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ABSTRACT

This document describes the design, analysis of Orbit Maneuvers and Attitude Con-

trol for NanoSat class satellites, which uses an electro-magnetic force controller which was

proposed by the Florida Space Institute (FSI).

Orbit Maneuvering and the Attitude Control System (ACS) play a very important role

for the success of this mission, as that can allow making the satellite go to the desired orbit

as well do the sun pointing of the solar arrays with su¢ cient accuracy to achieve desired

power levels. The primary mission would be to attain attitude stabilization using the torque

from the coils. This is also used for pointing at the direction of the sun, for achieving desired

power levels. The secondary mission would be to use the force of the magnetic �eld and

utilize that for orbit maneuvering, and attain the desired trajectory.

This thesis gives a presentation of this detailed analysis with a simulation using Mat-

lab/Simulink. Mathematical model of the actuators and sensors used for this satellite are

designed, so that the simulation gives us results very near to the actual ones.Health Mon-

itoring is also one of the main issues addressed in this work. This simulation helps us in

understanding the mission as well as the requirements very well, and helps us know all the

shortcomings.

The FUNSAT satellite is modeled as an example in Simulink together with a Kalman

�lter for attitude estimation based on all sensor measurements. The theory behind this, and

extending the Kalman �lter, is also presented.
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CHAPTER ONE: INTRODUCTION

1.1 History

The Florida University Satellite (FUNSAT) Competition was established by the Florida

Space Grant Consortium in order to allow Florida University Students the opportunity to go

through the design process for a pico satellite. The competition allows students to network

with space professionals on a project that has signi�cant contribution to space exploration.

The winning team will be allowed to design their Flight Spacecraft and all materials costs

will be covered through the Space Grant Consortium. The University of Central Florida has

participated in the FUNSAT competition for two years.

1.2 Purpose

The basic premise of this Thesis is to identify and track the mission requirements of

a Nano-Sat Class of Satellites and to document the design criteria by which the project is

based. This Thesis serves as a supplement to design reports listing design decisions and the

resulting hardware selections. The requirements identi�ed within are considered crucial to

the success of those satellites. Failure to meet any single requirement will impact the success

of the overall project and will subsequently place the primary goals of Satellite in jeopardy.
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The Florida University Satellite (FUNSAT) is an example of a Nanosat designed by the

University of Central Florida with the intended purpose of testing electro-magnetic force

controller while in a LEO. Once inserted into orbit, the FUNSAT will be a self-su¢ cient

spacecraft complete with a power generation and distribution system, a communications

system to the Earth Ground Station, and an Attitude Control System (ACS).

This Thesis concentrates on developing electro-magnetic controller for orbital maneuver-

ing and the attitude control of a Nanosat with FUNSAT as an example. Change of orbital

elements help in orbital maneuvering, and the ACS is the subsystem having the function

of stabilizing the satellite and orienting it in the desired direction during the course of the

mission, correcting for external perturbation torques that may be encountered. The ACS

consists of torque coils, a magnetometer, an accelerometer, gyroscopes, and a solar vector,

in addition to the computer hardware and software required to execute its tasks.
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CHAPTER TWO: MISSION

2.1 Mission Design

The primary function of satellite mission analysis is to select the optimum orbit which

best enables the satellite and payload to perform the mission. This task is performed by

�rst analyzing the mission, payload, and satellite design requirements to determine if the

mission is feasible. Providing the mission is feasible, trade-o¤s are performed in order to

�nd a suitable orbit that meets the mission goals. This report includes a description of the

various mission requirements, an introduction to orbital dynamics, an analysis of the e¤ects

of orbital perturbations and launch vehicle injection errors on the mission, a description of

analysis performed to select the �nal orbit parameters, and a preliminary analysis of ground

station line-of-sight (LOS) for the various phases of �ight.

2.2 Mission Requirements

The objective of this thesis is to demonstrate an electro-magnetic force controller in

space on a Nano-Sat Class Satellite using the parameters of the Cubesat(Eg : UCF FUNSAT

Project). It is important to maximize power generation through the solar panels to provide

enough power, as well as maintain normal satellite operations (e.g. ACS, Communications,

3



etc.). Implementing an e¤ective ACS for such a small satellite should allow sun pointing of

the solar arrays with su¢ cient accuracy to achieve desired power levels. To achieve a sun

pointing capability, orbit design is a key element. Finally, thermal issues of the spacecraft

structures can only be mitigated if a suitable orbit is analyzed.

The following is the mission sequence of events:

1. Separate from P-Pod (No power in batteries, solar panels begin charging)

2. Deploy Solar Arrays (e.g. Mechanical delay and latch release)

3. Systems turn on

� tp = time required for enough power for system turn on (computer, actuators,

sensors, etc)

� tr = time for getting the position information from the satellite state (NORAD

TLE or LV)

4. Rate Damping Mode (Safe Mode)

� Control system attempts to null attitude rates

5. Telemetry Check

� Communication contact (e.g. beacon signal) and link veri�cation

� Send the NORAD data which will be input to algorithm to propagate the trajectory

6. Sun Acquisition Mode

� Calculate the Sun vector from solar panel intensity in �ight software

� Desired to point solar array plane normal to Sun vector (max power gen.)

4



� Control algorithm gives a torque command (which is converted to current com-

mands) to the torque coils to maintain sun pointing

7. Locate the Position of the Target Satellite (SAT II) using NORAD TLE position data

8. Control Algorithm for reaching �nal states (Sat II) from initial states (SAT I) i.e. Orbit

Maneuvering

9. Force and Torque generated, Thrust needed for satellite to orbit maneuver

� Toggle between Orbit Maneuvering and ADCS for position change (Orbit) and

Power Levels

� Take Images at regular intervals to see how close we are to the Target Satellite.

10. De-Orbit Mode

� Check power reserves to de-orbit

� Command to de-orbit attitude Repeat steps 7 to 9 to make sure that the satellite

is close to target satellite(a¤ects power, position)

11. Thrust (Force) Command Final

� Check telemetry for de-orbit con�rm

12. End of mission
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CHAPTER THREE: ORBITAL MANEUVERS

For the mission to be a success, �rst of all we need to make sure that the di¤erence

between the actual and desired states are as less as possible. Now for the di¤erence to be as

close as possible, then maneuvers need to be performed. In order to control the satellites for

such maneuvers, the orbital motion need to be understood very well. The maneuvers can

always be visualized using simulations and iterative methods.

3.1 Trajectory Simulation

Now as stated in Appendix A.1, orbital elements can be described using six parameters.

We are representing the 2-D motion, using radial position r, the perpendicular velocity VS,

the radial velocity VR, and the true anamoly �. A 2-D representation of the above is given

in Figure 1.

The derivations of the 4 state equations are given in Appendix B. The resultant equations

which are used for simulating the Trajectory are given below.

dr

dt
= VR (3.1)

dVR
dt

=
V 2
S

r
� �

r2
(3.2)
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Figure 1: Orbit Representation - 2D Motion

dVS
dt

= �VR � VS
r

(3.3)

d�

dt
=
VS
r

(3.4)

Orbital maneuvers can be classi�ed as planar and non-coplanar. Planar maneuvers ma-

nipulate the four state equations which is given by radial distance, velocity in perpendicular

and radial directions, and angular position, by thrusting in the radial and perpendicular di-

rection. Non-coplanar maneuvers manipulate the inclination and ascending node by thrust-

ing in the out of plane direction. Out of plane maneuvers don�t a¤ect the planar orbit,

but they do a¤ect the position of the orbit within the orbital plane. Since the satellite�s

planar position is a¤ected by the argument of perigee, an out of plane maneuver a¤ects the

7



position of the perigee. The ascending node and inclination angle are only a¤ected by out

of plane thrusting. Planar and non-coplanar maneuvers are very di¤erent in their approach

and must be dealt with as separate entities. Planar maneuvers occur solely in the radial

and perpendicular direction. The state equations are used to solve for the necessary �V�s

to place the satellites in their perspective planar orbital position.

3.2 Planar Maneuvers

The Earth�s oblateness and drag are natural perturbations that slightly change the

orbit in time. However, some arti�cial perturbations can be applied to change the orbit to

a desired state. These arti�cial perturbations, or the thrust components, are applied by the

thrusters to modify the satellite�s orbit. In the state equations, the thrust component is

always added to the perturbations in their respective direction. To control the satellite in

translation, three di¤erent thrusts are applied in the radial, perpendicular and out of plane

direction.

Now when the trajectory of the satellite is simulated, these perturbations as well as

thrust need to be considered. The derivations of the J2 perturbations are given in Appendix

E. The �nal derived equations are given below,

RJ2 =
�3 � � �R2earth � J2

2 � r4 [1� 3(sin(i) � sin(! + �))2] (3.5)
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Figure 2: Planar Maneuvers

SJ2 =
�3 � � �R2earth � J2

r4
[(sin(i)2 � sin(! + �) � cos(! + �)] (3.6)

WJ2 =
�3 � � �R2earth � J2

r4
[(sin(i) � sin(! + �) � cos(i)] (3.7)

and the drag perturbations are derived in Appendix D, and the �nal equations are given

below,

DragR =
Cd � � � A
2m

�
q
V 2
R + V 2

S + V 2
W � VR (3.8)

DragS =
Cd � � � A
2m

�
q
V 2
R + V 2

S + V 2
W � VS (3.9)

DragW =
Cd � � � A
2m

�
q
V 2
R + V 2

S + V 2
W � VW (3.10)
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To �nalize the e¤ects of the perturbations in the equations on the satellite, we simply

sum the components,

PR = RJ2 +DragR (3.11)

PS = SJ2 +DragS (3.12)

PW = WJ2 +DragW (3.13)

Hence the state equations for the satellite become,

dr

dt
= VR (3.14)

dVR
dt

=
V 2
S

r
� �

r2
+ PR + UR (3.15)

dVS
dt

= �VR � VS
r

+ PS + US (3.16)

d�

dt
=
VS
r

(3.17)
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3.3 Non-Planar Maneuvers

Non-coplanar maneuvers are more direct and less systematic than planar maneuvers

since there�s only one thrust direction that a¤ects it,because of the sines and cosines in

the inclination and ascending node rates of change equations.Certain desired maneuvers are

pointless in some areas of the orbit since they won�t have much of an a¤ect. These areas

change places for ascending node and inclination change maneuvers. There are also areas

where a desired maneuver to change one angle might have a negative e¤ect on the other angle.

One thrust direction is used to change two angular components. The inclination angle also

has an a¤ect on the rate of change of the ascending node. The closer the inclination is

to zero, the higher the angular velocity of the ascending node. There is a singularity at

zero inclination, where the ascending node ceases to exist and there�s only a planar position

at the equator. That is why there is no ascending node change at i = 0. The optimum

maneuvering positions are at the nodes for inclination change, and where the summation of

the true anomaly and argument of perigee are at 90� and 270� for ascending node change. On

the other hand, there is no ascending node change at the nodes, and no inclination change

where the summation of the argument of perigee and true anomaly are 90� and 270�. This

is due to the sine in the ascending node rate being at a max at 90� and 270� and zero at the

nodes. Also, the cosine in the inclination rate is at a max at the nodes and is zero at 90�

and 270�. Since fuel usage is maximized in these spots, orbital maneuvers will be primarily

performed close to the optimum maneuvering positions. Thrusting will not occur at the
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Figure 3: Positive Thrust

exact maneuvering spot, which may have an undesirable a¤ect on the opposite orbital angle.

The e¤ect is so small, it can be easily compensated for at the other maneuvering point. All

these points need to be considered, as far as singularities in the simulation is concerned.

In Non-planar maneuvers, addition to the four state equations mentioned in the planar

maneuvers, two equations involving the ascending node and the inclination is used. The

derivation of these equations are given in Appendix C. The �nal equations are given below.

di

dt
=

r
r

�(1 + e � cos(�)) cos(! + �) � (PW + UW ) (3.18)

d


dt
=

s
r(1 + e � cos(�))

�

�
sin(! + �)

sin(i) � (1 + e(cos(�)) � (PW + UW )

�
(3.19)
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Figure 4: Negative Thrust

3.4 Controls Algorithm

The intention of the control system is to remove the error between the actual and desired

states. A second order method can be constructed to more accurately reach a steady state,

but still maintain simple derivations. A second order performance index is developed and a

controls equations is derived from the same. The derivation is given in Appendix F and the

�nal equation is given below.

xo(K � 1) = Vowt+
dVo
dt
� wt

2

2
(3.20)

To apply this control theory, the orbital state equations are substituted into the per-

formance index equation. The four state equations, the equations involving the ascending

node,inclination and as well as energy as used as the desired performance index. Since the
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out of plane maneuver contain the in-plane maneuver, separate controls algorithm is not

required.

Now state equations used are,

Energy =
V 2
S

r
+
V 2
R

r
� �

r
(3.21)

dEnergyo
dto

= VR � (PR + UR) + VS � (PS + US) (3.22)

dro
dto

= VR (3.23)

dVRo
dto

=
V 2
S

r
� �

1

r2
+ PR + UR (3.24)

d�o
dto

=
rVS
�

2664 �
r2
� cos(�)

e
� (PR + UR) +

sin(�)(2+e�cos(�))
e(1+e�cos(�)) � (PS + US)

+ sin(w+�)
tan(i)�(1+e�cos(�)) � (PW + UW )

3775 (3.25)

d2�0
dt2o

= �3VR � VS
r2

+
(PS + US)

r
(3.26)

dio
dto

=
cos(w + �) � UW

VS
(3.27)

d
o
dto

=
sin(w + �)

VS � sin(i)
� (PW + UW ) (3.28)
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After applying the control theory for maintaining a constant orbit, the above equations

become,

�(
dEnergyo

dto
) = VR1 � (PR1 + UR1) + VS1 � (PS1 + US1) (3.29)

�(
dro
dto
) = VR1 � VRtraj (3.30)

�(
dVRo
dto

) =
V 2
S

r1
�
V 2
traj

rtraj
� �(

1

r21
� 1

r2traj
) + PR1 + UR1 (3.31)

�(
d2�0
dt2o

) =
3VRtraj � VStraj

r2traj
� 3VR1 � VS1

r21
+
(PS1 + US1)

r1
(3.32)

�(
dio
dto
) =

cos(w1 + �1) � UW1

VS1
(3.33)

�(
d
o
dto

) =
sin(w1 + �1)

VS1 � sin(i1)
� (PW1 + UW1) (3.34)

Now maintaining a constant orbit is just part of the mission, the actual mission would

be to make sure that the satellite is as close to the one, which needs to be monitored. Now

some of the equations where the controls is applied would involve not only the inputs from

this satellite, but also the inputs of the other satellite, so that if not very near, at least it

will maintain a constant distance, and look like a constellation.
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For achieving the above, the above equations become,

�(
dEnergyo

dto
) = VR1 � (PR1 + UR1) + VS1 � (PS1 + US1) (3.35)

�(
dro
dto
) = VR2 � VR1 (3.36)

�(
dVRo
dto

) =
V 2
S2

r2
�
V 2
S1

r1
� �(

1

r22
� 1

r21
) + PR2 + UR2 � PR1 � UR1 (3.37)

d�o
dto

=
rVS2
�

26666664
�
r22
� cos(�2)�(PR2+UR2 )

e2
+

sin(�2)(2+e2�cos(�2))�(PS2+US2 )
e2(1+e2�cos(�2))

+
sin(w2+�2)�(PW2

+UW2
)

tan(i2)�(1+e2�cos(�2))

37777775�
rVS1
�

26666664
�
r21
� cos(�1)�(PR1+UR1 )

e1

+
sin(�1)(2+e1�cos(�1))�(PS1+US1 )

e1(1+e1�cos(�1))

+
sin(w1+�1)�(PW1

+UW1
)

tan(i1)�(1+e1�cos(�1))

37777775 (3.38)

�(
d2�0
dt2o

) =
3VR2 � VS2

r22
� 3VR1 � VS1

r21
+
(PS2 + US2)

r2
� (PS1 + US1)

r1
(3.39)

�(
dio
dto
) =

cos(w2 + �2) � UW2

VS2
(3.40)

�(
d
o
dto

) =
sin(w2 + �2)

VS2 � sin(i2)
� (PW2 + UW2) (3.41)
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CHAPTER FOUR: SYSTEM CONFIGURATION

A system of solar cells, NORAD TLE, IMU with a magnetometer,torque coils as well as

an on board computer are to be used to complete the Attitude Determination and Control

System (ADCS) system.

The solar cells are used to determine a sun vector that would give the position of the

sun relative to the satellite. This would be done by measuring the current through each of

the solar cells. The maximum value that the cells can obtain by being directly in sunlight

would be known. If they are not in direct sunlight, the current would be a percentage of this

maximum value and from these percentages a sun vector can be calculated. These do not

give the highest accuracy but it would still fall within the requirements needed.Since these

would also be providing power, the solar cells would be being used to their highest potential.

Once we get maximum power, we can get maximum current, and then using this current,

we get the Force using the Earth�s Magnetic Field. Now depending on the position of the

satellite, we have to make sure that we not only have the correct attitude, but also the

Force for Orbit Maneuvers. We have to make sure that both these are done in an optimum

manner. It can also sometimes happen that we might have to compromise one for the other,

depending on the position of the satellite.

Celeriac elements given by NORAD (North American Aerospace Defense Command) in

a two-line element (TLE) set format would be used to gather information of the satellite�s
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Figure 5: ADCS Block Diagram
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position. These lines of data can be run through a program, also provided by NORAD, to

give the satellite�s latitude, longitude, altitude, velocity, look angles, right ascension, and

declination.

The inertial measuring unit (IMU) would consist of a 3-axis accelerometer to measure

the acceleration and a 3-axis gyroscope to measure the rotation (pitch, yaw, and roll) rates of

the satellite. From these inputs, the deviation from the desired position would be calculated.

A 3-axis magnetometer would also be added to this unit to measure the magnetic �eld in

a particular direction. Torque coils would then be used as an active control system for the

satellite. Three torque coils would be needed in order to have control of all three axes. Once

they are in a magnetic �eld, the current that would be induced in the coils would push the

coil to align with the magnetic �eld.

4.1 NORAD

NORAD (North American Aerospace Defense Command) will be used to track the

satellite once in orbit. This is a free program and the data is given in a two-line element

format. These lines of data consist of only certain characters including the numbers 0-9,

letters A-Z, periods, spaces, and the plus and minus signs. These lines of data are run

through a program, also provided free by NORAD, to give the satellite�s latitude, longitude,

altitude, velocity, look angles, right ascension, and declination.This allows for an a¤ordable

way to track the satellite.
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4.2 Torque Coils

The key features that made torque coils the best option for attitude control of the

satellite were size, weight and cost. Torque Coils allow full control of motion without the

constraints and power requirements of external thrust. Several options of coils that meet our

requirements were explored, and these will o¤er the best means for control to all aspects of

movement for the satellite, as well as stability. By utilizing three coils, located on the X, Y,

and Z axis, we will have complete control of mobility. Two Torque Coils will be mounted on

each axis equidistant form the center of the mass but 180 degrees apart. Control current,both

magnitude and direction will dictate the following control actions :

(a) Current in the opposite directions will be used for attitude control.

(b) Current in the same direction will be used for transition maneuvers.

The torque coils will be an integral aspect of ensuring the success of the satellite�s mission.

A list of the actions to be performed and use of the torque coils are as follows:

� Launch

� De-tumble - reduce rotation rates to near zero (from separation, fault)

� Attitude Acquisition - Find sun, Earth, Stars, etc. by sweeping

� Flight - normal operation such as pointing for science and monitoring thrust

� Formation Flight - propulsive maneuver for relative position change

� Communication - periodic pointing of antenna at Earth

� Safe - response to a fault, stable state in which to wait for commands
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The addition of a safe mode is a great asset in the case of loss of communication was to

occur. The default would automatically position the satellite

4.3 Solar Cells

The solar cells will be used to generate power; therefore, reception of sun light is impor-

tant for positioning and maximizing power generation. The location of the sun vector will

be determined by using the current outputs from the solar cells and a computer algorithm.

The current outputs need to be coming from at least two perpendicular sources (cells) to

determine the exact direction and angle the sunlight is hitting the satellite. This will require

cooperation between Power and ADCS since the solar panels and current sensors will be

used by ADCS to calculate the location of the sun.

When the sun hits directly perpendicular to a solar cell, the current reading would be at

the maximum value (which will be known based on the cell�s characteristics and the solar

intensity). Thus, if the sun is not straight-on, the current received from each cell will be

a percentage of the maximum value. This value will be used to determine an angle that

the sun is from the cells normal vector. However, using data from only one cell will not

determine the direction of the sun, only its angle from the normal vector. In 3-D space this

creates a cone of possible sun vectors for each solar cell. When two such cones are derived

for perpendicular solar cells, there will be only one pair of vectors (one vector from each cell)

which are parallel.
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Figure 6: Solar Cells

ADCS does not require any additional parts to determine the sun vector since it will

be using components that the Power subsystem is already implementing into the satellite.

There will be a current sensor from each of the sides and ADCS will take these inputs and

run them through the above algorithm to determine the sun vector location. The algorithm

will be written in a language which will have ease of use and adaptability.
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CHAPTER FIVE: MATHEMATICAL MODELING

5.1 Satellite Model

5.1.1 Dynamics

A satellite can be regarded as an ideal rigid body. The dynamic model of the satellite

is derived using a Newton-Euler formulation, where the applied torque change is related to

the angular momentum. The satellite model is:

I _! + S(!bib)(I!
b
ib) = � bgrav + � bm (5.1)

where I is the moment of inertia matrix, !bib is the angular velocity of the body frame with

respect to the inertial frame and � b are the torques acting on the satellite also decomposed

in body frame, S(!bib) is the skew matrix of !
b
ib, �

b
grav is the gravitational torque working on

the satellite body. � bm is the torque applied by the magnetic coils.

The angular velocity of the satellite relative to the inertial frame is expressed in the body

frame according to (5.2).
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!bib = !bio + !bob = Rbo!
o
io + !bob (5.2)

Where !io is the angular velocity in orbital frame with respect to the inertial frame,!ob

is the angular velocity in body frame with respect to the orbital frame,!ib is the angular

velocity in body frame with respect to the inertial frame,Rbo is the rotation matrix.

5.1.2 Kinematics

The kinematics describes the satellite�s orientation in space and is derived by integration

of the angular velocity. The angular velocity of the satellite model can be described by unit

quaternions and is formulated in (5.3).Detail Derivation is given in Appendix A.7.

_q =
1

2

2664�I3x3 + S(")

�"T

3775!bob (5.3)

To �nd the rotation velocity for the body frame relative to the orbit frame, see equation

(5.4)

!bob = !
b
ib �Rbo!

b
io (5.4)
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5.2 Magnetic Torque

The actuator used on FUNSAT is three pairs of magnetic coils. The basic idea be-

hind the magnetic coils is based on reacting together with the Earth�s magnetic �eld. The

magnetic coil produces a magnetic dipole when currents �ow through it�s windings, which

is proportional to the ampere-turns and the area enclosed by the coil. The actuator e¤ect

of the magnetic torquers will then have as purpose to react with the Earth�s magnetic �eld

to place the satellite in selected attitude and maneuver direction. The measurements of the

geomagnetic �eld is done by magnetometers. The torque generated by the magnetic coils

can be modeled as:

� bm = mbBb (5.5)

the magnetic dipole moment generated by the coils mb is shown in (5.5) and Bb =�
Bb
x Bb

y Bb
z

�T
is the local geomagnetic �eld vector, relative to the satellite,

mb = mb
x +mb

y +mb
z =

26666664
NxixAx

NyiyAy

NzizAz

37777775 =
26666664
mx

my

mz

37777775 (5.6)
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where Nk is number of windings in the magnetic coil, ik is the coil current and Ak is the

span area of the coil. An easy way of representing the magnetic torque is then:

� bm = S(mb)Bb =

26666664
Bb
zmy �Bb

ymz

Bb
xmz �Bb

zmx

Bb
ymx �Bb

xmy

37777775 (5.7)

One of the e¤ects of using magnetic torques is that they will contribute to the measure-

ments of the Earth�s magnetic �eld.

5.3 Gravitational Torque

A satellite orbiting Earth is a¤ected by the gravitational �eld (actually it is a¤ected by

every object in the universe but only the Earth�s gravitational �eld is taken into considera-

tion). The torque is derived is used for passive stabilization with a gravity boom that will

utilize this e¤ect. When assuming homogeneous mass distribution of the Earth, the gravity

gradient is derived as:
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Figure 7: Earth�s Magnetic Field

� grav = 3 � !2o � cb3 � I � cb3 (5.8)

where,

!2o =
�

R3o
(5.9)

5.4 Earth�s Magnetic Field

The Earth�s magnetic �eld generally resembles the �eld around a magnetized sphere,
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or a tilted dipole seen in Figure 7. As of 1999, the dipole axis was tilted approximately 11.5

from the spin axis, and drifting approximately 0.2 /yr. Its strength at the Earth�s surface

varies from approximately 30000nT near the equator to 60000nT near the poles. Further,

there exists a low magnetic intensity �eld at approximately 25 S and 45 W known as the

Brazilian Anomaly. A high exists at 10 N and 100 E, and the two of these together suggest

that not only is the dipole axis tilted, but it does not quite pass through the center of the

Earth.

5.4.1 Modeling the magnetic �eld

The accepted model for Earth�s magnetic �eld is the International Geomagnetic Refer-

ence Field(IGRF), put forth by the International Association of Geomagnetism and Aeron-

omy (IAGA).

The IGRF is essentially a set of Gaussian coe¢ cients, gmn and hmn , that are put forth

every 5 years by IAGA for use in a spherical harmonic model. At each of these epoch years,

the group considers several proposals and typically adopts a compromise that best �ts the

data available. The coe¢ cients for a given epoch year are referred to by IGRF and then

the year, as in IGRF2000. The model includes both the coe¢ cients for the epoch year and

secular variation variables, which track the change of these coe¢ cients in nanoTessla per

year. These secular variation coe¢ cients are used to extrapolate the Gaussian coe¢ cients

to the date in question. Once data becomes available about the actual magnetic �eld for a

given epoch year, the model is adjusted and becomes the De�nitive Geomagnetic Reference

Field, or DGRF.2
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Typically the IGRF consists of 120 coe¢ cients for each epoch year, with 80 secular

variation coe¢ cients. However, due to unprecedented geomagnetic data available, the IAGA

released a new set of values for IGRF2000 in July 2003 in the 9th-generation IGRF. This

new model expanded to increase the precision of the coe¢ cients to one-tenth of a nanoTessla

(up from one nanoTessla), and increased the number of coe¢ cients to degree 13.

5.4.2 Random variation in the magnetic �eld

The many variations in the magnetic �eld around the Earth that can not be accurately

modeled due to their random nature, but a brief overview is provided here. It is important

to be aware of these variations when considering spacecraft design. First, there are temporal

variations that occur about every 27 days when the active solar area of the Sun faces the

Earth. These variations last between seconds and days, and are particularly bad when the

Earth is near equinox in March-April and September-October.

The second type of variation is diurnal variations which occur due to partical movement

within the ionosphere. These polar (auroral) and equatorial electrojets can have signi�cant

impact on the magnetic �eld. The auroral electrojet can cause changes on the order of

1000nT to 1500nT at the Earth�s surface, while the equatorial electrojets cause disturbances

on the order of 220nT between the altitudes of 96 and 130 kilometers.

The last variation is a result of magnetic storms, which occur during solar �ares. Solar

�ares are very closely related to Sun activity and so magnetic storms generally follow the same

27 day pattern seen in the general temporal variations, although they occur less frequently.
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Figure 8: Local geomagnetic �eld Bo, the IGRF2000 coe¤cients
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During the �rst phase of the magnetic storm the e¤ect is around 50nT, however, during the

main phase, which lasts several hours, the variation is as much as 400nT.

5.4.3 Mathematics of the IGRF

According to the physics, the magnetic �eld, B, is de�ned as the negative gradient of

the scalar potential function V, such that

B = �devV (5.10)

Although a simple dipole model gives a good approximation of the geomagnetic �eld,

it can be modeled more closely using a spherical harmonic model of the scalar potential as

given in Equation (5.11). This is the equation about which the IGRF is based.

V (r; �; �) = a
X
(
a

r
)n+1

X
(gmn cosm�+ hmn sinm�)P

m
n (�) (5.11)

Here a, is the reference radius of the Earth ( a = 6371.2 km), r, �;and � are the geocentric

coordinates ( r is the radius in kilometers, � is the co-latitude and � is the longitude. The
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coe¢ cients gmn and hmn are the gaussian coe¢ cients put forth by the IAGA for the IGRF,

and Pmn (�) represents the Schmidt quasi-normalized associated Legendre functions of degree

n and order m. The input to this function is actually cos�; rather than �, but this has been

dropped for abrevity.

5.4.3.1 Derivatives of the scalar potential function

The magnetic �eld strength is calculated by taking the partial derivative of V, and the

following equations are derived using the same,

Br = �
V

r
=
X
(
a

r
)n+2(n+ 1)

X
(gmn cosm�+ hmn sinm�)P

m
n (�) (5.12)

B� = �
1

r
(
V

�
) = �

X
(
a

r
)n+2

X
(gmn cosm�+ hmn sinm�)

Pmn (�)

�
(5.13)

Br = �
1

r sin �
(
V

�
) =

X
(
a

r
)n+2(n+ 1)

X
m(�gmn sinm�+ hmn cosm�)P

m
n (�) (5.14)

where Br; B� and B� represent the �eld strength in local tangential coordinates, and the

other variables de�ned as before.
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5.4.3.2 Legendre polynomials

In order to calculate the magnetic �eld, one must �rst calculate the associated Legendre

polynomials. Legendre polynomials are a set of orthogonal polynomials that also satisfy the

zero mean condition. The following equations for the Legendre polynomials and associated

Legendre polynomials come from Schaub.

Regular Legendre polynomials Pn(v) are calculated to satisfy the following equations :

(1� 2vx2 + x2)�1=2 =
X

Pn(v)x
n (5.15)

when solved, this becomes Rodrigues�formula:

Pn(v) =
1

2nn!
(
d

dv
)n(v2 � 1) (5.16)

For reference, this equation yields the following �rst four Legendre polynomials:

P0(v) = 1 (5.17)

P1(v) = v (5.18)
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P2(v) = (3v
2 � 1)=2 (5.19)

P3(v) = (5v
3 � 3v)=2 (5.20)

5.4.3.3 Associated Legendre polynomials

The above Legendre polynomials are related to the associated Legendre polynomials through

the following equation:

Pn;m(v) = (1� v2)1=2m
dm

dvm
(Pn(v)) (5.21)

Note that for all m greater than n, the associated Legendre polynomial is equal to zero.

Following are the associated Legendre polynomials through the third degree, which can be

veri�ed using equations (5.22), (5.23) and (5.24).

P1;1(v) =
p
1� v2 P2;1(v) = 3v

p
1� v2 P3;1(v) =

3

2

p
1� v2(5v2 � 1) (5.22)

P2;2(v) = 3(1� v2) P3;2(v) = 15v
2(1� v2) (5.23)
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P3;3(v) = 15v(1� v2)3=2 (5.24)

In case of the magnetic �eld model, v is replaced by cos�; such that the above equations

become,

P1;1(v) = sin � P2;1(v) = 3 cos � sin � P3;1(v) =
3

2
sin �(5 cos2 � � 1) (5.25)

P2;2(v) = 3 sin
2 � P3;2(v) = 15 cos � sin � (5.26)

P3;3(v) = 15 sin
3 � (5.27)

The formulas in equations (5.25), (5.26) and (5.27) represent traditional associated Legen-

dre polynomials that have not been normalized in any way, and they are represented by Pn;m.

There are two commonly used normalizations that must also be accounted for as described

by Jacobs. The �rst is the Gaussian normalized associated Legendre polynomials, Pn;m.

These are related to the non-normalized set by the equation

P n;m =
2n!(n�m)!

(2n!)
Pn;m (5.28)
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In magnetic �eld modeling, the Schmidt quasi (semi) - normalized form, Pmn is used,

related by the equation

Pmn =

�
2(n�m)!

(n+m)!

�1=2
Pn;m (5.29)

The recursive formulas for the Gaussian normalized associated Legendre polynomials

are used in this model, and the relationship between the Gaussian normalized and Schmidt

quasi-normalized polynomials is explained in detail in the next section.

5.4.3.4 Schmidt quasi-normalization

The relationship between the Gaussian normalized associated Legendre polynomials and the

Schmidt quasi-normalized is given as

Pmn = Sn;mP
n;m (5.30)

where Pn;m is the Gaussian associated Legendre polynomial, and Sn;m is de�ned by
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Sn;m =

�
(2� �0m)(n�m)!

(n+m)!

�1=2
(2n� 1)!!
(n�m)!

(5.31)

The Kronecker delta is de�ned as �ji = 1 if i = j and �ji = 0 otherwise. Further, (2n-1)!!

=1�3�5� � ��(2n-1).

Due to the fact that that these normalization values can be calculated irrespective of the

value of � at which the associated Legendre polynomials are calculated, it is much simpler

to instead normalize the model coe¢ cients, gmn and h
m
n , recognizing that

gn;m = Sn;mg
m
n (5.32)

hn;m = Sn;mh
m
n (5.33)

This allows the normalization to only occur once, and then use those new coe¢ cients

can be used to compute the �eld strength at whatever location is desired.

5.4.3.5 Final Result

In order for the results of equations (5.12), (5.13) and (5.14) to be e¤ective in satellite work,

they must be converted to geocentric inertial components, using the following equation:

Bx = (Br cos � +B� sin �) cos��B� sin� (5.34)
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By = (Br cos � +B� sin �) sin�+B� cos� (5.35)

Bz = (Br sin � +B� cos �) (5.36)

Where � is the latitude measured positive North from the equator, and � is the local

sidereal time of the location in question.

5.5 Sensors

There are many types of sensors available for observing the attitude of a satellite. In

this thesis the sensors used are two star trackers, a sun sensor and a magnetometer.

5.5.1 Sun Sensor

A sun sensor is an instrument which measures the direction from the satellite to the

sun. The direction to the sun can be measured in two di¤erent ways, both of them relying

on photocells. The rst one, the analog sun sensor, measures the intensity of the sun, and

the second one, the digital sun sensor, uses a pattern where di¤erent photocells is exposed

depending on the direction of the sun.
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Figure 9: Analog Sun Sensor

5.5.1.1 Analog sun sensor

As mentioned above the analog sun sensor, also called cosine sensor, measures the sun�s

intensity. More precisely it measures the energy �ux through the surface area of photocell.

The energy �ux through a photocell is given by :

E = P � ndA (5.37)

where P is the pointing vector against the sun, n is a vector perpendicular to the cell,

dA is the surface area of the cell and E is the energy �ux. Equation (5.37) can be rewritten
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into :

E = kPk knk cos �dA (5.38)

where £ is the angle of the pointing vector P, and therefore is the angle from the perpen-

dicular vector n toward the sun. The energy �ux, E, is proportional to the electric current

generated in the photocell. Therefore the easiest way to measure the angle of the pointing

vector is to measure the current with :

Ic = Imax cos � (5.39)

where Ic is the measured current, and Imax is the maximum current generated in the

photocell.

5.5.1.2 Digital sun sensor

A digital sun sensor is built up of a pattern of photocells. The photocells are placed inside

an installation that restricts which photocells that are illuminated and make this depended

on the direction of the sun. This is illustrated in Figure 10. The photocells can be put into

many di¤erent patterns. One example of this is a binary pattern, but it is more usual to

use a Gray-coded pattern. From both of these patterns the angle of the sun can be found in

the output of the sensors, since the photocells that is illuminated generate a higher energy

40



Figure 10: Digital Sun Sensor

level, either higher voltage or higher current, than the sensors that is in the shadow. This

can in turn be converted into digital ones and zeros, which gives the angle of the sun either

in binary or Gray scale.

5.5.1.3 The measured sun vector

The sun sensor measures the sun vector in body frame. Without noise the sun vector will

be given by (5.40). With noise the measured sun vector can be given as

vbs = Rbov
o
s + w (5.40)
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where w is an additive noise term, or it can be given by

vbs = Rbo(qw=noise)v
o
s (5.41)

where qw=noise is the quaternion with noise. The rotation Rbo(qw=noise) can be replaced

with Rbo(�w=noise) if the attitude is given in Euler angles. Whether to use equation (5.40) or

(5.41), depends on how the noise is given.

5.5.2 Magnetometer

A magnetometer is an instrument which measures the �ux density of the magnetic

�eld it is placed in. A three axis magnetometer placed inside a satellite, will measures the

geomagnetic intensity and direction surrounding the satellite. In a low orbiting satellite this

can be used as a low cost, low weight, and reliable attitude sensors, with an accuracy of 0.5

to 3 degrees and a weight of 0.3 to 1.2 kg. It can also be used to calculate the control input

when using coils as actuator, and to estimate the orbit.

The most common magnetometer used in space is the �ux-gate magnetometer, where

each axis has a sensor. Each sensor consists of a transformer wound around a core of high-

permeability material, illustrated in Figure 11. By exciting the primary winding with a high

frequency , this will induce a frequency on the secondary winding, where the amplitude and

phase of the even harmonics are linearly proportional to the ambient magnetic �eld. For one
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Figure 11: Magnetometer

axis this can give:

b�Ûsec (5.42)

where Ûsec is the voltage amplitude generated on the secondary winding. This can be

rewritten into

b� KpropÛsec (5.43)

where Kprop is the proportionality constant, and b is the ambient magnetic �eld. Kprop

is determined by the material in the core, and the number of windings on the primary and
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secondary winding. When the three sensors are mounted perpendicular to each other, it will

be possible to use (5.43), to calculate the magnetic �eld vector:

Bb
meas =

26666664
bb1

bb2

bb3

37777775 =
26666664
KpropÛsec 1

KpropÛsec 2

KpropÛsec 3

37777775 (5.44)

where bb1 is the ambient magnetic �eld of sensor 1 measured in body frame (it has been

assumed that the sensor are aligned with the body of the satellite), and Ûsec 1 is the voltage

amplitude on the secondary winding of the rst sensor. Mathematically Bbmeas will, in a noise

free environment, be equal to

Bb
meas = Rbo(q)B

o (5.45)

where Bo is the magnetic �eld given in orbit frame. With noise Bo will be equal to

Bb
meas = Rbo(q)B

o + w (5.46)

where w is the noise vector.
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CHAPTER SIX: KALMAN FILTER

A major characteristic of di¤erential correction and sequential-batch correction is that

the converged state estimate and covariance matrix are based on processing a batch of data,

spread over sometime interval which may be minutes, hours,days or even weeks. These

techniques do not lend themselves to problems in which forces are incompletely modeled.

For example, variable atmospheric drag due to changing solar �ux and geomagnetic activity

causes slow and fast variations in the orbit, respectively. A second characteristic is that the

estimate is always associated with a particular epoch. Thus you may have to predict from

the epoch state to a new time. A more signi�cant issue is how to propagate the state and

covariance matrix over the time interval to provide the state accurate information at the new

epoch. Covariance propagation is one application in which the quality of that process-noise

model. Kalman �lter solve some of these problems but also introduce new ones.

The Kalman �lter is essentially a set of mathematical equations that implement a

predictor-corrector type estimator that is optimal in the sense that it minimizes the esti-

mated error covariance� when some presumed conditions are met. Since the time of its

introduction, the Kalman �lter has been the subject of extensive research and application,

particularly in the area of autonomous or assisted navigation. This is likely due in large part

to advances in digital computing that made the use of the �lter practical, but also to the

relative simplicity and robust nature of the �lter itself. Rarely do the conditions necessary
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Figure 12: Observations from multiple passes

for optimality actually exist, and yet the �lter apparently works well for many applications

in spite of this situation.

The Kalman �lter has been proven to be extremely useful for problems in which data

streams continuously, such as in as an attitude-estimation system or with continuous obser-

vations from a space-based sensor, but these techniques have been di¢ cult to use for orbit

determination. Many investigators conclude that �lters are di¢ cult to "tune"; thus they

often ignore new data and diverge-a process known as smugness.

In the Figure 12, we want to use new observations at time tk+1 and we have already

calculated the best estimate of the converged state and the covariance (X̂k and P̂k) from

data at the original epoch, tk:

This next section describes the �lter in its original formulation (Kalman 1960) where the
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measurements occur and the state is estimated at discrete points in time.

6.1 Estimation of the Process

The Kalman �lter addresses the general problem of trying to estimate the state x "

Rn of a discrete-time controlled process that is governed by the linear stochastic di¤erence

equation

xk = Axk�1 +Buk + wk�1 (6.1)

with the measurement z " Rn that is

zk = Hxk + vk (6.2)

The random variables wk and vk represent the process and measurement noise (respec-

tively). They are assumed to be independent (of each other), white, and with normal prob-

ability distributions

p(w) � N(0; Q) (6.3)

p(w) � N(0; R) (6.4)
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In practice, the process noise covariance and measurement noise covariance matrices

might change with each time step or measurement, however here we assume they are constant.

The n� n matrix A in the di¤erence equation equation (6.1) relates the state at the

previous time step k� 1 to the state at the current step k, in the absence of either a driving

function or process noise. Note that in practice A might change with each time step, but

here we assume it is constant. The n � l matrix B relates the optional control input u "

Rn to the state x. The mxn matrix H in the measurement equation (6.2) relates the state

to the measurement zk. In practice might change with each time step or measurement, but

here we assume it is constant

6.2 Computational Origins of the Filter

We de�ne x̂�k " R
n (note the �super minus�) to be our a priori state estimate at step k

given knowledge of the process prior to step k, and to be our a posteriori state estimate at

step k given measurement zk. We can then de�ne a priori and a posteriori estimate errors

as

e�k � xk � x̂�k

ek � xk � x̂k

The a priori estimate error covariance is then

P�k = E

�
e�k e

�T
k

�
(6.5)
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and the a posteriori estimate error covariance is

Pk = E

�
eke

T
k

�
(6.6)

In deriving the equations for the Kalman �lter, we begin with the goal of �nding an

equation that computes an a posteriori state estimate x̂k as a linear combination of an a priori

estimate x̂�k and a weighted di¤erence between an actual measurement zk and a measurement

prediction Hx̂�k as shown below in equation (6.7). Some justi�cation for equation (6.7) is

given in �The Probabilistic Origins of the Filter�found below

x̂k = x̂�k +K(zk �Hx̂�k ) (6.7)

The di¤erence (zk � Hx̂�k ) in equation (6.7) is called the measurement innovation, or

the residual. The residual re�ects the discrepancy between the predicted measurement Hx̂�k

and the actual measurement zk . A residual of zero means that the two are in complete

agreement.

The nxm matrix K in equation (6.7) is chosen to be the gain or blending factor that

minimizes the a posteriori error covariance equation (6.6). This minimization can be accom-

plished by �rst substituting equation (6.7) into the above de�nition for ek, substituting that

into equation (6.6), performing the indicated expectations, taking the derivative of the trace

of the result with respect to K, setting that result equal to zero, and then solving for K. One

form of the resulting K that minimizes equation (6.6) is given by
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Kk = P�k H
T (HP�k H

T +R)�1 (6.8)

Kk =
P�k H

T

(HP�k H
T +R)

(6.9)

Looking at equation (6.8) we see that as the measurement error covariance approaches

zero, the gain K weights the residual more heavily. Speci�cally,

limKk = H�1 (6.10)

On the other hand, as the a priori estimate error covariance approaches zero, the gain K

weights the residual less heavily. Speci�cally,

limKk = 0 (6.11)

Another way of thinking about the weighting by K is that as the measurement error

covariance approaches zero, the actual measurement zk is �trusted�more and more, while

the predicted measurement Hx̂�k is trusted less and less. On the other hand, as the a priori

estimate error covariance P�k approaches zero the actual measurement zk is trusted less and

less, while the predicted measurement Hx̂�k is trusted more and more.

50



6.3 Probabilistic Origins of the Filter

The justi�cation for equation (6.7) is rooted in the probability of the a priori estimate

x̂�k conditioned on all prior measurements zk (Bayes�rule). For now let it su¢ ce to point

out that the Kalman �lter maintains the �rst two moments of the state distribution,

E[xk] = x̂k (6.12)

E[(xk � x̂k)(xk � x̂k)
T ] = Pk (6.13)

The a posteriori state estimate equation (6.7) re�ects the mean (the �rst moment) of the

state distribution� it is normally distributed if the conditions of equation (6.3) and equation

(6.4) are met. The a posteriori estimate error covariance equation (6.7) re�ects the variance

of the state distribution (the second non-central moment). In other words,

p(xk j zk)~N(E[xk]; E[(xk � x̂k)(xk � x̂k)
T ]) (6.14)

p(xk j zk) = N(x̂k; Pk) (6.15)
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6.4 Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the �high-level�operation of

one form of the discrete Kalman �lter. After presenting this high-level view, we will narrow

the focus to the speci�c equations and their use in this version of the �lter.

The Kalman �lter estimates a process by using a form of feedback control: the �lter

estimates the process state at some time and then obtains feedback in the form of (noisy)

measurements. As such, the equations for the Kalman �lter fall into two groups: time update

equations and measurement update equations. The time update equations are responsible

for projecting forward (in time) the current state and error covariance estimates to obtain the

a priori estimates for the next time step. The measurement update equations are responsible

for the feedback i.e. for incorporating a new measurement into the a priori estimate to obtain

an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the

measurement update equations can be thought of as corrector equations. Indeed the �nal

estimation algorithm resembles that of a predictor-corrector algorithm for solving numerical

problems as shown below

The speci�c equations for the time and measurement updates are presented below in 6.16

and 6.17.
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x̂�k = Ax̂k�1 +Buk (6.16)

P�k = APk�1A
T +Q (6.17)

Again notice how the time update equations (6.16) project the state and covariance

estimates forward from time step k� 1 to step k. A and B are from equation (6.1), while Q

is from equation (6.3).

Kk = P�k H
T (HP�k H

T +R)�1 (6.18)

x̂k = x̂�k +K(zk �Hx̂�k ) (6.19)

Pk = (1�KkH)P
�
k (6.20)

The �rst task during the measurement update is to compute the Kalman gain,Kk. Notice

that the equation given here as equation (6.11) is the same as equation (6.8). The next step

is to actually measure the process to obtain zk, and then to generate an a posteriori state

estimate by incorporating the measurement as in equation (6.12). Again equation (6.12)

is simply equation (6.7) repeated here for completeness. The �nal step is to obtain an a

posteriori error covariance estimate via equation (6.13).
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Figure 13: Complete Picture Working of the Kalman Filter

After each time and measurement update pair, the process is repeated with the previous

a posteriori estimates used to project or predict the new a priori estimates. This recursive

nature is one of the very appealing features of the Kalman �lter� it makes practical im-

plementations much more feasible than (for example) an implementation of a Wiener �lter

(Brown and Hwang 1996) which is designed to operate on all of the data directly for each

estimate. The Kalman �lter instead recursively conditions the current estimate on all of

the past measurements. Figure 13 o¤ers a complete picture of the operation of the �lter,

combining the high-level diagram of Figure 12 with the equations 6.1 and 6.2.

54



CHAPTER SEVEN: CONTROLLER DESIGN

7.1 LQR Problem Statement

The basic optimization problem considered is �nding state-feedback control law of the

form u = �Kx that minimizes a performance measure of the form

V =
R
(x0Qx+ u0Ru)dt+ x0(T )Mx(t) (7.1)

where the system dynamics are given by

x = Ax+Bu (7.2)

and Q andM are typically positive-semide�nite matrices, R is a positive-de�nite matrix,

x is an n-dimensional state vector, and u is an m-dimensional input vector. In this problem

we consider the �nal time T �xed, but the �nal state x(T ) free.

It is assumed that the state equations have been written so that the state x represents

an incremental state. Thus, the control goal is to keep the state x as close to the state

xr = 0 as possible. The term x0Qx in 7.1 is then measure of control accuracy, the term

u0Ru is a measure of control e¤ort, and the term x0(T )Mx(T ) is a measure of terminal

control accuracy. A control problem where the object is to maintain the state close to the
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zero state is referred to as a regulator problem, hence the optimization problem is called as

linear-quadratic-regulator problem.

7.2 LQR Solution :Matrix Ricati Solution

For the LQR problem we have the l(x; u; t) = x0Qx + u0Ru; f(x; u; t) = Ax + Bu; and

m(x) = x0Mx: The matrices A,B,Q,R and M constitute the input data to the LQR problem

and in general may all be time-varying i.e. depend explicitly on t. For convenience, this de-

pendency is suppressed in the sequel. Most of the results in this section are valid for the gen-

eral time-varying case. Indeed, this is an important advantage of the dynamic-programming

solution to linear-quadratic problems, as opposed to frequency-domain approaches. Results

are valid only in the time-invariant case will be explicitly noted.

The �rst step in obtaining a solution to the LQR problem is the minimization of

x0Qx+ u0Ru+

�
@V �

@x

�0
(Ax+Bu) (7.3)

with respect to u. This minimization may be done by setting the gradient to the zero

vector. When R is positive de�nite, this necessary condition for a minimal point is also a

su¢ cient condition. Setting the gradient equal to zero and solving for u yields

u� =
1

2
R�1B0@V

�

@x
(7.4)
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Now it is known that an integral-quadratic form evaluated for a linear system is a

quadratic form in the initial state of the system, hence, it is reasonable to assume that

V �(x; t) = x0P (t)x (7.5)

where P (t) is symmetric. The gradient of V� is then 2P (t)x: If V � and its gradient are

substituted back in the equation, we obtain after some matrix manipulations

�x0Px = x0[A0P + PA+Q� PBR�1B0P ]x (7.6)

with the boundary condition

V �(x; t) = x0P (t)x = x0Mx (7.7)

Now we have used the matrix identity 2x0PAx = x0(A0P + PA)x in deriving the above

equation. Since the above equations are true for all x;we obtain the following matrix Ricati

Equation and the �nal boundary value for P (t)

�P = A0P + PA+Q� PBR�1B0P (7.8)

P (T ) =M (7.9)
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Finally the optimal state-feedback control law is given by

u� = �K(t)x (7.10)

K(t) = R�1B0P (t) (7.11)

7.3 Linearization of the Satellite Equations

We need to linearize all the equations obtained from the mathematical modeling, which

makes the satellite easier to analyze, as well as implement the linear controller.

7.3.1 Kinematics

The kinematics of the satellite is described in as

_q =
1

2

2664�I3x3 + S(")

�"T

3775!bob (7.12)

We linearize the system around the points � = 1 and " = 0 which results in the system :

_q =

266412!bob
0

3775 ; !bob = 2 _" (7.13)
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7.3.2 Dynamics

7.3.2.1 Rotation matrix

The linearization of the rotation matrix between body and orbit frame around the points

� = 1 and " = 0 results in the linearized rotation matrix:

Rob = I3x3 + 2S(") (7.14)

7.3.2.2 Angular velocity

Now we know that,

Rbo = (R
o
b)
T (7.15)

Now putting together the two equations we get the linearized expression for Rbo becomes

Rob = I3x3 � 2S(") (7.16)

which means that,

Rbo =

26666664
1
2

"3 �"2

�"3 1
2

"1

"2 �"1 1
2

37777775 (7.17)
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Now from the mathematical modeling of the dynamics, we know that

!bib = !
b
ob +Rbo!

b
io (7.18)

Now substituting the above two equations, into equation, we get,

!bib =

26666664
!x

!y

!z

37777775 =
26666664
2"1 � 2!o"3

2"2 � !o

2"3 + 2!o"1

37777775 (7.19)

the time derivative of !bib is then,

!bib =

26666664
!x

!y

!z

37777775 =
26666664
2"1 � 2!o"3

2"

2"3 + 2!o"1

37777775 (7.20)

7.3.3 Gravitational Torque

Now the gravitational torque can be expressed by quaternions in body frame as follows

� bgrav = 3!
2
o

26666664
2(Iz � Iy)("2"3 + �"1)(1� 2("21 + "22))

2(Ix � Iz)("1"3 + �"2)(1� 2("21 + "22))

4(Iy � Ix)("1"2 + �"3)("2"3 + �"1)

37777775 (7.21)
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Linearized around � = 1 and " = 0;

� bgrav = 3!
2
o

26666664
(Iz � Iy)"1

(Iz � Ix)"2

0

37777775 (7.22)

7.3.4 Magnetometer Torque

The magnetometer torque is expressed in (7.23) can be represented in orbit frame as

follows:

� bm = S(mb)Bb = S(Rob)B
o = S(mb)[I3x3 � 2�S(") + 2S2(")]Bo (7.23)

linearization around � = 1 and " = 0 gives,

� bm = S(mb)Bb =

26666664
Bo
zmy �Bo

ymz

Bo
xmz �Bo

zmx

Bo
ymx �Bo

xmy

37777775 (7.24)

7.3.5 Linearization of the satellite model

The satellite model is expressed as :

I!bib = �!bib(I!bib) + � bgrav + S(mb)Bo (7.25)
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substituting the above equations, we get,

Ix(2"1 � 2!o"3) = (Iy � Iz)(2!o"3 + 8!
2
o"1) + (B

o
zmy �Bo

ymz) (7.26)

Iy(2"2) = �6(Ix � Iz)!
2
o"
2 + (Bo

xmz �Bo
zmx) (7.27)

Iz(2"3 � 2!o"1) = (Iy � Ix)(2!o"3 + 2!
2
o"1)� (Bo

ymx �Bo
xmy) (7.28)

then using that,we get

kx =
Iy � Iz
Ix

(7.29)

ky =
Ix � Iz
Iy

(7.30)

kz =
Iy � Iz
Iz

(7.31)

results in

"1 = (1� kx)!o"3 � 4kx!2o"1 +
1

2Ix
(Bo

zmy �Bo
ymz) (7.32)
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"2 = �3kx!2o"2 +
1

2Iy
(Bo

xmz �Bo
zmx) (7.33)

"3 = �(1� kz)!o"1 � kz!
2
o"3 +

1

2Ix
(Bo

ymx �Bo
xmy) (7.34)

Now the state vector is

x =

�
"1 "1 "2 "2 "3 "3

�
(7.35)

u =

�
mx my mz

�T
(7.36)

the model can be written a

x(t) = Ax(t) +B(t)u(t) (7.37)

where A and B are matrices
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A =

26666666666666666664

0 1 0 0 0 0

�4kx!2o 0 0 0 0 (1� kx)!o

0 0 0 1 0 0

0 0 �3ky!2o 0 0 0

0 0 0 0 0 1

0 �(1� kz)!o 0 0 �kz!2o 0

37777777777777777775

(7.38)

B(t) =

26666666666666666664

Box
Ix

0 0

0
Boy
Iy

0

0 0 Boz
Iz

0 0 0

0 0 0

0 0 0

37777777777777777775

(7.39)
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CHAPTER EIGHT: RESULTS

The number of solar arrays depends on the amount of current needed, as well as the size

of the satellite, and also very important, the time for the mission undertaken. Now, di¤erent

scenarios were simulated, and using the controls, di¤erent currents were produced and the

solar arrays needed were calculated.

Table 1: Overview of Power Generated

Current Force No of arrays Power Generated

(mA) (mN) Cell Interface Sustained (mW) Maximum (mW)

- - - - @90 @45 Max @90 @45 Max

140 0.4 2 2 624.4 401.8 2052.4 635.6 409.0 2089.2

250 1 2 2 1115.0 717.5 3664.9 1135.0 730.3 3730.7

1400 3.5 4 4 6244.0 4018.0 20524.0 6356.0 4090.0 20892.0

6000 15 15 17 26760 17219 87958 27240 17528 89536

12500 45 30 30 55750 35870 183250 56750 36520 186530

Table 1 gives us a fair idea as to how much solar arrays are needed for obtaining the

desired current and power for our mission. Now from the table, we take the the thrust of 15

mN, and then see the the orbit maneuvers and the time taken for the satellite to reach the

desired trajectory.
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Table 2: Current per Standard Size Cell

Area per cell 6.88cm x 3.81cm-0.33cm^2 = 24.55cm^2

Current Density per cell 16.0 mA/cm^2

Current per cell 24.55cm^2 x 16.0 mA/cm^2 = 392.8 mA

Table 3: Current per Interface Size Cell

Area per cell 6.88cm x 3.3cm-0.33cm^2 = 22.61cm^2

Current Density per cell 16.0 mA/cm^2

Current per cell 22.61cm^2 x 16.0 mA/cm^2 = 361.76 mA

Table 4: Total Current from Arrays

Current of 2 panels (with sun incident angle @ 90 deg) 392.8 mA

Current of 2 panels (with sun incident angle @ 45 deg) 361.76 mA

Total Current 754.56 mA
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Table 5: Power per panel (with sun incident angle @ 90 deg)

Sustained Power 4.46 V x 392.8 mA=1751.9 mW

Maximum Power 4.54 V x 392.8 mA=1783.3 mW

Table 6: Power per panel (with sun incident angle @ 45 deg)

Sustained Power 1751.9 mW x cos(45) = 1138 mW

Maximum Power 1783.3 mW x cos(45) = 1158.91 mW

Table 7: Total Power from the Array

Sustained Power 2*1751.9 mW + 2*1138 mW=5779.8 mW

Maximum Power 2*1783.3 mW + 2*1158.91 mW = 5884.42 mW
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Figure 14: Current : 0.140 A

A series of tables(Table 2 to Table 7) were created to �nd out, how much current and

power is being produced by each individual cell, and that helps us in calculating the number

of cells required to produce the current in the di¤erent scenarios as given in Table 1.

The Figures from 14 to 19 gives us the amount of Current and Force produced for di¤erent

scenarios.

The thrust pro�le shown in the Figures 20 to 23 above are the di¤erent components of

thrust in each direction. These thrust pro�les are put in the controls algorithm for orbit

maneuvers, and the results of those maneuvers are shown in the Figures below.

From the Figure 25, we can see that it takes about 6-7 orbits to reach the desired

trajectory, as far as change in radius is concerned.

Figure 26 shows the 3-D image of the planar maneuvering.
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Figure 15: Force produced for current of 0.140 A

Figure 16: Current Produced : 0.250 A
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Figure 17: Force produced for current of 0.250 A

Figure 18: Current Produced : 1.4 A
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Figure 19: Force produced for current of 1.40 A

Figure 20: Out of Plane Thrust(mN)
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Figure 21: Perpendicular Thrust(mN)

Figure 22: Radial Thrust(mN)
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Figure 23: Total Thrust(mN)

Figure 24: Planar Maneuver
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Figure 25: Planar Maneuver - Zoomed In

Figure 26: 3-D Image - Planar Maneuver
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Figure 27: Distance(m) v/s Orbits

Now from the graph in Figure 27, its very clear that the initial conditions of the radius

is 10000 m and, it taken about 7 orbits to reach the desired radius, using the Thrust.

The graph in Figure 28, is basically when the inclination and the ascending node are

di¤erent, i.e the satellite has to perform a non-planar maneuver. But still, the controls

algorithm are designed in such a way that, not only does it take care of the planar, but also

non-planar maneuvers in the given time and using the same energy.

Once the desired trajectory is achieved, then maintaining a minimum distance from the

chosen satellite takes about only 1-2 orbits, as shown in the Figure 29. Apart from that, the

ADCS takes care of the satellite to remain stable and always face at the sun.The Graph in

Figure 30 gives us an idea of how the system remains stable using the Torque Coils in all

the three axis.
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Figure 28: Change in Ascending Node and Inclination
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Figure 29: Distance from chosen Satellite
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Figure 30: Applied Torque on Coils
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CHAPTER NINE: CONCLUSION

Controls Algorithm for satellite to maneuver in di¤erent orbits was developed. The

Flexibility in the controls algorithm is such that, any kind of maneuver can be done, for the

satellite to achieve a desired trajectory. Its just time-dependent, if the maneuver is little

more involved. Basically this helps in reaching other satellites, look and them, take pictures,

and also look out for those "Killer Satellites", and send all these information back to the

Base. These kind of algorithm has lots of other applications, other than the one mentioned

above. The algorithms are a good way to see solutions while visualizing dynamical e¤ects.

The only problem one might face is that because its having low thrust capabilities, it might

take longer than other thrusters. But in spite of these minor disadvantages, overall its a

win-win situation, as the cost is less and there can be multiple number of such satellites

deployed at the same time and still do a work of a big satellite at a much lower cost. It can

implemented on picosatellites like the FUNSAT; in this concept, propulsion is virtually free!
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APPENDIX A
DEFINITIONS AND NOTATIONS

80



A.1 Classical Orbital Dynamics

Kepler�s �rst law of planetary motion state that a satellite�s orbit is an ellipse and

the body it orbits is at one focus. Any Keplerian orbit can be completely described by

six orbital elements, two to describe the size and shape, three to describe the orientation,

and one to describe the satellite location. In this report, the classical orbital elements will

be used. These elements are: semi-major axis, eccentricity, inclination, right ascension of

the ascending node, argument of periapsis and true anomaly at epoch. A variety of orbital

elements can be used to describe orbits where the classical system is just one of the more

common. The orbital elements are shown in Figure 31 and described below.

Figure 31: Orbital Elements

Semi-major Axis (a): The semi-major axis describes the size of the orbit. For a circular
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orbit, the semi-major axis is the radius of the earth plus the altitude (h) of the satellite. For

elliptical orbits, the semi-major axis is half of the major axis diameter.

Eccentricity (e): The eccentricity describes the shape of the orbit ellipse. It is a measure

of how circular an orbit is. It can be calculated as the distance from the center of an ellipse

to the focus divided by the semi-major axis. For a circular orbit, the eccentricity is 0.

Inclination (i): The inclination describes the orientation of the orbit. It is de�ned as the

angle between the orbit plane and the equatorial plane.

Right Ascension of the Ascending Node (
): The Right Ascension of the Ascending Node

(RAAN) describes the orientation of the satellite. It is the angle from the vernal equinox

to the ascending node. The ascending node is the location where the satellite crosses the

equatorial plane traveling from south to north.

Argument of Perigee (!): The argument of perigee describes the orientation of the orbit.

It is the angle between the ascending node and the eccentricity vector. The eccentricity

vector points from the Earth�s center to the perigee of the ellipse with a magnitude equal to

the eccentricity. It is unde�ned for circular orbits.

True Anomaly (vo): The true anomaly describes the location of the satellite within

the orbit. It is the angle between the eccentricity vector and the satellite measured in the

direction of the satellite�s motion.

While the above six orbital elements are classically used to describe the position of a

satellite, they are not exclusive. Instead of the argument of periapsis, the longitude of

periapsis, �, is occasionally used. This is the angle from the I direction to periapsis measured
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eastward. Additionally, the argument of latitude at epoch, uo can be used. This is the angle

in the plane of the orbit between the ascending node and the radius vector of the satellite

at epoch. These values are related by

uo = ! + vo (A.1)

The true longitude at epoch, lo, may also be used to describe the position of the satellite.

This angle is measured eastward from the I axis to the ascending node, and then in the orbital

plane to the radius direction at epoch. This relation is de�ned as

lo = 
+ ! + vo = � + vo = 
+ uo (A.2)

Certain orbits cause some of the orbital elements to be unde�ned. When the orbit is

circular, there is no periapsis, and !, �, and vo are unde�ned. When the orbit is equatorial,

there is no ascending node and therefore ! and uo are unde�ned. In these cases, using lo

instead of ! is useful.

A.2 Coordinate Systems

When describing orbital motion, it is necessary to reveal which coordinate system is

used.The coordinate systems must be inertial such that the frame is �xed to an outside

observer. A �xed coordinate system may also be used to describe satellite motion, but a
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Figure 32: Heliocentric-Ecliptic Coordinate System

rotation between the inertial and Earth-�xed coordinate systems must be incorporated into

the de�nition.

Heliocentric-Ecliptic : Bodies that orbit around the Sun, such as the Earth and other

planets as well as interplanetary space vehicles, are typically described in the Heliocentric-

ecliptic frame of reference shown in Figure 32. This reference frame is inertial, with the

Z direction perpendicular to the plane of the ecliptic, which is the plane of the Earth�s

revolution around the Sun. The direction of the X axis is in the vernal equinox direction,

and the Y direction is orthogonal.

Earth-Centered Inertial : The Earth-Centered Inertial (ECI) coordinate system is cen-

tered in the middle of the Earth, as shown in Figure 33. The Z axis points through the

geographic North Pole, or the axis of rotation. The X axis is in the direction of the vernal
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equinox, and the Y direction is orthogonal. The Earth rotates with respect to the ECI

coordinate frame.

Earth-Centered Earth-Fixed : The Earth-centered Earth-�xed (ECEF) reference frame

also has its origin at the center of the Earth, but it rotates relative to inertial space, shown

in Figure The K axis is through the North Pole, and the I axis points to the Greenwich

Meridian. The angle between the vernal equinox direction and the Greenwich Meridian must

be de�ned. This is known as the Greenwich sidereal time, �g. Greenwich sidereal time is

documented at various epochs and can be extracted from data tables as �g0. At any time

after epoch, �g can be determined from �g0 by

�g = �g0 + !�(t� t0) (A.3)

where !� is the angular velocity of the Earth. On January 1, 2000 at midnight, the

value of �g0 was equal to 6h39m52.2707s, or 99.96779� according to the Multi year Interactive

Computer Almanac from U.S. Naval Observatory. This value changes slightly from year to

year, and on January 1, 2001 was equal to 6h42m51.5354s, or 100.71473� .

A.3 Reference Frames

Three main reference frames are used to describe the orientation, or attitude, of a

spacecraft in orbit. These are the inertial, orbital, and body frames.

Inertial Frame : An inertial frame is used for attitude applications. The X direction
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Figure 33: Earth-Centered Inertial Reference Frame

Figure 34: Earth-Centered Earth Fixed Reference Frame
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points from the focus of the orbit to the vernal equinox, the Z direction is in the orbital

angular velocity direction, and Y is perpendicular to X and Z.

Orbital Frame : The orbital frame is located at the mass center of the spacecraft, and

the motion of the frame depends on the orbit. This frame is non inertial because of orbital

acceleration and the rotation of the frame. The o3 axis is in the direction from the spacecraft

to the Earth o2 is the direction opposite to the orbit normal, and o1 is perpendicular to o2

and o3. In circular orbits, o1 is the direction of the spacecraft velocity. The three directions

o1, o2, and o3 are also known as the roll, pitch, and yaw axes, respectively. Figure 35 shows

a comparison of the inertial and orbital frames in an equatorial orbit.

Body Frame : Like the orbital frame, the body frame has its origin at the spacecraft�s

mass center. This frame is �xed in the body, and therefore is non-inertial. The relative

orientation between the orbital and body frames is the basis of attitude dynamics and control.

Principal Axis : Principal axes are a speci�c body-�xed reference frame. This axis system

has its origin at the mass center, and is oriented such that the moment of inertia matrix is

diagonal and known as the principal moments of inertia.

A.4 Rotation Matrix

The rotation matrix can be interpreted in three di¤erent ways; as a transformation of a

vector represented in one coordinate frame to another frame, as a rotation of a vector within

the same frame and �nally as a description of mutual orientation between two frames. The
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Figure 35: Earth-Centered Inertial and Orbital Reference Frames

rotation matrix R from frame a to b is denoted Rba.

It is de�ned by

SO(3) = RjR�R3x3; RTR = I and detR = 1 (A.4)

where R3x3

is the set of all 3X3 matrices with real elements and I is the 3X3 identity matrix. In

general, the rotation of a vector from one frame to another, can be written with the following

notation:

vto = Rtofromv
from (A.5)

A useful parameterization of the rotation matrix is the angle-axis parameterization, R�;�
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corresponding to a rotation � about the � axis:

R�;� = I + S(�)sin� + (1� cos�)S2(�) (A.6)

where S is the skew-symmetric operator. The rotation matrix also satis�es

Rba = (R
b
a)
�1 = (Rba)

T (A.7)

Simple rotations using Euler angles as parameters, are de�ned as

Rx( ) =

26666664
1 0 0

0 cos sin 

0 � sin cos 

37777775 (A.8)

Ry(�) =

26666664
cos � 0 sin �

0 1 0

� sin � 0 cos �

37777775 (A.9)

Rz(�) =

26666664
cos� sin� 0

� sin� cos� 0

0 0 1

37777775 (A.10)
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where the subscriptions x,y and z denotes the axis the angles  ; � and � revolves about,

respectively.

A.5 Transformation between di¤erent frames

The di¤erent rotations between frames used in this report are described here.

A.5.1 Transformation from Earth-Centered Orbit to ECI & ECEF frames

The rotation between these frames can only be done using the orbit estimator, and is

necessary to be able to compare measurements with their respective reference model.

RIOC = Rz(�
)Rx(�i)Rz(�!) (A.11)

REOC = Rz(�
 + �)Rx(�i)Rz(�!) (A.12)

where 
 is the Right Ascension of the Ascending Node, i is the inclination of the satellite,

! is the Argument of Perigee and � is the ascension of the zero meridian.The Ry and Rz are

the di¤erent rotations de�ned by equations A.8 and A.8 respectively.
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A.5.2 Transformation from ECEF and ECI frame

The rotation of the ECEF frame relative to the ECI frame is a rotation about the

coincident zI and zE-axes, equal to an angle � = !et, where !e is the Earth rotation rate,

and t is the time passed since the ECEF and ECI frame were aligned. This rotation can be

expressed as

RIE = RzI ;� =

26666664
cos� sin� 0

� sin� cos� 0

0 0 1

37777775 (A.13)

A.5.3 Transformation from ECI to Orbit frame

This rotation is dependent on the satellite rotation velocity !o. The Orbit frame is

rotated an angle � about the yI-axis, and is expressed as � = �0 + !0t, where �0 is the drop

angle, or latitude position, of the satellite and t is the time since last passing of 00 latitude.

This can be expressed as

RyI ;� =

26666664
cos � 0 sin �

0 1 0

� sin � 0 cos �

37777775 (A.14)

In addition, the Orbit frame is upside-down relative to the ECI frame. This motivates
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the following rotation about the xI-axis:

RzI ;� =

26666664
1 0 0

0 cos � � sin �

0 sin� cos �

37777775 =
26666664
1 0 0

0 �1 0

0 0 �1

37777775 (A.15)

which, combined with Equation A.14, gives the total rotation necessary to transform a

vector given in ECI frame to an Orbit frame representation:

ROI = RxI�RyI� =

26666664
cos � 0 sin �

0 �1 0

� sin � 0 cos �

37777775 =
26666664
cos� 0 sin�

0 1 0

� sin� 0 cos�

37777775 (A.16)

since both � and � represent the latitude position of the satellite

A.5.4 Transformation from Orbit to Body frame

The rotation matrix used extensively in this report, is the transformation between Orbit

and Body frame, represented by RBO . This rotation is dependent on the attitude of the

satellite, and by estimating this rotation matrix, the attitude can be determined. Using

Equation A.6 with � = " and � = " we get the rotation

R";� = 1 + 2�S(") + 2S
2(") (A.17)
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The rotation matrix from Body to Orbit frame is thus

ROB = 1 + 2�S(") + 2S
2(") (A.18)

and by using the de�nition Equation A.7 on Equation A.18, a representation of the

rotation from Orbit to Body Frame can be calculated:

RBO = (R
O
B)
T =

26666664
"21 � "22 + "23 + �2 2("1"2 + �"3) 2("1"3 � �"2)

2("1"2 � �"3) �"21 + "22 � "23 + �2 2("2"3 + �"1)

2("1"3 + �"2) 2("1"3 � �"1) �"21 � "22 + "23 + �2

37777775 (A.19)

The rotation matrix can also be written as

RBO =

�
cB1 cB2 cB3

�
(A.20)

where cBi =
�
cBix cBiy cBiz

�T
; are column vectors. When cB3 =

�
0 0 +

�1

�T
; the z0�axis

and zB � axis are aligned. This vector can thus be seen as a description of the deviation

between z0�axis and zB � axis, and is an indication of the performance of attitude control

system.
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A.6 Time

Time is an important parameter when calculating the position of an object in orbit. The

standard SI unit(International System of Units) for time is a second(sec). The second is then

used to determine minutes[min], hours[h], days, months and years. There are a �xed ratio

between seconds, minutes, hour, day and week, but no �xed ratio between days, months and

years. This is due to the use of leap-days, it is therefore inconvenient to use for computer

computations. A solution to this is to use the Julian Day.

A.6.1 International atomic time(TAI)

International atomic time, is a very accurate and stable reference time. It uses the

radiation period of a cesium nuclide, 133 Ce, where 9,192,631,770 periods constitute 1 second

in the SI system.

A.6.2 Universal Time(UT)

Universal Time, also called Greenwich mean time(GMT), is the mean solar time at the

Royal Greenwich Observatory near London in England, which coincide with the 0 longitude.
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A.6.3 Coordinated Universal Time(UTC)

Coordinated Universal Time, also called Zulu time (Z), was introduced and broadcasted

in January 1972 (Kristiansen 2000). A second in UTC is equal to a second in TAI, but it is

kept within 0.90 seconds of the actual rotation of the Earth, by correcting it with 1 second

steps, usually at the end of June an December ( This gives rise to the leap year).

A.6.4 Civil Time

Di¤erent time zones, give rise to the Civil time (Tcivil), which is the time observed by

people on their clocks. Civil time di¤ers from the UT, by an integer number of hours, and

can be roughly calculated by :

Tcivil � UT � (L+ 7:5)=15 (A.21)

where L is the longitude, given in degrees (with positive sign in eastern direction), and

UT and Tcivil given in integer numbers, and Tcivil is irrespective of daylight-saving time.

A.6.5 Julian day

The Julian calender is a continuous time count from the number of days since Greenwich

noon on January 1, 4713BC. This is the solution adopted for astronomical use, and was

proposed by the Italian scholar Joshep Scaliger in 1582 AD. The Julian Day can be calculated
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with:

JD = day +
153�m

5
+ 365y + y=4� 32083 (A.22)

where:

month = month+ 12a� 3 (A.23)

y = year + 4800� a (A.24)

and

a =
14�month

12
(A.25)

A.6.6 Modi�ed Julian day(MJD)

The Julian Date is, as mentioned above, adopted for astronomical use, but for space

application it present a minor problem, because it starts at 12:00 UT,instead of 00:00 UT,

as the civil calender does. To remedy this the Modi�ed Julian Date is used. The

MJD is given by:

MJD = JD � 2400000:5 (A.26)

and starts at midnight.
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A.7 Quaternions-Kinematic Equation

The quaternion q, is a 4 x 1 matrix consisting of a vector portion, " =
�
"1 "2 "3

�T
and

a scalar portion �,and it is represented as follow,

q =

2664"
�

3775 =

266666666664

"1

"2

"3

�

377777777775
(A.27)

Quaternions have advantages and disadvantages over rotation matrix notation. The

singularities that exist when certain Euler angles are small are eliminated with the use of

quaternions. However, the physical meaning of quaternions is obscure and not as intuitive

as rotation angles.

The quaternion is in the form,

q =

2664a sin(�2 )
cos(�

2
)

3775 (A.28)

where a is the euler axis vector, and � is the angle of rotation.
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At time t+�t; the quaternion is equal to

q(t+�t) = (cos
��

2
+ sin

��

2

266666666664

0 a3 �a2 a1

�a3 0 a1 a2

a2 �a1 0 a3

�a1 �a2 �a3 0

377777777775
)q(t) (A.29)

Since �t is very small, and �� = !�t; where ! is the magnitude of the instantaneous

angular velocity of the body, the following small angle assumptions are used:

cos
��

2
= 1; sin

��

2
=
1

2
!�t (A.30)

This leads to

q(t+�t) = [1 +
1

2
S(!)�t]q(t) (A.31)

This equation represents the kinematic equation of motion of the spacecraft.

where S(!) is the skew symmetric matrix.

S(!) =

266666666664

0 !3 �!2 !1

�!3 0 !1 !2

!2 �!1 0 !3

�!1 �!2 �!3 0

377777777775
(A.32)
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The derivative of the quaternion is

_q =
1

2

266666666664

� �"3 "2

"3 � �"1

�"2 "1 �

�"1 �"2 �"3

377777777775

26666664
!1

!2

!3

37777775 = _q =
1

2

2664�I3x3 + S(")

�"T

3775!bob (A.33)

where S(") is a skew symmetric matrix

S(") =

26666664
0 �"3 "2

"3 0 �"1

�"2 "1 0

37777775 (A.34)
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APPENDIX B
PLANAR ORBITAL STATE EQUATIONS
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The �rst state equation is the radial rate.

dr

dt
= VR (B.1)

The time rate of change of the radial and perpendicular velocities are obtained from the

gravitational motion equations. It is known that the position vector in the RSW frame is

r = r � eR

Taking the time derivative results in the velocity vector as follows

dr

dt
= r

deR
dt

+
dr

dt
� eR (B.2)

deR
dt

=
d�

dt
� eS (B.3)

deS
dt

= �d�
dt
� eR (B.4)

dr

dt
=
dr

dt
� eR + r

d�

dt
� eS = VR � eR + VS � eS (B.5)

The radial rate and true anomaly are obtained from the velocity vector

dr

dt
= VR (B.6)

VS = r
d�

dt
(B.7)
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Taking the time derivative of the velocity gives the acceleration vector

d2r

dt2
= VR �

dv

dt
� eS +

dVR
dt

� eR � VS �
dv

dt
� eR +

dVS
dt

� eS (B.8)

d2r

dt2
=
VRVS
r

� eS +
dVR
dt

� eR �
V 2
S

r
� eR +

dVS
dt

� eS (B.9)

d2r

dt2
= (

dVR
dt

� V 2
S

r
) � eR + (

dVS
dt

+
VRVS
r
) � eS (B.10)

Inserting it into the gravity potential equation above results in

(
dVR
dt

� V 2
S

r
+
�

r
) � eR + (

dVS
dt

+
VRVS
r
) � eS + (

dVW
dt
) � eW

= (PR + UR) � eR + (PS + US) � eS + (PW + UW ) � eW
(B.11)

Solving for the time rate changes and turning the vector equation into matrix form gives

26666664
dVR
dt

dVS
dt

dVW
dt

37777775 =
26666664
V 2S
r
� �

r
+ PR + UR

�VRVS
r
+ PS + US

PW + UW

37777775 (B.12)

The state equation for the true anamoly is taken from knowing the perpendicular velocity

is the angular rate times the radial distance.

VS = r
d�

dt
(B.13)
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d�

dt
=
VS
r

(B.14)

Hence the equations a¤ecting the attributes of the orbit are

dr

dt
= VR (B.15)

dVR
dt

=
V 2
s

r
� �

r2
+ PR + UR (B.16)

dVS
dt

= �VR � VS
r

+ PS + US (B.17)

d�

dt
=
VS
r

(B.18)
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APPENDIX C
ANGULAR ORBITAL STATE EQUATIONS
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Figure 36: Angular Momentum Vector

The angular momentum vector can be related to the ascending node and inclination

angle by geometry

Geometrically, the inclination and ascending node are given by

cos(i) =
hz
h

(C.1)

tan(
) = �hy
hx

(C.2)

To �nd their rates of change take their time derivatives

sin(i) � di
dt
=
h:dhz

dt
� hz:

dh
dt

h2
(C.3)
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di

dt
=
h:dhz

dt
� hz:

dh
dt

sin(i) � h2 (C.4)

1

cos2(
)
� d

dt
=
hy:

dhx
dt
� hx:

dhy
dt

h2x
(C.5)

d


dt
= cos2(
) �

hy:
dhx
dt
� hx:

dhy
dt

h2x
(C.6)

Since

cos2(
) =
h2x

h2x + h2y
(C.7)

The ascending node time rate of change can be written as

d


dt
=
hy:

dhx
dt
� hx:

dhy
dt

h2x + h2y
(C.8)

From inspection, it can be concluded that geometrically the angular momentum vector

are,

hx = h � sin(i) � sin(
) (C.9)

hy = �h � sin(i) � cos(
) (C.10)

hz = h � cos(i) (C.11)
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The time derivative of the angular momentum is found by the cross product of the radial

position and velocity. Below are the calculations.

dH

dt
= r � d2r

dt2
+ r � r (C.12)

now since r � r = 0

dH

dt
= r � d2r

dt2
(C.13)

dH

dt
= r � (� � r

r3
+ P + U) =

�� � (r � r)

r3
+ r � P + r � U (C.14)

dH

dt
= r � P + r � U =

26666664
eR eS eW

0 0 0

PR PS PW

37777775+
26666664
eR eS eW

0 0 0

UR US UW

37777775 (C.15)

dH

dt
= �r � (PW + UW ) � eS +�r � (PS + US) � eW (C.16)

the magnitude of the angular momentum only changes in the out of plane direction,

hence the magnitude of the angular momentum time derivative is

dh

dt
= r � (PS + US) (C.17)

Since the vector is in the RSW frame, a conversion is needed to represent it in the inertial

frame.

107



The coordinate conversion is

26666664
eR

eS

eW

37777775 =

266666666666666666666664

cos(w + �) � cos(
)

� sin(w + �) � sin(
) cos(i)

cos(w + �) � sin(
)

+ sin(w + �) � cos(
) cos(i)
sin(w + �) � sin(i)

� sin(w + �) � cos(
)

� cos(w + �) � sin(
) cos(i)

� sin(w + �) � sin(
)

+ cos(w + �) � cos(
) cos(i)
cos(w + �) � sin(i)

sin(
) sin(i) � cos(
) sin(i) cos(i)

377777777777777777777775

�

26666664
ex

ey

ez

37777775

ew = sin(
) � sin(i) � ex � cos(
) sin(i) � ey + cos(i) � ez (C.18)

The times rates of change for the angular momentum vector becomes

dhx
dt

= r[(PW +UW ) �sin(w+�) �cos(
)+cos(w+�) �sin(
) �cos(i)+(PS+US) �sin(
) �sin(i)]

(C.19)
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dhy
dt

= r[(PW +UW ) �sin(w+�) �sin(
)�cos(w+�) �cos(
) �cos(i)�(PS+US) �cos(
) �sin(i)]

(C.20)

dhz
dt

= r[�(PW + UW ) � cos(w + �) � sin(i) + (PS + US) � cos(i)] (C.21)

For inclination angle time rate of change can be obtained by inserting these equations

into the inclination time derivative as shown below.

di

dt
=
h:dhz

dt
� hz:

dh
dt

sin(i) � h2 (C.22)

h:
dhz
dt

= h � r � cos(i) � (PS + US) (C.23)

h:
dhz
dt

= h[�r(PW + UW ) � cos(w + �) � sin(i) + r � (PS + US) � cos(i)] (C.24)

h:
dhz
dt
� hz:

dh

dt
= h � r � (PW + UW ) � cos(w + �) � sin(i) (C.25)

di

dt
=
h � r � (PW + UW ) � cos(w + �) � sin(i)

h2
=
r � cos(! + �) � (PW + UW )

h
(C.26)

Therefore the inclination rate becomes

di

dt
=
cos(! + �) � (PW + UW )

VS
=

r
r

�(1 + e � cos(�)) � cos(! + �) � (PW + UW ) (C.27)
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The ascending node can be obtained in same way,

d


dt
=
hx:

dhy
dt
� hy:

dhx
dt

h2x + h2y
(C.28)

hx:
dhy
dt
� hy:

dhx
dt

= h � r � [(PW + UW ) � (sin(w + �) � sin(i)] (C.29)

h2x + h2y = h2 sin(i)2 (C.30)

d


dt
=
h � r � [(PW + UW ) � (sin(w + �) � sin(i)]

h2 sin(i)2
= [

r � sin(! + �)

sin(i) � h � (PW + UW )] (C.31)

The �nal expression for the ascending node is as follows,

d


dt
= [
sin(! + �)

sin(i) � VS
� (PW + UW )] =

s
r(1 + e � cos(�))

�
[

sin(! + �)

sin(i) � (1 + e � cos(�) � (PW + UW )]

(C.32)
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DRAG EQUATIONS
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The drag force equation in vector form is given by,

���!
Drag =

Cd � � � A � V 2

2m
� V�!
V

(D.1)

Since the norm vector is equal to the magnitude,

�!
V = jV j (D.2)

���!
Drag =

Cd � � � A � V
2m

� jV j (D.3)

�!
V = VR � �!eR + VS � �!eS + VW � �!eW (D.4)

The magnitude and square of the velocity is

V 2 = V 2
R + V 2

S + V 2
W (D.5)

V =
q
V 2
R + V 2

S + V 2
W (D.6)

From these relations the radial, perpendicular and out of plane components of drag used

in the state equations are as follows,

DragR =
Cd � � � A � V 2

2m
�
q
V 2
R + V 2

S + V 2
W � VR (D.7)
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DragS =
Cd � � � A � V 2

2m
�
q
V 2
R + V 2

S + V 2
W � VS (D.8)

DragW =
Cd � � � A � V 2

2m
�
q
V 2
R + V 2

S + V 2
W � VW (D.9)
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APPENDIX E
J2 PERTURBATIONS
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The gravitational potential is given as

U =
�

r
[1�

X
(
Rearth
r

)k � Jk � Pk(sin(�lat))] (E.1)

where Pk are the Legendre polynomial functions of order k,Jk is a constant multiplier of

the Legendre polynomials, and �lat is the latitude position of the satellite projected to the

surface of the Earth. When only calculating the J2 perturbation e¤ect, the gravity potential

due to the Earth�s oblateness is

U = ��
r
[(
Rearth
r

)2 � J2 � P2(sin(�lat))] (E.2)

In Legendre�s polynomials 2P2 sin(�lat) = 2� 3 cos2(�lat);and geometrically

r2 cos2(�lat) = r2 � z2 (E.3)

Therefore the equation becomes

UJ2 = �
�

r
[(
Rearth
r

)2 � J2 � P2[
1

2
� (3z

2

r2
� 1)] (E.4)

The force on the satellite due to this e¤ect can be obtained by taking the gradients of

the potential,

FJ2 = Grad(UJ2) = (
dUJ2
dr

) � eR + (
dUJ2
dr

) � ez (E.5)

dUJ2
dr

= �� � (Rearth)2 � J2 � (
3

2r4
� 15z

2

2r6
) (E.6)
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dUJ2
dr

=
�3� � (Rearth)2 � J2 � z

r5
(E.7)

FJ2 = �3� � (Rearth)2 � J2 � [
z

r5
� ez + (

1

2r4
� 5z

2

2r6
) � eR] (E.8)

Now these equations are translated into the RSW frame, using the following equations,

eZ = sin(i) � sin(! + v) � eR + sin(i) � cos(! + �) � eS + cos(i) � eW (E.9)

z = r � sin(�lat) = r � sin(i) � sin(! + �) (E.10)

Replacing the above equations into the J2 acceleration equations,we get,

FRSWJ2 =

26666664
R

S

W

37777775 =
26666664

�3���Rearth�J2
2�r4 � [1� 3 � (sin(i) � sin(! + �))2]

�3���Rearth�J2
r4

� [(sin(i)2 � sin(! + �) � cos(! + �)]

�3���Rearth�J2
r4

� [(sin(i) � sin(! + �) � cos(i)]

37777775 (E.11)
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The intention of the control system is to remove the error between the actual and

desired states. A second order method can be constructed to reach the steady state with more

accuracy. The desired radial, perpendicular, and out of plane positions can be manipulated

by combing velocity and acceleration state equations for their corresponding state position.

A second order performance is developed to incur the state error from their rates in the form.

J =

Z tf

t0

dx

dt
dt (F.1)

This is only in the �rst order form, hence the acceleration can be included.

Z tf

t0

d2x

dt2
dt =

dx

dt
+ C (F.2)

C = �dx0
dt0

(F.3)

dx

dt
=

Z tf

t0

d2x

dt2
dt+

dx0
dt0

(F.4)

And substitute in to make a second order equation

J =

Z tf

t0

(

Z tf

t0

d2x

dt2
dt+

dx0
dt0
)dt (F.5)

J =
dx0
dt0

� (tf � t0) +

Z tf

t0

Z tf

t0

d2x

dt2
dt (F.6)

The x is an orbital state vector, t is the time and f and 0 denote the �nal and initial state

within the time step. Calculating in the second order is important in determining the desired
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thrust since it is an acceleration. Constant acceleration is assumed within each calculation�s

time step to simplify the problem. This is not a correct assumption, but since the time span

is small, the present error will not be signi�cant. The next calculation will maneuver to

overcome the previous assumption error. Since constant acceleration is assumed throughout

the time step, we will also assume the rates to be constant from their initial values.

Vo =
dx0
dt0

(F.7)

d2x

dt2
=
dV0
dt0

(F.8)

Each time step a¤ects accuracy, hence time is viewed as a calculation weight (wt) and

each calculation is started at time zero. Weight is an independent variable, and can be ma-

nipulated to enhance the calculation performance. This eliminates to; and the performance

index becomes

J = Vo � wt+
dV0
dt0

� wt
2

2
(F.9)

This gives an estimated indication of the di¤erence in the orbital state after certain time

weight. In order to apply some kind of control to the system, there needs to be a desired

performance index to converge to. The desired performance index is designed to eliminate

the error between the actual and desired �nal orbital state, as shown below.

Jdes = xdes � x0 (F.10)
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The value of the �nal position is desired to be less than the initial value. This is assumed

by relating the desired with the initial position by a gain K.

xdes = K � x0 (F.11)

where 0:0 < k < 1:0

Therefore, the desired performance index becomes,

Jdes = x0 � (K � 1) (F.12)

If the gain is below 1.0, this assures, that the orbital state will decrease by a certain

percentage of the initial value. This holds true as long as the gain K is within the stability

limits of the accuracy of the second order equation. The gain K controls the rate of conver-

gence of the orbital states. If K is too close to zero then the satellite might overshoot its

target, eventually settling into its steady state position or never settling at all. If it is too

close to 1.0 then it might not be able to overcome the truncation error and never converge.

The weight is another factor that determines the performance of the satellite�s convergence.

If the weight is too small or too large, then it might not pair well with a gain K to give

a desired convergence. Running simulations with di¤erent pairs help determine the best

suitable combination.

Combining the actual and desired performance indexes gives the controls equations below,

x0 � (K � 1) = Vo � wt+
dVo
dto

� wt
2

(F.13)
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In case of out of plane orbital states, the thrust acceleration u is in the �rst order angular

velocity term. This simpli�es the performance index to a �rst order equation which becomes.

x0 � (K � 1) = Vo � wt (F.14)

First order equations have a di¤erent convergence criterion. Running simulations helps

determine the optimum convergence pair.

To apply this control theory to the thrust, the orbital state equations are substituted

into the performance index equation. The energy,radial position, planar angle, ascending

node, and the argument of perigee are used as the desired performance index. Out of plane

maneuvering is determined by the planar orbital position, as indicated in the out of plane

maneuvering. Hence the desired state equations and performance indexes are,

Energy =
V 2
s

r
+
V 2
R

r
� �

r
(F.15)

dEnergyo
dto

= VR � (PR + UR) + Vs � (Ps + Us) (F.16)

dro
dto

= VR (F.17)

dVRo
dto

=
V 2
S

r
� �

1

r2
+ PR + UR (F.18)
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d�o
dto

=
rVs
�

2664 �
r2
� cos(�)

e
� (PR + UR) +

sin(�)(2+e�cos(�))
e(1+e�cos(�)) � (PS + US)

+ sin(w+�)
tan(i)�(1+e�cos(�)) � (PW + UW )

3775 (F.19)

d2�0
dt2o

= �3VR � VS
r2

+
(PS + US)

r
(F.20)

dio
dto

=
cos(w + �) � UW

VS
(F.21)

d
o
dto

=
sin(w + �)

VS � sin(i)
� (PW + UW ) (F.22)

After applying the control theory for maintaining a constant orbit, the above equations

become,

�(
dEnergyo

dto
) = VR1 � (PR1 + UR1) + Vs1 � (Ps1 + Us1) (F.23)

�(
dro
dto
) = VR1 � VRtraj (F.24)

�(
dVRo
dto

) =
V 2
S

r1
�
V 2
traj

rtraj
� �(

1

r21
� 1

r2traj
) + PR1 + UR1 (F.25)

�(
d2�0
dt2o

) =
3VRtraj � VStraj

r2traj
� 3VR1 � VS1

r21
+
(PS1 + US1)

r1
(F.26)

�(
dio
dto
) =

cos(w1 + �1) � UW1

VS1
(F.27)
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�(
d
o
dto

) =
sin(w1 + v1)

VS1�(sin(i1)
� (Pw1+Uw1) (F.28)
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