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ABSTRACT

A virtual environment is a set of surroundings that appears to exist to a user through sensory

stimuli provided by a computer. By virtual environment, we mean to include environments sup-

porting the full range from VR to pure reality. A necessity for virtual environments is knowledge

of the location of objects in the environment. This is referred to as the tracking problem, which

points to the need for accurate and precise tracking in virtual environments.

Marker-based tracking is a technique which employs fiduciary marks to determine the pose of a

tracked object. A collection of markers arranged in a rigid configuration is called a tracking probe.

The performance of marker-based tracking systems depends upon the fidelity of the pose estimates

provided by tracking probes.

The realization that tracking performance is linked to probe performance necessitates investi-

gation into the design of tracking probes for proponents of marker-based tracking. The challenges

involved with probe design include prediction of the accuracy and precision of a tracking probe,

the creation of arbitrarily-shaped tracking probes, and the assessment of the newly created probes.

To address these issues, we present a pioneer framework for designing conformal tracking

probes. Conformal in this work means to adapt to the shape of the tracked objects and to the

environmental constraints. As part of the framework, the accuracy in position and orientation of

a given probe may be predicted given the system noise. The framework is a methodology for

designing tracking probes based upon performance goals and environmental constraints.

After presenting the conformal tracking framework, the elements used for completing the steps

of the framework are discussed. We start with the application of optimization methods for de-

termining the probe geometry. Two overall methods for mapping markers on tracking probes are

presented, the Intermediary Algorithm and the Viewpoints Algorithm.

Next, we examine the method used for pose estimation and present a mathematical model of

error propagation used for predicting probe performance in pose estimation. The model uses a

first-order error propagation, perturbing the simulated marker locations with Gaussian noise. The

iii



marker locations with error are then traced through the pose estimation process and the effects of

the noise are analyzed. Moreover, the effects of changing the probe size or the number of markers

are discussed.

Finally, the conformal tracking framework is validated experimentally. The assessment meth-

ods are divided into simulation and post-fabrication methods. Under simulation, we discuss testing

of the performance of each probe design. Then, post-fabrication assessment is performed, includ-

ing accuracy measurements in orientation and position. The framework is validated with four

tracking probes. The first probe is a six-marker planar probe. The predicted accuracy of the probe

was 0.06 deg and the measured accuracy was 0.083± 0.015 deg. The second probe was a pair of

concentric, planar tracking probes mounted together. The smaller probe had a predicted accuracy

of 0.206 deg and a measured accuracy of 0.282± 0.03 deg. The larger probe had a predicted ac-

curacy of 0.039 deg and a measured accuracy of 0.017± 0.02 deg. The third tracking probe was a

semi-spherical head tracking probe. The predicted accuracy in orientation and position was 0.54±

0.24 deg and 0.24± 0.1 mm, respectively. The experimental accuracy in orientation and position

was 0.60± 0.03 deg and 0.225± 0.05 mm, respectively. The last probe was an integrated, head-

mounted display probe, created using the conformal design process. The predicted accuracy of

this probe was 0.032± 0.02 degrees in orientation and 0.14± 0.08 mm in position. The measured

accuracy of the probe was 0.028± 0.01 degrees in orientation and 0.11± 0.01 mm in position.

These results constitute an order of magnitude improvement over current marker-based tracking

probes in orientation, indicating the benefits of a conformal tracking approach. Also, this result

translates to a predicted positional overlay error of a virtual object presented at 1m of less than 0.5

mm, which is well above reported overlay performance in virtual environments.
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CHAPTER 1: INTRODUCTION

A virtual environment is a set of surroundings that appears to exist to a user through sensory stimuli

provided by a computer. Virtual environments may be classified along a virtuality continuum

shown in Figure1.1, that ranges from the real environment to a completely computer-generated

environment [Milgram and Kishino, 1994].

Figure 1.1: From Real to Virtual: The Virtuality Continuum

The continuum proposed by Milgram and Kishino, purely in the context of visual displays, can

naturally be extended to multi-modal virtual environments, that is, environments with combina-

tions of different types of stimuli. An application can therefore be classified within the continuum

according to its amount of computer-generated stimuli.

Virtual reality (VR) environments are generated entirely by computer and require immersive

displays, which only provide a synthetic view of the world. Mixed reality (MR) environments

combine varying amounts of computer-generated stimuli with the real environment. MR includes

augmented virtuality (AV), where computer-generated stimuli predominate, and augmented reality

(AR), where the majority of stimuli is present from the real environment. MR environments require

see-through displays due to the added condition of presenting virtual stimuli in spatial coincidence

with real objects, known as registration [Rolland and Fuchs, 2000].

The terms “Virtual Reality”, created by Jaron Lanier, and “Artificial Reality”, coined by Myron

Krueger, were the first widely used terms applied to computer-generated synthetic environments
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[Rheingold, 1991]. Although the terms came into use in the late 70’s and early 80’s, the first virtual

environments were created almost a decade earlier.

The first attempt at creating a virtual environment was the Sensorama by Morton Heilig in

1960 [Rheingold, 1991]. The Sensorama relied entirely upon film sequences instead of comput-

ers and incorporated vibrations and scents to provide a feeling of immersion in various situations.

However, the first virtual environment, an augmented reality navigational aid for helicopter pi-

lots, was created by Ivan Sutherland [Sutherland, 1968]. Sutherland’s initial system used CRT

displays attached to a mechanical arm (which also served to track the user), later evolving into a

unlinked system with ultrasonic tracking. Myron Krueger developed a video-based virtual environ-

ment that used back-projection techniques to place users within the environment [Krueger, 1977].

Krueger later developed the VIDEOPLACE system, which used computer vision techniques to

track users within the environment to generate visual and auditory responses [Krueger, 1985].

Jaron Lanier and Thomas Zimmerman founded the VR industry with the creation of VPL Inc.

in 1984 [Rheingold, 1991]. VPL was formed at a crucial time for virtual environments; VR was a

hot technology, computer power was exponentially increasing, personal computing was becoming

ubiquitous, and increased defense spending pushed more money into the research sector. As a

result, VPL products ended up in most of the virtual environment research labs in the world. VPL

was also responsible for creating the DataGlove [Zimmerman and Lanier, 1987]. In close partner-

ship with VPL, Scott Fisher et al. also developed a computer-generated, multi-sensory stereoscopic

virtual environment that incorporated gestural input [Fisher et al., 1986]. Gestural input was ob-

tained from a DataGlove and the environment also incorporated sound. As a follow up to the ideas

introduced by Krueger, Carolina Cruz-Neira et al. created a projection-based Cave Automated

Virtual Environment (CAVE) [Cruz-Neira et al., 1993]. The CAVE immersed users in a 3D envi-

ronment using shutter glasses and video projection techniques. An extension of this technology,

the Immersadesk, was presented in [Czernuszenko et al., 1997].
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There were also pioneering efforts taking place in mixed reality. As mentioned previously,

Sutherland’s groundbreaking virtual environment was an AR system. Andrew Lippman also de-

veloped a video-based, MR environment that used pre-recorded video sequences to provide a vir-

tual ride through Aspen, Colorado [Lippman, 1980]. The system accessed the video sequences

from video disk and responded to user input through a touch screen. The first medical AR sys-

tem was conceived by Henry Fuchs in the late 1980’s and developed by Bajura et al. in 1992

[Bajura et al., 1992]. This research effort aimed at providingin vivo fetal visualization via ul-

trasound. Whilein vivo 3D superimposition was an ultimate goal of the application, Bajura et

al. demonstrated the feasibility of superimposing virtual images within a clinical setting. Tom

Caudell and David Mizell developed a system to investigate how AR may aid in aircraft assembly

[Caudell and Mizell, 1992]. The system was developed at Boeing and superimposed wiring on the

field of view of the user. Furthermore, Steven Feiner et al. developed an AR system to provide

insight into printer maintenance [Feiner et al., 1993].

1.1 Tracking Technology in Virtual Environments

Virtual environments require interaction. The minimum requirement for interaction is knowledge

of the location of the user in the environment. Furthermore, if there is to be interaction with

other objects in the environment, then their locations must be known as well. Thus, real objects

must be tracked within a virtual environment. In addition, the tracking methodology used within a

virtual environment must insure accurate and precise tracking to present objects from the correct

viewpoint and to accurately register real and virtual objects.

Virtual environment tracking systems have been classified in a number of surveys [Ferrin, 1991]

[Meyer et al., 1992] [Burdea and Coiffet, 1994] [Durlach and Mavor, 1994] [Rolland et al., 2000]

[Welch and Foxlin, 2002]. According to the technological principle upon which they operate, the

categories of tracking systems are time-frequency measurement, spatial scan, inertial sensing, me-

chanical linkages, direct-field sensing, and hybrids thereof [Rolland et al., 2000].
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Time-frequency measurement trackers measure the time of propagation of a signal, compare

the phase difference of a measured signal to a reference, or use frequency measurement tech-

niques to indirectly measure time differences. By taking advantage of a priori knowledge of

the system configuration, these systems can be used to extract relative or absolute position and

orientation data. Examples of time-frequency systems are ultrasonic trackers [Sutherland, 1968]

[Logitech Inc., 1992] and the Global Positioning System, invented by Ivan Getting

[Farrell and Barth, 1999].

Spatial scan tracking systems employ optical devices to determine the position and orienta-

tion of an object by scanning a working volume. Spatial scan trackers compute the position and

the orientation of a target by either analyzing 2D projections of image features or by the deter-

mination of sweep-beam angles. A sub-classification of spatial scan systems is outside-in versus

inside-out. Wang et al. first proposed this terminology for a subclass of optical trackers that use

beacons as target features [Wang et al., 1990]. The subclass was subsequently extended to include

pattern recognition and beam sweeping systems to indicate and emphasize their common physi-

cal principles [Rolland et al., 2000]. In the outside-in configuration, the sensors are fastened to a

fixed reference. In the inside-out configuration, the sensors are attached to a mobile target. A few

examples of the many spatial scan tracking systems are the Northern Digital Inc. OPTOTRAK

3020 [Northern Digital Inc., 1999], the 3rdTech Inc. Hi-Ball Tracker [3rdTech Inc., 2002], and the

Ascension laserBIRD [Ascension Corp., 2002].

Inertial tracking systems use sensors to measure acceleration and rotation relative to the inertial

reference frame of the Earth. The sensor data is then used to determine the absolute position and

orientation of an object. Inertial sensors are not typically used as a sole source for object tracking;

they are generally incorporated within hybrid tracking systems. However, two examples of inertial

tracking systems are the InertiaCube by Intersense, Inc. [Foxlin and Durlach, 1994] and GyroTrac

by VR Systems.

4



As the name implies, mechanical linkage tracking systems uses physical links between the

reference and the target. Two types of linkages are used in mechanical tracking systems. The first

type is an assembly of mechanical parts that provides the user with multiple rotation capabilities

and the orientation of the linkages is computed from the various linkages angles measured with

incremental encoders or potentiometers. The other type of mechanical linkage uses wires that are

rolled in coils. A spring system ensures tension is applied to the wires to measure the distance

accurately. The degrees of freedom of mechanical linkage trackers depend upon the mechanical

structure of the tracker. While six degrees of freedom are most often provided, typically only a

limited range of motions is possible because of the kinematics of the joints and the length of each

link. Mechanical linkage trackers have been successfully integrated into force-feedback systems

used to make the virtual experience more interactive [Sutherland, 1968] [Brooks et al., 1990]. In

addition, fiber optic sensors have been used to measure pose for anatomical structures [ref force

glove, measurand].

Direct field-sensing trackers rely on sensors that measure gravitational or magnetic fields to

determine position and orientation. Magnetic trackers were introduced by Polhemus Inc. and,

later, by Ascension Technology Corporation [Raab et al., 1979] [Ascension Corp., 1990]. Mag-

netic trackers have a transmitter, which produces an AC or a pulsed DC magnetic field, and

receivers with three orthogonal coils. The current induced in each coil is used to determine

the position and orientation of the receiver. Recently, magnetic tracking systems have become

“wireless”, in that the receivers are attached to portable, RF activation units [Polhemus Inc., 2000]

[Ascension Corp., 2001]. The accuracy and precision of magnetic trackers are drastically affected

by electromagnetic interference. However, magnetic trackers continue to be widely used because

of their low cost, light weight, and compactness.

Hybrid tracking systems use a combination of operation principles, such as time-

frequency measurements combined with inertial sensing. While hybrid technologies increase

the complexity of a tracking system (and likely its cost), they are adopted either to access vari-
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ables that one technology cannot easily provide (relative and absolute measurements), or to make

exhaustive measurements. In the latter case, when associated with filtering and predictive tech-

niques, sensor fusion techniques are used to associate incomplete data sets coming from different

sensor types. Examples of hybrid trackers are [State et al., 1996], [Neumann et al., 1999], and

[Intersense, Inc., 2000].

1.2 Motivation

A main challenge in virtual environments is the accurate tracking of objects within the environ-

ment. There are many tracking techniques that are currently used within virtual environments. A

current technique is the placement of markers on the objects of interest within the environment and

using specialized hardware to recognize them.

An issue when implementing a marker-based tracking approach is determining the configura-

tion of the tracking probe, which is a collection of markers placed on the object to be tracked. For

tracking simple motion of a rigid object with constant curvature (implying no changes in concav-

ity), a minimum number of markers placed in a non-collinear, yet arbitrary fashion is sufficient.

But, tracking applications involving anything other than the previously mentioned qualifications

require a larger number of markers in specific locations. For example, accurately tracking a trans-

lating, rigid cube requires only the minimum number of markers on a single side, while tracking

the motion of fingers on a hand will require a larger number of carefully placed markers.

Another issue in marker-based tracking is determining the accuracy achievable for a given

probe topology. A statistical relationship exists between the markers on a probe and the probe

performance. However, to our knowledge, there has never been a thorough investigation of where

to place markers to achieve a desired result. It would be beneficial for practitioners to know the

effects of changing the probe topology beforehand and to incorporate this knowledge into the

design process.
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1.3 Research Summary

The purpose of the research is to present a framework for conformal tracking in virtual environ-

ments. Conformal tracking refers to the creation of tracking probes being constructed according to

the shape of the objects of interest (i.e., conforming) and environmental constraints. Our hypothe-

sis is that a framework can be developed to design conformal tracking probes that meet user-defined

criteria while minimizing the pose error.

Traditionally, marker-based tracking has implied the use of optical tracking methods. We ex-

pand the definition of a marker-based tracking system to include any tracking system that uses

multiple, distinct markers to determine the position and orientation of the object(s) tracked. Fur-

thermore, we extend the definition of marker to include features, which are recognizable by the

tracker, that indicate the location of objects within the range of the tracker.

The framework presented provides a method for designing rigid, conformal, marker-based

tracking probes, predicting the performance of these probes, and quantifying the performance of

rigid, marker-based tracking probes. All results are expressed in terms of visual space (i.e., dis-

tances instead of pixels). The research is valid for systems in which multiple markers are required

to determine the position and orientation of the tracked objects. In addition, the presented research

is limited to static analyses of tracking probes.

1.4 Dissertation Outline

The rest of the dissertation is organized in the following manner: Chapter 2 gives an overview of

virtual environment tracking technology and describes related work in the areas of marker-based

tracking, pose estimation, and the quantification of tracking errors.

Chapter 3 details the steps of the framework for conformal tracking. The steps are presented in

a flowchart and formally defined.
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Chapter 4 describes a pose estimation procedure based upon principal component analysis. We

also detail a technique for tracking probes with markers that are not all simultaneously detected by

the tracker. We then discuss metrics for quantifying probe performance.

Chapter 5 presents a mathematical framework for propagating the effects of noise to the pose

estimation procedure. We also examine the effects of the various environmental factors associated

with creating and utilizing a marker-based tracking probe.

Chapter 6 details application of the framework to simple tracking probes. In particular, we

examine a planar six-marker probe, a concentric eight-marker probe, and a spherical head tracking

probe. We begin by discussing computer simulation of tracking probes and the pose estimation

process. Next, experimental results from the tracking probes are presented. Lastly, we detail the

application of the conformal probe design process to the creation of an integrated, head-mounted

display tracking probe.

Finally, in Chapter 7 we summarize the results and the contributions of the work. We also

examine the implications of the framework presented as it applies to ongoing research efforts.
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CHAPTER 2: RELATED WORK

There have been numerous research efforts in virtual environment tracking. The major contri-

butions we shall highlight are marker-based tracking algorithms, marker-based pose estimation

algorithms, and research on determining pose errors for tracking in virtual environments.

2.1 Marker-Based Tracking Algorithms

Marker-based trackers can be categorized as active marker systems or passive marker systems. In

Section1.3, we extended the definition of marker-based tracking. However, in the past, marker-

based tracking has implied the use of optical, spatial scan tracking methods. Therefore, we shall

discuss optical marker-based tracking or hybrid systems which utilize optical methods.

The first virtual environment also included ultrasonic tracking technology

[Sutherland, 1968]. In the system, each emitter produced a continuous sound wave at a specific

frequency. The receivers each detected a single sound wave and compared its phase to that of a

reference signal. A displacement of the target from one measure to another produced a modifica-

tion of the phases that indicated the relative motion of the emitters with respect to the receivers.

After three emitters had been localized, the orientation and position of the target was calculated.

An early research effort was the creation of a videometric ceiling tracking system

[Wang et al., 1990]. The technique employs several cameras placed on the head of a user to detect

infrared LEDs mounted on the ceiling. A mathematical technique based on photogrammetry is

used to recover the position and the orientation of a target [Azuma and Ward, 1991]. The tracker

had an update rate of 200Hz and was accurate to 2mm in position and 0.1 degrees in orientation.

A scaleable version of the tracker was later achieved [Ward et al., 1992].

As part of a system for surgical augmented reality, Mellor introduced a marker-based method

for tracking that requires only a single image [Mellor, 1995]. This system was able to recover

depth information monocularly and used circular markers. The tracking algorithm uses a set of
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three perspective imaging equations for four or fewer landmarks and least squares estimation for

larger numbers of landmarks. The tracker is accurate to a fraction of a pixel.

Uenohara and Kanade implemented a method to dynamically track rigid objects utilizing the

video output from the cameras of a video see-through HMD [Uenohara and Kanade, 1995]. The

tracking method uses template matching to detect at least four markers. Pose recovery is accom-

plished with a recursive optimization, based on Newton’s method, and geometric constraints. The

method is capable of tracking at 30Hz.

Ravella et al. developed a tracking method based on features present in the object of interest

[Ravela et al., 1995]. The video-based algorithm used intensity maps and edge information in each

image to identify the tracked object features. By applying a steerable filter and image correlation,

the method was able to track objects across rotation at 8Hz.

A hybrid tracking system able to withstand occlusion was developed by State, et al.

[State et al., 1996]. This system for registering real and synthetic objects used marker-based op-

tical tracking for accuracy in conjunction with magnetic tracking for robustness. The magnetic

tracking component is calibrated “on-the-fly” so that registration is not lost when markers become

occluded. Registration errors for the system were less than one pixel. There were no results re-

ported on errors in visual space.

More recently, the capabilities of the tracking system created by Wang et al. have been ex-

panded by utilizing sensor data immediately when it is obtained [Welch and Bishop, 1997]. This

utilization, referred to as Single Constraint At-A-Time (SCAAT) tracking, takes one measurement

at a time and updates the tracking system as opposed to waiting for a batch of data. The state of

the system is then sequentially updated using an Extended Kalman Filter (EKF). The tracker, now

a commercial product from 3rd Tech, Inc., is accurate to 0.5mm in position and 0.1 degrees in

orientation.

Foxlin et. al combined inertial tracking with ultrasonic time-of-flight measurements to produce

a scalable tracker [Foxlin et al., 1998]. The inertial sensor gives orientation measurements for the
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system. The ultrasonic sensors are used to correct drift within the inertial sensor and provide

3D position information. The tracking algorithm for the ultrasonic rangefinding is based upon

the SCAAT algorithm [Welch and Bishop, 1997]. However, the system only requires three range

measurements and uses fewer ceiling mounted acoustic emitters due to the wide field of sound

detection from microphones. An EKF is also used to provide tracking estimates. The tracker is

commercially available from Intersense, Inc. and is accurate to 3.4mm.

Neumann et al. developed a hybrid tracking method for use in outdoor AR systems

[Neumann et al., 1999]. The system integrated inertial and video-based tracking methods. The in-

ertial component was used to provide sourceless orientation measurements and to predict the user’s

head position. Video-based methods were then added to correct for inertial drift. The tracker has

a registration accuracy of less than 10 pixels over 500 video frames. No results were reported on

errors in visual space.

Park and Neumann also introduced two algorithms for tracking in augmented reality to in-

crease the robustness of 3-point pose solutions (three non-coplanar markers used to estimate pose)

and iterative pose estimation methods [Park et al., 1999]. To improve 3-point algorithms, a real-

time approximation of Huber’s M-estimator [Huber, 1981] was implemented to reduce the effect

of outliers among the data. A linear Kalman filter was also used for temporal data smoothing. Im-

provement to iterative pose estimation was accomplished with an iterated EKF, which is a variation

on the SCAAT algorithm [Welch and Bishop, 1997]. The system has an update rate of 14Hz and

has a registration accuracy to 1 pixel with the 3-point improvements and to 0.52 pixels with the

iterated EKF. Error results for visual space were not reported.

Kato and Billinghurst implemented marker-based tracking within a video based augmented

reality system for video conferencing, now known as the AR Toolkit [Kato and Billinghurst, 1999].

The markers were squares whose sizes were known a priori. Template matching is utilized to

identify markers and perspective projection matrix techniques are used to recover pose. At 0.6m,
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the tracker accuracy ranges from 5mm when the markers are perpendicular to the camera to 30mm

when the markers are tilted 85 degrees away from the camera.

Edwards et al. utilized augmented reality for overlaying MRI images during a microscopic

surgical procedure [Edwards et al., 2000]. Within the application, infrared LEDs were used to

locate the microscope and the patient’s skull, while passive markers were used with a specially

mounted device to track the patient within the microscope field of view. The application was able

to achieve registration on the order of 0.5mm for physical phantoms, 1.0mm for bones, and 4mm

on target surgical structures.

Zhang and Navab developed a marker-based tracking algorithm for use in a maintenance as-

sistance application [Zhang and Navab, 2000]. The authors compare pose estimation approaches

based on homography (at least four coplanar features required) and three markers without a copla-

nar restriction. The results were that the 3-point algorithm worked better for smaller areas of

interest and the homography algorithm worked better for larger areas. This result may be inter-

preted to mean that tasks which are closer at hand require more depth detail (perspective projection

important) than tasks which are performed at a great distance (size cues are more important).

2.2 Pose Estimation Algorithms

There are many techniques available for pose estimation. In general, the techniques are robust,

using minimization of a least-squares error statistic. In this section, we chose to highlight the

techniques that are most relevant to the work presented here; that is methods that utilize individual

marker data to form an estimate of pose.

An early effort from the biomechanics literature is the method proposed by Spoor and Veldpaus

[Spoor and Veldpaus, 1980]. This pose estimation technique uses Lagrangian multipliers to mini-

mize the sum of squared errors between two sets of marker coordinates. By minimizing the sum

of squared errors, the rotation and translation between the two sets is determined. The technique

also accounts for uncertainties in the marker positions.
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A popular pose estimation method is from Arun, Huan, and Blostein [Arun et al., 1987]. Sim-

ilar to [Spoor and Veldpaus, 1980], a minimization of the sum of squared errors is performed.

However, the method to find the rotation and translation to minimize the error uses Singular

Value Decomposition (SVD). By using SVD, the technique is very robust and computationally

fast. Moreover, it allows for solutions in case where the data may be ill-formed, such as when

markers are close to being collinear.

A similar pose estimation procedure is the method presented by Horn [Horn, 1987]. Horn’s

method uses the covariance between markers expressed in two different frames to form a 4x4 ma-

trix of relationships. The largest eigenvector from this matrix is then taken to be a unit quaternion.

The property of this quaternion is it represents the rotation that minimizes the sum of squared

errors between the markers in the two frames.

Another popular pose estimation procedure is [Haralick et al., 1989]. In this work, the markers

are iteratively weighted as to reduce the effects of outliers on the pose estimation process. In

addition, the work contains numerical simulations of the pose estimation process. The simulations

present some of the first rigorous clues that noise adversely affects pose estimation. Moreover, in

using the proposed pose estimation method, the number of markers used can enhance the accuracy

of pose estimation. The procedure is applied to 2-D pose estimation, 3-D pose estimation, and 2-D

perspective projection 3-D pose estimation.

2.3 Previous Research in Pose Error Determination

There is also a significant body of work that exists on quantifying the different types of errors

present within tracking systems and their effects on pose determination. We limit the scope of our

survey of this area to research whose aim is determining errors in pose determination related to the

topology of marker distributions.

The common statistical method for error propagation involves computation of partial deriva-

tives based upon a functional relationship between the desired quantity (to which the propagated
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error will be related) and the independent variable. Provided a clearly defined functional relation-

ship exists and computation of the derivatives is tractable, this is the method of choice. However,

even in more complex cases, the general principle is still applicable.

A closely related technique for spatial error propagation is dilution of precision. Often related

with the Global Positioning System (GPS), dilution of precision is directly related to statistical

error propagation. The result of this procedure is a covariance matrix with the amounts of error in

x,y,z and in rotations about the principal axes. A requirement is that partial derivatives would have

to be computed for the quantities. The overall measure of goodness used is the Frobenius norm of

the covariance matrix.

Relating to the statistical method for error propagation, Woltring et al examined the effects

of marker errors on pose estimation and provided a maximum error statistic to predict the pose

error of a given tracking probe topology [Woltring et al., 1985]. The error statistic derived used

first-order errors within its error computation. This approach dealt strictly with the case when the

markers were symmetrically distributed with respect to the probe origin. In addition, the probe

origin was coincident with the marker centroid (e.g. a tetrahedron or a cube).

In an extension of the work in [Woltring et al., 1985], Morris & Donath quantified the cumu-

lative effects of multiple error sources, including the effects of algorithmic errors and dynamic

target array deformation errors [Morris and Donath, 1993]. Based upon the work presented in

[Woltring et al., 1985], a modified maximum error statistic was presented for determining the pose

error for a given tracking probe topology. The research was valid for marker distributions that lay

on a sphere and had the center of the sphere as the probe origin (e.g. a square, pyramid, tetrahedron,

etc.) .

In a context related to virtual environments, Vogt et al implemented a method for design-

ing tracking probes using a Monte Carlo simulation technique [Vogt et al., 2002]. The design

methodology minimized the jitter error associated with the tracking probe, using the probe radius,

marker heights, and number of markers as input variables. Because Tsai’s calibration technique
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[Tsai, 1987] was utilized to determine the pose of the tracking probe, the method required probe

topologies with at least seven, simultaneously detected markers.

Allen and Welch [Allen and Welch, 2004] have implemented a system to dynamically model

and predict the performance of tracking systems. The ARTEMIS system uses a state-space based

approach to model the dynamics of the tracker and the probe within the tracking volume. Using a

discrete, algebraic Riccati equation, the algorithm is able to determine the steady-state performance

of a tracker and tracking probe at various locations in space.

The approach presented in this work expands upon the previously mentioned efforts by present-

ing a theoretical framework for determining pose error that is valid for any probe topology with

at least three, non-collinear markers. Moreover, the error sources for the location of each marker

are considered as an ensemble, and the error on each marker considered is thus a combination of

jitter, tracker bias, probe deformations, and the probe topology. Combined with previous work re-

garding methods for marker placement [Davis et al., 2002] [Hamza-Lup et al., 2002], this research

represents a starting point for a general framework for designing marker based tracking probes.
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CHAPTER 3: CONFORMAL PROBE DESIGN

When implementing a marker-based tracking approach, the configuration of the tracking probe,

which is a collection of markers placed on the object to be tracked, must be determined. We refer

to the process of determining the number and arrangement of markers on a tracking probe as probe

design. Conformal probe design extends the concept of marker arrangement to consideration of the

tracking environment and the application requirements to optimize probe performance. By con-

forming to the constraints placed by the tracking environment and the application, a probe can be

designed heuristically that performs well. However, it would be more practical to establish an iter-

ative design procedure which accounts for the interrelation between environmental and application

factors.

Practitioners usually take a bottom-up approach to building applications or systems in virtual

environments, assembling pieces to create a larger whole. The result is often a ”Frankenstein”

system that may accomplish the desired task, but is inelegant and causes users to conform to

it. As humans, our systems and applications should conform to us, not vice versa. Moreover,

an elegant design has advantages that may include improved ergonomics and the potential for

enhanced performance. Thus, an added benefit of this framework is to promote a top-down design

method for marker-based tracking, which allows exploration of the design space and ultimately

designing to the specifications of the application.

In this chapter, we shall first outline the steps of an iterative, conformal probe design process.

We then detail the major steps of the process. The first area discussed is performance goals for

tracking. Next, we examine environmental and application factors affecting the conformal probe

design and the tradeoffs associated with each. Following this, we introduce methods for arranging

markers upon the object to be tracked. Finally, we define metrics for quantifying probe perfor-

mance.
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3.1 A Procedure for Conformal Probe Design

The procedure for designing conformal probes is by necessity an iterative process. A starting point

is determined with necessary environmental parameters specified. From there, one or more of

the constraints are varied until a satisfactory tracking probe topology is obtained. If the topology

meets the application demands, then it would be constructed and tested. If not, the environmental

parameters may have to be adjusted to achieve a satisfactory probe design before construction and

testing.

The first step in the design process is to specify the pertinent environmental variables. As the

name implies, these variables are specific to the tracker and the application. The variables include

the tracker FOV, accuracy, and precision, the marker cone of emission (if using active markers),

the area within the tracker FOV where the probe will be utilized, and the object to be tracked. The

designer must also consider the type of tracking probe being developed, meaning a determination

must be made as to whether the markers will be placed directly upon the object to be tracked, or

indirectly through a separate structure attached to the object of interest.

Next, one must determine the desired performance specifications. The specifications may in-

clude the field of regard, the accuracy, the precision, the size, and the number of markers of the final

tracking probe. Depending upon the flexibility in obtaining a solution, some specifications may be

left for determination within the design iteration. The last step before beginning the iterative phase

is to create or obtain a 3D model of the probe body, composed of triangular polygons.

The iterative phase of the design process begins with mapping the markers on the probe. The

mapping may be done using the algorithms presented in Section3.3.2or using another systematic

method. After the mapping is completed, the field of regard of the tracking probe must be checked.

This is accomplished by simulating the rotation of the probe in 0.5 degree increments through the

desired field of regard. At each pose, we determine if at leastK markers can be detected by the

tracker. If this requirement is not met, there are three options available. The first option is to

retry the marker mapping. This is the first option because the mapping process uses optimization
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procedures which may differ slightly because of randomization. If this is unsuccessful, the designer

may investigate adding more markers, reapplying the mapping algorithm, and re-checking the field

of regard. If the desired field of regard is still not attained, another method would be to make the

tracking probe smaller, reapplying the mapping algorithm, and re-checking the field of regard. If

the desired field of regard has not been attained, then the practitioner may have to consider relaxing

some environmental constraints.

After the field of regard requirement has been met, the next step is to achieve the desired

accuracy and precision. The accuracy of a tracking probe may be determined by simulating the

process of measuring the probe pose, changing the pose by a known amount, and remeasuring

the pose. The average difference between the two poses will give a measure of the accuracy of

the tracking probe. In simulating the process of measuring the probe pose, we utilize a custom

algorithm for propagating the errors from noisy marker data (detailed in Chapter5). Moreover,

we can isolate the probe size, marker noise, and number of markers and examine their effect upon

the probe accuracy. The precision of the tracking probe is determined directly from the standard

deviation of the simulated marker data. If the probe accuracy is not high enough, then the probe size

must be increased (motivating a field of regard re-check and an accuracy re-check) or the number

of markers must be increased, causing the probe to move back to the mapping process. The probe

precision is directly related to the tracker precision and the precision of marker placement on the

probe during final construction, and is therefore not directly affected by the design process.

After the desired accuracy level has been achieved, the final stage of the iterative phase is to

determine if the number of markers used and the size of the probe are satisfactory. If there are too

many markers on the probe, then a re-design is necessary, starting from the marker mapping phase.

If the probe size must be constrained, it may be adjusted provided the probe is then re-evaluated

for accuracy and field of regard considerations.

Once the iterative stages have been completed, the newly designed probe must be constructed.

The markers should be placed with care, as the precision with which the markers are placed has
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direct bearing on the overall precision. The tracking probe must then be calibrated. The calibra-

tion of a tracking probe involves establishing the local coordinate frame and computing the probe

offset (if needed), which is a small translation of the local coordinate frame to ensure robust mea-

surements. The final step in the conformal design procedure is to assess the performance of the

tracking probe by measuring its pose accuracy and precision in the laboratory.

A flowchart for the conformal probe design process is shown in Figure3.1 with the iterative

steps shown in Figure3.2.

3.2 Environmental and Application Factors

The tracking environment is specific to each tracking system and virtual environment application.

Within the environment there are several factors which could affect tracking performance. The

environmental factors which affect marker-based tracking are the tracking accuracy, the shape and

size of the tracked object, and the number of markers. Additionally, the application factors which

will affect tracking performance are the field of regard of the tracking probe as well as the number

of markers utilized. We shall now briefly summarize each factor.

The tracker accuracy and precision are the most critical factors affecting tracking probe per-

formance. The accuracy and precision of a tracking probe is directly related to the accuracy and

precision of the tracker, a relationship we explore in detail in Section5.2.1. If the tracker cannot

provide accurate and precise measurements, then the tracking probe will perform poorly. Impor-

tantly, the level of accuracy required is relative to the application. For example, an accuracy of

0.5m is unreasonable for tracking human motion, but would be acceptable (even quite good) for

GPS. In addition, a tracker may have varying levels of accuracy depending upon where the probe

is placed within its field of view.

The shape and size of the tracked object is another environmental factor to consider when de-

signing marker-based tracking probes. Ultimately, we strive to place the markers to allow adequate

freedom of motion for the tracked object within the tracking volume and to utilize the fewest num-
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Figure 3.1: An Algorithm for Conformal Probe Design
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Figure 3.2: Iterative Steps of Conformal Probe Design
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ber of markers possible. These goals are affected by the shape of the tracked object, and, thereby,

the tracking probe. Moreover, the size of the tracked object will dictate how far apart markers can

be placed. This is important because the sensitivity of a tracking probe to changes in orientation

increases as the spatial extent of its markers increases.

The field of regard is the angular extent through which a probe that is within the tracking

volume can be rotated and still remain detected by the tracking system. The minimum field of

regard requirement is determined by the application. For example, if an application requires that

an object translating with a fixed orientation be tracked, then a large field of regard would not be

necessary for the tracking probe. However, if we were to track the head of a user in an immersive

walk-through, the probe field of regard would need to be significantly larger due to the possible

range of head motions. Of the factors affecting conformal probe design, the field of regard is the

most critical because of its relation to the other factors; to change the field of regard, the number of

markers on the probe must be changed or the markers on the probe must be rearranged, i.e., change

the probe topology.

The number of markers on the probe is both an environmental and application factor. It is an

environmental factor because of marker constraints that are imposed by the tracker. For example,

an optical tracker may require the detection of at least four, non-collinear markers to determine

the pose of a tracking probe. Moreover, a tracker may be more accurate with more markers,

depending upon the algorithm(s) it uses for pose estimation. The number of markers is also an

application factor because there may be speed and accuracy issues associated with the application.

For example, if a tracking system uses sequentially activated markers, increasing the number of

markers used will lower the tracking frame rate. Also, the latency of the tracker measurements may

be affected due to increased amounts of time required to process the data from more markers, which

can lead to registration inaccuracies or cause user motion to become uncoupled from computer-

generated stimuli.
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3.3 Marker Placement Methods

To maximize the field of regard for a tracking probe while minimizing the number of markers,

the markers must be uniformly distributed in angle, meaning the overlap of the cone of emission

of each marker covers the same solid angle when projected on a sphere surrounding the tracking

probe. In addition, a sufficient number of markers must be used such that the minimum maker

constraint for the tracking system is always met throughout the desired motion of the probe.

The first challenge is determining how to generally distribute the markers for any given probe

shape. A group ofN markers can be uniformly distributed on a surface by dividing it intoN

regions of uniform surface area (such as in regular tessellation). However, this may be extremely

difficult or impossible due to the probe shape. Another possible technique for distributing markers

is to use the Platonic solids to place markers directly. The Platonic solids are, however, limited

to spheres (or spherical equivalents) and to 4, 6, 8, 12 or 20 markers. Additionally, the Gaussian

quadrature method has been previously proposed and implemented to uniformly distribute an ar-

bitrary number of markers. A Gaussian quadrature formula is a numerical integration formula,

for functions on the sphere, which is exact for all spherical harmonics withYl
m(Θ, φ) with l ≤ L

[Sobolev, 1962]. The points on the sphere where the function to be integrated is sampled are there-

fore uniformly distributed. The number of sample points is determined by L, and increases as L

increases. However, the Gaussian quadrature formulae do not generalize to other shapes.

Thus, a robust approach to use when placing markers on arbitrarily shaped rigid probes is global

optimization. In this section, we present a modified version of the simulated annealing algorithm

for uniformly distributing markers on spherical objects. The marker distribution algorithm may

also be extended to other shapes that can be defined via parametric equations. We then present

two conformal mapping algorithms for placing markers on arbitrary objects using our modified

simulated annealing algorithm.
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3.3.1 The Modified Simulated Annealing Algorithm

The goal of an optimization procedure is to find a combination of variables that minimize or max-

imize a given quantity. The function that defines the relationship between the variables and the

desired quantity is known as an objective function or a cost function. For mapping markers on

a tracking probe, the cost function must express the relationship between the positions of each

marker and the overall distribution of the collection of markers. If the markers are modeled as

point charges, then a functional relationship can be inferred from the concept of potential energy.

From physics, we know that a pair of point charges in free space have a potential energy propor-

tional to the inverse of the distance between them. Furthermore, the potential energy of a collection

of point charges increases as the sum of the pairwise energy interactions experienced by each point

charge. Therefore, the simplified cost function utilized is

E =
N∑

i=1

N∑
j=i+1

1

rij

, (3.1)

whereN is the number of markers andrij is the Cartesian distance between theith andjth marker.

By definition, minimizingE will maximize the distance between the markers, subject to the

constraints imposed by the dimensions of the object upon which the markers will be mapped.

To minimize the cost function and thereby uniformly distribute markers on a tracking probe, we

choose to apply the method of simulated annealing. The method of simulated annealing (SA) was

first used in an algorithm designed to simulate the cooling of a material in a heat bath by Metropo-

lis in 1953 [Metropolis et al., 1953]. In 1983, Kirkpatrick suggested that this type of simulation

could be used more generally to search the feasible solutions of an optimization problem, with the

objective of converging to an optimal solution [Kirkpatrick et al., 1983] [Dowsland, 1993].

The SA optimization process is analogous to the metallurgical process of annealing, which is

used to increase the strength of metals by minimizing the potential energy between molecules. In

this process, a metal structure is heated past its melting point, allowing the molecules to move
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freely throughout and increasing the overall potential energy. The metal is then slowly cooled.

Although there is a probability that a given molecule may move to a higher energy state (based

upon physical laws and related by Boltzman’s constant), the overall trend is for the molecules to

move to lower energy states, reducing the potential energy. Moreover, the probability of a molecule

moving to a higher energy state is directly proportional to the current temperature of the metal,

meaning that the cooler the metal gets, the less likely that its molecules will enter higher energy

states. Eventually, the metal returns to a solid, locking the structure of the metal. If the process was

performed well, that is, the metal was made hot enough and the cooling was done slowly enough,

the molecules of the metal will be in the minimum (or very close to minimum) potential energy

state, resulting in a very strong metallic structure. If the metal was not heated enough or cooled

slowly enough, the resulting metal will have imperfections, creating weak spots or brittleness.

If we consider the solution space for our optimization as the structure of the metal, we can

see certain trends and strategies for SA. The location of the molecules within the metal represents

different solutions. The movement of the molecules represents our search of the solution space.

The movement is facilitated by higher temperatures. The temperature change is dramatic at higher

values and minute at lower values, allowing the system greater fluctuation at higher temperatures

while allowing it to “settle down” as it reaches lower temperatures. This results in a larger area of

the solution space being searched at the beginning of the algorithm, while the solution is slowly

refined. If our system is “heated” and “cooled” appropriately, then we will insure an adequate

search of the solution space for our problem. By applying a probability of movement to a higher

energy state, local minima can be avoided while narrowing the solution space. Finally, the metal

coming back to a solid state represents reaching an optimal (or close to optimal) solution.

We now describe the algorithm as applied to the distribution of markers on a sphere, with

extensions to the traditional SA algorithm indicated in the text. To start, an initial temperature

is chosen and the number of points to be distributed,N , is determined. The points are placed

randomly on a sphere of unit radius. The annealing process begins with the computation of the
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starting value of the potential energy of the system,E, which varies inversely with the distance

between all the points on the sphere.

After computing the starting energy of the system using Equation3.1, an iterative process

begins. First, the system temperature is decreased according to the cooling schedule. Next, a point

on the sphere is chosen randomly and moved randomly in azimuth and elevation on the surface

of the sphere. The current energy of the system is then calculated . If this current energy is less

than the previous system energy, then the move is accepted. If the current energy is more than the

previous system energy, a probability of accepting the move is generated based upon the current

temperature. The equation used for computing the probability of accepting a point movement is

given by

Probability =
e−∆/T

1 + e−∆/T
(3.2)

=
1

e∆/T + 1
,

where∆ is the change in energy of the distribution due to the point movement, andT is the current

temperature. A uniform random number between zero and one is generated, determining whether

the point is moved. If the random number is less than or equal to the probability in Equation

3.2, the selected point is moved. Otherwise, the point remains stationary. In either case, another

point is selected and moved following the same criteria untilK iterations have been performed

at the current temperature. AfterK iterations, the temperature is decreased and the process is

repeated at the next lower temperature. When the system temperature is less than 0.1, the iterative

process stops and the system freezes. The final energy value and the distribution of the points are

then computed. The markers are mapped to the point locations. A flowchart of the modified SA

algorithm is presented in Figure3.3.

Differences between the SA algorithm presented and that employed in [Kirkpatrick et al., 1983]

appear in the implementation of the cooling schedule and the probability expression. A geomet-
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ric temperature reduction was chosen instead of an exponentially decreasing cooling schedule,

decreasing the system temperature by a fixed percentage of the current temperature afterK itera-

tions.

Figure 3.3: The Modified Simulated Annealing Algorithm

The exponential temperature reduction was proposed because of its simplicity. Also, a simplifi-

cation of the traditional probability expression was employed as shown in Equation3.2. Here,

Boltzman’s constant was removed and the expression was rationalized to give values that fall be-

tween 0 and 0.99.
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To apply the modified SA algorithm to shapes that can be defined parametrically, e.g. an ellip-

soid, we use a slightly different cost function. Instead of using a potential energy function based

upon Cartesian distances, we base the function upon arc lengths. Thus, Equation3.1becomes

E =
N∑

i=1

N∑
j=i+1

1

sij

, (3.3)

wheresij is the arc length between theith andjth point. This change allows objects with non-

uniform curvatures to have marker mappings that maximize the field of regard for the tracking

probe.

3.3.2 Conformal Mapping for Arbitrary Objects

Conformal mapping is a mathematical technique for transforming one solution space to another

using complex variables. Traditional conformal mapping techniques could be applied for placing

markers on objects whose shape is defined mathematically or can be easily approximated. How-

ever, we generally do not know the shape of the tracking probe and must rely upon other methods.

We have implemented two techniques for placing markers on arbitrary 3D objects. The first tech-

nique is based upon texture mapping and uses an intermediary surface to place markers. It is used

for regular objects, meaning that the object is mostly convex and does not undergo large or fre-

quent changes in concavity. The second approach involves simulating the detection of markers

with virtual viewpoints and is used when placing markers on objects that are irregular. Both map-

ping techniques require a 3D, triangular polygonal model of the object, which can be obtained by

digitizing the object.

3.3.2.1 Marker Mapping with Intermediary Surfaces

To solve the problem of mapping markers on arbitrary objects, we can utilize a mapping technique

that is applied with an intermediary three-dimensional surface. The technique is similar to texture
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mapping in that a region of the intermediary surface (the region being a marker instead of a surface

patch) is projected onto the arbitrary object. The intermediary surface used is an ellipsoid, simpli-

fying to a sphere when the ratio of the largest to the smallest eigenvalue of the dispersion matrix

of the vertices comprising the arbitrary object is less than ten.

The equation of the ellipsoid is derived from the characteristics of the 3D model of the object.

The center of the ellipsoid is chosen to correspond with the centroid of the 3D model. The radii

of the ellipsoid are given by the norms of the eigenvectors that characterize the distribution the

vertices of the 3D model of the object, the principal axes. The distribution of the vertices is
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represented by the dispersion matrix. GivenN vertices, the 3x3 symmetric dispersion matrix,D,

is defined as

D =
1

N

N∑
i=1

x̃ix̃i
T (3.4)

with

x̃i = xi − x , (3.5)

wherexi is the location of theith vertex,x is the centroid of the vertices, and̃xi is a 3x1 vector

representing the location of theith vertex with respect to the centroid of the vertices. The final

intermediary surface is a proportional ellipsoid scaled to encompass the vertices of the 3D model.

After defining the ellipsoid for the intermediary surface, we use the simulated annealing algo-

rithm in Section3.3.1to uniformly distribute points that represent marker locations on its surface.

The 3D model of the object is then placed within the intermediary surface, with the principal axes

and the centroids of each aligned. The points are mapped to the 3D model by casting a ray from

each point on the intermediary surface to the centroid of the 3D model. The final location of the

markers on the model are determined by tracing these rays to their intersections on the 3D model.

A flowchart of the intermediary algorithm is illustrated in Figure3.4.

To determine the points of intersection on the 3D model, we start with theM vertices of the

model andN points on the intermediary surface. For each point on the intermediary surface, we

compute the equation of the parametric line containing the point and the centroid of the 3D model.

We first determine if the triangle is candidate for intersection by computing the dot product of

its normal and the vector between the centroid of the model and the point on the intermediary

surface. If the dot product is greater than zero, then the angle between the vectors is less than 90

degrees, indicating that the triangle does not face the point on the intermediary surface and can be

eliminated from consideration. If the dot product is negative, then we make two comparisons of

the line to the set of triangles that comprise the 3D model. We check that the line intersects the

plane formed by the triangle vertices and if the intersection point is within the triangle. If these
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Figure 3.4: The Intermediary Algorithm
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conditions are all met, then the point on the intermediary surface is mapped to the triangle under

consideration. A flowchart of the method for determining intersection is given in Figure3.5.

3.3.2.2 Marker Mapping with Virtual Viewpoints

In general, marker-based trackers must detect at least three markers to determine the pose of a

tracked object. Therefore, we attempt to place markers upon an object to meet this requirement.

From the perspective of the tracker, the markers are detected or “in view”. Knowing the point

of origin and extent of the tracking volume, i.e., the tracker “view”, we can reverse the problem;

instead of placing many markers on the object to conform to one “view”, we could place many

“views” around the object and determine where to place a marker. We can achieve this reversal by

using the 3D model of the object and placing it at the center of an intermediary sphere. The sphere

would then have the “views”, which we call virtual viewpoints (or just viewpoints), represented by

points optimally distributed on its surface using the method given in Section3.3.1or distributed

according the desired field of regard. By counting the number of times a polygon is “seen” by one

of the virtual viewpoints, we can determine the optimal placement of markers. The centers of the

polygons that are “seen” most often are chosen to become the marker locations.

To create a tracking probe using the viewpoints algorithm, we start by distributing the view-

points on the intermediary sphere surrounding the 3D model of the object. The intermediary sphere

has a radius that is twice the maximum distance between two vertices in the triangular mesh of the

3D model to ensure enclosure. For each viewpoint, we then determine whether a marker placed

on any of the triangles in the 3D model could be “seen” by the viewpoint. The determination is

based upon the angle between each triangle normal and the vector from the center of the triangle

to the viewpoint in question. If the angle is less than half of the field of emission of a marker,

then the triangle can be “seen.” If the markers being considered are passive, then the angle must

be less than 90 degrees. In either case, the number of viewpoints that can “see” the triangle is

incremented by one. This test is applied to all the triangles in the model with respect to the same
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Figure 3.5: The Intersection Determination Algorithm
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viewpoint. The process of testing for triangles which can be “seen” is repeated for all viewpoints

on the intermediary sphere. Once all the viewpoints have been tested, the triangle which has the

highest viewpoint count is selected as a final marker location and is removed from further consid-

eration. Each viewpoint that can “see” this triangle also has its marker count incremented. Once

a viewpoint can “see”K triangles (its marker count equalsK), it is removed from consideration

also. The process for determining how many triangles are seen by the viewpoints is continued

until all viewpoints “see”K triangles. The final marker mapping is then saved and used for further

analysis.

A potential problem with the viewpoints algorithm exists when dealing with complex objects,

that is, objects that cannot be defined by simple mathematical functions or simple parametric equa-

tions. For example, if we were trying to map markers on a 3D “U,” there would be triangles that

satisfy the “seen” requirement due to their normals, but would be “hidden” because they were lo-

cated on a part of the “U” that was obscured by another portion of the letter. This is the situation

that occurs if one imagines holding the “U” upright in your hand, rotating it 90 degrees to the

right, and trying to view the inner portion of the “U.” The solution to this problem lies in using the

parametric equation of the line passing from the viewpoint through the center of the triangle being

considered. Once we have determined that a triangle can be “seen” by the viewpoint, we check

to see if the line intersects any other triangles. If intersections occur beyond the first triangle, we

check the angle criteria for each additional triangle intersected by the line. If we determine that

the additional triangles pass the “visibility” test, we determine the point of intersection of the line

for these triangles. We then substitute the intersection points for each of the “visible” triangles that

intersect the line (including the triangle we started with) into the parametric equation and solve for

the linear parameter. The intersection point that gives the smallest linear parameter is inside the

triangle that is closest to the viewpoint, and, therefore, the triangle that is actually “seen.” The other

triangles that gave false “visibility” tests are removed from further consideration for the given
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viewpoint. Flowcharts illustrating the virtual viewpoint algorithm and the method for updating the

number of times a triangle is “seen” are given in Figures3.6and3.7, respectively.

The benefits of the virtual viewpoint algorithm compared to marker placement with the inter-

mediary surface algorithm are threefold. First, this algorithm minimizes the number of markers

used for the tracking probe. Second, it guarantees that at leastK markers are visible from each

viewpoint, whereK is the minimum number of markers that are necessary for different tracking

systems. Finally, a tracking probe with a custom, large field of regard can be created by increasing

the number of viewpoints and arranging the viewpoints to emphasize a particular direction (e.g.

putting the viewpoints at the front of an HMD).

The cost function of the intermediary algorithm is based upon maximizing the distance between

neighboring markers, while the viewpoint algorithm maximizes the number of times a triangle is

“seen.” The intermediary approach, therefore, yields a configuration that is optimal in terms of the

field of regard, while the viewpoint algorithm minimizes the number of markers and achieves the

desired field of regard. Combined with the advantages listed in the preceding paragraph, these

facts make the viewpoint algorithm the marker mapping technique of choice in most cases.

A drawback of the viewpoint algorithm, however, is its sensitivity to the density of the triangles

on the 3D model. For example, a flat surface can be represented with relatively few polygons,

while a complex, curved surface requires many polygons. If a complex feature on the 3D model

is prominent, then many markers may get mapped in a very small area when one marker may be

sufficient. Thus, the intermediary algorithm may provide better results in this case.

3.4 Metrics for Probe Performance

The accuracy of a measurement is defined as “the qualitative expression of the closeness of the

result of a measurement to the true value of the measurand” [Rabinovich, 1995] . A quantitative

description of this concept is absolute error, defined as “the difference between a value of a measur-

and obtained by a measuring instrument and the true value of the measurand” [Rabinovich, 1995].
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Figure 3.6: The Viewpoint Algorithm
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Figure 3.7: Detail of the UpdateTriangles Routine
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Resolution, on the other hand, is defined as “the smallest interval between two adjacent values of

the output signal of a measuring instrument that can be distinguished” [Rabinovich, 1995]. Fur-

thermore, related to resolution, is the repeatability (precision) of a measurement, which is defined

as “the closeness of agreement among a number of consecutive measurements for the same mea-

surand performed under the same operating conditions with the same measuring instruments, over

a short period of time” [Rabinovich, 1995].

Armed with these definitions, we can begin to define metrics to quantify the performance of

a tracking probe. The metrics of interest include the accuracy, resolution, and precision of pose

estimation for a given tracking probe. The field of regard of a tracking probe is also a metric of

interest, but is easily determined. The difference in reported and actual pose,∆P , can be expressed

in terms of position, orientation, or a combination of both. In position, the difference is expressed

as

∆P = ||Treported − Tactual|| , (3.6)

whereT is the translation of the tracking probe. In orientation, we calculate the difference as a

concatenation of two quaternions, expressed as

∆P = qreportedqactual
−1 , (3.7)

whereqreported is the quaternion representing the measured orientation andqactual is the expected

orientation. To combine position and orientation measures, we use a sum of squared errors expres-

sion, applying the rotation and translation of the probe to each marker locations expressed in the

local frame of the tracking probe,xi. The combined relationship is expressed as

∆P =
1

N

N∑
i=1

||(Rreportedxi + Treported)− (Ractualxi + Tactual)||2 , (3.8)

whereN is the number of markers on the probe. Practically, the difference in reported and actual

pose must be measured in relatively, i.e., from a given starting position, translate the probe by a
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fixed amount and measure the difference between what is reported by the tracker and the actual

displacement. A similar procedure can be performed for orientation.

The field of regard is the angular extent through which a probe can be rotated and still remain

detected by the tracking system. It can be measured by placing the tracking probe upon a rotating

stage/platform and observing when the probe is detected and lost. We start by placing the probe

in an orientation where it is not detected by the tracker. Then, the stage is rotated slowly. At the

moment the probe is detected, we record the quaternion, that expresses the probe orientation,q0 .

The probe is then rotated until it is no longer detected by the tracker. At that instant, the quaternion

corresponding to the final probe orientation,qf , is recorded. We can determine the quaternion that

expresses the transformation betweenq0 andqf as

qresult = qfq0
−1 (3.9)

extracting the field of regard from the scalar portion ofqresult.

At this point, we have defined a procedure for conformal probe design, factors to consider

during the design, and metrics for quantifying probe performance. In the following chapter, we

detail the process by which the position and orientation of a tracking probe are determined.
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CHAPTER 4: POSE ESTIMATION

Pose estimation is the determination of the position and orientation of an object. In a marker-based

tracking scheme, it involves estimating position and orientation based upon the 3D positions of the

markers in some fixed, external reference frame.

Many methods exist for pose estimation based on fiduciary markers. Often, the procedure

for determining pose is based upon Principal Component Analysis (PCA), sometimes called the

Karhunen-Lóeve transform. The idea of principal component analysis was first proposed by

Pearson [Pearson, 1901]. A practical method for discrete computation of the principal compo-

nents was first presented by Hotelling in 1933 [Hotelling, 1933]. The analogous transform for

continuous functions was presented by Karhunen in 1947 [Karhunen, 1947] and Lóeve in 1948

[Loéve, M, 1948] [Sayood, 1996] [de Ridder, 2004].

In this chapter, we introduce a method for pose estimation based on PCA that expands upon the

ideas presented in the fundamental literature. We begin the chapter by discussing geometric and

PCA-based procedures for determining a rigid coordinate frame, including the case where all the

markers on a probe cannot be simultaneously detected. We then discuss methods for PCA-based

pose determination. Finally, we discuss procedures of analyzing the errors resulting from the pose

estimation procedure.

4.1 Determining a Coordinate Frame

The first step of any pose estimation algorithm is to determine the local coordinate system, or local

frame, of the tracked object. A marker-based tracking scheme requires at least three non-collinear

markers to create a local coordinate frame. The coordinate frame can be created using geometric

methods or PCA-based methods.
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4.1.1 Geometric Frame Determination

Geometric frame determination methods exploit the fixed relationship between the location of

markers as expressed in an external coordinate frame, referred to as the global coordinate frame.

In the past, we have determined local coordinate frames using vector product relationships.

GivenK markers on the tracking probe, the frame determination method starts by obtaining the

position of three non-collinear markers with respect to the tracking system. We denote the markers

asyk, with k ∈ [1, K]. Eachyk is a 3x1 column vector. Assuming the creation of a right-handed,

xyz Cartesian coordinate system using markers 1, 2, and 3, the +x-axis in global space,~x is defined

as

~x =
y2 − y1

‖ y2 − y1 ‖
. (4.1)

The +z-axis in global space,~z is defined as

~z = ~x× y3 − y1

‖ y3 − y1 ‖
. (4.2)

The +y-axis in global space,~y is defined as

~z × ~x . (4.3)

The origin of the axes in global space,Og, can be defined as either the centroid of the markers, or

as the location ofy1. Theyk are now expressed relative toOg, as

ỹk = yk −Og . (4.4)
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Finally, the locations of the markers in the local coordinate frame,xk, are expressed as

xk = VT ỹk , (4.5)

whereV = [~x~y~z]

4.1.2 PCA-based Frame Determination

A PCA-based frame determination has several advantages over a geometric frame determination.

One advantage is that PCA takes into account the distribution of the markers when forming the

coordinate frame. Thus, the axes of the local frame correspond to the symmetries and trends of

the marker distribution. Another advantage of PCA versus geometric frame determination is that

the covariance matrix of the data will always yield the same set of coordinate axes relative to the

marker distribution. This is independent of the order in which the marker locations are specified, as

opposed to a geometric determination which is very heavily dependent upon the particular markers

considered and the order in they are considered. A PCA based frame determination also allows

marker weighting, if desired, to optimize frame determination based upon user-defined measures

of importance, e.g., a marker with a high fidelity is given more weight than a marker with poor

fidelity.

The premise of PCA-based frame determination is that the eigenvalues of a matrix character-

izing the distribution of markers on the probe are invariant, even though its eigenvectors vary (but

remain fixed relative to the marker distribution) according to the pose of the object. We can take

advantage of this invariance property to build a local marker frame, defined with the eigenvectors

of a matrix that characterizes the marker set, the covariance matrix.

To determine the local coordinate frame of the probe, we assume that the marker locations are

known in the global frame. In our case, the global frame coincides with the coordinate frame of

the tracking system. GivenK markers on the tracking probe, we denote the markers asyk, with
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i ∈ [1, K], andK ≥ 3. Eachyk is a 3x1 column vector. The centroid of the marker distribution in

the global frame isy. We also definẽyk as the global coordinates of theithmarkers with respect to

the centroid. That is,

ỹk = yk − y . (4.6)

We refer to the marker location defined with respect to the centroid as markers in a pseudo-local

frame.

We start the frame definition process by finding the covariance matrix for the data. Often, a dis-

persion matrix is used, which is a form of a spatial covariance matrix over the marker distribution.

We choose to utilize a dispersion matrix,D, defined as

D =
1

K

K∑
i=1

ỹkỹk
T , (4.7)

whereD is a 3 x 3 symmetrical matrix.

After forming the dispersion matrix, we find its eigenvectors, normalize them, and use them to

determine the transformation between the data in the pseudo-local frame and the marker locations

fully expressed. Thus, we can express the local coordinates of the probe markers,xk, as

xk = VTy′
k . (4.8)

4.1.3 Extension to Probes with Hidden Markers

The frame determination processes described in Sections4.1.1and4.1.2are valid when the track-

ing system is able to detect all the markers on a probe simultaneously. However, when tracking

systems are subject to occlusion it may not be possible to detect all the markers at once. We now

present an extension of the method in Section4.1.2to determine a local frame coordinates in the

case when some markers may not be detected, or ”hidden,” in certain probe poses.
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First, the tracking probe is placed in an initial pose where at least three markers can be detected

by the tracker. We measure the global coordinates of all markers that are able to be detected in

this starting pose. Then, an initial local frame is built from the preliminary marker locations using

the method from Section4.1.2. This initial local frame is referred to as a partial local frame.

Furthermore, these markers whose global locations are determined from the initial pose of the

probe are called ”old” markers.

Next, the probe is slowly rotated. This allows previously undetected makers, or ”new” markers,

the chance to be detected by the tracker. However, the ”new” markers must be detected concur-

rently with at least three ”old” markers. When the ”new” markers are detected, the rotation matrix,

RG PL, and translation vector,tG PL, from the partial local frame to the global frame are calcu-

lated using the method detailed in Section4.2.2. A scaling transformation is unnecessary at this

stage because we are using normalized coordinate systems.

The inputs to the minimization are the ”old” marker coordinates in the partial local frame,xk,

and the ”old” marker coordinatesyk in the global frame measured in the current pose. After the

rotation matrixRG PL and the translation vectortG PL, are determined, we compute the local

coordinates of the ”new” markers in the current local frame as

xk = RG PL
T (ỹk − tG PL) . (4.9)

Finally, with all the ”new” markers expressed in the local coordinate system, we again compute the

dispersion matrix and eigenvalues (Section4.1.2) to find an estimate of the new local frame and

then compute the new local coordinates of the markers. We repeat this process as the real object

is slowly rotated until all the markers have been visible. This technique allows us to build a local

frame for any kind of marker set and quickly calculate the local coordinates of the markers.
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4.2 Pose Estimation

Once a local coordinate system has been been defined for a tracking probe, the pose of the probe

can be determined. The probe pose consists of the location and orientation of the probe, represented

as a coordinate transformation from the local frame to the global frame. The pose of a tracking

probe may be determined using methods that rely upon direct computation or by methods which

use optimization to estimate the best solution. Both approaches are discussed in the following

sections.

4.2.1 Direct Computation of Pose

By using the data available from three markers, the pose of a tracking probe can be computed

directly. Given three markers in the local coordinate frame, denoted asxk, k ∈ [1, 3], we can

express the marker locations in the global frame,yk, as

Y = RX + T , (4.10)

whereY is a 3x3 matrix of the global marker locations,X is a 3x3 matrix of the local marker

locations,R is a 3x3 rotation matrix representing the rotation from the local to global frame, and

T is a 3x3 matrix, with three identical columns composed of the translation from the local frame

to the global frame,t. If theyk andxk are known, thenR andT can be computed directly by first

findingR thenT. Based upon the fact that

y1 = Rx1 + t

y2 = Rx2 + t

y3 = Rx3 + t ,
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we know that there is at such that

(yk − t) · (yj − t) = xk · xj , (4.11)

where

yk − xk 6= t . (4.12)

Given this relationship, we can construct two matrices,U andV. The first two columns ofU and

V are expressed as

u1 = y3 − y2 v1 = x3 − x2

u2 = y1 − y3 v2 = x1 − x3 .

To find the third column ofU andV, we use the fact that

Rv1 = u1

Rv2 = u2

 ⇒ R(v1 × v2) = u1 × u2 . (4.13)

Therefore, we can express the third columns ofU andV as

u3 = u1 × u2

v3 = v1 × v2 .

So, we can expressU andV as

U = [u1 u2 u3]

V = [v1 v2 v3]
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and we can expressR as

RV = U

R = UV−1 . (4.14)

Using this result forR, we can then computet as

t = y1 −Rx1 . (4.15)

4.2.2 Optimization Approaches: Least Squares Estimation

The problem with determining pose by direct computation, however, is that the solution is not

robust, given that the marker data are noisy in practice. A more robust method for determining the

pose of a tracking probe is with optimization. For noisy datasets, optimization that incorporates

PCA will minimize the variance between elements of the data. Some popular marker based pose

estimation methods that incorporate least-squares optimization are [Spoor and Veldpaus, 1980],

[Arun et al., 1987], [Horn, 1987], and [Haralick et al., 1989]. In addition, these methods often use

PCA as part of the optimization process.

We use a least-squares optimization method in combination with PCA to find the pose of a

tracking probe.R andt are computed by minimizing the weighted error,ε, defined as

ε(R, t) =
K∑

k=1

wk‖ yk −Rxk − t ‖2 , (4.16)

whereK is the number of markers detected by the tracker,yk is thekth marker coordinate defined

in the global frame, andxk is thekth marker coordinate defined in the local frame.wk is the weight

of thekth marker that quantifies the robustness of the marker data against noise measurements and
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its relative motion on the real object. For a rigid probe, we set all the weights to one, although the

weights may be varied to provide emphasis to different markers.

We define and compute new coordinates with respect to the weighted centroids,x andy, of the

markers in each frame given by

x̃k = xk − x (4.17)

ỹk = yk − y ,

where

x =
1

W

K∑
k=1

wkxk (4.18)

y =
1

W

K∑
k=1

wkyk (4.19)

with

W =
K∑

k=1

wk (4.20)

The error function (Eq.4.16) can be rewritten as

ε(R, t′) =
K∑

k=1

wk‖ ỹk −Rx̃k − t′ ‖2 (4.21)

with

t′ = t− y + Rx (4.22)

We can rewrite the error expression as

ε(R, t′) =
K∑

k=1

(ỹk −Rx̃k − t′) · (ỹk −Rx̃k − t′) . (4.23)
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Taking the gradient ofε,

∇t′ε = 2
K∑

k=1

wk[ỹk −Rx̃k − t′] (4.24)

= 2
K∑

k=1

wkỹk − 2R
K∑

k=1

wkx̃k − 2
K∑

k=1

wkt
′ (4.25)

= 0− 0− 2W t′ . (4.26)

When the error is minimized,∇t′ε = 0, which means thatt′ = 0. At this point, we can writeε as

a function ofR:

ε(R) =
K∑

k=1

wk‖ ỹk −Rx̃k ‖2 (4.27)

Expandingε, we get:

ε(R) =
K∑

k=1

wk(ỹk −Rx̃k)
T (ỹk −Rx̃k) (4.28)

=
K∑

k=1

wk(ỹk
T ỹk + x̃k

TRTRx̃k − ỹk
TRx̃k − x̃k

TRT ỹk) (4.29)

which is a scalar. BecauseRTR = I, we can rewriteε as:

ε(R) =
K∑

k=1

wk(ỹk
T ỹk + x̃k

T x̃k − 2ỹk
TRx̃k

T ) (4.30)

Moreover, because the products̃xk
T x̃k and ỹk

T ỹk are scalars, minimizingε(R) is equivalent to

maximizing a function ofR defined as (using Eq.4.30):

f(R) =
K∑

k=1

wkỹk
TRx̃k

T (4.31)
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At this point, the idea is to solve the maximization off(R), then solve forR. Furthermore,

whenR is found,t is obtained by

t = y −Rx (4.32)

R can be calculated through a process that uses Singular Value Decomposition (SVD). Given an x

m matrix,A, SVD is a technique by whichA can be inverted. Formally, SVD allows the row space

of a non-invertable matrix to be mapped to a column space. SVD computes the pseudoinverse of

A, allowing transformations between vector spaces wheren 6= m. In our case, SVD will be used

to convert the results of the error functions into a form whose maximum can be easily identified.

Rewritingf(R) from Equation4.31:

f(R) =
K∑

k=1

wkỹk
TRx̃k

T = Trace(
K∑

k=1

wkRx̃kỹk
T ) = Trace(RH) , (4.33)

where

H =
K∑

k=1

wkx̃kỹk
T . (4.34)

It can be shown thatTrace(RH) will maximize f(R) if it is decomposed into a form likeAAT ,

which is positive definitive [Arun et al., 1987]. Also, by maximizingf(R), R will be determined.

SVD provides a solution to this problem. We take the SVD ofH to be

H = UΓVT , (4.35)

whereU andV are orthonormal matrices, andΓ (the matrix of singular values) is a diagonal

matrix with non-negative elements expressed as:

Γ =


γ1 0 0

0 γ2 0

0 0 γ3

 (4.36)
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=


√

γ1 0 0

0
√

γ2 0

0 0
√

γ3



√

γ1 0 0

0
√

γ2 0

0 0
√

γ3

 (4.37)

= CCT (4.38)

Let X = VUT , which is orthonormal. Then,

XH = VUTUΓVT = VCCTVT . (4.39)

Next, letA = VC. Then,

XH = AAT . (4.40)

XH is positive definite and symmetric. Therefore,X maximizesf(R). As a result,ε(R, t) is

minimized whenX = VUT , which yields a solution forR. However, there are two possible

solutions becauseVUT is orthonormal. Ifdet(X) = 1, thenX = R . If det(X) = −1, thenX is

a reflection ofR. We can express a general solution forR as

R = V


1 0 0

0 1 0

0 0 det(VUT )

UT . (4.41)

The translation,t, is then expressed as

t = y −Rx . (4.42)

4.3 Error Analysis in Pose Estimation

After estimating the pose of a tracking probe, methods must be available to assess the accuracy

of the results. From the formulation in Section4.2.2, we are provided with a built-in method for
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analyzing the combined effects of errors in position and orientation. Thus the average pose error

is computed as

error =
1

K

K∑
k=1

wk‖ yk −Rxk − t ‖2 . (4.43)

The average error has unitslength2, meaning that it expresses the variance of the estimation pro-

cess for a given probe. This figure of merit by itself has the slight possibility of being misleading,

as least-squares measures are subject to interference from outliers. In this case, one could adjust

the weight factor attached to the marker whose data is suspect.

In the next chapter, we explore how various constraints in the probe design process and the

tracker itself can affect pose estimates. These constraints can be modeled as noise effects and

propagated through the pose estimation framework to ascertain their effects upon the estimation.

Furthermore, in Chapter6 we examine how the error analysis is experimentally validated.
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CHAPTER 5: THE EFFECTS OF ENVIRONMENTAL AND APPLICATION

FACTORS ON POSE ESTIMATION

In designing conformal tracking probes, we must know how proposed design changes may affect

probe performance. This requires defining the factors which affect pose estimation and quantifying

the effects of each factor. Considering a static measure of pose for a rigid tracking probe, these

factors include the tracker accuracy and precision, and the amount of error in determining the

local frame of the probe, the probe topology (that is, the number of markers, how the markers are

arranged, and the spatial extent of the tracking probe), and the marker cone of emission, if active

markers are used.

When determining the pose of a tracking probe, an ensemble measurement of noisy data is

used. Thus, to quantify the effects of the factors, we must first understand how the noise in the

data is expressed in the result of the pose estimation process. After quantifying the noise effects,

the individual factors for pose estimation can be studied.

We first examine an overall procedure for propagating the effects of noisy data to pose estima-

tion. Using this procedure, we then determine how the tracker accuracy and precision affect the

pose estimation process. Next, we study the effects of probe size and shape on pose estimation.

We then determine how the number of markers and the marker field of emission affect the pose

estimation process. Finally, we summarize the results of this chapter in a tracking factors matrix.

5.1 Noise Propagation in Pose Estimation

The data obtained from a tracking system are noisy to varying degrees. The noise will result in

errors in determining the global location of markers. Furthermore, this measurement error will

propagate to the determination of the local coordinates of markers on a tracking probe. The errors

in global and local marker locations will result in an error in the computed pose of the tracking

probe. Thus, it is imperative to know how errors in determining marker locations (global and local)
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affect the determination of the pose of a probe, which we accomplish by developing a model for

error propagation in pose estimation. Previous methods for error propagation do not provide the

capability of studying the effects of various factors on the process of pose estimation. Thus we rely

upon a customized approach to first-order error propagation.

Our error propagation model is based upon the least-squares minimization procedure to find

the pose of a tracking probe. We now summarize the results from Section4.1.2. GivenK markers,

local marker coordinatesxk, global marker coordinatesyk, and weightswk (for k = 1, . . . , K), let

W =
K∑

k=1

wk (5.1)

and

x =
1

W

K∑
k=1

wkxk (5.2)

y =
1

W

K∑
k=1

wkyk .

If we define

x̃k = xk − x (5.3)

ỹk = yk − y ,

thenH is given by

H =
K∑

k=1

wkx̃kỹk
T . (5.4)

The SVD ofH is written as

H = UΓVT . (5.5)

The matricesU , Γ, andV are orthogonal (by definition of the SVD) and are determined by the
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eigenvalue equations

HTHvm = µmvm (5.6)

HHTum = µmum

for m = 1, . . . ,M , whereM = 3, the dimension of the coordinate vectors in non-homogeneous,

cartesian coordinates.

Proof for Eq. 5.6:

HTH = VΓTUTUΓVT (5.7)

= VΓTΓVT

= V(diag(µ1, µ2, µ3)V
T

⇒ HTHV = V(diag(µ1, µ2, µ3)

⇒ HTHvm = µmvm �

whereµ1, µ2, andµ3 are the singular values ofH. With the normalized eigenvectors from the

equations in5.6, we constructU, V, andΓ

V = [v1, . . . ,vm] (5.8)

U = [u1, . . . ,um]

[Γ]mn = µmδmn

for n = 1, . . . ,M . The singular vectors can always be chosen to satisfy

vT
mvn = δmn (5.9)

uT
mun = δmn ,
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which implies thatU andV are unitary, meaning

UTU = UUT = UU−1 = UU† = I (5.10)

VTV = VVT = VV−1 = VV† = I ,

whereU† andV† indicate the complex conjugate transpose ofU andV. FromU andV, we can

computeR as

R = VDUT , (5.11)

where

D =


1 0 0

0 1 0

0 0 det(VUT )

 (5.12)

andt = y −Rx.

To propagate the error, we first apply the local marker coordinate error,∆xk, and global marker

coordinate error,∆yk, to each marker as

xk → xk + ∆xk (5.13)

yk → yk + ∆yk , (5.14)

assuming thatxk � ∆xk andyk � ∆yk. We also apply the local and global coordinate errors

with respect to the marker centroids,∆x̃k and∆ỹk as

x̃k → x̃k + ∆x̃k (5.15)

ỹk → ỹk + ∆ỹk (5.16)
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where, similar to the relationship in Eq.5.3,

∆x̃k = ∆xk −
1

W

K∑
k=1

wk∆xk (5.17)

∆ỹk = ∆yk −
1

W

K∑
k=1

wk∆yk . (5.18)

wk is the weight of thekth marker that quantifies the robustness of the marker data against noise

measurements and its relative motion on the real object. For a rigid probe, all weights are set to 1.

Because we wish to determine how the errors propagate to the rotation and translation of the

tracking probe,R andt, we must determine how the errors affect the matrixH. Thus,

H→ H + ∆H (5.19)

If we propagate the errors inx andy to H we get

H + ∆H =
K∑

k=1

wk(x̃k + ∆x̃k)(ỹk + ∆ỹk)
T (5.20)

=
K∑

k=1

wk(x̃kỹk
T + ∆x̃kỹk

T + x̃k∆ỹk
T + ∆x̃k∆ỹk

T ) (5.21)

By first order approximation, we obtain

H + ∆H ≈
K∑

k=1

wk(x̃kỹk
T + ∆x̃kỹk

T + x̃k∆ỹk
T ) (5.22)

≈
K∑

k=1

wk(∆x̃kỹk
T + x̃k∆ỹk

T ) + H (5.23)

which defines∆H as

∆H ≈
K∑

k=1

wk(∆x̃kỹk
T + x̃k∆ỹk

T ) . (5.24)
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This is a first order model of error propagation. For the rest of this section, an equation of the form

a ≈ b is taken to mean that the two quantitiesa andb are equal to the first order in the measurement

errors.

We now define a matrixQ as

Q = HTH . (5.25)

Then, with first order error propagation,

Q→ Q + ∆Q (5.26)

with

∆Q ≈ ∆HTH + HT ∆H (5.27)

which is a first order expansion of∆Q. Now, consider the eigenvector equations from Eq.5.6. We

propagate the error as

(Q + ∆Q)(vm + ∆vm) = (µm + ∆µm)(vm + ∆vm) (5.28)

(QT + ∆QT )(um + ∆um) = (µm + ∆µm)(um + ∆um) , (5.29)

which must be satisfied with the constraints

(vm + ∆vm)T (vn + ∆vn) = δmn (5.30)

(um + ∆um)T (un + ∆un) = δmn

because orthogonality must still hold, even with errors in theH matrix. Using the error-free
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eigenvector equations (Eqs.5.6and5.9), and applying the previous constraints, Eqs.5.28and5.29

can be expanded in the following manner

Qvm + ∆Qvm + Q∆vm + ∆Q∆vm = µmvm + ∆µmvm + µm∆vm + ∆µm∆vm (5.31)

QTum + ∆QTum + QT ∆um + ∆QT ∆um = µmum + ∆µmum + µm∆um + ∆µm∆um (5.32)

Because

Qvm = µmvm (5.33)

QTum = µmum

∆Q∆vm ≈ ∆QT ∆um ≈ 0 and

∆µm∆vm ≈ ∆µm∆um ≈ 0 ,

we can simplify Eq.5.31to

µmvm + ∆Qvm + Q∆vm ≈ µmvm + ∆µmvm + µm∆vm (5.34)

⇒ ∆Qvm + Q∆vm ≈ ∆µmvm + µm∆vm

and, likewise, Eq.5.32to

µmum + ∆QTum + QT ∆um ≈ µmum + ∆µmum + µm∆um (5.35)

⇒ ∆QTum + QT ∆um ≈ ∆µmum + µm∆um

with the orthogonality constraints (derived by first order expansion of Eq.5.9)

vT
m∆vn + vT

n ∆vm ≈ 0 (5.36)

uT
m∆un + uT

n∆um ≈ 0 .
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Our goal is to solve this system of equations for∆µm and∆vm (the first order error of the

eigenvalue and its associated eigenvector) in terms of∆Q (the first order error in the matrix de-

scribing the relation between the two coordinate systems).To accomplish this task, we define the

matricesA andB by the equations

∆vm = Avm , m = 1, . . . ,M (5.37)

∆um = Bum , m = 1, . . . ,M

These equations defineA andB uniquely since the singular vectors form basisRM . By substituting

into Eqs.5.34and5.35with the previous equation, the system can be written in terms of these new

matrices as

∆Qvm + QAvm ≈ ∆µmvm + µmAvm (5.38)

∆QTum + QTBum ≈ ∆µmum + µmBum (5.39)

and the orthogonality constraints become

vT
mAvn + vT

nAvm ≈ 0 (5.40)

uT
mBun + uT

nBum ≈ 0

By rearranging Eqs.5.38and5.39, we have

(µm −Q)Avm ≈ (∆Q−∆µm)vm (5.41)

(µm −QT )Bum ≈ (∆QT −∆µm)um (5.42)

We now take Eq.5.41and multiply through byvn
T ,

vn
T ∆Qvm − vn

T ∆µmvm ≈ vn
T µmAvm − vn

TQAvm (5.43)
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Since

Qvn = µnvn ⇒ (Qvn)T = (µnvn)T ⇒ vn
TQT = µnvn

T , (5.44)

we can express Eq.5.43as

vn
T ∆Qvm −∆µmvn

Tvm ≈ µmvn
TAvm − µnvn

TAvm . (5.45)

Furthermore, becausevn
Tvm = δmn,

vn
T ∆Qvm −∆µmδmn ≈ (µm − µn)vn

TAvm . (5.46)

Whenm = n, we get

∆µm ≈ vn
T ∆Qvm . (5.47)

Whenm 6= n, we get

vn
TAvm ≈

vn
T ∆Qvm

µm − µn

, (5.48)

which fully specifiesA. Note that since∆QT = ∆Q (meaningQ is symmetric) , we have

vm
T ∆Qvn = vm

T ∆QTvn = (vn
T ∆Qvm)T . (5.49)

Moreover, becausevm
T ∆Qvn is a scalar,

(vn
T ∆Qvm)T = vn

T ∆Qvm . (5.50)

As a result, the orthogonality constraints onA are satisfied. Now, we collect the terms of∆H.

Starting with the expression ofH, we see that

H = UΓVT , (5.51)
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implying that

HV = UΓ

⇒ UTH = ΓVT

⇒ HTU = VΓ

and leading to

Hvm = um
√

µm =
√

µmum (5.52)

HTum = vm
√

µm =
√

µmvm .

We can now develop two scenarios. The first is whenm = n. We start with the relation from

Eq. 5.47, expanding with the relationships from Eqs.5.27and5.52

∆µm ≈ vn
T ∆Qvm ≈ vm

T ∆Qvm , m = n (5.53)

≈ vm
T (∆HTH + HT ∆H)vm (5.54)

≈ vm
T ∆HTHvm + vm

THT ∆Hvm (5.55)

≈ vm
T ∆HT√µmum +

√
µmum

T ∆Hvm (5.56)

≈ √
µm(vm

T ∆HTum + um
T ∆Hvm) (5.57)

≈ 2
√

µmum
T ∆Hvm . (5.58)

The second scenario is whenm 6= n. Staring with the relation from Eq.5.48, expanding with the

relationships from Eqs.5.27and5.52

vn
TAvm ≈ vn

T ∆Qvm

µm − µn

(5.59)

≈ vn
T (∆HTH + HT ∆H)vm

µm − µn

(5.60)
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≈ vn
T ∆HTHvm + vn

THT ∆Hvm

µm − µn

(5.61)

≈
vn

T ∆HT√µmum +
√

µnun
T ∆Hvm

µm − µn

(5.62)

≈
√

µnun
T ∆Hvm +

√
µmum

T ∆Hvn

µm − µn

. (5.63)

By replacingH with HT and interchangingvk with uk in Eq. 5.63, we get the following equation

for B

vn
T Bvm ≈

√
µmun

T ∆Hvm +
√

µnum
T ∆Hvn

µm − µn

. (5.64)

Finally, if

V → V + ∆V (5.65)

U → U + ∆U

then

∆V ≈ AV (5.66)

∆U ≈ BU .

At this point, we now have a direct relationship between the eigenvectors ofV andU and the first

order error propagated to the eigenvectors by way ofA andB. A andB are also anti-symmetric,

meaningA = −AT .

From the expression ofR in Eq. 5.11, we can derive an expression for the propagation of the

first order error to the calculation ofR. To start, we can express the rotation matrix with error,

Rerr as a concatenation of an incremental rotation,∆R, and an ”error free” rotation,R

Rerr = ∆RR . (5.67)
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Using Eq.5.11, we can apply first order errors toV andU and obtain the following expression for

Rerr:

Rerr = ∆RR = (V + ∆V)D(U + ∆U)T (5.68)

= (V + ∆V)(DUT + D∆UT ) (5.69)

= VDUT + ∆VDUT + VD∆UT + ∆VD∆UT (5.70)

= VDUT + AVDUT + VDUTBT + AVDUTBT (5.71)

= VDUT + VDUTBT + AVDUT + AVDUTBT (5.72)

= VDUT −VDUTB + AVDUT −AVDUTB (5.73)

= VDUT (I−B) + AVDUT (I−B) (5.74)

= (VDUT + AVDUT )(I−B) (5.75)

= (I + A)VDUT (I−B) (5.76)

= (I + A)R(I−B) . (5.77)

Taking into account the fact that a matrix exponential can be approximated by a Taylor series

expansion, a first order approximation ofRerr is ,

Rerr ≈ eARe−B (5.78)

≈ eARe−BI (5.79)

≈ eARe−BRTR (5.80)

≈ eARe−BRT︸ ︷︷ ︸
∆R

R (5.81)

BecauseA andB are anti-symmetric matrices,eA ande−B yield valid rotation matrices in most

cases (invalid cases occur when∆x or ∆y are greater than or equal to the order of magnitude of

64



x̃ and ỹ) . Thus,Rerr is a valid rotation matrix that expresses the orientation of the probe with

marker location errors propagated through its solution.

The position of the probe without error,t, is expressed as

t = y −Rx , (5.82)

wherey andx are the centroids of theyk andxk, respectively. If we propagate the first order errors

to the probe position, we obtainterr, which can be written as

terr =
1

W

K∑
k=1

wk(yk + ∆yk)−Rerr
1

W

K∑
k=1

wk(xk + ∆xk)

=
1

W

K∑
k=1

wkyk +
1

W

K∑
k=1

wk∆yk −Rerr
1

W

K∑
k=1

wkxk −Rerr
1

W

K∑
k=1

wk∆xk

= y +
1

W

K∑
k=1

wk∆yk −Rerrx−Rerr
1

W

K∑
k=1

wk∆xk

= y + ∆yc −Rerrx−Rerr∆xc

= y + ∆yc −Rerr(x + ∆xc) , (5.83)

where∆xc and∆yc are the centroids of the∆xk and∆yk, respectively.

5.2 Effects of Factors on Pose Estimation

In analyzing the effects of environmental factors on pose estimation, we must examine the proper-

ties of theRerr matrix. As a result, our analysis focuses onA andB, as these matrices determine

Rerr.

If the noise added to the marker locations,∆xk and∆yk, are zero, thenA andB become

zero matrices, givingeA = e−B = I andRerr = R, indicating zero pose error. Furthermore,

the zero matrices will have three eigenvalues at zero. If the magnitude of∆x and∆y become

infinite, the magnitude of the two non-zero eigenvalues ofA andB are infinite. When∆x and∆y
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are between zero and infinity,A andB give valid rotation matrices with measurable eigenvalues.

As the magnitude of the elements ofA andB increase or decrease, the magnitude of the non-

zero eigenvalues ofA andB increase or decrease, respectively. Thus, by examining the effect of

various factors on the eigenvalues ofA andB, we can determine the effects on the overall pose

error.

We now define the eigenvalues ofA. Starting with Equation5.48, we know that

vn
TAvm ≈

vn
T ∆Qvm

µm − µn

, n 6= m . (5.84)

Therefore,

vn
TAvm ≈

vn
T (∆HTH + HT ∆H)vm

µm − µn

, n 6= m . (5.85)

Expressing each matrix generally, theH matrix is

H =


s11 s12 s13

s21 s22 s23

s31 s32 s33

 (5.86)

with

snm =
K∑

k=1

wkx̃knỹkm , (5.87)

wherex̃kn andỹkm are thenth andmth elements of̃xk andỹk, respectively. The∆H matrix can

be written as

∆H =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (5.88)

with

σnm ≈
K∑

k=1

wk(∆x̃knỹkm + x̃kn∆ỹkm) , (5.89)
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wheren andm subscripts represent thenth andmth elements of each vector, respectively. The

matrixA can be generally expressed as

A =


0 a b

−a 0 c

−b −c 0

 (5.90)

in thev1,v2,v3 basis. Then,

a =
v1

T ∆Qv2

µ2 − µ1

(5.91)

b =
v1

T ∆Qv3

µ3 − µ1

(5.92)

c =
v2

T ∆Qv3

µ3 − µ2

. (5.93)

Finally, the eigenvalues ofA are

λ1 =
√
−a2 − b2 − c2 =

√
−(a2 + b2 + c2) = j

√
a2 + b2 + c2 (5.94)

λ2 = −
√
−a2 − b2 − c2 = −j

√
a2 + b2 + c2

λ3 = 0 .

A similar formulation applies to finding the eigenvalues forB, with the only difference being that

∆QT is used instead of∆Q.

5.2.1 The Effect of Tracker Accuracy and Frame Determination on Pose Estimation

To determine the effect of tracker accuracy on pose estimation, we must determine the relationship

between∆y and the eigenvalues ofA andB. Specifically, the change in the magnitude of the

eigenvalues, whether increasing or decreasing, is of interest.
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We now examine the eigenvalues ofA and how they are affected by the tracker noise, given

that a similar formulation exists forB. As expressed in Equation5.94, the magnitude of the non-

zero eigenvalues ofA increase or decrease as the squared magnitude increases or decreases. In

Equation5.89we can see that the influence of∆y is on the expression forσnm. When analyzing

the effect on the eigenvalues, we consider all other quantities constant, allowing for variation in

σnm only. We consider∆y a Gaussian random variable with zero mean and a standard deviation

equal to the RMS tracker accuracy. Given these conditions, we can express the squared magnitude

of the non-zero eigenvectors as

|λ1,2|2 = a2 + b2 + c2 . (5.95)

Because∆y is a random variable, we must treat eigenvalues as an ensemble average of event

occurrences. Thus, the previous equation becomes

< |λ1,2|2 > = < a2 + b2 + c2 > = < a2 > + < b2 > + < c2 > . (5.96)

Given

αmn =
1

µm − µn

, (5.97)

We can expressa2 as

a2 ≈ α21
2 [ (s12σ11)

2 + (s22σ21)
2 + (s32σ31)

2 + (s11σ12)
2 + (s21σ22)

2 + (s31σ32)
2

+ 2(s12σ11)(s22σ21) + 2(s12σ11)(s32σ31) + 2(s12σ11)(s11σ12)

+ 2(s12σ11)(s21σ22) + 2(s12σ11)(s31σ32) + 2(s22σ21)(s32σ31)

+ 2(s22σ21)(s11σ12) + 2(s22σ21)(s21σ22) + 2(s22σ21)(s31σ32)

+ 2(s32σ31)(s11σ12) + 2(s32σ31)(s21σ22) + 2(s32σ31)(s31σ32)

+ 2(s11σ12)(s21σ22) + 2(s11σ12)(s31σ32) + 2(s21σ22)(s31σ32) ] . (5.98)

For eachsnmσn′m′ term, the variable of interest is∆y. Thus, we can treat thesnm portion as a
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constant, meaning

< snm
2σn′m′

2 >= snm
2 < σn′m′

2 > (5.99)

Using the result from the Appendix and by substitution from Equation5.98, < a2 > is

< a2 >≈ α21
2 < (s12σ11)

2 + (s22σ21)
2 + (s32σ31)

2 + (s11σ12)
2 + (s21σ22)

2 + (s31σ32)
2

+ 2s12s22σ11σ21 + 2s12s32σ11σ31 + 2s12s11σ11σ12 + 2s22s32σ21σ31 + 2s21s22σ21σ22

+ 2s31s32σ31σ32 + 2s11s12σ21σ22 + 2s11s12σ31σ32 + 2s21s22σ31σ32 >

≈ α21
2s12

2 < σ2
11 > +α21

2s22
2 < σ2

21 > +α21
2s32

2 < σ2
31 > +α21

2s11
2 < σ2

12 >

+ α21
2s21

2 < σ2
22 + α21

2s31
2 < σ2

32 > +2α2
21s12s22 < σ11σ21 > +2α2

21s12s32 < σ11σ31 >

+ 2α21
2s12s11 < σ11σ12 > +2α21

2s22s32 < σ21σ31 > +2α21
2s21s22 < σ21σ22 >

+ 2α21
2s31s32 < σ31σ32 > +2α21

2s11s12 < σ21σ22 > +2α21
2s11s12 < σ31σ32 >

+ 2α21
2s21s22 < σ31σ32 > (5.100)

Similar expressions can be defined for< b2 > and< c2 >. If we expand the term< σ11
2 > from

Equation5.100, we find

< σ11
2 > ≈ <

[
K∑

k=1

wk(∆x̃knỹkm + x̃kn∆ỹkm)

]2

>

≈ < [w1(∆x̃11ỹ11 + x̃11∆ỹ11) + . . . + wk(∆x̃k1ỹk1 + x̃k1∆ỹk1)]
2 . (5.101)

The∆xk represent the errors in determining the positions of the markers in the local frame. We

consider these to be zero-mean, Gaussian random variables as well. Expanding Equation5.101,

we find that the mixed polynomial terms become zero, resulting in

< σ11
2 > ≈ < w1

2x̃11
2∆ỹ11

2 + . . . + wk
2x̃k1

2∆ỹk1
2 >

+ < w1
2∆x̃11

2ỹ11
2 + . . . + wk

2∆x̃k1
2ỹk1

2 >
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≈ < w1
2x̃11

2∆ỹ11
2 > + . . . + < wk

2x̃k1
2∆ỹk1

2 >

+ < w1
2∆x̃11

2ỹ11
2 > + . . . + < wk

2∆x̃k1
2ỹk1

2 >

≈ w1
2x̃11

2 < ∆ỹ11
2 > + . . . + wk

2x̃k1
2 < ∆ỹk1

2 >

+ w1
2ỹ11

2 < ∆x̃11
2 > + . . . + wk

2ỹk1
2 < ∆x̃k1

2 > . (5.102)

The general expression for< σnm
2 > can therefore be expressed as

< σnm
2 > ≈ w1

2x̃1n
2 < ∆ỹ1m

2 > + . . . + wk
2x̃kn

2 < ∆ykm
2 >

+ w1
2ỹ1m

2 < ∆x̃1n
2 > + . . . + wk

2ỹkm
2 < ∆x̃kn

2 > . (5.103)

This general expression forσnm indicates the influence of∆yk on the eigenvalues of theA andB

matrices. The expandeda2 term (from Equation5.98) is influenced by the first two components

of ∆yk, that is∆yk1,2. Theb2 andc2 terms are influenced by∆yk1,3 and∆yk2,3, respectively. As

a result,< a2 + b2 + c2 > will change proportionally as< ∆yk
2 >, which indicates a change in

‖ ∆yk ‖. Therefore, we can conclude that if‖ ∆yk ‖ increases or decreases,|λ1,2| increase or

decrease, respectively. The change in eigenvalues indicates a proportional change in‖ A ‖2 and

‖ B ‖2, where‖ A ‖2 is the norm-2, or matrix norm, ofA given by

‖ A‖2 = (λmax(A
TA))1/2 , (5.104)

with λmax being the largest eigenvalue ofA. The increase in the matrix norms signal an increase in

pose error. The expression forσnm also indicates the influence of∆xk on the eigenvalues ofA and

B. Similar to∆yk, a change in< ∆xk
2 > will proportionately affect the eigenvalues. However,

the∆xk are generally smaller than the∆yk.
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Because the∆yk and∆xk are random variables, we find that as the standard deviation of these

quantities increases or decreases,< ∆yk
2 > increases or decreases indicating a proportional in-

crease or decrease in‖ ∆yk ‖ and‖ ∆xk ‖. The standard deviation of∆yk represents the accuracy

of the tracking system and the standard deviation of∆xk indicates the error in determining the lo-

cal marker locations. Thus, if the tracker and/or the local frame determination is more accurate,

the standard deviation on< ∆yk
2 > is smaller, resulting in smaller eigenvalues forA andB and

smaller pose errors. If the tracker and/or the local frame determination is less accurate, the stan-

dard deviation on< ∆yk
2 > is larger, yielding larger eigenvalues forA andB and, thereby, larger

pose errors.

Another effect that we can observe from this formulation is that of the tracker precision, or

repeatability. Theoretically, when we measure the ensemble average of a squared random variable

with zero mean, we obtain the variance of its distribution. That is, if we assume that the tracker

accuracy is 0.1 mm RMS, then by modeling∆ỹk as a zero-mean, Gaussian random variable we

expect< ∆ỹk
2

> will be equal to(0.1mm)2 = 0.01mm2 theoretically. In practice, however, it is

impossible to attain this value. Given a tracker with good precision, we can closely approximate

this value with a large enough number of measurements. In contrast, a tracker with poor precision

will attain a poor approximation, resulting in an increased variance and a larger standard deviation.

A consequence of the larger standard deviation is that∆ỹk must be increased to provide an accurate

model of the tracking performance, which culminates in larger eigenvalues forA and B and,

therefore, increased pose errors.

A formulation which encapsulates the eigenvalue magnitude is the matrix norm, as defined in

Equation5.104. In the case of an anti-symmetric matrix, both non-zero eigenvalues have the same

magnitude. Therefore, the trends in pose estimation for a given tracking probe will be indicated

by changes in the value of‖ A ‖2. If we simulate a logarithmic decrease in tracker accuracy (∆y

increases logarithmically), it can be shown that‖ A ‖2 increases proportionally. The results of the

simulation are shown in Figure5.1.
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Figure 5.1: Semilog plot of the Norm of the A Matrix versus the Amount of Tracker Noise
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5.2.2 The Effect of Probe Size and Shape on Pose Estimation

The size and shape of a tracking probe refer to its spatial extent and how the markers on the probe

are arranged. Both are factors that have a significant effect upon pose estimation. To study these

effects, we must determine the relationship betweenx̃k andỹk, quantities which are defined by the

probe size and shape, and the eigenvalues ofA andB. Again, the change in the magnitude of the

eigenvalues, whether the magnitude increases or decreases, is of interest.

We examine the effects of probe size and shape on the eigenvalues ofA, understanding that

a similar formulation exists forB. The influence of̃x andỹ can be seen inαmn, snm, andσnm,

which are present in the expressions of the eigenvalue components ofA (Equation5.94). The∆yk

and∆xk are also present, however, we shall hold their standard deviations constant, as we are

narrowing our attention to the effects of probe size currently.

As expressed in Equation5.94, the magnitude of the non-zero eigenvalues ofA increase or

decrease as the squared magnitude increases or decreases. From Equation5.100, we can see that

all the variables previously mentioned affect the result. However, the most profound effect upon

the value of< a2 > (or < b2 > or < c2 >) is given by theαmn term, which is defined as

αmn =
1

µm − µn

, m 6= n , (5.105)

wheren is the row index ofA, m is the column index ofA, andµn andµm correspond to thenth

andmth eigenvalues ofHHT . The matrixH is defined as

H =
K∑

k=1

wkx̃kỹk
T

, (5.106)

wherex̃k andỹk represent the local and global marker locations relative to the marker centroid,

respectively. From the dependence uponx̃k andỹk, we see that the eigenvalues ofHHT will
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change as the size of and the shape of the tracking probe changes. Furthermore, as the eigenvalues

of HHT change, the eigenvalues ofA andB will change, as indicated by Equations5.91– 5.94.

5.2.2.1 The Effects of Probe Size

Equation5.100provides the reasoning as to whyαmn has the most influence upon< a2 > when

changing the size and shape of a tracking probe. Changing the size of the tracking probe is equiv-

alent to scaling thexk andyk by β, whereβ is a positive constant. Furthermore, a change inxk

andyk will be proportionately expressed iñxk andỹk. Taking the case wheñxk andỹk are scaled

by β, we see thatσnm becomes

σnm ≈
K∑

k=1

wk(∆x̃kn(βỹkm) + (βx̃kn)∆ỹkm) (5.107)

≈ β
K∑

k=1

wk(∆x̃knỹkm + x̃kn∆ỹkm) , (5.108)

and thatsnm becomes

snm =
K∑

k=1

wk(βx̃kn)(βỹkm) (5.109)

= β2

K∑
k=1

wkx̃knỹkm . (5.110)

From this relationship, we can see that the effect of changing the probe size by scalingx̃k andỹk

by β is a scaling ofH by β2 effectively. That is

H =


s11 s12 s13

s21 s22 s23

s31 s32 s33

 →


β2s11 β2s12 β2s13

β2s21 β2s22 β2s23

β2s31 β2s32 β2s33

 → β2H . (5.111)
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Also, scaling̃xk andỹk by β scales∆H by β, giving

∆H ≈ β
K∑

k=1

wk(∆x̃kỹk
T + x̃k∆ỹk

T ) → β∆H . (5.112)

ScalingH and∆H results in a scaling of∆Q by β3, that is

∆Q ≈ ∆HTH + HT ∆H→ β∆HT β2H + β2HT β∆H (5.113)

→ β3(∆HTH + HT ∆H) → β3∆Q . (5.114)

The scaling also results in

HTH→ β4HTH , (5.115)

implying that

µm → β4µm , (5.116)

while vm remains the same due to the fact that it is a normalized eigenvector. The effect of the

scaling is then related to the components of theA matrix as

a = α21v1
T ∆Qv2 →

v1
T β3∆Qv2

β4(µ2 − µ1)
→ a

β
(5.117)

b → b

β
(5.118)

c → c

β
. (5.119)

Therefore, scaling̃xk and ỹk by β results in an effective scaling of approximately1/β for the

eigenvalues ofA. A similar formulation can be demonstrated forB. Equations5.117– 5.119

show that increasing or decreasing the size of a tracking probe results in a respective improvement

or reduction in pose error for the tracking probe.

Again, using‖ A ‖2, we can demonstrate the effects of increased probe size on pose estimation.

If we simulate a logarithmic increase in probe size (xk are uniformly scaled with logarithmically
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increasing scale factors), it can be shown that‖ A ‖2 decreases proportionally. The results of the

simulation are shown in Figure5.2.

Figure 5.2: Semilog plot of the Norm of the A Matrix versus the Size of the Probe

5.2.2.2 The Effects of Probe Shape

A change in the size of a tracking probe indicates uniform scaling applied to thexk andyk. Chang-

ing the probe shape, however, implies that a differentxk andyk are used. Assuming that one
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marker is moved at a time, we can represent the differentxk andyk as the resultant of a sum of

vectors, meaning

xk
′ = xk + δxk and (5.120)

yk
′ = yk + δyk , (5.121)

whereδxk andδyk are the change applied toxk andyk, respectively. The change in the given

marker will also influencẽxk and ỹk for all the makers on the probe, as these variables are de-

pendent upon the centroid of the markers. Therefore, assuming that the∆x̃k and∆ỹk remain the

same, we obtain

x̃k
′ = (xk − x′) + ∆x̃k and (5.122)

ỹk
′ = (yk − y′) + ∆ỹk , (5.123)

wherex′ andy′ are the centroids of the markers in the local and global frames, taking into account

the marker location which has changed.

The quantityα will still have the most influence upon the eigenvalues ofA. We examine the

relationship for< a2 >, taking the case wheñxk andỹk are changed byδxk andδyk. As a result,

σnm now becomes

σnm ≈
K∑

k=1

wk(∆x̃knỹkm
′ + x̃kn

′∆ỹkm) , (5.124)

andsnm becomes

snm =
K∑

k=1

wkx̃kn
′ỹkm

′ . (5.125)

Because we assume thatxk � ∆xk andyk � ∆yk, it can be shown that̃xkn
′ỹkm

′ > ∆x̃knỹkm
′ +

x̃kn
′∆ỹkm. Thus, the effect of changing the probe shape has a greater effect on thesnm terms

within the expression for< a2 >.
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This formulation provides a relationship between the individual marker locations and the eigen-

values ofA, which, in turn, defines the relationship between the elements ofA and the amount of

pose error present from a given tracking probe topology. A proposed quantitative measure of this

relationship is explored in Section7.6.

5.2.3 The Effect of the Number of Markers and Marker Field of Emission on Pose Estimation

Another effect to examine is that of the number of markers on the tracking probe and its effect on

pose estimation. If we start with the expression for pose error,

ε(R, t) =
K∑

k=1

wk‖ yk −Rxk − t ‖2 , (5.126)

we see thatε does not obviously increase or decrease ifK changes. Also, examining following

expressions

snm =
K∑

k=1

wkx̃knỹkm and (5.127)

σnm ≈
K∑

k=1

wk(∆x̃knỹkm + x̃kn∆ỹkm) , (5.128)

we observe that neithersnm or σnm necessarily increase or decrease asK changes.

There is no immediately apparent relationship between the number of markers on the probe and

the accuracy of pose estimation. Nevertheless, insight may be obtained from the realization that the

overall error in pose is expressed as a least-squares optimization problem. In a least-squares sense,

data added to the approximation will either bring it closer to an optimal solution or drive it further

away. The dimensions of a rigid tracking probe are fixed, however, meaning the data (the marker

locations) are physically restricted to a given space. Thus, increasing the number of markers adds

to the data in such a way as to drive the approximation closer to an optimal solution, giving a

reduction inε. However, the additional number of markers required to see a significant change
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may be unrealistic. The pose error of a tracking probe whose number of markers are increased

dramatically is modeled in Section7.1. An added benefit to increasing the number of markers may

be an increase the field of regard of the tracking probe.

Trackers that use active markers are also affected by the marker field of emission. The larger

the marker field of emission, the fewer number of markers that are required to achieve a large field

of regard. As the solid angle of marker signal emission increases, the probe field of regard will

likely increase. As the field of emission is generally fixed for a tracker, however, field of regard is

more dependent upon number of markers used on the tracking probe.

5.2.4 Matrix of Tracking Factors

The results of the previous sections can be summarized as a table of tracking factors versus perfor-

mance in various aspects of pose estimation.

Table 5.1: Matrix of Tracking Factors

pose error rotation error translation error field of regard
global error increases + + + ∼

decreases - - - ∼
local error increases + + + ∼

decreases - - - ∼
probe size increases - - ∼ ∼

decreases + + ∼ ∼
number of markers increases + ∼ ∼ +

decreases − ∼ ∼ -
field of emission increases ∼ ∼ ∼ +

decreases ∼ ∼ ∼ -

The implications of Table5.1 are that we can quickly determine what the effects of changing

a particular parameter will be when designing a tracking probe. A “+” indicates an increase, a “-”

indicates decrease, and “∼” indicates no significant change in the measure of performance.
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Combined with quantitiative measures of performance, we can more effectively design and imple-

ment marker-based tracking probes using the techniques at our disposal.

80



CHAPTER 6: APPLICATION TO TRACKING PROBES

By combining design methods, mathematical formulations, and simulation, we have created a

framework for implementing marker-based tracking probes. We now discuss the application of the

methods discussed in Chapters3, 4, and5 .

To test the implications of the framework, we use four probe topologies. The first tracking

probe is a six marker digitizing probe manufactured by Northern Digital, Inc. The next probe

consists of eight markers arranged in two concentric squares. The third probe is a semi-spherical,

conformally designed tracking probe. The last probe is a conformally designed probe whose mark-

ers are mapped directly upon the object to be tracked.

The chapter begins with detail of the simulations of the tracking probes. Next, we provide ex-

perimental verification of the results from the simulations and the conformal probe design process.

We close by detailing the design process of a conformal tracking probe.

6.1 Simulation of Tracking Probes

The simulation of tracking probes models the pose estimation process. The first step in this process

is to determine the location of the markers within the local frame of the tracking probe,xk. The

local marker positions are given by the marker mapping procedure, the schematics of the proposed

tracking probe, or from user-created data files that specify a tracking probe. However, these loca-

tions are do not have any errors associated with them when produced by the mapping algorithms.

For example, within the marker mapping procedure, we use a 3D model of an object that is com-

posed of triangles to place the markers. When a marker location has been determined, it is placed

at the center of the corresponding triangle. In practice, the marker location can only be approxi-

mated, usually to the size of the corresponding triangle within the 3D model. In addition, once the

markers are placed on the object, the local coordinate frame may be changed, that is, recomputed

based upon convenience. Therefore, we must add errors to these local marker locations to properly
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simulate the construction of a tracking probe. The magnitude of the errors can be determined based

upon manufacturing data (if the probe is already physically constructed) or based upon the relative

size of the triangles used in the 3D model. The errors in determination of the local frame,∆xk, are

simulated by applying zero-mean Gaussian noise to the coordinates using the following procedure:

1. Determine the amount of noise to apply to local coordinates.

2. Seed the random number generator.

3. Using three uniform random numbers, determine a normalized noise vector for each marker.

4. Scale the normalized noise vector magnitude using Gaussian random number. The Gaussian

distribution used has zero-mean and a standard deviation equal to the noise amount chosen

in Step 1.

5. Add the noise vectors to local marker locations.

Once we have simulated the local coordinates, we simulate the locations of the markers in

the tracker frame of reference,yk. However, we must know where the probe is to be simulated

within the tracking volume because the accuracy of the tracker may vary according to the probe

location within the volume. Thus, we apply a rotation,R and translation,t to the local marker

locations (with noise) to obtain the marker locations with respect to the tracker, also called the

global marker locations. The rotation is specified in a matrix format, due to the formulation of

the noise propagation procedure specified in Chapter5. Finally, based upon the accuracy of the

tracker in that region, we add zero-mean Gaussian noise,∆yk to the global marker locations using

the procedure previously defined for the local marker coordinates.

We now have noisy and noise-free representations of the probe markers in the global and local

coordinate frames. The next step is to estimate the amount of pose error. The procedure for

propagating the effects of marker noise to the pose estimation is described in Section5.1. An

algorithm has been created and implemented to mimic this procedure. The inputs to the algorithm

82



are the local and global marker coordinates with noise, the standard deviation of the Gaussian

noise applied to the local and global marker coordinates, and the initial, error-free rotation matrix

that defines the orientation of the tracking probe. The output of the algorithm is the incremental

rotation matrix,∆R that transforms the tracking probe from its initial, error-free orientation to the

orientation obtained when noisy marker data are used. From the∆R, we compute the average

pose error using a sum of squared errors formulation

∆P 2 =
1

K

K∑
i=1

||(Rerrorxk + terror)− (Rxk + t)||2 . (6.1)

In this expression,∆P is the pose error in millimeters,Rerror is the concatenation of the initial,

error-free orientation and the incremental rotation matrix (∆RR), thexk are the noise-free lo-

cal marker locations, andterror is the sum of the initial position of the tracking probe and the

translation between the noise-free local maker centroid and the noisy global marker centroid.

We can also determine the rotational and translational components of the pose error. The

amount of error in rotation,∆Prot, can be determined from a concatenation of two quaternions,

expressed as

qresult = qqerror
−1 , (6.2)

whereq is the unit quaternion representing the error-free orientation, obtained fromR, andqerror

is the noisy orientation, obtained fromRerror. The amount of error in rotation is equal to the angle

extracted from the scalar portion ofqresult. The error in position,∆Ppos, is expressed as

∆Ppos = ||terror − t|| . (6.3)

In the course of the simulation process, we determine the value of∆P , ∆Prot, and∆Ppos

The independent variables within the simulation are the tracker noise, the probe size, and,

the number of markers on the probe. The dependent variables we can study are the overall pose

error in millimeters, the orientation error in degrees, and the position error in millimeters. The
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tracker noise and probe size are incremented on a logarithmic scale. The number of markers is

incremented arithmetically when a generic tracking probe shape is used. Currently, the simulation

supports generic spherical and planar tracking probes with up to 25 markers.

At each increment of the independent variable, the probe is simulatedN times (N ≥ 20) and

the pose error results are averaged. The average at each increment is then plotted on a linear or log

scale. When plotted on a linear scale, the standard deviation of theN analyses is included at each

data point as error bars. Finally, a curve is fit to the data.

6.1.1 Simulation Specifics

The simulation of tracking probes and pose errors was implemented in MATLAB. The simula-

tion was built with a graphical user interface, to allow for easier simulation control and easier

adjustment of simulation parameters. The simulation GUI is shown in Figure6.1.

Aside from the dependent and independent variables, we can adjust the local noise of the

probe markers, the increment applied to the independent variables, the number of iterations used

to compute the average errors, how the results are displayed, and the initial probe position within

the tracking volume.

The POLYFIT function is used to determine the coefficients of a polynomial curve that fits

the data in the least squares sense. The POLYVAL function is used to obtain error estimates on

the predictions from the polynomial. The error bounds assume that the data are independent,

normally distributed, and with constant variance. The graphs are then generated with the PLOT

and ERRORBAR functions. The green line corresponds to the results of a 4th order polynomial

least-squares curve fit. The red lines above and below represent the 95% confidence interval for

the data points plotted on the graph.

A 4th order polynomial chosen as opposed to an exponential function because a better fit is

obtained when including the data for very small or very large values of the independent variable.
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Figure 6.1: MATLAB Simulation GUI

Higher orders of magnitude were chosen for the purpose of displaying where the assumptions of

the model are violated, that is, the order of magnitude of the noise is equal to that of the probe size.

Still, the r-squared value for the 4th order curve fit ranges between 0.62 and 0.75 when a probe

is simulated. Within two orders of magnitude of the midpoint, however, an exponential fit yields

residuals on the order of 1 mm in pose error and r-squared values greater than 0.7.

Within the simulation we use the EXPM function to compute the matrix exponential. This

function uses a Padé approximation rather than a Taylor Series approximation. We also use the

RAND and RANDN functions to generate uniform and Gaussian random variables, respectively.

The random number generators are seeded using the system time.

There are three types of generic tracking probes that are utilized in the simulation. The first

type, a generic spherical probe, is composed of markers placed on a sphere of unit radius. The

marker distributions are calculated beforehand using the modified SA technique described in Chap-

ter3. The next type is a square, 10 cm tracking probe with the markers arranged in a spiral fashion.

That is, the probe is divided into a 5x5 grid with the markers arranged as numbered in Table6.1.1.
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The last type is a square, 10 cm probe with the markers placed randomly. These simulated probes

Table 6.1: Marker Placements for a Spiral, Planar Tracking Probe

15 16 17 18 19
14 4 5 6 20
13 3 1 7 21
12 2 9 8 22
11 10 25 24 23

were used as test cases for the probes to be physically implemented or as thought experiments to

probe various aspects of the probe design framework.

6.2 Experimental Results from Tracking Probes

The model proposed in Chapter 5 relies upon the fact that the noise values propagated are Gaussian

in nature. Therefore, our first task was to determine if this was the case experimentally. Using 1000

samples of position data from a single marker, a Gaussian curve was fit to a 50-bin histogram. The

result of the fit is shown in Figure6.2 and has an R-squared value of 0.9602, indicating a good

approximation of a Gaussian distribution. The results show that the data are well fit by a Gaussian

distribution, so our initial assumption of the noise distribution is valid. Moreover, the central limit

theorem essentially states that data which are influenced by many small and unrelated random

effects are approximately normally distributed.

Each tracking probe was simulated at a location of 2.5m from the tracker using local noise

specifications which matched its physical tracking characteristics. The tracker accuracy simulated

was 0.1 mm, with 100 iterations performed at each increment of the independent variable studied.
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Figure 6.2: Data Points Fit with a Gaussian
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For each tracking probe, we then performed an iterative accuracy measurement. The standard

procedure was the following:

1. Secure probe to rotation stage

2. Record the unit quaternion describing the initial orientation of the probe, and the three ele-

ment vector describing the initial position of the probe with respect to the tracker.

3. Rotate or translate the probe by a specified amount

4. Record the final orientation and position of the tracking probe

5. Determine the amount of rotation and translation reported by the tracker and compare

When measuring the accuracy in orientation, we use the error metric presented in Equation6.2.

Likewise, when determining accuracy in position, we use Equation6.3

6.2.1 A Six-Marker Planar Probe

Figure 6.3: A Six-marker Planar Probe

The first tracking probe assessed was a planar probe with six markers, which corresponds to

the digitizing probe shown in Figure6.3. The local marker noise value for the probe was set at
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0.127 mm to coincide with the manufacturing data for the accuracy of marker placement. The

simulation of this probe predicted an error of 0.06± 0.04 deg, shown in Figures6.4and6.5. The

black rectangle shown in Figure6.4 indicates the area displayed in Figure6.5. The experimental

result was 0.083± 0.015 deg.

Figure 6.4: Simulation Results from a Six-Marker Planar Tracking Probe

6.2.2 Two Concentric Tracking Probes

To show the dependence of size on angular accuracy, we constructed two concentric tracking

probes. The probes were rectangular and approximately at a ratio of 4:1 in size. The smaller

probe consists of the four inside LEDs and has dimensions 3 cm x 2.5 cm. The large probe has

dimensions 11.7 cm x 10.5 cm. In simulating the pair of probes, the local marker noise value for
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Figure 6.5: Simulation Results from a Six-Marker Planar Tracking Probe (at close range)
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Figure 6.6: Two Concentric Tracking Probes
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the probe was set at 3.5 mm to coincide with the distance between rows on the solderless bread-

board. For the smaller tracking probe, the simulation predicted an orientation error of 0.206 deg,

shown in Figures6.7and6.8. The black rectangle shown in Figure6.7indicates the area displayed

in Figure6.8. The experimental result was 0.282± 0.03 deg.

Figure 6.7: Simulation Results from Small Concentric Tracking Probe

Using the larger probe, the simulation predicted an orientation error of 0.039 deg, shown in Figures

6.9 and6.10. The black rectangle shown in Figure6.9 indicates the area displayed in Figure6.9.

The experimental result was 0.008± 0.026 deg, Figure6.6shows the two tracking probes.

92



Figure 6.8: Simulation Results from Small Concentric Tracking Probe (at close range)
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Figure 6.9: Simulation Results from Large Concentric Tracking Probe
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Figure 6.10: Simulation Results from Large Concentric Tracking Probe (at close range)
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6.3 Case Study: Design, Implementation, and Assessment of Conformal Probes

6.3.1 A Semi-spherical Head Tracking Probe

Figure 6.11: A Semi-spherical Head Tracking Probe

The Semi-spherical head tracking probe is shown in Figure6.11. In simulating the probe, the

local marker noise value for the probe was set at 0.127 mm to coincide with the manufacturing

data for the accuracy of marker placement.

The simulation of this probe predicted an orientation error of 0.54± 0.24 deg, shown in Figures

6.12and6.13. The black rectangle shown in Figure6.12 indicates the area displayed in Figure

6.13. In translation, the model predicts a translation error of 0.24± 0.1 mm. Experimentally,

the accuracy in orientation and position was found to be 0.60± 0.03 deg and 0.225± 0.05 mm,

respectively We can see that there is a discrepancy between the precision of the predicted and

experimental results in angle. Initially, the difference in the means of the angular predicted and

experimental results was on the order of 40%. However, upon observing this, we increased the

number of samples in the predictive model to 10,000 to obtain a better estimate of the mean. The

remaining discrepancy between the predicted and experimental precision is likely compounded

by two factors. First, the markers for this tracking probe are tightly packed, relative to the other
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Figure 6.12: Simulation Results from Semi-spherical Head Tracking probe
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Figure 6.13: Simulation Results from Semi-spherical Head Tracking Probe (at close range)
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probes examined. The other factor is that our model for prediction is based upon first-order error

propagation. Because the markers are in close proximity with a relatively large amount of variance

(due to the first-order error model), it is not surprising to observe this discrepancy.

6.3.2 A Conformally Mapped Probe – HMD

The geometry of an integrated head tracking probe was designed using a 3D model obtained from

CAD data. Using the Viewpoints Algorithm, we placed 11 markers on the front surface of the

HMD. The specific viewpoints were spread at 45 degree increments on a 90 degree solid-angle

wedge of an intermediary sphere. The final mapping of the markers is shown in Figure6.14

Figure 6.14: VRML Visualization of a Conformally Mapped Tracking Probe
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The markers were then placed physically on the HMD using GeoMagic from Raindrop Soft-

ware. In this package, the ability is present to determine the distance between specified points in

the model. During the Viewpoint mapping technique, we chose the local coordinate system to be

coincident with that of the 3D model. Therefore, when viewing the model in GeoMagic we were

then able to determine the location of prominent features relative to the origin of the local coordi-

nate system, then determine the distance from a given feature to a marker location. The procedure

was done by hand using a digital caliper, so additional errors may be present. However, in the

stereolithography process, the marker locations can be colored, so that the markers may be placed

with high accuracy in future designs.

Figure 6.15: Realization of a Conformally Mapped Tracking Probe
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The conformally mapped HMD tracking probe is shown in Figure6.15. The local marker noise

value for the probe was set at 0.1 mm to coincide with the stereolithography manufacturing data

for the accuracy of marker placement. The simulation of this probe predicted an error of 0.0325±

0.02 deg in orientation, shown in Figures6.16and6.17, with an accuracy of 0.14± 0.08 mm in

translation. The black rectangle show in Figure6.16indicates the area displayed in Figure6.17.

The plots shown are simulating different global noise values for the HMD probe configuration.

Experimentally, we obtained an accuracy of 0.028± 0.001 degrees in orientation and 0.11± 0.01

mm in position.

Figure 6.16: Simulation Results of the HMD Tracking Probe
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Figure 6.17: Simulation Results of the HMD Tracking Probe (at close range)
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CHAPTER 7: DISCUSSION AND CONCLUSIONS

The main contribution of this work is the creation of a mathematical model for predicting errors in

pose estimation. We have quantified the effects of tracker and fabrication noise and the effects of

probe size on pose errors. Furthermore, we have combined these results, introduced novel marker

mapping techniques, and created a framework for the design of conformal tracking probes based

upon environmental and application constraints. The tracking pose error results achieved for the

conformal head tracking point to the promise of this approach for use AR environments. To achieve

a registration error of 1 mm, an the pose error for a tracking probe must be less than 0.057 deg

[Holloway, 1995]. With the design presented, we have obtained a static accuracy good enough to

achieve this standard. We now discuss further some of the interesting problems that could provide

directions for future research.

7.1 Further Insights for Conformal Probe Design

When mapping markers on an object, the number of markers used is not as important as how the

markers are arranged. Figure7.1shows the results from a simulation where the number of markers

placed on an object was increased dramatically. The probe simulated was a planar tracking probe

and the markers were placed randomly. The results show that the pose error is reduced as the

number of markers is increased. However, the quantity of markers added must be substantial to

affect an increase. For example, for the probe in Figure7.1, if the starting tracking probe was

comprised of five markers, 20 markers would have to be added to gain a 50% increase in the

accuracy of pose estimation. Moreover, adding 20 markers to the probe would only improve the

pose error from 0.06 mm to 0.03 mm, which may not have a noticeable impact upon a particular

application . Similar results were obtained when the type of tracking probe simulated was a sphere.

However, further study will be required to model the effect empirically and to quantify the effect

mathematically.
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Figure 7.1: A Plot of Pose Error vs. large numbers of markers
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7.2 Marker Mapping Concerns

The two mapping algorithms presented are both optimization-based algorithms. However, the

mapping algorithm of choice is the Viewpoints Algorithm because it not only finds optimal posi-

tions for the markers, but it also minimizes the number of markers needed to fulfill the designer’s

field of regard constraint. The Viewpoints Algorithm is not foolproof, though, because of inconsis-

tencies with the function which tests for whether a triangle is seen or not. In this test, the triangle

normal is compared to the vector from the viewpoint being tested a the time. If the resulting dot

product between the two vectors is negative, then the triangle can be “seen.” Unfortunately, if one

imagines a viewpoint on one side of the letter “M,” there may be up to three triangles along a ray

cast from the viewpoint through the “M” that may pass the test. This is a current problem in the

field of computer graphics, and will be addressed in the future. Nevertheless, for relatively simple

objects, the algorithm works well.

Both marker mapping algorithms presented rely upon having a 3D model of the object upon

which the markers are to be mapped. However, within the process of mapping markers on an

object, there are potential issues concerning the model itself. The problem lies in the triangle

density of the 3-D model used to represent the real object. The triangle density is the number of

triangles per unit of surface area. If a 3D model has a large number of small triangles, then the

triangle density is high. As such, a high triangle density is desirable because it would be a more

accurate representation of the object that will have markers placed upon it. Still, the Viewpoints

Algorithm may end up mapping many markers in quite a small area. A solution to this issue is to

apply a minimum distance constraint to the algorithm during the mapping process.

7.3 Numerical Limitations

In the simulations, there are places where the possibility of errors induced by numerical inaccura-

cies is increased. First, the pose error formulation uses matrices instead of quaternions to represent
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rotations. Matrices require more numbers to represent an equivalent quaternion rotation, therefore

matrix operations are more subject to numerical drift when used for comparable transformations.

Second, the tracker noise may not be well-approximated by a Gaussian distribution. Third, in fit-

ting a fourth-order polynomial to the simulation data, the correlation coefficient (which expresses

the goodness of fit) ranged between 0.62 - 0.75 when examining data generated from independent

variables in the range of log(0.001) to log(1000). If we limit the independent variable to the range

log(0.01) to log(100), a superior exponential curve fit results. However, the dynamic range of the

simulation is naturally limited. Finally, because we generate random distributions each time the

simulation is run, we have variability in results. At small noise levels, the difference is negligible,

but larger noise levels induce greater variability. Therefore, in the future, the tradeoff between

static noise vectors and dynamically generated noise must be examined.

7.4 Marker/Tracker Issues

If the intensity of the marker field of emission is non-uniform or its signal is somehow distorted,

the accuracy in pose estimation may be affected. For example, in an optical tracking scenario

with active markers, there may be distortions in the reported position of a marker based upon the

angle at which it is detected. In an acoustic tracking system, there may be inaccuracies in reported

marker positions due to ambient noise.

To address these issues, a practitioner should observe the behavior of a single marker within

the tracking volume. With a precise rotation platform, the angle at which the tracker detects the

marker at half power could be detected. From there, a functional relationship between SNR and

marker angle could be extrapolated. Once this is done, knowing the position of a simulated probe,

the appropriate noise value could be assigned to each marker on the probe.
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7.5 Scale Factor in Pose Estimation

In the formulation presented, we assume unity scale factor because our investigation concerns rigid

tracking probes. However, as a consequence of noise effects on the marker distribution, we may

notice some errors due to an apparent scaling. We can examine the least squares equation, with the

scale factor computed as done in [Horn, 1987]. A comprehensive analysis of the change in scale

with noise will be needed to improve the performance of the model.

7.6 Future Work

The research presented addresses a critical need for quantification and assessment for marker based

tracking in virtual environments. We have presented a framework for designing tracking probes,

introduced a mathematical model for error propagation in pose estimation, and quantified the im-

pact of environmental variables. As with most research, however, the process of finding answers

often leads to more questions and directions for future efforts.

One such effort is an examination of the effects of tracker precision. Intuitively, having a

tracker with good precision is better than a tracker with poor precision. Within our framework, we

seek to incorporate these effects quantitatively. Through an examination of second order statistics,

it should be possible to quantify precision effects. Based upon the results from Chapter5, tracker

precision problems are likely to affect the magnitude of tracker noise values, resulting in poorer

pose estimations.

Also of importance is the need to understand the effects of changing the arrangement of markers

on a tracking probe, non-uniformly, i.e., changing the probe shape. By isolating the individual

effects of marker motion, a more superior probe design can be achieved. Section5.2.2proposed

the foundation of a quantitative analysis of individual marker motion. Extending this foundation,

we propose an investigation into the properties of theH matrix. An analysis of variance on the

elements of this matrix would be a starting point. Then, propagating the covariance effects to the
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eigenvalues ofA andB may provide insight into how to quantify individual marker effects. Each

marker could then be weighted according to its importance to the pose estimation accuracy of the

probe.

The issues concerned with marker weighting lead to a discussion of relative motion between

markers on the tracking probe. In the case that the probe is not rigid, the markers may move

with respect to each other. A way to account for relative motion is to weight each marker on

the tracking probe according to its fidelity. In this way, more importance is given to the higher

fidelity markers. However, the process of assigning weights to markers is not straightforward. One

way to determine the weight for a marker is to move the probe through a predefined motion that

approximates the movement to be tracked and determine the weighting based upon the standard

deviation of marker motions relative to the centroid. A more robust method would be to apply an

adaptive filtering algorithm to the positions of the markers on the non-rigid object. In this way,

the weights could be updated dynamically and the properties of the probe deformation could be

examined. The inclusion of such capability in this framework is highly desired.

Because tracking probes are meant for dynamic usage, a logical next step would be an extension

of the framework to include dynamic errors. Adding dynamic capabilities to the current framework

will require a significant effort. To start, for any marker based tracking scheme, there is an apparent

deformation of the tracking probe due to the fact that all the marker positions are not acquired

simultaneously. Next, the relationship between the speed of the probe movement and the update

rate of the tracking system must be quantified. Then, the latency of tracker measurements must

be studied to prevent large errors from appearing within the framework. Finally, any adaptive

weighting applied for non-rigid tracking probes must be predictive. In fact, predictive algorithms

may have to be used to overcome the tracker latency. There are a few large-scale research topics

within this problem, making it quite appealing.

An implementation task to be performed is the migration of the pose error determination al-

gorithm to C++. This would result in faster computation and greater freedom in implementation.
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Users could import their own mathematical functions and modify the algorithms utilized, which

are some of the benefits of modular code. The end users could also selectively utilize the portions

of the framework most germane to their research, if desired. For our purposes, having the frame-

work in C++ allows incorporation into other in-house VE utilities, such as the Distributed Artificial

Reality Environment (DARE) Framework [Hamza-Lup et al., 2004].

A fast, native implementation of the conformal framework would lead to its ultimate incar-

nation, that is, a fully integrated, dynamic probe design procedure. Markers placed on the probe

would be visualized as they are mapped. The pose estimation procedure would update dynamically

as more markers were added. The markers on the probe could be moved through a GUI and the

probe pose error would adjust dynamically along with the error contribution of the current marker.

The ideas and directions for the ongoing research underscore the potential for cross-pollination

with other disciplines and research areas. For instance, a dynamic probe design system could

be used for network assessment, with the markers representing nodes and the marker weights

representing latencies from the current network position. Maximizing the field of regard of the

probe would spread the computational or traffic load equally among the computing nodes. Another

possibility is protein synthesis or microbiological research. The tracking probe could represent a

gene of a certain shape and the markers proteins that occur within the gene. The weighting of

the markers could be calculated in such a way as to ensure that the illegal protein sequences do

not occur. By finding the optimal configuration of proteins, a new antibiotic could be formed or

interesting genetic sequences studied. Indeed, a vast number of applications could be found for a

dynamic, conformal tracking framework.
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APPENDIX

SOLUTION OF EIGENVALUE COMPONENTS
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We can expressa2 as

a2 ≈ α2 [ (s12σ11)
2 + (s22σ21)

2 + (s32σ31)
2 + (s11σ12)

2 + (s21σ22)
2 + (s31σ32)

2

+ 2(s12σ11)(s22σ21) + 2(s12σ11)(s32σ31) + 2(s12σ11)(s11σ12)

+ 2(s12σ11)(s21σ22) + 2(s12σ11)(s31σ32) + 2(s22σ21)(s32σ31)

+ 2(s22σ21)(s11σ12) + 2(s22σ21)(s21σ22) + 2(s22σ21)(s31σ32)

+ 2(s32σ31)(s11σ12) + 2(s32σ31)(s21σ22) + 2(s32σ31)(s31σ32)

+ 2(s11σ12)(s21σ22) + 2(s11σ12)(s31σ32) + 2(s21σ22)(s31σ32) ] . (1)

Examining the mixed polynomial terms,

(snmσpq)(srtσuv) = snmsrtσpqσuv (2)

=

[
K∑

k=1

wkx̃knỹkm

] [
K∑

k=1

wkx̃krỹkt

] [
K∑

k=1

(wk∆x̃kpỹkq + wkx̃kp∆ỹkq)

]
[

K∑
k=1

(wk∆x̃kuỹkv + wkx̃ku∆ỹkv)

]
(3)

= (w1x̃1nỹ1m + . . . + wkx̃knỹkm)(w1x̃1rỹ1t + . . . + wkx̃krỹkt)

(w1∆x̃1pỹ1q + w1x̃1p∆ỹ1q + . . . + wk∆x̃kpỹkp + wkx̃kp∆ỹkq)

(w1∆x̃1uỹ1v + w1x̃1u∆ỹ1v + . . . + wk∆x̃kuỹkv + wkx̃ku∆ỹkv) (4)

AssumingK = 2, we get

= (w1x̃1nỹ1m + w2x̃2nỹ2m)(w1x̃1rỹ1t + w2x̃2rỹ2t)

(w1∆x̃1pỹ1q + w1x̃1p∆ỹ1q + w2∆x̃2pỹ2p + w2x̃2p∆ỹ2q)

(w1∆x̃1uỹ1v + w1x̃1u∆ỹ1v + w2∆x̃2uỹ2v + w2x̃2u∆ỹ2v) (5)
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= (w1
2x̃1nỹ1mx̃1rỹ1t + w2

2x̃2nỹ2mx̃2rỹ2t + w1w2x̃1nỹ1mx̃2nỹ2m

+ w1w2x̃1rỹ1tx̃2rỹ2t)

(w1∆x̃1pỹ1q + w1x̃1p∆ỹ1q + w2∆x̃2pỹ2q + w2x̃2p∆ỹ2q)

(w1∆x̃1uỹ1v + w1x̃1u∆ỹ1v + w2∆x̃2uỹ2v + w2x̃2u∆ỹ2v) (6)

What becomes apparent from theσpqσuv multiplication is a∆xk
2 or ∆yk

2 term will result only

if p = u or q = v, respectively. Since the mixed∆xk∆yk terms go to zero when looking at an

ensemble average, the expression becomes

snmsrtσpqσuv = (w1
2x̃1nỹ1mx̃1rỹ1t + w2

2x̃2nỹ2mx̃2rỹ2t + w1w2x̃1nỹ1mx̃2nỹ2m

+ w1w2x̃1rỹ1tx̃2rỹ2t)

(w1
2∆x̃1pỹ1q∆x̃1uỹ1v + w1

2x̃1p∆ỹ1qx̃1u∆ỹ1v

+ w2
2∆x̃2pỹ2q∆x̃2uỹ2v

+ w2
2x̃2p∆ỹ2qx̃2u∆ỹ2v) (7)
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