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ABSTRACT 

 
This thesis studies the traveling wavefront created by the autocatalytic cubic chemical reaction A + 2B  

3B involving two chemical species A and B, where A is the reactant and B is the auto-catalyst.  The 

diffusion coefficients for A and B are given by AD  and BD .  These coefficients differ as a result of the 

chemical species having different size and/or weight.  Theoretical results show there exist bounds, *v  and 

*v , depending on AB DD / , where for speeds 
*vv , a traveling wave solution exists, while for speeds 

*vv , a solution does not exist.  Moreover, if AB DD , *v  and 
*v  are similar to one another and in 

the order of  AB DD /  when it is small.  On the other hand, when BA DD  there exists a minimum speed 

vmin, such that there is a traveling wave solution if the speed v > vmin.  The determination of vmin is very 

important in determining the dynamics of general solutions.  To fill in the gap of the theoretical study, we 

use numerical methods to determine vmin for various cases.  The numerical algorithm used is the fourth-

order Runge-Kutta method (RK4).  
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CHAPTER ONE: INTRODUCTION 

 
Consider a specific case of the general isothermal autocatalytic system,   ( 1)A nB n B , where 

 2n , which is the cubic autocatalytic step:   

A + 2B  3B with the rate kab
2
 and k > 0. 

Here, a is the concentration of the reactant A, and b is the concentration of the autocatalyst B.  The cubic 

autocatalytic step has been used successfully in models of actual chemical reactions according to 

Billingham and Needham [2].  For example, according to Saul and Showalter [9], the cubic autocatalytic 

step is an agreeable model for the iodate-arsenous acid reaction and according to Gowland and Stedman 

[4], the xylamine-nitrate reaction.   

Models of autocatalytic systems make an appearance in the field of Epidemiology, e.g. a is the 

concentration of a healthy population and b is the concentration of an infected population according to 

Bailey [1].  A diffusion coefficient, D, is introduced, which is the ratio of the diffusion rate of the 

autocatalyst to that of the reactant, (i.e. DB/DA).  D can vary greatly depending upon the mobility of the 

infected population and/or disease. Moreover, D can be significantly different from unity.  (Billingham 

and Needham, [2]).  Given a fixed set of initial conditions, it is this D that may cause the minimum speed, 

vmin, to vary.     

Experiments indicate the existence of traveling wave fronts in chemical systems where the cubic catalysis 

is a key step according to Saul and Showalter [9], as well as Zaikin and Zhabotinski [10].  A result of the 

interaction of two different chemical species is wave fronts or traveling waves.  According to Chen and 

Qi [3], Hanna, Saul and Showalter [9], and Merkin and Needham [6], given the uniform concentration of 

a reactant and the local introduction of an autocatalyst, it has been witnessed that the reaction creates 

wave fronts as the reactant is consumed by the autocatalyst, ahead of the wave fronts.  These wave fronts 

move outward, away from the initial reaction zone.   In the end there is the non-uniform distribution of 

chemical species.  The phenomenon of the wave front or traveling wave will be studied in this thesis. 



 

2 

 

1.1 A Dimensionless System 

Consider the standard partial differential equations that govern the mass concentration/molecular 

diffusion for this cubic reaction scheme:  

 
   

 

2 2
2 2

2 2
;   A B

a a b b
D kab D kab

t tx x

 

 
 

(1.1) 

where 2kab  is the kinetic portion and AD  and BD are the diffusion rates of A and B, respectively.  

Experimental setups dictate the initial conditions as follows: 

 0( ,0)a x a , ( , 0) ( )b x g x     x   

where the positive constant 0a  represents the uniform distribution of the reactant and ( )g x  is a non-

negative function with compact support, meaning that support of  ( ) { | ( ) 0}g x x g x .   

Now we introduce the dimensionless parameters for the dependent and independent variables: 

 B

A

D
D

D
, 

0

a
a

a
, 

0

b
b

a
,  2

0t ka t , 
2
0

A

ka
x x

D
, 

g
g
a0

.  

Thus, 

 0( , ) ( , )a x t a a x t  

and , 

b x t a b x t0( , ) ( , ).  

Moreover, 

   
   

    
3

0 0 0

( , ) ( , )a x t a x ta a dt a
a a ka

t t t t dt t
,   where     2

0
dt

ka
dt  

also,
 

A

kaa x t a x ta a dx a
a a a

x x x x dx x D

2
0

0 0 0

( , ) ( , )   

    
    ,   where   

A

kadx

dx D

2
0  
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and 

A A A A

ka ka ka kaa a a a
a a a
x x x D D D Dx x x

1 1 1
2 2 22 2 2 32 2 2

0 0 0 0
0 0 02 2 2

.
     

    

                                         
 

The equivalent partials for ( , )b x t
 
are 

b x t b x tb b dt b dt
a a ka ka

t t t t dt t dt
3 2

0 0 0 0

( , ) ( , )
,    where  

   

    
      

A A

ka kab x t b x tb b dx b dx
a a a

x x x x dx x D dx D

2 2
0 0

0 0 0

( , ) ( , )
,    where 

   

    
    

 

and

 

A A A A

ka ka ka kab b b b
a a a
x x x D D D Dx x x

1 1 1
2 2 22 2 2 32 2 2

0 0 0 0
0 0 02 2 2

.
     

    

                                         
 

Note that B AD DD .  We remove bars, make the appropriate substitutions into (1.1), and simplify, to 

obtain the following dimensionless initial value problem (IVP): 

a a
ab x t

t x

b b
D ab x t

t x

a x b x g x x t

2
2

2

2
2

2

,  , 0

,  , 0

( , 0) 1,   ( , 0) ( )   for , 0.

 

 

 

 

   

   

   







 

(1.2) 

The emphasis of this paper will be given when  1D , which occurs when the chemical substances 

involved have different molecular weights and/or sizes.   

 

1.2 Ordinary differential equations (ODE) system for Traveling Wave Solution 

The phenomenon of propagating wave fronts corresponds to (1.2), where there are two traveling wave 

fronts expanding outwards to  , both moving at a certain speed, v, according to Chen and Qi [3] and 
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Zaikin and Zhabotinskii [10].  We consider the wave front approaching positive infinity and make the 

following change of variables  z x vt , thus ( ( , ), ( , )) ( ( ), ( ))a x t b x t z z  .  We transform (1.2) using the 

aforementioned change of variables, which that requires the following partial derivatives: 

z z

z z

a dz
v v

t z dt

b dz
v v

t z dt

( ) ,    and

( )

 
 

 

 
 

 

    

     

 

as well as 

   
                              

2

2
1z z zz

a a a dz

x x x z dt x xx
   , 

and  

   z z zz
b dz

x x x z dt x xx

2

2
1 .

 
  

                              
 

We substitute the four partial derivatives into (1.2), which gives the following system of ODEs:  

zz z

zz z

z

z

v

D v

z z

z z

2

2

lim ( ( ), ( )) (1, 0)

lim ( ( ), ( )) (0,1).

  

  

 

 





 

  




 

(1.3) 

The constant traveling wave speed, v, is greater than zero. 

The organization of the paper is as follows: Chapter Two lists the theorems from Chen and Qi [3], 

Chapter Three contains a preliminary analysis and Chapters Four and Five discuss the cases of  1D  

and  1D , respectively.  The material in Chapters One through Five originated from the work of Dr. 

Yuan-wei Qi and Dr. Xinfu Chen presented in their paper “Sharp Estimates on Minimum Traveling Wave 

Speed of Reaction Diffusion Systems Modeling Auto-Catalysis” [3].  Chapter Six describes the numerical 
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analysis used to determine the minimum speeds for both small and large D, which was completed in this 

thesis with the guidance of Dr. Yuan-wei Qi.  Chapter Seven demonstrates the results of the numerical 

analysis. 
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CHAPTER TWO: THE TRAVELING WAVE PROBLEM 

The traveling wave problem for v > 0 is to find C
22( , ) ( )        that satisfies the ODE system (1.3).  The 

existence and non-existence of a traveling wave solution will be studied.  Moreover, we want to estimate 

the minimum speed for the traveling wave speed (i.e., with respect to the diffusion coefficient ratio, D, for 

what range of v does a traveling wave solution exist). 

Previous studies by Billingham and Needham [2] concluded that a traveling wave solution exists if 

 2v D .  Furthermore, results by Qi [7] improved the work of Billingham and Needham [2] with a 

more detailed study for system (1.3), that is there is a traveling wave solution when: 

     2 1v D   when  1D  and 

     v D  when D < 1 

and there is not a traveling wave solution when: 

    
D

v
6

  when  1D  and 

    
D

v
6

  when D < 1. 

It is also known that:  

    min
1

2
v  when D = 1. 

Presented here is a good estimate for minv , for both small and large D.  In addition, the gap between the 

general case and the case of D = 1 will be closed. 

2.1 The Case of D < 1 

The main result of Chen and Qi [3] for the case of D < 1 is: 
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Theorem 1:  Suppose D < 1.  For the traveling wave problem presented in equation (1.3), there exists 

a unique solution (up to translation) if 


4

1 4

D
v

D
; there does not exist any solution if 

2

D
v . 

Their results are much better than the previous works. 

2.2 The Case of D ≥ 1 

The main result of Chen and Qi [3] for the case of D ≥ 1 is: 

Theorem 2: Suppose  1D .  There exists a positive constant minv  such that (1.3) admits a solution if 

and only if  minv v .  In addition, minv  satisfies the estimate 

      
min2 1 1

D D
v

D
. 

As was the case for D < 1, the result by Chen and Qi [3] for D ≥ 1 was a great improvement on previous 

works.  

Theorems 3 and 4 are the results of Chen and Qi [3] that not only apply to the special case of the cubic 

autocatalytic reaction step, but also the general case.  Recall that the general isothermal autocatalytic 

chemical reaction with order  1n  is   ( 1)A nB n B  with rate nkab .  Similar to the equations in 

(1.2), the dimensionless IVP is: 

n

n

a a
ab x t

t x

b b
D ab x t

t x

a x b x g x x t

2

2

2

2

,                , 0

,             , 0

( , 0) 1,   ( , 0) ( ),    , 0.

 

 

 

 

   

   

   







 
 

(2.1) 
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By making the same argument and change of variables as in §1.2, that is  z x vt , thus

a x t b x t z z( ( , ), ( , )) ( ( ), ( ))  and so system (2.1) becomes: 

n
zz z

n
zz z

z

z

v

D v

z z

z z

lim ( ( ), ( )) (1, 0)

lim ( ( ), ( )) (0,1)

  

  

 

 





 

  





 

(2.2) 

for all real values of z. 

2.3 The Case of D < 1 and n ≥ 1 

Theorem 3:  Suppose D < 1 and  2n .  A unique (up to translation) traveling wave solution exists for 

(2.2) if 
D

v
D

4

1 4



.  On the other hand, there exists no solution for (2.2) if 

D
v

K n( )
 , where K(n) is a 

constant, which increases with n.  In particular, K(1) = ¼,  K(2) = 2. 

2.4 The Case of D ≥ 1 and n ≥ 1  

Theorem 4:  Suppose  1D  and  1n .  There exists a positive constant vmin such that (2.2) admits a 

traveling wave is and only if v  vmin.  In addition, vmin is bounded by 

 
 

 
 

1

( ) ( ) 4 ( ) 1 11
1 (1 )

4 ( ) 1 1

min
D D

v
K n K n K n

D K n

 

where K(n) is the same constant as in Theorem 3. 
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CHAPTER THREE: EXISTENCE AND PROPERTIES OF THE 

TRAVELING WAVE 

 
Consider the traveling wave equation of unit speed: 

n
zz zu u ku u u u u(1 ) ,  0,1  on   with ( ) 0 and ( ) 1.                (3.1) 

This resembles equation (2.2) for the case D = 1.  Here n ≥ 1 is a parameter and k is a positive constant.  

It is easy to verify that if a solution exists, it satisfies zu 0  on  .  Let u be the independent variable, 

then using the change of variables  

 ( )zu Q u Q  

then 

zz
dQ dQ du

u u Q Q QQ
dz du dz

( ) .      

Thus equation (3.1) becomes 

nQQ Q ku u u

Q Q u

(1 ) ,    0,1

(0) 0  and  ( ) 0.

       

 
 

(3.2) 

Note: A traveling wave solution must satisfy Q(1) 0 . 

3.1 Existence  

Lemma 1: For each  1n  and  0k , there exists a unique solution  ( , ; )Q n k  to (3.2).  In 

addition, there exists a positive constant ( )K n  such that  ( , ;1) 0Q n k  if   0, ( )k K n  and 

 ( , ;1) 0Q n K  if   ( ),k K n .  Consequently, (3.2) admits a solution if and only if   0, ( )k K n . 

( )K n  is a strictly increasing function of n and K(1) =
1

4
, K(2)=2. 
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Proof: We want to show that for 1 2k k , 1 2( ) ( )Q u Q u  when  0 1u .   

Let 1 2k k ; 1 1 1( ) ( , ; )Q u Q n k u  and 2 2 2( ) ( , ; )Q u Q n k u .  When  0 1u , suppose Q u c u1 1( )   and 

Q u c u2 2( )  , where 1 2,c c  are constants.  From (3.2) for 1 1( , ; )Q n k u  

nQQ Q k u u1 1 1 1' (1 ) .    

Substituting 1c u  for 1 1( , ; )Q n k u  gives us 

nc u c c u k u u1 1 1 1( ) (1 )    

thus,  

c c k2
1 1 1 0.    

Because 1( ) 0Q u  and  0u , thus  

k
c 1
1

1 1 4
.

2

  
  

Similarly,  

k
c 2
2

1 1 4
.

2

  
  

Since 1 2k k , then 

c c1 2.
 

 Thus, 

1 2( ) ( )Q u Q u  when u0 1.   

         ∎ 
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Next we show that 1 2( ) ( )Q u Q u  in (0,1) .  Suppose the contrary, then ∃u0 (0,1)  such that 

Q u Q u2 0 1 0( ) ( ) .  From above, we have seen that when  0 1u , 1 2( ) ( )Q u Q u .  Therefore, 

Q u Q u1 0 2 0( ) ( )  .  Consequently, at u u0 this must hold: 

  1 1 1 2 2 2'( ) ( ) '( ) ( )QQ u Q u QQ u Q u  

but  

n nQQ Q k u u QQ Q k u u1 1 1 1 2 2 2 2' (1 ) ' (1 ) .        

This is a contradiction. Thus  

 Q u Q u1 2( )  in the interval(0,1).                  

In consequence,  if Q n k1( , ;1) 0 , then Q n k2( , ;1) 0  for all k k1 2  and if 2( , ;1) 0Q n k  then 

1( , ;1) 0Q n k  for all 1 2k k . 

∎ 

3.2 Properties 

Suppose ( , , )v    solves (2.2), then  

   [ ] 0z z zv D v   
 

and thus the expression within brackets is a constant function.  Applying the boundary conditions gives 

the following equation: 

z zD v z( 1) 0,    .           

Introducing  zw  , the system of equations (2.2) is equivalent to:    
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z

z

n
z

z

z

v Dw

w

w D vw

z z w z

z z w z

1

(1 )

( )

lim ( ( ), ( ), ( )) (1, 0, 0)

lim ( ( ), ( ), ( )) (0,1, 0).

  





 

 







   



  





 

          (3.3) 

Proposition 1: The systems (2.2) and (3.3) are equivalent.  Any solution ( , )   to (2.2) or w( , , )   to 

(3.3) has the following properties: 

1. z z0 ,  on      

2. (a)  1    on   if D 1, (b)   1   if D 1,  and (c)   0   if  1D  

3. nv z z dz( ) ( ) 0 



   

4. The equilibrium point (0, 1, 0) of (3.2) is a saddle with a two-dimensional stable manifold and a 

one-dimensional unstable manifold.  The eigenvalues and associated eigenvectors are: 

   

   

T

T

T

vD

v v D v

v v D v

2

3

1
1 1

2
2 2 2 2

2
3 3 3 3

,                (0, 1, )

1
4 ,  , 1,

2

1
4 ,     , 1,

2







 

   

   

    

         

        

1
e

e

e

 

5. When n > 1, the equilibrium point (0,0,1) of (3.3) is degenerate; it has a two-dimensional stable 

manifold and a one-dimensional center manifold.  The eigenvalues and associated eigenvectors 

are: 
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 

 

 

T

T

T

v

vD vD
2

3

1

1 1
2

3

,        1, 0, 0

,   0,1,

0,         1, 1, 0













 

  

   

  

1
e

e

e

 

 

Proof of (1): Consider  0z .  We multiply the first equation of (2.2) 

  n
zz zv    

by vze and integrate on z( , ). We find that 

z
vz vs n
ze e ds.  


   

Because ( ) 0z
 
and ( ) 0z  for  z , then 

 

 

 ∎ 

Next consider  0z .  We multiply the second equation of (2.2)
 

   n
zz zD v    

by 
1vD ze and integrate on  z, . We find that 

z
vD z vD s n

ze e ds
1 1

.  
 


   

Because ( ) 0z  and ( ) 0z  for  z , then  

z
vD z vD s n

z e e ds z
1 1

0,   .  
 


      

 ∎ 

 

z
vz vs n

z e e ds z0,    .  


    
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Proof of (2a): 

The proof for (2a) is similar to the proof presented for (2b).  

Proof of (2b): From (3.3), forD 1,  we have 

z z v v( ) ( ) .        

We multiply by vze  and integrate, which results in the following 

 vz vze e .    

Therefore, 1   . 

          ■ 

Proof (2c): Similarly, (2c) is true. 

          ■ 

Proof of (3): From the first equation of (2.2)  

n
zz zv z a,   ,  0.        

We integrate from  ,  , thus 

n
z zv v dz( )( ) ( )( ) .    




        

Using the condition that  ( ) 1 , this implies  ( ) 0z  and  ( ) 0 , then,  

nv z z dz( ) ( ) 0. 



 

 

         
■ 

Verification of (4): Since  0,1,0 is an equilibrium point, then we have the following Jacobian matrix M: 

 at

f f f

w v v D
g g g

w
D D vh h h

w

1 1

 0,1,0

0 0 1 ,

0

  

  
  

  
  

  

 

                                   

M  
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where     (1 )zf v Dw   ,  zg w , and n
zh w D vw1( ).     

We determine the eigenvalues by solving det( ) 0 M I , which gives us: 

v D v D v D1 1( )( )( ) ( )( ) 0.               

This simplifies to 

v D v2 1( 1)( ) 0.        

The three eigenvalues are 

vD

v v

v v

1
1

2
2

2
3

1
( 4 )

2
1
( 4 ).

2







 

   

  

 

Case 1:   1
1 vD , 

 

v vD v D x

vD x

xD D v D v

1
1

1
2

1 1 1
3

( ) 0 1 .

0







  

                          

M I x 0  

This yields the following system of equations: 

v vD x v x D x1
1 2 3( ) ( ) ( ) 0        

vD x x1
2 3 0    

D x1 1 0.   

Choose  2 1x , then  

  1
3 1x vD   

and for   1
1 vD  

T
1(0, 1, ) .   

1
e  
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Similarly, when    2
2

1
( 4 )

2
v v , the associated eigenvector is 

  T
D v

2 2 2 2, 1,        e  

and when   2
3

1
( 4 )

2
v v , the associated eigenvector is  

TD v
3 3 3 3( ( ), 1, ) .      e  

∎ 

Verification (5): The verification is similar to the fourth property of Proposition 1.  

∎ 

This completes the proof of Proposition 1. 

Remark: The third property indicates that the speed is greater than zero, while the fourth property tells us 

the traveling wave is the one-dimensional unstable manifold, starting at the equilibrium point (0,1,0). 

Thus if a traveling wave exists for a speed, v  > 0, it is unique, up to a translation. 

3.3 Transforming System (3.3) to a Non-Autonomous 2 × 2 System 

Next we transform the third order autonomous system (3.3) to a second order non-autonomous system.  

We use  1u   as the independent variable, which is acceptable since the solution we seek  0z , 

thus  1 ( )z z  has an inverse.  Consider the following change of variables: 

u 1   ,       
D

A
v2


 ,       
vz D

y
D v

,        

 First we determine z :  

z z
v v v dA
A A

D D D dz

2 2 2

      

and then w : 
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z y
d d du d du dy du v v

w u
dz du dz du dy dz dy D D

( 1) .
  


            

 

From the first equation of (3.3)  

   (1 )z v Dw   , 

 using the above change of variables for  ,  , z , and w , we have the following: 

y y
v v v
A v A u D u

D DD

3 2

2
1 (1 ) .
                 

 

 

This implies   

y y
D

A DA u u
v

2

2
( )     

and therefore 

y yA u u DA2( )  on .        

(3.4) 

Since, 

n
z zw w D vw1  and  ( )      

then 

z zz y yy yy
d d d d v v d du v d u dy v v v

w u u u
dz dz dz D D dz dy D dz D Ddz dy D

2 2 2

2 2 2
.

 


                                                   
 

Substituting the expressions for zw ,  ,  , and z  into the third equation of (3.3)  

n
zw D vw1( )    

we have: 

n
yy y

v v v
u D A u u

D DD

2 2 2
1

2
(1 ) .

 
        
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This simplifies to 

  (1 )nyy yu u A u  on .  

(3.5) 

Since  0yu  for the solution sought, we can useu  as the independent variable.  Let ( ) yP u u  then 

 yy
d dP dP du

u P u u P P PP
dy dy du dy

( ) ( ) .       

Next consider 

    y y
dA dAdu

A A u PA
dy du dy

( ) .     

Thus we have the system 

nPP A u P u

PA P u DA u

P u A u u

P A

2

(1 ) ,   0,1

( ) ,   0,1

( ) 0,   ( ) 0,   (0,1)

(0) 0,   (0) 0.



        

        

   

 

 

(3.6) 

since  ( ) 0u  and  ( ) 1u .  ( ) 0A u  because 
2

D
A

v


, where D v, , 0  . 

This is an equivalent system of second order non-autonomous ODEs. 

3.4 Unique Solution for the Non-Autonomous System 

Lemma 2: For every  0D and  0 , (3.6) admits a unique solution.  In addition,  

  2( ) ( )P u u O u  

Au u O u D2( ) (1 ) ( ),   0      
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where     2 21
4  

2
D D  , the only positive root to   2( )D   . 

Furthermore, '( ) 0A u  for all  [0,1)u and there are only two possible cases: 

 

(a) (1) 0;P  ∄ any traveling wave solution to (2.2) 

(b) (1) 0;P  ∃ a traveling wave solution to (2.2) unique up to translation. 

Derivation: To derive   2( ) ( )P u u O u  and    2( ) (1 ) ( )Au u O u   as  0D , let  1( )P u c u  and 

 2( )Au l u .  This implies  

  1( )P u c  and A u l2( ) .   

Making the appropriate substitution for P P A,  ,  and  into the first equation of (3.6) gives us 

nc u l u u c u2
1 2 1(1 ) .    

Since  0u we have 

c c l2
1 1 2 0.    

(3.7) 

Solving (3.7) for 1c  gives us 

c l1 2
1 1

1 4 .
2 2

     

Making the appropriate substitution for P A A,  ,  and  into the second equation of (3.6) gives us 

c u l c u u Dl u2
1 2 1 2( )( ) ( )    

and thus 

l c D c2
2 1 1( ) ( 1).    

 When  1D , then  2
2l  .  When  1D , consider  2

2 1 1l c c  from (3.7), which gives us 
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c c c D c2 2
1 1 1 1( )( ) ( 1).     

Solving for 1c gives us 

D D
c

2 2

1
4

.
2

  
  

(3.8) 

Since ( ) 0P u  for all  (0,1)u  and we let  1( )P u c u , therefore we have 

 c D D2 2
1

1
 4  ,

2
      

the only positive root to   2( )D    and   2( ) ( )P u u O u .  Since  2
1 1 2c c l , where 1c  , thus  

 2 ( 1)l    and Au u O u2( ) ( 1) ( ).     

 The remainder of the proof of Lemma 2 is presented by Chen and Qi in [3]. 
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CHAPTER FOUR: THE CASE D  1 

 

Lemma 3: Suppose  1D .  Then  2( )DAu u  for all    0,1u .  Consequently, ∄ a traveling wave 

solution to (2.2) when 2 ( )DK n , i.e. when  / ( )v D K n .  

 

Proof: If  1D , then   1   from part (2b) of Proposition 1.  Also we have  1u  .  As well:  

   2
2 2

( )
D

A u u
v v

 
  for all u 0,1 .     

When  D u1,   0,1    

 

P DA u

P DA u

D P u DA P

D DA u D P

D DA u

2

2

2 2

2 2

2

[ ( ) ]

[ ( ) ]

[ ] 1

[ ]





 

 



   
 

   

    

  

 

In addition, when u is sufficiently small:  

DA u D u O u D u2( ) (1 ) ( ) [ ] .         

Substituting  D D2 21
4

2
   

 
we have 

  
 

   D u D D D D D u2 2 2 21 1
[ ] 4  4 .

2 2
   

   
                  

 

This simplifies to: 

D u D D D D u2 2 2 21 1 1 1
[ ] 4  4 .

2 2 2 2
   

   
                 

 

Moreover, 

D u D D u2 2 21 1
[ ] (4 ) .

4 4
  

 
    
  

 

Then by Lemma 2: 
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D u u2[ ] .    

Applying the Gronwall’s inequality gives DA u2  on (0,1).  

∎ 

Lemma 4:  Suppose D 1 .  Then, 

A u u P u u u( ) (1 ) ,   ( ) ,   (0,1)        

Consequently, ∃ a traveling wave solution to (2.2) when K n( 1) ( )    , i.e. when  

 

 

K nD
v

K n D K n

1
1 21
22

1
2

4 ( ) 1 11
1 1

( ) 4 ( ) 1 1

 
                       

 

The proof of Lemma 4 is presented by Chen and Qi in [3]. 

 



 

23 

 

CHAPTER FIVE: THE CASE D < 1 

 

Lemma 5: Suppose D 1 .  Then A u2 on (0,1).  Consequently, when K n2 ( )  , i.e. 

D
v

K n( )
 , there is no traveling wave solution to (2.2). 

Proof: From direct calculation 

P A u PA P P u DA P P u DA P u DA2 2 2 2 2 2 2 2[ ] [ ] .                      

Next add and subtract Du2  and so: 

u DA u Du DA D u D u D A u2 2 2 2 2 2(1 ) ( ).               

BecauseD 1 , from the assumption, then  

D1 0.   

Also known is that 2 0   and u 0 . Moreover,u (0,1) . Therefore  

D u2(1 ) 0.    

This gives us the following inequality: 

D u D A u D A u2 2 2(1 ) ( ) ( ).        

Now that the following inequality has been established: 

P A u D A u2 2[ ] ( ).      

Applying Gronwall’s inequality gives  

A u2  on [0,1). 

It then follows from Lemma 1, that there does not exist any solution to the traveling wave problem. 

∎ 

Lemma 6 Suppose D 1 .  Then 


n

A u u P u u u2( )(1 ) ( ) ,   0,1 .           
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Proof:  

At u 0 , the two sides are equal.  

Computation in (0,1]  shows 

 

   

      

     

n

n n

n n n

n n n

n

P u A P u

u P u DA nPA u A u

D u A u P u P u u D

D u A u P u D P u u

D

2

1
2 2

2 2 2

2 2 2

2

2 2

(1 ) 0

1
1 ( ) 1 (1 )

2

1 1 ( ) ( ) 1

1 1 ( ) ( ) 1 1



 

    

  





      

          
     

                          
     

                         
      

n n

u A u P u2 21 1 ( )
   

            

 

In the first inequality we drop the term 

n

nPA u 2
11

(1 ) 0.
2

    

In the second inequality the D2 2 .     

 

The proof of Lemma 6 follows from Gronwall’s inequality. 

∎ 

Proof of Theorem 3: We want to show non-existence of the solution for (2.2). The non-existence follows 

directly from Lemma 5: 

K n D2 ( ),   when 1.    

That is, if 

D
v

K n( )
  

∄ a traveling wave solution. 

We now prove existence. Simple computation shows that when
D

v
D

4

1 4



,   

1

4
  . Recall from 

Lemma 2 that  
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 D D2 21
4 .

2
        

(5.1) 

Also note that if  

D
v

D

4

1 4



 

then 

D
v

D

2
2 16

.
1 4




 

Also recall 

D

v
.   

Thus 

D D

D

2 2

2

16

1 4



 

and so 

D2 1 4
.

16



  

Substituting this value into (5.1), we obtain 

D
D D21 1 4

2 4


        
 

that is 

 D D
21 1 1

2 1 .
2 2 4


        

 

We now proceed to show that 
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u u
P

(1 )
0

2


  on (0,1). 

We have 

P u u2 (1 ) 
  

 
n

n n

n n

n

n

n

P u A u

P u P u u

P u A u P u u u u u u

u u u u u

u u P u u

2

2 2

2 2

2

1

(2 3) 2 (1 )

(2 3) 2 (1 )

3 3
(2 3) 2 (1 ) 2 (1 ) (1 ) (1 )

2 2
3

     (1 ) 2 (1 ) (1 )
2

3
(1 ) 2 (1 ) .

2



 

 





   

    
   
               
      

 
       
  

 
          

 

Since n
1

2
4

    , we have 

 
n n

u u u u u u2 2
1 3 3 1

2 (1 ) (1 ) 2 (1 ) 2 1 (1 ) 0.
2 2 2

                      

Because P u u u2 (1 ),  1    , Gronwall’s inequality shows that 

u u
P

(1 )
 on (0,1).

2


  

Thus, P(1) = 0, which proves existence.        ∎ 
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 CHAPTER SIX: NUMERICAL ANALYSIS SUMMARY 

 
Theoretical results leave a gap in determining the minimum speed, vmin.  We use numerical analysis to fill-

in this gap for vmin for various cases of D using Matlab
®
.  We tested the robustness of the built-in solvers 

using the Lotka-Volterra system.  The built-in solvers were not up to the task of producing our desired 

results and thus we chose to test and subsequently implement the explicit fourth-order Runge-Kutta 

method, as described in Reckenwald [8].  In all cases presented below a small perturbation to the original 

equation was made.   

6.1 The First Order Equation 

We start our numerical computation with the first order system. Equation (3.2) is solved for Q   as 

follows: 

nku u
Q u

Q u

(1 )
( ) 1

( )

     Q(0) 0 . (6.1) 

Here D is 1.   The algorithm blows-up or produces incorrect results when diving by Q u( ) .  By making a 

slight modification, the algorithm reproduced exactly the theoretical results and thus justifies the 

modification.  The modification made is dividing by Q u( ) 0.001 .  For the case of K(0) , Q h c h1( )  , the 

result of the numerical analysis is a linear graph (Figure 1).  From Lemma 1 we have that  K(1)=0.25 and 

K(2)=2.  Figures 2 and 3 show the numerical results for the traveling wave solution for these two cases.  

When deviating from the specified K(n) values, Q(1)  is greater than zero.  In fact, the greater the 

departure from the prescribed value, the earlier the traveling wave solution diverges from the anticipated 

solution. 

6.2 Second Order System 

The next task is to address the traveling wave solution for (3.6). Solving for P u'( )  and A u'( )  gives us 
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nA u u P u
P u u

P u

P u u DA u
A u u

P u

P u A u u

P A

2

( )(1 ) ( )
( ) ,   0,1

( )

( ( ) ) ( )
( ) ,   0,1

( )

( ) 0,   ( ) 0,   (0,1)

(0) 0,  (0) 0.



           

           

   

 

 

(6.2) 

Two cases are analyzed: one for small D and one for large D, where the speed v is varied such that a 

traveling wave solution exists.  Moreover, the minimum speed (vmin ) is identified.  

6.3 Small D 

The first value considered is D = 0.1. Theorem 1 establishes the range in which the minimum speed 

occurs. This interval is [0.0707, 0.3381].  For a speed of v = 0.34, we first seek to establish a traveling 

wave solution numerically.  Analogous to the first order system explored before, a modification is made 

to the division by P(u) in both equations by adding a small value of 0.001.  This modification helps obtain 

better results, yet P(1) ≠ 0.  A further adjustment is made by dividing by P u( ) 0.01 .   Once the 

adjustments are made, consistent and accurate traveling wave solutions are obtained for v = 0.34, for 

various step sizes, i.e. h 0.01,0.005,0.001  (Figure 4). 

Next we want to find vmin  by taking iterative bisections of the interval [0.0707, 0.3381].  The vmin is 

determined through graphical and tabular numerical analyses.  Further fine-tuning of the system is 

required for consistent results for various step sizes and thus we divide by P u( ) 0.005.  

The first significant determination done in this work is that vmin = 0.135, for D = 0.1. 

A similar scenario is conducted for D 0.01 for the interval [0.0071, 0.0392].  Fine-tuning is 

accomplished by dividing both equations of (6.2) by P u( ) 0.005  (Figure 5).  
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The second significant achievement of this thesis is that vmin = 0.0152, for D = 0.01. 

6.4 Large D 

The first case presented for large D isD 10 .  From Theorem 2, the interval used to investigate the 

minimum speed for D = 10 is [2.2361, 3.0151] .   Lemma 2 is used to compute the initial values for P u( )  

and A u( ) , that is P u h( )   and A u h( ) (1 ) .    A traveling wave solution is obtained when dividing 

(6.2) byP u( ) 0.015 .  For a speed of 3.0150 and n = 2 a traveling wave solution is established (Figure 6).  

In a manner similar to the cases of small D values, the interval is bisected.   

The third, and final significant finding is that vmin = 2.923, for D = 10. 

Lastly, the case of D = 50 is investigated.  The interval for associated with the D value is 5.0000,7.0014 
  .  

For a speed of 7.0000, h = 0.001, a traveling wave solution is established (Figure 7).  Because of the large 

value of D the results are not as robust as the other cases for D. 
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CHAPTER SEVEN: RESULTS 

 

Figure 1 

This figure represents the results from the traveling wave equation (6.1) for the case D 1 , 

n 0 .  As expected, the solution is linear.  
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Figure 2 

This figure is the results from the traveling wave equation (6.1) for the case D 1 , K(1) 0.25.  
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Figure 3 

This figure is the results from the traveling wave equation (6.1) for the case D 1 , K(2) 2.  
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Figure 4 

This figure is the results from the traveling wave equation (6.2) for the case D 0.1 , n 2 , and 

v 0.34 .   
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Figure 5 

This figure is the results from the traveling wave equation (6.2) for the case D 0.01 , n 2 , and 

v 0.135 .   
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Figure 6 

 

This figure is the results from the traveling wave equation (6.2) for the case D 10 , n 2 , and 

v 3.0150 .   
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Figure 7 

 

This figure is the results from the traveling wave equation (6.2) for the case D 50 , n 2 , and 

v 7.0000 .   
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