. 
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5.4.3. Other Semiconductors 

 The main competing processes of linear absorption (both intervalence band and phonon 

assisted) and 3PA depend on the semiconductor material itself. It has been shown that the 3PA 

coefficient depends on the band gap energy as 𝛼3 ∝ 𝐸𝑔
−7 [163, 191]. The 2PG coefficient also 

depends on the band gap, but only as 𝛾2 ∝ 𝐸𝑔
−3, so increasing the band gap will reduce the 3PA 

more so than the 2PG. Therefore investigating semiconductors of larger band gaps may be bene-

ficial. Zinc blende GaN is a prime candidate: it has a large band gap, 𝐸𝑔 = 3.2 eV, and a common 

semiconductor laser medium [175, 192]. We stick with zinc blende GaN, since Kane’s band struc-

ture does not apply wurtzite structure, the other common crystalline structure of GaN. We can 

perform the same analysis as we have in this chapter on GaAs, including calculating the ND-3PA 

and intervalence band absorption coefficients, to determine if net 2PG is possible in GaN.  

 

 
Figure 5.32 Kane’s band structure of zinc blende GaN, including (black) conduction (red) heavy-hole, (blue) light-

hole, and (magenta) split-off bands. 
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 Figure 5.32 shows Kane’s band structure of zinc blende GaN, using the parameters listed 

in Table 5.1, which has a much large band gap than GaAs, and a very small split-off energy. Ad-

ditionally, the light-hole band is very close to the heavy-hole band, which actually overlay one 

another in this plot. We apply this band structure to calculate the D-2PA and D-3PA spectra, which 

are shown in the left and right plots of Figure 5.33, respectively. The 2PA coefficient in GaN ~6× 

smaller than GaAs, and the calculated 3PA coefficient is ~75× smaller, which is promising for 

mitigating the effects of 3PA dominating 2PG.   

 

 
Figure 5.33 Calculated (left) D-2PA and (right) D-3PA coefficients in GaN including contributions from the (red) 

heavy-hole, (blue) light-hole, and (magenta) split-off bands, as well as (black) total. 

 

 The linearly losses must also be considered. The calculated intervalence band absorption 

coefficient is shown in Figure 5.34. Because the heavy-hole and light-hole bands are so close to 

one another, the intervalence band absorption between the two only occurs at very long wave-

lengths, where phonon absorption dominates anyway [193], and does not contribute to the spectral 

range shown. The similarity of the heavy- and light-hole band also means that the heavy-hole to 

split-off and light-hole to split-off transitions will have similar coefficients, as seen in the plot. The 

right plot of Figure 5.34 shows the absorption coefficient divided by the hole number density for 
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both low and high carrier concentrations of 1015 cm-3 and 8×1018 cm-3, respectively. This number 

density was chosen because it gives population inversion at the same excess energy, i.e., 

(𝐸𝐹𝑐 − 𝐸𝐹𝑣) − 𝐸𝑔, in GaN as we had in GaAs above. A larger density is required since the effective 

masses of both valence and conduction bands are greater than in GaAs [175]. Just as in GaAs, the 

two cases have very similar values of 𝛼𝐼𝑉𝐵/𝑁 since even for a high number density, the quasi-

Fermi level 𝐸𝐹𝑣  is still above the valence band edge, due to large effective density of states. 

 

 
Figure 5.34 (left) Intervalence band absorption coefficient and (right) its division by the number density for (solid) 

𝑁ℎ = 8×1018 cm-3 and (dotted) 1015 cm-3, showing both (red) heavy-hole to split-off and (blue) light-hole to split-off 

transitions, as well as (black) their total. 

 

 Using these calculations, we perform the same analysis of a degenerate 2PSL made of GaN, 

which will operate at a wavelength of 760 nm, as well as the nondegenerate case with a nondegen-

eracy of 10, in which case 𝜆𝑎 = 418 nm and 𝜆𝑏 = 4.18 μm. The parameters used in the calculation 

are shown in Table 5.2, most of which were taken from the above calculations that were general-

ized to the ND case. A value 𝜎1 for the degenerate case wsa extrapolated from [194]. The same 

approximations made above in the treatment of GaAs, such as complete population inversion and 
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the good 2PL approximation, are also used here. Figure 5.35 shows the results for both (left) de-

generate and (right) nondegenerate cases, for both of which the net gain is always negative, mean-

ing 2PG never dominates the linear and three-photon absorption losses. The initially predicted 

reduction in 𝛼3 due to the larger band gap energy was insufficient to allow high enough irradiance 

for the 2PG to overcome linear losses. These linear losses were not significantly reduced compared 

to GaAs, which was particularly detrimental, since 𝛾2 was reduced as well. Based on theses results, 

it is not possible to construct a 2PSL out of bulk GaN. 

 

Table 5.2 Parameters for GaN 2PSL analysis 

Parameter Degenerate Nondegenerate 

𝛾2 (cm/GW) 0.16 ± 0.08 24 ± 10 

𝛼3 (cm3/GW2) 8 (0.36 – 5.8) × 10-3 0.86 – 13.7 

(0.01 – 2.0) × 10-3 

𝜎1 (cm-1) (6 ± 3) × 10-18 [194] (2.6 ± 1.3) × 10-16 

𝑁 (cm-3) 8 × 1018 8 × 1018 

 

                                                 

8 For the nondegenerate case, the top range is for 𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) and the lower is for 𝛼3(𝜔𝑏; 𝜔𝑎 , 𝜔𝑎). 
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Figure 5.35 Net gain in GaN for both (left) degenerate and (nondegenerate) cases. 

 

Semiconductor quantum wells (QW’s) have the advantage of a large density of states near 

the band edge, which has been utilized extensively for one-photon semiconductor lasers [182]. 

This enhancement of the density of states may also improve 2PG, making quantum wells a poten-

tial alternative to bulk semiconductors for a 2PSL. However, 2PA in semiconductor quantum wells 

have been studied relatively little in comparison to bulk semiconductors [195-199], and no theo-

retical or experimental work on ND- 2PA has thus far been reported. Theoretical and experimental 

work is currently underway to determine the ND-2PA spectrum of QW’s including their polariza-

tion dependence, since the anisotropy of the structure impacts the 2PA coefficient for fields polar-

ized parallel or perpendicular (or one of each) to the confinement direction [200, 201]. Much work 

remains to analyze their potential use for 2PSL’s, including experimental verification of the theo-

retical cautions of 2PA, as well as comparison to their linear and 3PA losses.  

In this analysis presented here, we have not taken into account higher order losses or satu-

ration effects which would of course limit the final irradiance levels. In addition, we have not 

looked at the nonlinear refractive effects that cause changes in the beams upon propagation, such 

as self- or cross-focusing and phase modulation. We have also neglected linear effects such as 
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GVM and group velocity dispersion (GVD), which will significantly affect the dynamics for media 

thicker than the pulse length. Should QW’s or another material system yield net gain (as analyzed 

above), these effects would need to be considered in the design and fabrication of a 2PSL. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

The purpose of this work was twofold: 1) to investigate the temporal and polarization de-

pendence of the third-order nonlinear optical response of simple molecules, 2) to study nondegen-

erate two-photon gain and competing losses in GaAs to determine if it could be used for a two-

photon laser media.  

 

6.1. Ultrafast Nonlinear Response of Simply Molecules 

In the nonresonant regime, the third-order nonlinear optical response of simple molecules 

may be described within the Born-Oppenheimer approximation, which allows the separation of 

the bound-electronic response from the motion of the nuclei. The response of liquid CS2 comes 

from four different mechanisms, bound-electronic plus three nuclear: collision, libration, and dif-

fusive reorientation, which we have treated as linearly independent. We applied the beam deflec-

tion technique to fully characterize the magnitudes, temporal dynamics, and polarization depend-

ence of each mechanism, providing the full third-order response function. To do so entailed ex-

panding upon the beam deflection analysis to account for a noninstantaneous Raman response as 

well as group velocity mismatch. The outcome of both Z-scan measurements and degenerate four-

wave mixing experiments were accurately predicted using this response function, which verified 

both the validity of the characterization as well as the experimental methodology.  

This measurement procedure can be applied to a wide variety of common molecular liquids 

that have noninstantaneous responses. Detailed knowledge of the nonlinear response function of 

these solvents can greatly aid a number of nonlinear optical applications, from filamentation and 

supercontinuum generation to ultrafast time-resolved imaging. Additionally, the NLO properties 
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of organic dyes developed for all-optical switching applications are typically characterized in so-

lution, where the nonlinearity of the solvent must be accounted for in the measurement. A com-

prehensive study to accurately determine of the NLO response common solvents can greatly ben-

efit the nonlinear spectroscopy community. The beam deflection technique itself can also be ex-

panded upon to measure a host of other nonlinear effects including excited-state/free-carrier re-

fraction and higher order nonlinearities, including three-photon absorption.  

Molecular gases were also measured with the beam deflection technique, providing de-

tailed information about the degree of alignment of the molecular ensemble. The rotational and 

centrifugal distortion constants, and therefore the moment of inertia and bond length can be deter-

mined from these measurements. Measurements of gaseous CS2 revealed our capability to identify 

different isotopologues. In addition, application of the magic angle which completely eliminates 

the rotational contribution from the measurements, allows for accurate determination of the bound-

electronic nonlinear refractive index, and the orientationally averaged second hyperpolarizability 

of isolated molecules. This may be especially useful for comparison to theoretically calculated 

values of the second hyperpolarizability, which typically compare to measurements performed in 

solution and/or other frequency arguments, e.g., THG or electric-field induced SHG [83, 90]. Our 

results may also be compared to measurements in liquid phase, to test the validity of local field 

correction factors. The fact that our measurements of liquid and gas phase CS2 yield very similar 

values of 𝛾 (within measurement error) suggest that the Lorentz-Lorenz local field provides and 

accurate description [16, 17]. 

The measurements presented here have all been relative in amplitude, with the magnitude 

of 𝛾 (and/or 𝑛2,𝑒𝑙) relative to the anisotropy of the (linear) polarizability Δ𝛼. This is essentially due 

to the violation of the thin-sample approximation, and uncertainty in the effective beam overlap. 
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Thus gas phase measurements can benefit greatly by the introduction of a thin sample, such as a 

gas jet within a vacuum (or at least low pressure) environment. Such a sample would allow for 

absolute measurements of the induced refractive index change, and therefore of the material prop-

erties themselves. This would be particularly beneficial for molecules that did not display coherent 

rotational revivals upon which relative measurements have been based. 

 

6.2. Two-Photon Gain in Semiconductors 

 Semiconductors, specifically GaAs, were investigated for two-photon gain because they 

have large two-photon absorption coefficients, which can be greatly enhanced using extremely 

nondegenerate photon pairs. It was hypothesized that, perhaps, this enhancement would be suffi-

cient to generate large enough two-photon gain to overcome the competing loss mechanisms, 

which is a necessary condition for building a two-photon laser. Experimental observations of both 

degenerate and nondegenerate two-photon gain in GaAs were presented. This constitutes, to our 

knowledge, the first reported experimental demonstration of nondegenerate two-photon gain 

(a.k.a. doubly-stimulated two-photon emission). This was done via pump-probe experiment using 

extremely nondegenerate photon pairs and a third excitation beam to generate a population inver-

sion.  

 To determine if the observed 2PG would be sufficient to operate a 2PSL, the competing 

processes were analyzed theoretically. The competing processes of three-photon and intervalence 

band absorption were theoretically analyzed based on Kane’s band structure. It was found that the 

same mechanism that enhanced the 2PG, namely intermediate state resonance, also enhanced 3PA, 
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but by an even greater amount due to the additional resonance from the additional photon. Inter-

valence band absorption was found to be quite large for the carrier concentrations and wavelengths 

necessary to achieve nondegenerately enhanced 2PG.  

 With these analyses, the possibility of achieving net two-photon gain (gain > losses) was 

examined in both the degenerate and nondegenerate cases. This analysis was conducted in a “best 

case scenario” framework, where complete population inversion was assumed, meaning 𝛾2 = 𝛼2. 

In the degenerate case, it was found that the combination of free-carrier, intervalence band, and 

three-photon absorption overwhelms 2PG, even in this idealized case. For nondegenerate photon 

pairs, more competing processes enter into play, including degenerate 2PA of the larger photon 

energy beam. ND-2PG only beats out D-2PA for extremely nondegenerate photon pairs, where it 

was found that a ratio 𝜔𝑎/𝜔𝑏 > 6 was necessary. This of course required that one of the photons 

be very small in energy (long in wavelength), which in turn enhanced the ND-3PA and increased 

the intervalence band absorption as well. With the combination of these factors, the enhancement 

in ND-2PG was found to be insufficient to overcome these loss mechanisms and allow for a two-

photon semiconductor laser in GaAs. The larger band gap semiconductor GaN was also analyzed 

in the same manner, but the same conclusion was obtained. Thus, within this rate-equation model, 

a 2PSL of bulk semiconductors does not seem possible. 

 Other material systems may be of future interest. Semiconductor quantum wells have en-

hanced density of states near the band edge, and may show greater enhancement for nondegenerate 

photon pairs. Much further work must be done, however, to analyze the free-carrier, intervalence 

band, and three-photon absorption spectra to determine if they may be viable candidate for 2PSLs. 

Semiconductor quantum dots may have the benefit of structuring the density of states to disallow 
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specific competing processes by, for example, not having a state with energy ℏ𝜔𝑎 + 2ℏ𝜔𝑏 above 

the ground state. 

 Other potential applications that may be worthwhile to pursue include using 2PG as an 

amplifier rather than a laser. It should be possible to achieve net gain in one beam at a time, most 

likely for the larger photon energy beam which has smaller free-carrier and intervalence band ab-

sorption. In this case the strong “pump” beam would be in the mid-IR would not achieve net gain, 

but may allow for a broadly unable amplifier.  

 The spectrum of nondegenerate three-photon absorption should also be thoroughly exper-

imentally examined. The procedure outlined in § 5.3.2.  can be applied to any direct gap zinc 

blende semiconductor, and is therefore a powerful tool to predict the 3PA coefficient. Further ex-

perimental validation of the approach is necessary. 

 

  



184 

APPENDIX A:  NOTATION AND SYMBOLS 
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𝐀   Magnetic vector potential (V·s/m) 

𝑎, 𝑏 (sub/superscript) Wave, photon, or state identifier 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖  Kane’s model k-dependent eigenstate coefficients 

𝐵   Rotational constant (m-1) 

𝐁   Magnetic field density (T) 

𝐶   Normalization constant 

𝑐   Speed of light in vacuum (299792458 m/s) 

𝑐 (subscript)  Collisional mechanism 

𝑐, 𝑣 (subscript) Conduction and valence bands 

𝑐. 𝑐.   Complex conjugate 

𝑐𝑖𝑟𝑐 (sub/superscript) Circular polarization 

𝑐𝑛   Complex probability amplitude 

𝐷   Centrifugal distortion constant (m-1) 

𝐃̃   Real time domain electric displacement field (C/m2) 

𝑑   Distance form sample to detector (in Beam Deflection) (m) 

𝑑 (subscript)  Diffusive reorientation mechanism 

𝐸   Energy (J, eV) 

𝐄̃   Real time domain electric field (V/m) 

𝐄   Frequency domain electric field (V/m) 

𝐸𝑔   Band gap Energy (J, eV) 

𝐸𝐹𝑐,𝑣    Quasi-Fermi energy of conduction and valence bands (J, eV) 

𝐸𝑝   Kane energy parameter (28.9 eV for GaAs [202][202][202]) 
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ℰ   Complex electric field amplitude (V/m) 

𝑒   Elementary electric charge (≈ 1.602 × 10−19 C) 

𝑒𝑙 (subscript)  Bound-electronic 

𝐹   Fluence (J/m2) 

ℱ   Fourier transform 

𝑓   Fermi-Dirac distribution, Fermi function 

𝑓 (subscript)  Final state in optical transition 

𝐹2   Spectral function for 𝛼2 in direct gap semiconductors 

𝐹𝐶𝐴 (subscript) Free-carrier absorption 

𝑓(𝑛)   nth order local field correction factor 

𝑔(𝜔)   Distribution function 

𝑔𝐽   Nuclear spin weighting factor 

𝐻̂   Hamiltonian operator 

𝐻̂0   Time-independent Hamiltonian operator 

𝐻̂𝑖𝑛𝑡   Interaction Hamiltonian operator 

ℎ   Plank’s constant (≈ 6.626 × 10−34 J·s) 

ℏ   Reduced Plank’s constant (ℎ/2𝜋 ≈ 1.055 × 10−34 J·s) 

ℎℎ (subscript)  Heavy-hole band 

𝐼   Irradiance (W/m2) 

ℐ   Moment of inertia (kg·m2) 

𝑖   Imaginary unit (√−1) 

𝑖 (subscript)  Initial state in optical transition 
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𝑖𝑠𝑜 (superscript) Isotropic symmetry component 

𝐼𝑉𝐵 (subscript) Intervalence band absorption 

𝐽   Total angular momentum quantum number 

𝑗 (subscript)  Intermediate state 

𝐾   Material independent constant (3100 GW·cm-1·eV-5/2) 

𝐤   Wavevector (m-1) 

𝑘   Wavenumber (|𝐤|, m-1) 

𝑘𝐵   Boltzmann constant (≈ 1.38 × 10−23 J/K) 

𝑘𝑟   Electron wavenumber at resonance (m-1) 

𝐿   Sample thickness (m) 

𝑙   length (m) 

𝑙 (subscript)  Intermediate state, Librational mechanism 

𝑙ℎ (subscript)  Light-hole band 

𝑙𝑖𝑛 (sub/superscript) Linear polarization 

𝑙𝑜𝑐 (subscript)  Local field 

𝑀   Secondary total angular momentum quantum number 

𝑚   Mass (kg) 

𝑚0   Electron mass (≈ 9.11 × 10−31 kg) 

𝑚𝑟   Reduced mass (kg) 

𝑀𝑚𝑛   Matrix element 

𝑁   Number density (m-3) 

𝑛   Linear refractive index 
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𝑛2   Nonlinear refractive index (m2/W)  

𝑛2,eff   Effective (time dependent) nonlinear refractive index (m2/W)  

𝑛𝑔   Group index 

𝑁𝐿 (super/subscript) Nonlinear 

𝑛𝑠 (subscript)  Nuclear spin (wave function) 

𝑛𝑢 (subscript)  Nuclear 

𝑃   Power (W), Kane momentum parameter  

𝐏̃   Real time domain polarization density vector (C/m2) 

𝐏   Frequency domain polarization density vector (C/m2) 

𝒫   Complex polarization density amplitude (C/m2) 

𝐩   Momentum (kg·m/s) 

𝑅    Reflectivity, Transition rate per unit volume (s-1·m-3) 

𝑅(𝑡)   Noninstantaneous nonlinear refractive response function 

𝐫   Position vector (m) 

𝑟(𝑡)   Normalized temporal response function 

𝑟 (subscript)  Resonant 

𝑟𝑒 (superscript) Reorientational symmetry component 

𝑟𝑜𝑡 (subscript)  Rotational (wave function) 

𝑆   Wave function with symmetry of 𝑠 orbital (spherically symmetric) 

𝑆𝑛   Nuclear spin quantum number 

𝑠𝑜 (subscript)  Split-off band 

𝑇   Temperature (K), Dimensionless time, Revival period (s), Transmission 
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𝒯   Dimensionless probe pulse width (HW1/eM of I) 

𝑡   Time (s) 

𝑇𝑑   Dimensionless delay 

𝑇𝐽   Rotational revival weighting factor 

𝑢𝑛,𝐤(𝐫)   Bloch function 

𝑉   Potential (J, eV), Volume (m3) 

𝑣    Velocity (m/s) 

𝑣 (subscript)  Vibrational mechanism 

𝑣𝑔   Group velocity (m/s) 

𝑣𝑖𝑏 (subscript)  Vibrational (wave function) 

𝑊   Transition rate (s-1) 

𝑤   Beam spot size (HW1/e2M of I) (m) 

𝑋, 𝑌, 𝑍   Wave functions with symmetry of 𝑝 orbitals 

𝑌𝑙
𝑚   Spherical harmonic 

𝑥, 𝑦, 𝑧 (subscript) Cartesian coordinates 

𝑍   Dimensionless propagation distance 

𝑧   Distance (in propagation direction) (m) 

𝑧0   Rayleigh range (m) 

 

𝛼   Polarizability (C·m2/V = F·m2 = C2m2/J) 

𝛼, 𝛽 (subscripts) Spin indices 

𝛼1   One-photon absorption coefficient (m-1) 



190 

𝛼2   Two-photon absorption coefficient (m/W) 

𝛼3   Three-photon absorption coefficient (m3/W2) 

𝛽   First hyperpolarizability (C3m3/J2) 

Γ   Dephasing (damping) rate (rad/s) 

𝛾   Second hyperpolarizability (C4m4/J3) 

𝛾1   One-photon gain coefficient (m-1) 

𝛾2   Two-photon gain coefficient (m/W) 

Δ   Split-off energy (J, eV) 

𝛿2𝑃𝐴   Two-photon absorption cross section (s·m4, GM) 

𝛿3𝑃𝐴   Three-photon absorption cross section (s2·m6) 

Δ𝛼   Change in absorption coefficient (m-1), Polarizability anisotropy (F·m2) 

Δ𝐸   Energy difference or uncertainty (J) 

Δ𝐽   Change in total angular momentum quantum number upon transition 

Δ𝑙   Increase in bond length due to centrifugal distortion (m) 

Δ𝑁   Population inversion density (m-3) 

Δ𝑛   Refractive index change 

Δ𝑃   Change in power (W) 

Δ𝑇   Change or difference in transmission 

Δ𝑡   Time interval (s) 

Δ𝑇𝑝−𝑣   Difference in transmission from peak to valley in CA Z-scan  

Δ𝑡   Time interval (s) 

Δ𝜙   Slowly varying phase (rad) 
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Δ𝜔   Frequency difference (rad/s) 

𝜀0   Permittivity of free space (≈ 8.85 × 10−12 F/m) 

Θ(𝑡)   Heaviside (unit step) function 

𝜃   Angle of electric field with respect to molecular axis (rad) 

𝜅   Imaginary component of complex refractive index 

𝜆0   Free space wavelength (m)  

𝛍   Electric dipole moment (C·m) 

𝜇𝑓𝑖   Transition dipole moment (C·m, D) 

𝛍𝑚   Magnetic dipole moment (N·m/T = J/T = A·m2) 

𝜌   Group velocity mismatch parameter, Density matrix 

𝜌𝑓   Free charge density (C/m3) 

𝜎   Cross section (m2), Standard deviation 

𝛔   Pauli spin matrix 

𝜏   Lifetime (s), Pulse width (s) 

𝜏𝑑   Temporal delay (s) 

𝜏𝑓   Fall time (s) 

𝜏𝑟   Rise time (s) 

𝜙𝑖   Eigenstates of Kane’s model    

𝜑   Angle between pump and probe electric fields (rad) 

𝜒(𝑛)   nth order susceptibility ( (m/V)n-1 ) 

|Ψ⟩   Quantum state (wave function) 

|𝜓⟩   Stationary quantum state (wave function), eigenstate of 𝐻̂0 
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𝜔   Angular frequency of radiation (rad/s) 

 

 0   Central, Peak 

 ∗   Complex conjugate 

∥ (subscript)  Parallel 

⊥ (subscript)  Perpendicular 

↑, ↓   Spin directions 

  ̂   Operator, Unit vector 
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APPENDIX B:  PAULI EXCLUSION PRINCIPLE IN 2PA 
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One way to describe the two-photon absorption is via second-order perturbation theory. 

Take, for example, the three level system in Figure B.1, which has one electron initially in the 

ground state |1⟩. We may think of the two-photon process has happening in two “steps”, one for 

each photon, the first being a “virtual” transition from |1⟩ to |2⟩. We call this a “virtual” transition 

since it does not conserve energy (𝐸12 ≠ ℏ𝜔), and thus only has a lifetime that is limited by the 

uncertainty relation Δ𝑡 = ℏ/Δ𝐸. If, within this time Δ𝑡 a second photon interacts with the electron, 

it may complete the transition from |2⟩ to |3⟩, so long as 𝐸13 = 2ℏ𝜔 (for simplicity, we treat the 

degenerate case here, but the results can easily be generalized to the nondegenerate case). This 

process contributes to the two-photon transition rate by 

 𝑊2 ∝ |
⟨3|𝐻̂𝑖𝑛𝑡|2⟩⟨2|𝐻̂𝑖𝑛𝑡|1⟩

𝐸12 − ℏ𝜔
|

2

, (B.1) 

where 𝐻̂𝑖𝑛𝑡 is the interaction Hamiltonian.  

 

 
Figure B.1 Energy level diagrams of two-photon absorption for a three-level system a) initial configuration, b) 

showing photon energies (blue arrows) and energy detuning Δ𝐸 = |𝐸12 − ℏ𝜔|, and c) quantum pathway (red ar-

rows) where |1⟩ → |2⟩ occurs first, followed by |2⟩ → |3⟩. 

 

 Now, what happens if, instead, we have two electrons in our system, initially with one in 

|1⟩ and one in |2⟩ (see Figure B.2)? We may write this as a two-particle state |1, 2⟩ (or alternatively 
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|2, 1⟩, but we choose the former without losing generality). If we now impose the Pauli Exclusion 

Principle, the virtual transition of the electron initially in |1⟩ to |2⟩ is now no longer possible, since 

|2⟩ is already occupied by another electron. At first glance, it appears that two-photon absorption 

is now no longer possible, since the intermediate state used in the one-electron case is no longer 

available. However, there is an alternative. We may instead consider the electron in |2⟩ undergoing 

a virtual transition to |3⟩, which in the two-particle system we write as |1, 2⟩ → |1, 3⟩. Now to 

complete the transition, the other electron in |1⟩ goes to |2⟩, or |1, 3⟩ → |2, 3⟩ (see Figure B.2). 

This process leads to a two-photon transition rate  

 𝑊2 ∝ |
⟨2, 3|𝐻̂𝑖𝑛𝑡|1, 3⟩⟨1, 3|𝐻̂𝑖𝑛𝑡|1, 2⟩

𝐸23 − ℏ𝜔
|

2

. (B.2) 

If we compare this result to that which we obtained with a single electron, Equation (B.1), we find 

it is identical, since ⟨2, 3|𝐻̂𝑖𝑛𝑡|1, 3⟩ = ⟨2|𝐻̂𝑖𝑛𝑡|1⟩, ⟨1, 3|𝐻̂𝑖𝑛𝑡|1, 2⟩ = ⟨3|𝐻̂𝑖𝑛𝑡|2⟩, and 𝐸23 − ℏ𝜔 =

−(𝐸12 − ℏ𝜔). Therefore, the contribution to the two-photon transition rate in the two-electron 

case is the same as it was in the one-electron case. This means that the application of the Pauli 

Exclusion Principle had no impact on our calculation of two-photon absorption. We are essentially, 

then, free to ignore it. 
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Figure B.2 The three-level system with two electrons: a) quantum pathways (red arrows) of the two-photon and two-

electron transition, b) equivalent description in terms of the single “hole,” and c) photon energies (blue arrows) and 

energy detuning Δ𝐸 = 𝐸23 − ℏ𝜔. 

 

 Another way to see this equivalence in the two electron case, is to follow the holes. Since 

we have three states, and two electrons, we can think of |3⟩ as initially being occupied by a hole. 

The first photon then causes a virtual transition of the hole from |3⟩ to |2⟩, and the second com-

pletes the transition from |2⟩ to |1⟩. This is illustrated in Figure B.2 b and c. The transition rate is 

then 

 𝑊2 ∝ |
⟨1|𝐻̂𝑖𝑛𝑡|2⟩⟨2|𝐻̂𝑖𝑛𝑡|3⟩

𝐸23 − ℏ𝜔
|

2

. (B.3) 

Since ⟨1|𝐻̂𝑖𝑛𝑡|2⟩ = ⟨2|𝐻̂𝑖𝑛𝑡|1⟩
∗
, ⟨2|𝐻̂𝑖𝑛𝑡|3⟩ = ⟨3|𝐻̂𝑖𝑛𝑡|2⟩

∗
, 𝐸23 − ℏ𝜔 = −(𝐸12 − ℏ𝜔), and we 

take the square modulus, this is the same as Equations (B.1) and (B.2). 

 This can be generalized to a more complex N-level system, where there are multiple quan-

tum pathways for the two-photon absorption process. In this case, those terms involving two-elec-

trons need to be multiplied by an additional negative sign to account for the exchange of electrons 

in the final state (e.g. |2, 4⟩ versus |4, 2⟩). 
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APPENDIX C:  NUCLEAR SPIN STATISTICS 
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 In this appendix we analyze the spin statistics of the molecules studied in § 4.4.  Recall the 

total wave function of the molecule may be written 

 𝜓𝑡𝑜𝑡𝑎𝑙 = 𝜓𝑒𝑙𝜓𝑣𝑖𝑏𝜓𝑟𝑜𝑡𝜓𝑛𝑠, (C.1) 

where the subscript 𝑒𝑙 stands for electronic, 𝑣𝑖𝑏 for vibrational, 𝑟𝑜𝑡 for rotational, and 𝑛𝑠 for nu-

clear spin. For molecules with identical nuclei, 𝜓𝑡𝑜𝑡𝑎𝑙 must be even or odd upon interchange, de-

pending on whether they, the nuclei, are bosons (integer spin) or fermions (half integer spin), re-

spectively. That is to say, for boson 

 𝑖̂𝜓𝑡𝑜𝑡𝑎𝑙 = 𝜓𝑡𝑜𝑡𝑎𝑙 , (C.2) 

and for fermions 

 𝑖̂𝜓𝑡𝑜𝑡𝑎𝑙 = −𝜓𝑡𝑜𝑡𝑎𝑙 . (C.3) 

where 𝑖̂ is the interchange operator [114]. The task of evaluating 𝑔𝐽 is then a matter of determining 

the spin of the nuclei, and the symmetry of the constituent wave functions such that the appropriate 

symmetry is maintained upon nuclear interchange.  

 In homonuclear diatomic molecules, the number of possible spin states is given by  

 (2𝑆𝑛 + 1), (C.4) 

where 𝑆𝑛 is the spin quantum number of the nuclei. These states are either symmetric (i.e., 𝑖̂𝜓𝑛𝑠 =

𝜓𝑛𝑠) or antisymmetric (i.e., 𝑖̂𝜓𝑛𝑠 = −𝜓𝑛𝑠) upon nuclear interchange. The number of symmetric 

states is  

 (2𝑆𝑛 + 1)(𝑆𝑛 + 1), (C.5) 

and the number of antisymmetric is 

 (2𝑆𝑛 + 1)𝑆𝑛. (C.6) 
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 14N nuclei are bosons with 𝑆𝑛 = 1, and therefore 𝜓𝑡𝑜𝑡𝑎𝑙 of 14N2 molecules must be sym-

metric to nuclear interchange [203]. At room temperature, 14N2 has only the electronic ground state 

occupied, which is symmetric [204]. For homonuclear diatomic molecules the only vibrational 

mode is a symmetric stretch mode, meaning 𝜓𝑣𝑖𝑏 is necessarily symmetric. Therefore, since 𝜓𝑡𝑜𝑡𝑎𝑙 

must be symmetric, 𝜓𝑟𝑜𝑡 and 𝜓𝑛𝑠 must possess the same symmetry. From Equations (C.5) and 

(C.6) there are 6 symmetric spin states and 3 antisymmetric spin states [114]. Because there are 

twice as many symmetric nuclear spin states as antisymmetric, even (symmetric) rotational states 

are twice as populated as odd (antisymmetric). Thus, for 14N2, 𝑔𝐽 = 2/3 for even rotational quan-

tum numbers 𝐽, and 𝑔𝐽 = 1/3 for odd 𝐽, resulting in the 2:1 ratio of even to odd weighting of 

rotational states.  

 16O nuclei are also bosons, but with 𝑆𝑛 = 0 [203]. Again, only the electronic ground state 

is occupied at room temperature, but it is antisymmetric. As with 14N2, 𝜓𝑣𝑖𝑏 is necessarily sym-

metric. There is only one spin state, which is symmetric [114]. Since 𝜓𝑡𝑜𝑡𝑎𝑙 must be symmetric, 

there are no combinations of constituent wave functions that allow for a symmetric 𝜓𝑟𝑜𝑡. There-

fore, 16O2 molecules in the ground electronic state cannot exist in even rotational states, meaning 

𝑔𝐽 = 1 for even 𝐽, and 𝑔𝐽 = 0 for odd 𝐽. 

 CS2 is a bit more complicated, being a linear triatomic molecule. Unlike N and O nuclei, S 

have many isotopes of relatively high abundance, of which the four ones are 32S, 33S, 34S, and 36S, 

the natural abundance and nuclear spin of each is shown in Table C.1. CS2 molecules can form 

with any combination of sulfur isotopes, making different isotopologues. Their relative abun-

dances are based on the natural abundance of each isotope, the most common of which is 12C32S2 

(90.07%), followed by 32S12C34S (8.06%), and 32S12C33S (1.42%), with all other isotopologues 
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together making up less than 0.5%. The latter two, with two different S isotopes, are not required 

to be (anti)symmetric upon nuclear interchange, which only applies for indistinguishable particles. 

Therefore 𝑔𝐽 = 1 for all 𝐽.  

 

Table C.1 Natural abundance and spin of isotopes of S [205] 

Isotope Natural Abundance (%) 𝑆𝑛 

32S 94.99 ± 0.26 0 

33S 0.75 ± 0.02 3/2 

34S 4.25 ± 0.24 0 

36S 0.01 ± 0.01 0 

 

 The symmetric isotopologues 12C32S2, however, must have a symmetric 𝜓𝑡𝑜𝑡𝑎𝑙 since both 

sulfur nuclei are identical bosons with 𝑆𝑛 = 0, yielding only one symmetric nuclear spin state. The 

electronic ground state of 12C32S2 is symmetric [115]. The symmetry of 𝜓𝑣𝑖𝑏 can be assigned by 

evaluating the distribution of vibrational states at room temperature. The frequencies and occupa-

tion probability of the lowest vibrational modes are shown in Table C.2. The 𝑣1 mode is symmetric 

stretch mode, and so does not change the weighting from the ground vibrational state. The 𝑣2 mode 

is a bending mode, which we treat as having equal weighting between even and odd rotational 
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states (see § 4.4.2. ). 12C32S2 molecules in the ground electronic and vibrational states cannot exist 

in odd rotational states, meaning 𝑔𝐽 = 1 for even 𝐽, and 0 for odd 𝐽 9 [115]. 

 

Table C.2 Vibrational modes of 12C32S2 [206] 

Vibrational Mode Frequency (cm-1) Energy (meV) Probability at 300 K (%) 

𝑣2 397 ± 3 49.2 ± 0.4 14.2 

𝑣1 658 ± 1 81.6 ± 0.1  3.1 

2𝑣2 793 ± 3 190.3 ± 0.3 1.7 

 

 

  

                                                 

9 Strictly speaking, the 𝑣2 vibrational mode is more complicated, and the degeneracy between the modes can be split, 

and the rotational Raman transitions have selection rules Δ𝐽 = 0,±1,±2. This has been neglected in this analysis. 



202 

APPENDIX D:  CONSISTENTCY BETWEEN ONE AND TWO BEAM 

EXPERIMENTS 
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D.1. One Versus Two Beam Experiments 

 Here we seek to derive the coefficients on the nonlinear interactions (e.g. NLR) for exper-

iments with different number of beams. The guiding principle is that whether a single beam ex-

periment, such as Z-scan, or a two-beam experiment, such as pump-probe or beam deflection, 

should yield the exact same measurement of the material properties. For third-order (nearly instan-

taneous bound-electronic) NLR and 2PA, there is a factor of two difference between one and two 

beam cases, as seen in Equations (2.14) and (2.15). We can see this by starting with the third-order 

polarization, given by 

 𝐏̃(3) = 𝜀0𝜒
(3)(𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃), (D.1) 

where we treat the material response as instantaneous (and therefore dispersionless). The field of 

a single beam is given by 

 𝐄̃ =
1

2
ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) +

1

2
ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡), (D.2) 

which we can think of as the sum of two counter rotating waves in the complex plane, such that 

their sum is real, and simply ℰ cos(𝐤 ∙ 𝐫 − 𝜔𝑡). Looking at the product of the field, and first ex-

panding only the first product we get 

 𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃ = (
1

4
ℰ2𝑒𝑖(2𝐤∙𝐫−2𝜔𝑡) +

2

4
|ℰ|2 +

1

4
ℰ∗2𝑒−𝑖(2𝐤∙𝐫−2𝜔𝑡)) ∙ 𝐄̃. (D.3) 

The square of the field generates a term at the second harmonic, 2𝜔 (plus complex conjugate) and 

twice the cross term at zero frequency. The 2𝜔 term combines with the third field in the product 

to give a term that oscillates at 3𝜔 and another at 𝜔,  
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1

4
ℰ2𝑒𝑖(2𝐤∙𝐫−2𝜔𝑡) (

1

2
ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) +

1

2
ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡))

=
1

8
ℰ3𝑒𝑖(3𝐤∙𝐫−3𝜔𝑡) +

1

8
|ℰ|2ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡). 

(D.4) 

and likewise for its complex conjugate, but at −3𝜔 and –𝜔 

 

1

4
ℰ∗2𝑒−𝑖(2𝐤∙𝐫−2𝜔𝑡) (

1

2
ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) +

1

2
ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡))

=
1

8
|ℰ|2ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡) +

1

8
ℰ∗3𝑒−𝑖(3𝐤∙𝐫−3𝜔𝑡). 

(D.5) 

The product of the zero frequency term with the field gives both a term at 𝜔 as well as −𝜔 

 

2

4
ℰℰ∗ (

1

2
ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) +

1

2
ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡))

=
2

8
|ℰ|2ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) +

2

8
|ℰ|2ℰ∗𝑒−𝑖(𝐤∙𝐫−𝜔𝑡). 

(D.6) 

The third-order polarization then  

 𝐏̃(3) = 𝜀0𝜒
(3) (

1

8
ℰ3𝑒𝑖(3𝐤∙𝐫−3𝜔𝑡) +

3

8
|ℰ|2ℰ𝑒𝑖(𝐤∙𝐫−𝜔𝑡) + 𝑐. 𝑐. ), (D.7) 

where the first term is THG, and the second term yields self-nonlinearities, including NLR and 

2PA. As in § 2.1.  and § 2.2. , from the second term we can derive 𝑛2 and 𝛼2 in terms of the real 

and imaginary parts of 𝜒(3), respectively (see Equations (2.16) and (2.17)). 

 The total field of a two beam experiment is given by 

 𝐄̃ =
1

2
ℰ𝑎𝑒

𝑖(𝐤𝑎∙𝐫−𝜔𝑎𝑡) +
1

2
ℰ𝑏𝑒

𝑖(𝐤𝑏∙𝐫−𝜔𝑏𝑡) + 𝑐. 𝑐.. (D.8) 

Looking at the product of the field, and first expanding only the first product we get 
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𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃ = (
1

4
ℰ𝑎
2𝑒𝑖(2𝐤𝑎∙𝐫−2𝜔𝑎𝑡) +

1

4
ℰ𝑏
2𝑒𝑖(2𝐤𝑏∙𝐫−2𝜔𝑏𝑡)

+
2

4
ℰ𝑎ℰ𝑏𝑒

𝑖((𝐤𝑎+𝐤𝑏)∙𝐫−(𝜔𝑎+𝜔𝑏)𝑡) +
2

4
ℰ𝑎ℰ𝑏

∗𝑒𝑖((𝐤𝑎+𝐤𝑏)∙𝐫−(𝜔𝑎−𝜔𝑏)𝑡)

+ 𝑐. 𝑐. +
2

4
|ℰ𝑎|

2 +
2

4
|ℰ𝑏|

2) ∙ 𝐄̃. 

(D.9) 

The first two terms are simply the second harmonics at 2𝜔𝑎 and 2𝜔𝑏, and the last two are the zero 

frequency terms. These are simply products of the individual fields, and are the same as those 

appearing in the single beam case, Equation (D.3). Now, however, we have additional terms due 

to the interference of the two beams, which multiply with the third field in the product to give 

 

2

4
ℰ𝑎ℰ𝑏𝑒

𝑖((𝐤𝑎+𝐤𝑏)∙𝐫−(𝜔𝑎+𝜔𝑏)𝑡) (
1

2
ℰ𝑎𝑒

𝑖(𝐤𝑎∙𝐫−𝜔𝑎𝑡) +
1

2
ℰ𝑏𝑒

𝑖(𝐤𝑏∙𝐫−𝜔𝑎𝑡) + 𝑐. 𝑐. )

=
2

8
ℰ𝑎
2ℰ𝑏𝑒

𝑖((2𝐤𝑎+𝐤𝑏)∙𝐫−(2𝜔𝑎+𝜔𝑏)𝑡) +
2

8
ℰ𝑎ℰ𝑏

2𝑒𝑖((2𝐤𝑎+𝐤𝑏)∙𝐫−(2𝜔𝑎+𝜔𝑏)𝑡)

+ 
2

8
|ℰ𝑎|

2ℰ𝑏𝑒
𝑖(𝐤𝑏∙𝐫−𝜔𝑏𝑡) +

2

8
ℰ𝑎|ℰ𝑏|

2𝑒𝑖(𝐤𝑎∙𝐫−𝜔𝑎𝑡). 

(D.10) 

and likewise for the complex conjugate. The last term in Equation (D.10) can be thought of a 

grating term which simply increases the nonlinear interaction in the two beams case (assuming an 

instantaneous material response). The interference of the two beams generates a refractive index 

grating (or transmission grating, in the case of 2PA), off of which the pump is diffracted in the 

direction of the probe (and vice versa) with the correct phase an amplitude to effectively double 

the interaction. This gives a total third-order polarization oscillating at 𝜔𝑎 in the 𝐤𝑎 direction of 

 𝜀0𝜒
(3) (

3

8
|ℰ𝑎|

2ℰ𝑎 +
6

8
|ℰ𝑏|

2ℰ𝑎) 𝑒
𝑖(𝐤𝑎∙𝐫−𝜔𝑎𝑡) + 𝑐. 𝑐. (D.11) 

Thus we can see that the two beam case (second term) is twice the amplitude of the single beam 

case (first term). However, the material property itself, be it 𝜒(3), 𝑛2, or 𝑎2, is independent of the 
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type of experiment used to measure it. Therefore, there must be a factor of two difference between 

the single-beam and double-beam terms in the equations governing irradiance and phase, as in 

Equations (2.14) and (2.15). 

 In the case of 3PA, which is a 𝜒(5) process, these coefficients become more complicated 

due to the various different interference terms between the beams. In this case, the fifth-order 

polarization is (assuming instantaneous and dispersionless as above) 

 𝐏̃(5) = 𝜀0𝜒
(5)(𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃ ∙ 𝐄̃). (D.12) 

To simplify our argument, we apply the multinomial theorem [207], which is the generalization of 

the binomial theorem to an arbitrary number of elements. It states that a sum of 𝑚 elements to the 

𝑛th power may be expanded as a sum of the products of the elements, each with corresponding 

coefficients. That is 

 (𝑥1 + 𝑥2 +⋯+ 𝑥𝑚)
𝑛 = ∑ (

𝑛
𝑘1, 𝑘1, … , 𝑘𝑚

)

𝑘1+𝑘2+⋯+𝑘𝑚=𝑛

∏ 𝑥𝑡
𝑘𝑡

1≤𝑡≤𝑚

. (D.13) 

where the coefficients 

 (
𝑛

𝑘1, 𝑘1, … , 𝑘𝑚
) =

𝑛!

𝑘1! 𝑘2! … 𝑘𝑚!
. (D.14) 

These are simply the number of equivalent terms in the expansion. For example, for third-order 

nonlinearities in the single beam case 𝑚 = 2 (one for each term in Equation (D.2)) and 𝑛 = 3. The 

coefficient on the 𝑥1
3 term is 3!/(3! 0!) = 1, and on the 𝑥1

2𝑥2 term is 3!/(2! 1!) = 3, just as we 

have in Equation (D.7).  

 For 3PA, the single beam case has terms that goes as ℰ3ℰ∗2 = |ℰ|4ℰ, since these are the 

only terms that oscillate at 𝜔 and propagate in the 𝐤 direction. We can find the coefficients using 

Equation (D.13) with 𝑚 = 2 and 𝑛 = 5: 5!/(3! 2!) = 10. Thus there are 10 equivalent terms in 
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the expansion of Equation (D.12) in the case of a single beam. This corresponds to the process of 

absorption three-photons out of a single beam.  

 We can also find the number in the case of two beams. However, there may be either one 

photons at 𝜔𝑎 and two at 𝜔𝑏 absorbed, or two at 𝜔𝑎 and one at 𝜔𝑏. These two cases occur as terms 

in the expansion of Equation (D.12) as ℰ𝑎ℰ𝑏
2ℰ𝑏

∗2 = |ℰ𝑏|
4ℰ𝑎 where we get we get a coefficient 

5!/(1! 2! 2!) = 30, and ℰ𝑎
2ℰ𝑎

∗ℰ𝑏ℰ𝑏
∗ = |ℰ𝑎|

2|ℰ𝑏|
2ℰ𝑎 with 5!/(2! 1! 1! 1!) = 60. Thus, compared to 

the single beam case, two-beam 3PA has two terms with coefficients that are 3 and 6 times greater, 

respectively. Therefore these coefficients on the multi-beam interactions in Equations (5.45), 

(5.72), and (5.73) are necessary. 

 

D.2 Relation between 𝛼2(𝜔𝑎; 𝜔𝑏) and 𝛼2(𝜔𝑏; 𝜔𝑎) 

 There is a difference in the ND-2PA coefficients depending on which of the two frequency 

inputs is being described. This is a consequence of the fact that 𝛼2 is defined in terms of the SVEA 

equation governing the irradiance, rather than the photon flux, in which case 

 
𝜕𝐼𝑎
𝜕𝑧
= −2𝛼2(𝜔𝑎; 𝜔𝑏)𝐼𝑎𝐼𝑏 , (D.15) 

 
𝜕𝐼𝑏
𝜕𝑧
= −2𝛼2(𝜔𝑏; 𝜔𝑎)𝐼𝑏𝐼𝑎. (D.16) 

where 𝛼2(𝜔𝑎; 𝜔𝑏) ≠ 𝛼2(𝜔𝑏; 𝜔𝑎). These equations describe the simultaneous absorption of one 

photon at 𝜔𝑎 and one at 𝜔𝑏, and therefore have the same 2PA rate. This can be seen by converting 

the irradiances into photon fluxes using Φ𝑖 = 𝐼𝑖/ℏ𝜔𝑖, in which case Equations (D.15) and (D.16) 

become 

 
𝜕Φ𝑎
𝜕𝑧

= −2ℏ𝜔𝑏𝛼2(𝜔𝑎; 𝜔𝑏)Φ𝑎Φ𝑏 , (D.17) 
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𝜕Φ𝑏
𝜕𝑧

= −2ℏ𝜔𝑎𝛼2(𝜔𝑏; 𝜔𝑎)Φ𝑏Φ𝑎. (D.18) 

However, because the absorption rates of the two beams are the same, 𝜕Φ𝑎/𝜕𝑧 = 𝜕Φ𝑏/𝜕𝑧, there-

fore 

 𝜔𝑏𝛼2(𝜔𝑎; 𝜔𝑏) = 𝜔𝑎𝛼2(𝜔𝑏; 𝜔𝑎). (D.19) 

Additionally, the two-photon absorption cross section is often used to describe the amount of two-

photon absorption per molecule [20], where, for the two beam case, is 

 
𝜕Φ𝑎
𝜕𝑧

=
𝜕Φ𝑏
𝜕𝑧

= −2𝛿2𝑃𝐴𝑁Φ𝑎Φ𝑏. (D.20) 

Comparing this to Equations (D.17) and (D.18) we find 

 𝛿2𝑃𝐴 =
ℏ𝜔𝑏
𝑁
𝛼2(𝜔𝑎; 𝜔𝑏) =

ℏ𝜔𝑎
𝑁
𝛼2(𝜔𝑏; 𝜔𝑎). (D.21) 

 A similar analysis can be made in the three-photon case. The ND-3PA process of one pho-

ton at 𝜔𝑎 being absorbed, and two photons at 𝜔𝑏 is governed by 

 
𝜕𝐼𝑎
𝜕𝑧
= −3𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏)𝐼𝑎𝐼𝑏

2, (D.22) 

 
𝜕𝐼𝑏
𝜕𝑧
= −6𝛼3(𝜔𝑏; 𝜔𝑏 , 𝜔𝑎)𝐼𝑏

2𝐼𝑎. (D.23) 

Converting to photon flux gives 

 
𝜕Φ𝑎
𝜕𝑧

= −3(ℏ𝜔𝑏)
2𝛼3(𝜔𝑎; 𝜔𝑏, 𝜔𝑏)Φ𝑎Φ𝑏

2, (D.24) 

 
𝜕Φ𝑏
𝜕𝑧

= −6ℏ𝜔𝑎ℏ𝜔𝑏𝛼3(𝜔𝑏; 𝜔𝑏 , 𝜔𝑎)Φ𝑏
2Φ𝑎. (D.25) 

In this case, 2𝜕Φ𝑎/𝜕𝑧 = 𝜕Φ𝑏/𝜕𝑧, therefore 

 𝜔𝑏𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) = 𝜔𝑎𝛼3(𝜔𝑏; 𝜔𝑏, 𝜔𝑎). (D.26) 

 A 3PA coefficient may also be defined 
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 2
𝜕Φ𝑎
𝜕𝑧

=
𝜕Φ𝑏
𝜕𝑧

= −6𝛿3𝑃𝐴𝑁Φ𝑎Φ𝑏
2. (D.27) 

Comparing this to Equations (D.24) and (D.25), we find the  

 𝛿3𝑃𝐴 =
(ℏ𝜔𝑏)

2

𝑁
𝛼3(𝜔𝑎; 𝜔𝑏 , 𝜔𝑏) =

ℏ𝜔𝑎ℏ𝜔𝑏
𝑁

𝛼3(𝜔𝑏; 𝜔𝑏 , 𝜔𝑎). (D.28) 
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APPENDIX E:  SCALED MOMENTUM MATRIX ELEMENTS 
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Table E.1. Z-components of momentum matrix elements 𝑀𝑖𝑗
𝑧 =

ℏ

𝑚0𝑃
⟨𝑖|𝑝𝑧|𝑗⟩ 
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Table E.2. X-components of momentum matrix elements 𝑀𝑖𝑗
𝑥 =

ℏ

𝑚0𝑃
⟨𝑖|𝑝𝑥|𝑗⟩ 
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