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ABSTRACT 
 

 The role played by power converting circuits is extremely important to almost any 

electronic system built today. Circuits that use converters of any type depend on power 

that is consistent in form and reliable in order to properly function. In addition, today’s 

demands require more efficient use of energy, from large stationary systems such as 

power plants all the way down to small mobile devices such as laptops and cell phones. 

This places a need to reduce any losses to a minimum. The power conversion circuitry in 

a system is a very good place to reduce a large amount of unnecessary loss. This can be 

done using circuit topologies that are low loss in nature. For low loss and high 

performance, soft switching topologies have offered solutions in some cases. 

 Also, limited study has been performed on device ageing effects on switching 

mode power converting circuits. The impact of this effect on a converter’s overall 

efficiency is theoretically known but with little experimental evidence in support. 

 In this thesis, non-isolated buck type switching converters will be the main focus. 

This type of power conversion is widely used in many systems for DC to DC voltage step 

down. Newer methods and topologies to raise converter power efficiency are discussed, 

including a new synchronous ZVT topology [1]. Also, a study has been performed on 

device ageing effects on converter efficiency. Various scenarios of voltage conversion, 

switching frequency, and circuit components as well as other conditions have been 

considered. Experimental testing has been performed in both cases, ZVT’s benefits and 

device ageing effects, the results of which are discussed as well. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Introduction 
 

 The field of Power Electronics is very broad and contains components from 

several disciplines of electrical engineering. Being general, Power Electronics involves 

converting energy from one form to another [3]. Globally we are becoming more aware 

that energy is a precious commodity. Therefore the use of energy is becoming such that 

we want more for less, that is, more work done using less energy than before. In essence, 

in any system we want energy expended to do the desired job only with no additional 

energy expenditures for unwanted or unnecessary work. This concept of high efficiency 

is nothing new but the demand for it seems to be growing. 

 Most Power Electronic systems can be simplified into three general components 

the source, converter, and load (shown in the block diagram below). The source provides 

the input energy and the load uses that energy to perform the desired task. The load can 

be anything from a motor to a microprocessor or a combination of items. In some cases, 

only a source and a load make up the entire system. However, in most systems some form 

of conversion is needed to provide the load with correct form of energy it needs. 

Certainly energy savings in any system, given a source, can be made almost anywhere in 

the system. The converter, being central to the energy flow, can be one of the best places 

to reduce unwanted losses. The ideal converter does not have any losses and the power in 
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is equal to the power out. In any real converter this is not the case of course and there are 

losses. Reducing this loss to a minimum is necessary to have a high level of efficiency. 

 

 

 

Figure 1: Simplified Power Electronic System Block Diagram 

 

1.2 Objectives 
 

THESIS MAIN OBJECTIVES 
 

• Providing expanded knowledge of ZVT soft switching buck converters through 

application of theory, simulation and experimental testing. 

o Using this expanded knowledge and pointing it in a useful direction. 

 Investigation of this topologies potential use in integrated 

applications. 

• Analyzing the impacts of device ageing on switching converters using theory and 

experimental testing. 

o Discuss the various factors that are associated with the effects or lack of 

effects in converters. 
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1.3 Motivation 
 

 Continued study of power converting circuits is important for improving the 

performance and reliability of tomorrow’s converters and by extension, the performance 

in terms of power consumption and overall reliability of the systems that they support. It 

is with this goal in mind that the research and experimental testing outlined in this paper 

was performed.  

 

1.4 Thesis Structure 
 

 This thesis is structured as follows. In chapter 2, some foundation for the work to 

follow will be provided in the form of some basic knowledge and principals. Chapter 2 

contains some fundamental concepts that may be useful in understanding for those not as 

familiar to the field of Power Electronics. In chapter 3, the focus is on soft switching 

buck converters and the first main objective of this paper will be addressed. In chapter 4, 

the focus is shifted to converter ageing effects and the second main objective of this 

paper will be addressed. In chapter 5, results from previous chapters will be noted and 

conclusions will be made based upon these results. 
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CHAPTER 2:  BUCK CONVERTER BACKGROUND 
INFORMATION 

 

2.1 Power Conversion 
 

 Power conversion is in and of itself a general topic, one that is addressed within 

the field of Power Electronics. There are four general forms of power converting circuits 

ac-to ac, ac-to-dc, dc-to ac, and dc to dc [3] [32]. Since addressing all forms of 

conversion would not be entirely useful for supporting the scope of the work done in this 

thesis, only dc-to-dc will be covered. Even within topic of dc-to-dc converters there are 

many circuit topologies and aspects of each circuit topology that can be addressed, the 

very thought of covering them all can be overwhelming. So, to simplify this and try to 

provide only what is necessary buck converters will be the main focus. This type of 

conversion is very often needed and it is one of the most popularly used. 

 

2.1.1 Purpose 
 

 Power conversion in general is used to provide the correct form of energy needed 

by the load. Buck converters from a high level description provide a function that is very 

basic and necessary for many power systems. They step down the input voltage to a 

specified level and provide a level of regulation deemed necessary by the circuit.  
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2.1.2 Switching Mode Power Supplies 
 

 Buck type converters are switching mode power supplies, meaning that they use 

switching elements within their circuitry to manipulate the voltage and current 

characteristics of the output by using energy storage elements. This differs from a linear 

regulator that does not use switching elements and simply drops voltage by controlling a 

resistive element. The benefit of using a switch mode supply is in efficiency gain. This 

gain comes from the use of energy storage elements such as inductors and capacitors 

which ideally do not dissipate any energy. A buck converter can be thought of on an 

abstract level as a kind of DC transformer, in that it is used to change DC voltage and 

current characteristics from input to output similar to an AC transformer.  

 

2.1.3 Loss and Efficiency 
 

 When using switching mode power electronic circuits, efficiency is always of 

some importance and often is very important. There can be other reasons, but generally a 

buck converter is used over a linear regulator mostly for the reason of higher efficiency. 

Lower losses and thus higher efficiency save power which is important for energy 

conservation. Energy conservation leads to beneficial results such as longer battery life, 

and reduced size for applications such as mobile electronic systems. 
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2.2 Non-Isolated Buck Converters 
 

2.2.1 Description 
 

 The term non-isolated refers to the presence of a common voltage reference node 

between the input and output of the converter. The number of non-isolated buck 

converter topologies is still very large but by describing a couple of key topologies it 

becomes easier to understand some of the more complex ones.  

 

2.2.2 Standard PWM Topology 
 

 

Figure 2: Ideal PWM Buck Converter 

 

 This is the most basic buck converter and its operation is very well known and 

thoroughly described in many texts [3] [32]. Since this is the case, the converter will be 

described qualitatively. See references such as [3] [32] for a more in depth description. 
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Figure 3: Standard PWM Buck Converter Modes of Operation 

 

 The duty cycle for the high side switch of this converter is used to control the 

output voltage with the following relation. 

 

Equation 1: ܸݐݑ݋ ൌ ܦ · ܸ݅݊ 

 

This relation allows for what is known as PWM control. This method of control is 

preferred since it is easy to implement and very widely used. Another important aspect of 

this converter, to mention, is the inductor’s conduction modes. This converter can operate 

in what is called constant conduction mode (CCM) or discontinuous conduction mode or 

(DCM) [3]. In CCM the inductor current is always greater than zero as in the figure 

below. 
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Figure 4: CCM Operation 
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Figure 5: DCM Operation 
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Figure 6: DCM Operation Synchronous Switch with Negative Conduction 

 

In DCM operation the inductor current is zero for a portion of the switching period. 

Negative current is also possible if a synchronous switch is used depending on its control, 

as shown in the second DCM figure above. Which mode of inductor conduction the 

converter is in is controlled by output load level, switching frequency, duty cycle, and 

inductance (Lout). For a given switching frequency (Fsw), duty cycle (D), and load (R) 

there is what is called a critical inductance value (Lcrit). 

 

Equation 2: ܶݓݏ ൌ  ଵ
ி௦௪
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Equation 3: ݐ݅ݎܿܮ ൌ  ቀଵି஽
ଶ

ቁ · ݓݏܶ · ܴ 

 

The conduction mode that the inductor is in is important for converter control and 

efficiency. Generally CCM is the preferred mode of converter operation since the 

converter gain is the simple linear relation as in equation1. In DCM operation the gain 

(Vout/ Vin) is not linear and equation 1 does not apply. For PWM controller design linear 

voltage gain is best. Also of importance is the magnitude of the voltage ripple generated 

at the converters output due to switching. This ripple is dependent on inductance (Lout), 

capacitance (Cout), duty cycle (D), and switching frequency (Fsw). 

 

Equation 4: ∆௏௢௨௧
௏௢௨௧

ൌ  ଵି஽
଼·௅௢௨௧·஼௢௨௧·ி௦௪మ 

 

 The equations above are important to consider when designing any buck 

converter and although more advanced converters may not have the exact same relations 

the same general dependences on Lout, and Cout will remain. 
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2.2.3 Synchronous PWM Switching 
 

 

 

Figure 7: Ideal Synchronous Buck Converter 

 

 Synchronous switching is a method used to reduce converter losses by reducing 

the conduction losses sustained in the low side switching device. This means replacing 

the low side diode with a switching element such as a MOSFET. Diode losses due to the 

forward voltage drop of the p-n junction are greater than the channel conduction loss of a 

MOSFET. This is particularly beneficial for low duty cycles since more time is spent 

with the low side conducting, with some exceptions due to frequency of operation. This 

method adds some complexity to control but it is still PWM. Controlling this circuit 

requires two synchronous PWM signals that are inverted in comparison to each other 

with what is referred to as dead space or dead time between them. 
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Figure 8: Dead Space Example 

 

This dead space is used to prevent the occurrence of a shoot through condition where 

there is a short circuit from Vin to ground causing high current spikes and large amounts 

of power loss. During this time either the body diode of the low side MOSFET is 

conducting or a separate parallel diode. 
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Figure 9: Ideal Synchronous Buck Converter Conduction Paths 

 

2.3 Converter Losses 
 

2.3.1 Losses in General 
 

 Losses can be found in any element of the converter. The amount of loss in each 

component depends on the element characteristics and the circuit operational 

characteristics. The distribution of loss can vary widely but typically switching elements 
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tend to remain of significant importance. However, the loss in other components cannot 

be overlooked. 

 

2.3.2 Switching Element Loss 
 

 MOSFETs are very popularly used in most converters so it makes the most since 

to use them in the description of switching element loss. The switch losses can be divided 

into to general forms of loss, conduction losses and switching losses. These losses are 

described in detail below [2]. The calculations used are approximations since the internal 

losses of every device cannot be measured during operation. This is a numerical method 

based on certain device characteristics with the synchronous buck converter in mind. 

 

Equation 5: ெܲைௌிா் ൌ  ௌܲௐ ൅  ஼ܲைே஽ 

 

2.3.2.1 Conduction Losses 
 

 Conduction losses are defined as losses that are sustained due to the equivalent 

resistance of the MOSFET channel after the channel is completely enhanced. This 

resistance is the Rds(on) value for the transistor. Estimation of this loss can be made 

using the following equations for the high and low side devices. 

 

Equation 6: ஼ܲைே஽ுௌ ൌ ை௎்ܫ 
ଶ · ܴ஽ௌሺ௢௡ሻ ·  ܦ
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Equation 7: ஼ܲைே஽௅ௌ ൌ ை௎்ܫ 
ଶ · ܴ஽ௌሺ௢௡ሻ · ሺ1 െ  ሻܦ

 

2.3.2.2 Switching Losses 
 

 Switching Losses occur during switching transitions as spikes in power are 

created due to rising voltage and falling current overlaps and vice versa depending on the 

transition occurring. In general these losses occur due to device parasitic capacitances. A 

good part of the switching losses sustained are due to the charging and discharging of 

these capacitances through larger resistance then are seen during device conduction. The 

equations used for estimation of these losses are below. 

 

Equation 8: ௌܲௐሺுௌሻ ൌ  ቀ௏௜௡·ூ௢௨௧
ଶ

ቁ · ሺݓݏܨሻ · ൫ݐௌሺ௅ିுሻ ൅ ݐௌሺுି௅ሻ൯ 

 

Equation 9: ݐௌሺ௅ିுሻ ൌ  ொಸሺೄೈሻ

ூವೃ಺ೇಶೃሺಽషಹሻ
 

 

Equation 10: ݐௌሺுି௅ሻ ൌ  ொಸሺೄೈሻ

ூವೃ಺ೇಶೃሺಹషಽሻ
 

 

 

Equation 11: ௌܲௐሺ௅ௌሻ ൌ  ቀݐଶ · ிܸ ൅ ଷݐ  · ௏ಷାூೀೆ೅·ଵ.ଵ·ோವೄሺ೚೙ሻ

ଶ
ቁ · ை௎்ܫ ·  ௌௐܨ

 

Equation 12: ݐଶோ ൌ ଶோܭ  · ሺܴ஽ோூ௏ாோ ൅ ܴீ஺்ாሻ ·  ூௌௌܥ
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Equation 13: ܭଶோ ൌ ݈݊ ቀ ௏ವೃ಺ೇಶ
௏ವೃ಺ೇಶି௏ೄು

ቁ െ  ݈݊ ቀ ௏ವೃ಺ೇಶ
௏ವೃ಺ೇಶି௏೅ಹ

ቁ 

 

Equation 14: ݐଷோ ൌ ଷோܭ  · ሺܴ஽ோூ௏ாோ ൅ ܴீ஺்ாሻ ·  ூௌௌܥ

 

Equation 15: ܭଷோ ൌ ݈݊ ቀ ௏ವೃ಺ೇಶ
௏ವೃ಺ೇಶି ଴.ଽ·௏ೄುಶ಴

ቁ െ  ݈݊ ቀ ௏ವೃ಺ೇಶ
௏ವೃ಺ೇಶି௏ೄು

ቁ 

 

 

Equation 16: ஽ܲூை஽ா ൌ ஽ா஺஽்ூொݐ  · ௌௐܨ · ிܸ ·  ை௎்ܫ

 

Note for the low side that equation 11 is used twice to calculate the rising and falling 

edge losses. Diode losses during dead space are included as switching losses as well with 

equation 16, these losses are often lumped with the low side switching losses since it 

typically is the low side MOSFET’s body diode conducting. There are additional losses, 

due to the gate drive that are typically insignificant unless the switching frequency 

becomes extremely high, that not stated here [2]. 

 

2.3.3 Other Loss 
 

 Losses, as stated previously can be found in any element in the converter. Losses 

are found in both input and output capacitances due to the ESR (equivalent series 

resistance). Losses in the inductor (Lout) are in two forms those due to the DCR (direct 

current resistance) and core losses associated with the inductor core material. Any of 

these losses can become significant given the right conditions so they should not be 
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overlooked. Other additional losses such as control circuitry losses are typically small 

enough to be neglected. For upcoming converters to be discussed additional components 

are added, these components create loss that can be estimated similarly. 
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CHAPTER 3:  NON-ISOLATED ZVT BUCK CONVERTER STUDY 
 

3.1 Introduction 
 

 A large amount of work has been done on this topic since it was first introduced 

[15]. New topologies within this genre continue to spring up looking to improve upon 

this concept [1] [17-23] and move on to ever more efficient and power dense converters. 

To understand the work that has been done, some soft switching basic concepts must be 

explained. First of all, the reason soft switching is done in the first place needs to be 

understood. The next important thing to understand is how soft switching is 

accomplished. This leads into ZVT’s contributions to this goal and looking more into the 

present, how newer ZVT topologies may help us better accomplish the goals of soft 

switching by improving upon this concept even further. 

 The driving force behind the development of soft switching topologies is the 

demand for high power density converters, which means more power handling capability 

in a smaller package. Typically a large amount of area used by a converter is occupied by 

the passive energy storage elements such as the output inductor and capacitor in a buck 

converter. This is due to the fact that for a given switching frequency, to reduce voltage 

and current ripple larger values of inductance and capacitance are used. Larger passive 

component values tend to be physically larger in size, thus taking up more area. To 

combat this for a given set of output voltage and load conditions the switching frequency 

can be increased allowing for the use of smaller component values. As switching 

frequency is increased so too are the converter’s switching losses. At high frequencies 

switching losses can become the dominate loss in a converter. So the battle between 
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efficiency and area become more obvious. In order to save area high frequencies are 

desired, however at higher frequencies switching loss can cause a considerable drop in 

efficiency. Thus a creation of a need to reduce switching losses is present and soft 

switching topologies have sought to fulfill this need the best way possible. 

 

3.2 ZVS, ZCS, & ZVT Description 
 

 Understanding how soft switching is accomplished is important in understanding 

how to use the topologies that achieve this goal. Soft switching topologies make use of 

additional circuit elements passive or active in order to limit di/dt or dv/dt during 

switching and minimize current and voltage overlap to reduce switching losses [30]. 

Essentially, in the switching device at the switching interval, either the current or the 

voltage must be driven to zero to bring the product of the two as close to zero as possible. 

This leads to the concepts of zero voltage switching (ZVS) and zero current switching 

(ZCS). Just as in the name either the voltage or current is driven to zero during switching. 

There are many topologies that use ZVS, ZCS, or both to reduce overall switching losses. 

Converters such as the ones termed as quasi-resonant can be used to achieve ZVS or ZCS 

[3] [16]. However, converters such as these can cause additional problems that offset soft 

switching benefits, such as additional voltage or current stress on the main switch [30]. 

Converters that have soft switching but reduce or eliminate this stress are more highly 

desirable. For this reason, what are known as zero voltage transition (ZVT) converters 

have become very popular and as stated previously, the number of ZVT topologies that 

have been introduced is large. ZVT converters accomplish soft switching while 
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minimizing additional stresses associated with other previous topologies. In the next two 

sub sections these concepts will be explained through examples. 

 

3.2.1 ZVS/ ZCS 
 

 ZVS and ZCS switching topologies typically use resonance to bring the voltage or 

current in the switch to zero. In ZVS converters if a MOSFET is used, often this is 

accomplished by flowing current in the reverse direction through the body diode just 

before switching occurs, thus discharging the parallel capacitance of the switch bringing 

the voltage across it near zero before turn on. At turn off this parallel capacitance limits 

the dv/dt across the switch and causes a reduction current voltage overlap. In ZCS 

converters typically a resonance inductor placed in series with the switch is used to 

resonant the current through the switch to zero for turn off and limit di/dt for turn on [3] 

[16]. As an example of this simulation of a ZVS buck converter topology will be used 

below. 
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Figure 10: Quasi-Resonant ZVS Buck Simulation Circuit 

 

 

 

Figure 11: ZVS Switching Conditions 
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 The circuit used in the above LTSpice simulation is based on a quasi-resonance 

type ZVS converter [3] [16]. The waveforms shown are the switch voltage in green (this 

would typically be the Vds if a MOSFET were to replace the ideal switch) and the 

switching turn on and of waveform in blue (replace with Vgs for MOSFET). These 

waveforms demonstrate ZVS turn on and turn off for the switch. As can be seen a much 

larger voltage stress (approximately 3.6 times more) is applied across the switch then is 

seen for the standard PWM topology. This additional stress limits the devices that can be 

used to ones that typically have a larger Rds(on), thus creating more conduction losses. 

The additional conduction losses associated with this larger Rds(on) can offset any 

performance gains made by soft switching. Additionally this topology is a frequency 

modulated topology and not a PWM topology. This can cause some additional 

complications in implementation. 

 

3.2.2 ZVT 
 

 There are many types of ZVT converters. This class of converters has been 

categorized more thoroughly into various types in [30]. However, in general there are two 

types of ZVT converters, ones that use passive auxiliary circuit elements only such as in 

[21] and ones that use active elements in the auxiliary circuit [1] [17-20] [23]. Active 

types will be the only ones discussed to follow. Although there are many different 

topologies that use ZVT the basic concept can explained by using the buck topology from 

[15]. This family of topologies is typically considered to be the conventional ZVT 



 24

topologies. In this section ZVT will be explained using an example with this conventional 

ZVT buck converter. Below is simulation of this topology in LTSpice and its 

corresponding waveforms. 

 

 

 

Figure 12: Conventional ZVT Buck Converter for Simulation 
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Figure 13: ZVT Converter ZVS Turn On 
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Figure 14: ZVT Converter ZVS Turn Off 

 

 The above simulation waveforms show that zero voltage turn on and off is 

achieved by this topology without inducing additional voltage stress on the main switch. 

This improvement allows for the use of lower rated switching elements that typically 

have lower Rds(on) values. However this topology is not without its drawbacks. The 

auxiliary switching elements induce some undesired losses, in particular there are still 

switching losses in the auxiliary switch. Hard switching in this switch creates additional 

switching losses that can lower the converters overall efficiency. Most recently ZVT 

topologies have turned their focus to include the elimination of switching losses in the 



 27

auxiliary switch as well, some even looking to virtually eliminate all losses associated 

with switching [1] [17-23]. 

 

3.3 Synchronous ZVT Topology of Interest 
 

3.3.1 Description and Reasoning 
 

 

Figure 15: ZVT Synchronous Buck Converter 

 

 This converter topology is one that has recently been introduced into the category 

of ZVT switching converters [1]. This converter’s operation allows for soft switching to 

occur in all switches used. This is a benefit not included in previous ZVT topologies such 

as [15]. Some of those that have included auxiliary switch soft switching, have added 

quite a large amount of complexity to the converter. This converters design is fairly 

simplified when compared to others [17] [23]. This synchronous ZVT topology will be 

used for the analysis to follow. The main interest of ZVT is increase power density so it 

logically follows that this type of converter being low loss in nature and almost entirely 
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devoid of switching losses may be a candidate for use in application such as integration, 

similar to converters in [14] [24-27].In order to see if this converter may be suitable for 

such applications further insight is required. It is with this interest in mind that the 

research done on this converter was carried out. 

 

3.3.2 Operational Simulation 
 

 The operation of this converter is described in detail in [1]. Simulation was 

performed to show its operation in LTSpice. 

 

 

 

Figure 16: Synchronous ZVT Topology Simulation Circuit 
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Figure 17: Synchronous ZVT Important Waveforms 

 

 The above operational waveforms are consistent with the ones described in [1] 

with one difference. The turn of switch one has been slightly delayed in order to improve 

the efficiency of the converter. This will be explained in the description to follow. Below 

are the switching waveforms confirming soft switching. 
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Figure 18: Synchronous ZVT Converter Main Switch ZVS 
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Figure 19: Synchronous ZVT Converter Aux Switch ZCS 

 

 As can be seen above soft switching occurs in both the main and auxiliary 

switches, in the form of ZVS for the main and ZCS for the auxiliary. As noted in the 

auxiliary switch figure above there are two opportunities to switch the auxiliary switch 

under ZCS conditions. In the description in [1] the auxiliary switch turns off at the first 

zero crossing allowing the body diode of the switch to conduct the resonance current in 

the negative direction. This creates more loss due to the forward drop of this body diode 

by leaving the switch turned on during this negative conduction period the current flows 

through the channel of the device which creates less loss similar to the use of a 

synchronous rectifier. 

 



 32

3.3.3 Design Considerations 
 

 ZVT Voltage and load testing conditions used for experimentation to follow were 

similar to those used in [1]. However, there are some important things to consider when 

using topology in general. First of all, as with other ZVT topologies the period of 

resonance between auxiliary components Lr and Cr should be small in comparison to the 

overall switching period. This is done in order to limit the auxiliary circuit’s effects on 

gain and efficiency. PWM gain is still desired since it is linear and the smaller the 

resonance period is the more linear ZVT’s gain is as well. Efficiency can also benefit 

from this as the smaller the time the auxiliary components spend conducting the smaller 

their conduction loss. The frequency and consequent resonance period of these auxiliary 

components is designed using the following equation. 

 

Equation 17: ߱ ൌ  ଵ
ඥ௅ೝ·஼ೝ

 

 

 Although this equation dictates the product of Lr and Cr the exact values of each 

are not specified by it. In order to pick the specific values of Lr and Cr input voltage and 

output load conditions must be considered. In order to accomplish ZVS soft switching in 

the main switch the magnitude of the resonance current through Lr must exceed the load 

output current. This is to induce the current flow through the device body diode necessary 

to create a ZVS turn on condition. Further detail is given in the circuit mode descriptions 

in [1] and can be used to better understand this concept. Below are the two equations 

used to determine the designed values of Lr and Cr. 
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Equation 18: ݅௅௥ሺݐ െ ଴ሻݐ ൌ  ௏೔
௓

ܵ݅݊߱ሺݐ െ  ଴ሻݐ

 

Equation 19: ܼ ൌ  ට௅ೝ
஼ೝ

 

 

 Equation 19 is the characteristic impedance. By using the equation for Lr 

resonance current (equation 18) it can be seen that for a given input voltage (Vin) the 

magnitude of this current can be controlled using the characteristic impedance (Z). This is 

important in the converter’s design since the magnitude of resonance current essentially 

dictates the maximum load at which the converter is operating with complete soft 

switching conditions, keeping in mind that iLr should be greater than load current. There 

are several other design considerations, with most of the basic outlined in [1], but this is 

one of the most important. Proper timing of the switching waveforms is also important 

and must be considered in the design. 

 

3.4 Results/ Discussion 
 

 This section includes a summary of the experimentation that was performed using 

this converter. This experimentation was carried out with the intention of being a 

platform for further investigation of this topology for application such as integration. 

Three converters were designed, built, and tested both standard synchronous and non-

synchronous buck converters as well as the ZVT synchronous buck converter. Efficiency 

versus load data was taken for all three converters. 
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 Some additional details are stated to eliminate any confusion. Parts used were 

kept as consistent as possible between converters in order to make as fair a comparison as 

possible. All converters were driven with an external bread boarded PWM. Gate drivers 

for switches were on board. Control was open loop and waveform timing was adjusted 

manually via potentiometer controls. This was done to allow for maximum adjustability 

of the converters in terms of waveform control, power stage components, conversion 

levels, and load conditions. Since converter characteristics were so dynamic, design of 

closed loop controls would have proved restrictive and time consuming. Voltage 

conversion for all converters to follow is from 12V to 3.3V unless otherwise noted. Any 

differences in converter setups should be noted on the particular setup as they are 

described. 

 

3.4.1 Standard Buck Converters 
 

 To serve as a baseline for efficiency both synchronous and non-synchronous 

standard (hard switching) converters were built and tested. The test setup for both 

converters is shown below. 
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Figure 20: Standard Non-Synchronous Buck Converter Test Setup 
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Figure 21: Standard Synchronous Buck Converter Test Setup 

 

 There is an adjustability factor for the synchronous converter that can make quite 

a bit of difference in efficiency results. This factor is the amount of dead space between 

the high side switch and the synchronous rectifier Vgs waveforms. Waveforms showing 

operation of the synchronous converter at two “tdead” values of 600ns and 300ns while 

operating at a switching frequency of 200 kHz are shown below.  
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Figure 22: Experimental Dead Space Control Waveforms 

 

 A picture of the actual synchronous converter board is shown below indicating the 

test points used for input and output voltages. 

 

 

 

Figure 23: Synchronous Converter Board 
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 Experimental results were obtained for these converters at an operating frequency 

of 200 kHz. The experimental results for efficiency testing of these converters are 

summarized in the efficiency and power loss plots below. The results are consistent with 

what is expected. 

 

 

 

Figure 24: Standard Buck Converters η vs. Pout Plots 
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Figure 25: Standard Buck Converters Power Loss vs. Pout Plots 

 

3.4.2 Synchronous ZVT Topology 
 

 The synchronous ZVT converter was built using the same main switching 

components as the standard buck converters (MOSFET part IPU13N03) but of course 

additional components were needed to serve as the auxiliary circuit components. Its test 

setup is shown below. 
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Figure 26: Synchronous ZVT Converter Test Setup 

 

 This setup differs somewhat from the others in that power resistors were used as 

the output load and a different oscilloscope was used in order to allow for current through 

the resonant inductor to be monitored (using the wire loop noted in the figure with a 

current probe). Below is a picture of the actual circuit that was built noting the input and 

output voltage test points. 
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Figure 27: Synchronous ZVT Converter Board 

 

 The converters functionality was confirmed by monitoring the operational 

waveforms using the oscilloscope. Due to probe limitations all voltages shown are with 

respect to ground. The waveforms are labeled on the figure to the left. 
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Figure 28: Synchronous ZVT Experimental Operational Waveforms 

 

 Given that this capture is taken for a 3A load current ZVS turn on of the main 

switch can be confirmed by the resonant inductor current level during switching since it 

is greater than the load current the body diode of the main switch must be conducting and 

thus achieving ZVS. ZCS turn on and off of the auxiliary switch is confirmed by the 

resonant inductor current waveform in comparison to the Vg Sw1 (aux switch), since 

switching occurs at zero current soft switching is confirmed for this switch as well. 

Another item of importance, the discharge of the resonance cap before the turn on of 

Sw2, can be seen using the Vg of the main switch. At the turn off of the main switch 
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there is a descending ramp in Vg voltage this ramp is an indicator of the resonance 

capacitors discharge to zero and the transfer of its stored energy to the output. These 

operational waveforms show consistency with the waveforms found in [1]. 

 

 The difference in efficiency by delaying the turn off of the auxiliary switch until 

the second zero crossing was experimentally tested using the same output load (1A) in 

comparison to the first zero crossing. The waveforms of each instance are shown below. 

 

 

 

Figure 29: Auxiliary Switch ZCS Turn off Points 

 

Table 1: ∆η Due to ZCS Turn off Point 
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 Since the circuit is operating in DCM the efficiency above is very low, however 

the clear difference in power loss of 0.5 W can be seen confirming power loss savings 

made by switching on the second ZCS turn off point. This second ZCS switching point is 

used in all analysis to follow. 

 Experimental efficiency results were obtained and the synchronous ZVT 

efficiency was compared to the efficiency of the standard synchronous converter below. 

 

 

 

Figure 30: Synchronous ZVT vs. Synchronous buck Efficiency 
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Figure 31: Synchronous ZVT vs. Synchronous buck Power Loss 

 

 The data above was taken for a switching frequency of 200 kHz for both 

converters. Obvious discrepancies are seen from what is expected in that the efficiency 

for the ZVT converter is lower than its hard switching counterpart. This could be due to 

several factors that will be discussed later. However, it appears as if there will be a 

crossover point at which the ZVT topology will become beneficial at higher output power 

level. The efficiency discrepancy was reduced somewhat by the improvement of the 

auxiliary components used. The first component change was the resonant capacitor. The 

capacitor used for the previous data was a class 2 type dielectric with a fair amount of 

ESR. This ESR can cause considerable loss given that the current ripple through this 

capacitor is quite large. So to reduce this loss a class 1 dielectric was used instead 

reducing the loss and improving the converters efficiency. The next component that was 

changed was the resonant inductor. Since the DC resistance of the inductor used was 
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already low an inductor with lower core losses was used to replace it. This also improved 

the converters efficiency. These auxiliary component improvements are reflected in the 

efficiency plots below. 

 

 

 

Figure 32: ZVT Efficiency with Auxiliary Component Improvement 
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Figure 33: ZVT Power Loss with Auxiliary Component Improvement 

 

 

 

Figure 34: ZVT η Improvement in Reference to Synchronous Buck 
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Figure 35: ZVT Ploss Improvement in Reference to Synchronous Buck 

 

 By improving the auxiliary components (i.e. reducing their losses) an overall 

power loss and efficiency improvement can be seen. It appears that the previously 

projected crossover point may happen earlier. In an attempt to analyze the location of the 

additional losses, power loss estimation by component can be done using the equations 

from chapter 2. The tables below are used to estimate some of the losses. 
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Table 2: Standard Synchronous Buck Converter Loss Estimation 

 

 

 

Table 3: ZVT Synchronous Buck Converter Loss Estimation 

 

 

 

 These tables are generated for a load of 3A. The ZVT loss estimations are for the 

unimproved converter. By estimating the losses in this fashion, it can be seen that in the 

ZVT converter there are a fair amount of losses that are not accounted for but can and 

most likely are attributed to additional auxiliary component loss.  
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3.5 Conclusions 
 

 Soft switching can be used to improve converter performance. However several 

factors come into play that can influence the benefits of soft switching. Examples of these 

factors are power semiconductor technology, switching frequency, and power range [30]. 

Based on the data obtained it seems that for the given components, switching frequency, 

load range, and other operating characteristics that the benefits of ZVT are outweighed by 

the additional losses induced. By operating at a fairly low switching frequency and using 

switching components that have inherently low switching losses, ZVT’s benefits might 

be overshadowed at this load range. As stated previously, it appears that perhaps outside 

of this load range there may be benefits but due to measurement limitations a higher load 

range could not be tested. Another factor that could be contributing to the discrepancy in 

the efficiency data could be the length of the resonance period used in this design. The 

resonance period length could be reduced leading to smaller conduction losses and 

perhaps higher efficiencies. Although this converter does not prove beneficial over its 

standard hard switching counterpart this shows that several circuit factors, as stated in 

[30], can come into play when determining if ZVT will be of benefit for use. 

 Increasing the switching frequency should better show the benefits of this 

topology for a given set of components. In future testing, using components that allow for 

high frequency operation, much more aggressive switching frequencies can be tested and 

the results at these higher frequencies can be compared to give indication of this 

topologies potential usefulness in applications such as integration. In the next section 

there is some discussion about integrated converter applications and this topologies 

potential in such applications. 
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3.6 Integrated Converter Discussion 
 

 The demand for converters to shrink further and further in size has brought on 

several new converter designs that are completely on chip [14] [24-26] or vary near to 

totally on chip [27]. These converters operate at extremely high frequencies when 

compared to their discrete component counterparts. This high frequency is sure to cause 

some fairly significant switching loss. Since frequencies are sometimes very high ZVS 

transitions can sometimes come for free, so to speak, since the intrinsic parallel 

capacitance of the devices can cause ZVS turn off conditions. This depends greatly on the 

individual case. Turn on, on the other hand is still typically hard switching so this leaves 

room for improvement. Although this room for improvement can be filled by topologies 

such as the ZVT topology mentioned in [1], there are other complications that may offset 

any benefits of using a topology such as this in integrated applications, namely front end 

device losses [25]. Front end device loss has only been mentioned in passing up to this 

point because at lower frequencies this loss is rather insignificant. Front end loss refers to 

the losses incurred by driving the device gate. These losses occur in the gate driver as 

well as in the MOSFET gate itself. In order to drive the gate both high and low the gate 

capacitance is charged and discharged through finite resistance values. The rapid charge 

and discharge of gate capacitances can cause significant energy loss even for fairly small 

gate capacitances. Since the topology presented in [1] has more active devices that must 

tolerate power stage level stresses, losses such as these may prove problematic depending 

on how high the switching frequency is for the converter. Depending on the frequency 
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and components, operating at the typical light loads associated with integrated converters 

may also prove problematic for maximizing ZVT’s benefits. The light loads due to 

limitations of current are typically set by current density limitations due to conductor 

thickness in integrated inductors. As such the more pressing issues for fully integrated 

converters may be found in the output inductor. Topologies that use interleaving of 

inductors can partially aid in this dilemma [24] [29].  

 The issues in the full integration of buck converters are numerous and several 

solutions are being offered by newer topologies. However it seems that integrated 

converters will always be fundamentally limited in their ability to deliver large amounts 

of power but it is not to be said that there is no room for improvement. Topologies using 

ZVT methods should not be counted out for potential use in the improvement of such 

converters. 
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CHAPTER 4:  NON-ISOLATED  
SYNCHRONOUS BUCK CONVERTER STRESS EFFECTS 

 

4.1 Introduction 
 

 In this chapter the focus is shifted to a much different issue then the previous 

chapter. The issue of device ageing effects on standard non-isolated synchronous buck 

converters will be explored in detail. Device ageing and device stress are directly related. 

By controlling the stress applied on a device one can control the rate at which a device 

degrades. Increasing the stress in the appropriate manner can be used as a tool to 

theoretically project normal degradation over long periods of time (ageing effects). The 

main goal in this chapter is to illustrate how a method of this type may be used for 

showing the effects that MOSFET ageing can have on power electronic circuits, 

specifically synchronous buck converters. 

 In order to effectively accomplish this goal, first some background information 

about hot carrier effects will be mentioned. Then the converters operational 

characteristics effect on the converters susceptibility to ageing effects will be mentioned 

as well. The methods used in an attempt to experimentally confirm the theory in this 

chapter will be described in detail. Finally the results for both experimentation as well as 

simulation will be shown and conclusions about this data will be made. 
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4.2 Hot Electron Device Degradation 
 

4.2.1 Description 
 

 Hot carrier degradation at the device level has been fairly well documented and 

experimental validation of this theory has been performed [5] [7-10]. The magnitude and 

impacts of this degradation on circuit level applications have been studied for digital 

circuits and some analog applications such as RF circuitry in the past [6]. Only recently 

has consideration been turned to possible effects on power electronics applications such 

as switching mode power supplies like buck converters [4]. Before moving to the higher 

level effects and experimental results, some description of the theory is in order. 

 The following description applies to the traditional lateral MOSFET structure. 

The mechanisms that cause device degradation for the traditional MOSFET structure are 

fairly simple to explain and understand given a basic knowledge of semiconductor 

devices. To explain these mechanisms the figure below will be used for reference. Hot 

carriers actually degrade MOSFETs with the combined effects of two mechanisms, 

damage to the oxide-substrate interface causing lower mobility at the surface region and 

creation of trapped charge. Given the following conditions for an nmos, Vgs > Vth so 

that a channel is formed beneath the oxide and Vds > 0V so that current will flow from 

drain to source (Id> 0A), it is possible for hot electron degradation to occur on some 

level. However, effects are greatly dependent on the magnitude and direction of the 

electric field in the device. The effects are greatest when Vgs is large relative to Vth and 
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close to the value of Vds so the electric field looks somewhat like in the figure below. 

The horizontal component of the electric field is the desired component, in that it causes 

carriers (electrons) to flow from source to drain. The vertical component is necessary to 

create the channel in the first place but has a secondary undesired effect. The vertical 

component of the electric field tends to cause the carriers, electrons in this case, to stay 

near the surface at the oxide interface increasing the chance of interfacial lattice damage 

as well as the chances that an electron will have enough energy to exceed the energy 

barrier necessary to enter the oxide [7]. When an electron enters the oxide it will either be 

swept to the gate by the electric field causing gate current or become trapped at neutral 

centers in the oxide causing oxide charging [6] [7]. Both interface damage and trapped 

charge create changes in devices characteristics that are described in the next section. 

 

Figure 36: Oxide Electron Trapping for Traditional MOSFET Structure 
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4.2.2 Effects on Device Characteristics 
 

 Interface damage and trapped charge create changes in device characteristics that 

can be undesirable for circuit operation. As mentioned previously interface damage 

lowers the carrier mobility at the surface near the interface. The surface damage tends to 

increase the channels effective resistance by partially impeding the carrier’s path through 

the channel along the interface. Trapped charge in the oxide will cause changes in Vth, 

the direction of the change depends on the type of carriers that are injected into the oxide, 

hot electrons or hot holes. In the case of nmos shown in the figure above hot electrons are 

injected in the oxide, this injection effect is also referred to as oxide charging. Oxide 

charging in the case of hot electron injection will cause Vth to increase. This trapped 

negative charge tends increase the gate charge for a given bias condition increasing the 

gate capacitance values, such as the gate to source capacitance. The figure below 

illustrates the effects mentioned on a standard MOSFET cross section by showing the 

device at a given biasing condition before (left) and after (right) hot carrier ageing. 
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Figure 37: MOSFET Before and After Hot Carrier Ageing 

 

 Although the effects may vary and be slightly more complex the same overall 

concepts still apply to more recently used device architectures such as LDMOS. An 

example of a general LDMOS structure before and after ageing is shown below. 

 

 

 

Figure 38: LDMOS Before and After Hot Carrier Ageing 
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4.2.3 Effects Pertaining to Power Electronic Circuits 
 

 With switching mode power supplies aside from reliability and proper regulation 

often high efficiency is paramount. Since power efficiency is generally important it is 

desirable to keep component losses to a minimum. Keeping this in mind, much of the 

time a large portion of the total losses of a converter can be found in the switching 

devices such as MOSFETs. This makes the switching device of key importance to 

converter design. So, it logically follows that degradation in device characteristics that 

cause additional losses should result in circuit efficiency degradation. If the effects are 

confirmed, it then becomes a question of how much degradation occurs. 

 Focusing in on power losses due to MOSFET devices in power converter 

applications, as stated previously one can find two main categories of losses, conduction 

losses and switching losses. Since for switching converters the MOSFET is typically 

trying to fill the role of an ideal switch there are two modes generally, on and off. For 

MOSFETs, conduction losses occur when the switch is turned on. Conduction losses for 

MOSFET devices is mainly caused by Rds(on) or effective resistance of the device 

during conduction (equations 6 & 7). Switching losses are losses that occur during the 

switches transition from off to on and vice versa. Switching losses can be comprised of a 

combination of different effects caused by the MOSFETs characteristics and circuit 

conditions but in general switching losses are highly influenced by the devices gate 

charge (as in equations 8 & 11). Since hot carrier ageing can affect both Rds(on) and Qg 

it is worth investigating device ageing effects for switching power supplies. 
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4.2.4 Power Device Structures 
 

 It should be mentioned that MOSFET structures vary widely and structures used 

can be highly application dependent. Device structure is very important when talking 

about hot carrier effects. The actual MOSFET structures of the devices typically used in 

power converter applications differ from the traditional structure talked about above. For 

several reasons vertical devices such as VDMOS are used for converter applications [11] 

[12]. These types of structures have the benefits that traditional MOSFETs have to offer 

with additional benefits such as high current capability and fairly high blocking voltage. 

Below is a basic example of a vertical structure like the one found in [10].  

 

 

 

Figure 39: Example VDMOS Structure 
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 Vertical device structures are typically considered to be fairly immune to hot 

electron ageing since the flow of carriers is in the vertical direction and mostly avoids the 

oxide silicon interface. However there have been studies showing that at least some of 

these structures can show degradation due to the hot electron effect [10]. This is an 

important thing to consider since vertical silicon devices are prominent in applications 

such as the synchronous buck converter. They are used not only for the benefits offered 

but also since they are mature technology. Other newer technologies are being developed 

such as GaN HEMTs [13].These and other non-silicon technologies may see more 

widespread use in the future but for now, especially for integrated applications, silicon 

based technology is dominate. 

 

4.2.5 Modeling/ Simulating Effects 
 

 Although the impact of ageing may vary with device structure, modeling can be 

done similarly for all structures since it is the overall device characteristic changes that 

are of concern. The non-isolated synchronous buck converter is a good topology to look 

at for this investigation since it is such a widely used and easy to implement topology. 

The following sections will be specifically focusing on the synchronous buck converter. 

As was mentioned before, this is a well known and widely used topology, which makes it 

a good choice for use in this study. Nmos devices are typically the switching element of 

choice for this converter topology. As went over in chapter 2, power losses can be 

estimated using some key parameters from the MOSFET [2]. 



 61

 Modeling the effects of hot electron ageing can be done both at the device and 

circuit level fairly easily. At the device level, the parameters that are affected can be 

modified in the model. The two parameters to adjust are Vt (threshold voltage) and μ 

(carrier mobility). By changing these parameters appropriately, device ageing can be 

modeled. This device model can then be used in circuit to compare the losses before and 

after device ageing. If access to these parameters is unavailable it is possible to at least 

partially model simulate these changes using circuit conditions alone. Simulation such as 

the latter will be used for obtaining results in the sections to follow. 

 

4.3 Susceptibility of Converters 
 

 In order to determine if a converter’s efficiency is susceptible to ageing effects, 

the switching device used must show hot electron ageing susceptibility and the converter 

itself must operate such that the level of degradation developed in the device has a 

significant effect on the level of power loss in the converter. In short both device and 

circuit must be susceptible to degradation. To clarify what is meant by this some more 

explanation is needed. 

 Device susceptibility, as mentioned previously, is structure dependent as well as 

biasing dependent. Some structures are highly resistant to ageing effects while others 

tend to degrade more easily. Lateral devices with the oxide silicon interface parallel to 

carrier flow are typically more susceptible to degradation. Lateral structures such as these 

are not typically used for converters except for some novel cases with integration in mind 

[14]. Vertical structures typically used tend to be less susceptible but can degrade 
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similarly [10]. If devices are robust to ageing then it is less likely that significant changes 

in efficiency will occur for a given converter. On the other hand, if the devices do show 

degradation efficiency change becomes more circuit level dependent. 

 Circuit level converter characteristics can play a key role in a converter’s overall 

susceptibility to ageing. Switching frequency, load current, voltage step, and output 

power are converter characteristics that can affect the susceptibility of a converter to 

device degradation. A gate charge increase for example has greater effects at higher 

switching frequencies. Rds(on) changes will have greater effects if load current is high. 

Other factors play a role in how much efficiency may or may not be changed. An 

example using simulation shows how some of these factors can increase or decrease the 

impact of Rds(on) change. 

 

 

 

Figure 40: Synchronous Buck Circuit for ∆Rds(on) Simulation 
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Figure 41: Rds(on) Measurement Simulation Circuit 

 

 Simulation was done using LTSpice in order to show how converter 

characteristics can effect a given change in Rds(on) effect on efficiency. Different pulse 

magnitudes were used as Vgs gate drives in order to achieve different Rds(on) values. 

The Rds(on) was changed by 20%  for each simulation shown in the table below. Rds(on) 

was measured using a sub circuit simulation. As shown in the table converters with high 

current relative to Vout and larger impacts of conduction loss will have greater efficiency 

changes for a given Rds(on) change. 

 

Table 4: Simulated ∆Rds(on) Impact on Efficiencies 
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 This example illustrates that although a device’s Rds(on) might degrade greatly a 

measurable change in efficiency may or may not manifest itself depending on the 

converters sensitivity to this change. 

 

4.4 Experimental Simulation of Device Ageing 
 

4.4.1 Methods of Stressing 
 

 In order to attempt to experimentally induce accelerated ageing voltage stresses 

that are much higher than the typical must be applied to the MOSFET devices in an 

attempt to create a high internal electric field. Methods of stressing and there actual 

effects on the device become somewhat difficult to identify when using off the shelf 

discrete MOSFET parts as was done to follow but with the simple goal of inducing some 

measurable device Rds(on) degradation in mind stressing experimentation was carried 

out. However it was unknown whether any results showing degradation would occur and 

not knowing device cross sections proves problematic to this goal. 

 

4.4.2 Out of Circuit Stressing 
 

 The most controlled method of stressing was out of circuit testing in which the 

device was stressed separately from the synchronous buck converter in order to achieve a 

measurable Rds(on) change and then replaced in circuit to show its effects on efficiency 

(similar to stressing performed in [10]). Two devices have been stressed using this 
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method IRLB8748 and STP22NF03L. The individual MOSFETs were connected as 

below. 

 

 

 

Figure 42: MOSFET Out of Circuit Stressing 

 

 By applying a Vds voltage that is large (larger than rated Vdss) the hope was to 

induce hot carrier effects and cause device degradation. To try to induce these effects 

both Vds and Vgs were adjusted to higher and higher values while remaining at power 

dissipation levels tolerable by the device. A Vds at which avalanche current was induced 

was used as a benchmark for high Vds. Several stressing intervals were used, both before 

and after each interval the devices Rds(on) was monitored for various drain current and 

gate voltages. The measurement of Rds(on) was taken using the circuit below. 

 



 66

 

 

Figure 43: Device Rds(on) Measurement Circuit 

 

 

4.4.3 In Circuit Stressing 
 

 In circuit stress testing was also used to try to induce device degradation and in 

turn circuit efficiency degradation. This method, albeit less controlled, was intended to 

stress the device with the transient effects that are seen in converter operation. This 

method separated circuit operation into to modes of operation normal and stress 

operation. Normal operation was used as an example of a typical converter operation. 

Stress operation used a very high input voltage near the Vds breakdown voltage for the 

high side device. In this case it was the circuit’s efficiency that was monitored between 

stressing intervals. The figure below shows the converter as it was connected for stressing 

operation. 
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Figure 44: In Circuit Stressing Setup 

 

4.5 Results/ Conclusions 
 

 The first method of stressing that was tested was in circuit testing. For this testing 

the converter was operating at a switching frequency of 200 kHz and tdeadtime was 100 

ns. Initial η vs Pout set of data was taken for various output power levels. Two converter 

voltage steps were monitored 12V to 3.3V and 5V to 3.3V for their efficiencies at a load 

of 3.8A. These efficiency points were monitored between stressing intervals to look for 

any changes due to stressing effects. Only the high side device was stressed (IRLB8748) 

in this scenario since a more robust device (higher Vdss) was used for the low side device 
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(IXTP100N04T2). The high side device’s breakdown voltage was measured prior to 

stressing and was found to be approximately 31.2V. Many stressing intervals were used 

incrementing the input voltage each time. The maximum level of stress applied was 

32.5V for a time period of 60 minutes using a stressing operation duty cycle of 10% with 

a load current of 0.33A. Stressing using this method was found to be ineffective, at least 

for the scenarios that were tested. The efficiency of the converter never changed out of 

the experimental error. This method, although trying to mimic the actual circuit operation 

of the converter, is not particularly accurate to the types of stressing that may actually 

occur in the devices over time. For this reason continued stress testing was done out of 

circuit. For this testing there are also issues with the converters level of sensitivity to 

changes in Rds(on) as shown in the table below. 

 

Table 5: Theoretical ∆η due to ∆Rds(on) 

 

 

 

 This table uses the actual experimentally measured efficiency and power loss data 

and the estimated loss due to Rds(on) and projects the effects of an increase of 20% in 

Rds(on). As can be seen in the table the change in efficiency would be minimal. This 

result is insensitive to ∆Rds(on) showing insignificant efficiency changes due to Rds(on). 
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However, in a more positive light this result shows that a converter of this type would be 

very robust to any changes in Rds(on) if they did occur. 

 With circuit susceptibility being a factor the converter characteristics were 

changed to a 5V to 0.7V with a load of 10A. This converter showed susceptibility to 

Rds(on) changes in simulation and could prove useful in showing efficiency changes 

better. In order to assure that Rds(on) was indeed changing a more direct out of circuit 

approach is needed. 

 After in circuit stress testing proved ineffective in inducing degradation the 

approach of out of circuit testing was taken. The previous device used in circuit 

(IRLB8748) was stressed out of circuit as well using the method stated in the above 

section. Its Rds(on) was measured for several different gate voltages and drain currents 

prior to and after stressing intervals. Several stress intervals were applied to this device. 

For this device and method no significant degradation was seen outside of experimental 

measurement error. A second device (STP22NF03L) was also stressed similarly. This 

device’s breakdown voltage was found experimentally to be approximately 35.4V. Again 

several stress intervals were impressed upon this device. The maximum stress interval 

applied to this device was a Vds of 36V at a Vgs of 2V with Id = 30 mA for a time 

interval of 12 hrs. As can be seen in the table below no significant changes occurred in 

the Rds(on) of this device either, as all changes are inside experimental error. 
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Table 6: Rds(on) Before and After Stress (STP22NF03L) 

 

 

 

 As stated previously the effectiveness of stressing methods is difficult to analyze 

correctly without knowing the specific device architecture. With the given, off the self 

devices, and the methods used no degradation was able to be produced. This indicates 

that either the devices are robust to hot electron effects or the methods of stressing were 

ineffective. For vertical devices it is typically accepted that there is immunity or at least a 

very high level of resistance to hot electron effects. Vertical symmetrical structures such 

as the ones found in [11] can be particularly resistant to hot electron effects due to the 

reduction of localized high electric field. At least some vertical devices have displayed 

some susceptibility to hot electron effects [10] and with this in mind further investigation 

may prove useful. Using different devices and perhaps adjusted methodology, the hot 

electron effect may still have effects on some converters. 
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CHAPTER 5:  CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 
 

 In this thesis current topics relevant to buck converters have been brought up and 

addressed through theory, simulation, and experimentation. Two specific topics were 

focused on, ZVT topology analysis and possible future uses such as integration and the 

possible effects due to long term converter stressing. Thus far framework for continued 

study of ZVT’s potential for integration has been laid down. Experimental testing using a 

discrete approach was done for this topology leaving further study of more aggressive 

switching frequencies typical for integration open to continue. Converter stress effects 

have been gone over and discussed thoroughly. Although theory may suggest a window 

of possibility for these effects to occur, experimentation has yet to reveal any possible 

threats to converter performance. The potential for these effects has yet to be proven. 

Future work in both topics is of interest. 

 

5.2 Future Work 
 

 Future work may include continued study and testing of ZVT topologies specific 

to integration (i.e. very high frequency and components smaller in size). Also, continued 

study of converter stressing to either confirm or deny the presence of significant ageing 

effects in buck converters. 
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