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ABSTRACT 
 

 The primary focus of this study examines the effectiveness of the CRIOSAT 

(Computerized Rotational Isometric and Orthographic Spatial) spatial ability treatment on a 

random sample of middle school students’ (n=137) spatial ability as measured by the Purdue 

Spatial Visualization Test: Rotations Test (PSVT-ROT) (Guay, 1977). The secondary focus of 

this study investigates the relationships between mathematical achievement, problem solving 

preferences, and spatial ability.  The secondary focus was tested on a subsample (n=41), with the 

problem solving preferences measured via the Mathematical Processing Instrument (MPI) 

(Suwarsono, 1982).  Findings indicated no significant gains in spatial ability scores after 

students’ use of the CRIOSAT treatment; while some increases in spatial ability took place in 

males.   Significant positive correlation was identified between mathematics achievement and 

spatial ability; while conversely, a significant negative correlation was found between 

mathematics achievement and level of visual problem solving used by students.   
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DEFINITIONS OF TERMS 

 

Analytic Processing – see parcel processing 

Image - a spatial arrangement that may include mathematical inscription  (Presmeg, 2006) 

Imagery – “the occurrence of mental activity corresponding to the perception of an object, but 
when the object is not presented to the sense organ.” (Hebb, 1972 as cited in 
Suwarsono, 1982) 

Concrete Imagery -  single use images that are locked into a specific paradigm (Presmeg, 
1986b) 

Dynamic Imagery –mental imagery that has a level of generalizability for an individual to use 

Gestalt Processing- the manipulation of mental imagery as a whole object (Bodner & Guay, 
1997) 

Isometric Projection – a three-dimensional perspective view of an object with zero vanishing 
points 

Mental Image - recognition or mental reconstruction of previous object stimuli  

Mental Rotation - the use of mental images to rotate an image in two- or three-dimensional 
space in order to recognize the object in various perspectives (Shepard & 
Cooper, 1982) 

Orthographic Projection – a projection of a three-dimensional image whereas the front side 
and top of the object are viewed perpendicularly to the plane of the 
relative cubic space in which the object exists.  

Parcel Processing – the manipulation of mental imagery by mentally deconstructing, or 
parceling, the object and reconstructing of it in the desired view 

Perspective-taking - the change in orientation of the observer to the object 

Quasi- 3D - flat rendition of a three-dimensional object, that are perceived to be three-
dimensional (Deregowski, 1979).   

Spatial abilities- “those mental skills concerned with the understanding, manipulating, 
reorganizing, or interpreting relationships visually.” (Tartre, 1990, p. 216) 

Spatial orientation – 1.) the ability to continuously identify an object as a whole regardless of 
its orientation to the environment (Bodner & Guay, 1997)  
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2.) the ability to continuously identify an object as a whole regardless of 
the juxtaposition of the viewer to the object (McGee, 1979; Tartre, 1990) 

Spatial Perception - the subject being able to “determine spatial relationships with respect to the 
orientation of their own bodies, in spite of distracting information” (Linn & 
Peterson, 1985, p. 1482) 

Spatial visualization - the ability to recall the physical image of an object previously viewed in 
parts or as a whole as a mental image (Bodner & Guay, 1997)   

Static Imagery - see concrete imagery 

Visual Image – a mental construct depicting visual or spatial information, and a visualizer is a 
 person who prefers to use visual methods when there is a choice. (Presmeg, 

2006) 
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CHAPTER ONE: INTRODUCTION 
 

Introduction 

 
 Until recently attempts to increase and assess spatial ability have existed primarily in 

psychological realms (Duesbury & O’Neil, 1996; Pak, Czaja, Sharit, Rogers, & Fisk, 2008; 

Aflano & Graziano, 2008; Casey, Andrew, Schindler, Kersh, Samper, & Coply, 2008; Hannafin, 

Truxaw, Vermillion, & Liu, 2008; Sims & Mayer, 2002; Wright, Thompson, Ganis, Newcombe, 

& Kosslyn, 2008) and have been conspicuously absent in mathematics education research. In the 

last 30 years there has been an increase in the amount of mathematics education researchers 

(Tartre, 1990; Battista, 1999; Battista, et. al., 1998, Battista & Clements, 1996; Lean & 

Clements, 1981; Presmeg, 1986; Haciomeroglu, Aspinwall, & Presmeg, 2009, Haciomeroglu,  

Aspinwall, & Presmeg, 2010) studying this topic and its link to mathematics efficacy.  This link 

has led researchers to explore how students gain and increase spatial ability.   According to the 

National Council of Teachers of Mathematics’ (NCTM) Curriculum Focal Points for 

Prekindergarten through Grade 8 Mathematics, spatial reasoning is “essential for learning” 

(NCTM, 2006, p.8), however it is rare that spatial ability is explicitly taught and just as rare that 

there are benchmarks that dictate this teaching.    Researchers have identified a myriad of factors 

that could influence spatial ability and in turn influence mathematics efficacy, such as: gender 

(Chan, 2007; Kaufman, 2007; Linn & Petersen, 1985; Moè, Meneghetti, & Cadinu, 2009; Sanz 

de Acedo Lizarraga & García Ganuza, 2003; Walter, Roberts, & Brownlow, 1999; Voyer & 

Hou, 2006),  play related to gender roles(Casey, et. al., 2008; Tluaka, Williams, & Williams, 

2008), heredity (Casey, Nuttall, & Perzaris, 1999), mathematics preferences (Haciomeroglu, 

Aspinwall, Presmeg, Chicken & Bu, 2009), and even experience with technology (Terlecki & 

Newcombe, 2005; Sims & Mayer, 2002).   
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 Many educators have begun to seek the aid of computer-based materials in instruction.  

Because of the ambiguous nature spatial ability holds in mathematics curriculum, the educational 

community needs supplemental material in order to effectively instruct students on varying 

spatial abilities.  Use of manipulatives would be a logical choice in aiding the instruction of 

spatial abilities; however, the mass and diversity of materials that would be needed, as well as 

the professional development needed to facilitate instruction could be cumbersome. The goal of 

this research was to design and test a computer program that will allow for a similar 

manipulative experience that hands-on materials can offer in a virtual environment; additionally, 

this program was designed to have little or no reliance upon a teacher.   

Problem Statement 

 Spatial ability has been historically linked to mathematics achievement (Guay & 

McDaniel, 1977; Hannafin et al., 2008; Lean & Clements, 1981; Tatsuoka, Corter, & Tatsuoka, 

2004; Tolar, Lederberg, & Fletcher, 2009).  According to Tatsuoka, Corter, and Tatsuoka (2004) 

the United States is ranked in the bottom half of the 20 countries studied in both overall 

mathematics and specifically spatial ability.  These data indicate that U.S. schools have a large 

gap to bridge in worldwide mathematics efficacy and that improving spatial ability is a logical 

pathway to achieve this.  In light of this larger problem, a smaller yet more complex problem is 

presented: What can educators do to improve spatial ability?  Research indicates that utilization 

of interactive software is an effective way of increasing spatial ability (Duesbury & O’Neil, 

1996; Onyancha, Derov, & Kinsey, 2009; Samsudin & Ismail, 2004, Wright et al., 2008).   

CRIOSAT 

 CRIOSAT (Computerized Rotational Isometric and Orthographic Spatial Ability 

Treatment) is a computer program that has been designed to train students’ overall spatial ability 
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through the manipulation of a pseudo-three-dimensional object and the creation of various views 

of the object based on its rotation and orientation.  CRIOSAT has two main modes: 

Orthographic mode 

   In this mode students are given an array of cubes that have been placed randomly with a 

30% probabilistic density in a 3×3×3, 4×4×4, or 5×5×5 base cube, with the front, side and top 

labeled, meaning that in each array, every space that could hold a cube has a 30% chance of 

having one before gravity is applied.  Once the figure is randomly generated, it can be 

manipulated on all three axes by using mouse controls.  This freedom in movement is used to 

allow students to view the figure from any desired angle. Adjacent to the three-dimensional 

figure, is a set of three two-dimensional arrays which are labeled front, side and top.  Students 

will manipulate the three-dimensional figure into the desired perspective, and then by clicking on 

empty spaces in the two-dimensional array, fill in what each view looks like.   The combination 

of the front, side, and top views are referred to as an orthographic projection of a three-

dimensional figure (see Figure 1). 

  

Figure 1 - Orthographic projection (Left) and Isometric Projection (Right) of same figure (Walker, 2008)  
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Isometric mode 

 In this mode the juxtaposition of the three-dimensional area and the orthographic area are 

the same; however, the task and given information has changed.  This mode gives the students a 

complete orthographic projection of the figure and the student must construct the three-

dimensional representation of that figure.  The figures created for this mode are the same 30% 

probabilistic density as the previous.  Students will construct the three-dimensional versions via 

two different tools.  The first tool that they can use enables them to place blocks directly into the 

three-dimensional grid.  In the grid translucent spheres are located at the centered of each space 

in which a cube could exist.  By clicking on one of these spheres an opaque cube will appear.  

Below the three-dimensional representation on the screen are two-dimensional arrays which 

represent the bottom up layer of the three dimensional space.  Students may use these arrays to 

add blocks to their three dimensional representation as well, adding them by layer rather than 

three-dimensional space.   

Instructions detailing the specifics of the isometric and orthographic modes (Appendix A) 

were given to the students as part of the program.  All instructions were determined to be at 

grade appropriate reading levels for students using the Flesch-Kincaid readability formula 

(Kincaid, Fishburne, Rogers, & Chissom, 1975).  The ratings of the orthographic and isometric 

mode instructions were 6.6 and 4.6 grade level respectively (Appendices B & C).    

Isometric and orthographic projections are projections that have the primary purpose of 

representing three-dimensional objects on a two-dimensional plane.  Isometric projections are 

projections in which the intersecting edge of the front and side face, making this edge the 

forward most portion of the object.  The bottom edges of the figure, that would be parallel to the 

ground, are represented at 30° from that parallel, as seen in Figure 1.  Orthographic projections 
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conversely represent the same image.  Unlike Isometric projections which are three-dimensional-

like renderings on a two-dimensional plane, orthographic projections are a collection of two-

dimensional images that show the front, top, and side perspectives of the same figure two-

dimensionally, as shown in Figure 1. The relationship between these two types of projections is 

often used in the design and drafting stages of many products, from chairs to skyscrapers.  

Research Questions 

1. Will an interactive computer-based treatment focused on rotational and perspective 

relationships of three-dimensional affect the spatial ability of students? 

2. Is there a correlation between time spent on items from the CRIOSAT and change in 

spatial ability in students?  

3. Does the CRIOSAT affect males’ and females’ spatial ability differently? 

4. How do mathematics problem solving preferences correlate to students spatial abilities? 

5. How does mathematics achievement correlate to student spatial abilities?  

Rationale  

 Research indicates that virtual manipulatives similar to the CRIOSAT treatment can be 

just as, if not more effective than physical manipulatives in educational situations (Durmuş, 

Karakirik, 2006).  Play with blocks (Casey, et. al., 2008) as well as computer simulated 

construction of three-dimensional objects (Onyancha, Derov, & Kinsey, 2009) have been shown 

to increase spatial ability.  Increased spatial ability concurrently has been connected to 

mathematics achievement.  While there is extensive research describing the differences in spatial 

ability based on gender, it is unclear if this gap can be closed by using a focused spatial ability 

treatment.   
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 By monitoring and tracking pretest and posttest scores, CRIOSAT scores, time spent on 

each level of the CRIOSAT treatment, the gender of the participants, problem solving 

preferences of participants, and the mathematics achievement levels of the participant, this 

researcher aims to show that CRIOSAT has an effect on spatial ability, specifically related to 

mental rotation.  This evidence will aid in laying the groundwork for further spatially related 

treatments that may prove to increase all facets of spatial abilities and generalized mathematics 

achievement.   
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CHAPTER TWO: LITERATURE REVIEW 

Introduction 

 Spatial ability is the “skill in representing, transforming, generating, and recalling 

symbolic, nonlinguistic information” (Linn & Petersen, 1985, p. 1482) and is referred to using 

varying terminology throughout the existing literature, including: spatial skills (Casey, et al., 

2008; Tartre, 1990), spatial abilities (Guay & McDaniel, 1977; Linn & Petersen, 1985; Samsudin 

& Ismail, 2004),  spatial cognition (Sanz de Acedo Lizarraga & García Ganuza, 2003; Tlauka, 

Williams, & Williamson, 2008), and spatial reasoning (NCTM, 2006); though they are all 

referring to the same concept.  That is: 

“In general spatial skills [cognition, reasoning, and abilities] are considered to be 

those mental skills concerned with the understanding, manipulating, reorganizing, 

or interpreting relationships visually.” (Tartre, 1990, p. 216)     

  Spatial ability is an abundantly studied topic (Linn & Petersen, 1985; Voyer, Voyer, & 

Bryden, 1995) and is often mired in a preponderance of terms used to attempt to disseminate this 

multifaceted area of research (McGee, 1979; Tartre, 1990). This review of literature will attempt 

to distill this research in the perspective of the CRIOSAT, by analyzing topics including (a) the 

nature of spatial ability, which has several paradigms, especially concerning the subcategories 

and dissemination of terminology regarding specific spatially related tasks (Linn & Peterson, 

1985); (b) spatial ability’s connectedness to mathematics achievement (Hannafin, et. al., 2008; 

Guay & McDaniel, 1977; Smith, 1964), as well as other cognitive skills (Pak, et. al., 2008; Tolar, 

et. al, 2009) is well documented yet controversial, concept (Friedman, 1995; Hannafin, et. al, 

2008); (c) different ways of increasing ability, as there has been sufficient success increasing 

spatial ability through interactive computer-based treatments (Duesbury & O’Neil, 1996; 
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Samsudin & Ismail, 2004; Sanz de Acedo Lizarraga & Garcia Ganuza, 2003; Smith & Olkun, 

2005), as well as more traditional manipulative-based methods (Casey, et. al., 2008); (d) an 

examination of factors that may mitigate the level of spatial ability individuals tend to have, such 

as gender (Bodner & Guay, 1997; Kaufman, 2007; Linn & Petersen, 1985); (e) and the use of 

technology in mathematics instruction.  

 As many studies have shown a connection between spatial ability and mathematics 

achievement (Guay & McDaniel, 1977; Tolar, Lederberg, & Fletcher, 2008; van Garderen, 2006)  

is an important topic for study.  Spatial ability is however, a very diverse topic.  Exploring the 

many facets of spatial ability is necessary when attempting to increase that ability as in the 

current study.  In the present study the examined areas included: the nature of spatial ability, how 

it relates to mathematics achievement, methods of improving spatial ability, computer-based 

instruction in mathematics, and mitigating factors such as gender, mathematics problem solving 

preferences, and student exceptionalities. 

Spatial Ability 

  Lohman (1979) defines spatial ability “as the ability to generate, retain, and manipulate 

abstract visual images” (p.188).  In his research, Lohman (1979) identified three main categories 

of spatial ability: (a) spatial relation, (b) spatial orientation, and (c) visualization. Contrary to 

Lohman’s (1979) categorization, some researchers analyze spatial abilities as two separate skills, 

spatial orientation and spatial visualization (McGee, 1979; Tartre, 1990).  Bodner and Guay 

(1997) describe spatial orientation as the ability to continuously identify an object as a whole 

regardless of its orientation to the environment; while others (McGee, 1979; Tartre, 1990) define 

it differently, asserting that the objects’ orientation is not in question so much as the change in 

the relative perspective of the viewer.  This disambiguation is partially semantic as both 
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definitions relate to the recognition of the object from different perspectives; one states that the 

object moves, while the other states that the viewer moves.  Regardless of this difference, both 

assertions indicate that the perspective of viewing changes, or transforms.  This transformation in 

a three-dimensional object is most often seen in rotations.  Within spatial orientation it has been 

demonstrated that manipulating an object holistically in a mental capacity or gestalt processing, 

is significantly more beneficial and effective than analytic processing (Battista & Clements, 

1996; Bodner & Guay, 1997; Shepard & Cooper, 1982; Linn & Peterson, 1985), which is the 

manipulation of objects by parceling objects into manageable parts and then reconstructing them 

mentally (Bodner & Guay, 1996).  Due to the parceling of figures in analytic processing, it will 

henceforth be referred to as parcel processing in this study.  Figure 2 demonstrates the cognitive 

steps taken by a student in manipulating a figure using both parcel and gestalt processing.   

 

Figure 2 - Examples of Parcel (top) and Gestalt (bottom) processing 

 Spatial visualization is the ability to recall the physical image of an object previously 

viewed in parts or as a whole as a mental image (Bodner & Guay, 1997).  This explanation of 

mental imagery in spatial visualization correlates with Hebb’s (1972 as cited in Suwarsono, 

1985, p. 270) definition of visual imagery, “the occurrence of mental activity corresponding to 

the perception of an object, but when the object is not presented to the sense organ.”  The 
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specific difference in these definitions is that Hebb is suggesting that a visual stimulus is not 

necessary to create and maintain an image, while Bodner and Guay (1997) suggest that a 

previous stimulus was present.  While Bodner and Guay’s (1997) mental imagery is simple 

recognition or mental reconstruction of previous stimuli and Hebb’s (1972 as cited in 

Suwarsono, 1982) visual imagery is the application or new construction of an image used by the 

visualizer in order to interpret other information, or imagery that constructs “images in the mind” 

(Lean & Clements, 1981, p. 268), they hold similarities.  Haciomeroglu (2010) discusses visual 

imagery as “a mental construct depicting visual and spatial information” (p. 3), this definition 

allows for both definitions to combine by leaving out the variable of specific and previous 

stimulus; hence, this is the definition that will be used in this study.   

Through her research in visual imagery, Presmeg (1985) identified 5 kinds of visual imagery:  (a) 

concrete imagery or pictorial imagery; (b) pattern imagery; (c) memory images of formulae; (d) 

kinesthetic imagery; and (e) dynamic imagery. Among these visual imagery types, some 

researchers focus on the two most prevalent categories: dynamic imagery and concrete imagery 

(Presmeg, 1986a).   Dynamic imagery is imagery that has a level of generalizability for an 

individual to use.  The malleability of these images to adapt to the problem at hand is what 

makes them potentially effective for learners to use (Aspinwall, Shaw, & Presmeg, 1997; 

Presmeg, 1986b).  Concrete imagery is single use images that are locked into a specific 

paradigm, which will be referred to as static imagery henceforth in this study as it illustrates the 

counterpoint to dynamic imagery.  This static imagery can “exert a negative influence on the 

generalization of thinking (Krutetskii, 1969, p. 326),” which can become a hindrance to the 

learner (Aspinwall, Shaw, & Presmeg, 1997; Presmeg, 1986a; Presmeg, 1986b).  For example, 

many students are introduced to the concept of right triangles that are primarily pointing to the 
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right as in the picture on the right in Figure 3.  This kind of constant reassurance of the idea that 

right triangles point right can become a hindrance as a static image.  When confronted with a 

right triangle which points to the left on Figure 3, due to their static image of what a right 

triangle is, they will call it a left triangle in some cases.  By giving students dynamic image 

examples of right triangle in which all facets of the triangle change (i.e., orientation, size, 

proportionality of size) with only the measure of one angle as a constant, students are more free 

to develop a dynamic image of what a right triangle is with some static components.  Though 

dynamic images may be preferable, research indicates that when students construct dynamic 

images it does not ensure that it will not impede their understanding (Haciomeroglu, Aspinwall, 

and Presmeg, 2010; Haciomeroglu, Aspinwall and Presmeg, 2009).   

 Researchers (Linn & Peterson, 1985; Lohman, 1979) divided spatial ability into three 

categories rather than two: spatial perception, mental rotation, and spatial visualization. They 

defined spatial visualization as requiring mental manipulations in a multi-step process, and 

hence having the possibility of “multiple solutions” (p. 1484).  The Mental Cutting test (MCT) 

(CEEB, 1939), demonstrates spatial visualization tasks, as seen in Figure 4.  In this item the 

subject must mentally cut the figure along the indicated plane, rotate the remaining figure, and 

select the appropriate orthographical view.  This spatial ability differentiates itself from others 

primarily by the multiple steps it requires to derive an answer.  Spatial perception (see Figure 5) 

is defined as the subject being able to “determine spatial relationships with respect to the 

orientation of their own bodies, in spite of distracting information” (Linn and Peterson, 1985, p. 

Figure 3 – A pair of congruent right triangles with different orientations 
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1482). An example of this concept (shown in Figure 5), asks the subject to make lines that are 

framed, align vertically (Witkin, et. al., 1962).  This task is in line with the definition by Linn 

and Petersen, (1985) as the task of vertically aligning the rod is based on one’s perspective of 

viewing, and the frames’ relative angle to the rods is distracting to that perspective.  

 

Figure 4 - This Mental Cutting Test (CEEB, 1939) item is an example of a spatial visualization item 

 

Figure 5 - The Rod and Frame test (Witkin, et. al., 1962) is an example of a spatial perception item. 

 Mental rotation is the use of mental imagery to rotate an image in two- or three-

dimensional space in order to recognize the object in various perspectives (Shepard & Cooper, 

1982).  Two-dimensional images can be rotated on their plane in a full 360°; while three-

dimensional figures can be rotated about two planes in any combination of 360° each.  Due to the 

flat rendition of these three-dimensional objects, and that they are merely perceived to be three-

dimensional they could more accurately be labeled as “quasi-3D” (Deregowski, 1979; Peters & 
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Battista, 2007).  In the Shepard-Metzler Rotations test (S-M) multiple three-dimensional figures, 

which are constructed from ten cubes, are given for subjects at different rotations.  The 

participants must select which figures are the same in construction, but not in position as 

opposed to a figure which is a reflection of the others, as seen in Figure 6.  According to Linn 

and Petersen (1985), there is some evidence that two-dimensional rotations are cognitively more 

simplistic in nature than that of three-dimensional figures and that learners may attempt to use 

inefficient simple strategies when encountering more complex tasks.  The amount of time spent 

on a task seems to be a strong indicator of the complexity level of a rotational task (Linn & 

Petersen, 1985).  Additionally, Shepard and Metzler (1971) noted a direct correlation between 

angle of rotation and reaction time for identification of paired figures. These two studies lead to 

the conclusion that angle of the rotation in mental rotational tasks can be used as an indicator as 

to their relative complexity.   

 

Figure 6 - This item from the Shepard-Metzler Rotations Test (Shepard & Metzler, 1971) is an example of a mental 

rotational item 

 Hegarty and Waller (2004) describe a more refined definition of mental rotation as 

opposed to perspective-taking similar to the disambiguation of spatial orientation definitions 

from McGee (1979) and Tartre (1990).  Hegarty and Waller (2004) assert that mental rotations 

are the change in an object’s orientation to the observer; while, perspective-taking is the change 

in orientation of the observer to the object.  In one study by Thakkar, Brugger, and Park (2009), 

participants are shown the images and told to imagine themselves in place of the person shown 
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and determine whether the hand circled was their right or left.  This demonstrates that the person 

must mentally alter their personal viewpoint rather than alter their referent of an external figure.   

While this disassociation does exist Hegarty and Waller (2004) found that there is a strong 

correlation in a learner’s mental rotational ability and perspective-taking ability.  

 

Figure 7 - Perspective-taking task (Thakkar, Brugger, & Park, 2009) 

Mathematics Achievement 

 Spatial ability in many cases has been shown to be an indicator of mathematics 

achievement (Guay & McDaniel, 1977; Hannafin, et. al., 2008; Rhodes & Thompson, 2007; 

Smith, 1964; Tolar, et.al., 2009).  Friedman’s (1995) meta-analysis of spatial ability on the other 

hand indicated that there was a low correlation between these two factors.  This discrepancy 

could be explained via the variety of measures that are used to measure both spatial ability, and 

more importantly, mathematics achievement.  For example, research conducted (Raven, Raven, 

& Court, 1998; Tolar, et. al., 2009) used the mathematics portion of the Scholastic Aptitude Test 

(SAT-M) to judge mathematics achievement and found a correlation to spatial ability.  It has also 

been indicated that spatial ability can be a predictor of one’s problem solving (Moses, 1977) and 

reasoning ability (Moses, 1980), which could explain the success on the SAT-M.  This assertion 

is similar to Tolar’s et. al. (2009), indicating that the high level of reasoning and problem solving 

ability found in persons with high spatial ability may be caused by the high correlation found 

between spatial ability and the Scholastic Aptitude Test verbal portion (SAT-V).  Findings 
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indicated that this correlation was actually higher than the correlation with SAT-M.  In regards to 

the SAT as a measure, Rhode and Thompson (2007) determined that spatial ability is a better 

predictor of achievement than overall cognitive ability.   

 While the majority of these studies have been done using high school age students (Tolar, 

et.al., 2009), there have been studies involving middle school age (Hannafin, et. al., 2008) and 

elementary age students (Guay & McDaniel, 1977) indicating that spatial ability is a predictor of 

mathematics achievement across all age ranges.  Smith (1964) suggested, that spatial ability may 

be a good predictor of high performing mathematics students in upper grades because the 

mathematics conceptualization needed to be high achieving would be present and that spatial 

ability would not be as good a predictor of low achieving students because low-level 

mathematics is more operationally based.  Guay and McDaniel (1977) however, determined that 

the predictive nature of spatial ability is equally applicable with regards to high and low 

achieving mathematics students.  Tolar et. al. (2009) also indicated that using spatial ability 

testing may be a good way to better identify low achieving mathematics students. While spatial 

ability is not the only mathematics skill that should be examined, when considering other factors 

spatial ability is one of the main factors that influence overall mathematics achievement 

(Sherman, 1979). 

 Spatial ability may also have applications in predicting ability in other areas.  Bodner and 

Guay (1997) indicated that spatial ability correlates to chemistry achievement, because of the 

way in which students tend to visualize and mentally manipulate molecular structures.  As 

described previously, spatial ability can also be used as a predictor of problem solving ability 

(Moses, 1977; Tolar et. al., 2009) and reasoning ability (Moses, 1980; Tolar et. al., 2009).  

Spatial ability has also been shown to predict performance in  
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“…everyday tasks such as way finding, map reading and computer tasks such as 

text-reading, spreadsheet usage, map- and computer –based information search 

tasks…” (Pak et. al., 2008, p. 3045-3046). 

Because of the correlation to such a wide variety of skills, spatial ability may need to be treated 

as a skill set outside of mathematics or reading altogether (Hannafin, 2008). 

Improving Spatial Ability 

 It has been indicated that spatial ability correlates to overall intelligence (Samsudin & 

Ismail, 2004), which may lead us to believe that spatial ability is either difficult or impossible to 

change.  While this correlation does exist, sufficient evidence also exists that spatial ability can 

be increased through traditional methods (Brosnan, 1998; Casey, et. al., 2008; Sprafkin, et. al., 

1983), as well as through computer-aided instruction (Duesbury & O’Neil, 1996; Onyancha, 

Derov, & Kinsey, 2009; Samsudin & Ismail, 2004; Sanz de Acedo Lizarraga & Garcia Ganuza, 

2003; Smith & Olkun, 2005).   

  Conner & Serbin (1977) indicated that there is a correlation between time spent by 

children simply playing with spatially-related physical manipulatives and performance on some 

spatial ability tests. While this play has been shown to have some implications, Sprafkin, et. al. 

(1983) indicated that instruction as opposed to play with spatially related manipulatives 

improved spatial abilities.  Block building in reproducing block formations from a stimulus 

figure has been shown to have a positive effect of mental rotational ability (Brosnan, 1998; 

Johoda, 1979); while Casey et. al. (2008) determined that adding context, through storytelling, to 

block building activities increased their effectiveness.   

 While these physical manipulatives have shown great potential for increasing spatial 

ability, Durmuş and Karakirik (2006) state in their theoretical framework for virtual 
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manipulatives, that virtual manipulatives in many cases can be “employed interchangeably” (p. 

5) with physical manipulatives, and further that, “Some computer manipulatives may be more 

beneficial than any physical manipulatives” (p.5).  This is partially due to the potential of virtual 

manipulatives to familiarize learners with real-world applications and multiple representations of 

mathematical representations.  

 Using these types of virtual manipulatives and computer-aided instruction has been an 

area of recent study.  Smith & Olkun (2005) indicated that mental rotation skills can be improved 

with practice using their two-dimensional rotation and reflection program.  Duesbury & O’Neil 

(1996) determined that using a computer-aided design dynamic environment, students could 

identify the relationship between a two dimensional orthographic view of a three-dimensional 

figure more easily than when using a static model.  Samsudin & Ismail (2004) also developed a 

program to improved accuracy on spatial tasks.  Some researchers have used already existing 

computer-aided design programs and have noted increases in all forms of figure rotations 

(Onyancha, Derov, & Kinsey, 2009).  

 While this planned training can increase spatial ability (Baenninger & Newcombe, 1989), 

it may seem cumbersome to train each facet of spatial ability separately; however, there is some 

research asserting that there is transferability of spatial task or that the increase of one specific 

spatial skill may likely increase other spatial skills (Wright, et. al., 2008).  Sanz de Acedo 

Lizarraga & Garcia Ganuza (2003) demonstrated that an intervention program focused on 

increasing mental rotation ability had significant transferability in spatial visualization.   

 There are many mitigating factors to how well one can improve spatial abilities, such as 

gender (Moè, Meneghetti, & Cadinu, 2009) and age (Samsudin & Ismail, 2004; Ben –Chaim, 

Lappan, & Houang, 1989).  Moè, Meneghetti, and Cadinu (2009) state that, training of spatial 
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abilities is more effective in women than men. Samsudin and Ismail (2004) suggest that 

adolescence is the maturation stage for spatial abilities; as Ben-Chaim (1989) specifies that the 

optimal age for acquiring spatial ability is in ages 11 and 12.  These factors are specific to the 

acquisition or improvement of spatial ability; however, there are further mitigating factors to 

human predisposition to innate spatial ability skills.   

Computer-Based Instruction in Mathematics 

 Computer-based instruction (CBI) applications have been studied for many years 

(Coulsen, 1968) and have generated a preponderance of data in practice (Fletcher-Finn, & 

Gravatt, 1995; Kulik, 1994; Kulik & Kulik, 1991; Roschelle, Pea, Hoadly, Gordan, & Means, 

2000). Summarily, research indicates that CBI learning is an effective form of mathematics 

instruction (Kulik, 1994; Roschelle, Pea, Hoadly, Gordan, & Means, 2000; Wenglinsky, 1998), 

showing the effectiveness of increasing reasoning skills (Raghavan, Sartoris, & Glaser, 1997), 

generalized mathematics instruction skills (Kulik, 1994), positive attitudes (Kulik, 1994), 

accuracy in mental rotation tasks (Samsudin & Ismail, 2004), spatial visualization skill 

(Duesbury & O’Neil, 1996), and generalized spatial abilities (Onyancha, Derov, & Kinsey, 

2009). Learning gains in mathematics have been augmented by this computer-aided instruction, 

which when used alongside traditional instruction, yields better results than students only 

receiving traditional instruction in some basic mathematics skills (Fletcher, Hawley, & Piele, 

1999; Traas, 2008).     

 The effectiveness level of CBI can be affected by the content area being studied as well.  

Mathematics and science have been shown to be more effective in CBI (Roschelle, Pea, Hoadly, 

Gordan, & Means, 2000; Selber, 2004 ).  This may be due to the high level of reasoning involved 

in the aforementioned subjects, where CBI has been shown to be more effective in improving 
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reasoning based skills rather than repletion based skills (Wenglinsky, 1998).   In specific relation 

to spatial ability, computer aided instruction (CAI) has been shown to improve accuracy in 

mental rotation (Samsudin & Ismail, 2004), spatial visualization (Duesbury & O’Neil, 1996), and 

generalized spatial ability (Onyancha, Derov, & Kinsey, 2009).  Concurrently, mathematics 

using virtual manipulatives may be more effective than direct face-to-face instruction (Durmuş & 

Karakirik, 2006; Traas, 2007).  Moyer, Bolyard, & Spikell (2002) define virtual manipulatives as 

“an interactive, web-based visual representation of a dynamic object that presents opportunities 

for constructing mathematical knowledge” (p.373).  One study indicated that the type of dynamic 

environment provided by CAI improved reflections and rotations in two-dimensional objects as 

opposed to the traditional environment; in contrast the difference of environment had little or no 

significant difference on three-dimensional visualization (Dixon, 1995).  Reasons for the 

effectiveness of computer-based instruction are not as clearly studied and there are differing 

theories about what these reasons could be (Durmuş & Karakirik, 2006; Roschelle, 2000). Active 

engagement (Roschelle, Pea, Hoadly, Gordan, & Means, 2000; Smith & Olkun, 2005), 

interactivity (Smith & Olkun, 2005), and feedback (Roschelle, Pea, Hoadly, Gordan, & Means, 

2000; Smith & Olkun, 2005) are all possible factors for the effectiveness of CBI in addition to 

subject matter (Roschelle, Pea, Hoadly, Gordan, & Means, 2000).   

 As CBI is a one-on-one interaction, active engagement is common due to this 

interaction’s use of technology (Roschelle, Pea, Hoadly, Gordan, & Means, 2000).  Computer 

based environments make construction accessible and by their nature encourage rapid interaction 

(Roschelle, Pea, Hoadly, Gordan, & Means, 2000).  Research conducted by Roschelle, Pea, 

Hoadly, Gordan, & Means (2000) also indicates that CBI tend to have more rapid feedback loops 

available to the learner which differs from the traditional classroom, as feedback may be days or 
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weeks away from completion of a task. Feedback in metal rotation task have been shown to aid 

performance (Lohman & Nichols, 1990; Kass, Ahlers & Duggers, 1998), hence some computer 

treatments have been effective in improving mental rotation ability (Samsudin & Ismail, 2004) In 

order for CBI to have active engagement, the feedback loop and interactivity must be present in 

the software (Smith & Olken, 2005).   

Mitigating Factors 

 Many factors have been identified that may mitigate or predispose humans to differences 

in spatial ability, such as computer and video game usage (Sims & Mayer, 2002; Terlecki & 

Newcombe, 2005), participation in sports (Tlauka, Williams, Williamson, 2008), genetic 

predisposition (Manning & Taylor, 2001; Tlauka, Williams, Williamson, 2008; Williams, et. al., 

2000), influence of prenatal testosterone (Sanders, Bereczkei, Csatho, & Manning, J., 2005), 

preferences in mathematics problem solving (Haciomeroglu, Aspinwall, & Presmeg, 2009; 

Haciomeroglu, Aspinwall, Presmeg, Chicken & Bu, 2009;  Krutetskii, 1969; Moses, 1977; 

Presmeg, 1985; Suwarsono, 1982), mathematical giftedness (Presmeg, 1986a), influence of 

learning disabilities (van Garderen, 2006), students being second language learners (Dixon, 

1995), and experience playing with blocks in young ages (Casey, et. al., 2008).  Though these 

possible predictors differ greatly, they are all linked by one overarching factor, gender.   

Gender and Related Factors 

 Sex differences in spatial ability is a major focus of studies conducted, and have spawned 

several meta-analyses (e.g., Linn & Petersen, 1985; Voyer, Voyer, & Bryden, 1995) to 

summarize the vast amount of data.  Research indicates that sex differences in spatial abilities 

begin to emerge in early ages (Casey, 2008) to early adolescence (Linn & Petersen, 1985), and 

that these differences do not diminish with increase in age (Casey, et. al., 2008; Linn & Petersen, 
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1985; Voyer, Voyer, & Bryden, 1995).  Many studies have identified that while there is a gap in 

general spatial abilities, mental rotation tends to be the greatest area of disparity among genders 

(Bodner & Guay, 1997; Casey, Nuttall, Pezaris, & Benbow, 1995; Casey, et. al., 2008; Chan, 

2007; Johnson & Meade, 1987; Kaufman, 2007; Levine, Huttenlocher, Taylor, & Langrock, 

1999; Linn & Petersen, 1985; Voyer, Voyer, & Bryden, 1995).  Linn & Petersen (1985) suggest 

that this may be caused by females’ tendency to use inefficient analytic or parceling processing 

when practicing mental rotational tasks rather than gestalt thinking, specifically stating that, 

there is a “propensity of females to select less efficient or less accurate strategies” (p. 1492).  

These findings are mirrored in a longitudinal study by Fennema and Carpenter (1998), which 

unveiled that there was no difference in students’ mathematics abilities based on gender; 

however, there was a distinct difference in the types of strategies used.  Males tended to use 

more abstract solution strategies, while females tended to use more concrete solution strategies.  

This ‘propensity’ of females to use less efficient solution strategies could help to explain findings 

that indicate that the type of distracter used in rotational items does not cause variation in the 

gender effect (Voyer & Hou, 2006).  Interestingly, these findings are not completely consistent; 

as some studies identify no significant or consistent gender difference with some stimuli (Casey, 

et. al., 2008; Sanz de Acedo Lizarraga, & Garcia Ganuza, 2003). 

 Some researchers suspect that prenatal testosterone may play a role in this gender effect 

(Sanders, Bereczkei, Csatho, & Manning, J., 2005).  Tlauka, Williams, & Williamson (2008) 

continue in this vein, suggesting that in utero testosterone levels may cause a predisposition to 

sports activities and have an effect on finger-length ratio. The ratio of the second (i.e. - pointer) 

and fourth (i.e. – ring) fingers has been well studied in their possible correlation to spatial 

abilities (Manning & Taylor, 2001; Sanders, Bereczkei, Csatho, & Manning, J., 2005; Tlauka, 
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William, & Williamson, 2008; Williams, et. al., 2000).  Male participants in professional sports 

tend to have both higher spatial abilities and a lower finger-length ratio (Manning & Taylor, 

2001).  Tlauka, William, and Williamson (2008) found that women who chose to participate in 

sport related activities had lower finger length-ratios and mental rotation abilities.  While the 

finger-length ratios in humans may seem to be an esoteric factor, there is mounting evidence that 

there is a correlation between the factors of finger-length ratios, prenatal testosterone levels, 

propensity to involve oneself in physical activities, and spatial abilities.  These correlations infer 

that there is a biological predisposition on the part of men to outperform women in spatial tasks.  

 Casey et. al. (2008) suggested that while these differences take hold at an early age, it 

may be caused by lack of access on the part of females to spatial activities at young ages; as 

many boys tend to spend more playtime engaged in block-type play than girls.  Chan (2007) also 

indicates that experience during childhood with spatial orientation related tasks could especially 

influence mental rotations in females.  This kind of nurture over nature thinking helps support 

assertions by Linn & Petersen (1985) that sex differences in spatial abilities emerge during early 

adolescence.   As toy exposure becomes diminished in a technological age, others have identified 

that exposure and experience with computers and video games may play a role in both predicting 

spatial ability (Tlauka, William, and Williamson, 2008) and improving it (Sims & Mayer, 2002; 

Terlecki & Newcombe, 2005).  Playtime with computer and video games may be a newly 

emerging factor in the spatial ability gender effect (Sims & Mayer, 2002; Terlecki & Newcombe, 

2005), since the amount of experience with spatially-related computer and video game stimuli is 

more prevalent in males (Sanford & Madill, 2006).  Regardless of the nature versus nurture 

argument, there is evidence that the external stimuli of computer/video game use (Sims & 

Mayer, 2002; Terlecki & Newcombe, 2005), sports involvement (Tlauka, William, & 
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Williamson, 2008), and block play (Casey, et. al., 2008) all have the potential to impact or 

exacerbate the gender effect in spatial ability.  Some researchers suggest that if there is a 

continuation of segregation in some of these tasks the gender divide in spatial performance will 

continue to grow (Terlecki & Newcombe, 2005).  Fortunately, Ferrini-Mundy(1987), found that 

there is a potential in spatial ability treatments to increase both the tendency and ability with 

which women visualize solid objects in college age calculus students.  This research is important 

to keep in mind, as it aids in demonstrating that certain treatments may be able to override 

previous experiences and genetic predispositions in cases related to spatial visualization.   

Mathematical Preferences 

 Student thinking and preferences in problem solving as it relates to visualization has been 

a well studied area in mathematics education (Haciomeroglu, 2007; Haciomeroglu, Aspinwall, 

Presmeg, Chicken & Bu, 2009; Krutetskii, 1976; Moses, 1977; Stylianou, 2002; Suwarsono, 

1982).  Richardson (1977) and Walter (1963) identified three categories of problem solvers: 1.) 

verbalizers, 2.) visualizers, and 3.) mixers.  Walter (1963) asserted that there is a need for an 

instrument to accurately identify a person’s category of mathematical thinking.  Krutetskii 

(1976) worked on a similar concept, identifying verbal-logical, and visual-pictorial as the two 

major categories of mathematical processing types.  While people generally lean toward one or 

the other they are still able to use the other in limited perspective.  Students that are visual and 

are unable to understand an analytic understanding  may have difficulties in problem solving 

(Haciomeroglu, 2007).  Haciomeroglu (2007) indicates that the same is true of analytic students 

who cannot understand the visual domain; that both groups will have difficulties in problem 

solving if they are over-reliant upon either type of processing.  Learners that have a processing 

preference that is visual-pictorial are referred to as geometric learners, while those who prefer 
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using verbal-logical processing are considered analytic (Krutetskii, 1976).  Students who are 

balanced in preference are called harmonic (Krutetskii, 1976) as shown in Figure 8.  Of 

harmonic thinkers, Krutetskii (1976) identified two subtypes: abstract-harmonic and pictorial-

harmonic.     

 Walter’s (1963) call for testing the indicated categories of mathematical thinking went 

partially unanswered; however, Moses (1977) developed an instrument that could be used 

primarily in elementary realms and Suwarsono (1982) developed the Mathematical Processing 

Instrument (MPI). Later Presmeg (1985) used existing items from Kordemsky (1972) Krutetskii 

(1976)  and Suwarsono (1982) and refined them for use with high school algebra students.  

Searching for a better instrument to identify preferences in calculus students, Haciomeroglu, 

Aspinwall, Presmeg, Chicken, and Bu (2009) used the frameworks of Krutetskii (1976), 

Suwarsono (1982), and Presmeg (1985) in order to create the Mathematical Processing 

Instrument for Calculus (MPIC).  

 Though the study of visual imagery usage and preferences in problem solving tasks is 

important, there is no conclusive evidence on its effect on spatial ability.  While there is some 

evidence indicating that there exists a relationship between imagery and spatial ability (Clements 

& Battista, 1992; Lin, 1979), there is also research that indicates that there is not necessarily a 

correlation between them (Carey, 1915; Clements, 1984). Concurrently some research indicates 

that use of visual imagery tends toward higher spatial ability scores (Barrett, 1953), while others 

Figure 8- Mathematical processing preference categorization. 
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indicate that verbal students tend to outperform visual students in mathematics and spatially 

related tasks (Lean & Clements, 1981) or that spatial ability can be used as an indicator for 

problem-solving performance (Moses, 1977; Moses, 1980); while more recent research asserts 

that harmonic thinking may prove best for understanding certain concepts (Haciomeroglu, 

Aspinwall, Presmeg, Chicken, & Bu, 2009).  These differing opinions on the topic may be 

colored by each individual’s conception of what math is or should be.  The overarching math 

community is inclined to believe that visual concepts are not to be considered truly mathematics 

(Dreyfus, 1991; Guzman, 2002).  These pervasive attitudes and the mathematics education 

community’s reluctance to derivate instruction to visual learners (Haciomeroglu, Aspinwall, 

Presmeg, Chicken, & Bu, 2009) may be leading to the reluctance on the part of learners to use 

visual imagery.  This reluctance on the part of the learner may however be more intuitive, as 

seen in students inclination toward the analytic, even when instruction focuses upon the visual 

(Vinner, 1989); though this reluctance is changing more recently (Stylianou, 2002). 

Exceptionalities 

 Studies focusing on exceptional education students’ spatial and visualization abilities are 

an understudied facet amidst the overarching topic of spatial ability (Montague, Bos, & 

Doucette, 1991).  Van Garderen (2006) investigated the amount of types of imagery used in 

problem solving between high-achieving, average-achieving, and students with learning 

disabilities (LD).  She disaggregates the types of imagery used by each group into two categories 

based on sophistication of image: pictorial imagery and schematic imagery (Hegarty & 

Kozhevnikov, 1999).  Pictorial imagery is described as “images that encode the visual 

appearance of objects of persons described” (van Garderen, 2006, p. 497); whereas, schematic 

imagery is described as “images that encode the spatial relations described in a problem” (van 
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Garderen, 2006, p. 497).  Van Garderen (2006) indicates that schematic imagery is a more 

sophisticated type of visualization than pictorial.  This assertion may be based on research that 

shows a correlation between the use of schematic imagery and success in mathematics (Hegarty 

& Koxhevinikov, 1999).  High and average-achieving students have been shown to use 

visualization techniques more often than LD students (Montague, Bos, & Doucette, 1991).  

Similarly gifted students use visual imagery more often than LD students (van Garderen, 2002).  

When visual image types of gifted and LD students were compared, the gifted students used 

more schematic imagery; whereas, the LD students primarily relied upon pictorial imagery (van 

Garderen, 2002).       

 Mathematical giftedness as discussed by Krutetskii (1969) and Presmeg (1986a) is less 

about official definitions of giftedness status and more about proclivity toward and efficacy in 

mathematics.  According to Presmeg (1986a) most mathematically gifted students are not 

visualizers.  She lists several reasons for this phenomenon divided into internal and external 

factors.  Internal factors are generally directed around students finding images difficult to apply 

because of the amount of static images that students have.  External factors discussed are that: 

(a) Textbooks are usually written to focus on analytic strategies and hence do not foster or 

support the thinking of harmonic, and visual students.  (b)  Teachers of harmonic or analytic 

backgrounds do not tend to promote the visualization strategies and in some cases devalue them.  

(c)  Additionally, teachers that do use visualization themselves may not understand how to 

appropriately instruct others on the use of their visualizations; because of this, these teachers 

may also assert the analytic approach and in some cases devalue it, suggesting that analytic 

strategies are generally preferred in mathematics.          
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 Students classified as Limited English Proficiency (LEP) have been rarely focused upon 

in relation to spatial ability learning.  Dixon (1995) focused on these students, using LEP status 

and instructional environment as variable.  Dixon indicates that within the same instructional 

environment LEP and English Proficient (EP) students did not perform significantly differently 

in spatial ability tasks.   Though the growth differentiation of the LEP and EP students was not 

significant, the increase in visualization in all students that experienced a dynamic constructivist 

learning environment was significant.  Dixon continues by suggesting that because visual 

preference correlates with mathematics achievement, that “effort should be focused on 

improving the visualization skills of LEP students” (p. 123).   
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CHAPTER THREE: METHODOLOGY 

Design of study 

 This research is classified as experimental research because of the use of random 

sampling techniques and a control group.  The specific type is a pretest-posttest control group 

(Key, 1997), in which the experimental group is given a pretest, the desired treatment, then a 

posttest; whereas, the control group is given the pretest, during the treatment time the control is 

given either no treatment or normal activity, then given the posttest. Key (1997) states, that if 

this design is properly carried out, it can be very effective and control many threats to validity. 

Participants 

 Sampling was randomized.  Release and voluntary participation forms were passed out to 

all 1,159 students in the participating school for all levels through mathematics classrooms and 

collected by the teachers of those classrooms, then passed on to the researcher for compilation.  

The total amount collected was 161.  This group was split into experimental and control groups 

randomly, by entering the forms into a spreadsheet and marking every other participant as 

control.  Due to student mobility, student attendance, or teacher cooperation, some participants 

did not complete integral portions of the study (i.e., pretest or posttest).  Due to this lack of 

completion, these students were taken out of the study, leaving a remaining working sample of 

63 participants in the experimental group and 74 participants for the control, for a total of 

(n1=137), from 64 mathematics classes (21 sixth grade, 22 seventh grade, 21 eighth grade). The 

discrepancy in experimental and control size was primarily due to lack of continued cooperation 

on the part of participating teachers.   Of the sample, 41% were males, 59% were females, 49% 

sixth grade, 22% seventh grade, and 29% eighth grade students. 
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 The teachers selected to administer all portions of the CRIOSAT were selected from a 

convenience sample.  There were 12 mathematics teachers who were administering the 

treatment.  This sample includes all mathematics teachers in the school.  This sampling technique 

is justified primarily because the teachers are simply facilitators and do not interact with the 

treatment or instrument materials, yielding no opportunity for corruption of results.  

 A subsample of students was used to analyze the mathematics preferences.  This 

subsample was a convenience sample of the previous larger sample based on participating 

teacher volunteerism to provide the sample base.  By volunteering to be part of the subsample, 

the teacher agreed that all students that they had participating in the first part of the study would 

be participants in the subsample.  This subsample was originally 60 participants, due to 

participants failing to return the packets the working subsample was (n2=41).  Of this subsample, 

44% were male and 56% were female; while 46% were from the original control group and 54% 

were from the original experimental group.  This subsample spanned all grades and ability levels, 

as per class placement. 

School setting 

  The school selected for study is a sub-urban middle school located in Central Florida.  

The school was selected to reflect the total population of the county in which the study was 

conducted.  As a middle school the school serves students in grades six through eight. All 

research was conducted through mathematics classrooms of which there are 16 grade regular 

education, 4 advanced mathematics, and 1 pre-algebra class(es) in 6th grade; 17 regular 

education, 4 advanced mathematics, and 1 algebra class(es) in 7th grade; and 15 regular 

education, 4 advanced mathematics, 1 algebra, and 1 geometry class(es) in 8th grade.  This school 

is identified as a Title I (Elementary and Secondary Education Act of 1965).  
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 The school has a racially diverse population including: 23 % White, 65% Hispanic, 8% 

Black, 2.5% Asian/Pacific Islander, and 2.2% are identified as Multicultural.  69% of students 

are on free or reduced lunch and 29% of the school population was Limited English Proficient 

(LEP).  

Classroom setting 

 Class size was based on normal class placement determined by school administration, 

which is limited to an average class size of 22 students.  After the sample was obtained, there 

was no analysis done on the racial, or age demographics as these data trends are not the focus of 

the current study.  Ages in the sample are estimated to be between 11 and 16 based on total 

school enrollment, while racial groups that are likely represented are White, Hispanic, Black, 

Asian/Pacific Islander, those identified as Multicultural.  The study was not limited to any 

specific mathematics program and hence likely has some amount of LEP and Exceptional 

Education students.   No special characteristics were considered in the selection of participating 

students, from using a random sampling approach.   

Variables 

 Different variables were defined in relation to each of the research questions and will be 

discussed per each: 

Research Question 1.)  Will an interactive computer-based treatment focused on rotational and 

perspective relationships of three-dimensional affect the spatial ability of 

students? 

 The independent/manipulated variable in identification of any effect of the computer 

treatment is the identification of students into the control and experimental groups.  The focus of 
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the dependant/outcome variable in determination of the effectiveness of the treatment was the 

difference value from pretest to posttest.   

Research Question 2.) Is there a correlation between time spent on items from the CRIOSAT, 

and spatial ability in students?  

 The independent variable used to identify any correlation between time spent on the 

designed treatment and change in spatial ability was the average time each student spent on the 

treatment; while the dependant/outcome variable was the change in scores between the pre- and 

post-tests.  Deeper analysis into time spent focused on separation the average time spent in the 

treatment into the average time spent on the isometric and orthographic modes by themselves, 

while maintaining the dependant/outcome variable regarding the pre- and posttest differences.  

Research Question 3.) Does the CRIOSAT affect males’ and females’ spatial ability 

differently? 

 The primary independent/manipulated variables in the determination of the effects of the 

treatment on are the gender of the participant in both the control and experimental groups; while 

the primary dependant/outcome variable was the change in pre- and posttest scores.  As a 

secondary focus, each of the aforementioned was analyzed with the additional 

independent/manipulated variable of the time spent on each mode of the treatment.     

Research Question 4.) How do mathematics problem solving preferences correlate to students 

spatial abilities? 

 The primary independent/manipulated variable in determining a correlation between 

spatial ability and problem solving preference was the analytic-visual (hereafter referred to as 

AVA-VIS) score based on the MPI, this scale from +10 to -10 indicates visual preferences on the 

high end of the scale and analytic preferences on the low end, as the primary dependant/outcome 
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variable was the pretest scores.  Taking a deeper look into this question, increase in test scores 

was used to determine if spatial ability changes due to treatment despite problem solving 

preferences. 

Research Question 5.) How does mathematics achievement correlate to student spatial 

abilities?  

 The primary independent/manipulated variable in determining a correlation between 

mathematics ability was student scores on a state standardized test, using a primary 

dependant/outcome variable of pretest scores from a spatial ability test.  Additionally, student 

mathematics performance as seen by teachers and standardized test scores was used compared 

with pretest spatial ability scores.  These teacher perception score were determined through 

interviews with teachers in which they were asked about each participating students to identify 

the mathematics achievement on a scale of 1 to 5 in which five is considered high-achieving and 

one is considered low achieving.  Standardized testing score are from the Florida Comprehensive 

Assessment Test (FCAT).  

 As this is a study involving human participants as well as teachers that have individual 

styles, extraneous variables were expected.  These extraneous variables were intended to be 

limited by decreasing teacher influence through the use of CBI.  Though this attempt at control 

of extraneous variable was taken, there are always uncontrollable facets of human study.  

Similarly to Lean and Clements (1981), “student motivation, work habits, teaching and language 

competence were not measure in the present study” (p. 296), as they were not the focus of the 

current study.  All of which could have had an effect on student performance of the measured 

variables.   
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Instruments 

ROT 

 The instrument used as pre- and post-tests to determine change in spatial ability was the 

Purdue Visualization of Rotations (ROT) test (see Appendices D and E).  The ROT was 

developed as a part of the Purdue Spatial Visualization Test Battery (Guay, 1976).  This test was 

developed by Guay (1976).  The ROT was designed to assess one’s spatial ability using gestalt 

processing.  Use of the ROT is considered appropriate by Bodner and Guay (1997), stating:  

“It can be used as the basis for evaluating courses developed to enhance students’ 

spatial skills.  It can be used to probe students’ perceptions of computer-based 

activities that require them to perceive three-dimensional structures from two-

dimensional representations on a computer screen” (p. 14).  

 The ROT consists of 30 test items.  Each item shows a type of rotation using an example 

figure, then a new figure and five answer choices from which the participant selects the view that 

mirrors the rotation in the example (see Figure 7).  The ROT has a 15 minute time limit.  The 

time limit is imposed because it increases the use of gestalt processing.  While this test was 

administered during class time, the test items were scanned into CRIOSAT and administered via 

computer to participants, so that there was no involvement from teachers and the time limit was 

strictly enforced, as the computer logged students of the ROT after the prescribed amount of 

time.   
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Figure 9 - Sample problem from the ROT (Guay & Bodner, 1997). 

 To show construct validity of the ROT, Guay (1976) compared it with the Shepard-

Metzler test (S-M) (Shepard & Metzler, 1971) and the Minnesota Paper Form Board tests 

(MPFB) (Likert & Quasha, 1941).  When compared to the S-M tests, the ROT yielded results 

typically indicative of very beneficial results (r = 0.61, p < 0.001); whereas, the comparison with 

the MPFB tests yielded results that are likely to be useful (r = 0.25, p <0.01).  Further study of 

these tests (Guay, McDaniel, & Angelo, 1978), indicated that the stronger correlation to the S-M 

tests was partially due to the S-M tests and ROT being more conducive to gestalt processing, 

while the MPFB tests used little gestalt and more analytic processing. 

 The reliability of the ROT was calculated using Kuder-Richardson (KR-20) and split-half 

analyses.  Reliability testing was done on samples of 757, 850, and 1273 science students.  KR-

20 results were 0.80, 0.78, and 0.80 respectively, which are considered moderate to good 

reliability (Frary, 2008).  The S-H reliability was calculated using the samples.  The S-H results 

were 0.83, 0.80, and 0.85 respectively, or good reliability (Frary, 2008).   

MPI 

  The instrument that was used to determine mathematics processing preferences was the 

Mathematical Processing Instrument (MPI) (Appendix F) developed by Suwarsono (1982).  The 

MPI was originally designed consisting of 30 questions per test. Two tests were developed by 
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Suwarsono (1982).  Fifteen of the questions are designated as Part I consisting of word problems 

in which multiple solutions could be used to determine the correct answer.  The other fifteen 

questions from Part II, which is a corresponding set of questions.   

 The grading method that Suwarsono (1982) used in the MPI is as follows: 

An attempt using a visual method, whether the answer given is correct or 

incorrect: a visuality score of 2 is allocated; 

An attempt which does not give any indication of method both on the worksheet 

and on the questionnaires, whether the answer is correct or incorrect or no answer 

is given: a visuality score of 1 is allocated; 

An attempt using a nonvisual method, whether the answer given is correct or 

incorrect: a visuality score of 0 is allocated. (p. 151) 

Lean and Clements (1981) used the MPI as well however they scored students based on the 

following scale:  

+ 2 if the correct answer was obtained and reasoning was based on a diagram 

(drawn by the pupil) or on some ikonic visual image (constructed by the 

pupil); 

+ 1 if an incorrect answer was obtained and reasoning was based on a diagram 

or on some ikonic visual image; 

0 if no answer was given to a question or the pupil could not decide which 

method he used; 

- 1 if an incorrect answer was obtained and reasoning was based on a 

verbal-logical method which did not involve a diagram or the construction of 

an ikonic visual image; 
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- 2 if a correct answer was obtained and reasoning was based on a verbal-logical 

method which did not involve a diagram or the construction of an 

ikonic visual image. (p. 283-284) 

The rationale that Lean and Clements (1981) sited for the difference in scaling resulting in a 

positive/negative scale was based in how they viewed incorrect responses in regards to  

preference.  They indicated that “persons who give incorrect responses are not confident that the 

methods they have used are appropriate,” (p. 284) hence assigning ±1 to these responses.  The 

lower on this scale that students score, the more analytically they problem solve; conversely the 

higher students score, the more visual they are.  Statistical testing of the MPI demonstrates 

reliability using Cronbach’s alpha (α = 0.87; Suwarsono, 1982).  The validity of the MPI has 

been questioned by some claiming that there is “No clear relationship between the degree of 

visuality and students’ performance on either mathematics or spatial ability tests has been 

found.” (Blajenkova, Kozhevnikov, & Motes, p. 241)  While the validity of the MPI has been 

questioned partially due to the use of a Rasch model in its construction, which does not use a 

sample for calibration, Lean and Clements (1981) determined that there is validity by using 

Spearman’s rank-order.  In this testing they determined that there is validity of this instrument (ρ 

= .90). Lean and Clements (1981) continued testing the validity of the instrument by 

interviewing students based on answers to the MPI and grading them as analytic or visual, and 

compared that to the standard grading of the instrument.  This validity check resulted in an 

extremely strong correlation. 

 For the purposes of this study, five questions of the MPI Test 1 were administered to 

participants (questions 1, 2, 3, 5, and 10).  Grading of these was done using Lean and Clements’s 

(1981) described above.    
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Procedures 

 In preparation for research, school principal permission was obtained (Appendix G) a 

research proposal was filed with the IRB of both the county (Appendix H) in which the study 

was conducted and the University of Central Florida (Appendix I) due to the researcher’s link to 

the institution. Parent consent (Appendix J) and a child assent form (Appendix K) were sent 

home in a packet with each participant detailing what the research consisted of and the 

confidentiality measure.  

 Confidentiality was maintained by assigning each student a random number that linked 

the participant to the data from the treatment and testing. Participant names were not collected. 

Knowledge of participant computer login information and assigned number were limited to the 

researcher.  

 The identified participants’ progress was tracked through the instructional treatment over 

the course of two months per group (control and experimental). Participants engaged in 

CRIOSAT activities one day a week during mathematics class for the entire 50 minute class 

period in the experimental group after the initial testing, while the control group was subjected to 

the pretest only.  The posttest was administered to control and experimental groups at the end of 

the two month period.  

 Participants logged into the treatment for the first time using a user selected identification 

number.  Since the user selects their own used ID, the information could not be linked to 

participant data as to preserve anonymity. The treatment itself included instructions built in for 

participants that may have difficulty had with the content.  Teachers were explicitly instructed 

that they were to only place students onto computers and how much time they were spending on 

the treatment, but not to aid in the completion of any task.   
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  The treatment took participants through various tasks and levels of difficulty (Appendix 

A).  Participants were instructed to complete each task.  If a task was completed correctly, the 

treatment moved them to the next task.  If a task was completed incorrectly, the treatment offered 

support to aid the participant in the task. After this aid, a new task of the same difficulty was 

supplied. When a participant had completed 5 tasks, correctly or incorrectly, in any given 

difficulty level, the treatment moved on to the next difficulty level.  

 The MPI was administered to a subsample of students four weeks after the completion of 

the treatment.  The MPI was distributed by participating teachers to the participants in the form 

of a packet containing the following: an information page, Part I word problems, and Part II 

questionnaire.  These packets were sent home with participants to complete.  The participants 

were given one week in which to complete the contents of the packet, at which point they 

returned them to the participating teacher.     

Data Analysis 

 The first research question asked whether the treatment given to students had an effect on 

spatial ability.  Using this question a null hypothesis was developed stating: H0 = there is no 

affect of the treatment on student spatial ability.  In testing this hypothesis, the change in scores 

on the PSVT-ROT from pre- and posttest score of both the experimental and control groups were 

determined.  Based on these changes in spatial ability scores descriptive statistics were calculated 

and an ANOVA was conducted, in order to determine significance of findings.   

 In order to address the second research question pertaining to correlations between time 

spent on CRIOSAT and change in spatial ability, data associated with time was broken into the 

following categories for analysis: (a) total time spent on treatment versus change in ROT score, 

(b) time spent on isometric portion of the treatment versus change in ROT score, and (c) time 
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spent on isometric portion of the treatment versus change in ROT score.  This yielded the 

following null hypotheses: (a) H0 = there is no correlation between total time spent on treatment 

and change in ROT score, (b) H0 = there is no correlation between time spent on isometric 

portion of the treatment and change in ROT score, and (c) H0 = there is no correlation between 

time spent on orthographic portion of the treatment and change in ROT score, respectively.  In 

testing each of these hypotheses, an ANOVA was conducted to determine the significance of the 

finding.  To determine the strength of the correlation between factors, a correlation coefficient 

was found (r2 was used as correlation coefficient based on Pearson’s r).  Descriptive statistics for 

each subset of data were also calculated.  These tests were limited to participants in the 

experimental group as students in the control group did not spend any time using the treatment.    

 In analyzing whether or not the CRIOSAT affected males’ and females’ spatial ability 

differently, the following null hypothesis was developed: H0 = CRIOSAT does not affect males’ 

and females’ spatial ability differently.  The difference measured in association with this 

question was the change in ROT scores from pre- and posttest.  To determine significance of 

findings, an ANOVA was conducted.  The means of the experimental males, experimental 

females, control males, and control females were calculated for comparison.  The difference of 

means was then calculated, between control and experimental groups of both males and females 

to determine if there was an average difference in the change of score and as to whether this 

change was constant between genders. 

 The fourth research question of the present study was based outside of the use of the 

designed treatment.  Investigations about the nature of the relationship between problem solving 

preferences and student spatial abilities were examined in order to gauge the need of treatments 

similar to the one developed for the present study.  The subsample previously described was used 
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for analysis comparing the posttest scores of the ROT and the ANA-VIS scores from the MPI.  

Similarly to previous analysis, an ANOVA was conducted to determine the significance of the 

data collected.  To determine a correlation coefficient for the null hypothesis, H0 = there is no 

correlation between mathematics problem solving preference and student spatial abilities, the 

Pearson’s r was calculated and represented as an r2 value was used for interpretation.  In further 

analysis connecting the fifth research question of the present study and mathematics preferences, 

another ANOVA and r2 correlation coefficient were calculated between mathematics 

achievement in students and ANA-VIS scores from MPI.    

 The final research question presented in this study related to the determination of 

correlation between mathematics achievement and spatial ability.  Mathematics ability was 

determined on a scale of one to five based on an average composite of teacher interviews and 

standardized test scores, while the spatial ability was measured using the posttest scores of the 

administered ROT.  The null hypothesis that was developed in testing this research question was, 

H0 = There is no correlation between mathematics achievement and students’ spatial abilities.  

The same protocols used for analyzing correlational data for other similar questions in present 

study were used here.  An ANOVA was used for determining significance of results and 

Pearson’s r was calculated for use as an r2 value.    
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CHAPTER FOUR: DATA ANALYSIS 

Effectiveness of treatment  

 In reference to the first research question, determining if the treatment had an effect on 

spatial ability the differences in pre- and posttest PSVT-ROT were analyzed for the experimental 

(n = 63) and control groups (n = 73).  The ROT contained 30 questions and was analyzed as 

number correct from 0-30.  Descriptive statistics indicate that the increase in spatial ability was

X ≈.21 and X ≈.68 in the experimental and control groups respectively.  In the experimental 

group σ ≈ 3.53 with σ ≈ 4.11 in the control, from pretest to posttest.  The one-way ANOVA 

conducted indicates that there is no significant effect on spatial ability due to use of treatment at 

the p<.05 level [F(1,134) ≈.52, p ≈.47].  This lack of significance suggests that the null 

hypothesis (H0 = there is no affect of the treatment on student spatial ability) must be accepted.   

Time on treatment 

 Primary analysis regarding the second research question using descriptive statistics show 

the means of ∆ in ROT ( X ≈.21), total time spent using CRIOSAT ( X ≈57.8min), time spent in 

isometric mode ( X ≈34.4min) and time spent in orthographic mode ( X ≈23.4min), each with the 

respective standard deviations of σ≈3.53, σ≈33.58, σ≈26.84, and σ≈11.99 (see Table 1).  

Analysis of correlational relationships between time spent on treatment yielded highly significant 

results at the p<.01 level [F(1, 124)≈183.2, p<.0001] from comparison of total time spent using 

CRIOSAT and Δ of pre-and posttest scores.  A linear regression between data sets demonstrated 

that there was a negative correlation between factors (see Figure 10).  The correlation coefficient 

indicates that there is little or no correlation (r2=.0009) between factors though the linear 

regression leaned toward the negative.   This first analysis indicate that the null hypothesis, H0= 
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there is no correlational strength between total time spent on treatment and change in ROT score, 

must be accepted.  Further analyses related to the time spent on different modes of the treatment 

were conducted to determine if only specific portions of the treatment had lack of correlation.  

When comparing the time spent on the isometric portion of the treatment was compared to the ∆ 

of pre-and posttest scores, similar significance was found as in total time.  The data were highly 

significant at the p<.01 level [F(1,124)≈100.61, p<.0001].   

 Unlike the analysis of total time, the isometric mode times versus the ∆ ROT yielded a 

positive linear regression, as seen in Figure 11; however, the r-squared value indicates that there 
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Figure 10 -Total treatment time vs. change in PSVT 

 

Figure 11 - Isometric time vs. change in score on PSVT 
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is little or no strength to this correlation (r2=.0005).  This comparison indicates that the second 

null hypothesis related to the time spent on the isometric mode, H0 = time spent on isometric 

portion of the treatment and change in ROT score, must also be accepted.  Tests between the 

time spent on orthographic mode and ∆ ROT again indicated a high significance to the data at 

the p<.01 level [F(1,124)≈216.28, p<.0001].  Similar to the linear regression in the total time 

versus ∆ ROT comparison, the linear regression calculated in this comparison indicates a 

negative correlation (see Figure 12); however, unlike other comparisons related to total time, 

there is a stronger correlation (r2=.0178).  While the correlation coefficient indicated is 

magnitudes stronger than previous time related analyses, this is still a weak correlation.  While 

this correlation is not strong, when we compare this with the mean time spent in this mode ( X

≈23.4min).  This leads to ambiguity related to the null hypothesis, H0 = time spent on 

orthographic portion of the treatment and change in ROT score, to the extent that this cannot be 

accepted or rejected.   

 

Figure 12 - Orthographic time vs. change in score on PSVT 
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Gender analysis 

 The third facet of analysis relates to the determination of the designed treatment and its 

effects and differences in effects dependent upon gender.  Groups of participant were broken into 

the subgroups of experimental male, experimental female, control male, and control female for 

analysis.  The data used for statistical analysis were the ∆ ROT scores . The means of the ∆ ROT 

scores were ( X ≈-.03), ( X ≈.12), ( X ≈1.10), and ( X ≈-.13), for the experimental female, 

experimental male, control female, and control male respectively, as seen in Table 1.  As with 

the experimental versus control analysis, the ANOVA indicated that the current analysis was not 

statistically significant at the p<.05 level [F(3, 137)≈.88, p≈.45].  To determine the effect of the 

σ σ²
Total pre (n=137) 4.45 19.77
     experimental pre (n=63) 4.39 19.31
          male  (n=32) 4.79 22.95
          female (n=31) 4.00 16.00
     control pre (n=74) 4.51 20.32
           male (n=25) 5.76 33.16
           female (n=49) 4.50 20.25
Total post (n=137) 4.88 23.84
     experimental post (n=63) 4.63 21.47
          male  (n=32) 5.48 30.00
          female (n=31) 3.62 13.12
     control post  (n=74) 5.07 25.66
           male (n=25) 5.99 35.93
           female (n=49) 4.50 20.25
Treatment time 36.01 1297.01
     Level 1 5.65 31.93
     Level 2 8.64 74.67
     Level 3 4.74 22.43
     Level 4 10.76 115.84
     Level 5 5.85 34.26
     Level 6 16.80 282.14

8.35

8.06

8.62
8.33

8.89

8.98

9.58
10.75
9.00

52.76
8.84

11.73
5.72

10.60
6.77
9.10

10.88
7.92

8.66
8.03

8.60

Primary Study
X

Table 1- Descriptive Statistics 
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treatment two values were calculated from the mean scores of each group, ∆ female and ∆male.  The 

∆female≈-1.13, which show that the control females averaged about 1.13 points increase more than 

the experimental group from pretest to posttest, or that the control group did 3.78% better on the 

ROT posttest on average than the experimental group after treatment.  The ∆male was calculated 

in the same way showing a difference of .24 between the experimental and control groups.  This 

shows that on average the males in the experimental group increased by .24 points, or .81%.  

Again due to the lack of significance determined the null hypothesis, H0 = CRIOSAT does not 

affect males’ and females’ spatial ability differently, must be accepted.   

Problem solving preferences and spatial ability 

 Examining the relationship between students spatial abilities, as measured by the ROT,  

and their mathematics problem solving preferences, as measured by the shortened 5 question 

version of the MPI on a scale of -10 to +10, an ANOVA revealed that there was a highly 

significant relationship between factors at the p<.01 level [F(1, 80)≈92.76, p<.0001].  A linear 

regression of the plotted data indicate that there is a positive correlation between factor (as 

shown in Figure 13), indicating that as the preference to solve using visual methods increased so 

-15

-10

-5

0

5

10

15

0 10 20 30

AN
A-

VI
S 

sc
or

e

ROT score

Figure 13 – Level of visuality compared to spatial ability 



46 
 

did spatial ability.  The strength of this correlation however was slight (r2=.0007), indicating that 

there is little or no correlation between these factors.  This result allows for the acceptance of the 

null hypothesis, H0 = there is no correlation between mathematics problem solving preference 

and student spatial abilities. 

 Analysis of correlation between mathematics achievement and problem solving 

preferences was done in the following three stages each consisting of an ANOVA and linear 

regression: (a) analysis between mathematics achievement composite scores and ANA-VIS 

score, (b) analysis between mathematics achievement as indicated by teacher perceptions and 

ANA-VIS scores, and (c) analysis between standardized test scores and ANA-VIS scores.  

Standardized test scores were measured using the mathematics portion of the FCAT (Florida 

Comprehensive Assessment Test) in which students are given a score from 1-5, where a score of 

3 indicates that students are on grade level in mathematics.  Teacher perceptions of students’ 

mathematics achievement scores were obtained by interviewing teachers about students.  The 

teachers rated students using a scale of one through five, where one is low achieving and five is 

high achieving.  The composite scores aligned to each participant were calculated by using the 

average of the standardized test scores and the teacher perception score as they both use similar 

scales.  

  In the analysis between composite mathematics achievement scores, and ANA-VIS 

scores the ANOVA results indicate a high significance at the p<.01 level [F(1, 80)≈18.3, 

p<.0001].  The linear regression of these factors shows a negative correlation (see Figure 14) 

indicating that as visual preferences increase mathematics achievement decreases; however, the 

strength of this correlation is weak in this case (r2=.0199).  Also significant at the p<.01 level, is 

the data relating the teacher perception of student mathematics achievement [F(1,80)≈20.18, 
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p<.0001].  The regression of these factors shows a positive correlation (see Figure 15) indicating 

that as students become more visual in their problem solving preferences, teachers perceive them 

to achieve more highly in mathematics.  This correlation is however nearly as weak (r2=.0166) as 

the correlation between composite achievement scores and ANA-VIS scores.   

 The final analysis of mathematics achievement and problem solving preferences holds 

similar significance to the other factors analyzed [F(1,80)≈16.29, p<.001], while having a much 

stronger correlation coefficient (r2=.476).  The regression of these factors shows a negative 

relationship between standardized test scores and students with visual problem solving 

preferences, as seen in Figure 16.  As the visual preference of the student increase, the 

standardized test scores decrease.   
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 Mathematics  achievement and spatial ability 

 The final research question regards the analysis of correlation between mathematics 

achievement and student spatial abilities.  In the analysis of this correlation, an ANOVA was 
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used to determine significance.  The correlation of these two factors was found to be highly 

significant at the p<.01 level [F(1, 282)≈166.29, p<.0001].  From this level of significance, the 

null hypothesis, H0= there is no correlation between spatial ability and mathematics achievement 

in students, must be rejected.  Since there is a significant correlation between factors, strength of 

the correlation of factors needed to be determined.  This determination was made using a linear 

regression and an r2 value.  The linear regression of factors shows that there is a positive 

correlation between factors (see Figure 17), meaning that as spatial ability scores increased in 

participants the mathematics achievement scores also increased.  The strength of this correlation 

is substantial (r2=.143) enough to be noted but not considered strong.  While this analysis 

showed positive correlation (see Figure 18), other analyses of data need be considered.   

 The prior analysis used composite scores for mathematics achievement from standardized 

tests and teacher perceptions.  For subsequent analysis, each individual factor of the composite 

score was compared to spatial ability.  In analysis between teacher perception of mathematics 

achievement and spatial ability, the ANOVA unveiled similar results in significance [F(1, 

266)≈174.9, p<.0001], however the correlational strength was weaker (r2=.1117) than the 

composite score.  Similar analysis between standardized test scores not only showed a high level 
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of significance [F(1, 272)≈236.12, p<.0001], but in this case a stronger positive correlation (see 

Figure 19) was found (r2=.184).   

 

 

Figure 18 – Mathematics Achievement (teacher perception) compared to spatial ability  

 

Figure 19 – Mathematics achievement (standardized test) compared to spatial ability 

 Deeper analysis was conducted by dividing the subsample into groups of high and low 

achieving students.  This divide utilized the composite mathematics achievement score, scores 

below 3 were considered low achieving, while those above 3 were considered high achieving.  

The data were further categorized by gender (descriptive statistics of subsample seen in Tables 2 

through 4).  Correlation coefficients were then found for the relationships of these groups 

between student visuality and spatial ability.  In low achieving male students, a very strong 
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(r2=.716) negative correlation between these factors was found; while, in low achieving female 

students a weak (r2=.0077) positive correlation, as seen in figure 20.    

 

Table 2 – Subsample basic demographics 

 

Table 3 – Subsample descriptive statistics by gender for analysis of high and low achieving groups 

 

Table 4 - Subsample descriptive statistics by gender for analysis of visual and analytic groups 

 In high achieving students, the correlation of ANA-VIS scores and spatial ability in 

females was similar to their low achieving counterparts, having a weak (r2=.0182) positive 

correlation, as seen in figure 20.  Contrary to the findings of low achieving male students, the 

σ σ²
Teacher indicated achievement 0.74 0.55
Standardized test achievement 0.93 0.87
Achievement composite 0.74 0.54
ANA-VIS score 5.02 25.21

2.93
3.27

3.10
-0.29

Subsample Study
X

σ σ² σ σ²
8.09 3.60 12.99 1.00 4.91 24.09

high achieving (n=8) 10.25 3.45 11.93 -0.25 5.68 32.21
low achieving (n=8) 7.63 2.33 5.41 0.50 3.85 14.86

10.39 5.67 32.13 -1.94 4.80 23.00
high achieving (n=9) 12.67 6.93 48.00 -2.44 5.68 32.21
low achieving (n=3) 9.33 2.08 4.33 -3.33 4.16 17.33

Subsample Descriptive Statistics

female (n=23)

male (n=18)

spatial ability Total ANA-VIS

X X

σ σ² σ σ²
8.09 3.60 12.99 2.98 4.91 24.09

visual (n= 8) 6.88 3.72 13.84 2.94 0.50 0.25
analytic (n=4) 7.75 1.50 2.25 3.38 0.75 0.56

10.39 5.67 32.13 3.25 -1.94 3.78
visual (n= 2) 15.00 15.56 242.00 3.50 0.71 0.50
analytic (n=7) 9.71 4.79 22.90 3.50 0.58 0.33

Subsample Descriptive Statistics
Achievement Avgspatial ability

female (n=23)

male (n=18)

X X
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findings in high achieving males indicates a moderately weak (r2=.2349) positive correlation 

between factors.   

 Further analysis using ANA-VIS scores as a basis for participant division was conducted.  

Students were divided into two categories, analytic and visual and then again by gender.  After 

the group division correlation analysis was done between composite mathematics achievement 

scores and spatial ability scores, an ANA-VIS score of -10 to -4 was categorized as analytic, -3 

to 3 was  

Figure 20 – Analysis between gender, mathematics achievement, spatial ability, and strategic preferences. 
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categorized as having no preference, and 4 to 10 categorized as visual preference.  Using this, 

27%, 51%, and 22% of participants were found to have analytic preferences, no preferences, and 

visual preferences in problem solving respectively.   

 Females identified as analytic had a moderately strong (r2=.3086) positive correlation 

between these factors; while, the visual females had a much weaker (r2=.0225) positive 

correlation between these factors.  Males categorized as analytic had a weak (r2=.0582) positive 

correlation between factors.  Visual male however, had a perfect (r2=1) positive correlation 

between factors (see Figure 20).  Explanation for this perfect correlation is necessary due to the 

exceedingly uncommon result.  The correlation strength is due to there being only two males that 

were categorized as visual.   
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CHAPTER FIVE: CONCLUSIONS 

Discussion 

As no significance can be determined for the effect of the treatment on spatial ability, this 

researcher cannot state if the treatment was significantly effective.  These results suggest that the 

CRIOSAT has no effect on student spatial ability. To explain some of the possible reasons for 

these results, outside factors must be considered.  As in Lean and Clements’ (1981) study, 

student motivation, work habits, teaching and language competence were not measured, and are 

all factors that can influence the effectiveness of the treatment; but of the utmost importance in 

the results of the present study, is contact time with the treatment.  Since the treatment tested was 

computer-based in nature rather than computer-assisted instruction, participants who did not 

have sufficient time, were not given enough time by participating teachers, or did not want to 

spend sufficient time using the treatment, may not have learned the intended content.  Teachers 

were asked to have students in the experimental group on the treatment for at least an hour per 

week for an 8-week period; however, when the average time participants spent on the treatment 

is calculated for the duration of the study the result is X = 57.78 min.  These data illustrate that 

while students were intended to interact with the treatment for 8 hours over the study period, the 

average participant was only in contact with the treatment for about one hour.  

 Duesbury and O’Neil (1996) also found no statistically significant relationships between 

a similar, yet not dynamic, treatment and change in mental rotations, which is in agreement with 

the findings of this study.  Duesbury and O’Neil (1996) did indicate however that even in studies 

that demonstrated positive effects on spatial abilities, there is little evidence that demonstrates a 

long lasting effects of these treatments if any.  While they indicated that the rotation and ability 

to manipulate a figure and comparing it to the 2D representation of a figure may be 
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instructionally beneficial; however the findings of the current study indicate that this may not be 

the case.  Contrary to Duesbury and O’Neil’s (1996) results suggesting that there may be no long 

lasting effects to such treatments, Ben-Chaim, Lappan, and Houang’s (1988) study tested 

students using similar stimuli and found that retention can occur in spatial ability training.  The 

evidence related to effective spatial ability training and retention paired with the evidence 

examining the relationship between spatial ability and mathematics achievement, indicate that 

finding effective ways to improve spatial ability is still an important endeavor.     

Items from the CRIOSAT were based in the framework of Coulsen (1968), specifying 

that “an item of instructional material (1) containing information and a question or problem 

requiring a response, is displayed (2) to the student (3). The response (4) is evaluated (5), and a 

feedback message (6) is automatically transmitted to the student.  A new item is then selected 

(7).” (p. 141).  Furthering this line of thought, Sanz de Acedo and Garcia (2003) indicated that 

feedback must be provided after each item to affect future performance.  Though this 

methodological approach to feedback was used, it did not seem to affect future performance.  

Some participants improved during the early stages of the CRIOSAT and continued to improve; 

however, those who did not improve early on had little or no improvement throughout.  As the 

items designed for CRIOSAT were randomly generated, there was some difficulty in 

determining what types of feedback would be given.  Feedback interpretation by participants 

may be a factor in lack of spatial increase.   

Time that participants spent in contact with the CBI was measured to help describe 

reasons for any change in spatial ability.  Students in the current study had an average of one 

class period of contact time with the treatment.  Hannafin, Truxaw, Vermillion, and Lui (2008) 

used a CAI (computer assisted instruction) to determine effects of geometry skill and indicated 
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that it was unclear as to whether additional time with the instruction would have had an impact 

on achievement.  Further, they indicated that other studies showed that students involved with 

CAIs needed less time to master a task than with traditional instruction (Kulik & Kulik, 1991 as 

cited in Hannafin, Truxaw, Vermillion, and Lui, 2008).  While the stimuli of the ROT items and 

of the CRIOSAT are not congruent, research regarding time of tasks as it relates to transference 

in spatial ability tasks applies.  Wright, Thompson, Ganis, Newcombe, and Kosslyn (2008) stated 

that “transference effects occurred after approximately 7 hours of practice across a 3-week 

period.” (p. 770) and that concurrently 12 to 14 hours of practice to transfer non-practiced items 

(Terlecki, Newcombe, & Little, in press as cited in  Wright , Thompson, Ganis, Newcombe, & 

Kosslyn 2008).  As the current study required transference, the time that was spent by the 

participants may not have been sufficient.   

Gender differences in relation to spatial ability are well documented indicating that 

females tend to have lower spatial ability than males (Battista, 1990; Ferrini-Mundy, 1987; Lean 

& Clements, 1982; Linn & Peterson, 1990; Voyer, Voyer, & Bryden, 1995).  These findings are 

contrary to those of the current study, wherein it was determined that there is no significant 

difference between males and females in spatial ability.  This decrease in the gender gap may be 

from a change in dynamic between play interactions in male and females; as Chan’s (2007) study 

indicates that the role of spatial experience had a stronger effect on spatial ability than gender.  

The increase in females interacting in rendered 3D environments in video games may be a factor 

in decreasing this spatial divide.  The current results indicate that there is no spatial superiority 

for either gender follows Linn and Peterson’s (1990) results which suggest that there is a 

diminishing difference between the genders as it relates to spatial ability and gives some 

evidence to the assertions of Sanz de Acedo and Garcia’s (2003) who state that, “there is no 
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scientific justification to continue to believe that men’s performance is superior to women’s in 

spatial issues.” (p. 278)  

The most interesting and significant findings of this study related to the secondary foci, 

correlations of spatial ability (measured by the ROT), mathematics achievement (measured by 

teacher interviews and standardized test scores), and mathematics problem solving preferences 

(measured by the MPI).  While an intuitive avenue of thought would lead to the conclusion that 

students who have a greater grasp of spatial ability would have a tendency to solve problems 

using visual means, this study indicates that this is not true.  To the contrary significant evidence 

is presented that there is no correlation strength between these factors.  In fact students with 

higher spatial ability tend to use analytic strategies rather than visual.  This finding indicates that 

while students may have spatial ability they do not use the ability they have or at least that they 

do not rely upon that ability when solving problems similar to findings in other research (Lean & 

Clements, 1981; Presmeg 1986a).  It is possible that these students have decided that though they 

can solve problems by visual means, the students have found the visual means of solving 

problems to be inefficient or unreliable.  These strategies have been shown to be unreliable in the 

use of both static and dynamic images used to solve problems in the absence of analytic thinking 

(Haciomeroglu, Aspinwall, & Presmeg, 2010).    

While this study shows a significant negative correlation between problem solving 

strategies toward visualization and standardized testing, it also showed a significant positive 

correlation between visual preferences and teacher indicated mathematics achievement.  This 

finding is interesting, considering how teachers are denoting student achievement and how 

standardized test scores are measuring the same factor are incongruous; however, the 

implications gleaned from this incongruity are difficult to extract. The nature by which teachers 
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perceive mathematics achievement and how it is judged by standardized tests are not necessarily 

the same.  Similarly, student performance on the MPI and mathematics achievement on 

standardized tests correlate; however, because the stimuli are not the same and in many cases not 

similar at all, this correlation cannot be used as a predictor of mathematics achievement on 

standardized tests.  Not surprisingly as the level of student visuality increased performance on 

standardized tests decreased.  This indicates that some students who are highly visual tend to not 

use this ability in problem solving.  Again, overreliance upon visual strategies can be inaccurate 

(Haciomeroglu, Aspinwall, & Presmeg, 2010). 

 A much stronger and consistent correlation between factors was found between spatial 

ability and mathematics achievement, which is in agreement with Booth and Thomas (1999), but 

contrary to the findings of Tartre (1990).  A moderately strong correlation between these factors 

was found in the present study.  Unlike the correlations relating problem solving preferences and 

mathematics achievement, the correlation between spatial ability and mathematics ability was 

much more consistent when analyzing both teacher perceptions and standardized measures of 

mathematics achievement, indicating that students with spatial ability may not prefer to use it.  

This is demonstrated by the composite low correlation of visual preference and spatial ability 

that can be derived from the positive correlation of mathematics achievement and spatial ability 

combined with the negative correlation between visual preferences and spatial ability.     

This correlation of spatial ability and mathematics achievement is similarly found in 

elementary school students, (Guay & McDaniel, 1977) middle school students, (Ben-Chaim, 

Lappan, & Houang, 1988) algebra students, (Tolar, Lederberg, & Fletcher, 2008), and middle 

school students with varying exceptionalities (van Garderen, 2006).  While Guay and McDaniel 

(1977) found, that overall there were positive correlations among elementary students’ 
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mathematics achievement and spatial ability, not all measures of spatial ability were consistent in 

this correlation.  The surface development task used by Guay and McDaniel (1977) showed the 

greatest inconsistency in correlation ranging from negative to strongly positive coefficients is the 

most closely related to the types of stimuli that were given in CRIOSAT.  The inconsistency with 

their findings along with the lack of significance in change in spatial ability from the current 

study, suggest that this skill may be one that is not solely synonymous with others identified as 

spatial ability.  The skill needed for interpretation of surface nets compared to their 3D rendering 

may require more specialized skills than just mental rotation.   Tolar et.al (2008) indicated that 

while spatial ability did correlate to algebra achievement, it was not one of the prevalent factors; 

however, they did discover that spatial ability was in fact a prevalent factor in determining 

success on the SAT-M.  These findings are parallel to those in the current study, indicating that 

mathematics achievement in the classroom may not necessarily be predicted by a student’s 

spatial ability; however, success on standardized tests may be predicted.   

When students were divided into high and low achieving categories, it was found that the 

correlation between student visuality and spatial ability among females in both groups had 

similar correlations.  This correlation indicated that as both high and low achieving females 

became more visual in the problem solving strategies that they used as their spatial ability 

increased.  This indicates that mathematics achievement does not change this relationship in 

females.  It also indicates that as female students become more efficacious in spatial ability, they 

tend to use those abilities more while problem solving.   Though there is no significant difference 

between males and females relating to spatial ability in the current study, the difference in visual 

preferences is still apparent.  High achieving males followed the same patterns as both groups of 

females.  These results suggest that students play to their own personal strengths relating to 
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visuality and spatial ability.  Results are based on the most available data in this study.  Contrary 

to their high achieving counterparts, low achieving males had a strong tendency to use less visual 

strategies as their spatial ability increased.  These data indicate that low achieving males tend to 

not follow strengths that they have.    

Implications 

 While much of the presented data from the secondary foci of the study hold an implicit 

value, the primary focus also holds implications of its own.  As with Duesbury and O’Neil 

(1996), the current study had no significant effect on spatial ability.  Both studies share distinct 

similarities in stimuli used.  This concurrent finding explicates that treatments of this type do not 

have an effect on overall spatial ability as it relates to mental rotation, implying that these types 

of treatments are not useful in training spatial ability.  While this may be true, it has been shown 

that other treatments on spatial ability are effective for instruction, retention (Ben-Chaim, 

Lappan, & Houang, 1988) and transference (Wright , et. al. 2008) to varying spatial skills, hence 

devising such a treatment to train spatial ability is still a goal worth pursuing.   

 The implications of the secondary foci showed even more interesting findings.  These 

investigations examined the correlation of factors related to spatial ability, mathematics 

achievement, and problem solving preferences.  The correlation found between spatial ability 

and standardized test scores combined with Tolar’s et. al. (2008) results indicate that spatial 

ability may be used as a general indicator for mathematics achievement on standardized tests.  

With further research using larger samples, this implication may lead to the use of spatial ability 

as a major determination gauge in predicting success on standardized tests.  Spatial ability also 

had a positive correlation to teacher perception of mathematics achievement; however, similar to 

Tolar’s et. al. (2008) study this correlation was not as prevalent as the aforementioned.  This 
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implies that students with high spatial ability may both exhibit behaviors that are preferable in 

mathematics classrooms as well as hold a proclivity to excel in the content area in testing 

situations.  Additional training for teachers would be beneficial as it relates to training spatial 

ability in students, since increasing this ability may lead to increased mathematics achievement.  

 The lack of a significant difference in spatial ability between genders also holds the 

implicit property that the gender gap is diminishing, and that it may not be necessary to focus 

studies regarding spatial ability on gender as much as they have been in the past.  This concept is 

mirrored in the suggestions by Sanz de Acedo Lizzaraga and Garcia Ganuza (2003).  The current 

research further indicates that regardless of gender, students with increased spatial ability, 

mathematics achievement increases as well.  Because of these findings further research should 

focus on the nature of and instruction techniques for spatial ability; as well as, focus on factors 

influencing their performance for visual and analytic strategies.  

Limitations 

 Limitations of the current study primarily regard fidelity to the study on the part of 

teachers and students. While many participating teachers and students made efforts to maintain 

fidelity regarding the amount of time spent using the treatment, the lack of fidelity was still 

apparent based on the average times that students spent interacting with the treatment.  From the 

data collected it cannot be determined whether participants partook in fewer sessions of the 

treatment or shorter sessions than originally intended for students, for the effective use of this 

treatment, as time per level was collected but not time per login.  Related to the time spent on 

tasks is the overall time frame in which the study took place.  An eight week period in which 

participating teachers were asked to have students engage the treatment, totaling eight hours of 

student contact time may not be enough.  If the window for the participation was increased along 
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with contact time, participating teachers may be better able to place students in contact with the 

treatment for adequate time periods.   

 Another limiting factor may have been the mode of instruction.  While CBI (computer-

based instruction) has been shown to have significant increases in spatial ability (Onyancha, 

Derov, & Kinsey, 2009) and mental rotation tasks (Samsudin & Ismail, 2004), it may not be the 

most effective mode of instruction.  Computer assisted instruction (CAI) may have been a more 

effective mode as significant gains in spatial ability has also been found in students using 

manipulative (Casey, et. al., 2008) based instruction and paper/pencil instruction  of the 

manipulation of three-dimensional arrays (Battista, & Clements, 1996).    

 Without further instruction, tasks associated with this treatment may have become too 

difficult as well. It is possible that the lower levels would have benefitted from more robustness 

and practice or a more detailed instructional process.  It is evident from the data that the most 

difficult questions had a very low rate of correctness.  Only 8.7% of the 46 students who 

attempted questions in level 6 got any questions correct.  This demonstrates that by the time 

participants reached level 6 there may not have been enough time for students to invest in the 

simpler fundamental problems.  It would be suggested that upon using CRIOSAT further this 

limitation be changed by removing 5×5×5 isometric creating tasks until more practice has taken 

place or possibly take them out all together.  

Suggestions for Future Research 

 Suggestions for further research should be centered on the limitations of the current 

study.  Research using the CRIOSAT should be conducted using time as a focused variable to a 

larger degree.  These studies should focus on using CRIOSAT in a similar time frame, a year-

long treatment, and in a longitudinal perspective spanning 6th through 8th grade participants.  
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This type of research would have a greater capacity for determining a correlation between time 

spent on CRIOSAT and change in spatial ability.   

 A separate study using multiple modes of instruction in relation to CRIOSAT would also 

be beneficial to determine which mode is most effective when instructing students on similar 

stimuli.  A fully hands-on inquiry instructional pattern should be compared to a CBI approach 

and a mixed mode approach.  While the evidence that each mode is effective in facets of spatial 

ability training exists, determining which mode is most effective in training students to transfer 

images back and forth between three-dimensional arrays and orthographic views are important 

for increasing a facet of spatial ability that can lead to increased engineering prowess, as these 

skills are used by a variety of engineers.     

 The level of problem difficult and appropriateness of tasks should also be analyzed.  

While the randomization of the tasks makes this difficult, studies should attempt to discover 

what sets of randomized figures are more conducive to students in varying age ranges, increasing 

their spatial abilities through this treatment.  In addition to analyzing the task difficulty, the 

method by which spatial ability is measured should be looked into as well.  While the ROT 

(Guay, 1976) is a very reliable instrument for measuring mental rotation, it is suggested that 

spatial ability in future studies regarding CRIOSAT use multiple measures in assessment.   

 Qualitative analysis of students using CRIOSAT should also be conducted.  This 

researcher suggests primarily that this be a case study of students that are indicated by pretesting 

as having high, medium, and low spatial ability.  These students should be interviewed during 

and after the treatment.  This type of study will help to indicate areas in which CRIOSAT may be 

deficient, as well as provide insight about students’ thinking during the treatment.   
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 Any of the suggested research should also add a component regarding retention.  Each 

should give a pre- and posttest as well as another testing period well after the treatment period to 

determine the lasting effects of treatment.   
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APPENDIX A: CRIOSAT DIFFICULTY LEVELS 
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Each of the levels will have about 5-10 exercises.   

Level 1  

Given:  Randomly Generated isometric projection of Cubes in a 3×3×3 space.  Each side of each cube 
will be color coded.  Isometric will be able to be manipulated for a 360 ˚ view in all directions.   

Students:  Create all three orthographic views of same object.  Squares will be created in corresponding 
colors to those of isometric projection. 

Level 2 

Given:  Randomly Generated orthographic projection of squares in a 3×3 space. 

Students:  Create isometric view of same object using cubes.  Isometric will be able to be manipulated 
for a 360˚ view in all directions. 

Level 3  

Given:  Randomly Generated isometric projection of Cubes in a 4×4×4 space. Each side of each cube 
will be color coded. Isometric will be able to be manipulated for a 360 ˚ view in all directions. 

Students:  Create all three orthographic views of same object. Squares will be created in corresponding 
colors to those of isometric projection. 

Level 4 

Given:  Randomly Generated orthographic projection of squares in a 4×4 space. 

Students:  Create isometric view of same object using cubes.  Isometric will be able to be manipulated 
for a 360˚ view in all directions. 

Level 5  

Given:  Randomly Generated isometric projection of Cubes in a 5×5×5 space. Each side of each cube 
will be color coded.  Isometric will be able to be manipulated for a 360˚ view in all directions. 

Students:  Create all three orthographic views of same object.  Squares will be created in corresponding 
colors to those of isometric projection. 

Level 6 

Given:  Randomly Generated orthographic projection of squares in a 5×5 space. 

Students:  Create isometric view of same object using cubes.  Isometric will be able to be manipulated 
for a 360˚ view in all directions. 
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APPENDIX B:  CRIOSAT INSTRUCTIONS FOR LEVELS 1,3, & 5 
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 In this stage of the CRIOSAT treatment you will be given a three dimensional object.  With this 
object you will have to create the front, top, and side views of the object. You may use the control buttons 
provided to move the object and see it from different sides.  The controls are located to the upper right 
portion of the three dimensional object, as seen below. 

 

 The buttons labeled up, down, left and right will turn the object in the indicated direction.  The 
buttons labeled “rot” will rotate the object.  The button labeled “reset” will put the object back into 
starting position.  The button labeled “mouse mouse” will allow you to click on the object and move it 
however you wish; if the “mouse move button is green then it is turned on, red means off.   

 The goal is to move the object however you need to in order to make the different views.  Below 
is an example of a correct solution for a top, front, and side view.  

 

 You enter your answer by clicking on the empty boxes to the right of the three dimensional 
figure.  One click will place a block in an empty space and a second click will make that block disappear.  
When you have finished your solution for all three views, click on submit.  When you click submit, it will 
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show you your solution, the correct solution and whether or not you got the item correct.  It will also 
show you what parts are correct and incorrect. 

 

 When you see the correct solution, you may move the object still to see how you got the answer 
correct or incorrect.  Then Click the “next question” button to continue.  When you have completed 
enough items you will move to the next level.  

 If you need help at any time, click on the “Show instructions” button.   
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APPENDIX C: CRIOSAT INSTRUCTIONS FOR LEVELS 2, 4, & 6 
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 In this stage of the treatment you will be asked to do the opposite of the last stage.  You are given 
the front, top, and side views.  You will have to create the three dimensional view.  In the screen below 
you can see that the front, top, and side view that are given and the blank space provided for the three 
dimensional figure that you are to create.  

 

 The controls in the upper right work the same as in the last level. There are some new features 
though.  In this level there are two ways to place the cubes where you want them.  First look at the buttons 
along the bottom, which are labeled “reset”, “front”, “side”, “top”, and “place blocks”.  These buttons are 
seen below. 

  

 The reset button moves the three dimensional object to a starting position.  The front button will 
show you what your three dimensional object looks like from the front.  The side and top buttons shows 
your object from those angles. The button labeled place blocks, switches between place blocks and 
remove blocks.  This button tells you whether you can place new cubes or remove ones that are already 
there.   

 You can place cubes by clicking on the transparent spheres, as seen below.  When you click on a 
sphere a cube will appear in its place. 
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 You can also place cubes by clicking on the squares at the bottom of the screen.  Each layer of the 
object is separated and labeled.  By clicking on the square once a cube will appear.  If you click on the 
square a second time the cube will be removed.  You can tell that a cube has been placed because the 
square you click on will enlarge.  View the image below to see how this works.   

 

 When your front, side, and top views look the same as the given views, click on the submit 
button.  This will show you if you are correct and what you got correct or incorrect, as seen below. 
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 When you have seen your answer and compare it to the correct answer, click the next question 
button.  This will give you a new item.  If you need to read these instructions again, click on the show 
instructions button.   
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APPENDIX D: PSVT: ROT (PURDUE SPATIAL VISUALIZATION TEST OF 
ROTATIONS) 
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APPENDIX E: PURDUE SPATIAL VIZUALIZATION TEST/ TEST OF 

ROTATION ANSWER KEY 
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APPENDIX F: MATHEMATICAL PROCESSING INSTRUMENT 
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MATHEMATICAL PROCESSING TEST I 

IMPORTANT: 
 
1.  Do not write on this problem sheet. Write your solutions on the solution sheet provided. 
 
2.  For each problem, you are required to explain your working as much as you possibly can.  
 
3.  You are required to attempt all problems, including those you find difficult.  
 
PROBLEM 1: 
John is taller than Mary. John is shorter than Jane. Who is the tallest? 
 
PROBLEM 2: 
Two years ago Mary was 8 years old. How old will she be in five years from now? 
 
PROBLEM 3: 
Two families held a party. Three members of the first family and five members of the second family 
attended the party. Each of the members of the first family shook hands with each of the members of 
the second family. How many handshakes were there altogether? 
 
PROBLEM 4: 
On one side of a scale there is a 1-kg weight and half a brick. On the other side there is one full brick. 
The scale is balanced. How many kg does the brick weigh? 
 
PROBLEM 5: 
Altogether there are 8 tables in a house. Some of them have four legs and the others have three legs. 
Altogether they have 27 legs. How many tables are there with four legs? 
 
PROBLEM 6: 
One morning a boy walked from home to school. When he got half way, he realized that he had 
forgotten to bring one of his books. He then walked back to get it. When he finally arrived at school, he 
had walked 4 km altogether. What was the distance between his home and school? 
 
PROBLEM 7: 
A girl had eleven plums. She decided to swap the plums for some apples. He friend, who had the apples, 
said: ‘For every 3 plums, I will give you an apple.’ After the swap, how many apples and how many plums 
did the girl have? 
 
PROBLEM 8: 
Tim was given 79 one-cent coins by his mother. At a shop he exchanged his one-cent coins for more 
valuable coins, so that now he got the smallest number of coins giving the value of 79 cents. How many 
fifty-cent coins, twenty-cent coins, ten-cent coins, five-cent coins, and two-cent coins did he get at the 
shop? 



95 
 

 
 
PROBLEM 9: 
Only four teams took part in a football competition. Each team played against each of the other teams 
once. How many football matches were there in the competition? 
 
PROBLEM 10: 
If the time is 8 o’clock in the morning, what was the time 9 hours ago? (Make sure you include a.m. or 
p.m. as part of your answer.) 
 
PROBLEM 11: 
A mother is seven times as old as her daughter. The difference between their ages is 24 years. How old 
are they? 
 
PROBLEM 12: 
Three quarters of a vegetable garden is occupied by potatoes. The remaining part (4 hectares) is 
occupied by cabbages. What is the area of the whole garden, in hectares? 
 
PROBLEM 13: 
At each of the two ends of a straight path a man planted a tree, and then every 5 meters along the path 
(on one side only) he also planted another tree. The length of the path is 25 meters. How many trees 
were planted on the path altogether? 
 
PROBLEM 14: 
A balloon first rose 200 m from the ground, then moved 100 m to the east, then dropped 100 m. It then 
traveled 50 m to the east, and finally dropped straight to the ground. How far was the balloon from its 
starting point? 
 
PROBLEM 15: 
Donny’s height was 150 cm. One day he swam in a swimming pool, and when he stood upright in the 
water there was 28 cm of his body which was above the surface. How deep (in cm) was the water at that 
time? 
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MATHEMATICAL PROCESSING TEST II 

 
IMPORTANT: 
 
1.  Do not write on this problem sheet. Write your solutions on the solution sheet provided. 
 
2.  For each problem, you are required to explain your working as much as you possibly can.  
 
3.  You are required to attempt all problems, including those you find difficult.  
 
PROBLEM 1: 
Dave has more money than Carol, and Mike has less money than Carol. Who has the most money? 
 
PROBLEM 2: 
In an athletics race Johnny is 10 m ahead of Peter, Tom is 4 m ahead of Jim, and Jim is 3 m ahead of 
Peter. How many meters is Johnny ahead of Tom? 
 
PROBLEM 3: 
A track for an athletics race is divided into three unequal sections. The length of the whole track is 450 
meters. The length of the first and second sections combined is 350 m. The length of the second and 
third sections combined is 250 m. What is the length of each section? 
 
PROBLEM 4: 
Jack, Chris, and Karen all have birthdays on the 1st of January, but Jack is 1 year older than Chris, and 
Chris is 3 years younger than Karen. If Karen is 10 years old, how old is Jack? 
 
PROBLEM 5: 
One day John and Peter visit a library together. After that, John visits the library regularly every two 
days, at noon. Peter visits the library every three days, also at noon. If the library opens every day, how 
many days after the first visit will it be before they are, once again, in the library together? 
 
PROBLEM 6: 
Two children were given some money by their father. The total amount of money was twelve dollars. 
The first child received twice as much as the second child. How much did each of them receive? 
 
PROBLEM 7: 
One day a third of the potatoes in a storeroom were taken out of it. If 80 kg of potatoes were left in the 
storeroom, how many kg of potatoes were in the storeroom at first? 
 
PROBLEM 8: 
Some sparrows are sitting in two trees, with each tree having the same number of sparrows. Two 
sparrows then fly from the first tree to the second tree. How many sparrows does the second tree then 
have more than the first tree? 
PROBLEM 9: 
At first, the price of 1 kg of sugar was three times as much as the price of 1 kg of salt. Then the price of 1 
kg of salt was increased by half its previous price, while the price of sugar was not changed. If the price 
of salt is now 30 cents per kilogram, what is the price of sugar per kg? 
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PROBLEM 10: 
After a pedestrian travelled half of his journey, he still had to travel 4 km more to complete the journey. 
What was the length of his whole journey, in km? 
 
 
PROBLEM 11: 
Mr. Jones traded his horse for two cows. Next he traded the two cows, and for each cow, he got three 
pigs. Then, he traded the pigs, and for each pig, he got 3 sheep. Altogether, how many sheep did Mr. 
Jones get? 
 
PROBLEM 12: 
A saw in a sawmill saws long logs, each 16 m long, into short logs, each 2 m long. If each cut takes two 
minutes, how long will it take for the saw to produce eight short logs from one long log? 
 
PROBLEM 13: 
How many ways can 30 dollars be paid to a person if the money must be in 5-dollar and 2-dollar notes 
only, and the person must get some 5-dollar notes and some 2-dollar notes. (For each possible solution, 
summarize your answer by saying how many 2-dollar notes and how many 5-dollar notes the person 
would get.) 
 
PROBLEM 14: 
A tourist travelled some of his journey by plane, and the rest by bus.  The distance that he travelled by 
bus was half the distance he travelled by plane. Determine the length of his entire trip if the distance 
that he travelled by plane was 150 km longer than the distance he travelled by bus. 
 
PROBLEM 15: 
A straight path is divided into two unequal sections. The length of the second section is half the length 
of the first section. What fraction of the whole path is the first section? 
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MATHEMATICAL PROCESSING QUESTIONNAIRE I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name:    --------------------------------------------- Male/Female 
 

Date of birth:   --------------------------------------------- 
 

School:  --------------------------------------------- 
 
Form/Grade:   --------------------------------------------- 
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IMPORTANT: 
 

On this questionnaire you are asked to consider how you did the mathematical processing 
problems that you were recently asked to do. Every problem is accompanied by two or more 
possible solutions.   

 
1.  For every problem, you are required to indicate which solution, among all the solutions 

presented, is the one that you used, or is very similar to the one that you used, when you 
first attempted the problem.  

 
It does not matter whether you got the right or wrong answer, or whether you completed 
the solution or not, as long as your method of solution is very similar to any of the 
solutions presented on this questionnaire, you are asked to tick the box which 
corresponds to that solution.  

 
2.  If for any of the problems you think that none of the solutions presented is the one that 

you used, or is very similar to the one that you used, you are asked to explain, in the 
space provided, the method that you used when you first attempted the problem. Explain 
your solution as clearly as you possibly can.  

 
Even if you did not get the correct answer to the problem, you are still asked to state, in 
writing, your method in attempting the problem. 
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MATHEMATICAL PROCESSING QUESTIONNAIRE I 
 
PROBLEM 1: 
 John is taller than Marry. John is shorter than Jane. Who is the tallest? 

 
Solution 1: 

 To answer this question, I imagined a picture of the three children in my mind. 
From this picture I could ‘see’ that Jane is the tallest of the three. 
 
Solution 2: 
I drew a diagram representing the three children. 

 
 
 
 
      John        Mary     Jane 
 

From the diagram it could be seen that Jane is the tallest of the three children. 
 
Solution 3: 
I found the answer to this question simply by drawing conclusions from the two statements in the 
questions. 
The two statements are: ‘John is taller than Mary’ and ‘John is shorter than Jane’. 
 
The second statement can be changed into another statement with the same meaning: 

‘John is shorter than Jane’ → ‘Jane is taller than John’ (because ‘taller’ is the opposite of 
shorter’). 

 
Therefore, the two statements become: ‘John is taller than Mary’ and ‘Jane is taller than John’. 
Or, if the order is reversed: ‘Jane is taller than John’ and ‘John is taller than Mary’. 
 
Conclusion: Jane is taller than Mary. Therefore, Jane is the tallest. 
 
Solution 4: 
I solved the problem by eliminating the shorter person in each statement in the problem. 
 
First statement: ‘John is taller than Mary’. In this statement ‘Mary’ is crossed out because Mary is 
the shorter person. 
 
Second statement: ‘John is shorter than Jane’. In this statement ‘John’ is crossed out because he is 
the shorter person. 
Jane is the only person who is left. So she is the tallest person. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 

 
 
 

 

 

 

 

 



101 
 

PROBLEM 2: 
Two years ago Mary was 8 years old. How old will she be in five years from now? 
 
Solution 1: 
I solved this problem in this way: 
 
Two years ago, she was 8 years old. Now, she is 10 years old. Thus, five years from now she will be 
15 years old. 
 

 Solution 2: 
 I solved this problem by drawing a diagram which represents Mary’s age. 

 
                             Five years from now (15 years old)                                                          

 
 
 
 
                                             Now (10 years old)      
                                            
 
                                               2 years ago (8 years old)               
 
 
 
 

In the diagram it can be seen that five years from now Mary will be 15 years old. 
 
Solution 3: 
I used the same method as for Solution 2, only I drew the diagram ‘in my head’ (and not on paper). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 3: 
Two families held a party. Three members of the first family and five members of the second family 
attended the party. Each of the members of the first family shook hands with each of the members 
of the second family. How many handshakes were there altogether? 
 
Solution 1: 
I solve this problem by imagining all the handshakes and counting them in the mind. I found 15 
handshakes altogether. 
 

 Solution 2: 
I solve the problem by drawing a diagram of the handshakes and then counting them:  
  

P 
 
A   Q 
 
B        R                       There were 15 handshakes altogether. 
 
C   S 
 
   T 

 
Solution 3: 
I used a method like Solution 2, only I drew the picture ‘in my mind’ (and not on paper). 
 
Solution 4: 
I solved this problem by listing all the hand-shake pairs and then counting them. 
 
First family:  Second family:  Hand-shake pairs: 
 

A   P  AP BP CP 
B   Q  AQ BQ CQ 
C   R  AR BR CR 

    S  AS BS CS 
    T  AT BT CT  
I found 15 hand-shakes pairs. Thus there were 15 hand-shakes altogether. 
 
Solution 5: 
I solved the problem by using the following reasoning: 
 
Each member of the first family shook hands five times with the member of the second family. Since 
there were 3 members in the first family, the number of handshakes altogether = 3 × 5 handshakes 
= 15 handshakes. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 4: 
On one side of a scale there is a 1-kg weight and half a brick. On the other side there is one full brick. 
The scale is balanced. How many kg does the brick weigh? 
 
Solution 1: 
I solved the problem by drawing a diagram representing the objects. 
 
  
        
                    
Therefore 
 
 
 
And 
  
 
 
 
Thus the weight of one full brick is 2 kg. 
 

 Solution 2: 
 I solved this problem by using symbols and equations: 
 
    1 full brick = 2 halves of a brick 
 
      =  
 
   Thus   =  + 1 (1 = 1-kg weight) 
            
      = 1 
      
      = 2  
   Thus the weight of one full brick = 2 kg. 
 

Solution 3: 
In order to solve this problem, I imagined the scale and the objects on the two sides of it (half a 
brick, one 1-kg weight, one full brick). 
 
The scale is balanced; this means that the weight of half of a brick plus one 1-kg weight equals the 
weight of one full brick. As one full brick equals two halves of a brick, it also means that the weight 
of one half of a brick equals 1-kg weight. Therefore, the weight of one full brick = 1 kg + 1 kg = 2 kg. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 

 
 
 

1kg 

 

 

 

 

 

  

   

 

 

1kg 

 

1kg 

 

1kg 
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PROBLEM 5: 
Altogether there are 8 tables in a house. Some of them have four legs and the others have three 
legs. Altogether they have 27 legs. How many tables are there with four legs? 
 
Solution 1: 
I solved the problem by trial and error: 

If the number of tables 
with four legs were … 

Then, the number of tables 
with three legs would be … 

So the total number 
of legs would be … 

1 7 25   (NO) 
2 6 26   (NO) 
3 5   27   (YES) 

Thus there are three tables which have four legs (and five tables with three legs). 
 

 Solution 2: 
I solved this problem using symbols and equations: 
Suppose the number of tables with 4 legs  =  
 
Then the number of legs altogether  = (4 ∙       ) + 3(8 −       ) 

This is equal to 27; thus 
   4 ∙        + 3(8 −        ) = 27  

 
    4∙         + 24 − 3        = 27                                          
 
                                                      + 24  = 27 
 
                                                                        = 3                                                                   
 Thus the number of tables with 4 legs = 3 (and the number of tables with 3 legs = 5). 

 
Solution 3: 
To solve this problem I drew a picture of the tables’ legs, and then grouped them into groups 
of four and groups of three. 

 
A group of four legs represents a table with four legs. A group of three legs represents a table 
with three legs. From the picture it can be seen that there are 3 groups of legs with four legs 
each, and 5 groups of legs with three legs each. Thus there are 3 tables with four legs (and 5 
tables with three legs). 
 
Solution 4: 
I solved this problem by drawing the tables. First, I drew them as if all tables had three legs 
only, then I kept on adding a leg to tables until the total number of legs reached 27. 

 
I found there are 3 tables with four legs (and 5 tables with three legs). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 6: 
One morning a boy walked from home to school. When he got half way, he realized that he had 
forgotten to bring one of his books. He then walked back to get it. When he finally arrived at school, 
he had walked 4 km altogether. What was the distance between his home and school? 
 
Solution 1: 
To solve this problem, I imagined the route travelled by the boy that morning. When he finally 
arrived at school, he had walked twice the distance between home and school. This was equal to 4 
km, so the distance between home and school was 2 km. 
 

 Solution 2: 
I drew a diagram representing the route between his home and school. 

 
 
     A                               C                             B 
(Home)                    (Half-way)                (School) 

 
The distance covered by the boy was AC, then CA, then AB. This means that when he finally arrived 
at B (school) he had walked twice the distance between his home and school. This was 4 km, so the 
distance between his home and school was 2 km. 

 
Solution 3: 
I solved this problem by using symbols and equations. 
Suppose the distance between home and school =  
 
Then half the distance = 1/2 ∙ 
The total distance travelled that morning 
 
 = 1/2 ∙  +   1/2 ∙ + 
 
 =    2 ∙ 
This was equal to 4 km. Thus            = 2 km, which was the distance between his home and school. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 7: 
A girl had eleven plums. She decided to swap the plums for some apples. He friend, who had the 
apples, said: ‘For every 3 plums, I will give you an apple.’ After the swap, how many apples and how 
many plums did the girl have? 
 
Solution 1: 
The number 11 can be separated into 3, 3, 3, 2. Every three plums were swapped for an apple; so 
after the swap she had 3 apples and 2 plums. 
 

 Solution 2: 
I solved this problem by drawing the plums, and then separating the plums into groups containing 3 
plums each: 
 

 
In the picture it can be seen that after the swap, the girl had 3 apples and 2 plums. 

 
 

Solution 3: 
I solved this problem by imagining the plums and the swap. I could ‘see’ in my mind that after the 
swap the girl had 3 apples and 2 plums. 
 
Solution 4: 
I solved this problem in this way: 
 
11 divided by 3 gives 3, remainder 2. Thus after the swap, the girl had 3 apples and 2 plums. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 8: 
Tim was given 79 one-cent coins by his mother. At a shop he exchanged his one-cent coins for more 
valuable coins, so that now he got the smallest number of coins giving the value of 79 cents. How 
many fifty-cent coins, twenty-cent coins, ten-cent coins, five-cent coins, and two-cent coins did he 
get at the shop? 
 
Solution 1: 
I solved this problem by separating the number 79 into 50’s, 20’s, 10’s etc, so far as this is possible. 
 
Thus, 79 =  50  +  29 

 =  50  +  29 + 9 
=  50  +  29 + 5 + 4 
=  50  +  29 + 5 + 2 + 2 

 
Thus, 79 one-cent coins can be exchanged for one 50-cent coin, one 20-cent coin, one 5-cent coin, 
and two 2-cent coins. 
 

 Solution 2: 
 I solved this problem by imagining the 79 one-cent coins, and then trying to ‘arrange’ those coins 

into several groups each containing 50 one-cent coins, 20 one-cent coins, etc. I found that those 
coins can be arranged into: 

 
 One group containing 50 one-cent coins, one group containing 20 one-cent coins, one group 

containing 5 one-cent coins, and 2 groups containing 2 one-cent coins each. 
 

Thus, 79 one-cent coins can be exchanged for one 50-cent coin, one 20-cent coin, one 5-cent coin, 
and two 2-cent coins. 

 
Solution 3: 
 
I solved this problem by drawing a line which represents the money that Tim got from his mother. 
Then, I divided the line into sections, one of which containing 50 units, another 20 units, another 5 
units, and two others each 2 units. 

                                                                                      20                  5          2      2                            
            
               
                                                                                         
          50                                                          29 
  
                                                                    79             

Each section represents a coin. Thus 79 one-cent coins can be exchanged for one 50-cent coin, one 
20-cent coin, one 5-cent coin, and two 2-cent coins. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 9: 
Only four teams took part in a football competition. Each team played against each of the other 
teams once. How many football matches were there in the competition? 
 
Solution 1: 
I solved this problem by using the following reasoning: 
 
Each team played against each of the three other teams once. As there were 4 teams, there would 
be 4 × 3 matches, or 12 matches, altogether. 
 
But in that way each match had been counted twice.  
 
So the correct answer was = 12 matches/2  

                                                        = 6 matches. 
 

 Solution 2: 
 I solved this problem by listing all the match pairs and then counting them. 
 

The teams were A, B, C, D. The match pairs were AB, AC, AD, BC, BD, and CD. There were 6 matches. 
 

Solution 3: 
I solved this problem by drawing a diagram representing the matches and then counting the 
matches as shown in the diagram. 

A                         D 
 
 

                                                                   There were 6 matches altogether. 
 
 
B                          C 

 
Solution 4: 
I did this problem like the method in solution 3, but I drew the pictures ‘in my head’ (and not on 
paper). 
 
Solution 5: 
I solved this problem by using the following reasoning: 
As there were 4 teams, in each round there could be only 2 matches. Altogether there were 3 
rounds since each team had to play each of the three other teams once — this could be done in 3 
rounds. 
 
Therefore there were 3 × 2 matches, or 6 matches, altogether. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 10: 
If the time is 8 O’clock in the morning, what was the time 9 hours ago? (Make sure you include a.m. 
or p.m. as part of your answer.) 
 
Solution 1: 
I solved this problem by drawing a line representing the time. In the diagram it can be seen that if 
the time now is 8 o’clock in the morning, 9 hours ago it was 11:00 o’clock at night; that is 11:00 p.m. 
 
                     9            8             7            6             5              4             3             2           1 
                   
 
        11:00     12:00      1:00       2:00       3:00        4:00       5:00       6:00       7:00       8:00 
          p.m.  midnight    a.m.       a.m.       a.m.        a.m.       a.m.       a.m.       a.m.       a.m.                                   
 

 Solution 2: 
 I used the same solution as for Solution 1, only I drew the diagram ‘in my head’ (and not on paper). 
 

Solution 3: 
I did not imagine any picture, but I solved this problem by merely ‘counting back’ 9 hours from 8:00 
a.m. 
 
Solution 4: 
I solved this problem by drawing a clock face (or by looking at my own watch, or a clock). 
 

 
 
Using this clock face I could work out the time 9 hours ago, which was 11:00 p.m. 
 
Solution 5: 
I used the same method as for Solution 4, only I drew the clock face ‘in my mind’, and did not look 
at, or draw a clock face. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 11: 
A mother is seven times as old as her daughter. The difference between their ages is 24 years. How 
old are they? 
 
Solution 1: 
I solved this problem merely by trial and error: 

  Daughter’s age:   Mother’s age: 
  2 years     26 years  No 
  3 years     27 years  No 
  4 years     28 years  Yes 
 Thus daughter’s age = 4 years, and mother’s age = 28 years. 

 
 Solution 2: 
 I solved the problem in this way: 
 Suppose daughter’s age  =           years. 
 
 Thus, mother’s age =                                                                      years. 
 
 The difference between their ages =                                                             years. 
       = 24 years 
      Thus  = 4. 
    So, daughter’s age  = 4 years. 
     Mother’s age  = (4 + 4 + 4 + 4 + 4 + 4 + 4) years. 
       = 28 years. 
 

Solution 3: 
I solved the problem by drawing a diagram representing their ages:            
                                           Daughter’s age                 
                              The daughter   was born 
         

 Mother’s age       The difference between their ages  
        

                    The mother was born                                                                            
                                                             

In the diagram it can be seen that the difference between their ages is represented by a line 
segment which consists of 6 equal parts. This difference = 24 years. Thus, each part represents 4 
years. Daughter’s age is represented by a line segment which consists of one part only. This means 
that daughter’s age = 4 years. Mother’s age is represented by a line segment which consists of 7 
parts. Thus mother’s age = 28 years. 
 

 Solution 4: 
 I used the same method as for Solution 3, only I drew the diagram ‘in my head’ (and not on paper). 

 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 12: 
Three quarters of a vegetable garden is occupied by potatoes. The remaining part (4 hectares) is 
occupied by cabbages. What is the area of the whole garden, in hectares? 
 
 
Solution 1: 
I solved the problem in this way: 
 
The part occupied by cabbages = 1 – 3/4 = 1/4 of the whole garden. This is 4 hectares. 
 
Therefore, the area of the whole garden is 4 × 4 hectares, i.e. 16 hectares. 
 
 
 
                                                                                                                            4 hectares 
 
 
 
 
 
                                              Occupied                             Occupied                                                             
                                                    by                                           by 
                                               potatoes                            cabbages 
 
In the picture it is clear that the area of the whole garden = (4 + 4 + 4 + 4) hectares. 
                                                                                                         = 16 hectares. 
 
 
 

 Solution 2: 
 I used the same method as for Solution 2, only I drew the diagram ‘in my head’ (and not on paper). 
 

 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 13: 
At each of the two ends of a straight path a man planted a tree, and then every 5 m along the path 
(on one side only) he also planted another tree. The length of the path is 25 m. How many trees 
were planted on the path altogether? 
 
Solution 1: 
I solved the problem in this way: 
 
Every 5 m along the path a tree was planted. This means that the path was divided into 25/5 = 5 
equal parts. Every part corresponded to one tree, but at one of the two ends of the path, the part 
corresponded to two trees. Therefore the number of trees was: 

 
= (4 × 1)+(1 × 2)  
= 4 + 2 
= 6 

 
 

 Solution 2: 
 I solved the problem by imagining the path and the trees, and then counting the trees in the mind. I 

found there were 6 trees on the path. 
 

Solution 3: 
I solved the problem by drawing a diagram representing the path and the trees, and then counting 
the trees. 
 

 
 
I found 6 trees. 
 
 
I did not use any of the above methods. 
 
I attempted the problem in this way: 
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PROBLEM 14: 
A balloon first rose 200 m from the ground, then moved 100 m to the east, then dropped 100 m. It 
then traveled 50 m to the east, and finally dropped straight to the ground. How far was the balloon 
from its starting point? 
 
 
Solution 1: 
To solve this problem, I imagined the path taken by the balloon, and then worked out the distance 
between the starting and the finishing places, I found the distance was: 

= 100 m + 50 m = 150 m 
 
 

 Solution 2: 
 To solve this problem, I drew a diagram representing the path taken by the balloon, and then 

worked out the distance between the starting and finishing places. 
 
                                               100 m 
          
                                                                                     100 m                          
                                                                       
                                                  200 m                            50 m          
 
                                                                                                 
 
 
                                                                                           150 m                      
 

The distance was = 100 + 50 = 150m. 
 
 

Solution 3: 
 
In order to solve this problem, I noticed only the information in the problem which was important 
for the solution. That is, I only noticed: ‘moved 100 to the east’, and ‘then travelled 50 m to the east 
again’. Therefore, the distance between the starting and the finishing places was 100 m + 50 m = 
150 m. 
 

(I did not draw or imagine any picture at all). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 15: 
Donny’s height was 150 cm. One day he swam in a swimming pool, and when he stood upright in 
the water there was 28 cm of his body which was above the surface. How deep (in cm) was the 
water at that time? 
 
Solution 1: 
 
                                                
                              Donny                         
                28 cm                        
         
                      Water surface   
                         150 cm     

           
                      

         
           Bottom of the pool                                                                                
 
I found the depth of the water at that time = 122 cm. 
 

 Solution 2: 
 To solve this problem, I imagined Donny and the water. I could ‘see’ in my mind that part of Donny’s 

body which was below the surface was 122 cm. Thus, the depth of the water at that time was 122 
cm. 

 
Solution 3: 
To solve this problem, I only noticed the information in the problem which was important for the 
solution. That is, I only noticed: 
 
‘Donny’s height was 150 cm’ and ‘there was 28 cm of his body which was above the surface’. From 
this information I could conclude that part of Donny’s body which was below the surface was = 150 
cm – 28 cm 
                          = 122 cm. 
 
Thus the depth of the water at that time was 122 cm.  
 

(I did not draw or imagine any picture at all). 
 
 
I did not use any of the above methods.  
I attempted the problem in this way: 
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MATHEMATICAL PROCESSING QUESTIONNAIRE II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name:    --------------------------------------------- Male/Female 
 

Date of birth:   --------------------------------------------- 
 

School:  --------------------------------------------- 
 
Form/Grade:   --------------------------------------------- 
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IMPORTANT: 
 

On this questionnaire you are asked to consider how you did the mathematical processing 
problems that you were recently asked to do. Every problem is accompanied by two or more 
possible solutions.   

 
1.  For every problem, you are required to indicate which solution, among all the solutions 

presented, is the one that you used, or is very similar to the one that you used, when you 
first attempted the problem.  

 
It does not matter whether you got the right or wrong answer, or whether you completed 
the solution or not, as long as your method of solution is very similar to any of the 
solutions presented on this questionnaire, you are asked to tick the box which 
corresponds to that solution.  

 
2.  If for any of the problems you think that none of the solutions presented is the one that 

you used, or is very similar to the one that you used, you are asked to explain, in the 
space provided, the method that you used when you first attempted the problem. Explain 
your solution as clearly as you possibly can.  

 
Even if you did not get the correct answer to the problem, you are still asked to state, in 
writing, your method in attempting the problem. 
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MATHEMATICAL PROCESSING QUESTIONNAIRE II 
 
PROBLEM 1: 

Dave has more money than Carol, and Mike has less money than Carol. Who has the most money? 
 
Solution 1: 
I solved this problem by imagining each person’s money. I could ‘see’ in my mind that Dave had the 
most money. 
 

 Solution 2: 
 I solved this problem by drawing a diagram representing the money. 
 
 
 
 
 
                                             Dave’s             Carol’s              Mike’s 
                                            money             money              money                                                                                                        

From the diagram it could be seen that Dave has the most money.                                                                     
 

Solution 3: 
I solved this problem by using examples. Suppose Dave has 35 dollars; Carol has 25 dollars (as Dave 
has more money than Carol); and Mike has 20 dollars (as he has less money than Carol).  
From these examples it can be seen that Dave has the most money. 
 
Solution 4: 
I solved this problem by eliminating, in each statement in the problem, the person who has less 
money (as we only want the person who has more money in each statement). That is: 

‘Mike has less money than Carol’ means that ‘Mike’ is crossed out since Mike is the person who 
has less money. 

 
‘Dave has more money than Carol’ means that ‘Carol’ is crossed out since Carol is the person 
who has less money. 

The only person who is left is Dave. So He has the most money. 
 
Solution 5: 
I solved this problem merely by drawing conclusions from the sentences in the problem. 

‘Dave has more money than Carol’  → ‘Dave has more money than Carol’ 
‘Mike has less money than Carol’  → ‘Carol has more money than Mike’ (Since the 
opposite of ‘less’ is ‘more). 

Conclusion: Dave has more money than Mike. Thus, Dave has the most money. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 2: 
In an athletics race Johnny is 10 m ahead of Peter, Tom is 4 m ahead of Jim, and Jim is 3 m ahead of 
Peter. How many meters is Johnny ahead of Tom? 
 
Solution 1: 
To solve this problem, I imagined the four people in my mind, and then worked out the 
distance between Johnny and Tom. I found the distance is 3 m. So Johnny is 3 m ahead of 
Tom. 
 

 Solution 2: 
 I solved this problem by drawing a diagram representing the four people, and then working out the 

distance between Johnny and Tom.                               
                                                   
 
                                                                                                 
                                                                          3                           4                             3                                 
                                                                      

Johnny            Tom     Jim  Peter 
 
 I found the distance between Johnny and Tom is 3 m. So Johnny is 3 m ahead of Tom. 
 
 

Solution 3: 
I solved this problem merely by drawing conclusions from the sentences in the problem: 

   
‘Tom is 4m ahead of Jim’ 
‘Jim is 3m ahead of Peter’ 

   
Conclusion: Tom is 7m ahead of Peter. 
 

 ‘Johnny is 10 m ahead of Peter’ 
 ‘Tom is 7 m ahead of Peter’ 
 
 Conclusion: Johnny is 3 m ahead of Tom. 

 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 3: 

A track for an athletics race is divided into three unequal sections. The length of the whole track is 
450 meters. The length of the first and second sections combined is 350 m. The length of the second 
and third sections combined is 250 m. What is the length of each section? 
 
Solution 1: 
I solved this problem by imagining the track for the race and then working out the length of each 
section.  

The length of the first and the second sections combined is 350 m, so the length of the third 
section must be 100 m (since the length of the whole track is 450 m).  
 
The length of the second and the third sections combined is 250 m, so the the length of the first 
section must be 200 m.  
 
Since the length of the first section is 200 m, and the length of the third section is 100 m, the 
length of the second section is 150 m. 

 
 Solution 2: 

To solve this problem, I drew a diagram which represents the track and then worked out the 
length of each section. 
 

           250 m 
     200 m   150 m          100 m 
 
       350 m 
 The length of the first section is 200 m, the section section is 150 m, and the third section is 

100 m. 
 

Solution 3: 
To solve this problem I drew conclusions from the information in the problem only, and did 
not imagine or draw any picture at all.  

That is: 
 
A track is divided into 3 unequal sections. 

  The length of whole track is 450 m. 
  The length of the first and the second sections combined is 350 m. 
 Conclusion: The length of third strack = 450 – 350 = 100 m . 
 

The length of the second and the third sections combined is 250 m. 
Conclusion: The length of first section = 450 – 250 = 200 m. 

 
And the length of the second section = 450 – 200 – 100 = 150 m.  

 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 4: 

Jack, Chris, and Karen all have birthdays on the 1st of January, but Jack is 1 year older than Chris, 
and Chris is 3 years younger than Karen. If Karen is 10 years old, how old is Jack? 
 
Solution 1: 
I solved the problem in this way: 
 
Chris is 3 years younger than Karen. Karen is 10 years old. 
Therefore, Chris is 7 years old. 
 
Jack is one year older than Chris. 
Therefore, Jack is 8 years old. 
 

 Solution 2: 
 I solved this problem by drawing a diagram that represents their ages: 
 
                                       Karen (10 years old)         
 
           1 yr           
 
 
           1 yr                   
                                        Jack 
 
           1 yr              
                                        Chris (7 years old)                                                          
 
                               
 
 

From the diagram it can be seen that Jack is 8 years old. 
 

Solution 3: 
I used the same method as for Solution 2, only I drew the line ‘in my head’, and not on paper. 
 
 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 5: 

One day John and Peter visit a library together. After that, John visits the library regularly every two 
days, at noon. Peter visits the library every three days, also at noon. If the library opens every day, 
how many days after the first visit will it be before they are, once again, in the library together? 
 
Solution 1: 
I solved this problem by drawing a diagram representing the days after they first visit the library. 
 
                                                        John                                                                               
 
 
 
 
                                                                      Peter              

They visit                                                                  They are in 
the library                                                                  the library at                     
together                                                                     same time again 

 
From the diagram it can be seen that, once again, they will be in the library together six days 
after the first visit. 
 

 Solution 2: 
 I used the same method as for Solution 1 only I drew the diagram ‘in my head’ (and not on paper). 
 

Solution 3: 
I solved this problem by using examples. Suppose they first visit the library together on 
Monday. Then after that, John will visit the library on Wednesday, Friday, Sunday, Tuesday, 
etc., and Peter will visit the library on Thursday, Sunday, Wednesday, etc. This means that 
on Sunday they will be in the library at the same time again. From Monday to Sunday there 
are 6 days. This means that, once again, they will be in the library together six days after the 
first visit. 
 
Solution 4: 
I solved this problem by saying in my mind that after the first day, John will visit the library 
on the third day, the fifth day, the seventh day, etc.; and Peter, after the first day, will visit the 
library again on the fourth day, the seventh day, etc. So on the seventh day they will be in the 
library at the same time again. From the first day to the seventh day there are 6 days. So, 
once again, they will be in the library together six days after the first visit. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 

 
 
 
 

 

 

 

 

 



122 
 

PROBLEM 6: 
Two children were given some money by their father. The total amount of money was twelve 
dollars. The first child received twice as much as the second child. How much did each of them 
receive? 
 
Solution 1: 
I solved this problem by trial and error: 
 
  First child:   Second child: 

$6    $6   No 
$7    $5   No 
$8    $4   Yes 

So the first child received $8, and the second child $4. 
 

 Solution 2: 
I solved this problem by using equations. 

  
Suppose the second child’s share =  

 
 Thus, the first child’s share =                                             
  
                 and                +     +         = 12 
 
                                                              = 12 
 
                                                = 4                            
 Thus, the second child received $4, and the first child received $4 + $4 = $8. 
 

Solution 3: 
I solved the problem by drawing a diagram which represented the money. 
 

   A          T        B   
  

 
 
                                           The first child’s share            The second child’s share                                                                                                
 
 Then I determined the point T so that the length of AT = twice the length of TB. 
 In the diagram it can be seen that the first child receieved $8, and the second child $4. 

 
Solution 4: 
I used the same method as for Solution 3, only I drew the diagram ‘in my mind’ (and not on 
paper). 

  
I did not use any of the above methods. 
I attempted the problem in this way: 

 

 

 

 

 

   

 

 

 

   

 

 



123 
 

 
PROBLEM 7: 

One day a third of the potatoes in a storeroom were taken out of it. If 80 kg of potatoes were left in 
the storeroom, how many kg of potatoes were in the storeroom at first? 
 
Solution 1: 
I solved the problem in this way: 
 One third of the potatoes were taken out, so two-thirds of the potatoes were left in the storeroom. 
This means that the amount of potatoes left was twice the amount taken out. It was given that the 
amount left was 80 kilograms, so the amount taken was 40 kg. Thus the amount of all the potatoes 
in the storeroom at first was  

= 80 kg + 40 kg = 120 kg. 
 

 Solution 2: 
I solved the problem using symbols and equations.  
 
Suppose the amount of potatoes at first was        kg. 
 
The amount taken out  = 1/3 ∙  
 
The amount left   = 2/3 ∙  

  
Thus,             2/3 ∙    = 80 

 
 and                       = 120 
 
 Thus, the amount of potatoes at first = 120 kg.       
 

Solution 3: 
I solved this problem by drawing a diagram representing the potatoes: 

               Amount left           Amount taken out 
 
 
 
 
 
 
                                                 80 kg               
 From the diagram it can be seen that the amount of all the potatoes at first was  

= 80 kg + 40 kg = 120 kg. 
 
Solution 4: 
I used the same method as for Solution 3, only I drew the diagram ‘in my mind’ (and not on 
paper). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 8: 

Some sparrows are sitting in two trees, with each tree having the same number of sparrows. Two 
sparrows then fly from the first tree to the second tree. How many sparrows does the second tree 
then have more than the first tree? 
 
Solution 1: 
To solve this problem, I used the following reasoning: First there is the same number of sparrows in 
each tree. Then 2 sparrows fly from the first tree to the second. This means that now the number of 
sparrows in the first tree in two less than the number before, while the number of sparrows in the 
second tree is two more than the number before. This means that now the second tree has 4 more 
sparrows than the first. 
 

 Solution 2: 
 In order to solve this problem, I drew a diagram representing the number of sparrows in the two 

trees: 
   The number of sparrows in                             The number of sparrows in 
   the first tree after 2 sparrows fly                     the second tree after 2 sparrows fly 
                  
   

 
                 The number of sparrows                              The number of sparrows  
                  in the first tree at first                                  in the second tree at first 

 From the diagram it can be seen that now the second tree has 4 more sparrows than the first. 
 

Solution 3: 
I used the same method as for Solution 2, only I drew the diagram ‘in my head’ (and not on paper). 
 
Solution 4: 
I solved this problem by using examples. 
Suppose at first there are 8 sparrows in each tree. After the 2 sparrows fly from the first tree to the 
second, the number of sparrows in the first tree becomes 6, and the number of sparrows in the 
second tree becomes 10. So now the second tree has 4 more sparrows than the first. 
 
Solution 5: 
I solved this problem by using symbols. 
Suppose the number of sparrows in each tree at first =               . Then 2 sparrows fly from the first 
tree to the second.  
Thus the number of sparrows in the first tree is now (        −2), and in the second tree (        + 2).  
 
The difference in the number of sparrows now is (       + 2) – (       − 2).  

=           + 2 −         + 2 = 4 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 9: 

At first, the price of 1 kg of sugar was three times as much as the price of 1 kg of salt. Then the price 
of 1 kg of salt was increased by half its previous price, while the price of sugar was not changed. If 
the price of salt is now 30 cents per kilogram, what is the price of sugar per kg? 
 
Solution 1: 
I solved this problem by drawing a diagram which represents the prices of the sugar and the 
salt: 

 
 

                  The price of                                     The present price of 1 kg of salt (30 cents)     
                  1 kg of sugar                                                  
                  The previous price of 1 kg of salt 
                       

 In the diagram it can be seen that after the price of 1 kg of salt was increased, the price of 1 
kg of sugar was twice the price of 1 kg of salt. 

 
 As now the price of 1 kg of salt is 30 cents, and the price of 1 kg of sugar is 60 cents. 

 
 Solution 2: 
 I used the same method as for Solution 1, only I drew the diagram ‘in my head’ (and not on paper). 
 

Solution 3: 
I solved the problem in this way. 
The price of 1 kg of salt is now 30 cents. This is 1 and 1/2 times the previous price. Thus the previous 
price was 20 cents per kg. This means that  the price of sugar is 3 × 20 cents, or 60 cents, per kg. 
 
Solution 4: 
I solved the problem using symbols and equations.  
 
Suppose the price of 1 kg of salt previously =      cents. 
 
Thus the price of 1 kg of sugar = 3 ∙       cents. 
 
Now, after the increase, the price of 1 kg of salt = 1 1/2 ∙      cents. 
 
This means that the price of 1 kg of sugar is twice the present price of 1 kg of salt. As the 
price of 1 kg of salt now = 30 cents, the price of 1 kg of sugar = 2 × 30 cents = 60 cents. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 10: 

After a pedestrian travelled half of his journey, he still had to travel 4 km more to complete the 
journey. What was the length of his whole journey, in km? 
 
Solution 1: 
I solved this problem by using the following reasoning: 
 
Since the pedestrian had travelled half of his journey, he still had to travel another half of the 
journey. This was equal to 4 km. This means that the length of the whole journey was 8 km.  

(I did not draw or imagine any picture at all). 
 

 Solution 2: 
 I used symbols and equations to solve this problem.  

Suppose the length of the whole journey =         km. 
 
He had already travelled 1/2 ∙  
 
Thus, 1/2 ∙     = 4 
 
   = 8 
 
The length of the whole journey is 8 km. 

 
Solution 3: 
In order to solve this problem, I drew a diagram representing the journey: 
                                                                                       4 km 
 
     

                                        Half                                Half 
    
From the diagram it can be seen that the length of the whole journey was 8 km. 

 
Solution 4: 
I used the same method as for Solution 3, only I drew the diagram ‘in my head’ (and not on paper). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



127 
 

 
PROBLEM 11: 

Mr. Jones traded his horse for two cows. Next he traded the two cows, and for each cow, he got 
three pigs. Then, he traded the pigs, and for each pig, he got 3 sheep. Altogether, how many sheep 
did Mr. Jones get? 
 
Solution 1: 
In order to solve this problem, I drew a diagram representing the animals: 
 
                                                             Horse              
 
 
                                       Cow                                           Cow                             
 
 
 
                 Pig            Pig           Pig             Pig            Pig           Pig                                        
 
 
 
 
 
                                                            Sheep 
 
From the diagram it can be seen that M. Jones got 18 sheep. 

 
Solution 2: 
I used the same method as for Solution 1, only I drew the diagram ‘in my head’ (and not on paper). 
 

 Solution 3: 
 I solved the problem using the following reasoning: 

 
Mr. Jones traded his horse for 2 cows. Next he traded the two cows, and for each cow, he got three 
pigs. This means that he got 2 × 3 pigs, or 6 pigs. Then he traded the pigs, and for each pig, he got 
three sheep. This means that he got 6 × 3 sheep, or 18 sheep. 

(I did not draw or imagine any picture at all). 
 

Solution 4: 
The number of sheep that Mr. Jones got 
 = 1 × 2 × 3 × 3 
 = 18 
He got 18 sheep. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 12: 

A saw in a sawmill saws long logs, each 16 m long, into short logs, each 2 m long. If each cut takes 
two minutes, how long will it take for the saw to produce eight short logs from one long log? 
 
Solution 1: 
To solve this problem, I drew a diagram showing the long log being cut into small logs. 

  
 
 
 
 
 
                                                                         16 m               
 In the diagram it can be seen that 7 cuts are needed to produce 8 short logs from one long 

log. Thus it will take 7 × 2 minutes, or 14 minutes, to produce 8 short logs from one long log. 
 

 Solution 2: 
 I solved this problem by imagining one long log and the cuts needed to produce the short logs. I 

could ‘see’ in my mind that 7 cuts are needed to produce 8 short logs from one long log. Thus it will 
take 7 × 2 minutes, or 14 minutes, to produce the 8 short logs. 

 
Solution 3: 
I solved the problem using the following reasoning: 
 
If the long log were more than 16 m long, one would need 8 cuts to produce 8 short logs, each 2 m 
long, from that long log.  
 
But the long log is only 16 m long, so the last cut is not needed. So one will only need (8 – 1) cuts, or 
7 cuts. As each cut takes 2 minutes, 7 cuts will take 7 × 2 minutes, or 14 minutes. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 13: 
How many ways can 30 dollars be paid to a person if the money must be in 5-dollar and 2-dollar notes 
only, and the person must get some 5-dollar notes and some 2-dollar notes. (For each possible solution, 
summarize your answer by saying how many 2-dollar notes and how many 5-dollar notes the person 
would get.) 

 
Solution 1: 
I solved the problem by guessing the combinations of 5-dollar and 2-dollar notes which add up to 30 
dollars? 

5   5   5   5   5   2   2   = NO 
5   5   5   5   2   2   2   2   2  = YES 
5   5   5   2   2   2   2      = NO 
5   5   2   2   2   2   2   2   2   2   2   2 = YES 
5   2   2   2   2    = NO 

Thus there are only two ways: 1) Four 5-dollar notes and five 2-dollar notes, and 2) Two 5-dollar 
notes and ten 2-dollar notes. 
 

 Solution 2: 
 I solved the problem by using this reasoning: The number of 5-dollar notes should be such that the 

rest of the money is a multiple of 2. This means that the total amount composed by the 5-dollar 
notes can be 10 dollars or 20 dollars. Then the rest of the money which is composed by the 2-dollar 
notes can be 20 dollars or 10 dollars. Therefore, there are two ways in which the money can be paid:  
1) 10 dollars composed by 5-dollar notes, and 20 dollars by 2-dollar notes. This means that there are 
two 5-dollar notes and ten 2-dollar notes, and 2) 20 dollars composed by 5-dollar notes, and 10 
dollars by 2-dollar notes. This means that there are four 5-dollar notes and five 2-dollar notes. 

 
Solution 3: 
I solved the problem by using this reasoning: 
The number of 2-dollar notes should be such that the rest of the money is a multiple of 5. The rest 
of the solution then is similar to Solution 2. 
 
Solution 4: 
I solved the problem by drawing a diagram representing the money. The diagram is a line consisting 
of 30 equal parts. To solve the problem I tried to arrange the line into combinations of line segments 
consisting of 5 parts and 2 parts.                                       
 
 
 

                                  
In the diagram it can be seen that there are two ways to make such arrangement:  

1) Four line segments which consist of 5 parts each and five line segments which consist of 2 
parts each. 2. Two line segments which consist of 5 parts each and ten line segments which 
consist of 2 parts each.  

This means that there are 2 ways in which 30 dollars can be paid using 5-dollar and 2-dollar notes: 1) 
Four 5-dollar notes and five 2-dollar notes, and 2) Two 5-dollar notes and ten 2-dollar notes. 

 
Solution 5: 
I used the same method as for Solution 4, only I drew the diagram ‘in my head’ (and not on paper). 
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I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 14: 
A tourist travelled some of his journey by plane, and the rest by bus.  The distance that he travelled 
by bus was half the distance he travelled by plane. Determine the length of his entire trip if the 
distance that he travelled by plane was 150 km longer than the distance he travelled by bus. 
 
Solution 1: 
To solve this problem, I divided the journey into three equal sections, two sections being travelled 
by plane, one section by bus. The difference in the distance travelled by plane and that travelled by 
bus was one section. This was equal to 150 km. Thus the length of the whole journey was 3 × 150 
km, or 450 km, 

(I did not draw or imagine any picture at all). 
 

 Solution 2: 
I solved this problem by drawing a diagram of the journey. 

 
                                                                       150 km                           
                 

 
                  
                                        Travelled by plane                              Travelled by bus                                                                
 

 In the diagram it can be seen that the difference between the distance travelled by plane and that 
travelled by bus was one section. It was equal to one section. In the diagram it is also clear that the 
length of the whole journey was 450 km. 

 
Solution 3: 
I used the same method as for Solution 2, only I drew the diagram ‘in my head’ (and not on paper). 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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PROBLEM 15: 
A straight path is divided into two unequal sections. The length of the second section is half the 
length of the first section. What fraction of the whole path is the first section? 
 
Solution 1: 
I solved this problem by drawing a diagram representing the path:    

                                                            
            
 

                  
                                                  First section                                  Second section                                                                 
 
From the diagram it can be seen that the first section is two-thirds (2/3) of the whole path. 
 

 Solution 2: 
 I used the same method as for Solution 1, only I drew the diagram ‘in my head’ (and not on paper). 
 

Solution 3: 
As the length of the second section is half the length of the first section, the path can be divided into 
three equal parts. The first section contains two parts, and the second section one. Thus the second 
section is two-thirds of the whole path.  

(I did not draw or imagine any picture at all.) 
 
Solution 4: 
I solved this problem by using examples. Suppose the length of the first section is 50 m, then 
the length of the second section is 25 m, as the length of the second section is half the length 
of the first. The length of the whole path then will be 75 m; This means that the first section 
(50 m) is two-thirds of the whole path. 
 
I did not use any of the above methods. 
I attempted the problem in this way: 
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TYPES OF SOLUTIONS 
 

IN 
 

MATHEMATICAL PROCESSING QUESTIONNAIRE I 
 

V = Solution by a visual method 
 

N = Solution by a nonvisual method 
 

For the definitions of visual and nonvisual methods, see pp. 128-129 
 
 

Problem 1   Problem 6   Problem 11 
 Solution 1 = V   Solution 1 = V   Solution 1 = N 
 Solution 2 = V   Solution 2 = V   Solution 2 = N 
 Solution 3 = N   Solution 3 = N   Solution 3 = V 
 Solution 4 = N       Solution 4 = V 
 

Problem 2   Problem 7   Problem 12 
 Solution 1 = N   Solution 1 = N   Solution 1 = N 
 Solution 2 = V   Solution 2 = V   Solution 2 = V 
 Solution 3 = V   Solution 3 = V   Solution 3 = V 
     Solution 4 = N 
  

Problem 3   Problem 8   Problem 13 
 Solution 1 = V   Solution 1 = N   Solution 1 = N 
 Solution 2 = V   Solution 2 = V   Solution 2 = V 
 Solution 3 = V   Solution 3 = V   Solution 3 = V 
 Solution 4 = N 

Solution 5 = N 
 

Problem 4   Problem 9   Problem 14 
 Solution 1 = V   Solution 1 = N   Solution 1 = V 
 Solution 2 = N   Solution 2 = N                  Solution 2 = V 
 Solution 3 = V   Solution 3 = V   Solution 3 = N 
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