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ABSTRACT 

Power dissipation is one of the major design issues of digital circuits. The power 

dissipated by a circuit affects its speed and performance. Multiplier is one of the most commonly 

used circuits in the digital devices. There are various types of multipliers available depending 

upon the application in which they are used. In the present thesis report, the importance of power 

dissipation in today’s digital technology is discussed and the various types and sources of power 

dissipation have been elaborated. Different types of multipliers have been designed which vary 

in their structure and amount of power dissipation. The concept of pipelining is explained and the 

reduction in the power dissipation of the multipliers after pipelining is experimentally  

determined. Clock gating is a very important technique used in the design of digital circuits to 

reduce power dissipation. Various types of clock gating techniques have been presented as a case 

study. The technology used in the simulation of these circuits is 0.35µm CMOS and the 

simulator used is SPECTRE S.  
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CHAPTER 1 
INTRODUCTION 

1.1 Motivation 

Minimizing power consumption for digital systems involves optimization at all levels of 

the design. This optimization includes the technology used to implement the digital circuits, the 

circuit style and topology, the architecture for implementing the circuits and at the highest level 

the algorithms that are being implemented. The most important technology consideration is the 

threshold voltage and its control, which allows the reduction of supply voltage without 

significant impact on logic speed. Since energy is consumed only when capacitance is being 

switched, power can be reduced by minimizing this capacitance through operation reduction, 

choice of number representation, exploitation of signal correlations, resynchronization to 

minimize glitching, logic design, circuit design, and physical design. 

Digital multipliers are the most commonly used components in any digital circuit design. 

They are fast, reliable and efficient components that are utilized to implement any operation. 

Depending upon the arrangement of the components, there are different types of multipliers 

available. A particular multiplier architecture is chosen based on the application. The power 

dissipation in a multiplier is a very important issue as it reflects the total power dissipated by the 

circuit and hence affects the performance of the device.  

The concept of pipelining has been introduced to increase the throughput of the multiplier 

and hence reduce the power dissipation in the device and ultimately improve the performance of 

the device. Pipelining reduces the effective critical path by introducing pipelining latches along 

the data path and thus reduces the average time per instruction. However, pipelining does not 

reduce the execution time of each instruction, and may increase it. 
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Clock gating is one of the most important techniques used for the lowering of power 

dissipation in digital circuits. The main idea is to stop the clock to those portions of the circuit 

that are idle at a given time. This reduces the switching activity in the registers associated and 

also the transfer of data from those registers. This leads to a considerable power saving. 

1.2 Thesis overview 

This thesis report details the issues of power dissipation in digital circuits (multipliers) 

and its minimization using pipelining technique. Chapter 2 gives a detailed description of the 

various types of power dissipation in CMOS circuits and the various techniques to minimize 

them. Chapter 3 discusses the various types of multipliers and their advantages and 

disadvantages. Chapter 4 deals with the concept of pipelining in multipliers and its application in 

these architectures. Chapter 5 explains the concept of clock gating and the various types of clock 

gating techniques proposed so far. Chapter 6 gives the experimental results and conclusions 

arising from the analysis of various multiplier architectures. 
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CHAPTER 2 
POWER DISSIPATION 

In recent years, the desirability of portable operation of all types of electronic systems has 

become prominent and a major factor in the weight and size of portable devices is the amount of 

batteries which is directly impacted by the power dissipated by the electronic circuits. Also, the 

cost of providing power has resulted in significant interest in power reduction even in non-

portable applications which have access to power source. Lately, the significance of power 

reduction in digital circuits design is being realized over the factors like area minimization and 

speed. 

Power dissipation in CMOS circuits arises from two different mechanisms: 

Static power: This power results from resistive paths from the power supply to the 

ground. It is independent of frequency and exists whenever the chip is powered on. 

Dynamic power: This power results from switching capacitive loads between two 

different voltage states. It is frequency dependent, since no power is dissipated if the node values 

don’t change. 

  Even when there are no explicit circuits using static current, the chip will dissipate some 

static power. The power is the result of leakage current through nominally off transistors. 

With small static power, charging and discharging capacitors generally consume most of the 

power on a CMOS circuit. 

2.1 Sources of Power Dissipation 

There are 3 major sources of power dissipation in digital CMOS circuits, which are 

summarized as follows:  
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Pavg = Pswitching +Pshort-circuit +Pleakage = α0-1.CL.V2

dd.fCLk + Isc.Vdd+ Ileakage. Vdd

The first term represents the switching component of power, where CL is the load 

capacitance; fCLk is the clock frequency and α0-1is the node transition activity factor (the average 

number of times the node makes a power consuming transition in one clock period). 

The second term is due to the direct-path short circuit current, Isc, which arises when both the 

NMOS and PMOS transistors are simultaneously active, conducting current directly from supply 

to ground. 

Finally, leakage current Ileakage, which can arise from substrate injection and sub- 

threshold effects, is primarily determined by fabrication technology considerations. 

The dominant term in a “well-designed” circuit is the switching component and low power 

design thus becomes the task of minimizing α0-1, CL, Vd
2
d, fCLk while retaining the required 

functionality. 

2.1.1 Switching Power 

The switching or dynamic component of power consumption arises when the capacitive 

load, CL, of a CMOS circuit is charged through PMOS transistors to make a voltage transition 

from 0 to the high voltage level, which is usually the supply Vdd. For an inverter circuit, the 

energy drawn from the power supply for this positive going transition is CL.Vd
2

d ; half of which 

is stored in the output capacitor and half is dissipated in the PMOS device. On the Vdd to 0 

transition at the output, no charge is drawn from the supply, however the energy stored in the 

capacitor (1/2CL.V2
dd ) is dissipated in the pull-down NMOS device. If these transitions occur at 
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a clock rate, fCLk, the power drawn from the supply is CL.Vd
2

d fCLk.  However, in general, the 

switching is best described probabilistically. α0-1 is defined as the average number of times in 

each clock cycle that a node with capacitance, CL, will make a power consuming transition (0 to 

1), resulting in an average switching component of power for a CMOS gate to be,  

Pswitching = α0-1.CL.V2
dd.fCLk 

The average transition energy or the power-delay product can be defined as the amount 

of energy expended in each switching event or transition and is thus particularly useful in 

comparing the power dissipation of various circuit styles. If it is assumed that only the switching 

component of the power dissipation is important, then it is given by 

Energy per transition = Ptotal /fclk = Ceffective.V
2
dd

 

Where Ceffective is the effective capacitance being switched to perform a computation and is 

given by Ceffective = α0-1.CL 

2.1.1.1 Factors influencing switching component of power 

2.1.1.1.1 Logic Function 

The type of logic function NAND, NOR or a more complex gate, will all yield different 

static transition probabilities. Let us first consider a static 2-input NOR gate and assume that only 

one input transition is possible during a clock cycle and also assume that the inputs to the NOR 

gate have a uniform input distribution of high and low levels. This means that the four possible 

states for inputs A and B (00, 01, 10, and 11) are equally likely. For a NOR gate, the probability 

that the output is 0 is ¾ and that it will be 1 is ¼. The 0 to 1 transition probability of a CMOS 
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gate is given by the probability that the output is in the 0(=3/4) state multiplied by the probability 

the next state is 1(=1/4). For a NOR gate this translates to  

                    α0-1= p(0).p(1) = p(0)(1-p(0)) = ¾(1-3/4) =3/16. 

2.1.1.1.2 Logic Style 

One basic choice of logic style is between static and dynamic CMOS. For a dynamic 

implementation of the 2 input NOR gate which is implemented as an NMOS tree with PMOS 

precharge, power is consumed during the precharge operation for the times when the output 

capacitor was discharged the previous cycle. Since all inputs are equi-probable, there is then a 

75% probability that the output node will discharge immediately after the precharge phase, 

yielding a transition probability of 0.75. The corresponding probability is smaller for a static 

implementation.  For the dynamic case, the activity depends on the signal probability, while for 

the static case the transition depends on previous state. If the inputs to a static CMOS gate do not 

change from the previous sample period, then the gate does not switch. But for dynamic logic, 

the gates can switch. Other considerations w.r.t. logic style is the amount of capacitance on the 

switching node and the sensitivity to supply voltage reduction. 

2.1.1.1.3 Signal Statistics 

The signals in a circuit are typically not always random and it is necessary to consider the 

effect of signal statistics on power. Consider a 2-input NOR gate and let Pa and Pb be the 

probabilities that the inputs A and B are 1. The probability that the output node is a 1 is given by: 

P1 = (1-Pa) *(1-Pb) 
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Understanding the signal statistics and their impact on switching events can be used to   

significantly impact the power dissipation. 

2.1.1.1.4 Circuit Topology 

The manner in which logic gates are interconnected can have a strong influence on the 

overall switching activity. There are two components to switching activity: a static component 

(which does not take into account the timing behavior and is strictly a function of the topology 

and the signal statistics) and a dynamic component (which takes into account the timing behavior 

of the circuit). To illustrate the point, consider two alternate implementations of F= A.B.C.D. 

First consider the static behavior assuming that all primary inputs( A,B,C,D) are uncorrelated 

and random i.e. P1(a,b,c,d) =0.5.For an AND gate ,the probability that the output is in the 1 state 

is given by P1= Pa.Pb 

Therefore the probability that the output will make a 0 to 1 transition is given by 

α0-1 = P0 P1 = (1-P1) P1 = (1- Pa.Pb).Pa.Pb 

 

F
DC

B

A 
 

                              

Figure 1:  Circuit Topology 

 

Based on this the signal and transition probabilities are computed for the two topologies. 

The results indicate that the chain implementation will have an overall lower switching activity 

than the tree implementation for random inputs. However it is also important to consider the 

timing behavior to accurately make power tradeoffs of various topologies. 
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Timing skew between the signals can cause spurious transitions (also called glitches) resulting in 

extra power. Based on this issue, when the two above mentioned topologies are compared, the 

chain implementation causes an extra transition in the output due to timing skew through the 

logic. On the other hand, the tree implementation is glitch free. This example demonstrates that a 

circuit topology can have a smaller static component of activity while having a higher dynamic 

component. 

2.1.2 Short-Circuit Component of Power 

Finite rise and fall times of the input waveforms however result in a direct current path 

between Vdd and GND which exist for a short period of time during switching. Specifically, 

when the condition Vth <Vin <Vdd-|Vtp| holds for the input voltage, where Vtn, Vtp are NMOS and 

PMOS threshold voltages respectively, there will be a conductive path open between Vdd and 

GND because both the NMOS and PMOS devices will be simultaneously ON. Short circuit 

currents are significant when the gate input rise and fall times are much larger than the gate 

output rise and fall times. This is because the short circuit path will be active for a longer period 

of time. To minimize the total average short-circuit current, it is desirable to have equal input and 

output edge times. In this case the total power consumed by the short-circuit current is less than 

10% of the total dynamic power. An important point to be noted is that if the supply is lowered 

to be below the sum of the thresholds of the transistors, Vdd<Vtn+|Vtp|, the short-circuit currents 

can be eliminated because both devices will not be ON at the same time for any value of input 

voltage. 
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       This occurs when the rise/fall time at the input of a gate is larger than the output rise/fall 

time. To minimize the total average short-circuit current power, it is desirable to have equal input 

and output edge times. For smaller devices, Short circuit current power is just a linear function of 

a supply voltage. For larger devices, that are not velocity saturated, the average current is 

approximately linear with supply voltage so that the average power is a quadratic function of 

supply voltage. For most ICs, the Short circuit current power is approximately 5-10% of the total 

dynamic power. If the supply is lowered to below the sum of the thresholds of the transistors, 

Vdd < Vtn+ |Vtp|, however, Short circuit currents will be eliminated because both devices cannot 

be ON at the same time for all values of input Vo. 

2.1.3 Leakage Component of Power 

There are two types of leakage currents:  

1) Reverse-bias diode leakage on the transistor drains and  

2) Sub-threshold leakage through the channel of an off-device. 

The Diode leakage occurs when a transistor is turned off and another active transistor 

charges up/down the drain with respect to the former’s bulk potential. For example, consider an 

inverter with a high input voltage, in which the NMOS transistor is turned ON and the output 

voltage is driven low. The PMOS transistor will be turned OFF, but its drain –to- bulk voltage 

will be equal to –Vdd, since the output voltage is at 0 V and the bulk for the PMOS is at Vdd.  

The resulting current will be approximately IL = AD * JS, where AD is the area of the drain 

diffusion, and JS is the leakage current density and weakly dependent on the supply voltage. JS 

doubles with every 9o increase of temperature. For a 1 million-transistor chip, assuming an 
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average drain area of 10 µm2, the total leakage current is on the order of 25 µA. While this is 

typically a small fraction of the total power consumption in MOS chips, it could be significant 

for a system application, which spends much of its time in standby operation, since this power 

always being dissipated even when no switching is occurring. 

The second component of the leakage power is the sub-threshold leakage, which occurs 

due to carrier diffusion between the source and the drain when the gate-source voltage Vgs, has 

exceeded the weak inversion point, but is still below the threshold voltage Vt, where carrier drift 

is dominant. In this regime, the MOSFET behaves similarly as a bipolar transistor, and the sub-

threshold current is exponentially dependent on the gate-source voltage Vgs. 

   The current in the sub-threshold region is given by 

Ids = k e(Vgs-Vt)/n.VT) (1-e Vds/VT) 

Where k is a function of the technology, VT is the thermal voltage (kT/q) and V t is the 

threshold voltage. For Vds>>VT, (1-e(V
ds

/ v
T

))  ≈ 1;  that is ,the Drain to Source current is 

independent of the Drain to Source voltage Vds, for Vds approximately larger than 0.1v.The sub-

threshold slope Sth, in association with this, is the amount of voltage required to drop the sub-

threshold current by one decade. The sub-threshold slope can be determined by taking the ratio 

of two points in this region: 

I1/I2 = e (V
1

-V
2

)/ (n.V
T

) 

Which results in Sth = n*VT ln (10). At room temperature, typical values of Sth lie 

between 60-90 mV/decade current. Clearly, the lower Sth is, the better, since it is desirable to 
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have the device “turn off” as close to Vt as possible as this is one important advantage of silicon–

on-insulator technologies which have an Sth near 60 mV. 

2.2 Various techniques for power reduction 

2.2.1 Technology Optimization 

As mentioned earlier, the energy per transition is proportional to Vdd2.Therefore a 

reduction in the supply voltage can lead to a quadratic improvement in the power-delay product 

of CMOS logic. But a Vdd reduction can lead to a drastic increase in the delay. A simple first 

order derivation adequately predicts the experimentally determined dependence of delay and Vdd 

and is given by 

Td = (CL * Vdd)/ I = (CL * Vdd)/ (u Cox)/2 (W/L) (Vdd - Vt)
 2 

Since the main objective is to reduce power consumption while maintaining a fixed 

overall system throughput, a compensation for the increased delays at low voltages is required. 

One strategy can be using parallel and pipelined architectures to compensate for the increased 

gate delays at reduced supply voltages. Another approach is to modify the threshold voltage of 

the devices. Reducing the threshold voltage allows the supply voltage to be scaled down with out 

loss in speed. For example, a circuit running at a supply voltage of 1.5V with Vt = 1V will have 

approximately the same performance as the circuit running at a supply voltage of 0.9V and a Vt = 

0.5V.  

But there is limit associated with the reduction of threshold voltage of MOS devices. The 

limit is set by the requirement to retain adequate noise margins and the increase in sub-threshold 
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currents. The former requirement is relaxed in low power designs, but the latter plays a 

significant role in power dissipation. The optimal threshold voltage is reached when the sub-

threshold leakage current starts increasing with a reduction in supply voltage.  

2.2.2 Architecture driven voltage scaling 

 

 

Figure 2: A simple 8-bit data path architecture 

 

An analysis of a simple 8-bit data path consisting of an adder and a comparator is used to 

illustrate this technique. As per the figure, inputs A and B are added, and the result compared to 

the worst-case delay through the adder, comparator and latch is approximately 25ns at a supply 

voltage of 5V. The system can be clocked with a clock period of T = 25ns. The operating voltage 

cannot be reduced any further at this possible throughput, since no extra delay can be tolerated, 

hence yielding no reduction in power. Considering this as a reference data path, the power for the 

reference data path is given by   
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Pref = Cref V
2

ref fref 

Where Cref is the total effective capacitance being switched per clock cycle. The effective 

capacitance was determined by averaging the energy over a sequence of input patterns with a 

uniform distribution. One way to maintain throughput while reducing the supply voltage is to 

utilize a parallel architecture. 

2.2.2.1 Parallel Architecture 

Two identical adder-comparator data paths are used, allowing each unit to work at half 

the original rate while maintaining the original throughput. Since the speed requirements for the 

adder, comparator, and latch have decreased from 25ns to 50ns, the voltage can be dropped from 

5V to 2.9 V. while the data path capacitance has increased by a factor of 2, and the operating 

frequency has correspondingly decreased by a factor of 2. But there is also a slight increase in 

the total “effective” capacitance introduced due to the extra routing, resulting in an increased 

capacitance by a factor of 2.15.  Thus the power for the parallel data path is given by, 

Ppar = Cpar V2
par fpar  = (2.15 Cref ) (0.58 V2

ref) (fref/2) ≈ 0.36 Pref 
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Figure 3: Parallel architecture 

 

 
    The amount of parallelism can be increased to further reduce the power supply voltage 

and the power consumption for a fixed throughput. However, as the supply approaches the 

threshold voltage of the devices, the delays increase significantly with a reduction in supply 

voltage and therefore the amount of parallelism and corresponding overhead circuitry increase 

significantly. At some “optimum” voltage, the overhead circuitry due to parallelism dominates 

and the power starts to increase with further reduction in supply. 

2.2.2.2 Pipelining 

   From the figure 2.4, with the additional pipeline latch, the critical path becomes the max 

[Tadder, Tcomparator], allowing the adder and the comparator to operate at a slower rate. Since the 

two delays are equal, reducing the supply voltage from 5V to 2.9V will cause no loss in the 

throughput. However, there is a much lower area overhead incurred by this technique, as we only 
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need to add pipeline registers. There is a slight increase in hardware due to extra latches, increasing 

the “effective” capacitance by approximately a factor of 1.15.  

The power consumed by the pipelined data path is  

                     Ppipe = Cpipe V2
pipe fpipe = (1.15 Cref) (0.58 Vref)2 fref = 0.66 Pref 

 

                          

Figure 4:  Pipelined architecture 

 
 

With this architecture, the power reduces by a factor of approximately 2.5, providing 

approximately the same power reduction as the advantage of lower area overhead. Moreover, 

increasing the level of pipelining also has the effect of reducing logic depth and hence power 

contributed due to hazards and critical races.  
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2.3    Process modifications for reducing power 

2.3.1 Optimizing Vt 

 In most CMOS processes, Vt has been set to a fairly high potential 0.7V to 1.0V. For 5V 

circuit operation, this has little impact on circuit delay, which is inversely proportional to (Vdd – 

Vt)
 2. The main benefit for such a large threshold is that the sub threshold leakage is reduced 

exponentially. While the total leakage current of an IC is still well below the average supply 

current under operation, the reduced sub threshold current  prolongs the duration of stored charge 

in dynamic circuits, providing more robust operation(due to longer leakage times). Thus, there 

has been little reason to reduce the thresholds until recently, with the decrease of supply voltages 

to 3.3 V, and the emphasis on low power design. 

Reducing Vt enables the supply voltage to be dropped as well. This maintains circuit 

speed, but results in a corresponding power decrease. However, the limitation on this is that at 

low thresholds, the sub-threshold currents become a significant, if not dominant, portion of the 

average current drawn from the supply.  

2.3.2 Process Scaling 

The primary effect of process scaling is to reduce all the capacitances, which provides a 

proportional decrease in power and circuit delays. Device sizes can be reduced to keep delay 

constant over process scaling, which will yield an even larger power dissipation reduction. 
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2.3.3 Fabrication Advancements 

With an increased number of metal layers, and a trend towards allowing stacked vias. If 

these are used judiciously, not only power be reduced, but the circuit area and delay times as 

well. But circuit redesign is required to utilize these advancements. Using the higher metal layers 

will help reduce the interconnect capacitance, which contributes roughly one-third to the overall 

capacitance. By allowing stacked vias, most of the cell areas can be compressed. This also 

reduces both the intracell and global routing because terminal connections will be closer 

together; so that most interconnect routes will be reduced in length. 

2.3.4 Transistor sizing 

The transistors of a gate with high fan-out load should be enlarged to minimize the power 

consumption of the circuit. Transistor sizing is a very effective way to improve the delay of a 

circuit. With improved process techniques and reduced feature sizes the constraint on area is 

becoming less strict; so far it has been assumed that power consumption of a circuit is 

proportional to the “active area” of the circuit. Recent studies have revealed that the power 

consumption of a static CMOS circuit is not necessarily minimized by minimizing the active 

area, but, can be improved by enlarging some of the transistors driving large loads. 

The power consumption of a single static CMOS gate, neglecting the static power 

consumption, is composed of Pcap, the capacitive power due to the charging and discharging of 

capacitors and Psc, the short circuit power dissipated when both the p-type and n-type blocks are 

conducting simultaneously during a transition. The equivalent width of N series connected 

transistors for the same delay as that of a single inverter with width W is approximately N x W.  

 WN = N x W1 
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The power consumption of a single static CMOS gate, neglecting the static power 

consumption, is composed of Pcap, the capacitive power due to charging and discharging of 

capacitors and Psc, the short circuit power dissipated when both the p-type and the n-type blocks 

are conducting simultaneously during a transition.  
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CHAPTER 3  
MULTIPLICATION PROCESS 

              Digital multipliers are a major source power dissipation in Digital Signal Processors. 

High power dissipation in these structures is mainly due to the switching of a large number of 

gates during multiplication. In addition, much power is also dissipated due to a large number of 

spurious transitions on internal nodes. Timing analysis of a Full Adder, which is a basic building 

block in multipliers, has resulted in a different array connection pattern that reduces power 

dissipation due to the spurious transition activity. Furthermore, this connection pattern also 

improves the multiplier throughput. 

             A variety of measures can be used to evaluate the efficiency of the processors. So both 

the area occupied by the circuit and the time required for the performance of computation must 

be taken into consideration. Therefore depending on the speed and area requirements, the digital 

multipliers used can be either of bit-serial or a bit-parallel based architecture. The bit-serial 

approach processes the data serially where at every clock cycle a single data bit is fed to the 

processor to be processed. In contrast, the parallel approach processes the data bits in a parallel 

fashion in just one clock cycle.   

            The initial architectures were implemented using bit-serial based structures due to their 

design simplicity and low hardware requirements, which lead to cheap system costs. But for 

systems that require high speeds, bit-parallel approach is used. But this approach requires large 

silicon area, communication overhead, and pin out. So a trade off must be made between these 

two approaches depending on the application. 

The multiplication process may be viewed to consist of the following two steps: 

1) Evaluation of partial products 
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2) Accumulation of the shifted partial products. 

The product of two n-digit numbers can be accommodated in ‘2n’ digits. In the binary 

system, an AND gate can be used to generate partial product Xi Yj. The evaluation of the partial 

products consists of the logical ANDing of the multiplicand and the relevant multiplier bit. Each 

column of partial products must then be added and, if necessary, values passed to the next 

column.  

In general, the multiplier can be divided into three categories: 

1) Serial form. 

2) Serial/parallel form. 

3) Parallel form. 

 The speed of the multiplier is determined by both architecture and circuit. The speed can 

be expressed by the number of the cell delays along the critical path on the architecture level of 

the multiplier. The cell delay, which is normally the delay of the adder, is determined by the 

design of the circuit of the cell. 

 

 

Multiplier 

Figure 5: 4x4 Multiplication process 
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3.1 Multiplier Architectures 

There are three general categories of multiplier architectures: Tree multiplier, Booth- 

recoded multiplier and Array multiplier. 

3.1.1 Array multiplier 

  The array multiplier originates from the multiplication parallelogram. As shown in 

Figure, each stage of the parallel adders should receive some partial product inputs. The carry-

out is propagated into the next row. The bold line is the critical path of the multiplier. In a non-

pipelined array multiplier, all of the partial products are generated at the same time. It is 

observed that the critical path consists of two parts: vertical and horizontal. Both have the same 

delay in terms of full adder delays and gate delays. For an n-bit by n-bit array multiplier, the 

vertical and the horizontal delays are both the same as the delay of an n-bit full adder. For a 16-

bit by 16-bit multiplier, the worst-case delay is 32 τ where τ is the worst-case full adder delay. 
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Figure 6: 4x4 Array Multiplier 

 

One advantage of the array multiplier comes from its regular structure. Since it is regular, 

it is easy to layout and has a small size. The design time of an array multiplier is much less than 

that of a tree multiplier. A second advantage of the array multiplier is its ease of design for a 

pipelined architecture. A fully pipelined array of the multiplier with a stage delay equal to the 

delay of a 1-bit full adder plus a register has been successfully designed for high-speed DSP 

applications at Bell Laboratories. Also it can be easily pipelined by inserting latches after  

CSA (carry save adders) or after every few rows. 

The main disadvantage of the array multiplier is the worst-case delay of the multiplier 

proportional to the width of the multiplier. The speed will be slow for a very wide multiplier. 
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This means that the delay is linearly proportional to the operand size. For example, the worst-

case delay of a 54-bit by 54-bit multiplier employing the array scheme will be over 100 τ. 

One method to decrease the delay of an array multiplier is to replace the ripple carry 

adder at the bottom with a carry look-ahead adder. By doing so, the delay can be reduced by 

roughly 10% for the 8 bit multiplier and 20% for the 32 bit multiplier while increasing the 

number of gates by about 5% for the 8 bit multiplier and 1% for the 32 bit multiplier. 

 

                      

Figure 7: Power versus frequency for the tree and the array multipliers 

 

3.1.2 Tree Multiplier 

 The result of the multiplication is obtained by first generating partial products and then 

adding the partial products. The critical path of a multiplier depends on the delay of the carry 

chain through all of the adders. Consider a full adder with A and B as the adder inputs and C is 

the carry input. The full adder produces a bit of summand and a bit of carry out. It can be 
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observed that a full adder is actually a “one's counter". A, B and C can all be seen as the inputs of 

3-2 compressor. The outputs, Carry and Sum, are the encoded output of the three inputs in binary 

notation .The tree multiplier is based on this property of the full adder. The addition of 

summands can be accelerated by adopting a 3-2 compressor. A 3-2 compressor adds three bits 

and produces a two-bit binary number whose value is equal to that of the original three. The 

advantage of the 3-2 compressor is that it can operate without carry propagation along its digital 

stages and hence is much faster than the conventional adder.  

In any scheme employing 3-2 compressors, the number of adder passes occurring in a 

multiplication before the product is reduced to the sum of two numbers, will be two less than the 

number of summands, since each pass through an adder converts three numbers to two, reducing 

the count of numbers by one. To improve the speed of the multiplication, one must arrange many 

of these passes to occur simultaneously by providing several 3-2 compressors. 

Thus, the best first step for a tree multiplier is to group the summands into threes, and 

introduce each group into its own 3-2 compressor, thus reducing the count of numbers by a 

factor of 1.5. The second step is to group the numbers resulting from the first step into threes and 

again add each group in its own 3-2 compressors. By continuing such steps until only two 

numbers remain, the addition is completed in a time proportional to the logarithm of the number 

of summands. 
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Figure 8: 4x4 Tree multiplier 

 

3.1.3 Baugh-Wooley Multiplier 

This technique has been developed in order to design regular multipliers, suited for 2’s-

complement numbers. Let us consider 2 numbers A and B:  
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The product A.B is given by the following equation:  

    

We see that subtractor cells must be used. In order to use only adder cells, the negative terms 

may be rewritten as:  

    

         This way, A.B becomes:  
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Figure 9: 4x4 Baugh-Wooley multiplier 

 

The final equation is: 
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Because: 

     
 

A and B are n-bits operands, so their product is a 2n-bits number. Consequently, the most 

significant weight is 2n-1, and the first term -22n-1 is taken into account by adding a 1 in the most 

significant cell of the multiplier.  

3.1.4 Wallace tree multiplier 

  A Wallace tree is an implementation of an adder tree designed for minimum propagation 

delay.  Rather than completely adding the partial products in pairs like the ripple adder tree does, 

the Wallace tree sums up all the bits of the same weights in a merged tree.  Usually full adders 

are used, so that 3 equally weighted bits are combined to produce two bits: one (the carry) with 

weight of n+1 and the other (the sum) with weight n.  Each layer of the tree therefore reduces the 

number of vectors by a factor of 3:2.  The tree has as many layers as is necessary to reduce the 

number of vectors to two (a carry and a sum).  A conventional adder is used to combine these to 

obtain the final product.  The structure of the tree is shown below. For a multiplier, this tree is 

pruned because the input partial products are shifted by varying amounts. 
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Figure 10: 4x4 Wallace tree multiplier 

A section of an 8 input Wallace tree. The Wallace tree combines the 8 partial product inputs to two output vectors 
corresponding to a sum and a carry.  A conventional adder is used to combine these outputs to obtain the complete 
product. 

 

If the bits in the tree are traced, we will find that the Wallace tree is a tree of carry-save 

adders arranged as shown below. A carry save adder consists of full adders like the more familiar 

ripple adders, but the carry output from each bit is brought out to form second result vector rather 

being than wired to the next most significant bit.  The carry vector is 'saved' to be combined with 

the sum later, hence the carry-save moniker. 
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Figure 11: CSA tree structure 

 

A Wallace tree multiplier is one that uses a Wallace tree to combine the partial products 

from a field of 1x n multipliers (made of AND gates).  It turns out that the number of Carry Save 

Adders in a Wallace tree multiplier is exactly the same as used in the carry save version of the 

array multiplier.  The Wallace tree rearranges the wiring however, so that the partial product bits 

with the longest delays are wired closer to the root of the tree.  This changes the delay 

characteristic from O (n*n) to O (n*log (n)) at no gate cost. 
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CHAPTER 4 
PIPELINING CONCEPTS 

In computers, a pipeline is the continuous and somewhat overlapped movement of 

instruction to the processor or in the arithmetic steps taken by the processor to perform an  

instruction. Pipelining is the use of a pipeline. Without a pipeline, a computer processor  

gets the first instruction from memory, performs the operation it calls for, and then goes  

to get the next instruction from memory, and so forth. While fetching (getting) the  

instruction, the arithmetic part of the processor is idle. It must wait until it gets the next  

instruction. With pipelining, the computer architecture allows the next instructions to be 

fetched while the processor is performing arithmetic operations, holding them in a buffer 

close to the processor until each instruction operation can be performed. The staging of  

instruction fetching is continuous. The result is an increase in the number of instructions  

that can be performed during a given time period.  

Pipelining is sometimes compared to a manufacturing assembly line in which different 

parts of a product are being assembled at the same time although ultimately there may be some 

parts that have to be assembled before others are. Even if there is some sequential dependency, 

the overall process can take advantage of those operations that can proceed concurrently.  

Computer processor pipelining is sometimes divided into an instruction pipeline and an 

arithmetic pipeline. The instruction pipeline represents the stages in which an instruction is 

moved through the processor, including its being fetched, perhaps buffered, and then executed. 

The arithmetic pipeline represents the parts of an arithmetic operation that can be broken down 

and overlapped as they are performed.  
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Pipelines and pipelining also apply to computer memory controllers and moving data 

through various memory staging places. Pipelining reduces the effective critical path by 

introducing pipelining latches along the data path. Pipelining has been used in the context of 

architecture design and compiler synthesis. In an M-level pipelined system, the number of delay 

elements in any path from input to output is (M-1) greater than that in the same path in the 

original sequential circuit. While pipelining reduces the critical path, it leads to a penalty in 

terms of an increase in latency. Latency essentially is the difference in the availability of the first 

output data in the pipelined system and the sequential system. For example, if the latency is one 

clock cycle, then the k-th output is available in (k+1)-th clock cycle in a 1-stage pipelined 

system. The two main drawbacks of the pipelining are increase in the number of latches and in 

system latency. 

 

           

 

 

 

 

 

 

 

 

 

 

 32



 

Table 1: Comparison between pipelined and un-pipelined processor 

 

 

 

 
Pipelining reduces the average time per instruction. Pipelining does not reduce the execution 

time of each instruction, and may increase it. 
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Pictorial Example of Pipelining
Original Process - 3 sequences of 4 stages each

Original process takes 12 cycles

Pipelined process takes 6 cycles

 
 

Figure 12: Pipelining Process 

 

“Critical path” in an architecture is defined as the longest path between any 2 latches or 

between an input and a latch or between a latch and an output or between the input and the 

output.  The critical path can be reduced by suitably placing the pipelining latches in the 

architecture.  

“Cut-set” A cut-set is a set of edges of a graph such that if these edges are removed from 

the graph, the graph becomes disjoint.  

Feed-forward cut-set: A cut-set is called a feed-forward cut-set if the data move in the 

forward direction on all the edges of the cut-set.  
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The pipelining latches can only be placed across any feed-forward cut set of the graph. 

The latches on a feed-forward cut set of any FIR filter structure can be placed arbitrarily with out 

affecting the functionality of the algorithm. 

4.1 Pipeline Convention 

Latency: The delay from when an input is established until the output associated with that 

input becomes valid. 

Throughput: The rate at which inputs or outputs are processed is available. 

A K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K registers on 

every path from an input to an output. A combinational circuit is thus a 0-stage pipeline. Every 

pipeline stage, hence every K-Stage pipeline, has a register on its OUTPUT (not on its input). 

The CLOCK common to all registers must have a period sufficient to cover propagation 

over combinational paths PLUS (input) register tPD PLUS (output) register setup. 

The LATENCY of a K-pipeline is K times the period of the clock common to all 

registers. 

The THROUGHPUT of a K-pipeline is the frequency of the clock. 

There are two main advantages of using pipelining  

• Higher speed 

• Lower power 

The propagation delay Tpd of CMOS circuit is associated with the charging and 

discharging of the various gate and stray capacitances in the critical path. It can be defined as 

Tpd = Ccharge Vo/k (Vo-Vt) 2 
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     Where Ccharge denotes the capacitance to be charged/discharged in a single clock cycle, i.e. 

the capacitance along the critical path, Vo is the supply voltage, Vt is the threshold voltage. 

Parameter ‘k’ is a function of technology parameters µ, w/l, and Cox.  

The power consumption of a CMOS circuit can be estimated using the following 

equation: 

P= Ctotal Vo
2f 

where Ctotal denotes the total capacitance of the circuit, Vo is the supply voltage, and f is the 

clock frequency of the circuit.  

4.2 Pipelining for Low Power 

Let the total power consumed by a sequential circuit be represented as 

 
Pseq= Ctotal Vo

2f 

 
Here f = 1/ Tseq, where Tseq is the clock period of the original sequential circuit. 

Consider an M-level pipelined system, where the critical path is reduced to 1/M of its 

original length and the capacitance to be charged/discharged in a single clock cycle is reduced to 

Ccharge /M. But the total capacitance does not change. If the same clock speed is maintained, i.e. 

the clock frequency ‘f’ is maintained, only a fraction of the original capacitance, Ccharge /M, is 

being charged/discharged in the same amount of time that was previously needed to 

charge/discharge the capacitance, Ccharge .This implies that the supply voltage can be reduced to 

βVo, where β is a positive constant less than 1. Hence the power consumption of the pipelined 

filter will be 
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Ppip = Ctotal β2Vo
2 f = β2 Pseq 

Therefore, the power consumption of the pipelined system has been reduced by a factor of ‘β2 ‘as 

compared to the original system. 

 

 

Tseq Seq: 
(V0)

Tseq Tseq TseqM=3: 
(β V0) 

      

Figure 13: Critical path lengths for original and 3-level pipelined systems 

 

 
The power consumption reduction factor, β, can be determined by examining the 

relationship between the propagation delay of the original filter and the pipelined filter.       

The propagation delay of the original filter is given by 

Tseq = (Ccharge Vo)/k (Vo-Vt) 2 

 

The propagation delay of the pipelined filter is given by 

Tpip = (Ccharge /M) β Vo /k (β Vo -Vt) 2 

The clock period Tclk, is usually set equal to the maximum propagation delay, Tpd, in a 

circuit. Since the same clock period is maintained for both the circuits, the following quadratic 

equation can be used to solve for β, 

M (βV0-Vt) 2 = β (V0-Vt) 2 

Once β is obtained, the reduced power consumption of the pipelined filter can be computed. 
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4.2 Types of pipelining 

The most prominent types of pipelining are wave pipelining and asynchronous pipelining. 

4.2.1 Wave pipelining 

This is a technique employed to decrease the effective number of pipeline stages in a 

digital system without increasing the number of physical registers in the pipeline. This is 

achieved by applying new data to the inputs of the combinational logic before the output (due to 

previous data inputs) is available, thus pipelining the combinational logic. The time of 

application of new data is determined by performing detailed system-level and circuit-level 

analysis. 

             

Figure 14: Wave pipelining 
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At the system level, the analysis should take into account the clock period, the intentional 

clock skew, and the global clock latency. At the circuit level, precise estimates of the maximum 

and minimum delays through combinational logic circuits are required. Wave pipelining has a 

number of advantages. Since no clocked storage elements are inserted in the logic, clocking 

overhead components such as setup time of registers, clock skew, and the rise and fall time at the 

output of a logic segment are not added to the latency of the circuit.  

Partitioning overhead is eliminated since the circuit need not be segmented. By using 

fewer storage elements, clock distribution problems are also minimized, reducing the potential 

clock-skew problems. As a result, a wave pipelined circuit can increase the clock rate while the 

total latency remains practically unchanged. The main disadvantages are the additional circuitry 

required for delay equalization and a more substantial performance degradation due to the 

thermal effects, power-supply level fluctuations, and fabrication process variations. 

4.2.2 Asynchronous pipelining 

This is a technique where there is no global Synchronization within the system; 

subsystems within the system are only synchronized locally by the communication protocols 

between them. Systems that involve some sort of request/acknowledge handshake protocols 

between the subsystems are often referred to as self-timed systems. Since most practical 

asynchronous systems are self-timed systems, these terms are often used synonymously in the 

literature. The results produced by subsystems in an asynchronous system can be consumed by 

other subsystems as soon as they are generated, without having to wait for a global clock change. 
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Figure 15: Asynchronous Pipelining 

 

As a result, asynchronous systems are limited by the average-case performance rather 

than the worst case (as in synchronous systems) of the subsystems. Moreover, a subsystem can 

be replaced by another subsystem with the same functionality but different performance with 

ease. However, in synchronous systems this task is not easy as the clock period may have to be 

recomputed. Finally, transitions in a particular subsystem are only produced when data is 

processed by it and therefore there is no dynamic power consumption when the subsystem is 

idle. This makes asynchronous systems attractive for low-power designs. However, the power 

consumption is increased by the handshaking circuits. 

4.3 Pipelining Hazards 

There are situations, called hazards that prevent the next instruction in the instruction 

stream from being executing during its designated clock cycle. Hazards reduce the performance 

from the ideal speedup gained by pipelining                              

  There are three classes of hazards:  
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4.3.1 Structural Hazards 

They arise from resource conflicts when the hardware cannot support all possible 

combinations of instructions in simultaneous overlapped execution. When a machine is 

pipelined, the overlapped execution of instructions requires pipelining of functional units and 

duplication of resources to allow all possible combinations of instructions in the pipeline.  

If some combination of instructions cannot be accommodated because of a resource conflict, the 

machine is said to have a structural hazard.  

Common instances of structural hazards arise when  

• Some functional unit is not fully pipelined. Then a sequence of instructions using that 

unpipelined unit cannot proceed at the rate of one per clock cycle  

• Some resource has not been duplicated enough to allow all combinations of instructions 

in the pipeline to execute. 

Example:        

A machine has shared a single-memory pipeline for data and instructions. As a result, 

when an instruction contains a data-memory reference (load), it will conflict with the instruction 

reference for a later instruction (instr 3):  
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Table 2: Structural Hazards 

 

Clock cycle number 

Instr 1 2 3 4 5 6 7 8 

Load IF ID EX MEM WB            

Instr 1    IF ID EX MEM WB         

Instr 2       IF ID EX MEM WB      

Instr 3        IF ID EX MEM WB 

  

  

                                  

                 

To resolve this, the pipeline is stalled for one clock cycle when a data-memory access 

occurs. The effect of the stall is actually to occupy the resources for that instruction slot. The 

following table shows how the stalls are actually implemented. 

 

Table 3: Structural Hazards process 

 

Clock cycle number 

Instr 1 2 3 4 5 6 7 8 9  

Load IF ID EX MEM WB          

Instr 1   IF ID EX MEM WB        

Instr 2     IF ID EX MEM WB      

Stall       bubble bubble bubble bubble bubble    

Instr 3         IF ID EX MEM WB  
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Instruction 1 assumed not to be data-memory reference (load or store); otherwise Instruction 3 

cannot start execution for the same reason as above.In spite of being a hazard, structural hazard 

may not be avoided sometimes due to the following reasons:- 

• Reduce the cost 

• Reduce the latency of the unit 

4.3.2 Data Hazards 

They arise when an instruction depends on the result of a previous instruction in a way 

that is exposed by the overlapping of instructions in the pipeline.  

A major effect of pipelining is to change the relative timing of instructions by 

overlapping their execution. This introduces data and control hazards. Data hazards occur when 

the pipeline changes the order of read/write accesses to operands so that the order differs from 

the order seen by sequentially executing instructions on the un-pipelined machine.  

Consider the pipelined execution of these instructions:   
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Table 4: Data Hazards 

    1 2 3 4 5 6 7 8 9 

ADD R1, R2, R3 IF ID EX MEM WB         

SUB R4, R5, R1   IF IDsub EX MEM WB       

AND R6, R1, R7     IF IDand EX MEM WB     

OR R8, R1, R9        IF IDor EX MEM WB   

XOR R10,R1,R11         IF IDxor EX MEM WB 

 

All the instructions after the ADD use the result of the ADD instruction (in R1). The 

ADD instruction writes the value of R1 in the WB stage, and the SUB instruction reads the value 

during ID stage (IDsub). This problem is called a data hazard. Unless precautions are taken to 

prevent it, the SUB instruction will read the wrong value and try to use it.  

4.3.3 Control Hazards 

They arise from the pipelining of branches and other instructions that change the PC. 

Control hazards can cause a greater performance loss for DLX pipeline than data hazards. When 

a branch is executed, it may or may not change the PC (program counter) to something other 

than its current value plus 4. If a branch changes the PC to its target address, it is a taken branch; 

if it falls through, it is not taken.  
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For example, if instruction i is a taken branch, then the PC is normally not changed until 

the   end of MEM stage, after the completion of the address calculation and comparison.The 

simplest method of dealing with branches is to stall the pipeline as soon as the branch is detected 

until the MEM stage is reached, which determines the new PC. The pipeline behavior looks like:  

 

 Table 5:  Control Hazards 

Branch IF ID EX MEM WB           

Branch 
successor   IF(stall) stall stall IF ID EX MEM WB   

Branch 
successor+1           IF ID EX MEM WB 

 

The stall does not occur until after ID stage (where the instruction is a branch).  

 

4.4 Merits and Demerits of pipelining 

4.4.1 Merits 

   Pipelining involves introducing the registers in the middle of long combinatorial paths. 

This adds latency but increases the speed and reduces the levels of logic. The introduction of 

extra registers consumes power but minimizes the glitches drastically. This glitch reduction has 

some power advantage. For example, a pipelined 16x16-bit unsigned multiplier generated from 

ACTGEN Actel's macro-generation utility consumes less power than its unpipelined counterpart. 
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Pipelined Vs Un pipelined 
multiplier 

Non- pipelined

Figure 16: Pipelining Advantage 

 

4.4.2 Demerits 

One of the more severe penalties for using pipelining concept includes a pipeline stall, by 

which CPU designers must work around with.  If a CPU enters a stall, all the instructions within 

the pipe must be flushed and the instruction must be re-executed into the CPU.  This is 

problematic for programs with many loops because the CPU will continue to stall until the 

program is fixed. 

 Instead of fixing and finding the cause of pipeline stalls, CPU designers instead added 

more execution units to the ALU of the CPU. Plenty of execution units work in parallel, 

therefore, leading to an increased throughput (on top of the increased throughput provided by 
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pipelining). It in turn makes a CPU superscalar and powerful since it can process instructions 

more than one at a time. 

 Increased execution units, on the other hand, is also problematic because a designer 

would need plenty of registers to temporarily store executed values.  To add hundreds or 

thousands of registers is not practical since the high-speed architecture that registers utilize is 

expensive.  If designers were to add hundreds or thousands of registers in a CPU, it would 

become expensive to manufacture.  Therefore, caches are used as an alternative. 

 Adding caches are more practical than using registers because any register value not in 

use can be received by the caches.  Since the caches are physically close to the fetch/decode 

stage, accessing data from those locations will be quick (although not as quick as using 

registers). 

 To further enhance CPU performance, most CPUs utilize a branch prediction table to 

predict the outcome of a branch.  In addition to a pre-fetch mechanism within the CPUs caches, 

the prediction table and pre-fetch reduce instruction and data transfer latency and therefore, 

minimize pipeline stalls. 
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Figure 17: Design of a pipelined multiplier 
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CHAPTER 5 
CLOCK GATING 

5.1 Clock design for low power 

The clock could consume 1/3 or more of the total power of a chip. It takes into account 

the clock generation and distribution as well as the structures of latches and flip-flops .problems 

such as reliability, clock skew, Meta stability and clock power are more and more crucial in the 

design of low-power chips in deep submicron technologies. Interconnect delays are well known 

to be increased in deep submicron technologies, requiring new interconnection strategies, but 

crosstalk could also be a stopping point. These problems are strongly related to the design of 

drivers, transistor sizing and finally to layout. This is a difficult problem as reliability in deep 

submicron technologies is mandatory, but these techniques have also to be capable of reducing 

the power consumption. 

Micro processors are clocked by a global clock signal. The largest difficulty is to have a 

high frequency global clock and to design the clock tree for such a frequency. This is due to the 

clock skew that occurs in the clock tree. The proposed solutions for this drawback are to balance 

the clock tree delays while using various tricks like wire snaking, balance of the number of 

buffers, of the number of crossovers etc. these solutions generally increase the power 

consumption. Furthermore, they are not acceptable for very low voltage circuits, as slightly Vth 

variations can change significantly the delay values of the clock buffers. Large hierarchical 

buffers are used for clock distribution. Clock gating is performed in such clock trees. It reduces 

the power consumption but introduces some extra clock skew. In most microprocessors, delayed 

clock are created by analog delays to have more clock edges to perform all the work in a single 

pipeline stage.  These clocks are delayed to provide time borrowing.  
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Some of the techniques capable of reducing clock power consumption are as follows:- 

• Hierarchical clock tree 

• Careful design of the clock drivers to avoid the short circuit current 

• Minimum number of MOS connected to the clock (careful design of D-flip-flops and 

latches) 

• Frequency reduction by using double edge flip-flops or parallelized logic modules 

• Multi rate clocks, i.e. to clock some blocks at f/2, f/4…. 

5.2 Clock gating 

Clock gating is a well-known technique to reduce clock power. Because individual circuit 

usage varies within and across applications, not all the circuits are used all the time, giving rise 

to power reduction opportunity. By ANDing the clock with a gate-control signal, clock gating 

essentially disables the clock to a circuit whenever the circuit is not used, avoiding power 

dissipation due to unnecessary charging and discharging of the unused circuits. Specifically, 

clock gating targets the clock power consumed in pipeline latches and dynamic-CMOS-logic 

circuits used for speed and area advantages over static logic. Effective clock gating, however, 

requires a methodology that determines which circuits are gated, when, and for how long. 

            Clock-gating schemes that either result in frequent toggling of the clock-gated circuit 

between enabled and disabled states, or apply clock gating to such small block that the clock-

gating control circuitry is almost as large as the block itself, incur large overhead. This overhead 

may result in power dissipation higher than that without clock gating. This is the most widely 

used practice for power reduction to stop the clock whenever the device is not in use. Clock 

gating can be applied to sub-sections of the design as well as the whole device.  
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            However, correctly stopping the clock is very important. The gating signal and logic 

should be generated properly to eliminate any glitch on the clock line. Also, the gating logic adds 

some delay to the clock, which affects setup and hold times. While using clock gating, the user 

should take care of the placement of gating logic to minimize delay in the clock network. 

 

 

 
 

Figure 18: Clock gating a latch element 

 

The above figure shows the schematic of a latch element. Cg is the latch’s cumulative 

gate capacitance connected to the clock. Because the clock switches every cycle, Cg charges and 

discharges every cycle and consumes significant amount of power. Even if the inputs do not 

change from one clock to the next, the latch still consumes clock power. In figure (b), the clock 

is gated by ANDing it with a control signal, which is referred to as Clk-gate signal. When the 

latch is not required to switch state, Clk-gate signal is turned off and the clock is not allowed to 

charge/discharge Cg, saving clock power. Because the AND gate’s capacitance itself is much 

smaller than Cg, there is a net power saving. 
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              While gating the clock can provide enormous gains in the power efficiency of a design, 

the addition of clock gating complicates the clock signal distribution. Gated groups are 

developed from the logical model of the circuit. An effective low power gated clock tree tool 

must balance aspects of the logical and physical design in order to reach the best solution. Gated 

clock distribution in principle consumes low power due to the reduced switching, but depending 

on the physical placement and routing, the wiring can increase more than the savings from gating 

the clock. Clock gating is a circuit architecture-level power reduction technique. 

         Example of clock gating technique using pipelining is shown below 

 

                
 

Figure 19: Clock gating example 
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A local clock buffer 1 is not clock gated and always fires clock signal, CLK1, which 

feeds n-bit flip-flops. A local clock buffer 2 is clock-gated and if CG_SEL signal is logic low 

then CLK2 is not fired. Hence power consumption from CLK2 distribution and n-bit flip-flops 

can be neglected. Furthermore, dynamic power consumption of the block (combinational block 

B) following the clock-gated flip-flops can be saved during the clock-gating period.     

5.2 Various clock gating mechanisms 

5.2.1 Clustered Multiplication 

In this technique, an NxN multiplication circuit can be broken into small clusters of N/2 

bit multipliers. Each cluster multiplies a nibble from one operand with another nibble from the 

other operand. If any of these clusters can be disabled, then a significant amount of power will be 

saved.  

                                           
 

Figure 20: Block diagram of 4 clusters Multiplier 
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Each multiplication cluster can be implemented using a linear carry save adder array which is 

power efficient for multiplication of operands of 8-bit or less. As the probability of containing 

zero nibbles in the input data increases, the amount of saved power increases. A significant 

power savings of about 13.4% were obtained in [10] using this technique. 

5.2.2  2-D pipeline gating 

In this technique, the clock to the registers is gated in both vertical direction (data flow 

direction in pipeline) and horizontal direction (within each pipeline stage). The additional area 

cost to implement this technique is very little and the overhead is hardly noticeable. 

 

                              
 

Figure 21: 2-D Pipeline Gating 

 

  The effectiveness can be pre-calculated and increases with the growth of the 

multiplication length. Results from [1] indicate that there is an average power saving of about 
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66% and an average latency reduction of 47% over the original design under equal input 

precision probabilities. 

5.2.3 Deterministic clock gating (DCG) 

Clock power is a major component of microprocessor power mainly because the clock is 

fed to most parts of the circuit and the clock switches every cycle. Usually, the clock power is 

about 30-35% of the microprocessor power. This technique of deterministic clock gating is based 

on the observation that for many stages of the pipeline, a circuit block’s usage in a specific cycle 

in the near future is deterministically known a few cycles ahead of time. DCG uses this concept 

in its working. The main advantages of using this technique are 1.) It clock gates at finer 

granularities of a few (1-2) cycles and smaller circuit blocks. 2.) It does not use extra heuristics 

and is significantly simpler. Results from [12] indicate a significant power savings of about 20% 

implementing this technique. 

5.3 Latch based clocking scheme 

The design methodology using latches and two non-overlapping clocks has many 

advantages over the use of D-flip-flops methodology with a single phase clock. Due to the non-

overlapping of the clocks as long as half period of the master frequency and the additional time 

barrier caused by having two latches in a loop instead of one D flip-flop , latch based designs 

support greater clock skew before failing than a similar D flip-flops design. This allows the 

synthesizer and router to use small clock buffers and to simplify the clock tree generations, 

which will reduce the power consumption of the clock tree. 
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With latch-based designs, the clock skew becomes relevant only when its value is close 

to the non-overlapping of the clocks. When working at lower frequency and thus increasing the 

non-overlapping of clocks, the clock skew is never a problem. It can even be safely ignored 

when designing circuits at low frequency. A shift register made with D flip-flops can have clock 

skew problems at any frequency. 

Also, if the chip has clock skew problems at the targeted frequency after integration, the 

clock frequency of the latch-based design can be reduced. It results that the clock skew problem 

will disappear, allowing the designer to test the chip functionality and eventually to detect other 

bugs or to validate the design functionality. This can reduce the number of test integration 

needed to validate the chip. With a D flip-flop design, when a clock skew problem appears, it 

needs to be rerouted and integrated again. 

Using latches for pipelining is also very good for power consumption when using such a 

scheme in conjunction with clock gating. The latch design has additional time barriers, which 

stop the transitions and avoid unnecessary propagation of signal and thus reduce power 

consumption. The clock gating of each stage of the pipeline with individual enable signals can 

also reduce the number of transition in the design compared to the equivalent D flip-flops design. 

Another advantage with a latch design is the time borrowing. It allows a natural 

repartition of computation time when using pipeline structures. With D flip-flops, each stage of 

logic of the pipeline should ideally use the same computation time, which is difficult to achieve, 

and eventually the design will be limited by the slowest stage. With latches, the slowest pipeline 

stage can borrow time from either or both the previous and next stage pipeline stage. And the 

clock skew only reduced the time that can be borrowed. 
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5.4 Clocked systems 

The selection of a particular clocking strategy influences how many transistors are used 

per storage element and how many clock signals need to be routed through out the chip. These 

decisions impact the size of the chip and the power dissipated by the chip. Hence one of the most 

important decisions that can be made at the beginning of a design is the selection of a clocking 

strategy. 

Usually latches and registers are used to implement clocked systems. The set-up and hold 

times of a register are deviations from an ideal register caused by finite circuit delays. The hold 

time relates to the delay between the clock input to the register and the storage element. i.e. the 

data has to be held for this period while the clock travels to the point of storage. The set-up time 

is the delay between the data input of the register and the storage element. As the data takes a 

finite time to travel to the storage point, the clock cannot be changed until the correct data value 

appears. In a synchronous system, if the data input to a register does not obey the set-up and hold 

time constraints, then potential clock race problems may occur. These races result in erroneous 

data being stored in registers. For instance, if the data violates the hold time violation, the data 

changes to a new value before the data assumes the correct value. With a set-up time constraint 

the clock changes before the data assumes the correct value. 

If the data and the clock do not satisfy the set-up and hold time constraints of a register, a 

synchronization failure may occur. This is due to the inherent analog nature of the storage 

elements used in the electronic circuits. A latch with a clock deasserted is normally a bi-stable 

device; i.e. it has two stable states (0 &1). Under right conditions the latch may enter a meta-

stable state. Here the output is in an indeterminate state between 0 and 1. At the CMOS circuit 

level, this means that the sampled input to an inverter that is responsible for determining the state 
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is close to the inverter threshold voltage. Thus in effect the latch is perfectly balanced between 

making a decision to resolve a 1 or 0.  

With in a synchronously clocked system, as long as the clock to output delays are longer 

than the set-up times, synchronization failures cannot occur. However, at the boundary of two 

independently clocked systems or a clocked system and the asynchronous real world, 

synchronization problems may occur. To deal with these asynchronous interfaces, circuits called 

synchronizers are used at the interface between independently clocked systems. These lower the 

risk of synchronizer failure to acceptable levels. 

5.5 Clock skew 

In synchronous systems, clock skew is a problem that grows with the speed and size of 

the system. As a result, in very high-speed bit level pipelined systems this becomes a major 

bottleneck. Therefore, it is necessary to understand thoroughly the effects of clock skew before 

designing bit-level pipelined systems. In addition, the way the clock skew affects the operation 

of a system generally depends on the type of clocking style used and on the direction of data 

transfer with respect to the clock signal.  

Consider a combinational logic block (CLB) which can be a single logic block, a full 

adder performing bit-level operations, or a multiplier performing word-level operations. A CLB 

along with a register forms a module or 1 stage of the pipeline.  

The propagation delay is the time it takes before at least one of the outputs of the CLB 

starts a transition in response to a change at any one of its inputs. This delay is typically much 

shorter than the settling time of the CLB and plays an important role in the clock skew problem.  
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5.6 Clock Distribution 

The factors that determine the clock skew in a synchronous digital system are follows: 

• The resistance, inductance and capacitance of the interconnection material used in the 

clock distribution network. 

• The shape of the clock distribution network. 

• Fabrication process variation over the area of the chip or the wafer. 

• Number of processing elements in the digital system and the load presented by each 

module to the clock distribution network. 

• Rise and fall times and the frequency of the clock signal. 

• Buffering schemes and clock buffers used. 

In order to study these effects, a distributed RC model for the clock distribution network 

can be used. The most widely studied clock distribution network that minimizes skew is called as 

the H-tree network. The architecture consists of 8x8 array of cells identical in size. Since the 

cells are identical, they present the same load and the paths from the clock source to all the cells 

are similar and as a result, the clock skew is minimized. For an N X N array of processing 

elements the clock pulse rise time and the clock skew associated with it is O (N3).  

Therefore, it appears that as N increases, the clock skew would increase rapidly and 

become a stumbling block. However, this problem can be overcome by using a distributed 

buffering scheme. One of the disadvantages of introducing buffers in the H-tree network is the 

area overhead. The other disadvantage is the increase in the sensitivity of the design to process 

variations. This is however offset by the improvement gained in speed. H-tree networks are most 

useful when all processing elements in the system are identical and the clock can be truly 
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distributed in a binary fashion. An alternative to the H-tree network suitable for on-chip clock 

distribution is the network using a 2-level buffering scheme. This technique has been used to 

design bit-level pipelined multiply-accumulate systems. 

5.7 Inductive noise in circuits due to clock gating 

Ground bounce which is also known as simultaneous switching noise or delta-I noise, is a 

voltage glitch induced at power/ground distribution connections due to switching currents 

passing through the wire/substance inductance (L) associated with power or ground rails. These 

voltage glitches, which are proportional to L δI/δt, result in large currents that charge/discharge 

the power/ground buses as the frequency and number of gates increase, which leads to ground 

bounce in a short time. Also with a drop in supply voltages, the noise margin of circuits also 

decreases. If the magnitude of the voltage surge/droop due to ground bounce is greater than the 

noise margin of a circuit, the circuit may erroneously latch the wrong value or switch at the 

wrong time.  

Clock gating methods to reduce power consumption of circuitry, essentially involve 

ANDing the clock feeding a unit with a control signal, which shuts down the unit when not in 

use. However, rapid power down implies rapid switching and hence enhanced ground bounce. 

Moreover, the powered down unit may not become ready on time, which could cause 

synchronization problems. In order to avoid the problem, the basic idea implemented is to 

increase the time for the units to switch on/off. This causes them to draw a lesser instantaneous 

current and hence reduces the glitch in the power/ground lines. However, since it now takes a 

finite amount of time for a resource to become available, additional stalls might occur in the 
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execution pipeline. This will in turn effect the instructions/cycle (IPC) executed. But this loss is 

considered small for modern day processors. 

A clock-gating scheme is proposed in [], that uses a tool called simple scalar tool, to 

measure the performance change of a processor due to this method of clock gating. Studies 

indicate that there is a 2x reduction in the δI/δt noise at the architectural level at a modest cost in 

hardware and performance. 
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CHAPTER 6  
CONCLUSIONS 

In the present thesis work, various multiplier circuits have been designed and 

implemented to study the variation of power dissipation in these circuits. Multipliers are a major 

source of power dissipation in digital circuits. The concept of pipelining has been implemented 

in the design and the reduction in the power dissipation in the same circuits has been noticed. 

The technology used is 0.35 µm CMOS process, using CADENCE tool and SPECTRE S 

simulator. On an average, there is a power savings of about 40%. Also the concept of clock 

gating has been thoroughly studied and presented even though it was not implemented in these 

circuits. Based on the experiments and plotting of the graphs, it has been concluded that power 

dissipation plays a major role in the performance of modern day digital circuits. And it has been 

predicted that as the technology improves, and the design of circuits is modified, a significant 

savings in the power dissipation of the circuits is possible.  
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Figure 22: Un-pipelined multipliers comparison 
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Figure 23: Pipelined multipliers comparison 
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Table 6: Comparison table 

 
Un-pipelined Multipliers 4x4 bit

capacitance in pico farads 5 10 15 20 25

Power Dissipation in micro watts 

Array 445.5 924 1320 1782 2227.5

CSA 356.4 891 1320 1716 2145

Baugh-Wooley 495 990 1485 1947 2442

supply voltage 3.3v

pipelined multiplication

Array 92.5 187.5 270 367.5 450
CSA 77.5 175 262.5 355 435
Baugh-wooley 92.5 187.5 280 375 462.5

supply voltage 2.5v  
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Figure 24: 4x4 Array Multiplier Schematic 

 

 

Figure 25: Array Multiplier i/p Waveform 
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Figure 26: Array Multiplier o/p Waveform 

 

 
Figure 27: Pipelined 4x4Array Multiplier 
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Figure 28: Pipelined Array o/p Waveform 

 

 
 

Figure 29: 4x4 Baugh-Wooley Multiplier 
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Figure 30: Baugh-Wooley o/p Waveform 

 

 
Figure 31: 4x4 Pipelined Baugh-Wooley  Schematic 
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Figure 32: Pipelined Baugh-Wooley o/p Waveform 

 

 
Figure 33: 4x4 Carry Save Adder Schematic 
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Figure 34: CSA o/p Waveform 

 70



 

REFERENCES 

1) J.S.Yuan et al, “Power-aware pipelined Multiplier Design Based on 2-Dimensional 

Pipelining Gating.” In proc. of ACM, pp 64-67, 2003 

2) L.Benini et al, “A novel approach to cost-effective estimate of power dissipation in CMOS 

ICs”. In proc. of IEEE, pp 354-360, 1993 

3) Manjit Borah et al, “Transistor sizing for minimizing power consumption of CMOS circuits 

under Delay constraint.” In proc. of IEEE, pp1-6. 

4) Dimitrios Soudris et al, “Designing CMOS circuits for Low power”. Kluwer Academic 

Publishers, 2002. 

5) Behrooz parhami, “Computer Arithmetic-Algorithms and Hardware Designs”. Oxford 

University Press, 2000. 

6) Keshab k.Parhi, “VLSI Digital signal processing systems”. Wiley-Interscience Publication, 

1999. 

7) Harold S.Stone, “High-performance Computer Architecture”. Addison-Wesley Publication, 

1993. 

8) Tobias G.Noll et al, “A Pipelined 330-Mhz Multiplier”, IEEE journal of solid-state circuits, 

vol sc-21, 1986. 

9) Alexander Taubin et al, “Design of Delay-Insensitive Three Dimensional Pipeline Array 

Multiplier”, In proc. of IEEE, pp 104-111, 2002. 

10) Ayman A.Fayed et al, “A Novel Architecture for Low Power Design of Parallel Multipliers”, 

In proc. of IEEE, pp149-154, 2001. 

11) David Garrett et al, “Challenges in Clock-gating for a Low Power ASIC Methodology”, In 

Proc. of ACM, pp176-181, 1999. 

 71



 

12) Hai Li et al, “Deterministic Clock-gating for Micro Processor Power Reduction”, In proc. of 

HPCA, pp 113-122, 2003. 

13) M.Golden et al, “Comparison of two common pipeline structures”, In proc. of IEEE, pp 161-

167, 1996. 

14) Thomas K.Callaway et al, “Power-Delay Characteristics of CMOS Multipliers”, In proc. of 

IEEE, pp 26-32, 1997. 

15) Qing Wu, “Clock-gating and its application to low power design of sequential circuits”, In 

proc. of IEEE, pp 415-420, 2000. 

16) Anantha P.Chandrakasan et al, “Minimizing power consumption in digital CMOS Circuits”, 

In proc. of IEEE, pp-498-523, 1995. 

17) www.hardwarecentral.com/hardwarecentral/ tutorials/2427/1/ 

18) N.H.E.Weste et al, “Principles of CMOS VLSI Design-A System Perspective”, Addison-

Wesley, 2nd edition, 1992. 

19) J.M.Rabaey, “Digital Integrated Circuits- A Design Perspective”, Prentice Hall, 1996. 

20) Jan Rabaey et al, “Pipelining: Just another transformation”, In proc. of IEEE, pp163-

175,1992. 

21) Robert Rogenmoser et al, “A 375 MHZ 1 µm CMOS 8-Bit Mulitplier”,  Symposium on 

VLSI circuit digest of technical papers, pp 13-14, 1995. 

22) Michael S.Chang et al, “An 86 mw, 80 M sample/sec, 10-bit Pipeline ADC”, In proc. of 

IEEE, 2002. 

23) Anders Berkeman et al, “A Low Logic Depth Complex Multiplier Using Distributed 

Arithmetic”, In proc. of IEEE, pp 656-659, 2000. 

 

 72



 

24) Fabian Klass et al, “A 16x16 bit static CMOS Wave pipelined multiplier”, In proc. of IEEE, 

pp 1443-146, 1994. 

25) Sam S.Appleton, “A new method for asynchronous pipeline control”, In proc. of IEEE, pp 

100-104, 1997. 

 73


	Minimization Of Power Dissipation In Digital Circuits Using Pipelining And A Study Of Clock Gating Technique
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Motivation
	1.2 Thesis overview

	CHAPTER 2 POWER DISSIPATION
	2.1 Sources of Power Dissipation
	2.1.1 Switching Power
	2.1.1.1 Factors influencing switching component of power
	2.1.1.1.1 Logic Function
	2.1.1.1.2 Logic Style
	2.1.1.1.3 Signal Statistics
	2.1.1.1.4 Circuit Topology


	2.1.2 Short-Circuit Component of Power
	2.1.3 Leakage Component of Power

	2.2 Various techniques for power reduction
	2.2.1 Technology Optimization
	2.2.2 Architecture driven voltage scaling
	2.2.2.1 Parallel Architecture
	2.2.2.2 Pipelining


	2.3    Process modifications for reducing power
	2.3.1 Optimizing Vt
	2.3.2 Process Scaling
	2.3.3 Fabrication Advancements
	2.3.4 Transistor sizing


	CHAPTER 3  MULTIPLICATION PROCESS
	3.1 Multiplier Architectures
	3.1.1 Array multiplier
	3.1.2 Tree Multiplier
	3.1.3 Baugh-Wooley Multiplier
	3.1.4 Wallace tree multiplier


	CHAPTER 4 PIPELINING CONCEPTS
	4.1 Pipeline Convention
	4.2 Pipelining for Low Power
	4.2 Types of pipelining
	4.2.1 Wave pipelining
	4.2.2 Asynchronous pipelining

	4.3 Pipelining Hazards
	4.3.1 Structural Hazards
	4.3.2 Data Hazards
	4.3.3 Control Hazards

	4.4 Merits and Demerits of pipelining
	4.4.1 Merits
	4.4.2 Demerits


	CHAPTER 5 CLOCK GATING
	5.1 Clock design for low power
	5.2 Clock gating
	5.2 Various clock gating mechanisms
	5.2.1 Clustered Multiplication
	5.2.2  2-D pipeline gating
	5.2.3 Deterministic clock gating (DCG)

	5.3 Latch based clocking scheme
	5.4 Clocked systems
	5.5 Clock skew
	5.6 Clock Distribution
	5.7 Inductive noise in circuits due to clock gating

	CHAPTER 6 CONCLUSIONS
	REFERENCES

