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ABSTRACT 

This research effort compared student learning gains and attitudinal changes through the 

implementation of two varying instructional approaches on the topic of functions in College 

Algebra.  Attitudinal changes were measured based on the Attitude Towards Mathematics 

Inventory (ATMI).  The ATMI also provided four sub-scales scores for self-confidence, value of 

learning, enjoyment, and motivation.  Furthermore, this research explored and compared 

relationships between students’ level of mastery and their actual level of learning.   

This study implemented a quasi-experimental research design using a sample that 

consisted of 56 College Algebra students in a public, state college in Florida.  The sample was 

enrolled in one of two College Algebra sections, in which one section followed a self-adaptive 

instructional approach using ALEKS (Assessment and Learning in Knowledge Space) and the 

other section followed a traditional approach using MyMathLab.  Learning gains in each class 

were measured as the difference between the pre-test and post-test scores on the topic of 

functions in College Algebra.  Attitude changes in each class were measured as the difference 

between the holistic scores on the ATMI, as well as each of the four sub-scale scores, which was 

administered once in the beginning of the semester and again after the unit of functions, 

approximately eight weeks into the course.  Utilizing an independent t-test, results indicated that 

there was not a significant difference in actual learning gains for the compared instructional 

approaches.  Additionally, independent t-test results indicated that there was not a statistical 

difference for attitude change holistically and on each of the four sub-scales for the compared 

instructional approaches.  However, correlational analyses revealed a strong relationship between 
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students’ level of mastery learning and their actual learning level for each class with the self-

adaptive instructional approach having a stronger correlation than the non-adaptive section, as 

measured by an r-to-z Fisher transformation test.  The results of this study indicate that the self-

adaptive instructional approach using ALEKS could more accurately report students’ true level 

of learning compared to a non-adaptive instructional approach.  

Overall, this study found the compared instructional approaches to be equivalent in terms 

of learning and effect on students’ attitude.  While not statistically different, the results of this 

study have implications for math educators, instructional designers, and software developers.  

For example, a non-adaptive instructional approach can be equivalent to a self-adaptive 

instructional approach in terms of learning with appropriate planning and design.  Future 

recommendations include further case studies of self-adaptive technology in developmental and 

college mathematics in other modalities such as hybrid or on-line courses.  Also, this study 

should be replicated on a larger scale with other self-adaptive math software in addition to 

focusing on other student populations, such as K - 12.  There is much potential for intelligent 

tutoring to supplement different instructional approaches, but should not be viewed as a 

replacement for teacher-to-student interactions.   
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CHAPTER ONE: INTRODUCTION 

College Readiness 

Achieving the Dream is a non-profit organization that is interested in helping community 

college students succeed through evidence-based practices (2013).  According to this 

organization, the current generation of college-aged Americans will be less educated than their 

parents’ generation for the first time in U.S. history while higher order skills are needed more 

than ever before in our workforce (2013).  This phenomenon can be attributed to students 

entering colleges underprepared (2013).  As a result, the percentage of high school students 

enrolling in college immediately following high school graduation has remained at 60% since the 

1990s (Snyder, 2012).   In addition, according to the Educational Testing Services, the number of 

students aged 25 to 29 completing four or more years of college has been around 25% for the 

past two decades (Burke, 2008).  The Carnegie Foundation, an independent policy and research 

center for improvement of teaching, reports that 60% of students entering higher education in the 

United States are required to complete remedial courses (Strother, Van Campen, & Grunow, 

2013; Taylor, 2008).  In 2004, 1.2 million students took the ACT college-entrance examination, 

and less than 22% of these students were college-ready in mathematics according to the ACT 

testing board (Burke, 2008).  Therefore, there are a large number of students required to 

complete remedial courses.  However, 70% of all remedial students never complete the required 

math courses, “blocking their entry into higher education” (Strother, Van Campen, & Grunow, 

2013, p. 3).   
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In addition to students not being college-ready, less than 30% of all community college 

students in the United States graduate with a degree (Bailey & Cho, 2010).  The American 

Mathematics Association of Two-Year Colleges (AMATYC) reports that approximately 1.3 

million students were enrolled in math courses at two-year colleges (Blair, 2006).  In the fall of 

2005, about 57% of students were enrolled in a developmental math course.  In 2010, the 

percentage of students enrolled in developmental mathematics at two-year colleges stayed steady 

compared to the total number of mathematics courses offered at two-year colleges since 2005 

(Blair, 2006).  The Conference Board of the Mathematical Sciences (CBMS) reports that 

enrollment in developmental mathematics has increased by 19% since 2005 (Blair, Kirkman, & 

Maxwell, 2003, p. 1).  In California, the second largest higher education system in the United 

States, over 70% of students are placed into remedial math courses (Brown & Niemi, 2007).  The 

Florida Department of Education (2012) reports that only 31.8% of students in developmental 

math courses in the Florida’s college system excluding public universities were successful during 

the 2007 – 2008 academic year, earning a grade of C or higher.  In addition to developmental 

students having difficulty in completing their developmental requirements, only 20% of 

developmental students will earn a degree while 50% of non-developmental college students will 

earn a college degree (Thomas and Higbee, 2000). 

Burke (2008) and Taylor (2008) attribute these statistics to an inadequate high school 

preparation for college-level math courses.  The inadequate preparation is due to poor alignment 

between high school and colleges, often creating an “expectations gap” as described by the U.S. 

Secretary of Education Spelling’s Commission on the Future of Higher Education (Burke, 2008, 
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p. 2).  As a result of the misalignment between high schools and colleges, an enormous number 

of students are being placed into developmental math courses as well as developmental courses 

in reading and English (Bahr, 2008; Bahr, 2010a; Bahr, 2010b; Bahr, 2012; Bahr, 2013; Brown 

& Niemi, 2007; Fine, Duggan, & Braddy, 2009; Gallard, Albritton, & Morgan, 2010; Hern, 

2012; Taylor, 2008).   Currently, students that start in remedial college courses, particularly 

mathematics, have a slim chance in completing college-level courses and even a smaller chance 

of graduating with a certificate or degree (Bahr, 2010; Bailey & Cho, 2010; Brown & Niemi, 

2007; The Carnegie Foundation, 2013).  The lack of success in developmental math courses is 

due to the time that a developmental math student spends in these remedial courses.  For 

example, students who successfully transferred to a university spent an average of five years in 

community college to get only one year worth of credit in California (Melguizo, Bos, & Prather, 

2011).   

Developmental Education 

 Despite the high demand for remedial college courses, there is a huge debate on the success, 

benefit, and cost of developmental education (Melguizo, Bos, & Prather, 2011).  Opponents of 

developmental math education argue that taxpayers should not have to pay again for students to 

learn skills that should have been obtained prior to entering college (Bahr, 2012).  The cost of 

developmental math education is another criticism of developmental education (Bahr, 2008; 

Bahr, 2012; Melguizo, Bos, & Prather, 2011).  The cost of developmental education is about $1 

to $2 billion annually for public colleges (Bahr, 2008; Bahr, 2012; Melguizo, Bos, & Prather, 
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2011).  If indirect costs were included, the total cost rise to $17 billion annually (Bahr, 2008).  In 

addition, opponents argue that developmental education is not working.  Most students who 

begin the remedial sequence do not successfully exit college-level math courses following six 

years after initial college enrollment (Bahr, 2010).  However, those that argue in favor of 

developmental education posit that it provides access to students to obtain prerequisite skills to 

prepare them for college-level coursework (Bahr, 2010).  Developmental education provides a 

bridge to obtaining a college degree (Bahr, 2010).  Supporters also argue that the U.S. economy 

is dependent on those that are competent with reading, writing, and basic, necessary math skills 

(Bahr, 2012).  Moreover, remedial courses provide an opportunity for students to obtain 

necessary prerequisite skills needed for the work force (Bahr, 2012).  Furthermore, McCabe 

(2000) argues that providing developmental education for underprepared students is essential to 

the mission of American higher education citing that over 80% of new jobs by 2020 will require 

some postsecondary education. 

Despite the ongoing debate surrounding developmental education, “major changes are 

occurring in educational policies pertaining to postsecondary remediation” (Bahr, 2012, p. 178).  

Due to the low percentage of students exiting remedial college courses and the cost of 

developmental education, there is a national reform movement to help students accelerate their 

remedial education (Bahr, 2012; Brown & Niemi, 2007).  The White House Summit Report 

(2011) provides some general recommendations on developmental reforms including modifying 

college schedules, creating specific course paths to shorten time to earn a degree, aligning 

developmental education with the learners’ diverse needs, increasing the use of cohort-based 
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education, and using technology to increase capacity.  These suggestions are primarily focus on 

accelerating students’ paths towards a college degree, modifying current instructional practices 

and using technology appropriately.   

Changes in Developmental Education 

The Carnegie Foundation has worked with colleges to create shorter paths in mathematics 

that have focused on statistical and quantitative reasoning skills to give students an alternative 

path to complete their college degree (Merseth, 2011).  The shorter paths being implemented by 

the Carnegie Foundation colleges results in students completing their math requirements in two 

semesters instead of five semesters (Merseth, 2011).  For example, a community college in 

California developed “Path2Stats” where students take one semester of developmental 

mathematics, followed by a college-level statistics course (Hern, 2012).  In this model, a just-in-

time approach is used to present developmental math skills as they become relevant while 

learning Statistics.  In essence, students are enrolled in a year-long Statistics course with 

included relevant developmental math lessons.  The community college found that students in 

“Path2Stats” completed their math requirements at 4.5 times the rate of students placed on the 

traditional math path.  The “Path2Stats” initiative led to the California Acceleration Project, 

which is advocating for a national acceleration movement in remedial education (Hern, 2012).  

Valencia College in Central Florida has offered students a similar path for students to complete 

their math requirements in two semesters. This alternative math pathway led students to College 

Statistics after one semester of developmental mathematics.  Similar to “Path2Stats”, students 
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were learning Statistics with developmental math lessons presented when those skills became 

relevant.  In another study, Sheldon and Durdella (2010) found that students in compressed 

courses were more likely to succeed than students who were not enrolled in accelerated 

developmental courses regardless of age, gender, or race.   

Furthermore, other community colleges adopted accelerated programs by combining 

developmental math courses (Hern, 2012).  For example, some community colleges in California 

combined elementary and intermediate algebra into one combined course to save time and 

reduce redundancy (Hern, 2012).  Some colleges have eliminated remedial courses as 

prerequisite, offering students to enroll directly into college-level math courses.  Additional 

support was provided through tutoring and math software.  In California, several colleges follow 

this model, called the “mainstream model” (Hern, 2012).     

Modularization serves as another way to accelerate students through their math requirements.  

Students in this model were assigned the topics they had to master relevant to their major at 

Jackson State Community College in Tennessee.  Jackson State Community College had twelve 

distinct topics for developmental math, but only 7 of 41 course of study requires all modules to 

be completed.  The topics to be learned were tailored to students’ course of study and math pre-

requisite skills needed for college-level courses.  In addition to customizing students’ 

developmental study, the modules were self-paced and delivered through MyMathLabPlus, a 

math software system that offers on-line homework with assistance, examples, explanations, and 

practice assessments.  This example of using computer-assisted instruction (CAI) for math raised 

the success rate from about 42% to about 59% for Jackson State Community College.  Retention 
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rates (students staying in a course until the end without withdrawing) have increased by about 

12% (Bassett & Frost, 2010). 

As a result of the reported success of these accelerated programs in developmental 

mathematics, recent laws to change the delivery and option of developmental mathematics were 

passed in Florida (Senate Bill 1720 §1008.30, 2013).  These law reforms, referred to as SB 1720, 

have dropped placement testing and remedial requirements for students who entered a Florida 

public high school as a 9
th

 grader in 2003 or after and graduated with a standard high school 

diploma.  Students with a recent Florida high school diploma can only be tested on a voluntary 

basis.  Regardless of the student’s placement test score, enrollment in developmental education 

courses is voluntary, not mandatory (Florida Department of Education, 2013).  In addition, 

enrollment in remedial courses is voluntary in some colleges in New York that requires 

placement testing (Perin, 2004).  As a result, more students will be entering college-level math 

courses without adequate remedial preparation.  Furthermore, students depend on more tutoring 

services and math labs for additional assistance (Perin, 2004).  However, resources at community 

colleges are limited in tutoring labs and may not always be supported by state funding (Perin, 

2004).   

In addition, the benefit of accelerating students’ developmental education or eliminating 

developmental requirements altogether is unclear due to limited research in this area (Hordaras 

& Jaggars, 2014).  In addition, faculty members may worry that “increased access to college-

level courses will result in lower pass rates and dampen long-term student success” (Hordaras & 

Jaggars, 2014, p. 251).  Hordaras and Jaggars (2014) conducted an analysis of accelerated 
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education in English and Mathematics.  They compared shorter sequences of developmental 

courses and longer sequences of developmental courses.  Results indicate that students going 

through a shorter sequence of mathematics compared to a longer sequence of mathematics, after 

accounting for student characteristics and cohorts, were only 1% more likely to earn an 

Associate degree over three years (Hordaras & Jaggars, 2014).  This result was significant at the 

p < 0.10 level (2014).  In addition, Hordara and Jaggars (2014) concluded that accelerating 

developmental math education provides greater access to college-level courses, but there may be 

consequences in terms of student success in college-level courses.   

The issue of underprepared students extends beyond developmental education and may affect 

college-credit courses and degree programs (Perin, 2004).  For example, some institutions do not 

require or offer developmental education.  Furthermore, only 25% of underprepared community 

college students enroll in developmental courses (Perin, 2004).  Moreover, there are students 

who do not take math courses every semester, which contributes to the issue of students entering 

college-credit math courses underprepared.  For these students, they have already completed 

their prerequisite requirements, but so much time has elapsed since their last math course, that 

there is information that has been forgotten and has to be relearned in order for them to be able to 

progress through college-level mathematics.  In addition, older students returning to college may 

have forgotten much of their math skills and need some remediation.  However, they may place 

into a college level math course based on older transcripts and records.  Older students and 

students not completing math courses in successive semesters must be taken into consideration in 

addition to accelerated remedial students entering college mathematics. 
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In order for students to be successful in college-level math courses with the new reforms in 

place, a strategic plan must be developed and implemented with effective instructional strategies 

(Keup, 1998).  For example, Black Hills State University redesigned their College Algebra 

course by adding a supplemental computer-based mastery learning program, incorporating more 

whole class discussion and cooperative learning activities, more application problems, and fewer 

lectures (Hargerty, Smith, & Goodwin, 2010).  Black Hills State University’s redesign of 

College Algebra resulted in a 21% increase in passing rate, a 300% increase in enrollment in the 

next sequential math course (trigonometry), 25% improvement in attendance rates, and a 

statistically significant increase in the Collegiate Assessment of Academic Proficiency scores.  

These improvements were made in response to a low number of math majors and a low 

enrollment rate for higher mathematics courses.  In addition to the low enrollment in higher 

mathematics, calculus instructors reported that students did not understand the algebraic process.  

As a result, students could not successfully complete calculus problems.  However, the redesign 

was not easy and took a few years to fully implement.  Faculty required training and an 

understanding of the new approach to teaching college algebra.  This redesign effort serves as a 

multi-faceted strategy example of helping students to be successful in college-level mathematics 

(Hargerty, Smith, & Goodwin, 2010). 

However, there are no standardized best practices or approaches in place for community 

college math instruction (Thomas and Higbee, 2000). Currently, the main mode of instruction in 

college-level courses is primarily traditional lecture according to the CBMS 2010 report (Blair, 

2006; Spradlin & Ackerman, 2010).  For example, Calculus I sections taught in 2010 were 66% 



10 

 

lectures while Calculus II sections taught were 85% lecture (Blair, 2006).  In addition, 

elementary statistics sections in 2010 were 81% lecture.  Alternative or supplemental modes of 

instruction should be developed so that underprepared students can gain the knowledge and skills 

necessary to complete their post-secondary education (Spradin & Ackerman, 2010; Taylor, 

2008).     

Instructional Media 

A variety of instructional modalities are being implemented to better meet the needs of 

math students with deficiencies (Spradlin & Ackerman, 2010; Twigg, 2013). Additionally, on-

line learning tools and distance education is in more demand due to technological advances and 

to make access to college more convenient for all students, especially part-time students with a 

busy schedule (Spradlin & Ackerman, 2010; Valentine & Bessett, 2013).  In addition, many of 

these reform movements use computer-assisted instruction as a supplement or as the sole source 

of instruction to help students learn independently (Hern, 2012; Merseth, 2011; Moosavi, 2009).  

Moosavi (2009) reports that colleges and universities are investing money to develop and 

maintain computer labs to enhance instruction supplemented by computer-assisted instruction 

(CAI).  As the demand for asynchronous learning continues to increase coupled with traditional 

lecture format being augmented or replaced by CAI, the use of CAI will continue to grow 

(Moosavi, 2009).   

Twigg (2013) asserts that the use of instructional software is the key to the redesign in 

college math education since it provides content consistency, several instructional resources such 
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as hints, examples, videos, hyperlinks to relevant parts in the textbook, and provides timely, 

immediate feedback.  CAI offers students the advantage of learning on their own schedule, to 

receive immediate feedback, and to receive instruction in a variety of ways to suit their learning 

needs (Spradlin & Ackerman, 2010).  Computer assisted instruction (CAI) have become an 

integral part of higher education since it can reach a broader student audience, better address 

students’ needs, and save money (Zavarella & Ignash, 2009).  The focus is no longer on whether 

or not CAI should be integrated into the college curriculum, but how to use CAI effectively.  The 

potential of computers and CAI is dependent on the instructors’ use of such technological tools 

(Moosavi, 2009).  Therefore, the use of math software should only be considered in light of the 

instructional approach being implemented.   

Several studies (e.g. Fine, Duggan, & Braddy, 2009; Taylor, 2008; Xu, Meyer, & 

Morgan, 2008) confirm students in courses where CAI used as supplement to lecture or used in 

place of lecture perform equally well or better than the traditional lecture sections.  However, 

these studies do not examine different instructional approaches with CAI involving the use of 

artificial intelligence compared to a traditional instructional approach with CAI.   

Computer software such as MyMathLab and ALEKS are used predominantly in remedial 

and college-level math courses nationwide.  With reform movements affecting students’ math 

readiness and the pace at which they learn mathematics, alternative teaching methods including 

technology is being explored in developmental and college-level math courses throughout 

Florida and the country (Spradlin & Ackerman, 2010).     
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Student Affect 

Research has shown that students’ level of motivation, attitude, locus of control, and their 

perception affects learning (Blair, 2006; Nunez-Pena, Suarez-Pellicioni, & Bono, 2013).  Low 

grades were shown to be related to math anxiety and negative attitudes towards mathematics 

(Nunez-Pena, Suarez-Pellicioni, & Bono, 2013).  For example, Nunez-Pena, Suarez-Pellicioni, 

and Bono (2013) explored the relationship between students’ performance and their anxiety level 

in a research design course at the University of Barcelona.  In addition, relationships between 

students’ course grade and their attitude towards mathematics were also compared using an 

abbreviated Likert math anxiety scale (sMARS), where scores can range from 25 to 125 points.  

The math anxiety scale used provides scores in the area of math anxiety, math test anxiety, and 

math course anxiety.  The math anxiety scale was internally validated and has shown strong 

internal consistency (Cronbach’s alpha = 0.94) and a test-retest reliability of 0.72 (Nunez-Pena, 

Suarez-Pellicioni, & Bono, 2013).  In addition to measuring math anxiety, attitudes toward 

mathematics were measured by a three-item questionnaire, which focused on enjoyment, self-

confidence, and motivation.  A sample of 193 students participated in this study.  In this study, a 

significant relationship was found between students’ final course grade and the variables under 

investigation regarding students’ attitude, which included math anxiety, math test anxiety, math 

course anxiety, enjoyment of mathematics, self-confidence of mathematics, and motivation for 

mathematics.  Post hoc comparisons showed that student who failed or received a lower grade 

had more math anxiety, more math test anxiety, and math course anxiety, and low enjoyment.  In 

addition, these students reported low self-confidence and low motivation compared to students 
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who received a higher grade in the research design course.  Students who obtained higher grades 

showed lower levels of math anxiety and had a higher level of self-confidence, motivation, and 

enjoyment.  Nunez-Pena, Suarez-Pellicioni and Bono (2013) recommend taking the negative 

impact of attitudinal factors into consideration at all teaching levels (elementary, secondary, and 

post-secondary).  Furthermore, programs or interventions that can mitigate negative impact of 

affect and can optimize student learning should also be incorporated.     

Using technology, specifically CAI, can help to mitigate the negative impact of students’ 

attitude.  For instance, Elliott, Choi, and Friedline (2013) implemented an on-line statistics lab 

component as part of a research course for social work students to increase math literacy in the 

area of statistics and to create more positive attitude.  Elliott, Choi, and Friedline (2013) reports 

that a majority of graduate students experience math anxiety and serves as a motivation for 

implementing an on-line statistics lab component.  Students reviewed on-line lessons at their 

own pace and completed a weekly lab assignment relating to Statistics using SPSS.  Data about 

students’ attitudes towards the on-line Statistics lab was collected using a Posttest-only design.  

68% of students were afraid to learn Statistics before the course began.  However, no students 

were afraid to learn Statistics at the end of the course.  This was statistically significant using the 

Fisher’s exact test, p = 0.00.  In addition, confidence levels in performing statistical analyses 

increased from 24% before the course to 80% of students being confident after the course.  In 

addition, 100% of the students report being confident in reading and understanding scholarly 

articles after the course compared to 79% being confident before the course.  This research study 

was limited primarily due to a lack of a comparison group and limited for using only a post-test 
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design.  Therefore, these findings are descriptive in nature.  The researchers suggest future 

investigation to actually determine the impact of the on-line statistics component of the research 

course.   

Student affect has also been explored in younger students.  For example, Cates and Rhymer 

(2003) examined the relationship between students’ fluency in addition and their level of anxiety.  

Their study demonstrated that students with less math anxiety were able to complete more 

problems correct per minute for all four basic math operations (addition, subtraction, 

multiplication, division).  Their findings support the notion that math anxiety may be related to 

the level of learning achieved (Cates & Rhymer, 2003).  Some recommendations were made in 

reference to varying level of instruction and the rate of increasing instructional difficulties.  The 

authors recommend that introducing students to topics that they are not yet ready for will lead to 

increased anxiety and decreased performance.  For example, it is not wise to introduce students 

to regrouping in addition if students are having problems understanding addition without 

regrouping.  The authors suggest that further research in this area may enhance educators’ ability 

to prevent and treat math anxiety through more effective matching of instruction to student level 

of learning.    

However, the finding of these research studies suggest that students’ attitudes have been 

shown to be a contributing factor in whether students learn (Elliott, Choi, & Friedline, 2013; 

Gates and Rhymer, 2003).  Furthermore, students’ attitude and their level of learning was found 

to be positively affected by their confidence level, motivation level, anxiety level, level of 

persistence, and their overall attitude towards math and computer-assisted instruction in other 
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studies (Dabbagh & Blijd, 2010; Elliott & Friedline, 2013; Tapia & Marsh, 2004; Moosavi, 

2009).  In addition, Taylor (2008) has identified that self-confidence and self-esteem influence 

student learning. In response to these characteristics that affect student learning, it makes sense 

to develop effective instructional techniques that gives them support, opportunities to find 

academic success with positive feedback, and opportunities to increase their self-concept in 

general (Acelajado, 2004; Taylor, 2008).  More specifically, math anxiety, negative attitudes, 

poor study skills, and lack of responsibility for learning should also be addressed in addition to 

math skills in remedial and college-level math courses (Spradlin & Ackerman, 2010).  Since 

students’ attitudes affect their learning experience, the effect of instructional approach on student 

affect should be considered.  In fact, Spradlin and Ackerman (2010) recommend future studies 

investigating math anxiety levels with varying instructional approaches.  Therefore, students’ 

attitude levels will be measured in this current research study using Tapias’s (1996) Attitudes 

Toward Mathematics Inventory (ATMI).  The ATMI provides measures on students’ confidence 

levels, value level, enjoyment level, and motivation level in addition to a holistic attitudinal 

score.  

Purpose of Study 

The purpose of this study was to compare an adaptive instructional approach using 

ALEKS to a traditional instructional approach using MyMathLab in terms of their effect on 

learning gains on the topic of functions in College Algebra as well as their attitudinal changes.  

In addition, correlational analyses were performed to compare students’ mastery learning levels 
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to their actual learning levels for each instructional approach.  Another purpose was to compare 

this relationship between the instructional approaches.   

College Algebra was chosen since it serves as a gateway courses for many students.  In 

addition, student success in College Algebra is important for students to be successful in other 

disciplines (Hargerty, Smith, & Goodwin, 2010).  College Algebra provides important concepts 

such as statistical analysis procedures and functions and processes such as modeling, problem 

solving, and analysis.   

The research questions are as follows:  

1) Is there a significant difference between learning gains on the topic of functions 

between the two College Algebra sections as a function of instructional approach 

(traditional vs. adaptive)? 

2) Is there a significant difference between attitude changes between the two College 

Algebra sections as a function of instructional approach (traditional vs. self-

adaptive)?  

3) Is there a stronger correlation between students’ level of mastery learning (as 

reported by their respective software) vs. actual learning as a function of 

instructional approach (traditional vs. self-adaptive)? 

Summary 

Florida and other states are reforming developmental education to make developmental 

education accelerated, offered only as a co-requisite, or not required for students that graduated 
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high school after 2003 according to Senate Bill 1720, which was signed into law on May 20, 

2013 by Governor Rick Scott.  The intent of developmental education reforms is to have students 

enter college-level courses sooner and to spend minimum time in developmental college courses.  

This reform movements taking place such as “Path2Stats” will give students greater access to 

college-level courses, but faculty fear that this will result in higher failure rates due to 

deficiencies and lack of preparedness (Hodara & Jaggars, 2014).  CAI as a supplement to 

college-level math instruction is common (Zavarella & Ignash, 2009) and may be key to 

providing an alternative modality for students to learn, receive assistance, and to receive 

immediate feedback (Twigg, 2013).  Computer assisted instruction have yielded equal results to 

lecture-based math courses (e.g. Fine, Duggan, & Braddy, 2009; Taylor, 2008; Xu, Meyer, & 

Morgan, 2008).  However, a self-adaptive instructional approach using CAI compared to a 

traditional instructional approach using CAI may yield greater learning gains and more positive 

attitude changes.   

The purpose of this research effort is to determine whether there is a significant 

difference between a traditional approach using MyMathLab and an adaptive instructional 

approach using ALEKS, where there adjustments are automatically made based on the current 

knowledge state of students.  Comparison of the two exploratory instructional approaches will be 

made based on students’ learning gains on the topic of function and on their attitude changes as 

measured by the ATMI (Attitudes Toward Mathematics Inventory).  Measures for learning gains 

in functions between the two College Algebra sections is measured by the difference between the 

pre-test and post-test scores on function.  In addition, attitude changes were measured between 
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the difference on the first administration and the last administration of the ATMI.  Other 

measures collected include time spent completing homework on their respective software and the 

difference between actual learning (as measured by the post-test score on function) and the level 

at which course concepts were mastered (as reported by the respective software using homework 

scores). 

Organization of the study 

The first chapter provides an introduction to current state of math education in 

postsecondary institutions, specifically community colleges.  In addition, the first chapter 

reviews alternative modes of instruction being implemented in college math courses in response 

to controversy and reforms taking place regarding developmental math education.  Chapter one 

also states the purpose of the study, specific research questions, and its potential benefits for 

stakeholders.  Chapter two provides a literature review of math education and CAI, background 

of intelligent tutoring, discussion of Knowledge Space Theory (KST), and case studies that 

incorporated KST.  Chapter three provides an in-depth description of the research design and 

how data was collected and analyzed.  Chapter four provides the results of each research 

question followed by Chapter five, which provides the conclusion, implications, and future 

recommendations for extending this study. 

Potential Benefits 

The aim of this study is to compare two instructional approaches with different CAIs 

where artificial intelligence is the focus of one of the CAI systems being analyzed coupled with 
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an adaptive approach in the classroom. Due to the nature of this research study, the results found 

can inform administrators, educators, and commercial software makers about the effects of self-

adaptive technology used in an adaptive approach over different types of technology in 

traditional math instructional models.  For example, ALEKS was the chosen software for the 

adaptive instructional approach due to its adaptive function.  ALEKS is able to customize 

homework based on students’ current knowledge state and can support an adaptive instructional 

approach.  An adaptive instructional approach helps to individualize assignments based on 

students’ current knowledge state.  MyMathLab was chosen to accompany the traditional 

instructional approach since it supports the traditional lecture format.  For example, each student 

is assigned the same homework assignments and same number of problems for each course 

objective.  The results from this study can inform the features and functionalities that are best 

suited to optimize specific instructional approaches and the student learning experience in such 

learning environments.   
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CHAPTER TWO: LITERATURE REVIEW 

The purpose of this research study is to compare an adaptive and a traditional 

instructional approach both supplemented with CAI, where one CAI uses artificial intelligence to 

individualize a student’s learning plan based on the course objectives.  The two instructional 

approaches will be compared in terms of learning gains on the unit of functions in college 

algebra as measured by the difference between pre-test and post-test scores and in terms of 

students’ attitude change based on total score and sub-scores from the ATMI.  The ATMI was 

administered twice during the semester.  Another purpose of this study was to examine and 

compare correlational relationships between students’ level of mastery and their actual learning 

levels for both instructional approaches.  Students’ level of mastery is operationally defined as 

the homework grade on the unit of functions as reported by the student’s respective software 

system.  Students’ actual learning level is operationally defined as the earned grade on the post-

test for functions. 

Chapter one covered some of the demographics of students entering colleges and some of 

the current reform movements taking place in community college math education.  There are a 

large number of students entering colleges underprepared, more so in math compared to English 

or reading (Burke, 2008; Taylor, 2008; Strother, Van Campen, & Grunow, 2013).  There are a 

small percentage of remedial college students earning their college degrees.  A large number of 

students in remedial courses do not complete their college education.  In addition, developmental 

education is surrounded with controversy due to its cost and low success rate (Bahr, 2008; Bahr, 

2010; Bahr, 2012).  As a result, national organizations such as the Carnegie Foundation, 
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Achieving the Dream, community colleges, state and national leaders are implementing 

alternative modes for college math instruction.  Many of the alternative modes focus on 

accelerating the developmental path or remediation while enrolled in a college-level math 

course.  Many of the accelerated models incorporate math software packages such as ALEKS or 

MyMathLab either as a supplement to traditional lecture classes or used solely for self-paced 

learning with the instructor being a facilitator.  Computer-assisted instruction has been used in 

math education for decades.  Several research studies (e.g. Fine, Duggan, & Braddy, 2009; 

Taylor, 2008; Xu, Meyer, & Morgan, 2008) have shown using CAI to be equally effective on 

student learning compared to traditional lecture alone.  In some cases, the use of CAI has been 

shown to be more effective than traditional lecture alone.  

This chapter will provide a brief history of math education and reforms.  This chapter will 

also highlight some research studies that have used computer-assisted instruction and the results 

from those studies, followed by a discussion of intellectual tutoring, background of intelligent 

tutoring, and its impact in education.  More specifically, this chapter will include a discussion of 

Knowledge Space Theory (KST). ALEKS, the self-adaptive software, is based on the 

Knowledge Space Theory. Research studies that have been done with different instructional 

approaches using knowledge space theory will also be included. 

Math Education 

Reforms in math education are not novel (Huetinck & Munshin, 2000; Van deWalle, 

2004).  Some of the current alternatives being explored in college developmental mathematics 
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include shorter math paths, developmental math as a co-requisite, and CAI in mathematics.  

However, math reforms in the United States have been taking place for more than fifty years 

(Huetinck & Munshin, 2000; Van de Walle, 2004).  The National Council of Teachers of 

Mathematics (NCTM), a math advocacy group focused on middle and high school mathematics 

curriculum, has guided the reform movement in mathematics since 1927 (Huetinck & Munshin, 

2000).  In 1927, the NCTM Yearbook, Curriculum Problems in Teaching Mathematics, 

identified that students were memorizing procedures without an understanding of the concept or 

applications of mathematics (Huetinck & Munshin, 2000).  The traditional approach to 

mathematics instruction has been largely lecture-based since 1927 and still remains largely 

lecture-based (Blair, 2006; Van de Walle, 2004).  The traditional lecture approach led to students 

not graduating with the necessary critical thinking skills in mathematics.   

However, the Soviet Union successful launch of “Sputnik” in 1957 led to a major 

concern in the United States (Huetinck & Munshin, 2000).  The Sputnik launched was a major 

impetus for the reform movements in mathematics instruction.  In the 1960s, “New Math” was a 

reform movement that emphasized structural properties of mathematics (Huetinck & Munshin, 

2000).  Due to a lack of professional development and confusion over the “New Math” 

curriculum, this reform movement became discontinued before the 1980s.  Piaget’s research 

played a role in the reform movement that took place in the 1970s.  Piaget’s developmental 

stages of learning was incorporated into teaching training to enhance content knowledge and 

pedagogical skills, mainly at the elementary grade levels (Huetinck & Munshin, 2000).  

Manipulatives and hands-on activities were emphasized.  In the 1980s, there was a “Back to 
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Basics” movement as a reaction to the “New Math” reform movement of the 1960s and 1970s 

(Huetinck & Munsin, 2000; Van de Walle, 2004).  However, concerns over the state of math 

education in the United States continued into the 1980s. 

In the mid-1980s, almost half of the students receiving doctoral degrees in mathematics 

were not Americans according to the National Research Council, 1985 (Huetinck & Munshin, 

2000).  There were concerns raised since there were very few native students who majored and 

graduated with degrees in mathematics.  The decrease in the number of U.S. math majors 

graduating college led to a need to reform mathematics instruction (Huetinck & Munshin, 2000).  

The focus placed more emphasis on problem solving in the math curriculum and on how students 

could best learn mathematics rather than just focusing on the mathematics content (Huetinck & 

Munshin, 2000; Van de Walle, 2004).   

The NCTM published Curriculum and Evaluation Standards for School Mathematics in 

1989, which sparked a more persuasive, more widely accepted reform movement (Huetinck & 

Munshin, 2000; Van de Walle, 2004).  According to Van de Walle (2004), the 1989 NCTM 

document had an enormous effect on the curriculum and approach to mathematics.  The NCTM 

has published other documents that added to their 1989 publication.  Professional Standards for 

Teaching Mathematics was published in 1991, and Assessment Standards for School 

Mathematics was published in 1995 (Huetinck & Munshin, 2000).  The NCTM has also 

published Principles and Standards for School Mathematics in 2000, an updated document that 

encompassed the principles and standards from 1989 and includes the extension made in 1991 



24 

 

and 1995.  According to Van de Walle (2004), the NCTM’s standards in math education had a 

world-wide influence.   

According to Huetinck and Munshin (2000), the need to have all high schools students 

prepared for the 21
st
 century is what drives math reforms in education.  All students should have 

the tools for independent learning and the tools to analyze information (2000).  The NCTM lists 

five main goals for all students in mathematics.  The goals are as follows, listed by Van de Walle 

(2004; p. 2): 

1) Learn to value mathematics     

2) Become confident in their [the student’s] ability to do mathematics 

3) Become mathematical problem solvers 

4) Learn to communicate mathematics 

5) Learn to reason mathematically 

In addition to the goals for students, the NCTM has set forth six main principles that are 

important for “high-quality” mathematics education.  These six principles center on high 

expectations and support for all students (equity); a coherent curriculum that is well articulated 

(curriculum); understanding what students know and need to learn and helping students learn it 

(teaching); students must learn mathematics with understanding, where new knowledge is built 

from prior knowledge and experience (learning); assessment support the learning of mathematics 

and provide useful information for both the teacher and the student (assessment); and technology 

is important in the teaching and learning of mathematics (technology).  Technology should be 

adopted that best foster effective learning.  Today, technology in mathematics is a tool that is 
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used.  Technology in math has the potential to help students succeed in developmental 

mathematics, especially for mastery learning (Van de Walle, 2004). 

In addition to the NCTM goals and principles, American Mathematical Association of Two-

Year Colleges (AMATYC) (Blair, 2006) has set forth similar standards for college faculty to 

adopt.  AMATYC’s ultimate goals are to improve mathematics education and to encourage more 

students to study mathematics (Blair, 2006, p. 1).  AMATYC advocates creating “creating an 

environment that optimizes the learning of mathematics for all students” (p. 27).  To optimize the 

learning of mathematics for all students, AMATYC lists general characteristics to adopt for 

college faculty to reach this goal.  Some of the characteristics listed include clearly defining high 

expectations and communicating those expectations to students, using a variety of instructional 

methods to address students’ learning preferences, and providing a learning environment that 

supports the diverse needs of all learners.  Furthermore, institutions should provide professional 

development regarding mathematics anxiety, multiple problem-solving strategies, and equipping 

classrooms that encourage active learning and the use of technology.  Math anxiety and other 

factors influence learning in addition to the learning environment.  AMATYC (Blair, 2006) 

states that confidence level, belief in the ability to learn, and attitude play major roles in how 

students learn mathematics.  Math anxiety is described as a feeling or fear of failure when 

students learn or interact with math (p 23).  Math anxiety can lead to the feeling of not be able to 

do math at all (p. 23).  Since students’ attitude, confidence level, and attitude can contribute to 

student learning, these factors should be addressed.  AMATYC (Blair, 2006) suggest strategies 

such as doing homework on a regular schedule, asking questions in class, seeing the instructor or 
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a tutor for assistance, forming study groups, and using supplemental resources such as the 

Internet, books, or computer-assisted instruction.  

However, the NCTM and AMATYC are not the only driving force in the math reform 

movements.  National and international studies have contributed to the need of math reforms in 

the United States.  In 1996, the Third International Mathematics and Science Study (TIMSS) was 

the largest study of mathematics and science education ever conducted (Van de Walle, 2004).  

The TIMSS study revealed that US students in 8
th
 and 12

th
 grades were below other countries 

such as Singapore, Korea, Japan, Hong Kong, Netherlands, and Austria (2004).  This trend is 

still true from the most recent TIMSS study (NCES, 2013).  A major finding of the TIMSS study 

showed that the US curriculum is unfocused, contains more topics than most countries, and 

involves more repetition than other countries.  A major difference found was eighth grade math 

education in Japan is focused on helping students understand mathematical concepts while the 

focus for an eighth grader in the United States is on the procedures of solving math problems.  

According to the U.S. Department of Education in 1996 (as cited by Van de Walle, 2004, p. 7), 

“22% of the topics were developed while 78% of the topics were stated”.  Based on this data, 

math reforms in the United States have focused on being globally competitive.  Exploring and 

implementing alternative instructional methods and modalities to traditional lecture can play a 

role in improving math education according to the Van de Walle (2004), the NCTM (2000), and 

AMATYC (Blair, 2006).   
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Technology and CAI in Mathematics 

Several studies have found that CAI (computer assisted instruction) has enhanced 

learning (Hannafin, Dalton, & Hooper, 1987).  According to Hannafin, Dalton, and Hooper 

(1987), there is increased pressure to “orient students to our fast-paced technologically oriented 

society” (p. 9).  Technology in mathematics can refer to the use of graphing calculators, student 

response systems, mathematical software, simulations, multimedia, the Internet, and web-based 

instructional software (Blair, 2006).  Computer and technology offers high potential to impact 

student learning, increase accessibility to information and can individualize instruction.  

Advances in educational technology have made computers more powerful and less costly, which 

has resulted in more students having computer access (Spradlin & Ackerman, 2010).  A majority 

of students in Spradlin and Ackerman’s study (2010) reported that computers have had a positive 

impact on their learning.  In fact, the NCTM (National Council of Teachers of Mathematics) 

asserts that “technology is essential in teaching and learning mathematics; it influences the 

mathematics that is taught and enhance student learning” (2000).  The use of technology to help 

students learn mathematics is an important focus for the NCTM due its inherent potential to 

improve the learning process (Heinich, Molenda, Russell & Smaldino, 1999; Van de Walle, 

2004).  In addition, CAI has been found to be more effective for elementary school, high school, 

and college than traditional teaching alone (House, 2011; Spradlin & Ackerman, 2010).  

Traditional teaching in the literature refers to teaching methods, such as lecture, that is not 

supported by technology.  According to Hannafin, Dalton, & Hooper (1987), publishers and 

companies have demonstrated CAI to be effective and engaging for learners.  Chen (2009) 
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attributes success of CAI to its ability to help learners develop self-regulating learning behaviors.  

Chen (2009) points out that students in a traditional learning environment are passive learners 

since a teacher is in charge of delivering course content.  Chen (2009) reports that “passive 

learners have low spontaneous learning abilities and do not know how to plan for autonomous 

learning (Chen, 2009, p. 8817).  However, CAI has the potential to provide for more 

sophisticated, higher skills lessons such as writing, simulations, games, and application of 

computer as problem solvers (Hannafin, Dalton, and Hooper, 1987; Spradlin & Ackerman, 

2010).  A few case studies are discussed to highlight CAI and its effect on student learning and 

attitude. 

Pilli and Aksu (2013) have shown CAI to be more effective on student learning and 

attitude compared to a lecture approach with the use of a textbook.  Pilli and Aksu used Frizbi 

Mathematics Four, a mathematics drill-and-practice software, to teach fourth graders 

multiplication and division of natural numbers and operations with fractions (Pilli & Aksu, 

2013).  The experimental group of 29 students used this software while the control group of 26 

students received only traditional lecture.  Results of this study were obtained through a pre-test 

before the treatment, a post-test after the treatment, and another post-test four months later to 

assess retention.  The mathematics attitudinal scale and computer assisted learning scale were 

both administered before and after the intervention (Pilli & Aksu, 2013).  A series of ANOVAs 

revealed statistical significance at the p = 0.01 level on achievement and attitude towards math 

and computer-assisted instruction (Pilli & Aksu, 2013).  A significant difference for retention 
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was shown in favor of the experimental group for multiplying and dividing natural numbers, but 

not for fractions. 

House (2011) conducted a meta-analysis of 1,978 tenth grade students to determine the 

effects of computer activities on math achievement.  House (2011) used data from the Education 

Longitudinal Study of 2002.  Students were given a questionnaire about how the computers were 

used in their class.  Correlational analyses were conducted to compare each computer activity on 

the questionnaire to students’ achievement scores on ELS: 2002 mathematics assessment, which 

consisted of algebra, geometry, data and probability, and advanced mathematical topics (House, 

2011).  Results indicate that a positive association existed between when a teacher uses 

technology to expand or introduce new ideas and students’ achievement scores.  In addition, 

students using technology for graphing or applications of what they learned to new problems 

tend to have higher achievement scores.  These results indicate that the use of technology is 

effective for introducing new mathematical concepts (House, 2011). 

However, using technology or CAI has not always been shown to be more effective than 

traditional lecture alone.  For example, in Spradlin and Ackerman’s study (2010), students in the 

traditional lecture section of Intermediate Algebra experienced similar learning gains to those 

students in an Intermediate Algebra with CAI.  Therefore, a traditional instructional approach 

can be equivalent to an instructional approach with CAI.  However, more research on the 

effectiveness of CAI is still needed (Spradlin & Ackerman, 2010).  Furthermore, there is little 

research about how artificial intelligence impact students’ attitude when compared to a non-

adaptive approach with technology.       
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Overall, several case studies show that technology has the potential of improving student 

learning, for providing timely, effective feedback, and increasing student attitudes towards 

mathematics positively.  However, educators must examine technology and media to determine 

its role and impact on student learning outcomes in order for technology to be effective (Heinich, 

Molenda, Russell, & Smaldino, 1999).  According to the NCTM (2000) and AMATYC (2006), 

technology can be used to learn mathematics, do mathematics, and to communicate mathematical 

concepts.  Technology enhances the learning of mathematics when used appropriately.  

Technology should be used to enhance conceptual understanding in addition to mastering math 

skills (Blair, 2006).  This use of technology suggests that educators should choose technology 

appropriately and carefully to make certain that technology is truly enhance student learning 

(Blair, 2006).  To truly enhance learning, technology should provide feedback, instructions on 

concepts and procedures, examples, tutorials, and a variety of problems to reinforce concepts and 

math skills (Blair, 2006).   

Computer preparation software has been associated with increased test scores in 

standardized testing and linked to increased motivation (Relan, 1997).  Relan (1997) attributes 

the increase in motivation to immediate feedback and individualized instruction that technology 

provides.  Feedback is another attribute that increase students’ motivation (Relan, 1997).  

Formative assessment of learning is meant to help students to improve (Bull, J., Stephens, D., 

1999).  The problem is that it is difficult for instructors to find time to provide meaningful 

formative feedback when needed (1999).  Bull and Stephens (1999) have found that computer-

assisted assessment (CAA) was effective in providing formative feedback to writing students.  
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Their study shows that a change to assessment strategies and procedures should be undertaken 

with attention on their effect on student learning.  

Both CAI math software systems under study in this research effort provide students with 

immediate feedback and tutorial buttons for assistance.  Due to the ability of math software to 

improve retention and motivation, AMATYC (Blair, 2006) recommends that college faculty 

integrate technology into their teaching of math, use technology tools that are aligned with 

instruction, and align technology platforms with those familiar to students.  This researcher 

supports the notion that technology should not be considered in isolation, but should be aligned 

with an appropriate instructional approach to optimize student learning and experiences.   

Intelligent Tutoring 

However, Baylari and Montazer (2009) reports that course content and domain structure 

are presented in a “static way, without taking into account the learners’ goals, their experiences, 

their existing knowledge and their abilities” (p. 8013).  A static approach to web-based education 

leads to less feedback and support from the student’s instructor.  The addition of intelligence and 

interactivity to educational technology is an important direction for research.  Baylari and 

Montazer (2009) further argues that personalization is essential since learners have diverse 

backgrounds in terms of prior knowledge, age, experiences, culture, motivation, and goals.  An 

individualized approach can cater a program to the learner’s strengths and weaknesses.  With the 

growth of computing capabilities, the field of intelligent tutoring has emerged.  Intelligent 

tutoring is focused on tailoring instruction and feedback to learners using intelligent agent 
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technology, which “facilitate the interaction between the students and the systems, and also 

generate the artificial intelligence model of learning, pattern recognition, and simulation such as 

the student model, task model, pedagogical model, and repository technology” (Baylari & 

Montazer, 2009, p. 8014).  It is important to provide a background and framework of the field of 

intelligent tutoring. 

  Drawing from previous studies and research, Ma, Adesope, Nesbit, and Liu (2014) 

defines an intelligent tutoring system (abbreviated as ITS in the literature) as a computer system 

that performs tutoring, constructs a model of the student in terms of knowledge structure or 

psychological state, and uses the student modeling to adapt an appropriate tutoring strategy.  

Tutoring strategies can include asking questions, assigning a task, providing feedback or hints, 

answering questions, or providing appropriate prompts to engage the learner in a “cognitive, 

motivational or metacognitive change” (Ma, Adesope, Nesbit, & Liu, 2014, p. 902).  There are 

four generally accepted components of an ITS.  The four components must include an interface 

that communicates with the learner, a domain model that represents the knowledge that the 

student must learn, a student model that represent the student’s current knowledge or emotional 

state, and a tutor model that includes various tutoring strategies catered to the student model 

(Ma, Adesope, Nesbit, & Liu, 2014; Phobun, & Vicheanpanya, 2010).   

Student modeling approaches can include model-tracing, probabilistic modeling, 

reconstructive bug modeling, and constraint-based modeling (Ma, Adesope, Nesbit, & Liu, 

2014).  Ma, Adesope, Nesbit, and Liu (2014) classified ITS as either expectation and 

misconception tailoring (EMT), model tracing, constraint-based modeling (CBM), or Bayesian 
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network modeling.  EMT models student knowledge by matching students’ responses to learning 

goals and anticipated misconception in the domain.  EMT uses the results of the matching to 

provide scripted tutoring.  The program AutoTutor is an example of an ITS that uses EMT.  

Model Tracing is based on the use of production rules which mimics how humans solve the 

problem in the specific discipline.  Students select the appropriate operations in the discipline 

and a model-tracing process provides a series of production rules.  Immediate feedback is also 

provided when errors are detected.  After receiving feedback, students can choose a different 

operation.  After the production rule is used, knowledge tracing is used to estimate the 

probability that the rule has been correctly learned.  Model tracing is based on the ACT-R theory 

of human learning and cognition (Ma, Adesope, Nesbit, and Liu, 2014).  CBM compares the 

student’s responses to a set of constraints in the discipline.  If a student does not violate a 

constraint, it is assumed that the student is on the right track.  If a student violates a constraint, 

then feedback is given that reminds the student of the condition to follow.  For example, suppose 

a student gives an answer to the square root of a negative number.  A constraint rule could be in 

Algebra that the square root of a negative number does not exist in the real number system, 

therefore it is undefined.  If a student provides an answer other than undefined in context of the 

real number system, feedback will be given to remind students that a square root of a negative 

number does not exist in the real number system.  Bayesian networking the calculation of the 

probability that the student has learned or has the knowledge based on student’s responses.  Ma, 

Adesope, Nesbit, and Liu (2014) points out that the Bayesian networking model is flexible and 
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can be used to implement other types of student models.  In addition, Bayesian networking 

modeling can lead to the creation of more complex models. 

Intelligent tutoring has been shown to be generally successful when compared to other 

modes of instruction or non-intelligent CAI instructional approaches (Ma, Adesope, Nesbit, & 

Liu, 2014; Steenbergen-Hu & Cooper, 2014).  Steenbergen-Hu and Cooper (2014) conducted a 

meta-analysis from thirty-five reports which contained 39 studies that assessed the effectiveness 

of intelligent tutoring systems (ITS) in higher education.  They found that ITS had a moderate 

positive effect on college students’ learning.  However, ITS were found to be less effective than 

human tutoring but not at a statistically significant level.  Moreover, ITS were found to be 

superior to all other instructional approaches including traditional lecture, computer-assisted 

instruction, and laboratory learning.   

Both of Steenbergen-Hu and Cooper’s meta-analyses both found a positive effect of ITS 

on student learning in mathematics in the K – 12 system (2013) and for college students (2014).  

Steenbergen-Hu and Cooper (2014) suggest that more research is needed to determine the impact 

of ITS.  Some studies investigated ITS under a laboratory setting rather than a real learning 

environment.  In addition, some studies used less popular ITS for short period of time, and some 

research studies used less rigorous designs compared to other studies.  Steenbergen-Hu and 

Cooper (2014) concluded that ITS might be more appropriate for college students rather than K – 

12 students due to the differences in age, experience, prior knowledge, motivation, and self-

regulating skills. The results of these meta-analyses have limitations.  For example, comparisons 

of different studies have other possible contributing factors that affect students learning where 
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ITS cannot be attributed solely to increased student learning.  Factors such as different teachers 

or school environment might be contributing factors to the results found.  Therefore, more 

controlled studies are needed to determine the actual impact of ITS on the K – 12 system and 

college.  This study rectifies the issue of having different factors such as the instructor or 

different schools by providing a more controlled study for the comparison of two instructional 

approaches using ITS.  Overall, ITS have shown to be effective more so than other instructional 

approaches that do not use ITS.     

Background of Intelligent Tutoring and Learning 

 The field of artificial intelligence became more popular and recognized when the 1997 

world’s renowned chess player Garry Kasparov lost against Deep Blue, an IBM supercomputer 

(Hamilton, 2000).  As a result, the media had significant coverage and held this contest as 

significant for machine intelligence (Hamilton, 2000).  However, artificial intelligence has been 

around for many decades and has been studied for its potential in various fields (Kline, 2011).  

Artificial intelligence was founded and officially recognized during the Dartmouth Summer 

Research Project Conference in 1956 (Kline, 2011; Hyman, 2012).  In general, artificial 

intelligence can simply be described as computer that can think, understand, and exhibit expert 

behavior (Denning, 2003).  Shaw (2008) simply describes AI as “an attempt to use computers to 

mimic the functioning of human intelligence, and may include knowledge acquisition, reasoning, 

and adaptation to experience” (p. 319).  Intelligent tutoring is a sub-field of artificial intelligence 

with a goal of providing individualized instruction (Phobun & Vicheanpanya, 2010).  An 



36 

 

intelligent tutoring system is defined as a computer system that performs tutoring functions 

where there is “real-time cognitive diagnosis (student modeling)” and the system provides 

“adaptive remediation” (Ma & Adesope, 2014, p. 902).   

The field of intelligent tutoring dates back to 1924 with the introduction of the Pressey’s 

intelligence-testing machine (Petrina, 2004).  The Pressey’s intelligence-testing machine 

provided users with a multiple choice exam from easy to hard where the counter on the machine 

only kept track of correct inputs.  If the input was incorrect, the machine would go to the next 

question, but the counter would not register anything for that particular question.  Pressey 

continued to develop his machine and eventually “changed its name to the Automatic Teacher” 

(Petrina, 2004, p. 311).  In newer development of the Automatic Teacher, the machine would 

only advance to the next question after two correct responses, mimicking a drill-and-practice 

model of learning.  Pressey claimed that the Automatic Teacher provided individualized 

instruction and immediate feedback more efficiently than a teacher could (Petrina, 2004).  

Pressey’s goal with the Automatic Teacher was to eliminate routine work for the teacher so that 

the teacher can individualize instruction for students (Petrina, 2004). 

 Pressey’s Automatic Teacher was based on the learning theories of Edward Thorndike 

(Petrina, 2004).  Thorndike’s learning theory was based on three fundamental laws: 1) law of 

effect, 2) law of exercise, and 3) laws of acquired behavior or learning. (Petrina, 2004, p. 316).  

The law of effect refers to “connections between stimuli and response can be strengthened by 

rewards and weakened through punishment” (Petrina, 2004, p. 316).  The law of exercise is that 

repetition strengthens connections while a lack of repetition weakens them (Petrina, 2004).  The 



37 

 

goal of education for Thorndike was to individualize instruction through strengthening, 

eliminating, and modifying connections (Petrina, 2004).   

 Skinner, a prominent behaviorist, also had a similar goal to individualize instruction and 

provide prompt feedback in education (Casas, 2002).  Skinner’s operant conditioning theory was 

applied to the field of education based on Skinner’s observation of the current education system 

in the 1950s.  Skinner’s operant theory was based on the premise that a specific behavior was 

either strengthened or weakened through immediate consequences that the behavior had on the 

environment, moving beyond the Stimuli-Response Model (Casas, 2002).  In addition, 

immediate reinforcements must occur after the response in order to strengthen or weaken 

behavior.  Skinner’s programmed instruction was based on his operant learning theory (Casas, 

2002). 

 Skinner’s instructional approach was based on breaking the subject matter into a 

sequence of smaller steps where students could incrementally learn and master concepts before 

moving to more complex concepts and steps (Casas, 2002; Vargas, 2014).  The student would 

respond to questions, receive immediate feedback, and the student would progress at his/her own 

pace.  The student in this model would receive a low error rate.  The emphasis of this 

instructional approach was on changing the learner rather than changing the subject matter.  

Furthermore, students’ success of achieving a desired goal or behavior was based on the 

sequencing of instruction (Casas, 2002).  Skinner believed that programmed instruction would 

lead to more efficiency and enable all students to learn at their individual pace.   
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 The Skinner’s Teaching Machine was created based on his operant theory of learning and 

programmed instructional approach.  Skinner’s teaching machine would present materials 

presented on a disk or tape, track the student’s response, and reinforce correct behavior 

immediately by advancing to the next problem or by displaying the correct answer.  Skinner 

viewed his Teaching Machine as a way to effectively supplement teachers.  The Disk Machine 

was another teaching machine that implemented Skinner’s programmed instructional approach.  

 Skinner referred to providing students individualized instruction as “shaping” (Vargas, 

2014).  Shaping refers to reinforcing actions that closely matched the desired behavior.  

Skinner’s teaching machines could aid in the shaping process without the presence of a teacher 

(Vargas, 2014).  Shaping took place through gradually teaching more complex steps 

incrementally.  Skinner’s research and programmed instruction led to improved instructional 

design (Heinich, Molenda, Russell, Smaldino, 1999).  However, Skinner’s teaching machine and 

the Pressey machine were mechanical and do not fit the current realm of intelligent tutoring as it 

is known presently.  Intelligent tutoring is associated with computer-assisted instruction 

(Graesser, 2013). 

 The field of intelligent tutoring and artificial intelligence became popular during the 

1950s (Kline, 2011).  PLATO is an example of a computer user interface that led the computer 

revolution in the field of intelligent tutoring.  PLATO, an acronym for Programmed Logic for 

Automated Teaching Operation, was invented by Don Bitzer at the University of Illinois 

(Lyman, 1968; Kroeker, 2010).  PLATO has been used for education and training by schools, 

corporations, and the US government (Kroeker, 2010).  PLATO emphasized an inquiry approach 
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to student learning (Lyman, 1968).  In addition to allowing students to solve a problem using 

various strategies, the help feature in PLATO would offer a series of help pages dependent on 

their previous response (Lyman, 1968).   

 PLATO serves as an early application of Constructivism, a learning theory rooted in 

knowledge being constructed from the learner’s experience and prior knowledge (Huetinck & 

Munshin, 2000).  The idea of constructivism goes back to Piaget’s belief that children are 

naturally curious about the world and organize information by schemas.  Learners either 

assimilate new information into existing schemas or accommodate the new knowledge by 

modifying existing schemas.  Learners will remain at what Piaget terms disequilibrium until the 

new knowledge has been assimilated or accommodated.  Piaget believed that learners should 

actively participate in the learning process (Huetinck & Munshin, 2000). 

Some researchers regard SCHOLAR as the first application of ITS (Ma, Adesope, Nesbit, 

& Liu, 2014).  SCHOLAR was created by Jaime Carbonell in the 1970s.  Carbonell contrast 

SCHOLAR from other CAI by emphasizing how a domain representation can model student 

knowledge.  SCHOLAR’s architecture represented domain knowledge separately from the 

natural language interface.  The separate domain representation allowed SCHOLAR to generate 

and answer a large set of diverse questions for learners.   

Cognitive Tutors serves as another example of an intelligent tutoring system that 

emphasize problem solving with specific feedback based to common mistakes and the provision 

of hints by user request (Koedinger & Aleven, 2007).  The Cognitive Tutor is based on the ACT-

R Theory of cognition and learning (Keodinger & Aleven, 2007).  The Cognitive Tutors for high 
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school mathematics and Algebra have been successful in educational settings (Keodinger & 

Aleven, 2007; Chaudhri, Gunning, Lane, & Roschelle, 2013).  The Cognitive Tutor for 

mathematics is used by more than 600,000 students in middle and high school (Chaudhri, 

Gunning, Lane, & Roschelle, 2013).  Studies have demonstrated that Cognitive Tutor for 

Algebra resulted in better student learning compared to traditional Algebra courses.  Each 

cognitive tutor provides students with a problem-solving environment with a variety of 

representational tools and real problem scenarios to solve.  For example, the Cognitive Tutor for 

Algebra would provide students with a problem that requires algebraic thinking and would 

provide graphing paper or a symbolic equation solver as tools that can be used to help the student 

solve the problem.  Students enter in specific steps to solve the problem.  Feedback is received 

on each step with specific feedback relating to specific input errors.  Hint buttons are provided, 

which explains the problem-solving strategies to apply.  The hints are based on the student’s 

input.  For example, if a student uses t as a variable, the hint explanation will refer to the 

variable, t.  Cognitive Tutors implement a mastery learning approach and keep tracks of the 

student’s progress (Keodinger & Aleven, 2007).   

Today, intelligent tutoring systems are enhancing student learning in the K – 12 system 

as well as the college system.  However, there are debates surrounding the efficacy and 

capability to scale intelligent tutoring to meet broad needs in the educational system (Chaudhri, 

Gunning, Lane, & Roschelle, 2013).  For example, Steenbergen-Hu and Cooper (2014) argues 

that each hour of instruction using ITS cost 200 hours of work to build.  However, it is important 

to note that ITS are built to serve thousands of students, still making them cheaper than human 
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tutors for each individual student.  Since the cost of building ITS is not cheap, it is worthwhile to 

investigate functions that make them effective and to compare specific ITS to other educational 

CAI.  In addition, Craig, Driscoll, and Gholson (2004) found that an intelligent tutoring system, 

the AutoTutor, resulted in the most learning gains in an interactive condition compared to a 

passive condition, but learners in the interactive group was still answering about 50% of the 

questions on a post-test correctly.  Current versions of the AutoTutor at the time this article was 

published (2004) implemented “unsophisticated tutoring strategies of untrained peers and 

paraprofessionals (Craig, Driscoll, & Gholson, 2004, p. 177).  Improvements needed include 

“implementing Socratic tutoring strategies, modeling-scaffolding-fading, and other intellectual 

pedagogical techniques” (p. 177).  However, Chaudhri, Gunning, Lane, & Roschelle, (2013) 

report that a system that models knowledge and uses that knowledge to assess, track, and guide 

learning is more effective than systems missing those features (2013).  To improve student 

engagement and learning, multi-faceted approaches should be considered in addition to the 

educational tools be implemented.  The use of intelligent tutoring has addressed the challenges of 

student learning and engagement through mimicking one-on-one tutoring (Chaudhri, Gunning, 

Lane, & Roschelle, 2013; Phobun & Vicheanpanya, 2010).   

Intelligent tutoring is based on the premise that one-on-one tutoring yields the most 

effective results in terms of student learning.  Bloom (1984) compared three varying instructional 

approaches.  In Bloom’s research of varying instructional approaches in different grade levels, 

Bloom (1984) found that students under the tutoring condition were about two standard 

deviations above the average student in the conventional approach.  Students under the mastery 
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learning approach were about one standard deviation above the average student in the 

conventional approach.  In addition, Bloom (1984) reports that 90 percent of tutored students and 

70 percent of mastery learning students attained achievement scores that were reached by only 

the highest 20 percent of students in the conventional approach.  Furthermore, time on task was 

90 percent or higher for the tutored approach and 75 percent for mastery learning approach 

compared to 65 percent for the conventional approach.  Moreover, the relationship between 

entering achievement scores and summative achievements scored decreased from 0.60 for the 

conventional approach to 0.35 for mastery learning approach and 0.25 for the tutoring approach. 

In addition, Cohen, Kulik, and Kulik (1982) conducted a meta-analysis on numerous studies and 

found that the average learning gains with human tutors was 0.4 standard deviation units above a 

conventional approach with no tutors.   

Bloom’s research supports the conclusion that one-to-one tutoring has been shown to be 

the most effective in terms learning gains.  Bloom (1984) concludes that the tutoring process 

demonstrates that students can reach a high level of learning.  In addition, Bloom (1984) 

suggests further research in finding ways that can accomplish the same level of learning as 

tutoring through more practical means and less costly ways to implement on a larger scale.  

Bloom has coined this research challenge as the “2-sigma” problem (Bloom, 1984, p. 6).    

Bloom posits that the effectiveness of CAI should be determined in terms of student 

performance, completion rates, retention of learned material, and time required.  Also, Bloom 

(1984) suggest measuring the effectiveness of CAI on student affect such as self-concept, interest 

in the subject, and desire to learn more with computer assisted technology.   
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Goodwin and Miller (2014) describe the application of Bloom’s one-on-one tutoring to a 

larger scale such as a whole class as mastery learning.  Mastery learning present new information 

and model new skills, provide students with practice opportunities, use formative feedback to 

check for students’ understanding, use individualized interventions to reteach concepts, and 

check for understanding before moving forward (2014).  Bloom’s educational principles for one-

on-one tutoring and for providing formative feedback are the philosophical basis for mastery 

learning (Hagerty & Smith, 2005).  Mastery learning has been shown to be successful, but is 

hard to implement due to the required time commitment to develop and monitor a student’s 

individualized plan (Hagerty & Smith, 2005).  Goodwin and Miller (2014) cite that mastery 

learning can provide additional support for remedial students and has positive effects for low-

achieving students.  Despite these results, there are challenges associated with implementing 

mastery learning on a larger scale.  For example, mastery learning may require educators to 

adopt or modify new instructional approaches to optimize student learning (Goodwin & Miller, 

2014).  Along with examining instructional and assessment approaches in a mastery learning 

model, there are technical challenges such as the development of formative assessments to align 

with remedial interventions.  Despite these challenges, adaptive learning is becoming 

increasingly popular and widespread throughout the educational system.  Moreover, most web-

based CAI is based on the mastery learning model (Hagerty & Smith, 2005).                    

According to the DeVry Education Group, targeting instruction to the abilities and 

individual students’ needs can reduce course drop-out rates, improve student outcome, accelerate 

learning, and assist instructors to focus on content where students are struggling the most 
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(Oxman & Wong, 2014).  Adaptive learning systems are being used for on-line courses, 

supplements to on-line courses, for hybrid courses, and as supplements to traditional face-to-face 

courses.  In addition, adaptive learning systems are expanding into e-books and are likely to 

increase at all educational levels in the United States (Oxman & Wong, 2014).  DeVry Education 

Group believes that adaptive learning will become a standard and more expected in the future 

(Oxman & Wong, 2014). 

Learning and Scaffolding 

Reform movements in mathematics have placed value on students’ attitudes and the 

factors that affect students’ attitude such as confidence, anxiety, motivation, attitude, and locus 

of control.  According to Blair (2006) and Harriman (2006), adult students tend to prefer self-

directed learning than children.  The level of self-directed learning, interaction, and feedback can 

affect student learning and their attitudes (2006).  Elliott, Eunhee, and Friedline (2013) argues 

that experiential learning is empowering since it encourages self-directed learning that leads to 

higher motivation, better retention, and the development of problem-solving skills.  However, 

students with poor self-regulating behavior are not as successful academically as those learners 

with effective self-regulating behavior.  Chen (2009) posits developing effective strategies that 

guide learners in actively processing learning behavior is an important endeavor for educators 

and instructional designers.  Learners’ self-regulating ability is an important factor that affects 

their learning since educators are usually not around to monitor students’ attitude and behavior 

(Chen, 2009). However, self-directed learning can help students become more independent 
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learners and more confident.  Adult learning, according to Harriman (2006), benefit with high 

levels of enthusiasm, when learning is self-directed, relevant to their prior experiences, and is 

interactive with immediate, meaningful feedback.  Rowe (2010) claims that learners engaged in 

self-regulating activities tend to view those activities as useful and valuable.   

Self-directed learning can be achieved through technology when students learn in their 

zone of proximal development (ZPD) (Snodin, 2013).  The zone of proximal development is 

defined by Vygotsky (1978) to be the gap between a learner’s independent level of performance 

and the learner’s assisted level of performance; tasks and objectives that can be learned with 

assistance and support (p. 86).  Scaffolding is the support that learners receive to complete tasks 

and goals within their ZPD (Gredler, 2012; Wass, Harland, & Mercer, 2011).  Scaffolding 

strategies (Wood, Bruner, & Ross, 1976) can include providing examples, hints, prompts, and 

the use of learning strategies such as self-talk or index cards that can assist a learner in mastering 

a skill independently.  These scaffolding strategies can help the learner master concepts and 

different learning objectives (Vygotsky, 1978; Wood, Bruner, & Ross, 1976).  However, 

scaffolding must be tailored to the learner’s individual needs to be optimally effective (McLeod, 

2010).  For example, Wood and Middleton (1975) observed how mothers interacted with their 

children to build 3-D models shown in a picture.  The children in this study were 4 years old and 

the task given to them was too difficult to be completed by themselves.  The results of this study 

showed that mothers were the most effective when they varied their strategy according to how 

the child was doing with the task.  When the child was doing well, the mother offered less 

specific instruction and guidance while more specific instruction was provided when the child 
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was struggling with the task (Wood & Middleton, 1975).  The appropriate type of scaffolding 

should be provided to college math students with remedial needs to optimize their chances of 

success (McLeod, 2010).   

Delivering information and learning activities that are within a student’s ZPD optimizes 

learning.  In addition, scaffolding techniques within a student’s ZPD can affect attitudes 

including self-confidence, motivation, and anxiety levels (Magliaro, Lockee, & Burton, 2005).  

For example, Dabbagh & Blijd (2010) found that degree of scaffolding influenced perception of 

learning.  This research effort examined students’ perception of their learning experience in a 

real world immersive environment, where learners were immersed in a real work situation.  In 

the beginning of the project, there were confusion and anxiety due to initial disorientation and 

frustration.  However, the anxiety and frustration lessened as students realized the benefit of 

being immersed in a real world project.  Despite initial confusion in the beginning, it was found 

that students will persevere in a learning-by-doing environment when the scaffolding level 

matches students’ level of learning (Dabbagh & Blijd, 2010). 

 Similarly, a study by Snodin (2013) found that a blended learning environment with a 

course management system (CMS) can help learners achiever greater autonomy (self-directed 

learning) when activities are carefully scaffold.  Snodin collected data using a modified 

questionnaire, designed by Cotterall, student learning journal, interviews with students, and 

classroom observations.  The results show that students viewed feedback and the “way they 

perceived themselves as learners” differently after the blended learning environment experience 

(p. 212).  Snodin (2013) reports that students learned the importance of feedback and have 
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become more independent, more confident, and more experienced as a result of the feedback 

provided.  The language learning program used provided the correct amount of scaffolding 

activities, which led to more self-regulated learning.  After the blended learning experience, 

students began setting their own learning goals and spent extra time working on those goals 

independently.  The blended learning environment helped students develop their own sense of 

autonomy within the confines of their ZPD.  However, over-scaffolding might be possible and 

can lead to decrease independence (Chin, Dohmen, Cheng, Oppezzo, Chase, & Schwartz, 2010). 

 Chin, Dohmen, Cheng, Oppezzo, Chase, and Schwartz, (2010) state that technology may 

over-scaffold student learning, where students do not perform basic skills on their own.  The 

controversy of using calculators in mathematics or spell checkers in word processing programs 

degrading writing skills are used as two examples of over-scaffolding.  Chin, Dohmen, Cheng, 

Oppezzo, Chase, and Schwartz (2010) examined the type of learning produced by teachable 

agents and gather data about initial evidence on whether the teachable agents helped with 

learning new content after this instructional technology was removed.  Their control group and 

the treatment group were given an opportunity to learn a new topic with no instructional 

technology.  The study revealed that student learning improved significantly for casual 

relationships (Why questions) for those that used the teachable agents.  This investigation took 

place with 134 fifth graders.  Students were prepared for future learning by using TA technology 

(2010).  The interactivity allowed students to reflect on their agent’s thinking and accuracy, 

which allowed students to apply metacognition to their own understanding (Chin, Dohmen, 

Cheng, Oppezzo, Chase, and Schwartz, 2010, p.665).  The researchers argue that using 
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interactive teachable agents will help prevent over-scaffolding and could guide the future of 

instructional technology.  This study also suggests that assessments that include opportunities to 

learn as a part of that assessment to determine which instructional technology are valuable for 

learning.  This study supports the notion that an adaptive instructional approach with CAI could 

potentially match a student’s ZPD, help students develop autonomy, and improve their learning.   

Knowledge Space Theory and ALEKS 

ALEKS (Assessment and Learning in Knowledge Spaces) was developed from research 

at New York University and the University of California with support from the National Science 

Foundation (ALEKS, n.d.).  ALEKS is a math software system based on Knowledge Space 

Theory that use self-adaptive technology to enhance student learning. Knowledge Space Theory 

is a mathematical language that describes the ways in which particular elements of knowledge 

(concepts in Algebra, Mathematics, Accounting, and Statistics, for example) are organized to 

form distinct knowledge states.  For example, arithmetic is regarded as a domain of roughly one 

hundred basic concepts, giving rise to a structure of approximately 40,000 knowledge states 

(ALEKS, n.d.; Stillson & Alsup, 2003). Computer algorithms have been developed to construct 

discipline-specific knowledge structures (known as "Knowledge Spaces") and apply them to 

assess knowledge states of individuals.  Knowledge Space Theory was founded by Jean-Claude 

Falmagne (Falmagne, Doignon, Koppen, Villano, & Johannessen, 1990).  The concept of KST is 

based on the fact that a knowledge state can be represented by a subset of problems that the 

participant can solve (1990).  The researchers (1990) give the example that is a student can solve 
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a word problem that involved the long multiplication of decimals and fractions, then it can be 

deduced that students can multiply fractions and decimals and it is not necessary to assess the 

student on these skills separately.  However, if a student was given a problem about multiplying 

one-digit numbers and does not perform correctly on such a problem, then it can be deduced that 

students probably cannot multiply two-digit numbers or three digits numbers (1990).   

In ALEKS, the student is viewed as a system, and the KST algorithms in a computer 

program work to efficiently discover the current knowledge structure of the system in a specific 

discipline (1990).  According to the ALEKS website, ALEKS (Assessment and Learning in 

Knowledge Spaces) “is a web-based, artificially intelligent assessment and learning system. 

Canfield (2001) classifies ALEKS as an intelligent tutor.  ALEKS uses adaptive questioning to 

determine the student’s current knowledge state for a particular math course.  ALEKS then 

assigns objectives that the student is most ready to learn.  Once the student has mastered the 

assigned objectives, other objectives will become available to work on.  ALEKS periodically 

reassesses the student to ensure that topics learned are also retained” as a student works through 

a course, (ALEKS, n.d.; Canfield, 2001).  All questions types in ALEKS are short answer style. 

According to ALEKS (n.d.) and Canfield (2001), “ALEKS delivers individualized 

student instructional paths and a continuous cycle of assessment and learning to increase student 

retention and course pass rates”.  ALEKS claims that its artificial intelligence-based software has 

“delivered academic success to more than a million students” (Canfield, 2001, p. 3).  ALEKS 

credits its artificial intelligence feature to targeting students’ strengths, weaknesses, and 

“pinpointing what a student knows and what he/she is ready to learn” (Canfield, 2001, p. 4).  
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This is very similar to how Vygotsky described scaffolding (Gredler, 2012).  Other math 

software systems do contain adaptive properties based on other theories or algorithms.  Recently, 

MyMathLab by Pearson offers an adaptive feature based on the Knewton Theory, which can 

support an adaptive instructional approach (Webley, 2013).   

Both CAI in this research study offers assistance to students through generic hints, 

tutorial videos, and similar examples worked out step-by-step.  Feedback might be generic or can 

be specific to the student’s input.  In the traditional approach, opportunities are given to students 

to self-correct or to do a similar exercise.   

ALEKS offers a learning pie where students can visually see their current knowledge 

state and work on mastering assigned learning objectives.  ALEKS homework assignments 

adjust based on a student’s current knowledge state.  A student’s current knowledge state is 

adjusted through mastery of course objectives where a student must successfully complete 

homework problems three times in a row without any assistance.  In addition, ALEKS will 

randomly (roughly every five hours) assign a random assessment to determine a student’s current 

knowledge state.  If student misses previously mastered problems, the corresponding objectives 

are re-added to a students’ learning pie in ALEKS (Canfield, 2001).  In ALEKS, the instructor 

selects the course objectives and problem types only.  ALEKS has been shown to be successful 

in several studies as a supplement to class lecture, but none of the studies link any correlation of 

success to an adaptive instructional approach specifically.   
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Case Studies of KST 

In several studies, ALEKS used in conjunction with traditional instruction been shown to 

be at least as effective as or more effective than traditional lecture alone.  For example, a 

university in the Mid-west used ALEKS as part of a program to help high school seniors place 

into college-level math courses.  The focus of this study was on removing remediation 

requirements for incoming college freshmen.  Three groups were compared in this study, which 

included a control group of 35 students who took no mathematics course during their senior year.  

The other two groups consisted of 55 students who took a non-ALEKS math course during their 

senior year while the other group consisted of 32 students who took an Intermediate Algebra 

course by using ALEKS.  Remediation requirements were removed in one of three ways: ACT 

scores, COMPASS placement test or ALEKS assessment score in Intermediate Algebra.  Fine, 

Duggan, and Bradley (2009) found that both intervention programs were successful at removing 

remediation requirements compared to not taking a math class at all during the senior year.  The 

results of this study demonstrated that 60.0 percent of seniors taking a non-ALEKS math course 

and 46.9 percent of students in the ALEKS group did not require remedial mathematics 

compared to 14.3 percent in the control group.  The results of this study indicate that taking a 

math course through ALEKS was equivalent to seniors taking Pre-Calculus and Calculus during 

their senior year in removing remediation requirements for graduating senior entering college as 

a freshman (Fine, Duggan, Bradley, 2009).  The researchers note that ALEKS is an effective 

alternative when college bound math courses are not viable options, such as in rural areas.   
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Additionally, ALEKS has been shown to be successful for College Algebra compared to 

traditional pencil-and-paper sections.  For example, a study in 2003 in a small university 

implemented ALEKS into four sections of College Algebra.  Four other sections of College 

Algebra followed a traditional textbook-based approach using the same instructors who were 

also teaching the experimental sections.  All instructors taught a traditional and an experimental 

section of College Algebra except for one.  The sections taught by each instructor followed a 

similar day and time schedule.  For example, an instructor taught a traditional section MWF 8:00 

– 9:00 am section and a MWF 9:00 – 10:00 am section.  Hargerty and Smith (2005) performed 

statistical analyses for class performance, influencing factors, and skill retention.  Hagerty and 

Smith (2005) found that class performance was greater for the sections using ALEKS for three of 

the four instructors.  The researchers studied the impact of influencing factors such as students’ 

opinion of computers, students’ opinion of their mathematics ability, the use or non-use of 

ALEKS, and whether the student was a traditional or non-traditional student (Hagerty & Smith, 

2005).  The results indicated “the use of ALEKS showed a statistically significant effect on the 

student’s growth over the semester (Hagerty & Smith, 2005, p. 189).  To analyze the researchers’ 

third question on skill retention, a comparison was made for the CAAP exam, which is a state 

required exam for juniors.  Hargerty and Smith (2005) reports that this exam is comprised of 

mainly college algebra questions.  This question was analyzed for freshmen enrolled in College 

Algebra.  There was a significant difference found in favor for those who were enrolled in the 

section that used ALEKS.  It is important to note that the sample size for measuring skills 

retention dropped since the students must have been freshmen at the time of taking college 
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algebra and entering their junior year when completing the CAAP exam.  The researchers 

concluded that students in the ALEKS section of College Algebra performed significantly better 

than students in a traditional textbook-based section.  Hagerty and Smith (2005) recommended 

future research investigating if other software products are as effective as ALEKS.  This research 

posit that comparing instructional approaches with different software is a more effective 

approach to examine since different math software naturally leads to a different learning 

experience.  This current research effort is focused on comparing an adaptive instructional 

approach with ALEKS to a traditional approach using MyMathLab.    

Furthermore, using ALEKS in lieu of traditional lecture has been shown to decrease 

anxiety and improve attitude.  For example, a study of students in an Intermediate Algebra class 

in three colleges and two universities compared the use of ALEKS and traditional instruction 

(Taylor, 2008).  Two independent groups were compared from a convenience sample of 93 

students, 54 were in an experimental group and 39 were in a control group.  Pre-tests and post-

tests were administered to compare students’ achievement using the National Achievement Test, 

First Year Algebra Test (NATFYAT), to compare students’ anxiety levels using the Mathematics 

Anxiety Rating Scale (MARS), and compare students’ general attitude using the Fennema and 

Sherman scales (F – S scales). Correlation coefficients comparison indicate that the experimental 

group had a greater correlation, r (52) = 0.41, p = 0.002 compared to the control group, r (37) = 

0.203, p = 0.213 (Taylor, 2008).  However, further analysis indicates the control group 

outperformed the experimental group, indicating that lecture is more effective for some students.  

Correlation coefficients comparisons on the pre-test and post-test on the F – S scale indicate a 
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stronger relationship for the experimental group, r (52) = 0.693, p = 0.001 compared to the 

control group, r (37) = 0.466, p = 0.003.  There was a statistical difference found for the control 

group between the pre-test and post-test on the F – S scales, but no statistical difference was 

found in favor for the experimental group.  Even though not statistically different, attitudes 

towards mathematics did improve.  Taylor (2008) points out that even though the results for the 

control group were statistically different; students’ attitudes towards mathematics were not as 

good towards the end of the semester.  Math anxiety did decrease at a greater rate for the 

experimental group.  Taylor (2008) argues that a computer-based approach to Intermediate 

Algebra led students to more confidence and less math anxiety.  In a college Statistics class that 

used ALEKS, the students felt that their analytical skills improved (Xu, Meyer, & Morgan, 

2008).  The use of ALEKS seems to indicate improvement in learning and increased perception 

of learning as measured by confidence level, anxiety level, and motivational level.  In a 

comparison of using ALEKS in a College Algebra class, there was a significant difference in 

student performance (Hagerty and Smith, 2005).  A redesign effort of college algebra at Black 

Hills State University used ALEKS as part of the redesign.  The redesign was based on the 

mastery learning model and to develop a deep understanding of the concepts and processes of 

algebraic thinking (Hargerty, Smith, & Goodwin, 2010).  This redesign effort resulted in a 21% 

increase in passing rate and a 300% enrollment increase in trigonometry, the next sequential 

course after college algebra.  The results of this study showed that a multi-faceted instructional 

change incorporating ALEKS led to successful results compared to the conventional 

instructional approach, which was mainly lecture.  Hagerty and Smith (2005) suggest that 



55 

 

ALEKS success is due to its nonlinear approach to math learning.  ALEKS has been shown to be 

effective in terms of student performance and in terms of students’ attitudes. 

MyMathLab by Pearson and similar software packages has been shown to be effective 

also.  For example, Moosavi (2009) did a comparison of two CAIs in terms of their effectiveness 

on student performance.  Moosavi compared MyMathLab to Thinkwell.  Both type of math 

software systems are similar in terms of content and how the software is used.  It was found that 

the performance level to the two software systems were similar, where the Thinkwell software 

had slightly better performance scores than MyMathLab.  Moosavi’s study (2009) does not 

identify the underlying reasons for differences in performances between the two CAI groups.  

The researcher suggests that more research is needed in order to gain more insight into students’ 

level of confidence, anxiety, and general perception of CAI.  However, there have been no 

comparative studies focusing on the potential impact to students’ achievement and impact of 

attitude using varying instructional approaches and CAI with artificial intelligence.  This 

research effort will compare two varying instructional approaches to determine impact on student 

learning and their attitude towards mathematics.   

In another study (Spradlin & Ackerman, 2010), traditional lecture was compared to 

traditional lecture with CAI in an Intermediate Algebra class.  This study revealed that there was 

no significant difference between performance gains between the lecture only group and the 

lecture + CAI group.  However, the gains were higher in the CAI group, but not statistically 

higher though.  The researchers of the study suggest that teaching approach and format of the 

course might be more influential on student learning than just adding CAI to a class.  This study 
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reveals that CAI does not always make a significant difference for student learning.  One 

possible reason could be attributed to the fact that the homework problems were similar for both 

groups.  The approach was also similar for both groups.  However, the CAI provided immediate 

feedback, which could have contributed to the slightly higher performance than the lecture 

group.  For the control group, the instructor returned all homework assignments with feedback 

the following class period, providing efficient feedback.  Therefore, the essential difference 

between the traditional lecture group and the treatment group was that the outside assignments 

were computerized instead of delivered through the math textbook only.  However, both groups 

did showed performance gains between the pretest and post-test using covariant analysis 

(ANCOVA) to control for entering behaviors.  The performance gains can be due to learning and 

working with new content.  Spradlin and Ackerman (2010) suggests that instructional technology 

have a great potential to improve learning and can be used to address the different learning styles 

and preferences for students, including modified class formats.  The researchers suggest 

replicating this study with different instructional modes and to examine math anxiety levels in 

different modes of instruction. 

According to Hagerty and Smith (2005), technology is a driving force in college math 

reform since it reduces cost in higher education and can provide students with formative 

feedback along the way.  A barrier in higher education is the infeasibility to develop and monitor 

individualized learning plans for student (2005).  An individualized learning plan would provide 

students with specific learning goals specific to his/her needs.  An adaptive instructional 

approach using ALEKS, in essence, can develop an individualized learning plan while the 
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instructor provides specific, whole class assignments for every student to complete (Canfield, 

2001).  ALEKS is the math software under investigation due to its adaptive ability, which 

individualizes instruction for students based on their current level of learning and their 

appropriate zone of proximal development. 

The purpose of this current study is to compare an adaptive instructional approach using 

ALEKS to a traditional instructional approach using MyMathLab in terms of learning gains and 

attitudinal changes for College Algebra.  Learning gains will be examined on the unit of 

functions.  Attitudinal changes will be measured using the ATMI.  In addition, correlational 

analyses will be performed to measure the relationship between students’ mastery learning levels 

and their actual learning levels for each instructional approach.  Moreover, the two correlation 

coefficients will be compared for significant differences between the two instructional 

approaches.  Chapter three will review the specific research questions and design.  Chapter four 

will provide the results for each research question under investigation in this study.  Chapter five 

will provide a discussion of the findings along with conclusions, implications, and 

recommendations for future research to expand upon this research effort.    
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CHAPTER THREE: METHODOLOGY 

The purpose of this research effort is to examine if an adaptive instructional approach is more 

effective compared to a traditional instructional approach in terms of learning gains on the topic 

of functions in College Algebra and also in terms of attitude changes as measured by the ATMI.  

The ATMI also provides sub-scores in the area of self-confidence, value, motivation, and 

enjoyment.  In addition, this study seeks to measure any relationships between students’ mastery 

learning score and actual post-test scores.  The correlation between the two instructional 

approaches will also be compared using an r-to-z Fisher transformation. More specifically, this 

research effort seeks to address the following questions: 

1) Is there a significant difference between learning gains on the topic of functions 

between the two College Algebra sections as a function of instructional approach 

(traditional vs. self-adaptive)? 

2) Is there a significant difference between attitude changes between the two College 

Algebra sections as a function of instructional approach (traditional vs. self-

adaptive)?    

3) Is there a stronger correlation between students’ level of mastery learning (as 

reported by their respective software) vs. actual learning as a function of 

instructional approach (traditional vs. self-adaptive)? 
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Design 

This research effort is a quasi-experimental design due to a lack of random assignment.  

This research design is similar to a traditional pre-test/post-test experimental design (Leedy, 

1997), but lacks random selection.  Students self-selected the section in which to enroll in based 

on the section that best fit their schedule.  However, the instructor was randomly assigned to two 

College Algebra sections, out of 45 sections, offered at the time of course scheduling.  The 

instructor was assigned to two Monday, Wednesday, and Friday sections that met for 50 minutes 

during similar time of day.  Section A was Monday, Wednesday, and Friday from 9:00 – 9:50 

AM and Section B was Monday, Wednesday, and Friday from 10:00 – 10:50 AM.  Students 

were not notified of the instructional approach and math software assigned until the first week of 

classes.  The instructor was given a choice during the fall semester between using MyMathLab 

or ALEKS.  The instructor randomly chose Section A to be assigned to ALEKS and would use a 

self-adaptive instructional approach.  The self-adaptive instructional approach focused the 

lecture time on struggling concepts as reported by ALEKS.  The instructor would focus the 

concepts of the lesson and do examples that matched problems that students were struggling 

with.  The instructor for Section A took a flexible approach and catered lectures based on reports 

generated by ALEKS.  Section B would be assigned to MyMathLab and would use a traditional 

instructional approach.  The traditional approach as defined in this research study refers to a 

traditional pencil-and-paper lecture approach supplemented by non-intelligent CAI.  The CAI in 

the traditional section was not set to track or adjust according to students’ knowledge state.  All 

assignments in the CAI for the traditional approach were the same for all students except for 
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algorithmic changes in numeric values.  The instructor would spend some time in the beginning 

of the lesson addressing homework problems that students identified that they needed assistance 

with.  The instructor delivered a fixed lecture after addressing students’ homework problems.  

The instructor did not make any adjustments to the lecture notes.  Section B was considered the 

control group in this study while Section A was the treatment group.    Both sections were 

lecture-based and met face-to-face for the entire semester.  This research effort was focused on 

comparing two instructional approaches with a focus on the impact of a self-adaptive approach.   

Students can be placed into College Algebra by taking the Postsecondary Education 

Readiness Test (P.E.R.T.) and scoring 123 or higher.   Florida began using the PERT as the 

placement test since October 2010.  According to the Florida’s Department of Education (2014), 

this test is aligned with postsecondary competencies that are necessary to be considered college-

ready.  “The PERT is comprised of three 25-item computer adaptive tests in reading, writing, and 

mathematics” (Florida Department of Education, 2014, p. 1).  The topics and sample questions 

from the P.E.R.T. were obtained from McCann Associates (Retrieved from 

http://www.fldoe.org/schools/pdf/PERT-studentstudyguide.pdf, 2011).  This information is 

provided in Appendix A.  Students can also be placed based on their SAT, ACT, or CPT scores.  

Students must make a 500 or greater on the math section of the SAT, a 21 or greater on the ACT, 

or a 90 or greater on the CPT, which has not been administered in Florida since 2010. All 

entering students must be tested to place into College Algebra.  An alternative way for students 

to be eligible to enroll in College Algebra is to complete the prerequisite, Intermediate Algebra 

http://www.fldoe.org/schools/pdf/PERT-studentstudyguide.pdf
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(MAT 1033) with a grade of C or higher.   The course description at Valencia College follows 

below: 

College Algebra is based on the study of functions and their role in problem solving. 

Topics in College Algebra include graphing the linear, quadratic, and exponential 

families of functions, and inverse functions. Students will be required to solve applied 

problems and communicate their findings effectively. Technology tools will be utilized in 

addition to analytical methods.   

Specific topics and objectives for College Algebra are included in the course outline (Appendix 

B) and the sample syllabus (Appendix C).  Students taking College Algebra must earn a grade of 

C or higher to progress to the next subsequent math course.        

Descriptive Statistics 

The Florida’s FACTS report as of 2012 provides demographics statistics of all students 

registered in the state college system.  There are a total of 28 public state colleges, which include 

all community colleges and state colleges.  The 28 state colleges do not include four-year 

universities.  According to the Florida’s FACTS report of 2012, 46.12% are white, 18.08% are 

black, 23.87% are Hispanic, 2.99% are other minority, two or more races are 1.20% two or more 

races, and 6.40% are unknown ethnicities as of the beginning of Fall 2011.  The Florida College 

System serves 478,130 students.   

Valencia College serves about 69,422 students, where 59,958 are credit-seeking students 

as of the 2013-2014 academic year (Valencia College Facts, 2013).  The average student’s age at 

Valencia College is 24.1 years.  34.8% are Caucasian, 31.2% are Hispanic, 17.2% are African 

American, 11.7% are reported as other, 4.8% are Asian/Pacific Islander, and 0.3% are Native 
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American.  39.6% of students are considered full-time, and 60.4% of students are considered 

part-time.  Full-time enrollment is defined as a student enrolled in 12 or more credit hours per 

semester, excluding summer semesters.  Many courses are an average of 3 credit hours.  A full-

time student typically enrolls in four courses.   

Demographic information was collected from my sections through a first-day 

questionnaire meant to identify this information (Appendix D).  There were a total of 60 

participants enrolled for this research study in the beginning of the term after the add/drop 

period.  From the sample of 60 students, four students withdrew within the first couple of weeks 

in the course, leaving a total of 56 participants for this study (27 for Section A and 29 for Section 

B).  Overall, there were 20 males (35.7%) and 36 females (64.3%).  For Section A, there were 6 

males (22.2%) and 21 females (77.8%).  For Section B, there were 14 males (48.3%) and 15 

females (51.7%).  Overall in this study, there were 18 Caucasians (32.1%), 15 African 

Americans (26.8%), 10 Hispanics (17.9%), 6 (10.7%) Asians/Pacific Islander, 1 Native Indian 

1.8%), and 6 (10.7%) reported as others.  For Section A, there were 7 Caucasians (25.9%), 9 

African Americans (33.3%), 4 Hispanics (14.8%), 3 Asians/Pacific Islander (11.1%), and 4 

(14.8%) reported as others.  For Section B, there were 11 Caucasians (37.9%), 6 (20.7%) African 

Americans, 6 Hispanics (20.7%), 3 (11.1%) Asians/Pacific Islander, 1 (3.4%) Native Indian, and 

2 (6.9%) reported as others.    
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Procedure 

The instructor taught two College Algebra classes that met three times a week for 50 minutes 

per class session.  The instructor holds a Master’s degree in mathematics and meets Florida’s 

requirement to teach undergraduate mathematics.  College Algebra is primarily a course for first 

year community college students.  Students normally are required to take an additional math 

course after College Algebra.  The subsequent course will vary from student to student 

depending on their major and long-term academic goals.  The class met face-to-face.  During the 

first week of classes, students were oriented to the course including an orientation to their 

respective math software package.  Additional training and assistance was offered to students 

during the instructor’s office hours.  In addition, students had free technical support through the 

software package.  During the first week of classes, students were informed that features of their 

math software were being investigated and that they can take part of a voluntary research project.  

To avoid potential biases, the researcher chose not to explain which features were being 

investigated in their math software.  The description in the informed consent form was generic 

and stated that certain features of the math software were being investigated in terms of how 

students learn.  The students were given an informed consent form (see Appendix E).  

Permission to complete this research study was given by UCF and Valencia College (see 

Appendix F and G, respectively).  The Attitudes Toward Mathematics Inventory (ATMI) was 

given during the first week of classes (see Appendix H).  Permission to use the ATMI was 

granted by Martha Tapia (see Appendix I).  The topic chosen was functions, which took place 

during the fourth through the eighth week of the semester.  The topic of functions were chosen 
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since functions are a major topic in College Algebra that has be mastered for students to be 

successful in the course and subsequent courses in mathematics.  Functions also set the 

foundation of other topics studied in College Algebra.  Students were given a pre-test on paper, 

prepared from TestGen by Pearson.  The pretest covered the objectives of functions (see 

Appendix J).  The students had to complete assigned homework in their respective software, 

which prepared them for the objectives covered on the exam.  After completion of the course 

objectives on functions and homework, students were given the post-test on functions.  The pre-

test and post-test were identical except for algorithmic changes to number values.  At the 

conclusion of the study of functions, students were administered the ATMI again.  The basic 

steps are summarized below: 

1) Course Introduction and Software Orientation (Week 1) 

2) Informed Consent and ATMI administered (Week 1) 

3) Pre-Test (paper and pencil) (Week 4) 

4) In-class lectures on functions and assignments through software (Week 4, 5, 6, 7) 

5) Practice exam through software (Week 7) 

6) Post-Test (Week 8) 

7) ATMI re-administered (Week 8) 

Instructional and Software Differences 

This research study was focused on comparing two instructional approaches 

supplemented with CAI.  This section will provide some differences between the functionalities 
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of the two software systems and how those features were used to support the chosen instructional 

approach.  The researcher informally interviewed colleagues who had experience with both 

ALEKS and MyMathLab to gain different perspectives on the similarities and differences 

between the two math software systems.  The two math software systems are similar in terms of 

math content, but the approach is different.  In the traditional section, the instructor lectures by 

topic, and each student receive exactly the same homework assignment and same number of 

problems.  Students’ assignments are not individualized.  The instructor can program the same 

assignment for all students in MyMathLab for the traditional instructional approach.  In 

MyMathLab, the students can do the homework and have resources available to them through 

the math software system.  The students are able to view an example step-by-step solution on a 

similar problem, look at hints, view a video clip, or reference the textbook section to which the 

problem corresponds.  The student is given three attempts to answer the problem correctly before 

it is marked incorrect.  The student can do a similar problem to change it from being incorrect to 

correct.  The change in the problem is algorithmic to the number value only.  A screenshot of 

homework in MyMathLab is provided in Appendix K.    

In the adaptive instructional approach, ALEKS was chosen.  In the adaptive instructional 

approach, lectures are catered to students’ difficulties and to problems that students are ready to 

learn.  ALEKS provide a screen shot of the types of problems students are working on in a 

particular objective.  The instructor can lecture on problems that students are struggling with, 

which is reported by the adaptive software.  In addition, homework assignments are 

individualized for each student based on their current knowledge state of the course objective.  
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ALEKS, as discussed earlier, uses Knowledge Space Theory and assess the student’s mastery of 

skills associated with the course objectives including any required prerequisites.  The assessment 

is the first assignment students must complete in ALEKS and is approximately 30 short answer 

questions.  This assessment self-adapts based on whether the student answers the previous 

question correctly or not.  Once completed, students are assigned a learning pie with 

competencies that they must master that are relevant to the course objective being taught 

according to the schedule set by the instructor.  The learning pie will include prerequisite skills.  

The learning pie will not include learning objectives that ALEKS deemed students are not ready 

to learn until certain objectives and skills have been mastered.  Once a student gets the same 

problem correct three times without assistance, the objective is considered mastered.  However, 

students are given an assessment periodically (about every 5 hours).  If a student gets a mastered 

objective problem incorrect, the objective is added back the learning pie.  These formative 

assessments are meant to maintain a current learning pie that matches the student’s progress.  

The instructor programs the objectives of the course and schedules due dates for each objectives 

to be completed.  The instructor is also able to program quizzes and examinations that match the 

course objectives.  ALEKS also provide hints and instruction based on what the student types in 

for a math problem.  A screenshot of ALEKS is provided in Appendix L. 



67 

 

Design for Research Question #1: 

Is there a significant difference between learning gains on the topic of functions between 

the two College Algebra sections as a function of instructional approach (traditional vs. self-

adaptive)? 

The goal of the first research question was to compare learning gains in the topic of 

functions as a function of instructional approach.  To address this question, students were given a 

pre-test around week four and a post-test around week eight on the topic of functions.  Functions 

is a pivotal topic in College Algebra.  The topic of functions is difficult and new for most 

students.  In addition, it is imperative for students to have an understanding of functions for 

subsequent topics covered in College Algebra and future college-level math courses.  Both the 

pre-test and post-test is a paper-and-pencil test generated through TestGen by Pearson.  Both 

tests were identical except algorithmic changes to number values. The pre-test was given the day 

before the topic is introduced.  The post-test was given after the topic is completed with 1 day of 

review.  The grading of the test was as follows:  1) multiple choice questions were marked as 

either incorrect or correct,  2) for short answer questions, the work was graded in addition to the 

final solution given and was graded as incorrect, partially correct, or correct.   Questions marked 

as incorrect received 0 points, partially correct received ½ point, and correct received 1 full 

point.  The fractional grade (total number correct over total number of questions) was changed to 

a percent grade.  Independent t-test analyses was performed through SPSS (Statistical Package 

for Social Science) on mean pre-test scores and mean post-test scores for both sections, to 

measure for any significant differences.  Learning gains was measured by subtracting the pre-test 
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score from the post-test for each student.  The mean learning gains was compared with an 

independent t-test analysis for both sections.  A dependent paired t-test analysis was also 

performed to measure the degree to which learning has taken place in each section.     

Design for Research Question #2 

Is there a significant difference between attitude changes between the two College 

Algebra sections as a function of instructional approach (traditional vs. self-adaptive)?    

Students’ attitudes were assessed using the Attitudes Toward Mathematics Inventory 

(ATMI) during the first week of classes and at the conclusion of this research effort (right after 

the post-test is given).  The ATMI was originally developed by Tapia in 1996 and is a 40-item 

survey using a Likert-style scale designed to measure high school and college students’ attitudes 

towards mathematics (Tapia & Marsh, 2004).  Tapia and Marsh (2002) used confirmatory factor 

analysis to confirm that ATMI would hold true for U.S. college students (Tapia & Marsh, 2002) 

using a sample of 134 undergraduate college students, where the population consisted of 71 

males, 58 females, 80% Caucasian, and 20% African Americans (Tapia & Marsh, 2002).  The 

ATMI measures overall attitude in mathematics and four sub-factors of attitudes in mathematics: 

self-confidence, value, enjoyment, and motivation.  Tapia and Marsh (2004) provide definitions 

for each of the four sub-factors.  The self-confidence category measures students’ confidence in 

mathematics and their self-concept (Tapia & Marsh, 2004).  The value category measures 

feelings of anxiety (Tapia & Marsh, 2004).  The enjoyment category measures the degree to 

which students enjoy working with mathematics, and the motivation category measures interest 



69 

 

and desire to pursue and study mathematics (Tapia & Marsh, 2004).  Cronbach’s alpha 

coefficients were found to be 0.96 for self-confidence, 0.93 for value, 0.88 for enjoyment, and 

0.87 for motivation.  Cronbach’s alpha values above 0.70 are considered to be acceptable 

measures of internal reliability (Nunnally & Bernstein, 1994).  The reliability of the scale is 

measured at 0.97 with college students.  The content validity has also been established by Tapia 

and Marsh (2004).   

Tapia and Marsh (2002) found items #9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 

and 40 to measure self-confidence, items #1, 2, 4, 5, 6, 7, 8, 35, 36, and 39 to measure value, 

items #3, 24, 25, 26, 27, 29, 30, 31, 37, and 38 to measure enjoyment, and items #23, 28, 32, 33, 

and 34 to measure motivation.  Items #9, 10, 11, 12, 13, 14, 15, 20, 21, 25, and 28 are reverse 

items; items that make negative statements about mathematics.  For example, item #12 states 

“Mathematics makes me feel uncomfortable”.  The researcher used Tapia’s and Marsh’s 

subscales to measure the four factors independently and examine significance difference in the 

before and after scores for each factor separately in addition to holistically.   

The 40-item survey uses a Likert scale with the following response codes A - E, as 

developed by Tapia in 1996: A – strongly disagree, B –disagree, C – neutral, D – agree, and E – 

strongly agree.  For quantifying data, A = 1, B = 2, C = 3, D = 4, and E = 5, giving a range of 40 

to 200 points.  Reverse items are interpreted using the formula 6 – reverse item’s score.  For 

example, if a student picked E (strongly agree), this would normally be ranked as five for a 

positive statement.  For these reverse items, the actual score for a ranking of E would be 

recorded as 6 – 5 = 1, a low rating for this type of statement on the ATMI.  The estimated 
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administration time is 20 minutes per administration.  Both administrations took place during 

class time for the current study to investigate differences in students’ attitude between the two 

instructional approaches.  A copy of the actual questionnaire developed by Martha Tapia can be 

found in Appendix H.   

Independent t-test analyses were performed using SPSS on pre-ATMI scores and on each 

of the four sub-scale scores.  Independent t-test analyses were also be performed on post-ATMI 

scores and on each of the four sub-scales scores.  Attitude changes were calculated by 

subtracting the pre-ATMI scores from the post-ATMI scores for each student.  The same was 

calculated for each of the 4 sub-scales scores respectively.  Independent t-test analyses were 

performed to determine if there were a significant attitude change holistically and/or on each of 

the four sub-scales for each section.     

Design for Research Question #3: 

Is there a stronger correlation between students’ level of mastery learning (as reported 

by their respective software) vs. actual learning as a function of instructional approach 

(traditional vs. self-adaptive)? 

The third question of this research effort sought to measure the relationship between 

students’ level of mastery (as reported by the respective software) vs. actual learning (as 

measured by the post-test scores).  The level of mastery was defined operationally as the 

homework score earned on the respective software.  For the traditional section, once a homework 

problem is marked as correct, it stays correct.  In general, the homework grade can only increase 
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in the traditional section since students’ current learning state is not measured.  For the self-

adaptive section, homework grades could increase or decrease if the software determined that 

students lost previously mastered knowledge from the objective.  The researcher recorded 

homework grades as reported by the software and used the homework grade as the representative 

score for mastery learning in the objective of functions.  Pearson correlation analyses were 

performed to determine, if any, relationships between students’ mastery scores on their 

respective software versus their actual learning (post-test scores) for each class type.  The 

correlational analyses were compared between the two sections of College Algebra to determine 

if one instructional approach has a higher correlational relationship versus the other instructional 

approach using an r-to-z Fisher transformation to test for statistical difference (Howell, 2011). 

There was a discussion about how scaffolding should match student’s level of learning.  Their 

mastery of learning as measured by the software should match their actual level of learning 

ideally.  This part of this current research study is descriptive in nature.  The pair of correlational 

analyses using the Pearson product moment correlation was computed through SPSS (Statistical 

Package for Social Sciences).   

Assumptions and Limitations 

According to Leedy (1997), no research can avoid biases and limitations that may influence the 

results of the data.  Here were the assumptions and limitations for this current research study: 

1) The sample was not a true, random sample.  The sample used is a convenient sample 

based on students who enrolled in the 2 sections of College Algebra.  In addition, class 
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schedules for the semester listed the instructor teaching the course approximately 3 

months in advance of the semester.  Students have a tendency to choose a section or to 

avoid a section based on the instructor teaching the course.  Popular rating websites and 

word of mouth are two influences on how a student may or may not select a particular 

section being taught. 

2) The sample size was limited to a total of about 60 students in two particular sections of 

College Algebra courses in a central Florida state college (30 students per section).  The 

results presented may be true of the sample studied and similar populations.  The results 

may not be generalizable to other colleges, different regions, or different demographics 

(such as an all-female institution).  In addition, this study was at a state college, and is not 

applicable to universities due to different entrance requirements and differences in terms 

of class format and instruction delivery. 

3) This research effort is narrowly focusing on one course objective in College Algebra, 

which limits interpretations of the results. For example, the results may differ for 

different topics or may differ if the whole course was studied.  The reader should take 

this limitation into account when reviewing the results of the data in Chapter four. 

4) Teaching contains confounding variables by the nature of teaching itself.  The researcher 

controlled for as many variables as possible through offering the sections of College 

Algebra during the same time of day, same number of days, and same time length per 

class session.  In addition, both sections had the same instructor and received similar 

lectures.  Both sections received the same syllabus, course requirements and the same in-
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class examinations.  The students had equal access to the instructor during office hours.  

However, there are other factors that could influence a student’s performance and attitude 

in any course including receiving additional tutoring, numbers of hours working, 

obligation to kids, and other obligations unaccounted for.  According to Leedy (1997), 

each section being composed of different individuals and the inner dynamic can play a 

role and be an influence on the results of data (p. 220).  The home environment can affect 

students’ behavior and reactions in the class (p. 220).  These are all variables not 

accounted for and could be influences on why students do well or don’t do well on 

exams, which in turn can influence their attitude and perceptions of learning.   

5) It was assumed that students entering College Algebra is representative of the population 

of students enrolled in College Algebra at public community and state colleges 

nationwide and, more specifically, Florida.   

6) It was assumed that students entering College Algebra have competent computer literacy 

skills to use the math software and difference in computer literacy skills do not hinder or 

influence their progress in the course.  The researcher gave the students two weeks to 

become acclimated and offered orientation to the software during the first week of classes 

as well as individual assistance during office hours.  Research data in terms of the content 

was not collected until the fourth week in the course. 

Chapter one introduced the purpose of the study along with rationale and potential benefits of 

this study.  Chapter two included a literature review that focused on the reform movements in 

mathematics education, the history of artificial intelligence and intelligent tutoring, results of 
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studies with CAI, and a discussion of Knowledge Space Theory.  Chapter three discussed the 

research design and the statistical tools that will be used to address the research questions posed.  

Chapter four will include all of the results from all research questions posed.  A discussion of the 

results and conclusion with recommendations for future studies will be included in Chapter five.   
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CHAPTER FOUR: RESULTS 

Overview of Research Design and Questions 

The purpose of this research effort was to compare two instructional approaches (traditional 

versus self-adaptive) in terms of learning gains on the topic of functions and attitude changes as 

measured by the ATMI, including the four sub-scale scores in the areas of self-confidence, value, 

motivation, and enjoyment.  In addition, this study sought to determine relationships between 

students’ mastery of learning scores (homework scores) versus actual learning (post-test scores) 

through correlational analyses.  More specifically, this research effort was focused on addressing 

the following questions: 

1) Is there a significant difference between learning gains on the topic of functions 

between the two College Algebra sections as a function of instructional approach 

(traditional vs. self-adaptive)? 

2) Is there a significant difference between attitude changes between the two College 

Algebra sections as a function of instructional approach (traditional vs. self-

adaptive)?    

3) Is there a stronger correlation between students’ level of mastery learning (as 

reported by their respective software) vs. actual learning as a function of 

instructional approach (traditional vs. self-adaptive)? 



76 

 

Participants 

From the sample of 60 students, 6.7% of the sample (4 students) withdrew within the first 

couple of weeks in the course, leaving a total of 56 participants (27 for Section A and 29 for 

Section B).  From the 56 participants left, four more students withdrew from the course.  

However, three of the four students agreed to complete the post-test on functions and the post-

ATMI survey, so their data is complete.  The other withdrawn student did not complete the post-

test, but did complete the ATMI post survey.  Consequently, this led to incomplete data for the 

post-test scores.  However, Osborne (2013) suggests that estimating values for missing data will 

lead to more replicable findings than analyses that discard missing cases.  Since it is better to 

retain cases and estimate value for missing data values (Osborne, 2013), the withdrawn student 

was assigned a post-test score equal to his/her earned pre-test score, which resulted in no 

learning gains for this student.  Since all students who took the actual post-test performed higher 

when compared to their pre-test score, assigning a post-test score equal to the pre-test score was 

a conservative approach.  It was safe to assume that the withdrawn student, at the very minimum, 

did not have any learning gains.  However, the other 52 students did not withdraw from the 

course, and they participated in all aspects of the research, including the post-test test on 

functions and the post-ATMI survey. In Section A (adaptive instructional method), the mean age 

was 21.87 years while the mean age in Section B (traditional instructional method), was 23 

years.  The mean age of students in both sections was 22.43 years.   
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Results of Research Question One 

Is there a significant difference between learning gains on the topic of functions between 

the two College Algebra sections as a function of instructional approach (traditional vs. self-

adaptive)? 

An independent sample t-test was computed to compare means on the unit pre-test and 

post-test for each class type (Section A and Section B).  No statistical differences were revealed 

on test performance on the pre-test when comparing both instructional techniques (M = 32.22 

and SD = 10.789) for Section A and (M =35.38 and SD = 11.378) for Section B, with t (54) = -

1.064, p = 0.29.  There was not a statistical difference found between the two instructional 

approaches for the post-test (M = 69.111 and SD = 22.0303) for Section A and (M = 70.966 and 

SD = 17.6766) for Section B, with t (54) = -0.349, p = 0.729.  The mean scores for the pre-test 

and post-test were similar between both sections as revealed by the independent t-tests. This t-

test analysis indicates that both sections were not associated with significantly different means 

on the pre-test and post-test by class type, an indication of that both sections had similar 

knowledge about functions.  Numerically, the post-test means were less than one point apart 

while the pre-test means were roughly about three points apart.     

Prior to conducting the analysis, the assumption of normally distributed mean scores for 

the pre-test and post-test was examined.  The distributions of mean scores were sufficiently 

normal for both sections on the pre-test and post-test.  The skew and kurtosis levels for the pre-

test were estimated at 0.08 and -0.097 respectively, for Section A, and 0.785 and 1.21 

respectively, for Section B, which is less than the maximum allowable values for a t-test (i.e., 
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skew < |2.0| and kurtosis < |9.0|; Schmider, Ziegler, Danay, Beyer, & Bühner, 2010).  For the 

post-test means, the skew and kurtosis levels were -0.554 and -0.702 respectively, for Section A 

and -0.418 and -0.971 respectively, for Section B.  Additionally, the assumption of homogeneity 

of variances was also tested and satisfied via Levene’s F test, F (54) = 0.033, p = 0.856 for the 

pre-test and F (54) = 1.512, p = 0.224 for the post test.   

In addition to comparing the pre-test and post-test mean scores, learning gains were 

measured by finding the difference between the post test and pre-test scores (Post-test – pre-test).  

An independent t-test was computed to compare means for learning gains by class type.  No 

statistical differences were revealed for learning gains by class type (M = 36.889 and SD = 

18.0540) for Section A and (M = 35.586 and SD = 16.7620) for Section B, with t (54) = .280, p 

= 0.781. The skew and kurtosis levels were 0.056 and -0.686 respectively, for Section A, and 

0.134 and -0.945 respectively, for Section B.  The assumption of homogeneity of variances was 

tested and satisfied with a Levene’s F test, F (54) = 0.174, p = 0.678 for learning gains. 

In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the learning gains were statistically significant for each class section.  The 

value t (26) = -10.62, p < .001 for section A and t (28) = -11.43, p < .001 for Section B.  These 

paired t-test analyses indicate that both sections learned during the time period between the pre-

test and post-test, but no one section had significantly greater learning gains than the other 

section as revealed from the independent t-test analysis.  Pre-test score means, post-test score 

means, and learning gains means are presented in the table below by class type.  
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Table 1. Pre-test, Post-test, and Learning Gains Means by Class Type 

Class Type Pre-Test Mean Post Test Mean Learning Gains Mean 

Section A (N = 27) 32.22 (SD =10.79) 69.11 (SD = 22.03) 36.89 (SD = 18.05) 

Section B (N = 29) 35.38 (SD = 11.38) 70.97 (SD = 17.68) 35.59 (SD = 16.76) 

 

Since there could be other benefits between the two instructional approaches in terms of 

time spent on homework, data regarding total time (in hours) spent on the topic was also 

collected.  In addition, total time (in hours) spent on the software for the entire course was also 

collected.  An independent t-test was computed on unit time spent as reported by the software 

and the total time spent for the semester for each class type.  The independent samples t-tests 

were not associated with a statistically significant differences between mean unit time by class 

type (M = 11.582 and SD = 10.2829) for Section A and (M = 11.0245 and SD = 7.93021) for 

Section B, with t (54) = 0.228, p = 0.820. There was not a significant difference between mean 

total time spent on the software by class type (M = 48.8707 and SD = 37.67278) for Section A 

and (M = 52.0886 and SD = 34.88707) for Section B, with t (54) = -0.332, p = 0.741.  This t-test 

analysis indicates that both sections were not associated with significantly different mean unit 

time and mean total time by class type, an indication of that both sections spent a similar mean 

amount of time on the unit and total time in the course.   

Prior to conducting the analysis, the assumption of normally distributed mean time spent 

on functions and total time spent during the whole course were examined.  The distributions of 

mean scores were sufficiently normal for both sections on unit time and total time.  The skew 

and kurtosis levels were estimated at 1.129 and 0.920 respectively, for unit time for Section A, 
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and 0.514 and -0.930 respectively, for Section B. For the total time means, the skew and kurtosis 

levels were 1.019 and 1.781 respectively, for Section A, and 0.610 and -0.732 respectively, for 

Section B.  Additionally, the assumption of homogeneity of variances was also tested and 

satisfied via Levene’s F test, F (54) = 0.799, p = 0.375 for unit time and  F (54) = 0.004, p = 

0.947 for total time.  Unit time spent and total time means are presented in the table below by 

class type.   

Table 2. Unit time and total time (in hours) means by Class Type 

Class Type Unit Time Mean Total Time Mean 

Section A (N = 27) 11.582 (SD = 10.2829)) 48.8707 (SD = 37.67278) 

Section B (N = 29) 11.0245 (SD = 7.93021) 52.0886 (SD = 34.88707) 

Results of Research Question Two    

Is there a significant difference between attitude changes between the two College 

Algebra sections as a function of instructional approach (traditional vs. self-adaptive)?    

An independent t-test was computed on the pre-ATMI scores and the post-ATMI scores 

for each class type.  Independent t-tests were also computed for each of the 4 sub-factors 

(confidence, value, enjoyment, and motivation) of attitudes towards mathematics.  The 

independent samples t-tests were not associated with statistically significant differences in means 

for mean pre-ATMI scores by class type (M = 129.96 and SD = 29.57) for Section A and (M = 

136.276 and SD = 30.1673) for Section B, with t (54) = -0.790, p = 0.433.  There was not a 

statistically difference for mean post ATMI survey by class type (M = 133.11 and SD = 30.33) 

for Section A and (M = 136.55 and SD = 30.04) for Section B, with t (54) = -0.426, p = 0.672.  
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This t-test analysis indicates that both sections were not associated with significantly different 

means on the pre-ATMI and post ATMI survey by class type, an indication of that both sections 

had similar mean attitude scores towards mathematics at both administration of the ATMI 

survey.  Prior to conducting the analysis, the assumption of normally distributed mean scores for 

the pre-ATMI and post ATMI survey was examined.  The distributions of mean scores were 

sufficiently normal for both sections on the pre-ATMI and post ATMI survey.  The skew and 

kurtosis levels for pre-ATMI scores were estimated at -0.135 and -0.747 respectively for Section 

A and -0.821 and -0.267 respectively for Section B.  For the mean post ATMI scores, the skew 

and kurtosis levels were -0.314 and -0.932 respectively for Section A and -1.02 and 0.724 

respectively for Section B.  Additionally, the assumption of homogeneity of variances was also 

tested and satisfied via Levene’s F test, F (54) = 0.028, p = 0.868 for the pre-ATMI scores and  

F (54) = 0.146, p = 0.703 for the post ATMI scores.   

 An independent t-test on the change in ATMI scores (Post score – Pre-ATMI score) 

revealed no significant difference between Section A and Section B.  The mean ATMI change 

score was for Section A was 3.15 (SD = 29.21), and the mean change score for Section B was 

0.276 (SD = 16.34), with t (54) = 0.458, p = 0.649.  For Section A, the skew and kurtosis levels 

were -1.13 and 4.29, respectively.  For Section B, the skew and kurtosis levels were -0.28 and 

0.154, respectively.  The assumption of homogeneity of variances was tested and satisfied with a 

Levene’s F test, F (54) = 2.822, p = 0.099 for ATMI change scores.  It should be noted that even 

though there was not a significant statistical difference, students’ ATMI scores increased slightly 

more for Section A while there was a negligible change ATMI scores for Section B.    
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In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the ATMI changes were statistically significant for each class section.  The 

value t (26) = -0.56, p =0.5880 for section A and t (28) = -0.091, p = 0.928 for Section B.  These 

paired t-test analyses indicate that both sections were not associated with statistical change in 

mean ATMI scores during the time period between the pre-ATMI survey and post ATMI survey. 

Both sections had similar entering attitudes towards mathematics in the beginning of the 

semester and again during the second administration of the ATMI survey. Mean pre-ATMI 

scores, mean post-ATMI scores and mean change in ATMI scores are presented in the table 

below by class type.   

Table 3. Pre-ATMI, Post ATMI and change means by Class Type 

Class Type Pre-ATMI Mean Post ATMI Mean ATMI change mean 

Section A (N = 27) 129.96 (SD = 29.57) 133.11 (SD = 30.33) 3.15 (SD = 29.21) 

Section B (N = 29) 136.28 (SD = 30.17) 136.55 (SD = 30.04) 0.276 (SD = 16.34) 

 

Independent sample t-tests were computed for each of the sub-factor scores from the 

ATMI survey.  The ATMI survey measured self-confidence, value, enjoyment, and motivation.  

No statistical differences were revealed for each of the individual sections of the ATMI.  The t-

test revealed no statistically significant difference between pre-self-confidence mean scores by 

class type (M = 49.037 and SD = 13.25) for Section A and (M = 49.828 and SD = 14.2730) for 

Section B, with t (54) = -0.214, p = 0.831.  There was not a statistical significant difference 

between mean post-self-confidence scores by class type (M = 49.111 and SD = 15.27) and (M = 

49.966 and SD = 13.2382) for Section B, with t (54) = -0.224, p = 0.823.  This t-test analysis 
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indicates that both sections were not associated with significantly different means on pre-self-

confidence and post self-confidence scores by class type, an indication of that both sections had 

similar mean self-confidence scores towards mathematics at both administration of the ATMI 

survey.   

Prior to conducting the analysis, the assumption of normally distributed mean scores for 

the pre-confidence and post confidence scores was examined.  The distributions of mean scores 

were sufficiently normal for both sections for pre-confidence and post confidence.  For mean 

pre-self-confidence scores, the skew and kurtosis levels were estimated at -0.156 and -1.047 

respectively, for Section A, and -0.497 and -0.380 respectively, for Section B.  For the post 

confidence means, the skew and kurtosis levels were -0.686 and -0.606 respectively, for Section 

A, and -0.942 and 0.442 respectively, for Section B.  Additionally, the assumption of 

homogeneity of variances was also tested and satisfied via Levene’s F test, F (54) = 0.084, p = 

0.773 for the mean pre-self-confidence scores and  F (54) = 1.009, p = 0.320 for the mean post 

self-confidence scores.   

An independent t-test on the mean change in self-confidence scores (Post score – pre-

score) revealed no statistical significant difference by class type (M = 0.0741 and SD = 13.25) 

for Section A and (M = 0.138 and SD = 8.895) for Section B, with t (54) = 0.028, p = 0.978.  For 

mean change in self-confidence, the skew and kurtosis levels were -1.55 and 5.485 respectively, 

for Section A, and 0.445 and 1.936 respectively, for Section B.  The assumption of homogeneity 

of variances was tested and satisfied with a Levene’s F test, F (54) = 0.825, p = 0.368 for mean 
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change in self-confidence scores.  Both sections experience negligible changes to mean self-

confidence scores. 

In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the mean change in self-confidence were statistically significant for each class 

section.  The value t (26) = -0.029, p =0.977 for section A and t (28) = -0.084, p =0.934 for 

Section B.  These paired t-test analyses indicate that both sections were not associated with 

statistical change in self-confidence scores during the time period between the pre-ATMI survey 

and post ATMI survey.  Both sections had similar entering self-confidence level towards 

mathematics in the beginning of the semester and again during the second administration of the 

ATMI survey.  In addition, each section did not experience significant changes in self-

confidence as indicated on the paired t-tests by class type.  Pre-confidence means, post 

confidence means, and confidence change means are presented in the table below by class type.   

Table 4. Pre-confidence Means, Post-confidence Means and Confidence Change Means by Class 

Type 

Class Type Pre-confidence Mean Post confidence Mean Confidence change  

Section A (N = 27) 49.037 (SD = 13.25) 49.111 (SD = 15.27) 0.0741 (SD = 13.25) 

Section B (N = 29) 49.828 (SD = 14.2730) 49.966 (SD = 13.2382) 0.138 (SD = 8.895) 

 

 Value is the next sub-factor analyzed.  The independent samples t-tests were not 

associated with a statistically significant differences in means for the pre-value scores by class 

type (M = 36.926 and SD = 10.1524) for Section A and (M = 38.241 and SD = 6.2829) for 

Section B, with t (42.8) = -0.578, p = 0.566.  There was not a statistical difference for mean post-
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value scores by class type (M = 36.667 and SD = 6.9004) for Section A and (M = 38.448 and SD 

= 7.4190) for Section B, with t (54) = -0.929, p = 0.357.  This t-test analysis indicates that both 

sections were not associated with significantly different means for pre-value and post-value 

scores by class type, an indication of that both sections had similar mean value mean scores 

towards mathematics at both administration of the ATMI survey.   

Prior to conducting the analysis, the assumption of normally distributed mean pre-value 

and post-value scores examined.  The distributions of mean scores were sufficiently normal for 

both sections for mean pre-value and post-value scores.  For mean pre-value scores, the skew 

and kurtosis levels were estimated at -0.089 and 0.957 respectively for Section A and -0.474 and 

-0.884 respectively for Section B.  For mean post-value scores, the skew and kurtosis levels were 

-0.601 and 0.762 respectively for Section A and -0.854 and 0.515 respectively for Section B.  

Additionally, the assumption of homogeneity of variances was also tested and satisfied via 

Levene’s F test for mean post-value scores, but was not satisfied for mean pre-value scores.  A 

Welch’s t-test value was used for mean pre-value scores since the assumption of homogeneity of 

variances was violated.  The F-test, F (54) = 4.475, p = 0.039 for the pre-value mean scores and  

F (54) = 0.161, p = 0.690 for the post value mean scores.   

An independent t-test on the change in value scores (Post-value – pre-value) revealed no 

significant difference between Section A and Section B.  The mean value change score for 

Section A was -0.259 (SD = 9.1889), and the mean change score for Section B was 0.2069 (SD = 

4.6933), with t (54) = -0.259, p = 0.797.  The skew and kurtosis levels were -0.858 and 4.694 

respectively for Section A and -0.646 and 0.034 respectively for Section B.  The assumption of 
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homogeneity of variances was tested and satisfied with a Levene’s F test, F (54) = 2.215, p = 

0.142 for value change scores.  Both sections experience negligible changes to mean value 

scores.    

In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the mean value changes were statistically significant for each class section.  

The value t (26) = 0.147, p =.885 for section A and t (28) = -0.237, p =.814 for Section B.  These 

paired t-test analyses indicate that both sections were not associated with statistical change in 

mean value scores during the time period between the pre-ATMI survey and post ATMI survey.  

Both sections had similar entering value level towards mathematics in the beginning of the 

semester and again during the second administration of the ATMI survey.  Pre-value means, post 

value means, and value change means are presented in the table below by class type.   

  

Table 5. Pre-value Means, Post value means, and value change means by Class Type 

Class Type Pre-value Mean Post value Mean Value change 

Section A (N = 27) 36.926 (SD = 10.1524) 36.667 (SD = 6.9004) -0.259 (SD = 9.1889) 

Section B (N = 29) 38.241 (SD = 6.2829) 38.448 (SD = 7.4190) 0.2069 (SD = 4.6933) 

 

Enjoyment was the next sub-factor analyzed.  The independent samples t-tests were not 

associated with a statistically significant differences in means for pre-enjoyment scores by class 

type (M = 31.000 and SD = 7.8935) for Section A and (M = 33.276 and SD = 9.0273) for 

Section B, with t (54) = -1.001, p = 0.321.  There was not a statistically significant difference for 

mean post-enjoyment scores by class type (M = 33.074 and SD = 7.9272) for Section A and (M 
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= 32.621 and SD = 8.1390) for Section B, with t (54) = 0.211, p = 0.834.  This t-test analysis 

indicates that both sections were not associated with significantly different means for pre-

enjoyment and post enjoyment scores by class type, an indication of that both sections had 

similar mean enjoyment scores towards mathematics at both administration of the ATMI survey.   

Prior to conducting the analysis, the assumption of normally distributed mean scores for 

mean pre-enjoyment and post enjoyment scores were examined.  The distributions of mean 

scores were sufficiently normal for both sections for pre-enjoyment and post enjoyment.  For 

pre-enjoyment, the skew and kurtosis levels were estimated at 0.076 and -0.089 respectively, for 

Section A, and -0.651 and -0.469 respectively, for Section B.  For the post enjoyment means, the 

skew and kurtosis levels were 0.417 and -0.499 respectively for Section A and -1.085 and 0.713 

respectively for Section B.  Additionally, the assumption of homogeneity of variances was also 

tested and satisfied via Levene’s F test, F (54) = 0.660, p = 0.420 for pre-enjoyment means and 

F (54) = 0.002, p = 0.963 for post enjoyment means.   

An independent t-test on the mean change in enjoyment scores revealed no significant 

difference by class type (M = 2.0741 and SD = 8.0952) for Section A and (M = -0.6552 and SD 

= 4.85707) for Section B, with t (54) = 1.542, p = 0.129.  The skew and kurtosis levels were 

0.332 and 2.822 respectively, for Section A, and 0.077 and 0.162 respectively, for Section B.  

The assumption of homogeneity of variances was tested and satisfied with a Levene’s F test, F 

(54) = 2.288, p = 0.136 for mean change in enjoyment scores.  Even though the change mean 

score for enjoyment was not statistically significant, it should be noted that section A 

experienced a positive increase while section B experienced a negligible decrease.    
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In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the value changes were statistically significant for each class section.  The 

value t (26) = -1.331, p =0.195 for section A and t (28) = -0.726, p =0.474 for Section B.  These 

paired t-test analyses indicate that both sections were not associated with statistical change in 

enjoyment mean scores during the time period between the pre-ATMI survey and post ATMI 

survey.  Both sections had similar entering enjoyment level towards mathematics in the 

beginning of the semester and again during the second administration of the ATMI survey.  Pre-

enjoyment means, post enjoyment means, and enjoyment change means are presented in the 

table below by class type.   

Table 6. Pre-enjoyment Means, Post-enjoyment Means, and enjoyment change by Class Type 

Class Type Pre-enjoyment Mean Post enjoyment Mean Enjoyment Change 

Section A (N = 27) 31.000 (SD = 7.8935) 33.074 (SD = 7.9272) 2.0741 (SD = 8.0952) 

Section B (N = 29) 33.276 (SD = 9.0273) 32.621 (SD = 8.1390) -0.6552 (SD = 4.85707) 

 

Motivation was the last sub-factor analyzed.  The independent samples t-tests were not 

associated with a statistically significant differences in means for pre-motivation scores by class 

type (M = 14.000 and SD = 4.7878) for Section A and (M = 14.931 and SD = 4.7203) for 

Section B, with t (54) = -0.732, p = 0.467.  There is not a statistical difference for mean post-

motivation scores by class type (M = 14.222 and SD = 4.6021) for Section A and (M = 15.517 

and SD = 5.0471) for Section B, with t (54) = -1.001, p = 0.321.  This t-test analysis indicates 

that both sections were not associated with significantly different means for pre-motivation and 

post motivation scores by class type, an indication that both sections had similar mean 
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motivation mean scores towards mathematics at both administrations of the ATMI survey.  This 

result indicates that the pre-motivation and post motivation scores between both class types were 

similar.   

Prior to conducting the analysis, the assumption of normally distributed mean scores for 

mean pre-motivation and post motivation scores were examined.  The distributions of mean 

scores were sufficiently normal for both sections for mean pre-motivation and post motivation 

scores.  For pre-motivation, the skew and kurtosis levels were estimated at 0.041 and -0.578 

respectively for Section A and -0.208 and -0.417 for Section B.  For the post motivation means, 

the skew and kurtosis levels were -0.228 and -0.695 respectively for Section A and 0.151 and -

1.076 respectively for Section B.  Additionally, the assumption of homogeneity of variances was 

also tested and satisfied via Levene’s F test, F (54) = 0.017, p = 0.895 for pre-motivation means 

and F (54) = 0.958, p = 0.332 for post motivation means. 

An independent t-test on the change in mean motivation scores revealed no significant 

difference by class type (M = 0.222 and SD = 4.75017) for Section A and (M = 0.5862 and SD = 

3.39661) for Section B, with t (54) = -0.332, p = 0.741.  The skew and kurtosis levels were 2.086 

and 7.956 respectively for Section A and -0.205 and 0.915 respectively for Section B.  The 

assumption of homogeneity of variances was tested and satisfied with a Levene’s F test, F (54) = 

0.488, p = 0.488 for motivation change scores.  Both sections experienced negligible change in 

motivation scores.    

In addition to the independent sample t-tests, dependent paired t-tests were computed to 

measure whether the value changes were statistically significant for each class section.  The 
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value t (26) = -0.243, p =0.810 for section A and t (28) = -0.929, p =0.361 for Section B.  These 

paired t-test analyses indicate that both sections were not associated with statistical change in 

motivation mean scores during the time period between the pre-ATMI survey and post ATMI 

survey.  Both sections had similar entering motivation level towards mathematics in the 

beginning of the semester and again during the second administration of the ATMI survey.  Pre-

motivation means, post motivation means, and motivation change means are presented in the 

table below by class type.   

Table 7. Pre-motivation Means, Post Motivation Means, and Motivation change by Class Type 

Class Type Pre-motivation Mean Post Motivation Mean Motivation Change 

Section A (N = 27) 14.000 (SD = 4.7878) 14.222 (SD = 4.6021) 0.2222 (SD = 4.75017) 

Section B (N = 29) 14.931 (SD = 4.7203) 15.517 (SD = 5.0471) 0.5862 (SD = 3.39661) 

 

ATMI Results Summary 

From the above analyses, attitudinal scores towards mathematics were similar between both class 

types in the beginning of the semester and were similar during the second administration of the 

ATMI survey.  In addition, the dependent paired t-test analyses revealed that there were no 

significant change in students’ attitude between the beginning of the semester and at the end of 

the unit about functions for both class types, which was about eight weeks into the semester.  

Similar results were found for all four sub-factors of attitudes towards mathematics for both class 

types.  Self-confidence, value, enjoyment, and motivation scores were similar in the beginning of 

the semester and again during the second administration of the ATMI survey.  In addition, paired 
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t-test analyses revealed no significant changes in students’ sub-factors attitude scores between 

the beginning of the semester and at the end of the unit about functions by class types.   

Results of Research Question Three  

Is there a stronger correlation between students’ level of mastery learning (as reported 

by their respective software) vs. actual learning as a function of instructional approach 

(traditional vs. self-adaptive)? 

This research question is focused on the relationship between students’ mastery level of 

learning and their actual learning.  Students’ mastery level of learning is operationally defined as 

their earned homework grade for the topic of functions as reported by the respective math 

software.  Actual learning is operationally defined as the actual earned grade on the post-test for 

functions.  The purpose was to determine relationships between these two variables and the 

extent of this relationship.  In addition, a comparison of this relationship by class type might 

reveal if this relationship is stronger for one instructional approach versus the other.  The 

relationship between students’ level of mastery learning and actual learning was analyzed 

through two Pearson product-moment correlation coefficients by class type.  There was positive 

correlation between students’ level of mastery learning and their actual learning for Section A, r  

(27) = 0.84, p < 0.01 and r (29) = 0.56, p < 0.01 for Section B.  These correlational analyses 

reveal a positive correlation between the students’ level of mastery and actual learning for each 

class type with Section A have a stronger correlation than Section B.  Using the Fisher r-to-z 

transformation, the z-value = 2.08, corresponding p < 0.05, which shows that the difference 
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between these two correlation coefficients is statistically different.  This means that students’ 

homework grades are strongly correlated to their exam grade with a stronger relationship 

existing for the self-adaptive approach.  This indicates that it is possible for the self-adaptive 

features of math software to more accurately represent students’ learned knowledge.  It is 

important to note that no causality can be concluded from a Pearson product-moment correlation 

coefficient.    

Table 8. Pearson Product-moment Correlations between Mastery Learning and Actual Learning 

by Class Type 

Class Type Correlation Coefficient 

Section A (N = 27) 0.84** 

Section B (N = 29) 0.56** 

Note. ** p < 0.01 (2-tailed) 

Summary 

This research study compared an adaptive and a traditional instructional approach in 

College Algebra.  Three research questions were posed to explore and compare these two 

instructional approaches.  The first question focused on learning gains between the pre-test and 

post-test on the topic of functions in College Algebra.  The second research question focused on 

attitudinal changes between both administrations of the ATMI.  In addition, the ATMI measured 

four sub-factors of attitude: self-confidence, value, enjoyment, and motivation.  The third 

research question analyzed and compared Pearson moment-product correlation coefficients 

between students’ mastery learning levels and their actual learning levels for each instructional 
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approach and between both instructional approaches.  Students mastery learning levels was 

operationally defined as students’ homework score as reported by the software.  Actual learning 

level was operationally defined as students’ post-test score on functions. 

From the above analyses, students in both instructional approaches had similar entering 

knowledge about the topic of functions as indicated by independent t-tests on the pre-test.  In 

addition, students in both instructional approaches had similar learned knowledge about 

functions as indicated by independent t-tests on the post-test.  Similarly, students in both 

instructional approaches had similar learning gains.  However, paired dependent sample t-tests 

revealed that learning gains were significant between the pre-test and post-test for each 

instructional approach. 

In addition to the analyses on learning gains, students in both instructional approaches 

had similar entering attitudes and similar attitudes during the second administration of the ATMI.  

Furthermore, there was no significant attitude change between both administrations of the ATMI 

as measured by dependent sample t-test for each instructional approach.  In addition, similar 

results were found for each of the four sub-factors.  Students in both instructional approaches had 

similar self-confidence, value, enjoyment, and motivation scores for both administrations of the 

ATMI.  Changes were negligible for self-confidence, value, and motivation.  For enjoyment, the 

adaptive instructional approach experienced a 2.07 points increase while the traditional 

instructional approach experienced a negligible decrease.  Even though enjoyment increased 

more for the adaptive instructional approach, this was not statistical significant. 
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The last research question calculated Pearson moment-product correlation coefficients 

between students’ mastery learning level and their actual learning level for each instructional 

approach.  The correlation coefficient for the adaptive instructional approach r (27) = 0.84 and r 

(29) = 0.56 for the traditional instructional approach.  Both correlation coefficients were 

statistically significant, p < 0.001, but an r-to-z Fisher transformation revealed that the 

correlation coefficient for the adaptive instructional approach was statistically significantly 

higher than the traditional instructional approach.   

Overall, both instructional approaches were found to be equivalent in terms of learning 

gains and attitudinal changes.  Both instructional approaches experienced equivalent learning 

gains.  However, attitude did not change holistically or on any of the four sub-factors for both 

instructional approaches.  Moreover, the correlational analyses suggest that the adaptive 

instructional approach might be more accurate in assessing students’ true knowledge state and 

learning.  Chapter five will include a discussion of the results along with conclusions.  In 

addition, implications and suggestions for future studies will also be included.     
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CHAPTER FIVE: CONCLUSION 

Overview 

This research effort compared a traditional mode of instruction to a self-adaptive mode of 

instruction that used artificial intelligence.  The traditional approach used MyMathLab as the 

supplemental software while the adaptive approach used ALEKS as the supplemental software.  

ALEKS was chosen for the self-adaptive approach since ALEKS was built around the premise of 

self-adaptive instruction using Knowledge Space Theory.  ALEKS used the student’s current 

knowledge state to adjust their learning goals and homework assignments.  Both software 

systems had similar content for the unit of functions, but utilized different approaches for 

assignments. Two sections of College Algebra taught at a central Florida state college were 

compared in terms of students’ gains in learning in the topic of functions, attitudinal gains 

holistically and by each of the four sub-factors as measured by the ATMI.  The four sub-factors 

for attitude are self-confidence, value, enjoyment, and motivation.  In addition, there was a 

comparison between students’ level of mastery learning versus their actual learning level.  

Students’ level of mastery learning was operationally defined as their homework score on the 

topic of functions as assigned by the respective software.  Students’ actual learning level was 

operationally defined as their post-test scores on functions.  There were three research questions 

analyzed for this study.   

The first research question compared learning gains between both sections based on a 

pre-test and post-test for the unit of functions.  Independent t-test analyses were performed using 

SPSS on the pre-test, post-test, and learning gains.  Learning gains were computed by subtracting 
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the pre-test score from the post-test score.  The second research question compared attitudinal 

growth between both sections as measured by the ATMI.  In addition, the ATMI provided scores 

for four sub-factors of students’ overall attitude in self-confidence, value, motivation, and 

enjoyment.  Independent t-test analyses were performed on students’ entering attitudes, attitude 

after the completion on the function post-test, and changes in attitude using SPSS.  The same t-

test analyses were performed for each of the four sub-factors: self-confidence, value, enjoyment, 

and motivation.  The third research question focused on correlational analysis between students’ 

mastery level of learning as reported on the software versus actual level of learning, as measured 

on the post-test on the unit of functions.  Pearson product-moment correlational analyses were 

performed to find if there was a significant relationship between students’ mastery level of 

learning versus their actual level of learning for each class type.  In addition, an r-to-z Fisher 

transformation was computed to measure for statistical significant difference between the two 

correlation coefficient between the two sections of College Algebra.    

Assumptions, Delimitations, and Limitations of the Study 

Several assumptions were made in this study.  Specifically, students enrolled in both 

sections of College Algebra were computer literate and would be generally comfortable with the 

CAI software used.  The researcher assumed that three weeks of acclimation to the software 

would allow enough time for participants to be proficient in the use of their respective CAI 

software.  Participants in this study were assumed to be representative of both student population 

taking College Algebra found in state community colleges and in particular, representative of the 
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student population at Valencia College.  It was also assumed that students placed into College 

Algebra was placed correctly by the PERT test or met the college’s requirements to take College 

Algebra, based on alternative methods such as SAT or ACT scores or a review of a student’s 

transcript showing that the minimum prerequisite requirements were met for College Algebra.  

The PERT test, SAT, ACT, and/or review of transcript are assumed to be valid and reliable 

methods for placing students into College Algebra.  Pre-test and post-test were generated from 

TestGen software by Pearson.  The questions selected for the topics of functions are assumed to 

be valid and reliable measure of their intended objective(s).   

The scope of this study is narrow and focuses on learning gains and attitude changes 

based on quantitative measures only (Pre-Test scores, Post test scores, ATMI, and mastery scores 

as reported by the software).  In addition, this study is delimited to measuring learning gains and 

attitudinal change between 2 sections of College Algebra measured by the change between pre-

test and post-test and ATMI scores and sub-scores over a short, specific moment in time.  It is 

delimited to community college students placed into College Algebra enrolled in a public, state 

college and placed into College Algebra by standardized placement test scores or by meeting 

prerequisites requirements as noted on students’ transcript from other institutions or high school.   

There were several limitations in this study.  The first limitation was that the sample was 

nonrandom since students were able to self-select their College Algebra section.  The sample 

size was limited to a total of 56 students (27 for traditional lecture approach and 29 for self-

adaptive instructional approach).  All participants were students enrolled at Valencia College in 

Central Florida, which limits generalizability to other community colleges in other geographic 
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areas as well as four-year colleges and universities.  Another major limitation is that this study 

analyzed and compared only two instructional approaches with two popular CAI packages.  This 

study did not analyze multiple adaptive software systems and was limited to the format and 

capabilities of ALEKS for the self-adaptive instructional approach.  This study took place over a 

short period of time and focused on one unit topic in College Algebra.  Furthermore, software 

format and modality was another limitation in this study.  Although the course content and 

concepts were the same for both sections, with the same pre-test and post-test for the unit of 

functions; the mastery score as reported on the software were not reported in the same way for 

both sections.  Homework scores were collected from both CAI software packages on the unit of 

functions, but the problems were not identical due to the adaptive features of ALEKS.  In 

addition, a student’s mastery score could actually decrease in ALEKS if a random assessment 

determined loss of mastery while a homework score in MyMathLab was based on accuracy of 

answering homework problems with no adjustments made later for the student’s current 

knowledge state.  The researcher recorded mastery scores as reported by ALEKS and 

MyMathLab on the unit homework with no adjustments.  Finally, the lack of a randomized 

assignment of students to instructional approaches precludes definitive conclusions about the 

extent to which instructional approach may be causally linked to learning gains and attitude 

changes.  The fact that the study design relies on the use of convenience samples in which all 

students enrolled in one of two College Algebra sections were assigned an instructional approach 

in a non-random manner places limits on the generalizability of results from this study.  The use 

of non-random samples may result in biased estimates in which the magnitude of bias is 



99 

 

unknown.  Thus, caution should be used in drawing conclusions about student groups beyond the 

scope of this study.  Results are limited to providing insight and preliminary findings about the 

use of a self-adaptive instructional approach in College Algebra compared to a traditional 

approach using two different CAI math software systems for community college students.  In 

addition, the analysis of self-adaptive instruction was limited to only one math software system 

in a face-to-face modality only.  Other modalities, such as on-line or hybrid, were not 

considered.  If other modalities were used, the results of this study could be different. 

Knowledge of computer skills and previous experience with the respective software were 

not examined.  Since MyMathLab is the default software used in previous math courses on the 

instructor’s campus, students entering College Algebra from Intermediate Algebra had an 

advantage in the traditional section.  Since ALEKS was a pilot software system for the purpose 

of this research effort and is not used in developmental mathematics courses on the instructor’s 

campus, students entering the self-adaptive section of College Algebra might have had a greater 

learning curve compared to those students in the traditional section.  Even though a few weeks to 

learn and become acclimated with the software was provided for both sections before data 

collection (pre-test and post-test on Functions), students’ previous experience with their 

respective software could have biased their attitude towards the instructional approach adopted 

for their section.  Students’ comfort with the software could have influenced their performance in 

the chosen unit and in the course.   

Finally, the self-adaptive feature in ALEKS was another limitation in this study.  The 

artificial intelligence engine in ALEKS was developed based on Knowledge Space Theory and 
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provides homework based on the student’s knowledge as measured by random assessments.  A 

student’s learning pie constantly adjusts and changes based on mastery of topics and re-

assessment.  However, the software did not adjust based on students’ level of frustration or 

emotional state.  Sottiliare and Proctor (2012) state that there is a need for tutors (ITS or humans) 

to be able to perceive and address the student’s current affective state.  Self-reported measures of 

affect could be biased based on the fact that students may not report their true affective state to 

conform to instructor’s expectations (Sottiliare & Proctor, 2012).  With an understanding of the 

student’s affective state in addition to the student’s knowledge state, ITS can select instructional 

strategies to optimize the learning experience (Sottiliare & Proctor, 2012).  Future 

recommendations for future studies based on the listed limitations of this study are discussed 

later in this chapter.   

Discussion and Conclusions 

For the first research question, there was no statistical difference found between the pre-

test scores, post-test scores, or for learning gains as revealed by independent t-test analyses.  

These results indicate that both sections had similar entering knowledge about functions and that 

both sections had similar learning gains.  Dependent paired t-test analyses for each class type 

were significant, an indication that both sections had significant learning gains between the pre-

test and post-test on functions.  A possible explanation for the reason behind both instructional 

approaches having similar learning gains might be due to the fact that college students tend to be 

more self-regulated learners (Blair, 2006).  Both sections were face-to-face sections that met 
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three times weekly for a full semester, which made on campus tutoring and visiting the instructor 

during office hours more accessible.  Therefore, students in the traditional section could have 

receiving scaffolding and extra assistance outside of their respective software as needed.  The 

finding from this research question is in support of Spradlin and Ackerman’s study (2010).  

Spradlin and Ackerman (2010) found that a traditional instructional approach for teaching 

Intermediate Algebra is equivalent to an instructional approach with CAI.  Students in the 

traditional section of Intermediate Algebra of Spradlin and Ackerman’s study had outside access 

to the instructor during officer hours and to tutors in a math lab.  In the future, it would be 

interesting to note the time students spend seeking outside help from the instructor, math tutors, 

or other college resources to determine whether an instructional approach save students time 

from additional assistance or tutoring.   

Another possible explanation for the result of this finding may be due to the instructional 

design of each section.  For the traditional lecture section with CAI, the instructor designed 

homework assignments in MyMathLab that would provide for some scaffolding and review of 

important concepts for each unit.  The scaffolding and review provided by the homework 

assignment set by the instructor in MyMathLab was a one-size-fit all approach, but the results of 

this study seems to suggest that this was equal to an adaptive assignment that would adjust 

according to the student’s level of scaffolding that was needed.  If the instructor just assigned 

problems relevant to the objective of functions without any provision of pre-requisite review 

problems, then it could have changed the results for this research question, possibly in favor of 

the adaptive instructional approach. However, not providing pre-requisite problems would not be 



102 

 

effective teaching practice.  In conclusion, the adaptive approach may not provide additional 

benefits in terms of learning gains for the face-to-face courses due to students’ access to on 

campus tutoring or to the instructor during on campus office hours.  This type of access might 

have provided the additional scaffolding support that was needed.   

Several studies have shown that CAI is an effective supplement in terms of learning and 

affect compared to traditional lecture alone (Fine, Duggan, & Braddy, 2009; Taylor, 2008; Xu, 

Meyer, & Morgan, 2008).  Some studies examined MyMathLab compared to lecture alone while 

other studies examined ALEKS compared to lecture alone.  Few studies have compared different 

CAI math software approaches (e.g. Moosavi, 2009), but no study to date has compared two 

instructional approaches with CAI math software, where one software utilized artificial 

intelligence.  In Moosavi’s study, which compared Thinkwell and MyMathLab (similar 

software), the two CAIs were found to be equivalent in terms of student performance on 

examinations.  In Moosavi’s study (2009), the two CAI courses were online and were compared 

to a traditional lecture class.  Moosavi found that students in pre-calculus algebra had greater 

math achievements as measured on two exams and the final exams compared to students in a 

CAI section.  Moosavi’s ANOVA analysis revealed no statistical differences between the 2 CAI 

instructional methods.  This current study is in support of Moosavi’s findings, where there were 

no statistical difference found between students’ learning gains between the two instructional 

approaches using CAI. 

For the second research question, students in both sections had similar mean scores on 

the pre-ATMI, post-ATMI, and similar changes in attitude.  There were no statistical differences 
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in attitudinal changes between both sections.  In fact, both sections had similar attitude scores in 

the beginning of the semester and at the end of the unit, as measured by the ATMI.  The same 

results were found for each of the 4 ATMI sub-factors (self-confidence, value, motivation, and 

enjoyment).  An explanation for these results may be due to the fact that both instructional math 

software systems would not necessarily designed to improve student affect.  This simple 

explanation could account for why there was no significant change in student affect holistically 

or in any of the four sub-factors.  Another possible explanation for the results for this research 

question may simply be that the time period for attitudes to change was just too short.  If this 

study was conducted with these two instructional approaches over a longer period of time or with 

multiple, sequential math courses, a difference in attitude might be discovered.  For example, the 

adaptive section in this study experienced a slight increase of roughly 4% in enjoyment.  Even 

though the increase for enjoyment was not statistical significant, it is possible for enjoyment and 

other attitudinal factors to have increased if studied over a longer period of time.  However, it is 

important to note that the increase for enjoyment might be due to a few students marking a few 

questions higher than the first administration of the ATMI.  This increase in enjoyment may not 

be really a true increase or change.  Therefore, there were no significant changes for attitude for 

both instructional approaches.  Moreover, Dalton and Hannafin (1988) had a similar finding for 

students’ attitude.  Even though differences were found for the CAI group, post-attitude scores 

after adjusting for entering attitudinal behavior were statistically equivalent.  Therefore, Dalton 

and Hannafin (1988) concluded that initial positive attitude changes might be due to novelty 

rather than the computer’s capabilities.  In addition, Dalton and Hannafin (1988) reported that 
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students in their study were computer literate and have had substantially more computer 

exposure than students in previous studies.  Furthermore, Dalton and Hannafin (1988) concluded 

that it was possible that students in their study were less susceptible to the influence of novelty 

on their attitudinal scores.  In this current research study, it is possible that novelty was not an 

influencing factor due to students’ everyday exposure to technology such as smart phones and 

tablets.  Students’ attitude scores in this study could be truly associated with their perceived 

mathematics ability as noted in Nunez-Pena, Suarez-Pellicioni and Bono’s study (2013).  In this 

current study, attitude did not change much holistically or in terms of the four sub-factors for 

each instructional approach.  Furthermore, students’ attitudinal scores were equivalent for both 

administration of the ATMI for each instructional approach.   

The findings in this study suggest that a self-adaptive instructional approach utilizing a 

math software system with artificial intelligence may not offer any greater benefits in terms of 

attitudinal changes compared to a traditional instructional approach utilizing a math software 

system without using artificial intelligence.  The findings in this study regarding attitudinal 

changes are in contrast to Pilli and Aksu’s study (2013).  In their study, the group of students in 

the CAI experimental group had statistically significant greater attitudinal gains as measured by 

the Mathematics Attitude Scale scores.  Furthermore, students were able to retained learned 

skills over a four month period.   A goal of educators, administrators, and decision makers is to 

improve students’ attitude in mathematics (Nunez-Pena, Suarez-Pellicioni, & Bono, 2013; Tapia 

& Marsh, 1996).  At the very least, using a specific instructional approach should not negatively 

impact students’ attitudes.  This study compared two varying instructional approaches with CAI.  



105 

 

The results of this study indicate that both instructional approaches did not have a negative 

impact on students’ attitudes.    

For the third research question, correlational analyses revealed a strong relationship 

between students’ mastery level of learning and their actual level of learning for each 

instructional approach.  An r-to-z Fisher transformation revealed that this relationship was 

stronger for the self-adaptive approach.  This result indicates that the homework scores reported 

by ALEKS may be more representative of student’s true knowledge state, since ALEKS is 

constantly updated a student’s current knowledge state through random assessments.  In addition, 

ALEKS does not mark a homework problem as correct until the student has successfully 

answered similar homework problems three times in a row without any assistance.  Therefore, it 

is possible that correlation was higher in favor of the adaptive instructional approach due to the 

number of problems and frequency of assessments by ALEKS.  For example, students may have 

completed more homework problems in ALEKS compared to MyMathLab.  Moreover, ALEKS 

provided random assessments and adjusted the types and numbers of problems based on the 

results of the random assessments.  In contrast, students immediately received credit in 

MyMathLab after getting a problem correct once (with or without assistance).  A change in 

settings in MyMathLab where students had to get the homework problems correct without any 

assistance is possible, but this has to be manually set by the instructor.  This could change the 

results of this research question or time spent completing homework on the software.  Using the 

Knewton Theory setting in MyMathLab compared to the Knowledge Space Theory in ALEKS 

could also yield different results.  In this current study, the time spent doing homework in the 



106 

 

respective software systems were similar for both class sections with no statistical difference as 

revealed by independent t-test analyses.  The differences between time spent in the software 

systems could be affected if any of the changes mentioned previously were made.  

Implications 

 This study compared two instructional approaches, with one being a self-adaptive 

approach using ALEKS.  The implications in this study for educator, administrators, software 

developers, and other stakeholders is focused on proper instructional planning, mitigating 

entering negative attitudes towards mathematics, and the use of assessment to help make 

decisions and to help students.  In this study, no significant differences were found for learning 

gains between the two sections of College Algebra.  It appears that since the instructional 

approach and the software systems were in sync with appropriate planning led to both sections 

having similar learning gains between the pre-test and the post-test.  For example, since 

MyMathLab does not automatically offer prerequisite math problems as needed.  Therefore, the 

instructor added some review and prerequisite problems that were pertinent to the current 

objective.  Another example was that the instructor adjusted class lessons for the self-adaptive 

section based on reports of what students have mastered and what they are “ready to learn” as 

reported in ALEKS.  The instructor was able to cater the lesson to the content that students were 

struggling with.   

Many instructional approaches might utilize the use of technology or CAI as a 

supplement, but the focus should remain on the instructional approach, not on the software 
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system.  According to Hirumi (2002), appropriate needs analysis and instructional planning is 

imperative for a student-centered learning environment to be optimal.  Educators and 

administrators should select instructional software or technology that best matches a respective 

instructional approach.  Proper planning of providing prerequisite problems for the traditional 

instructional approach led to learning gains being equivalent for both instructional approaches.  

This study confirms that no significant differences exist between a traditional instructional 

approach with CAI and a self-adaptive approach when properly planned and designed.  In 

Hagerty, Smith, and Goodwin’s study (2010), for example, College Algebra was redesigned.  

Even though the implementation of CAI was a fundamental component, the redesign effort 

included more discussion, application problems, interactive activities, and training for faculty.  

This multi-faceted approach led to a 21% improvement in pass rates for College Algebra for 

their study.  

Another goal of this study was to investigate and compare attitudinal changes between 

both instructional approaches investigated.  This study found no statistical significant differences 

between attitudinal changes between both instructional approaches.  Furthermore, there were no 

statistical significant differences found for each of the four sub-factors (self-confidence, value, 

enjoyment, and motivation).  Moreover, dependent sample t-test analyses indicated that there 

were no significant changes in attitude for each instructional approach.  Each of the four sub-

factors had similar results as the holistic attitudinal change for each instructional approach.  

Research has shown that there is an association between student achievement in mathematics and 

their attitude towards mathematics.  For example, Cates and Rhymer (2003) found that math 
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anxiety was lower for students who could fluently perform math operations.  Additionally, 

Nunez-Pena, Pollicioni, and Bono (2013) found that students with less math anxiety were 

associated with greater mathematic achievement and high self-confidence.  Educators should use 

instructional strategies that mitigate students’ entering attitude towards mathematics.  Such 

strategies could include more collaborative projects, discussion, and more student-to-instructor 

interactions.  In addition, software developers may want to design intelligent tutoring systems 

that measure student affect and adjust instructional strategies based on a student’s current affect 

(Sottilaire & Proctor, 2012).  In this particular study, both math software systems utilized were 

not necessarily designed to improve student affect.  Tracking and utilizing student affect in 

addition to students’ current knowledge state could enhance the student learning experience 

(Sottilaire & Proctor, 2012). 

A third goal of this study was to compare the correlation coefficients between student 

mastery learning levels and their actual learning levels between both instructional approaches.  

The correlation for each instructional approach indicated a strong, positive association between 

students’ mastery learning levels as reported by the software and their actual learning levels as 

measured by students’ post-test scores on the topic of functions.  Using an r-to-z Fisher 

transformation test, this association was stronger in favor of the adaptive instructional approach.  

This result indicate that intelligent tutoring systems might have a greater potential in more 

accurately reporting students’ current knowledge state.  This information would provide for more 

effective formative feedback that can be used by instructors to offer more specific assistance 

students, to modify lesson plans to focus on struggling concepts, or to help students make 
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informed decisions regarding their math knowledge.  Perhaps, intelligent tutoring systems could 

be used as an “in-house” diagnostic tool and help make recommendations for placement or 

necessary remediation.  In addition, software developers could focus on enhancing the tracking 

and monitoring of students’ knowledge state.  However, these findings are preliminary in nature 

and more research is needed to determine the effect in which intelligent tutoring systems more 

accurately tracks and represents students’ knowledge state.        

As student population grows with limited resources and a reduction in remedial math 

courses at the community college level, CAI can help students learn and review prerequisite 

skills for entering College Algebra students.  Research has shown that CAI is more effective to 

use than lecture alone.  In addition, CAI can provide students with more resources, practice, and 

immediate feedback (Twigg, 2013).  Intelligent tutoring systems has a high potential to 

individualize and personalize the learning experience for students, but more development is still 

needed for it to reach its full potential.  Intelligent tutoring systems can definitely provide 

students with instruction and feedback in a distance education environment when access to an 

instructor is limited.  However, a human element stills makes a greater difference than the use of 

CAI math software systems alone. Math software systems that can report more accurate 

information regarding student learning can help professors and administrators.  

CAI math software has become a regular supplement in many community and state 

colleges.  Moosavi (2009) concluded that CAI methods should be learning tools “to promote 

higher-level cognitive activities” to result in greater student performance.  Artificial intelligence 

provides an opportunity for individualized learning that can help promote higher level cognitive 
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activities through inquiry and constantly adapting to a student’s level of learning.  Development 

of math software with enhanced artificial intelligence that takes students’ affect into 

consideration can help change students’ overall attitude positively, which could impact student 

learning and performance.  As promising as artificial intelligence can be, it should not be viewed 

as a substitute for human interaction and motivational advantages that a trained educator can 

bring into the learning environment (Moosavi, 2009).  CAI math software should be chosen 

based on pedagogical design and delivery of a math course to be used as a supplemental resource 

to enhance the learning experience.  Moosavi (2009) in his study reports that face-to-face pre-

calculus algebra sections performed significantly better on assessments compared to CAI on-line 

sections.  “Traditional instruction [(face-to-face)] contains a human element of student-teacher 

interaction not easily replicated in CAI.  The teacher is able to impart enthusiasm, motivation, 

recognize students’ struggles, and intervene appropriately” (Moosavi, 2009, p. 56).  Furthermore, 

Spradlin and Ackerman (2010) points that a traditional instructional approach without CAI can 

yield positive learning results if enhanced with active learning activities such as cooperative 

learning, more class discussions, more relevant applications, and the use of peer tutoring.  

Therefore, it is important to consider the instructional approach in conjunction with CAI.  

Recommendations for future studies and developments are provided in the next section.   

Recommendations 

There are several recommendations that would enhance or expand on this current study.  

Due to the limitations and delimitations in this study, future studies could more effectively 
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examine the results obtained from this study.  This research study was quantitative in nature.  

The researcher recommends a qualitative study or a hybrid study in the future.  The instructor 

received informal, verbal feedback from students about the self-adaptive approach to College 

Algebra.  Some participants reported frustration and anxiety with the self-adaptive software.  

Others reported that the self-adaptive approach forced them to learn and master the concepts.  

Unfortunately, this data was not formally collected and could enhance this study by providing 

more insight into students’ affect.  Snodin (2013) states that “including qualitative instruments 

could be vital to providing a clearer, more complete picture of research findings” (p. 212).   

Several issues that were beyond the scope of this current study on self-adaptive 

instruction in College Algebra might be of interest for future studies.  Variables considered 

beyond the scope of this study included student use of tutors and other college resources outside 

of class, students’ time spent for tutoring, or time spent in the math lab.  It might be of interest to 

investigate students’ time spent on tutoring, students’ success in subsequent math courses, or 

gain students’ insight through the use of journaling.  Other future recommendations include 

comparison of other modes of instruction such as hybrid or on-line courses and analyses of other 

self-adaptive math software such as using the Knewton Theory in MyMathLab.  The researcher 

of this current study also recommends a replication of this study using one software system for 

both sections where the setting can be changed to self-adaptive for the treatment group.  This 

option was not available at the time of this study, but this feature has recently became an option 

some math software have been updated to incorporate more instructional modality choices.  For 

example, MyMathLab provides such an option with self-adaptive assignments and paths based 
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on Knewton Theory (Pearson, n.d.).  Another recommendation is to compare two self-adaptive 

instructional approaches for both software (MyMathLab and ALEKS) with a focus on comparing 

Knowledge Space Theory versus the Knewton Theory to see if one is more effective in terms of 

learning gains and attitudinal gains in College Algebra as well as correlational comparison 

between students’ level of mastery learning versus their actual learning level.    

Focusing on more College Algebra sections over a longer period of time during the 

semester could enhance this research design.  In addition, focusing on other mathematics topics 

and concepts would also provide more information and insight.  Another recommendation would 

be to replicate this study for Intermediate Algebra since Intermediate Algebra does not have any 

required prerequisite requirements.  Intermediate Algebra would probably have entering students 

with diverse backgrounds in mathematics.  It is possible that a self-adaptive instructional 

approach would help students with deficient backgrounds to remediate on missing mathematical 

skills.  In addition, this study could be replicated for developmental mathematics.  Since students 

learn at different pace and each student may have differing individual needs, a self-adaptive 

instructional approach with intelligent tutoring could provide students with the necessary 

remediation efficiently.  Moreover, another recommendation for future studies would be to 

compare two different types of ITS where one perceived and adapted to student affect in a 

developmental or college-level math course.  The ability to sense and predict emotions such as 

boredom, pleasure, or frustration would expand ITS’s capabilities to optimize student learning 

and performance (Sottiliare & Proctor, 2012).  As this feature develops for mainstream college 

math software, this can become a feasible future study.    
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This study found a significantly higher correlation coefficient in favor of the self-adaptive 

instructional approach between students’ mastery learning level and actual learning level.  

However, the higher correlation coefficient could be the result of more homework problems or 

the frequency of assessments in ALEKS.  Therefore, further analysis is recommended to 

investigate the extent to which this relationship exists.  In addition, this relationship should be 

explored and compared for other math courses and for other student population. 

The researcher suggests that this study be replicated with two on-line or hybrid sections.  

Under these two instructional approaches (on-line and hybrid), students may become more 

dependent on the software for scaffolding.  Another recommendation is to replicate this study 

with self-adaptive software for students in K -12.  Younger students are still developing their 

ability to self-regulate their learning.  A difference could be discovered between the two 

instructional techniques with younger students.  For example, younger students may not always 

know what they need assistance with, what they have to learn, or if they have mastered the topic.  

An adaptive instructional approach paired with intelligent CAI, such as ALEKS, could help 

regulate younger students’ learning.   

Ultimately, more research (quantitative and qualitative) is needed in the area of 

intellectual tutoring software for math and its impact on student learning and affect.  The most 

effective approach is one that is well planned.  Artificial intelligence is not the sole solution for 

providing students with effective instruction and tutoring.  However, intelligent tutoring systems 

hold a high potential for making a difference for student learning in higher education as 

enrollment increases in community colleges with limited resources.  As the demand for on-line 



114 

 

courses and distance education increases, the quality of on-line instruction with limited access to 

campus resources could be enhanced with intelligent tutoring systems.    
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APPENDIX A: P.E.R.T. MATH SAMPLE 

 

 

  



116 

 

 

 



117 

 

 



118 

 

 

McCann Associates, 2011.  Retrieved from 

http://www.fldoe.org/schools/pdf/PERT-studentstudyguide.pdf on October 7, 

2014.  

http://www.fldoe.org/schools/pdf/PERT-studentstudyguide.pdf
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APPENDIX B: COLLEGE COURSE OUTLINE AND DESCRIPTION 
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Major Topics/ Concepts/ Skills/ Issues 

 Linear, Quadratic and Rational Functions 

 Exponential and Logarithmic Properties, Functions and Equations 

 Functions and Function Notation 

 Graphs of Functions and Relations 

 Systems of Equations and Inequalities 

 Domains and Ranges of Functions 

 Operations on Functions 

 Inverse Functions 

 Absolute Value and Radical Functions 

 Applications (such as Curve Fitting, Modeling, Optimization, and Exponential Growth 

and Decay) 

Major Learning Outcomes with Corresponding Evidence of Learning 

A. Read and comprehend quantitative information describing real world situations at the 

college algebra level. 

 Use mathematical reasoning and common sense to evaluate answers as being 

possibly correct or definitely wrong. Complete a sequence of steps to a problem, 

and decide whether or not the answer is reasonable and logically support your 

conclusion. 

 Given a real-world situation described in words, answer comprehension questions 

based on the quantitative content in the reading. 

B. Use algebra to model real world situations. 

 Given a set of data, determine an appropriate function that models the data, and 

use that function to make predictions. 

 Given a real-world problem, model it using the appropriate tools, including 

algebraic equations or inequalities, a table of values, a graph, or a diagram. Use 

the model to solve the problem and interpret the results. 

C. Recognize the mathematical function concept and describe relationships between 

variables in real world situations. Use functions expressed verbally, numerically, 

graphically, and symbolically. 

 Given a functional expression, evaluate and interpret the expression in the context 

of an applied problem. 

 Given a function determine the domain and range. 

 Recognize the characteristics common to families of functions. 

 Demonstrate and explain how the inverse function can be used to reverse the roles 

of the independent and dependent variables. 

 Perform function operations including composition. 
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D. Given the graph of a function, write its algebraic equation. Given an algebraic equation of 

a function, graph the function or a transformation of the function. 

 Given the graph of a line, write an algebraic expression for the linear function. 

 Given the graph of a parabola which shows the vertex and another point, write an 

algebraic expression for the quadratic function. 

 Given the graph of an exponential function which shows the y-intercept and one 

other point, write an algebraic expression for the function. 

 Given the graph of a polynomial function that has only real roots, write a factored 

algebraic expression for the function. 

 Sketch basic graphs, including absolute value, radical, rational, piecewise, and 

power functions, and demonstrate how to transform them. 

 Recognize whether or not a given function increases or decreases, and model the 

behavior graphically. 

E. Recognize, model, and analyze linear functions in real world situations. 

 Given a real-world problem about a quantity that changes at a constant rate and an 

initial value, write a linear function that models the quantity. Additionally, use the 

function and its graph to answer questions. The student should be able to write the 

function without using linear regression. 

 Given a real-world problem that gives at least two pairs of corresponding values 

for two variables that are linearly related, write a linear function that models the 

problem. Additionally, use the function and its graph to answer questions. The 

student should be able to write the function without using linear regression. 

F. Recognize, model, and analyze quadratic functions in real world situations. 

 Given a real-world problem that is represented by a quadratic function, use the 

function and its graph to answer questions about corresponding values, the 

maximum or minimum value, and ranges of values (inequality). 

 Given a real-world problem that can be modeled by a quadratic function, find the 

equation of the function. The student should be able to write the function without 

using regression. 

G. Recognize, model, and analyze exponential and logarithmic functions in real world 

situations. 

 Given a real-world problem that can be modeled by an exponential function, find 

the equation of the function. Additionally, use the function and its graph to 

answer questions. The student should be able to write the function without using 

regression 

 Demonstrate the use of the definition and properties of logarithms to solve 

exponential equations. 

H. Given several concurrent quantitative conditions, express each condition algebraically, 

and find all possible solutions of the resulting system. 

 Solve and graph a system of two equations in two variables and interpret the 

results. 



122 

 

 Solve and graph a system of inequalities in two variables and interpret the results. 

 

Obtained from Valencia’s College Curriculum Committee website on October 7, 2014.  

Course objectives and corresponding evidence of learning is current as of April, 2014.  
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APPENDIX C: SAMPLE SYLLABUS 
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Valencia College – WEST Campus 

College General Phone: (407)-299-5000      College Website: www.valenciacollege.edu 

SYLLABUS – MAC 1105 (College Algebra) – Spring 2015 

CRN 20124: Class - M/W/F 9:00 – 9:50 AM (Bd. 7, Room 233)  
CRN 20125: Class - M/W/F 10:00 – 10:50 AM (Bd. 7, Room 233)   
 

Instructor’s Contact Information & Office Hours: 
Instructor: Ryan Kasha, Ed.S.                          Office/Phone: Bldg. 5, Room 247/ (407)-582-1475 
E-mail: rkasha@mail.valenciacollege.edu    Instructor’s website: frontdoor.valenciacollege.edu/?rkasha   
Math Lab and Tutoring/Phone: Bldg. 7, Room 241/ (407)-582-1720 OR (407)-582-1780  OR (407)-582-1633 
Math Dept. Location/Phone: Bldg. 7, Room 108/ (407)-582-1625 OR (407)-582-1848 
Office Hours: Mon./Wed.:  11:00 AM – 1:00 PM;  
                         Tues./Thurs.:  8:45 AM – 10:00 AM; 11:45 AM – 12:45 PM  
                          Friday:  11:00 AM  – 12:00 PM  
I have an open door policy.  I am also available by appointment.  I am easy to find:  Look for me in my office 
or Math Lab! 

 
Prerequisite:  MAT 1033 with a grade of “C” or higher; appropriate score on placement test; or placement by math 
department. 
 
Course Description/Topics: This course is based on the study of functions and their role in problem solving. Topics 
include graphing, the linear, quadratic, and exponential families of functions, and inverse functions. Students will 
be required to solve applied problems and communicate their findings effectively. Technology tools will be utilized 
in addition to analytical methods. This is a Gordon Rule course requiring a minimum grade of C if MAC 1105 is used 
to satisfy Gordon Rule and general education requirements. Credit not given for both MAC 1105 and MAC 1102 
nor for MAC 1105 and MAC 1104 nor for MAC 1105 and MAC 1132. If you have any questions regarding your math 
requirements, please see your advisor for further information. Your major and course of study may have different 
graduation requirements.  Credit Hours: 3 
 
Required Course Materials:   
Textbook:  College Algebra by Sullivan, 9th edition: Prentice Hall (Pearson), 2012.  ISBN: 9780321716903  

 
Software: MyMathLab Access Code/Kit (Included with new textbook purchase or can be purchased separately).  
MyMathLab access can also be purchased on-line from www.mymathlab.com. Students are given a 17-day grace 
period before payment is required.  Student repeating this course from last semester that have previously paid for 
access on the West Campus do not have to pay again for an access code - - see your instructor for course access & 
registration in MyMathLab. 
 

mailto:rkasha@mail.valenciacollege.edu
http://www.mymathlab.com/
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Other material: 3-ring binder notebook with dividers, paper, graph paper, pencil, graphing calculator.  A graphing 
calculator that does not perform symbolic manipulations is required. The TI-84+ (highly recommended) is used for 
in-class demonstrations and is particularly recommended. If you are receiving financial aid it may be possible to 
utilize some of your funds to purchase your calculator. Check with the financial aid office for more information. No 
cell phone calculators permitted in this course! 
 
Attendance and Make-Up Policy:  Experience has shown a high correlation between regular class attendance, 
participation, punctuality, and good grades.  Students are expected to attend every class, be punctual, remain for 
the entire class period, and complete all assigned work.  Students are responsible for all information presented and 
announcements/updates made in class whether you were present or not.  Being absent is not an acceptable 
excuse for not being kept updated with any and all changes made.  In-class activities may not be announced ahead 
of time, can NOT be “made-up” & can NOT be done in advance.  All assignments must be done by their respective 
due dates.  Late work is not accepted and extensions are not given.  If you know you will be absent for a test, 
contact the instructor ahead of time to make arrangements.  If you are absent for a test without making prior 
arrangements, the test grade is a zero.  (Documented emergencies in which prior arrangements were not 
possible, as deemed by your instructor, are handled on a case-by-case basis SOLELY at your instructor’s discretion.)  
Examples of such emergencies include death in family, hospitalization, etc.  Obligations to work, child care, traffic 
conditions, or not feeling well with no documentation, etc. are not considered excused absences and make-up 
examinations due to these reasons will NOT be permitted!  Take this policy seriously! There are no dropped 
grades for this course! 
 
E-mail Policy: The instructor will only correspond with you through your atlas e-mail ONLY.  Students are expected 
to check their atlas e-mail daily!  The instructor may send updates, announcements, changes, etc. to your atlas e-
mail.  Students are responsible for all messages sent to your atlas e-mail by the instructor.  The instructor will not 
correspond with any other e-mail account, PDA, or cell phone.  All e-mail correspondence must originate from your 
Valencia atlas account.  Grades are discussed by appointment only or through your atlas e-mail.  All e-mail by 
students and the instructor should be respectful and professional.  Students should identify their name, class that 
they are in, and a complete message using respectful language.  A subject line is mandatory.  The instructor does 
not check or use Blackboard e-mail!! 
 
Cell Phones and Other Communication Devices:  During class, cell phones, pagers and other communication 
devices should be set such that they do not make noise.  Ringing, beeping, buzzing, or a cell phone that suddenly 
plays a song is disruptive to the learning environment and is disrespectful to the instructor and your classmates.  
During a test, ALL such devices must be turned OFF (not on vibrate).  If your communication device is audible 
during a test, your test may be collected and you may be asked to leave without an option for completion.  
Purposefully using a communication device during a test (talking, text messaging, etc.) is considered cheating.  
Your test will be picked up and you will receive a 0 on the test with the possibility of other academic sanctions such 
as F in the course and/or referral of the incident to Dean of Students.           
 
Valencia Core Competencies:  Valencia College have defined 4 interrelated competencies (Think, Value, 
Communicate, Act) that prepares students to succeed in the world community.  These competencies are outlined 
in the College Catalog.  In this course, you will further your mastery of those core competencies.  Additional 
information is available on the college website at http://valenciacollege.edu/competencies/. 
 
Academic Honesty: Students are expected to be in compliance with Valencia College’s policies on academic 
honesty.  Cheating and academic dishonesty of any type will NOT be tolerated.  You are expected to do your own 
work on exams, assignments, labs, etc.  Talking or whispering during a test, providing/receiving exam content 

http://valenciacollege.edu/competencies/
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information, use of electronic devices or calculators without prior instructor’s approval, copying (including all take-
home activities, examinations, and/or homework assignments), use of a cellular phone or other electronic device 
without prior permission, suspicious behavior, or failing to follow appropriate procedures for taking a test as 
prescribed by the instructor are all considered cheating.  Cheating will not be tolerated and will result in a zero on 
the exam/assignment.  In addition, the instructor may refer this incident to the Dean of Students & 
Mathematics and can result in automatic removal from the course with a course grade of F.  The instructor 
reserves the right to determine appropriate penalties within Valencia policies.     
 
Students with Disabilities:  Students with disabilities who qualify for academic accommodations must provide a 
notification to Instructor (NTI) form from the Office for Students with Disabilities (OSD) and discuss specific needs 
with the professor, preferably during the first two weeks of class. The Office for Students with Disabilities 
determines accommodations based on appropriate documentation of disabilities. 
Contact information:  West Campus SSB, Rm. 102 Phone: 407-582-1523 Fax: 407-582-1326 TTY: 407-582-1222 
 
Code of Conduct:  Valencia is dedicated not only to the advancement of knowledge and learning, but is concerned 
with the development of responsible personal and social conduct.  The instructor believes that the classroom 
should be a safe learning environment for everyone.  Actions or behaviors that intentionally or unintentionally 
create the perception of a hostile learning environment for others will not be tolerated.  By enrolling at Valencia, a 
student assumes the responsibility for abiding by the general rules of conduct.  Students who cause a disturbance 
to the learning environment as deemed by the instructor will be asked to leave class immediately.  If you are asked 
to leave class for disruptive behavior, you may not return to any future classes until a private conference is 
completed with your instructor by appointment.  You may also be required to arrange a conference with another 
college official before attending class again.     Further information may be found in the current student handbook 
at: http://valenciacollege.edu/studenthandbook.pdf.    
 
Tutoring and Resources:  Free tutoring is available in the Math Support Center, Math Connections, and Hands-On 
Lab in Building 7, Room 240!  In addition, you should meet regularly with your instructor, your SL leader (if 
applicable to your class), and form study groups with your fellow classmates.  There is also tutoring videos and 
media presentations provided in MyMathLab software (Look in the multimedia library menu after logging in). 
 
Work Ethics and Tips for Success:  Students should maintain an organized notebook, complete homework 
regularly, get assistance as needed outside of class, and check their solutions to problems worked out.  Students 
should plan to spend 2 – 3 hours daily on math homework and lab assignments.  Students are expected to keep 
track of all due dates, exam dates, and should manage their time accordingly.  Students should plan for the 
unexpected and should not wait until the last minute to complete assignments.  Avoid last minute cramming and 
study, practice, and learn as we go along.  This will lead to more effective learning and less stress!  Students are 
expected to read ahead the sections that will be taught before class.  The instructor will assume that students read 
ahead and previewed the main notes and examples in the section(s) that will be taught.  Students that do not read 
ahead will be at a major disadvantage in terms of understanding and learning.  Understanding math occurs with 
note taking, paying attention to lessons, asking questions, etc.  Learning take places when you actually “do” math, 
not just watch it.  The most effective way to improve your math skills is through practice and more practice!  
 
Student Resource for Assistance: Valencia College is interested in making sure all our students have a rewarding 
and successful college experience.  To that purpose, Valencia students can get immediate help with issues 
dealing with stress, anxiety, depression, adjustment difficulties, substance abuse, time management as well as 
relationship problems dealing with school, home or work.  BayCare Behavioral Health Student Assistance 

http://valenciacollege.edu/studenthandbook.pdf
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Program (SAP) services are free to all Valencia students and available 24 hours a day by calling (800) 878-5470. 
Free face-to-face counseling is also available. 
  

GRADING POLICY: 
Requirements Percent Weight 

In-class exams (4 exams) 40% 

Midterm Exam 15% 
On-Line Lab Homework 15% 

On-line Lab Quizzes 10% 

Comprehensive Final Exam 20% 

Extra Credit Opportunities Varies up to 3%  

TOTAL for course: 100% 

NOTE: Failure to take the final exam will result in a course grade of F.   
 
Grading Scale:  A = 90.0 – 100%; B = 80.0 – 89.9%; C = 70.0 – 79.9%; D = 60.0 – 69.9%; F = below 60.0% 
 
NOTES: It is the responsibility of the student to keep track of his/her grades throughout the semester and to 
understand his/her progress in the course at ALL times.  THERE ARE NO DROPPED EXAM GRADES IN THIS 
COURSE!!  All exam/quiz grades are rounded to the nearest whole number and final course grades are rounded to 
the nearest tenth of a percent!!  
 
I adhere to the highest standards of academic integrity, so please do not ask me to change (or expect me to 
change) your grade illegitimately or to bend or break rules for one person that will not apply to everyone.  You 
are encouraged to take all course requirements seriously!  Grades are earned – not given!! 
 
 

Withdrawal Policy:  Students who do not attend class during the first week of class are considered “No Show” 
and will be automatically withdrawn during the “No Show” reporting period.  These students will receive a grade of 
W in the course.  Withdrawing from the course after the first week is the student’s responsibility.  A student who 
withdraws by the withdrawal deadline will receive a grade of W.  A student cannot withdraw after the withdrawal 
deadline and will receive a grade in accordance with the instructor’s grading policy.  Any student that withdraws or 
is withdrawn during a third or subsequent attempt in the same course will be assigned a course grade of F.  The 
withdrawal deadline, if you are eligible to do so, is March 27, 2015 for full-term Spring classes. 
 
Incomplete Grade Policy: An Incomplete grade is not given except by exceptional circumstances with supporting 
documentation.  An Incomplete grade will only be considered if requested by the student and the student has all 
class requirements fulfilled except for the final examination.  The student must have a B average and must have 
supporting documentation.  A student who is having difficulties completing the course requirements prior to the 
final exam must withdraw by the withdrawal deadline. 
 
Comprehensive Final Exam: The final exam is a cumulative exam given at the end of the semester to assess all 
skills learned.  Students that do not take the final exam will be given an automatic course grade of F, no matter the 
grade average in the course.    There are NO retakes for the final exam.  Students must arrive on time to take the 
final exam.  Students arriving late may not be permitted to take the final exam and will be given a grade of F for 
the course. 
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Lab HW: Students can complete the on-line homework and have unlimited attempts until the problem is correct.  
The on-line homework will be averaged at the end of the semester and will count for a grade.  All due dates are 
listed next to each assignment in the math software. 
 
Lab Quizzes: You will be given lab quizzes for every few sections covered plus pre-test in the beginning each 
chapter, which will count as a quiz grade.  The best way to prepare for the on-line quizzes is by taking notes in class 
and by doing the assigned homework.  It is important to try your best on every quiz including the pre-tests!  All due 
dates are listed next to each quiz in the math software.   
 
Notebook (Bonus 10 points towards lowest in-class exam):  A 3-ring organized notebook with subject dividers is 
required and should contain only math.  You should have a section for class notes (labeled and written neatly), a 
section for all homework (on-line & textbook) labeled, numbered, all work shown, and checked for accuracy, a 
section for all lab quizzes (Each attempt on notebook paper with work shown, numbered, and done neatly), a 
section for your in-class exams with test corrections, and a section for all reviews & miscellaneous.  Your test 
corrections should include redo of all missed problems and explanation of what was learned on separate piece of 
paper.  Your syllabus should be in the front pocket or in the front, hole punched.  Other methods of organization 
are allowed with instructor’s approval.  Notebook must be organized and neat for grading!  The notebook will be 
graded the week before finals or during the final exam period as announced in class. 
 
Extra Credit: A few extra credit opportunities will be given throughout the semester.  The purpose of extra credit is 
to reward hard work and to help students that become border-line between 2 letter grades at the end of the 
semester.  The impact of extra credit will be a MAXIMUM of 3% of your total course grade.  Pay attention to all 
extra credit opportunities as they can add up at the end of the semester. 
 
There are plenty of opportunities for success in this course if you take this course seriously! 
 
Disclaimer: Changes in the syllabus, class policies, evaluation process, and schedule may be made at any time to 
accommodate the needs of the class and at the discretion of the instructor.  Students who are absent are 
responsible for any and all changes made to the syllabus or outline of this course.  “Take responsibility for 
yourself!”  Look for the outline that corresponds to when your class meets!! 
 
 

TENTATIVE OUTLINE(S)/SCHEDULE(S) (Subject to change): 
M/W schedule: 

WK # Dates Topics Monday Wednesday 

1 Jan 6/8 Course Introduction, Quadratic Equations, 
Complex Numbers  

Course Overview 1.2, 1.3 

2 Jan 13/15  Distance, Midpoint, Intercepts, Graphing, 
Symmetries, Circles, Variations 

2.1, 2.2, 2.4 2.4, 2.5 

3 Jan 20/22  CH 2 Review, HW questions  MLK Holiday – 
NO CLASS!  

Review, 1.5 

4 Jan 27/29  Functions, Graphs of Functions, Analyzing 
graphs  

CH 2 EXAM 3.1, 3.2 

5 Feb 3/5 Graphs of Functions, Properties of Functions, 
Library of Functions, Piece-wise Functions, 

Average rate of change, secant lines  

3.2, 3.3 3.4 

6 Feb 10/12 Transformations of Functions, Building 3.5, 3.6 Review 
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functions from data 

7 Feb 17/19  Linear Functions, Quadratic Functions CH 3 EXAM 4.1, 4.3 

8 Feb 24/26  Quadratic Functions Applications, Quadratic 
Inequalities, Composite Functions, Inverse 

Functions 

4.4, 4.5  6.1, 6.2 

 March 3/5 Spring Break! NO CLASS! NO CLASS! 

9 March 10/12 Review Review CH 4, 6 EXAM 

10 March 17/19  Exponential Functions, Logarithmic Functions, 
Properties of Logarithms 

6.3, 6.4 6.5, 6.6 

11 March 24/26  Logarithmic and Exponential Equations, 
Compound Interest, Exponential 

Growth/Decay 

6.7, 6.8 Review 

12 March 31/ 
April 2  

Polynomial and Rational Functions CH 6 EXAM  5.1, 5.2, 5.3 

13 April 7/9  Systems of Linear and Non-Linear Equations, 
Systems of Inequalities 

8.1, 8.6, 8.7 CH 5/8 EXAM  

14 April 14/16 Review for Final Exam 1.6, Final Review Final Review 

15 April 21, 
2014  

Final Exam 1:00 – 3:30 PM (Monday) Arrive on time or early!! 

All due dates for on-line HW and Quizzes are listed next to each assignment in MyMathLab!  Keep track of all 
due dates! 

 
 

NOTE: 

January 19, 2015: Martin Luther King Jr. Holiday (No Classes – College Closed!) 

January 20, 2015: Drop/Refund Deadline 11:59 PM on atlas 

February 13, 2015: Learning Day (No Classes!) 

March 9 – 15, 2015: Spring Break (NO CLASSES!) 

March 27, 2015:  Withdrawal Deadline (Last Day to receive grade of W; must withdraw by 11:59 PM on atlas) 

April 26, 2015:  Full Term Classes End  

April 27 – May 3, 2015:  Final Exam Week  

May 5, 2015: Final Course Grades viewable in Atlas  
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APPENDIX D: DEMOGRAPHICS FORM 
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Instructions:  Thank you for agreeing to take part in this study.  Please fill out the 

following form, which will help provide background information about yourself and some 

demographics. 

Name: ________________________________________________________   

Age: _________________________ 

Circle  one:    MALE  FEMALE 

Circle your Race/Ethnicity:   

Caucasian/Non-Hispanic Hispanic African American Asian  Native-Indian 

 Other 

Number of credits you are enrolled in for the semester: ___________________ 

Number of credits earned at Valencia College: ____________________ 
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APPENDIX E: INFORMED CONSENT FORM 
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Students’ Perception of Learning Using Self-Adaptive Technology 

You must be 18 years of age or older to participate in this research. 

Principal Investigator:   Ryan Kasha, Ph.D. student, Valencia Math Instructor. 
 
Faculty Supervisor:  Dr. Peter Kincaid, Ph. D. 
 
Investigational Site(s):  Valencia College, West Campus   
 

Introduction:  Researchers at the University of Central Florida (UCF) study many topics.  To do this we 
need the help of people who agree to take part in a research study.  You are being invited to take part in 
a research study which will include about 60 people enrolled in College Algebra math courses at 
Valencia College.  You have been asked to take part in this research study because you are a student in 
one of these selected College Algebra sections.  You must be 18 years of age or older to be included in 
the research study.  Your participation will enhance the knowledge obtained from this research study.   

 

The person doing this research is Ryan Kasha of Valencia College and a Ph.D. student from University of 
Central Florida.  Because the researcher is a graduate student, he is being guided by Dr. Peter Kincaid, a 
UCF faculty supervisor in the Modeling and Simulation Department. 

 

What you should know about a research study: 

 Someone will explain this research study to you.  

 A research study is something you volunteer for.  

 Whether or not you take part is up to you. 

 You should take part in this study only because you want to.   

 You can choose not to take part in the research study.  

 You can agree to take part now and later change your mind.  

 Whatever you decide it will not be held against you. 

 Feel free to ask all the questions you want before you decide. 

 
Purpose of the research study:  The purpose of this study is to evaluate students’ perception of the 
math software being used in College Algebra.  Technology is being used very often in math courses 
either as a supplement to instruction.  This study will focus on how certain features in the software 
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impact your performance and perception of learning.  This research effort will help inform how certain 
features in commercial math software contribute to student learning and perception. 
 

What you will be asked to do in the study:  During your course, you will be asked to complete a 
demographic survey during the first week of classes, and the ATMI (Attitude Towards Mathematics 
Inventory) two times during the course.  The ATMI will be administered during the first week of classes 
and around the 7th week during class time.  In addition, the instructor will use some quiz/exam grades 
for data analysis.  You will be asked to report how much you feel that you have mastered course 
material for a chosen course objective on before taking an in-class exam from a scale of 0% to 100%. 

 
Time required:  The time spent is no more or less than what is expected in a College Algebra class.  All 
questionnaires, surveys, and testing will be completed during class time. 

 
Risks: There are no reasonably foreseeable risks or discomforts involved in taking part in this study.  

 
Withdrawing from the study: Your participation in this research study is strictly voluntary and is not 
required for this course.  For students who wish not to participate or wish to withdraw from this study at 
any time can do so by anytime by contacting your instructor, Ryan Kasha.  You can e-mail your instructor 
at rkasha@valenciacollege.edu or call at (407) 582-1475.  Your grade will NOT be adversely affected by 
refusing to participate or by withdrawing from the study.  If you are under the age of 18, you cannot 
participate in this study. 
   
Compensation or payment:  There is no payment or compensation associated with taking part in this 
study.   

 
Confidentiality:  The instructor will limit your personal data collected in this study to people who have a 
need to review this information.  The instructor cannot promise complete secrecy, but every effort will 
be made to keep your personal data confidential and private.  All information will be handled in a strictly 
confidential manner, subject to disclosure requirements of Florida Sunshine Laws, so that nobody will be 
able to identify you when the results are reported.  All data collected will be aggregated and no 
identification will be associated with any published or presented data.  All information is subject to the 
Family Educational Rights and Privacy Act (FERPA) of 1974, which is designed to protect the privacy of 
educational records.  
 
Study contact for questions about the study or to report a problem:  If you have questions, concerns, 
or complaints, or think the research has hurt you, talk to Dr. Peter Kincaid, Faculty Supervisor, Modeling 
and Simulation Department at (407)-882-1330 or by e-mail at pkincaid@ist.ucf.edu, and Russell 
Takashima, Dean of Mathematics of Valencia College, West Campus at (407)-582-1724 or by e-mail at 
rtakashima@valenciacollege.edu 

 

 

mailto:rkasha@valenciacollege.edu
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IRB contact about your rights in the study or to report a complaint:  Research at the University of 
Central Florida involving human participants is carried out under the oversight of the Institutional 
Review Board (Valencia & UCF IRB). This research has been reviewed and approved by the IRB at 
Valencia College and University of Central Florida. For information about the rights of people who take 
part in research, please contact: Institutional Review Board, University of Central Florida, Office of 
Research & Commercialization, 12201 Research Parkway, Suite 501, Orlando, FL 32826-3246 or by 
telephone at (407) 823-2901.  You can also contact Chair of Valencia’s Institutional Review Board at 
irb@valenciacollege.edu.  
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APPENDIX F: IRB HUMAN SUBJECTS PERMISSION LETTER (UCF) 
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From: UCF Institutional Review Board #1  

FWA00000351, IRB00001138  
To: Ryan Kasha  

Date: December 10, 2014  

Dear Researcher:  

On 12/10/2014, the IRB approved the 

following human participant research 

until 12/09/2015 inclusive: Type of 

Review:  

UCF Initial Review Submission Form  

Project Title:  Students' Perception of Learning with 

Self-Adaptive Technology  

Investigator:  Ryan Kasha  

IRB Number:  SBE-14-10771  
Funding Agency:  

Grant Title:  

Research ID:  N/A  

 
The scientific merit of the research was considered during the IRB review. The Continuing Review Application 

must be submitted 30days prior to the expiration date for studies that were previously expedited, and 60 days prior 

to the expiration date for research that was previously reviewed at a convened meeting. Do not make changes to the 
study (i.e., protocol, methodology, consent form, personnel, site, etc.) before obtaining IRB approval. A 

Modification Form cannot be used to extend the approval period of a study. All forms may be completed and 

submitted online at https://iris.research.ucf.edu .  

 

If continuing review approval is not granted before the expiration date of 12/09/2015,  

approval of this research expires on that date. When you have completed your research, please submit a  

Study Closure request in iRIS so that IRB records will be accurate.  

 

Use of the approved, stamped consent document(s) is required. The new form supersedes all previous versions, 

which are now invalid for further use. Only approved investigators (or other approved key study personnel) may 

solicit consent for research participation. Participants or their representatives must receive a copy of the consent 
form(s).  

 

All data, including signed consent forms if applicable, must be retained and secured per protocol for a minimum of 

five years (six if HIPAA applies) past the completion of this research. Any links to the identification of participants 

should be maintained and secured per protocol. Additional requirements may be imposed by your funding agency, 

your department, or other entities. Access to data is limited to authorized individuals listed as key study personnel.  

 

In the conduct of this research, you are responsible to follow the requirements of the Investigator Manual.  
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On behalf of Sophia Dziegielewski, Ph.D., L.C.S.W., UCF IRB Chair, this letter is signed by: 

 

 
 

Signature applied by Joanne Muratori on 12/10/2014 04:40:06 PM EST  

IRB Manager 
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APPENDIX G: IRB HUMAN SUBJECTS PERMISSION LETTER (VC) 
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APPENDIX H: ATTITUDES TOWARD MATHEMATICS INVENTORY 
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ATTITUDES TOWARD MATHEMATICS INVENTORY 
 
Name ___________________________ School ____________________________ 
 

Teacher ___________________________ 
Directions: This inventory consists of statements about your attitude toward mathematics. There 
are no correct or incorrect responses. Read each item carefully. Please think about how you feel 
about each item. Enter the letter that most closely corresponds to how each statement best 
describes your feelings. Please answer every question. 
 
PLEASE USE THESE RESPONSE CODES: A – Strongly Disagree 
  B – Disagree 
  C – Neutral 
  D – Agree 
  E – Strongly Agree 
    

1. Mathematics is a very worthwhile and necessary subject.   

2. I want to develop my mathematical skills.   

3. I get a great deal of satisfaction out of solving a mathematics problem.  

4. Mathematics helps develop the mind and teaches a person to think.  

5. Mathematics is important in everyday life.   

6. Mathematics is one of the most important subjects for people to study.  

7. High school math courses would be very helpful no matter what I decide to study.  

8. I can think of many ways that I use math outside of school.   

9. Mathematics is one of my most dreaded subjects.   

10. My mind goes blank and I am unable to think clearly when working with mathematics.  

11. Studying mathematics makes me feel nervous.   

12. Mathematics makes me feel uncomfortable.   

13. I am always under a terrible strain in a math class.   

14. When I hear the word mathematics, I have a feeling of dislike.   

15. It makes me nervous to even think about having to do a mathematics problem.  

16. Mathematics does not scare me at all.   

17. I have a lot of self-confidence when it comes to mathematics.   

18. I am able to solve mathematics problems without too much difficulty.  

19. I expect to do fairly well in any math class I take.   

20. I am always confused in my mathematics class.   

21. I feel a sense of insecurity when attempting mathematics.   

22. I learn mathematics easily.   

23. I am confident that I could learn advanced mathematics.   

24. I have usually enjoyed studying mathematics in school.   

25. Mathematics is dull and boring.   

26. I like to solve new problems in mathematics.   

27. I would prefer to do an assignment in math than to write an essay.  

28. I would like to avoid using mathematics in college.   

29. I really like mathematics.   
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30. I am happier in a math class than in any other class.   

31. Mathematics is a very interesting subject.   

32. I am willing to take more than the required amount of mathematics.  

33. I plan to take as much mathematics as I can during my education.  

34. The challenge of math appeals to me.   

35. I think studying advanced mathematics is useful.   

36. I believe studying math helps me with problem solving in other areas.  

37. I am comfortable expressing my own ideas on how to look for solutions to a difficult problem in math.  

38. I am comfortable answering questions in math class.   

39. A strong math background could help me in my professional life.  

40. I believe I am good at solving math problems.   

 
© Martha Tapia 1996 
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APPENDIX I: PERMISSION TO USE ATMI 
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APPENDIX J: PRE- AND POST-TEST FOR FUNCTIONS 
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Note: Pre-Test and Post-Test were exactly the same except for algorithmic changes in numeric 

values.  Created using TestGen by Pearson.  
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APPENDIX K: SCREENSHOT OF MYMATHLAB  
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Screenshot of homework in MyMathLab (Pearson, n.d.). 

 

Note:  Assistance tools include viewing an example, receiving hints, watching a relevant video, 

and referencing the appropriate part of the textbook.  Students can do a similar exercise for 

additional practice. 
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APPENDIX L: SCREENSHOT OF ALEKS 
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Screenshot of homework in ALEKS (ALEKS, n.d.) 

 

Note:  Assistance includes a Help button with hints or a full explanation is available by clicking 

“I don’t know”.  Students must get the same type of problems correct three times in a row 

without assistance. 
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