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ABSTRACT 

In this dissertation, we propose numerical techniques to explain physical phenomenon of 

nonlinear photonic crystal fiber (PCF). We explain novel physical effects occurred in PCF 

subjected to very short duration pulses including soliton. To overcome the limitations in the 

analytical formulation for PCF, an accurate and efficient numerical analysis is required to 

explain both linear and nonlinear physical characteristics. A vector finite element based model 

was developed to precisely synthesize the guided modes in order to evaluate coupling 

coefficients, nonlinear coefficient and higher order dispersions of PCFs. This finite element 

model (FEM) is capable of evaluating coupling length of directional coupler implemented in 

dual core PCF, which was supported by existing experimental results. We used the parameters 

extracted from FEM in higher order coupled nonlinear Schrödinger equation (HCNLSE) to 

model short duration pulses including soliton propagation through the PCF. Split-step Fourier 

Method (SSFM) was used to solve HCNLSE. 

Recently, reported experimental work reveals that the dual core PCF behaves like a 

nonlinear switch and also it initiates continuum generation which could be used as a broadband 

source for wavelength division multiplexing (WDM). These physical effects could not be 

explained by the existing analytical formulae such as the one used for the regular fiber. In PCF 

the electromagnetic wave encounters periodic changes of material that demand a numerical 

solution in both linear and nonlinear domain for better accuracy. Our numerical approach is 

capable of explaining switching and some of the spectral features found in the experiment with 

much higher degree of design freedom. Numerical results can also be used to further guide 

experiments and theoretical modeling. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Nonlinear behaviors of waveguide structure have been studied in electromagnetic and 

optics for the past few decades [1-9]. Theoretical as well as the experimental works open the 

door of opportunities to invent new devices in microwave and optics area. One of the recent 

trends of optical waveguide research and development work is governed by the requirement of 

different device structures subjected to nonlinear effect [7, 10-11]. Dielectric material shows 

nonlinear effects due to intensity dependent change of refractive index and stimulated inelastic 

scattering [1-7]. Vector wave equation derived from the Maxwell equation represents the 

electromagnetic wave propagation through the waveguide [3-5]. Depending on the structure and 

material properties, numerical solution of electromagnetic wave equations requires modification 

[8-12]. If the system becomes nonlinear then extra attention is required. Because in that case 

material’s refractive index itself changed due to higher field intensity [1-2]. When these 

waveguides support short duration pulses the dispersion and nonlinearity plays together. 

Moreover for coupled waveguide structures, coupling characteristics also need to be found in 

order to understand the pulse propagation properties [1, 4, 10]. When the input pulse is intense 

the nonlinearity is triggered in these waveguide that causes switching and new frequency 

generations due to multiple nonlinear processes [1-7]. In order to understand these processes we 

need to find all of the above mentioned properties (dispersion, coupling etc) for a wide 

frequency/wavelength region. This was the primary motivation of the present research. 
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Recently researchers have showed intense interests on a special type of optical waveguide 

called photonic crystal fiber (PCF) because of its engineerable dispersion, coupling and 

nonlinear properties [13-17]. These make PCF a suitable candidate for many applications which 

could not be possible or difficult by using regular optical fiber. Recent theoretical and 

experimental works reveal many possible nonlinear processes in PCF which could be used for 

numerous applications [13-14, 17-20]. A careful and accurate linear and nonlinear modeling is 

necessary to explain many of the above mentioned properties. Analytical formulation similar like 

the one used for the regular optical fiber is not sufficient as the structure posses a periodic 

changes of material [17-21]. A numerical approach is necessary to accurately analyze the 

waveguide modes. There are some numerical methods already available with their pros and cons. 

Finite difference time domain (FDTD) method, beam propagation method (BPM), boundary 

element method (BEM), and finite element method (FEM) have been used to model PCFs 

[13,22-26].  Among these methods, the FEM is famous for its accuracy because it evaluates local 

functions in small discretized elements [12-13, 26]. 

In the present research we have developed a vector finite element model to solve wave 

equation in order to evaluate propagating modes of dielectric waveguide. The method is robust 

and it avoids having spurious/non physical solution [12]. Before analyzing the PCF structure 

using the above mentioned model, we have evaluated dispersion coefficient for both rectangular 

and circular shaped waveguide and compared with the existing analytical results for the validity 

check of the model [8-9].  

To consider nonlinearity we changed the refractive index of the dielectric medium due to 

the variation of electric field intensity at the respective elements. Our finite element method 
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(FEM) solver provides us the electric field along with the wave vector which we used to update 

the refractive index. Starting with single nonlinear waveguide structure, our research is later 

extended to the nonlinear coupled optical waveguide structures. The coupling characteristics of 

coupled nonlinear waveguide are also presented in later chapters.  

When these waveguides support short duration pulses numerous interesting physical 

effects were observed both in the linear and nonlinear domain. Nonlinear Schrödinger Equation 

(NLSE) is usually used to model the pulse propagation through the waveguide [1]. This 

propagation equation is further modified based on the waveguide and pulse properties. Split Step 

Fourier Method (SSFM) was used to solve the pulse propagation equations. In the later chapters 

of this dissertation, results are presented to explain linear and nonlinear physical effects due to 

short duration pulse (including soliton) propagation through the optical waveguide. 

1.2 Numerical Methods in Electromagnetics 

Numerical analysis is the study of algorithms for the problems of continuous mathematics 

[27-28]. In practical mathematical calculations it does not seek exact answers, because exact 

answers are impossible to obtain in practice. Instead, much of numerical analysis is concerned 

with obtaining approximate solutions while maintaining reasonable bounds on errors [9,12,27]. 

Before the advent of modern computers numerical methods often depended on hand interpolation 

in a large printed tables [27-28]. Nowadays computers can calculate the required functions. The 

interpolation algorithms may be used as part of the software for solving both ordinary and partial 

differential equations [9,12,27]. Partial differential equations involved in electromagnetics 

problem are solved by first discretizing the equation and bringing it into a finite-dimensional 
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subspace [9,12]. This can be done by a finite element method, a finite difference method, or a 

finite volume method [27]. The theoretical justification of these methods often involves theorems 

from functional analysis [9,12]. This reduces the problem to the solution of an algebraic equation 

which is easier to calculate [12]. The numerical methods used for our nonlinear waveguide 

analysis are FEM for EM analysis and beam propagation method (BPM) for optical pulses 

propagation. 

1.3 Numerical Methods Used for Nonlinear Optical Waveguide Analysis 

1.3.1 Finite Element Method 

Finite Element Method is a numerical method that proposes an approximate solution to 

the boundary value problem [9, 12]. Starting from 1940’s the FEM has a history of solving 

boundary value problem in mathematics and physics [12, 27-28]. This method was initially 

focused on air craft design. Later it was adopted by the civil engineers for structural design [12, 

29]. Today the method is extended to many other areas of physics and engineering. An 

approximate solution to any complex engineering problem can be reached by subdividing the 

problem into smaller more manageable (finite) elements [9, 12, 27]. Using finite elements, 

solving complex partial differential equations that describe the behavior of certain structures can 

be reduced to a set of linear equations that can be easily solved using the standard techniques of 

matrix algebra [12].  

 FEM is a unique numerical method which addresses problems in areas of physics and 

engineering that include fluid mechanics, mechanics of materials, chemical reactions, 
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semiconductor devices, electromagnetics, optics, quantum mechanics, acoustics etc. The key 

features of FEM are [9, 12, 27-29] 

1. Piecewise approximation of continuous field gives good precision even with the simple 

approximating functions. 

2. Using computational time and resources we can improve the precision just by increasing 

the number of elements. 

3. FEM analysis approximates the element of small sizes and different shapes. This eases 

the application of complex shape of different materials and different boundary conditions. 

4. It covers both linear and nonlinear problems.  

5. Local approximation generates sparse system of equation that helps to solve problem 

having large number of modal unknown. 

FEM substitute the continuous function by a number of discrete sub domains. Unknown 

function in the sub domain is represented by simple interpolation functions with unknown 

coefficient [9, 12]. That approximates the original boundary value system by a finite number of 

unknown coefficients. Ritz variation or Galerkin procedure convert the boundary value problem 

to a finite number of algebraic equations [12]. Solving these algebraic equations led us to find 

the unknown coefficients. With the sparsity of the coefficient matrices, FEM exhibits pleasing 

characteristic of computational economy in numerical modeling [12]. The success of FEM in 

electromagnetics can be largely attributed to their great versatility and flexibility, which allow 

the treatment of geometrically complex structures with inhomogeneous, anisotropic or even 

nonlinear materials [27-28].  
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In summary the boundary value problem solution using FEM should have the following 

steps [9, 12, 27-29]: 

1. Discretization of the domain 

2. Proper selection of the interpolation function 

3. Formulation of system of algebraic equations using Ritz or Galerkin method 

4. Solution of the system of algebraic equations 

1.3.2 Split-Step Fourier Method 

The Split-Step Fourier Method (SSFM) is a pseudo-spectral numerical method used to 

solve nonlinear partial differential equations such as NLSE [1,10]. The name arises for two 

reasons. First, the method relies on computing the solution in small steps, and treating the linear 

and the nonlinear steps separately. Second, it is necessary to Fourier transform back and forth 

because the linear step is made in the frequency domain while the nonlinear step is made in the 

time domain [1,10]. This method is used in the field of light pulse propagation in optical fibers, 

where the interaction of linear and nonlinear mechanisms makes it difficult to find general 

analytical solutions. However, the split-step method provides a numerical solution to the problem. 

Use of Fast Fourier Transform (FFT) improves the speed of the computation [30]. In general 

NLSE describes the dispersion and nonlinearity which act together in optical waveguide. For 

optical beam propagation the NLSE is expressed as  

0),(
2

2

2

2

2


















yxV

yxz
i                                          (1.1) 
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The first term is the evolution term, second and third terms are for diffraction, fourth term 

is for the optical potential under initial excitation and the last term is for the nonlinearity [10]. 

The above initial value problem can not be solved analytically in the general case. Therefore the 

use of numerical methods is inevitable [1, 10]. NLSE for the pulse propagation is similar to 

equation (1.1) except diffraction in spatial domain is replaced by the dispersion in time domain 

[10]. 

The main idea of SSFM is to find approximate solutions of NLSE by assuming that the 

diffraction and nonlinear effects act independently [10]. Here we split the propagation of the 

field in two steps: one for diffraction only and one for nonlinear propagation only. Moreover, we 

calculate the linearly propagating field by working in the Fourier space [10, 30]. By applying this 

technique over many small steps, we can numerically find the solution of Eq. (1.1) for every 

small step in the distance z.  

Working in the Fourier space for the linear part of the problem is better for two reasons: 

(a) the operators become a scalar quantity, and (b) FFT algorithm is very fast [10, 30]. A NLSE 

system can be written by separating the linear and nonlinear part as [1, 10] 

ANL
t
A )( 

                                                            (1.2) 

where L and N are the linear and nonlinear parts of the equation. The solution over a short time 

interval can be written in the form 

),()exp()exp(),( xtAxtA NL                                   (1.3) 

where the linear operator in the NLSE system acting on a spatial field B(t,x) is written in Fourier 

space as 
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),()exp(),()exp( 21 xtFBikFxtBL                (1.4) 

where F denotes the Fourier Transform (FT), F
–1

 denotes the Inverse Fourier Transform(IFT), 

and k is the spatial frequency.  

Computation of A over time interval τ has been done  in four steps: 

Step1 (nonlinear step): Compute A1= exp(τN) A(t, x)  (by finite differences). 

Step 2 (forward FT): Perform the forward FT on A1: A2=F(A1) 

Step3 (linear step): Compute A3 = exp(τL)A2. 

Step 4 (backward FT): Perform the backward FT on A3: A( τ+ t) = F
–1

 A3. 

For numerical approximation of this algorithm, the potential A is discretized in the form Al = A(lh) 

for l = 0, . . . , N – 1, where h is the space-step and N is the total number of spatial mesh points. 

The split-step approximation is accurate for small distances [10]. So we are going to 

solve equation (1.1) for a small distance, under the assumption that the operator B does not 

depend on z. We did this approximation before deriving the NLSE, when we superimposed the 

diffraction and Self Phase Modulation (SPM) effects. 

Again in brief the key features of SSFM are [1, 10, 30-31] 

1. Split-step (linear & nonlinear) method 

2. Derivatives in the frequency domain 

3. Multiplication in the time domain 

4. Easily applied to modifications of the NLSE 
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1.4 Outline of the Dissertation 

 In this dissertation we will focus on the study of the wave propagation through nonlinear 

optical waveguide using numerical techniques.  Specific waveguide structure will be considered 

in this study is the dual core photonic crystal fiber (PCF). The study intends to come up with the 

results to explain necessary physics of these devices. 

 Chapter One is the general introduction of the numerical methods used here to study the 

optical waveguide and nonlinear pulse propagation through it. Vector FEM was used to evaluate 

dispersion, coupling and nonlinear parameters of the wave guide and SSFM is used for analyzing 

pulse propagation through it.  

Chapter Two of this dissertation talks about the finite element formulation of the wave 

equation. A vector formulation of wave equation and its solution procedure based on vector FEM 

has been presented in this chapter. We present numerical examples of dielectric waveguide and 

compare our results with already reported analytical results for validation check of the model.  

Chapter Three discusses the general introduction of PCF working as an optical 

waveguide, its advantages over regular optical fiber and its applications. Dispersion and coupling 

characteristics of dual core PCF has also been presented. Design effort is demonstrated in this 

chapter to show that the geometry can be adjusted to achieve desired linear and nonlinear 

characteristics. 

Nonlinear phenomena observed in optical waveguide, are described in Chapter Four of 

this dissertation. Nonlinear phase shift (due to Kerr nonlinearity) and scattering are the major 

nonlinear effects discussed there. Issues related to soliton propagation and its application in 

optical communication is also reviewed. 
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In Chapter Five we discuss the nonlinear directional coupler implemented in PCF to 

support short pulses including soliton.  Formulation of NLSE has been shown to model the pulse 

propagation through the waveguide. Later we use SSFM to solve the propagation equation. 

NLSE has been modified in order to incorporate the issues related to femto second pulse 

propagation. 

Chapter Six shows the switching characteristics of PCF coupler. Soliton switching 

occurred in dual core PCF is presented there. We show our design effort to adjust PCF 

parameters so that it can support soliton switching. 

Multi frequency generation and determination of its underline causes have been discussed 

in Chapter Seven. Both time and frequency domain nonlinear analysis revealed the nature of 

generating other frequencies. It also help us to understand the existence of other nonlinear 

process observed in the recently conducted experiment such as four wave mixing and third 

harmonic generation.  

Chapter Eight briefly discusses the conclusion of the available results and more 

importantly give an overview of future guideline for theoretical and experimental research 

related to these types of nonlinear waveguides.  The present work already explain some of the 

physical effects such as linear coupling between two core of PCF, switching in PCF coupler, 

soliton wave propagation and also higher frequency generation at intense input power. The study 

also differentiate between the existing theoretical results and the experiment which lead us to 

search for appropriate phase matched condition so that we can under stand other nonlinear 

effects. 
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CHAPTER 2: FINITE ELEMENT FORMULATION 

2.1 Introduction to FEM Formulation 

We initiate our numerical formulation with vector wave equation and solve for different 

propagation modes. An edge element based finite element model was developed for that. Careful 

attention was given to avoid spurious or nonphysical solution of this waveguide modal analysis. 

After that we extended the developed model for periodic and coupled structure to numerically 

evaluate dispersion and coupling characteristics. Intended results guide the direction of research 

concerning linear and nonlinear wave propagation. In this chapter we discuss the method of 

studying electro magnetic wave propagation in wave guide using FEM.  

2.2 Vector FEM: A Review 

The vector finite element method is used to compute the mode spectrum of 

electromagnetic waveguides with arbitrary cross section [12, 32]. We encounter some serious 

problem in node based element analysis which was the primary motivation of finding new edge 

based element analysis. Some of the limitations of nodal analysis are [12, 27,32] 

1. The occurrence of nonphysical or spurious solutions, which is generally attributed to lack 

of enforcement of divergence condition. 

2. The inconvenience of imposing boundary conditions at material interfaces and as well as 

in conducting surfaces. 

3. Difficulties in treating conducting and dielectric edges and corners due to field 

singularities associated with these structures. 
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The edge element based analysis eliminates the disadvantages of the scalar finite element 

approach of having undesired spurious modes or non-physical solutions and easy implementation 

of boundary conditions at material interfaces [12].  This approach uses vector basis that assign 

degrees of freedom to the edges rather than to the nodes of the elements. Although this kind of 

element was first mentioned in 60’s by Whitney, they were not implemented in electromagnetics 

until 80’s [33]. Nedlec discusses the construction of tetrahedral and bricks element [34]. Hano 

introduces rectangular edge elements for the analysis of dielectric-loaded wave-guide [35]. Mur 

and De hoop considered the problem of Electro Magnetic (EM) field in inhomogeneous media 

[36]. Effort was made to analyze optical waveguide [10, 37]. Depending on the structure and 

application we need to choose the element’s shape and sizes as well as implementing proper 

boundary conditions [12]. 

2.3 Vector FEM Formulation for Waveguide Modal Analysis 

The first and foremost requirement of any FEM is to have a good meshing. That means 

we need to discretize the continuous spectrum.  Also we enclose the structure with an electrical 

wall as shown in Figure 2.1.  

 

 

 

 

 

 

Figure 2.1 Arbitrary shaped waveguide with electrical wall 

 
Electrical wall 

Γ 

dΓ 
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 The vector finite element formulation can be illustrated by using either the electric field E 

or magnetic field H field; here we explain the case for the E field, which is the same for the H 

field. Wave equation has its origin at the famous four set of Maxwell’s equations [8, 12]. They 

are 

 
t




H
E 0                                                               (2.1) 

t
r





E
H                                                                  (2.2) 

0 Er                                                                   (2.3) 

0 H                                                                  (2.4) 

Where μr and εr are the permeability and permittivity of the material. After some simple 

derivation and using vector identity we have the vector wave equation for the E field which is 

given by 

                                           0
1 2

0 







 EE r

r

k 


                                                 (2.5) 

The transverse and longitudinal components are separated and can be written as 
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Here, kz is the longitudinal propagation constants.  
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To apply Galerkin’s method  to the above equations, we multiply equation (2.6) with the 

testing function Tt and equation (2.7) with the testing function Tz and integrate both the equations 

over the cross section of the structure Γ [12, 32]; then these two equations become 

            dskdsE
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r

z
tt

r

tt   
1 2

0

2





















 ETETTET 


            (2.8) 

                                dsETkdsET zzrtzttz

r

  
1 2

0 


 


E                    (2.9) 

Using the vector identities; we can write the weak form of the above equations as 
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If the structure boundary dΓ in Figure 2.1 is assumed to be perfectly conducting, then Tt 

= 0 and Tz = 0 on dΓ. Therefore the line integrals on the right hand side of equations (2.10) and 

(2.11) can be neglected. Multiplying equation (2.11) with 2

zk  for the sake of symmetry and 

rearranging the equations we have 
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Since the vector Helmholtz equation is divided into two parts as equations (2.6) and (2.7), 

vector-based tangential edge elements, shown in Figure 2.2(a), can be used to approximate the 
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transverse fields, and nodal-based elements, shown in Figure 2.2(b), can be used to approximate 

the longitudinal component.  

Figure 2.2 Configuration of (a) tangential edge elements (b) node elements 

 

 For a single triangular element shown in the above figure the transverse electric field can 

be expressed as a superposition of edge elements. The edge elements permit a constant tangential 

component of the basis function along one triangular edge while simultaneously allowing a zero 

tangential component along the other two edges [12, 32, 38]. Three such functions overlapping 

each triangular element provides the complete expansion, that is 
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Where m indicates the m-th edge of the triangle and Wtm is the edge element for edge m given by                                   

                                                        itjjtitmtm L  W                                   (2.15) 

Ltm is the length of edge m connecting nodes i and j and αi is the first-order shape function 

associated with nodes 1, 2 and 3 given by  
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and ai, bi, and ci are given by 
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Where i, j, and k are cyclical and A is given by 
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The longitudinal component is written as 

                                                                  



3

1i

iziz αeE                                                            (2.21) 

Where i indicate the ith node and αi is given by equation (2.16). The testing functions Tt and Tz 

are chosen to be the same as the corresponding basis function in equations (2.12) and (2.13); that 

is Tt = Wtm and Tz = αi [2,10]. 

Substituting equations (2.14) and (2.15) into equations (2.12) and (2.13), respectively, 

integrating over a single triangular element, and interchanging the integration and summation 

gives 
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                           (n=1,2,3; j=1,2,3)    
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                           (j=1,2,3; n=1,2,3) 

where the subscripts of α and Wt indicate node number and edge numbers respectively. 

Equations (2.22) and (2.23) can be written in matrix form as, 
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The elements of the above matrices are given by 
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These element matrices are assembled over all the triangular elements in the cross section 

of the structure to obtain a global eigenvalue equation [32], 
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 Solving the above equation yields the eigenvalues or the longitudinal propagation 

constants kz, from which the effective refractive index en  is obtained using the relation [12, 29, 

32] 
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2.4 Power Flow through the Waveguide 

In order to investigate the nonlinear effect of waveguide it is necessary to accurately 

evaluate the power flowing through the waveguide. Because nonlinear effect demonstrated in the 

waveguide is due to the power intensity dependent change of the refractive index. The total 

power input to the waveguide is the sum of power dissipated in all triangular elements. In our 

FEM model we calculate the wave vector as well as it gives us the nodal and edge component of 

electric field from that we evaluate electric field in an element E as 

zt EzEE ˆ                                                              (2.32) 

Here Et is the transverse component electric field vector and Ez is electric field component at the 

direction of propagation as shown in equations (2.14) and (2.21). Power flow (Pointing Vector) 

in the direction of propagation (z direction) is evaluated by the curl operation of electric and 

complex conjugate of the magnetic field in transverse direction as shown in the following 

equation 
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2.5 Nonlinear Perturbation and Eigenmodes of Optical Waveguide 

For small power the above mentioned modal analysis is reasonable. But at higher input 

power the waveguide refractive index changes due to nonlinearity [1-5]. Strong electric field due 

to higher input power is the major contributor to the nonlinear perturbation to the material. For 

Kerr like nonlinear material, the electric field dependent dielectric constant is given by [1-2, 38] 

                                                       
2

)(2)()
2

,(~
2

EnnE                                   (2.34) 

Here 2n  is the nonlinear index coefficient. For silica fiber n2 yield a value in the range 2.2-3.4 

x10
-20

 m
2
/W. E is the normalized electric field for a given input power. As the n2 is positive in 

silica glass it increases the refractive index with the wave intensity, leading to convergences of 

light rays from neighborhood sites towards the region of higher amplitude. This in turn further 

increases the refractive index and leads to more light convergence, resulting in a self-focusing of 

the wave at this location [1-2].  

After evaluating linear (without perturbation) eigenvalue for the even and odd modes we 

adjusted the dielectric constant using equation (2.34) and then solve the equation (2.30) again. 

This iterative process continues until the eigenmode converged. In order to provide the high 

degree of accuracy for eigenvalue calculation, we let the iteration running until it converges to a 

very small preset error. 

2.6 Validity Check of the Developed FEM Code 

 The solution of equation (2.30) provides us the propagation constant of the waveguide in 

the direction of wave propagation. FEM based customized computer codes (both in MATLAB 

and in FORTRAN) have been written for this purpose. This program provides us the wave vector 
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along with the field profile of the waveguide. Before we move forward to analyze periodic PCF 

structure, we solve the above equations for simple rectangular as well as circular waveguide. We 

test the validity of our model by reproducing the numerical and also analytical results for 

dielectric waveguide presented in ref [8]. 

2.7 Mesh Generation for FEM Analysis 

 The accuracy of FEM heavily depends on the size and shape of the mesh and also 

approximation of local function. Better accuracy is achieved with small element size and higher 

degree polynomial [11, 39]. In real life problem, required accuracy is achieved by using fine 

meshes with large number of elements. The uniform subdivision of the domain using similar size 

elements perhaps the simplest type of meshing technique but clearly not the most efficient one 

[39]. For our numerical model we use MATLAB pdetool and use their adaptive meshing 

techniques (Delaunay triangulation) [39]. Our program extract node coordinate from the drawing, 

convert the local node number to global node number and also do the same thing for the edge 

number in order to assemble element matrix to system matrix. We also have to designate node 

and edges at the waveguide boundaries in order to apply proper boundary conditions. The tool is 

smart enough to generate optimized triangular elements to cover computation domain [39]. 

Accurate drawing of the PCF geometry is required to have symmetric mesh generation. Careful 

drawing of PCF geometry is also an essential requirement for investigating underline physics of 

this periodic structure. In the later chapters some dispersion and coupling results will show that 

they are dependent on PCF geometry. We also developed custom codes that will generate the 

PCF geometry. The code is flexible and can be modified easily for different PCF dimensions 
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without redrawing the structure again. This gives the designer the convenience as well as much 

higher degree of freedom. 

 The element size can be optimized by adjusting mesh parameter of the tool [39]. User can 

approximate higher order polynomial in the FEM program to incorporate curve boundary. 

Obviously extra computational cost and time will be added for higher order polynomial and more 

elements required for the fine meshing.  Depending on the application user has to do tradeoff 

between the computational cost and accuracy.  
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CHAPTER 3: DISPERSION ANALYSIS OF PHOTONIC CRYSTAL FIBER 

3.1 General Introduction of Optical Waveguide 

 

Optical waveguides have been widely used in optical communications and drastically 

changed the world. Fiber optic cable and semiconductor laser cavities are common examples of 

optical waveguides. Optical waveguides consist of adjacent, optically transparent sections of 

material with different refractive indices. The section that transmits the light has a slightly higher 

refractive index, so that total internal reflection acts to guide the light within the medium [1, 8].  

Present optical fiber technology maintains a careful trade-off between optical losses, 

optical nonlinearity, group–velocity dispersion and polarization effects [1, 13-14, 40]. Optical 

fiber loss is inherent in the raw material used to make the fiber which is silica glass (SiO2) [1]. 

But nonlinearity and dispersion are strongly affected by the material’s properties and can also be 

influenced by fiber design.  

3.2 PCF a New Type of Optical Waveguide  

Since early 80’s the optical scientists discover that the ability to structure materials on the 

scale of the optical wavelength, will allow the development of new optical materials known as 

photonic crystals [40]. A new kind of fiber was proposed called photonic crystal fiber (PCF) [16]. 

It was also called as holey fiber, hole-assisted fiber or microstructured fiber [13, 41-43].  A PCF 

is an optical fiber which obtains its waveguide properties not from a spatially varying material 

composition but from an arrangement of very tiny and closely spaced air holes which go through 

the whole length of fiber [13, 16-17]. It is a regular morphological microstructure incorporated 
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into the material to radically alter its optical properties [13, 41]. It has a central region of pure 

silica (core) surrounded by air holes. Such air holes can be obtained by using a preform with 

(larger) holes, made by stacking capillary tubes (stacked tube technique) [13, 16-17]. Soft glasses 

and polymers (usually plastics) also allow the fabrication of preforms for photonic crystal fibers 

by extrusion [19,44]. There is a great variety of air hole arrangements, leading to PCFs with very 

different properties.  

3.2.1 Photonic Bandgap Fibers 

In PCF, a wavelength dependant effective volume average index difference between the 

defect regions will form the core, and the surrounding region which contains air holes, will be 

acting as the cladding [13]. This effective-index guidance does not necessarily depend on having 

a periodic array of holes. Even other arrangements could serve a similar function [13]. Another 

waveguide named photonic bandgap fiber (PBG fiber) was designed and fabricated [16-17, 41]. 

It has a totally different guiding mechanism, which is based on a photonic bandgap at the 

cladding region [41]. Because of the wavelength dependence of the refractive index between the 

core and cladding, the PBG fibers can also possess a complete photonic band gap. That means 

they let some wavelength to pass and block some wavelength depending on the size of the air 

holes relative to the period of the lattice [13, 41, 45]. The latter mechanism even allows guidance 

in a hollow core (i.e., in a low-index region). Such air-guiding hollow-core photonic crystal 

fibers (air core bandgap fibers) can have a very low nonlinearity and a high damage threshold 

[42]. They typically guide light only in a relatively narrow wavelength region with a width of e.g. 
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100-200 nm and can be used for pulse compression with high optical intensities, because most of 

the power propagates in the hollow core [1, 42]. 

3.2.2 Light Guiding in PCF 

In the conventional fiber, light guided in the core when light in the core has higher value 

of propagation constant, kz than that of the cladding. The largest value of kz that can exist in an 

infinite homogeneous medium with refractive index n is kz=nk0, and all smaller values of 

propagation constant allowed. We derive propagation constant from our FEM. Either 

conventional homogeneous material or artificially fabricated photonic crystals are used to make 

PCF [1, 13].  

Figure 3.1 shows the schematic of PCF core and cladding region. Light is guided in the 

core region due to higher effective refractive index in the core region. Here the diameter of the 

air hole in the cladding region is denoted by d and the distance between the centers of two air 

holes is called pitch Λ. We often change d and Λ to adjust PCF geometry for our numerical 

model. 
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      (a)        (b) 

Figure 3.1 (a) PCF geometry: core and cladding (b) confined light in core area 

 

A PCF is a periodic structure where propagation constant in the direction of propagation 

kz varies with the wavelength. In our FEM model we evaluate the kz as a function of wavelength 

λ. This is the single most important characteristics of PCF waveguide because it determines the 

shape and nature of the guided wave [1, 8, 13].  

3.2.3 Achievable Properties of PCF by Geometry Design  

PCFs with different designs of the air hole pattern can have very remarkable properties which 

are strongly dependent on the design details. Some of them are [46-49]  

1. Very high numerical aperture of e.g. 0.6 or 0.7 of multimode fibers.  

2. Endlessly single-mode guidance over very wide wavelength regions.  

3. Low sensitivity to bend losses even for large mode areas. 

4. Extremely small or extremely large mode areas than a conventional fiber, leading to very 

strong or weak optical nonlinearities. 

Solid core (silica)

Cladding with low-index 

material (air)
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5. The possibility to fill gases or liquids into the holes and make extremely strong 

birefringence for polarization-maintaining fibers.  

6. Very unusual and engineerable chromatic dispersion properties, e.g. anomalous 

dispersion in the visible wavelength region.  

7. Core-less end caps, fabricated simply by fusing the holes near the fiber end with a heat 

treatment (sealed end facets), allowing for higher mode areas at the fiber surface and thus 

a higher damage threshold.  

8. The feasibility of multi-core designs, e.g. with a regular pattern of core structures in a 

single fiber, where there are some coupling between the cores.  

3.2.4 Applications of PCF 

The above mentioned unique properties make photonic crystal fibers very attractive for a 

wide range of applications. Some examples are [13, 46-52]: 

1. Fiber lasers and amplifiers, including high-power devices, mode-locked fiber lasers, etc.  

2. Nonlinear devices such as suppercontinum generation (frequency combs), Raman 

conversion, parametric amplification, or pulse compression is possible by using PCF 

because both weak and strong nonlinearity can be achieved in PCF by proper design. 

3. Telecom components, such as dispersion controller, filter and all optical switches.  

4. Fiber-optic sensors.  

5. Application in quantum optics such as generation of correlated photon pairs, 

electromagnetically induced transparency, or guidance of cold atoms  
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Even though PCFs have been around for couple of years, the huge range of possible 

applications is far from being fully explored [13]. It is expected that this field will stay very 

lively for many years and give a lot of opportunities for further creative work, both concerning 

fiber designs and applications [13-16]. 

3.3 PCF Coupler  

In a usual PCF, there is one defect in the central region and the light is guided along this 

defect. Recently, adjacent two defects were introduced into a PCF. It has been shown that it is 

possible to use the PCF as an optical fiber coupler [53]. These PCF couplers with adjacent two 

cores have possibility of realizing a multiplexer-demultiplexer (MUX-DEMUX). 

 We have studied dual core PCF and evaluated coupling characteristics using FEM [54-

55]. Figure 3.2 shows schematic of a dual core PCF. Some dimension of PCF geometry such as d, 

and core separation C was adjusted to obtain the desired effect. To implement FEM we generated 

mesh using PDE tool to get the nodal and edge information. 
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Figure 3.2 (a) Schematic cross section and (b) dimensions of dual core PCF 

3.3.1 Effective Refractive Index Evaluation of PCF Coupler 

 Effective refractive index of PCF has been evaluated by using the formulae used in 

equation (2.30) in the previous chapter. Figure 3.3 shows the ne with the wavelength. At short 

wavelength its change is more rapid than at longer wavelength. At short wavelength material 

dispersion is more prominent while at longer wavelength the waveguide dispersion starts to take 

over. That is the reason why the waveguide geometry shows their effect. As the air hole diameter 

d, increases the ne also increases. 

 

 

 

 

 

 

 

Figure 3.3 Effective refractive index of dual core PCF (d=1 µm, C=4 Λ and d/Λ=0.8) 
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3.3.2 Evaluation of Coupling Length of PCF Coupler 

 In brief optical power is exchanged between the coupled cores due to weak overlap of 

adjacent electric field. Here two simultaneously excited supper modes (even and odd modes) of 

the combined structure are supported by the two PCF cores [55]. Since wave vector for even 

mode kze and wave vector for odd mode kzo are not same, they develop a relative phase difference 

in propagation. This phase difference which is responsible for periodic power transfer between 

two cores depends on the distance traveled by the wave and can be expressed as 

zkkz zoze )()(                                                           (3.1) 

Here light confined into one of the PCF core jumps to the other waveguide after propagating 

a distance known as coupling length Lc owing to the different propagation constants of the even 

and odd modes of the coupler shown in Figure 3.4. Coupling length Lc is determined by the 

following equation, 

zokzekcL


                                                        (3.2) 

 

 

 

 

 

 

 

 

Figure 3.4 Intensity profile of the two distinct super modes: (a) even mode (b) odd mode 
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The effective refractive index for these two distinct super mode have been shown for the 

PCF coupler shows that their difference is very small at short wavelength and as the wavelength 

increases it shows their difference. Figure 3.5 shows the ne f for the PCF coupler with d=1.0 µm, 

C=2Λ and d/Λ =0.7. 

 

 

 

 

 

 

 

Figure 3.5  neff of even and odd super modes of PCF couplers (d=1.0 µm, C=2Λ and d/Λ =0.7) 

 

It is shown from numerical results that it is possible to realize significantly short MUX-

DEMUX PCFs, compared to the conventional optical fiber couplers. Figure 3.6 shows the 

wavelength dependency of Lc. It is observed that the coupling length decreases with the increase 

of wavelength at short wavelength and at longer wavelength (greater than 1.5 µm), there is a 

small change of Lc observed with wavelength. 
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Figure 3.6 Coupling lengths of PCF couplers (d=0.8 µm, C=4 Λ and d/Λ =0.7) 

3.3.3 Effect of Material Dispersion on Coupling Length 

 In our FEM we considered εr of air hole in PCF as 1 and that of the silica glass is 

wavelength λ dependent which can be expressed by the following Sellmier expansion [1, 56]  
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A and B are the Selmeir coefficients. In case of silica glass these are [1] 

A1=0.69675; A2=0.408218; A3=0.890815 and B1=0.0047701; B2=0.0133777; B3=98.02107 and 

the wavelength λ is given in micro meter unit [1]. 

We include the wavelength dependent permittivity during the element analysis of the FEM. 

Inclusion of wavelength dependent material dispersion in our model makes it more realistic. We 

observe the effect of material dispersion on the coupling length of PCF, specifically at short 

wavelength where material dispersion is more prominent [55]. Figure 3.7 shows the coupling 

length LC with the wavelength for d/Λ=0.9 [55]. A noticeable difference of Lc is observed at 

shorter wavelength when we consider wavelength dependant refractive index of silica instead of 
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assuming it constant (n=1.45). At a longer wavelength this difference is less because the material 

dispersion is not that prominent at that wavelength region. It is also shown from the numerical 

results that it is possible to realize significantly short (1mm~1cm) PCF coupler, compared to 

conventional optical fiber couplers [21, 54].  

 

 

 

 

 

 

 

Figure 3.7 Effect of material dispersion on the coupling length of a dual core PCF  

(d=1.0 µm, C=4 Λ and d/Λ =0.9). 

3.3.4 PCF Geometry and Coupling 

Changing PCF dimensions (d, Λ or C) let the designer flexibility to manage the coupling 

length. Changing d and C by keeping d/Λ constant will change the effective refractive index ne 

and also the coupling length. Even though the core separation decreases as d increases for a fixed 

d/Λ but we see an increase of coupling length Lc in Figure 3.8. This is because the deference of 

even and odd modes decreases as the d increases.  
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Figure 3.8 Comparison of coupling length of dual core PCF coupler (C=4 Λ, d/Λ=0.8) 

 

Our next research objective was to observe the coupling length profile of the dual core 

PCF with same core size and a fixed core separation, but varying the d of those air holes which 

were placed in cladding region and also their d/Λ ratio. We kept d of those air holes that 

constitutes the core region fixed, in order to preserve the integrity of the cores. In our first 

designed PCF in Figure 3.9 (a) we consider C=4 µm, d=1.0 µm and d/Λ=0.4. In the second 

design in Figure 3.9 (b) we alternately changed the hole diameter in the cladding region (d1=1.0 

µm and d2=1.5 µm). In the third design in Figure 3.9(c) we gradually increased the d (d1=1.0 µm, 

d2=1.25 µm, d3=1.5 µm and d4=1.75 µm). In all three PCF coupler we kept d/Λ ratio as 0.4. We 

wanted to know what will be the outcome if this ratio is changed. To see this we designed the 

fourth PCF coupler with d=1.0 um and d/Λ=0.7 shown in Figure 3.9 (d). 
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Figure 3.9 PCF Geometry: (a). PCF1 (b) PCF2 (c) PCF3 (d) PCF4 

 

Figure 3.10 shows the coupling length of these four types of PCF coupler. Lc which is 

related to the difference of even and odd mode wave vector, shows a cross over around 1.1 µm 

and at longer wavelength for three types of PCF coupler with d/Λ=0.4. Lc values changes as the 

wavelength increases.  As was expected Lc for the fourth PCF coupler with d/Λ=0.7 shows 

smaller value. 

 

 

 

 

 

 

 

Figure 3.10 Comparison of Lc for the PCFs shown in Fig.3.9 

 

 

a b

c d

a b

c d



 35 

3.4 Chromatic Dispersion in PCF 

The main issue that limits transmission bitrate in optical fibers is dispersion. It is because 

generated impulses have a non-zero wide bandwidth and the medium have a refractive index that 

depends on resonance wavelength [57-59]. In other word when electromagnetic wave interacts 

with the bound electron of the dielectric materials, the medium response is frequency dependant 

and manifest through the change of refractive index n(ω). It is due to characteristic resonance 

frequency at which the bound electron oscillation of the dielectric medium absorbs the 

electromagnetic radiation [1, 59].  

It is the dispersion of optical waveguide which is the most critical for short pulse 

propagation because the different spectral component associated with the pulse travel at different 

speed c/n(ω) [57-59].  If nonlinearity acts in the medium the combination of dispersion and 

nonlinearity will act together and shows novel physical phenomenon. Soliton pulse propagation 

through fiber is an example of such event. [1, 57-59] 

Dispersion effects are accounted for by expanding the mode propagation constant kz in 

Taylor series at a center frequency ω0.  

                   .............)()()( 2
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Second derivative of kz with respect to ω is called β2. It is the dispersion of the group velocity 

and responsible for pulse broadening [57-60]. This phenomenon is called the group velocity 

dispersion (GVD).  

When pulse is send through the optical waveguide, it behaves differently for the sign of 

β2. For normal dispersion regimes (wavelengths where β2>0) high frequency component of 

optical pulse (blue shifted) travel slower than the low frequency component (red shifted) [1, 59]. 

Opposite action happens for the anomalous dispersion regime (wavelengths where β2<0). In this 

wavelength range the fiber supports solitons by balancing dispersion and nonlinearities [1]. We 

will discus this phenomenon later in this dissertation. 

3.4.1 Dispersion Evaluation of Dual Core PCF using FEM 

From our FEM we evaluated the wave vector and effective refractive index ne of the even 

and odd super mode with the frequency and then took the derivatives [55]. Figure 3.10 shows the 

frequency response of the waveguide’s effective refractive index ne. Figure 3.11 shows the β2 

which shows change of sign around 1.2 μm. 

 

 

 

 

 

 

 

Figure 3.11 Effective refractive index of PCF coupler (d=1.0 µm, C=5µm and d/Λ =0.4). 
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Figure 3.12 β2 of dual core PCF (d=1.0 µm, C=5µm and d/Λ =0.4). 

 

Another parameter D which is commonly used in optical fiber literature in place of β2 is 

related to β2 by the relation in equation (3.5). Figure 3.13 shows D for the same PCF with d=1.0 

µm, C=5 µm and d/Λ =0.4. 

22
2)1( 






c

d

d
D                                                        (3.5) 

 

 

 

 

 

 

 

Figure 3.13 D of dual core PCF (d=1.0 µm, C=5 µm and d/Λ =0.4). 
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Another higher order dispersion parameter is β3. It is also known as the third order 

dispersion (TOD) term as it is the third derivative of kz with respect to ω. This term appears for 

very short pulses (< 1 ps) and can distort the pulse in both linear and nonlinear regimes [57-61]. 

Around zero dispersion (β2=0) wavelength, inclusion of β3 term is necessary [1]. When we 

analyze the pulse propagation through optical waveguide, kz and its higher order derivatives 

determine the pulse broadening, changing of direction in the trailing and rising end of the pulses, 

pulse break up etc. Figure 3.14-15 show the subsequent higher order dispersion parameters for 

that PCF. From the figure a sharp change of slope is observed for β3 and β4 at longer wavelength. 

Value of β4 is relatively small and can generally be ignored for pico or < 100 femto second pulse 

treatment. But for femto second pulses that generate higher frequencies, we need to incorporate 

these terms for pulse propagation modeling. This issue will be further discussed in Chapter 6 and 

7 again. 
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Figure 3.14 β3 of dual core PCF (d=1.0 µm, C=5µm and d/Λ =0.4). 

 

 

 

 

 

 

 

 

 

Figure 3.15 β4 of dual core PCF (d=1.0 µm, C=5µm and d/Λ =0.4). 

3.4.2 PCF Design and Adjusting Dispersion 

    Dispersion can also be managed by changing PCF dimensions such as d, Λ or C [62-63]. 

Keeping Λ fixed and varying the d/Λ shifts the λd. From Fig. 3.16, it is observed that the λd shifts 

toward shorter wavelengths as d/Λ increases for a four ring PCF coupler with Λ =3.0 μm and 

C=4 Λ.  For the similar PCF coupler with Λ =2.5 μm we found similar trend in λd shifting in 
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Figure 3.17, except values of λd s are little longer now. For a fixed Λ, decreasing d/Λ also 

decreases the air hole diameter d that eventually causes the electromagnetic wave to interact 

more with silica than the air. That it is why PCF demonstrates more waveguide dispersion at a 

larger d/Λ [55]. We only observed this at longer wavelengths because the waveguide dispersion 

is prominent at this wavelength region.  

 

 

 

 

 

 

 

Figure 3.16 Comparison of GVD for the even super mode in four ring dual core PCFs with 

variable d (C=4 Λ, Λ=3.0 μm) 

 

 

 

 

     

 

 

 

Figure 3.17 Comparison of GVD for the even super mode in four ring dual core PCFs with 

variable d (C=4 Λ, Λ=2.5 µm) 
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CHAPTER 4: WAVE PROPAGATION IN NONLINEAR  OPTICAL 

WAVEGUIDE 

4.1 Nonlinearity in Optical Waveguide 

 Like other dielectric the response of optical waveguide material to light is nonlinear for 

intense electromagnetic field [1]. It is due to the anharmonic motion of bound electron under the 

influence of applied field. As a result the total polarization induced by the electric dipole is not 

linear. The general formula for this nonlinear polarization relation is [1-7] 

P=εo (χ
(1)

.E +  χ
(2)

.EE +  χ
(3)

.EEE……)                              (4.1) 

Here permittivity depends on χ
(j)

 ( j=1,2,3…) is the j th order susceptibility.  χ
(j) 

is the tensor of 

rank j+1. χ
(1)

 is called the linear susceptibility and is the most dominant. Second order 

susceptibility χ
(2)

  is responsible for nonlinear effects like second harmonic generation or sum 

frequency generation [1-7]. It is present only in the media with lack of inversion symmetry at the 

molecular level. SiO2 is symmetric that is the reason that the silica glass fiber does not show 

second order nonlinear effects [1-4]. 

4.1.1 Nonlinear Kerr Effect and Third Order Susceptibility 

The Kerr effect is the effect of an instantaneously occurring nonlinear response that 

causes the change of refractive index. A nonlinear interaction of light in a medium with an 

instantaneous response, related to the nonlinear electronic polarization [1, 6]. This nonlinear 

optical effect occurred when intense light propagates in crystals, glasses and even in other media 

such as gases [2-6].  Its physical origin is a nonlinear polarization generated in the medium, 

which itself modifies the propagation properties of the light. Most of the nonlinear effects in 
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optical fiber are originated from the intensity dependent refractive index which can be expressed 

by the following relation [1] 

2
2

)()
2

,(~ EnnEn                                          (4.2) 

 This relation is well demonstrated in electromagnetics and optics and known as Kerr nonlinear 

effect. Here n2 is the nonlinear index coefficient related to the third order susceptibility χ
(3) 

with 

the following relation: 

)Re( 3

)(8
3

2 xxxxnn                                             (4.3) 

The n2 value of a medium can be measured e.g. with the z-scan technique [1,6]. For silica fiber 

n2 yield a value in the range 2.2-3.4 x10
-20

 m
2
/W [1-6]. This value is small compared to most 

other nonlinear material. In spite of the intrinsically small value of n2 for silica fiber, nonlinear 

effect can be observed in single mode or PCF structure due to very small spot size and relatively 

low loss [1]. For soft glasses and particularly for semiconductors, n2 can be much higher, 

because it strongly depends on the band gap energy. The nonlinearity is also often negative for 

photon energies above roughly 70% of the band gap energy. This is also known as self-

defocusing nonlinearity [2-5]. Chalcogenide-glass fiber exhibits a measured n2 of 4.2 x10
-18

 

m
2
/W and is very promising in nonlinear optics [1, 60]. It is important to note here that many low 

order nonlinear effects such as third harmonic generation, four wave mixing and nonlinear 

refraction is dependent on the third order susceptibility χ
(3)

 [1-6]. 

The time and frequency dependent refractive index change leads to self-phase modulation 

and Kerr lensing, for different overlapping light beams also to cross-phase modulation. The 
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description of the Kerr effect via an intensity-dependent refractive index is actually based on an 

approximation that, it is valid for light with a small optical bandwidth [2-5]. For rather short and 

broadband pulses, a deviation from this simple behavior can be observed, which is called self-

steepening [1]. It reduces the velocity with which the peak of the pulse propagates (i.e., it 

reduces the group velocity) and thus leads to an increasing slope of the trailing part of the pulse 

[1]. This effect is relevant e.g. for suppercontinum generation. Furthermore, the strength of the 

Kerr effect is known to saturate at very high optical intensities. [38]. 

4.1.2 Nonlinear Phase Shift 

Optical field experiences a self induced phase shift while propagating through optical 

fibers. Magnitude of the phase shift is 

LkEnLnkLkn 0

2

200
~                                  (4.4) 

where k0=2π/λ and L is the fiber length. The second term of above equation is nonlinear phase 

induced due to self phase modulation (SPM). SPM is responsible for spectral broadening for the 

ultra short pulses and formation of soliton in the anomalous dispersion regime of fiber (β2<0) [1]. 

β2 is the second-order dispersion or group velocity dispersion parameter . For standard silica fiber 

β2 is 50 ps
2
/km at visible region and -20 ps

2
/km in ~1500 nm. [1, 59] 

On the other hand cross phase modulation (XPM) is the nonlinear phase shift of an 

optical field with frequency (ω1) induced by another field having a different polarization, 

frequency (ω2) or direction. The nonlinear phase shift due to cross phase modulation can be 

expressed as the following  

LkEEnNL 0

2

2

2

12 )2(                                             (4.5) 
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The first term is the SPM and the second term is XPM. 

4.1.3 Inelastic Nonlinear Effects  

The nonlinear effect related to third order susceptibility χ
(3)

 is elastic in the sense that no 

energy is exchanged between the electromagnetic field and the medium [1]. On the contrary, the 

other class of nonlinear effect exchanges energy between electric field and the dielectric media. 

Two known phenomenon in this type are; stimulated Raman Scattering (SRS) and Stimulated 

Brillouin Scattering (SBS). Optical phonon (vibration of lattice) participates in SRS while 

acoustic phonon participates in SBS [1-7].  

When light is scattered from a molecule, most photons are Rayleigh scattered which is 

elastically scattered where the scattered photons have the same energy and wavelength as that of 

the incident photons [1-4].  A photon in the incident field is annihilated to create a photon at a 

lower frequency and a phonon with right energy and the momentum to conserve energy and 

momentum. [1] A small fraction of the scattered light (1/10
6
) is scattered by an excitation having 

a frequency lower than, the frequency of the incident photons.  

Indian physicist Chandrasekhara Venkata Raman published his work on the "Molecular 

Diffraction of Light", the first of a series of investigations with his collaborators which 

ultimately led to his discovery (in 1928) of the radiation effect which bears his name. Raman 

received the Nobel Prize in 1930 for his work on the scattering of light.  Raman amplification 

can be obtained by using SRS, which actually is a combination between a Raman process with 

stimulated emission [1-4,64]. However, the process requires significant power and thus imposes 
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more stringent limits on the material. The amplification band can be up to 100 nm broad, 

depending on the availability of allowed photon states [1]. 

On the other hand, Brillouin scattering is an interaction of light photons with acoustic or 

vibrational quanta (phonons), with magnetic spin waves (magnons), or with other low frequency 

quasiparticles interacting with light. This is an inelastic scattering process in which a phonon or 

magnon is either created (Stokes process) or annihilated (anti-Stokes process) [1-6,64-65]. For 

intense beams (e.g. laser light) travelling through optical fiber, the variations in the electric field 

of the beam itself may produce acoustic vibrations in the medium via electrostriction. The beam 

may undergo Brillouin scattering from these vibrations, usually in opposite direction to the 

incoming beam. In optical waveguide supporting forward wave only SRS is observed because 

SRS presents in both forward and backward wave on the other hand SBS present for backward 

wave only [1]. 

4.2 Soliton Pulses  

Soliton was first reported by Scott Russell in 1834 when he observed undistorted heap of 

water propagated couple of kilometers through the canal [1]. That solitary wave was formed due 

to sudden stop of a moving boat. He tracked down that wave on a horse back [1, 66-67]. 

However that wave properties was not completely understood until the inverse scattering method 

was developed [68]. The term soliton was coined in 1965 to reflect the particle like nature of that 

solitary wave that remains undistorted even after mutual collision [69]. Since then solitons have 

been studied in many branches of physics including optics [66-67, 70-71]. Use of soliton in 

optical communication was first suggested in 1973 [72]. The soliton pulses propagating in the 
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optical waveguide maintain same shape after traveling long distances [1]. Soliton forms in an 

optical fiber as a result of interplay between dispersion and nonlinearity. For unchirped soliton 

pulses it can be symbolized by the following hyperbolic secant function [1, 73] 

 

 

                         (4.6) 
 

 

Here P0=Normalized Incident Power, τB =separation between adjacent bit, τ0=1/e half width of 

pulse intensity, N is the soliton number (for fundamental soliton N=1) and φ=Z/2 is the phase of 

the pulse propagated which is a linear function of distance Z. Figure 4.1 shows two soliton pulses 

propagating through an optical waveguide. As shown in the figure the pulse remains undistorted 

as it propagates. It is due to delicate balance between the dispersion and the power of the pulse. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Soliton pulses propagation (a) 3D view (b) 2D view at the receiving end of the 

waveguide 
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4.3 Solitons in Fiber Optic Communication: A Literature Review 

Much experimentation has been done using solitons in fiber optics applications. Solitons 

inherent stability make long-distance transmission possible without the use of repeaters, and 

could potentially double transmission capacity as well [57-59]. In 1973, Akira Hasegawa of 

AT&T Bell Labs was the first to suggest that solitons could exist in optical fibers, due to a 

balance between self-phase modulation and anomalous dispersion [72]. He also proposed the 

idea of a soliton-based transmission system to increase performance of  telecommunications [67]. 

Solitons in a fiber optic system are described by the Manakov equations [67, 70-71]. In 1987, P. 

Emplit, et. al., from the Universities of Brussels and Limoges, made the first experimental 

observation of the propagation of a dark soliton, in an optical fiber [74]. In 1988, Linn 

Mollenauer and his team transmitted soliton pulses over 4,000 kilometers using Raman effect 

[75]. 

In 1991, a Bell Labs research team transmitted error-free 2.5 gigabits per second solitons 

over 14,000 kilometers, using erbium optical fiber amplifiers (spliced-in segments of optical 

fiber containing the rare earth element erbium). Pump lasers, coupled to the optical amplifiers, 

activate the erbium, which energizes the light pulses. In 1998, Thierry Georges and his team at 

France Télécom R&D Center, combining optical solitons of different wavelengths (WDM), 

demonstrated a data transmission of 1 terabit per second. For some reasons, it is possible to 

observe both positive and negative solitons in optic fibre. However, usually only positive 

solitons are observed for water wave [74-76]. 
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CHAPTER 5: PULSE PROPAGATION THROUGH PCF 

5.1 Introduction of Propagation Equations 

 

Pulse propagation in optical fibers is well describes by the Nonlinear Schrõdinger equations 

(NLSE) [1]. NLSE provides a canonical description for the envelope dynamics of quasi 

monochromatic plane wave propagating in a weekly nonlinear dispersive medium [77]. On short 

time and small propagation distance, the linear dynamics and cumulative nonlinear interactions 

result in a significant modulation of the wave amplitude on large spatial and temporal scales [30-

31]. It expresses how the linear dispersion relation is affected by the thickening of the spectral 

lines associated to the modulation and resonant nonlinear interaction [1, 10]. In optics it can also 

be viewed as the extension to nonlinear media of the paraxial approximation, extensively used 

for linear beam propagating in random media [10].  

5.2 Formulation of Propagation Equations: NLSE 

The NLSE can be derived from the vector wave equation as 

0
~~ 2

0

2  EE rk                                                    (5.1) 

The equation (5.1) can be solved by using method of separation of variable. Let’s assume the 

solution is [1] 

)exp(),(
~
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~

000 zizAyxFr  E                        (5.2) 

Here ),(
~

zA is the slowly varying function of distance z and β0 is the wave vector at a center 

frequency, 0 . 
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According to the separation of variable, equation (5.1) is separated into two equation with F(x,y) 

and ),( zA  
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 is neglected in equation (5.4) because of the slowly varying approximation of A with z. 
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is evaluated eigen value of the guided mode. In our case we evaluated this by using finite 

element method discussed in chapter 2. The dielectric constant )(  can be approximated by 

nnnnn  2)( 22                                              (5.5) 

Here  

2

2 Enn                                                            (5.6) 

In first order perturbation theory, n does not affect the modal distribution F(x,y). However the 

eigen value 
~

 becomes 
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Electric field for wave equation with first order perturbation can be written as  

cctzitzAyxFxtrE .)](exp[),(),({
2

1
),( 00                           (5.9) 

Here ),( tzA  is the slowly varying pulse envelop whose Fourier transform is ),(
~

0 zA .  
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By approximating )
~
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After some straight forward manipulation the above equation (5.10) becomes 
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The equation (5.11) tells that each spectral component within the pulse envelope acquires a 

phase shift as it propagates. Replacing the )(  by its Taylor’s series, equation (5.11) becomes 
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Taking inverse Fourier transform which will replace )( 0   by 
t
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  represents the nonlinearity and can be evaluated by equation (5.6) and (5.8). Replacing   

in equation (5.13) results 
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γ is the nonlinear cross-coupling parameter and can be expressed as  
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Here c is the speed of light, and Effective area, Aeff was evaluated analytically by using the 

following expression involving electric field E(x,y) of the evaluated from the finite element 

solution.[55] 
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dxdyyxE
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22

),(

)),((
                                                             (5. 16) 

Even though the NLSE does not provide a complete physical description of a system, it is 

the basis for modeling optical-fiber communication systems [1]. Indeed, one can modify the 

NLSE to incorporate various effects such as fiber loss, third-order dispersion, amplification, 

multi photon absorption, scattering and amplified spontaneous noise to obtain a more realistic 

model of optical fiber transmissions [73, 78]. In the case of anomalous dispersion, the NLSE has 

well-known analytical soliton solutions that give deep physical insight into the nature of self-

phase modulation and dispersion [73, 79]. However, in almost all realistic cases, inclusion of 

higher-order effects and scattering makes the propagation equation not analytically solvable. A 

numerical approach is then necessary. The most commonly used numerical scheme to solve the 

NLSE is the Split-Step Fourier Method (SSFM), which is convenient for its simplicity and 

flexibility in dealing with higher-order effects [73].  

5.3 Coupled Mode Equation for Coupled Structure 

When two identical fibers are brought close together, coupling of the evanescent field 

between the weakly guiding fibers are observed. This interaction gives a coupling parameter. If 

the Kerr nonlinearity is included the traditional model consists of two coupled nonlinear 

Schrõdinger equations stated in equation (5.17) as [79] 



 52 

2121

2

14

1
43

1
32

1
2

1
1

1 ...
24

1

6

1

2

1
AAAi

t

A
i

t

A

t

A
i

t

A

z

A
 
























              (5.17a)    

1212

2

24

2
43

2
32

2
2

2
1

2 ...
24

1

6

1

2

1
AAAi

t

A
i

t

A

t

A
i

t

A

z

A
 
























          (5.17b)    

where A1 and A2 refers to the envelope of the electromagnetic wave in waveguides 1 and 2, 

respectively, κmn is the normalized linear cross coupling constant expressed as 
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  is permittivity after perturbation, e


is the electric field and nP is the normalized power in each 

waveguide and can be expressed as 

 dxdyheP nnn
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                                                               (5.19) 

h


 is the magnetic field. For two identical waveguide the κ21= κ12= κ. 

The linear coupling is due to evanescent field coupling and the nonlinear coupling is due 

to cross-phase modulation. In dual core nonlinear fiber couplers, the overlap between the two 

modes corresponding to each core is small and the cross-phase-induced coupling is usually 

neglected [59]. In a linear coupler the power exchanged between two wave guides follows a 

sinusoidal pattern [59]. Previous study for regular optical fiber coupler in [7, 59] shows that the 

switching occurs for the power of 4κ. Later in this chapter we will compare this with our results 

for the PCF coupler. For linear continuous wave it is common in the literature to define two 

lengths [1, 59]. One is the distance at which the initial power incident on one of the waveguide 

returns fully to the original waveguide called full-beat length. Another one is half of this distance 

known as half-beat length. It is also referred to as the coupling length Lc [59]. 
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5.4  Ultra Short Pulses  

 By saying ultra short we mean pulse in femto second (10
-15

s) range. This time scale 

becomes accessible because of the progress in the generation, amplification and measurements of 

ultra short pulse [80]. Due to large energy concentration this topics encompasses the study of 

interaction of intense laser with mater, as well as transient response of atoms and molecules and 

basic properties of the fs radiation itself [80-82]. Right after the invention of laser in 1960s 

scientific communities were working on producing short light pulses in laser. In 70’s progress in 

laser physics open the door of pico-second pulse generation which was continued in 80’s to 

achieve femto second pulse [80]. 

Femto second technology opens up new fascinating possibilities based on some unique 

properties of ultra short light pulses which include [80-82]: 

 Energy can be concentrated in a temporal interval as short as fs which corresponds to 

a few optical cycles in the visible range.  

 Pulse peak power can be extremely large even at moderate pulse energies. e.g. for 

100 fs pulses an energy of 1 nJ exhibits an average power of 10 MW. Focusing this 

pulse to a 100 μm
2
 spot will generate an intensity of 20 TW/cm

2
 

 Geometrical length of a femto second pulse amounts only to several μm. Such a 

coherence length is usually associated with incoherent light. The essential difference 

is that incoherent light is generally spread over a much longer distance. 

Faster data transfer and processing is possible by utilizing this faster carrier frequency 

and subsequent higher bandwidths. A variety of reversible as well as irreversible nonlinear 

processes become accessible due to the large intensities of fs pulses. There are proposals to use 
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such pulses for laser fusion [87]. Because of large energy concentration in a very short duration 

it is possible to utilize nonlinear processes in fiber and other optical-electronic devices. 

5.4.1 Ultra Short Pulse Propagation through PCF Coupler 

It requires anomalous dispersion to support undistorted propagation of short pulses [1].  

As from our previous dispersion analysis we have seen that the PCF demonstrate anomalous 

dispersion in both 1.31 μm and 1.55 μm windows. Pulse propagation through this coupled 

structure has been described by the following equations (5.20). This equation was numerically 

solved using beam propagation method [14]. 
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z and τ are the operator of the derivatives, in this case are distance and time respectively. 

Here q refers to the envelope of the electromagnetic wave; Cx is the parameter for cross phase 

modulation (XPM)    

      (5.21) 

Aeff of the dual core PCF is shown with wavelength in Figure 5.1. A noticeable increment is 

observed as the wavelength increases. We picked up the values at 1.55 μm and 1.31 μm for the 

evaluation of γ at those wavelengths.  
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Figure 5.1 Effective core area of PCF couplers (d=1.0 μm, C=5μm and d/Λ =0.4). 

 

Figure 5.2 shows the femto second pulse propagated though the PCF couplers. It is 

observed that the energy is transferred from the bar channel (the waveguide which received the 

input pulses) to the other waveguide named as cross channel after traveling Lc (in this case is 21 

mm). The result shows similar coupling characteristic as that of the nonlinear optical fiber 

directional coupler made of two optical fibers reported in ref [79]. The specialties of these PCF 

couplers are: they are relatively short and coupling and dispersion can be altered by designing 

the core and cladding geometry which we already have demonstrated in the previous chapters.  
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Figure 5.2 1550 nm pulse propagation through the PCF coupler  

(d=1.0 μm, C=5 μm and d/Λ =0.4) (a) bar channel and (b) cross channel 

 

 Figure 5.3 shows the power propagation through the bar channel (waveguide with input pulse) 

of the coupler at the above two wavelengths. It is observed that the coupling length at 1.55 μm is 

shorter than that of at 1.31 μm. 

 

 

 

 

 

 

 

Figure 5.3 Normalized power in bar channel of PCF couplers (d=1.0 μm, C=5μm and d/Λ =0.4) 
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5.4.2  Dispersion Effects on the Pulse Propagation 

When a pulse propagates a substantial distance then it experiences dispersion. Group 

velocity dispersion β2 causes the pulse broadening and β3 is responsible for oscillation in the 

rising or the trailing edge depending on its sign [1]. Figure 5.4 shows the input and output pulse 

shapes at 1.55 and 1.31 μm wavelengths for a 21 cm (around 10 times of the coupling length) 

PCF coupler.  

 

 

 

 

 

 

 

 

 

Figure 5.4 Input and output pulse of the PCF cores of PCF coupler  

(d=1.0 μm, C=5 μm and d/Λ =0.4) at 21cm for 1.55um 

 

 

 

 

 

 

                                          

 

Figure 5.5 Input and output pulse of the PCF cores of PCF coupler  

(d=1.0 μm, C=5 μm and d/Λ =0.4) at 21cm for 1.31um 
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It is observed from the bar and cross channel output pulses that, at 1.55 μm the pulse 

undergoes compression effect in the rising edge and in the trailing edge it expand due to positive 

β3. Also positive β3 causes oscillation at the trailing edge of the pulse. On the other hand at 1.31 

μm (Fig. 5.5) this dispersion and the above mentioned oscillation effects are not observed as both 

β2 and β3 are close to zero.  

Pulse spreading due to the dispersion can be carefully controlled by increasing the power. 

Fig. 5.6 shows the input and output of 1.55 μm pulses at 6 cm for 1W and 10 W of peak power 

respectively. For 1W power the pulse demonstrates spreading due to β2. This was compensated 

by increasing the power to 10 W that preserve the integrity of the pulse. 

 

 

 

 

 

 

 

 

Figure 5.6 Input and output pulse of the PCF cores at 6cm for (a) 1W and (b) 10 W 
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5.4.3 Third Order Dispersion on Soliton Pulse  

Even though the contribution of β2 is the most dominant in major practical applications 

but still it is necessary to include the third order term proportional to β3. For example around zero 

dispersion wavelength region β3 contribute most to the GVD effect [1]. For ultra short pulses 

(τ0<1ps) β3 is a necessary parameter to be included. Changing sign of β3 shows the change of 

symmetry of the pulse shape. For soliton pulse flowing through fiber with positive value causes 

oscillation at the trailing edge of the pulse. On the other hand for negative β3 oscillation appeared 

at the rising edge of the pulse [1]. Fig 5.7 and 5.8 shows the effect of β3 on the soliton pulse. 

 

 

 

 

 

 

Figure 5.7 2D and 3D pulse shape for negative β3 

 

 

 

 

 

 

Figure 5.8 2D and 3D pulse shape for positive β3 
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For the PCF coupler discussed above (d=1.0 μm, C=5μm and d/Λ =0.4), both the 

dispersion and coupling length at 1310 nm are less than those at 1550 nm. From our model we 

found that the Lc at 1310 nm is 21 mm, β2 is -4 ps
2
/km and β3 is 0.075 ps

3
/km and those values at 

1550 nm are 19 mm, -24 ps
2
/km and 0.115 ps

3
/km respectively. For a 38 mm long device, less 

than (~1nJ) pulse energy was required to distort the pulse at 1310 nm. This value is 6nJ at 1550 

nm. The primary reason is that the PCF has less β2 and β3 at 1310 nm than at 1550 nm. 

    Also as shown in Figure 5.9, a 2 nJ pulse with 100 fs duration had a tilted trailing edge at 1310 

nm, whereas at 1550 nm the pulse shape remain undistorted. At 1310 nm, β2 is small since it is 

close to d, but β3 is still large. On the other hand, at 1550 nm β2 is comparably higher than that 

at 1310 nm. That is why β3 effect looks more prominent at 1310 nm. 

 

 

 

 

 

 

 

 

Figure 5.9 100 fs pulse at the bar channel output of 38 mm PCF coupler  

(d=1 m, C=4Λ and d/Λ =0.4) 
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CHAPTER 6: SWITCHING IN NONLINEAR DUAL CORE PCF 

6.1 Introduction to All Optical Switch 

For the last few years demand for high bandwidth in telecommunication is increasing 

rapidly. High growth rate of Internet Protocol (IP) traffic is the primary cause of this bandwidth 

increase. Moreover real time video application is forcing the carrier to extend their existing 

optical network even to household [60, 83]. With their improved efficiency and lower costs, 

optical switches provide the carriers to manage the new and competitive dense wavelength 

division multiplexing (DWDM) networks. Wave-guide switches were among the first all-optical 

switches to be developed. Fiber optic cable, semiconductor laser cavities and PCF are other 

examples of wave guides. If two optical waveguides are coupled together then we can use a 

control stimulus to change the refractive index from one part of the waveguide to other. The 

interference effect at waveguide 1 is now changed, which causes the light being switched to 

output of wave-guide 2. In brief optical power is exchanged between the coupled cores due to 

weak overlap of adjacent electric field. Coupled optical waveguide shows potential of being used 

as all optical switch. In recent year’s considerable research work has been conducted on twin 

core fiber used as a nonlinear coupler for switching application [59, 73, 79]. Nonlinear 

directional coupler (NLDC) made of two optical fiber is a well known all optical switch [86]. 

NLDC can be implemented in dual core PCF [21, 53, 84]. These devices can be relatively short 

which bring the prospect of having compact switch configuration [21, 53-55]. Experiment shows 

that all optical switching occurred in these types of couplers [21]. Theoretical treatment of femto 

second pulse switching in dual core PCF has been presented in this chapter to explain the 
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switching action in the experiment done in ref [21]. In order to support soliton switching we also 

adjust the PCF coupling and dispersion parameters by changing the PCF geometry used in our 

finite element calculation. 

6.2 Nonlinear Directional Coupler (NLDC) 

NLDC is usually made by placing two cores in a close proximity so the electric field can 

be coupled from one core to the other. The nonlinear coupled optical waveguide functions in the 

following manners: for low input power the beam is transferred from one wave guide to the other, 

but for high input power the beam remains in the same wave guide (Fig. 6.1) [21,79]. It was 

demonstrated numerically that if the input pulse is soliton then the pulse in the two core of twin 

core fiber came out with minimum or almost no distortion [55, 85]. Similar like in twin core 

fiber, switching can also be achieved in the dual core PCF. Soliton solution of coupled nonlinear 

Schrõdinger equations (CNLSE) is used to determine that.  The necessary parameters of CNLSE 

are derived from our FEM. Design effort has been made to adjust these parameters to achieve the 

desired intensity dependent switching action. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Couple twin core fiber 
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6.3 Soliton Pulse Propagation through Designed PCF Coupler 

Depending on the excitation wavelength, the couplers implemented in dual core PCFs are 

capable of supporting soliton pulses noting that anomalous dispersion is required to support 

soliton pulses for the self-focusing nonlinearity of silica glass. The dual core PCFs considered 

here support soliton in both the 1.31 m and 1.55 m telecommunications windows as both of 

this two wavelength experiences anomalous dispersion [1, 55].  

For our designed PCF coupler with (d=2.0 μm, C=2Λ and d/Λ =0.9), Aeff was evaluated 

as 41 μm
2 

at 1.55 m. Value of Lc differs significantly by altering the PCF geometry [53-54]. 

We increase the coupling length by increasing the d/Λ which we reported in ref [55]. LC for the 

above mentioned PCF is evaluated as 1.8 cm at 1.55 m.  Our FEM model provides us the wave 

vector kz. From that we evaluate the group velocity dispersion β2 at 1.55 m as -47ps
2
/km. 

Subsequently third order dispersion β3, is also been evaluated as 0.1 ps
3
/km.  

Fig. 6.2 shows that a soliton pulse is propagating through the PCF coupler. The energy is 

transferred from the bar channel (the waveguide which received the input pulses) to the other 

waveguide (named the cross channel) after traveling LC which is 1.8 cm. For a 100 fs pulse 

propagating through this waveguide at 1.55 um wavelength the soliton period Z0=1.57(T0
2
/β2) 

=33 cm [1, 55]. Note that there is no pulse break-up in the time domain, at least until Z0.  From 

our calculation at least 80 nJ is required for soliton pulse to propagate [86]. The result shows 

similar coupling characteristic as that of the nonlinear optical fiber directional coupler reported 

in ref [79].   
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Figure 6.2. Soliton pulse propagation at 1.55 m through the PCF coupler with  

d=2.0 μm, and d/Λ =0.9 (a) bar channel and (b) cross channel 

 

Similarly the 2D view of 100 fs pulse depicts the soliton pulse propagation. At lower 

peak pulse power (at 20W) the pulse experiences only dispersion and causes pulse broadening 

shown in Fig 6.3(a). When we increase the peak power (around 800W) the nonlinearity starts 

taking over and cancel out the dispersion. Fig. 6.3(b) shows the undistorted soliton pulse.  

 

 

 

 

 

 

 

 

Figure 6.3 2D view of 100 fs pulse propagation through the bar channel of PCF in Fig. 1 

(a) Dispersed pulse at 20W peak power (b) Soliton pulse at 800W peak power 

(a) (b)(a) (b)

 

(a) (b)(a) (b)
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6.4 Pulse Switching in Dual Core PCF 

 At low peak intensity of the pulse, the dual core PCF behaves like a linear coupler. The 

two core completely exchange power after traveling a distance of Lc. As the intensity increases 

the power remain in the same waveguide where the pulse was originally launched. Figure 6.4 

shows this clearly. Here we see that at low intensity the normalized power P1 in bar channel (the 

PCF core which receive the input pulse) and P2 in the cross channel (another PCF core) 

completely exchanged after propagating 1.8 cm which is the coupling length of our PCF. This 

linear characteristic is shown in Figure 6.4 (a). On the contrary at higher intensity shown in 

Figure 6.4 (b) the power tends to remain in the same core. Transmission curve at Figure 6.5 

elaborate the switching characteristic prominently. We observe switching around 1.6 TW/cm
2
. 

 

 

 

 

 

 

 

Figure 6.4 Normalized power in bar channel P1 and cross channel P2 

(a) at 4.16 GW/ cm
2
 (b) at 583 GW/ cm

2
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Figure 6.5 Transmission curve of dual core PCF (d=2.0 m, C=2Λ and d/Λ=0.9) 

versus input intensity 
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CHAPTER 7: CONTINUUM GENERATION IN PCF 

7.1 Introduction: Continuum Generation by Ultra Short Pulse 

One of the most impressive and simple experiments with ultra short light pulses is the 

generation of a white light continuum [49]. At the same time continuum generation with laser 

pulses is one of the most complex and difficult to analyze processes as it combines special and 

temporal effects and their interplay [49, 52, 86]. Focusing a powerful laser pulse into a 

transparent material results substantial spectral broadening [22, 86]. The output pulse appears on 

a sheet of paper as a white light flash, even if the exciting pulse is in the near infrared (IR) or 

near ultraviolet (UV) spectral range. This is often accompanied by colors distributed in rings. 

Continuum generation was first discovered with pico second pulses by Alfano and Shapiro [94] 

and has since been applied to numerous experiments [86-88]. One of the most attractive 

applications is time-resolved spectroscopy, where the continuum pulse is used as a ultra fast 

spectral probe.  

Spectral supper broadening was observed in many different materials including liquids, 

solids, and gases. Essential processes contributing to the continuum generation are common to 

all. Supper continuum does not have a flat uniform spectrum [88-89]. The dominant process and 

the starting mechanism leading to spectral supper broadening is the SPM, because of an 

intensity-dependent refractive index. However, a number of other nonlinear effects play a role as 

well. The various nonlinear processes make the exact treatment of the continuum generation with 

short pulses, extremely complex. FWM and SRS are also needed to be considered. The strong 

anti stocks component visible in the experiment is likely because of multi photon excitation of 
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the dielectric material followed by avalanche ionization [88-90]. The resulting electron plasma in 

the conduction band produces a fast rise of a negative refractive index component that can 

explain the dominant broadening toward the shorter wavelengths [89]. SPM associated with self 

focusing leading to extremely high intensities where the beam collapses. It is at this point where 

the continuum generating nonlinear processes is most effective [89]. 

Traditionally continua were generated in bulk materials with amplified femto second 

pulses [89-92]. Pulse continues to broaden due to dispersion until beam collapse limited the 

effective material length. This situation changed with the introduction of microstructured fibers 

[87-91]. These fibers either shift the zero dispersion wavelengths to regions were fs oscillator 

pulses were readily available and/or reduce the dispersion while increasing the nonlinearity [21, 

55]. Because of   the possible large propagation lengths for guided modes the overall nonlinear 

interaction length can be greatly increased, which allowed the generation of continua with nJ and 

sub-nJ pulses directly from oscillators, and even using continuous wave (CW) light [59]. Using 

pulses directly from Ti: sapphire oscillators, continua covering almost two decades from 370 nm 

to 1600 nm [89]. 

7.2 The Physics of Super Continuum Generation 

The physical processes behind suppercontinum generation in fibers can be very different, 

depending particularly on the chromatic dispersion and length of the fiber, the pulse duration, the 

initial peak power and the pump wavelength. When femtosecond pulses are used, the spectral 

broadening can be dominantly caused by self-phase modulation. In the anomalous dispersion 

regime, the combination of self-phase modulation and dispersion can lead to complicated soliton 
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dynamics, including the split-up of higher-order solitons into multiple fundamental solitons 

( soliton fission) [19,87]. For pumping with pico second or nanosecond pulses, Raman scattering 

and four-wave mixing can be rather important [89].  

In some cases, such as with self-phase modulation being the dominant mechanism and 

the dispersion being normal, the process is very deterministic, and the phase coherence of the 

generated suppercontinum pulses can be very high, even under conditions of strong spectral 

broadening. In other cases (e.g. involving higher-order soliton effects), the process can be 

extremely sensitive to the slightest fluctuations (including quantum noise) e.g. in the input pulses, 

so that the properties of the spectrally broadened pulses vary quite substantially from pulse to 

pulse [89]. The strongly nonlinear nature of suppercontinum generation makes it hard to 

intuitively understand all the details of the interaction, or to predict relations with analytical tools. 

Therefore, numerical pulse propagation modeling (often with special precautions due to the 

extreme optical bandwidth) is required for the analysis of such processes. Intuitive pictures or 

analytical guidelines can be tested by comparison with results from such numerical models. 

7.3 Experimental Demonstration of Multi Frequency Generation in PCF Coupler 

 Recently one research group experimentally demonstrated the multi frequency generation 

below 1550 nm for dual core PCF [21]. The observations in ref [21] reveal that the most of the 

input radiation has been converted to other frequencies. At lower intensities the power spectrum 

is broadened by self-phase modulation. On the other hand for higher intensity spectral 

broadening still continues below 1500 nm. Two peaks observed at 600 nm and 1800 nm and 

their conclusion is due to third harmonic generation.  
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7.3.1 Explanation of Multi Frequency Generation using the Developed Models 

Highly nonlinear PCF has the capacity to generate higher frequencies due to multiple 

nonlinear process such as SPM, Raman Scattering, four wave mixing (FWM). Experimental 

results for dual core PCF geometry confirm this [21]. Theoretically explaining the results 

required numerical treatment of PCF to infer necessary dispersion, nonlinear and coupling 

parameters for a wide frequency spectrum. Our FEM did that successfully and then we use these 

fitting parameters in the CNLSE for the pulse propagation treatment.  

At higher input power, it is evident that the other frequencies generate due to several 

nonlinear processes. It was quickly realized from the experiment that the switching 

characteristics deteriorated due to energy transfer from one frequency to another [21]. Multiple 

nonlinear processes such as SPM, SRS and wave-mixing were responsible for the high frequency 

generation. As the frequency covers a broad spectrum, so it was essential to incorporate wide 

spectrum of dispersion and coupling characteristic in our model. We include all these and modify 

the propagation equation as  

    
q

qqTqqqi

qqq
qq

i
q

z

q
i

R 0)()(

)(
2462

2
120

2

11

2

11

1

2

2

2

14

1

4

4

3

1

3

3

2

1

2

21


























































                                (7.1a)

 

    
q

qqTqqqi

qqq
qq

i
q

z

q
i

R 0)()(

)(
2462

1
110

2

22

2

22

2

2

2

2

14

2

4

4

3

2

3

3

2

2

2

22



























































                                 (7.1b)

 

β4 shown in the fourth term is the fourth derivative of the wave vector kz with respect to ω. TR is 

the nonlinear response function originated from delayed Raman response. Experimentally TR was 
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measured as 3 fs at 1.55 m [1]. κ0 is the coupling coefficient, which is related to the even and 

odd mode wave vector by  

c

zoze
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kk

22
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 


                                                            (7.2) 

κ1 is the first derivative of κ0 with respect to ω. This κ1 term is added in the propagation equation 

to incorporate the frequency response of the coupling. Frequency dependent dispersion and 

coupling characteristics of PCF specimen used in the experiment was evaluated using FEM 

model and those agree well with the experimental results. Experimentally Lc can be measured by 

using cut back method and at 1.55 m it was measured as about 5.6 mm for the PCF coupler 

used in [21].  Evaluated Lc from our model confirms this result (Figure 7.1). Figure 7.2 shows 

the frequency response of κ0 and κ1. 

 

 

 

 

 

 

 

Figure 7.1 Coupling length of the dual core PCF sample (Five rings, d=1.0 m, Λ =2.5m and 

C=10 m): (a) PCF geometry (b) Lc 
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Figure 7.2 Coupling coefficient of the dual core PCF sample: (a) κ0 (b) κ1 

 

Figure 7.3 shows the frequency response of β2, β3 and β4 of the dual core PCF sample 

used in the experiment. From our evaluated dispersion results it is found that the GVD shift from 

normal to anomalous region in around 1.1 μm (equivalent to 2.72 THz) which is also known as 

the zero dispersion wavelength λd and can be shifted by changing the d/Λ [55]. 
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Figure 7.3 Frequency dependent dispersion characteristics of the PCF sample 

(a) β2 (b) β3 and (c) β4 
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As the input peak pulse power increases beyond the switching threshold power, we 

observed breaking up of pulse primarily due to intense effect of SPM. Figure 7.4 shows the 

intensity of output pulses (both at bar and cross channel) for peak power of 10, 50, 75 and 114 

KW respectively. At a relatively lower input power (up to 10 KW), distortion free pulse 

propagation is observed. Pulse could not keep its shape as the power increased. As we observe 

from the figures that the intensity modulation is more intense as the power increased. It is 

obvious from the time domain response shown in Figure 7.4 that higher input power causes 

higher frequency generation due to multiple nonlinear processes which was later confirmed by 

the frequency domain analysis. Fig 7.5 shows the wavelength response of cross channel output 

for a 1.55 m input pulse at a power level of 10, 50, 75 and 114 KW respectively. We observe 

new frequency generation due to increased peak power. Pulse energy spread into a wide 

wavelength range (from 0.5 m to 3.0 m). Primary reason for this higher frequency generation 

is due to SPM.  A 0.12 um higher wavelength shifting is observed due to SRS. Fig. 7.6 and 7.7 

shows the 3D view of frequency response of both bar and cross channel respectively. The figures 

show that the higher frequency generated at the far end of the waveguide. Close to the input side, 

the pulse maintains its shape but as distance increases pulse starts introducing higher frequencies 

at higher input power. 
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Figure 7.4 Input and output (both bar and cross channel) pulse shape of 9mm PCF sample 

(a) at a peak pulse power of: (a) 10KW (b) 50 KW (c) 75 KW and (d) 100 KW 
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Figure 7.5. Wavelength response of cross channel output pulse of 9 mm PCF sample at a peak 

pulse power of: (a) 10KW (b) 50 KW (c) 75 KW and (d) 100 KW 
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Figure 7.6. Wavelength response of bar channel pulse propagation of 9 mm PCF coupler sample 

at a peak pulse power of: (a) 10KW (b) 50 KW (c) 75 KW and (d) 100 KW 
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Figure 7.7 Wavelength response of bar channel pulse propagation of 9 mm PCF sample at a 

peak pulse power of: (a) 10KW (b) 50 KW (c) 75 KW and (d) 100 KW 
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CHAPTER 8: CONCLUSIONS  

Linear and nonlinear characteristics of optical waveguide specifically the PCF were 

numerically studied here in this dissertation to overcome the limitation of existing analytical 

formulation. We have built an edge vector element based FEM for the optical waveguide’s 

modal analysis. Careful effort was made to avoid spurious/nonphysical solution. Field 

distribution with proper power normalization has been evaluated for the structures in order to 

incorporate the intensity dependent refractive index change in the waveguide material in our 

model. Accurate dispersion relation along with field distribution was investigated for the 

nonlinear pulse propagation.  

The model also provides us the coupling characteristics of coupled waveguide structure. 

We evaluated the coupling coefficients of dual core PCF from the wave vector of even and odd 

modes over a wide wavelength range. The cladding structure, core diameter and core separation 

was innovatively adjusted to achieve desired coupling along with the dispersion characteristics.  

While designing this optical waveguide we found more degree of freedom in PCF than regular 

fiber. 

This is the foundation to numerically investigate the nonlinear phenomenon observed in 

PCF such as self and cross phase modulation, scattering etc. Femtosecond pulse propagation was 

modeled by the coupled nonlinear Schrödinger equation and that equation was solved by using 

SSFM. Necessary term such as higher order dispersion, Raman scattering, SPM and XPM, self 

steepening (shock term) etc. was added in the equation in order to describe the physical effects. 

Effect of dispersion (GVD and TOD) along with the input power was reported. The results show 

how the pulse propagates at different wavelength.  
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Recently reported experimental results revealed some novel nonlinear phenomenon such 

as nonlinear switching and multi-wavelength generation in dual core PCF. Using our model 

numerically we demonstrated pulse switching which matches reasonably with the experimental 

results. Successful design effort was made in order to achieve appropriate PCF coupler 

parameters so that it can support soliton switching. 

The nonlinear pulse propagation model reveals that at higher intensity the pulse energy 

spread into multiple frequencies primarily due to SPM. Frequency domain analysis shows that at 

higher input power the pulse starts spreading in to other frequencies as it propagates through the 

coupler. These observations help us understand the other spectral features observed in the 

experiment. It is evident that SPM is responsible for spectral broadening but some of the spectral 

peak observed at short wavelength was due to frequency mixing including existence of proper 

phase matching condition. SRS causes a 15 THz shifting of the pulse peak impulse.  
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