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ABSTRACT 

 Initially, optical fiber was created as a simple means of transporting information via light 

for telecommunications. As fiber technology and fabrication methods advanced, alternative 

applications emerged. Specialty optical fibers, meaning fibers with complex designs and 

capabilities beyond the simple transmission of light, have many diverse applications. These 

include lasers, medicine, imaging, nonlinear optics, and more. One of the fastest growing fields 

for specialty optical fibers is sensing. Fiber optic devices have many benefits over other sensing 

devices and have been shown to be capable of measuring temperature, strain, bending, pressure, 

current, refractive index, vibration, rotation, and more. There are currently many fiber designs 

and devices being explored for various applications in sensing, and several of them are 

investigated here. 

 The following is a thesis covering work performed on sensing using specialty optical 

fibers. The majority of the following results are focused specifically on coupled multicore fibers 

and their use in multimode interference devices. An introduction to hollow core fibers, their 

design and characterization, and their potential use in sensing is also included. 

 Chapter 1 is an introduction to fiber sensing. This chapter includes a very concise 

introduction to the basic principles of optical fiber guidance, an introduction to the history of 

optical fiber, the benefits of optical fiber based sensors over other methods, and different types of 

optical fiber sensors. Additionally, a review of the specific multimode interference based fiber 

sensor configuration used throughout this dissertation is presented at the end of this chapter. 

While not exhaustive in its explanation of optical fibers or fiber sensing, this chapter is intended 
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to be an overview of the subject and give the reader a broad view of the field, into which they 

can place the following work. 

 Chapter 2 consists of the bulk of the research performed to date on multicore fiber 

sensors. This includes the theory of operation and the optimization of the multicore fiber for use 

in sensing applications. This chapter also contains results from many sensing experiments, 

including temperature, strain, and bending measurements. Additionally a new fiber design for 

pressure and acoustic measurements is proposed and initial results are shown. The research 

performed on multicore fiber has been extensive and makes up the majority of this thesis. 

 Chapter 3 covers work that has been done on anti-resonant hollow core fibers. This 

includes an introduction to their operation principal, a potential application in gas sensing, design 

dependent loss measurements, as well as analysis of the core mode content of fibers that have 

been fabricated in CREOL. This work is more introductory, but has great potential to be useful in 

many applications, including fiber sensing. 

 Chapter 4 is the conclusion of the dissertation, summarizing everything presented thus 

far. Additionally an outlook on possible future directions for this work is given. 

 This dissertation contains a comprehensive study of multicore fiber for use in sensing 

applications, as well as an introduction to several new fiber designs, including hollow core fiber, 

and their applications. However, other work has been performed on a variety of topics within the 

field of specialty optical fibers, which is not detailed in this dissertation. For instance, research 

was done in a partnership between CREOL, Aerospace Engineering at UCF, and the Boeing 

Company. In this project, research was performed on implementing photo-luminescent alpha 
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alumina nanoparticles into coatings to be dispersed onto structures to measure strain with high 

spatial resolution, while fiber Bragg gratings were being used to calibrate the sensitivity. Also, 

work was done in collaboration with Q-Peak, Inc. on designing a fused fiber wavelength division 

multiplexer using large mode area fiber for high power laser applications. Another project that I 

contributed to was developing a high power single frequency fiber laser using highly-doped 

phosphate glass fiber and femtosecond written gratings. 

 Included at the end of this dissertation is a full list of my personal journal and conference 

publications. 
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CHAPTER 1: OPTICAL FIBER SENSING 

Basic Principals of Optical Fiber Guidance 

 Standard optical fibers guide light on the principle of total internal reflection. A basic 

optical fiber has a core and a cladding. The core has a slightly higher refractive index, n, than the 

cladding, and the ratio of the two indices determines the angle at which light within the core 

becomes totally internally reflected at the core/cladding boundary and does not transmit into the 

cladding. This angle is known as the critical angle (θc).  

𝑆𝑖𝑛(𝜃𝑐) =
𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

𝑛𝑐𝑜𝑟𝑒
  ( 1 ) 

 The totally internally reflected light will then propagate down the core of the fiber. The 

way that the light is guided within the core, the shape of the light’s intensity profile, is referred to 

as a mode. The modes of a fiber are finite and are determined by the core and cladding refractive 

indices, the core size, the shape of the refractive index profile, and the wavelength of light. The 

solutions for the wave equation in optical fiber take the form of Bessel functions. The Bessel 

functions can then be used to calculate the number of modes that a given fiber will support. The 

normalized frequency, or V-number, can be used to determine the number of modes that a fiber 

can guide. For a step-index fiber: 

𝑉 =  
2 𝜋

𝜆
𝑎√𝑛𝑐𝑜𝑟𝑒

2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2  ( 2 ) 

 Here V is the normalized frequency, λ is the wavelength of light, and a is the radius of the 

core. When V < 2.405, only the fundamental mode can be guided, and the fiber is referred to as 
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single mode. For any value of V larger than 2.405, multiple modes can be guided and propagate 

along the fiber together. For multimode fibers that support many modes, the V-number is 

approximately equal to the number of guided modes. Therefore, optical fibers can be explicitly 

designed to support a specified number of modes at a given wavelength by varying the core size 

and the refractive index of the core and cladding. 

 While most of the fibers discussed throughout this dissertation are not simple step index 

fibers, many of these basic guiding principles still apply. For fibers that do not guide according 

to total internal reflection, a separate introduction will be given. 

Brief History of Optical Fiber 

 Glass optical fiber was first presented as a potential waveguide for communication by 

Kao et al. in 1966 [1]. They explored many of the properties of optical fiber, including supported 

modes, potential losses, power handling, fabrication processes, etc., both in theory and in 

experiment. While the guidance properties of fiber seemed extremely promising, the main 

limitation was the high loss of the currently available material. A few years later, Kapron, et al. 

were able to achieve fiber propagation losses as low as 20 dB/km, making optical fiber a viable 

technology for many applications [2]. Within 10 years, optical fiber quickly progressed to have 

losses of only 1 dB/km, 1 GHz bandwidths, tensile strength in the hundreds of kpsi, kilometer 

lengths, as well as the ability to be spliced, connectorized, and cabled [3]. 

 Since their initial invention, optical fibers have expanded into an ever-growing field of 

various designs and applications. From the traditional step index single mode fiber (SMF), fibers 
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have advanced to multimode, few mode, graded index [4], photonic crystal [5], large pitch [6], 

and hollow core designs [7]. Additionally, with developments in fabrication techniques, such as 

modified chemical vapor deposition (MCVD) [8], doping the fibers with rare earth elements has 

enabled the creation of fiber amplifiers and lasers [9,10]. As well as fiber design and material 

advances, fiber devices have also been an expanding area of research. Fiber Bragg gratings 

(FBGs) [11], isolators [12], circulators [12], wavelength division multiplexers [13], pump 

combiners [14], couplers [15], and photonic lanterns [16] are just some of the fiber devices that 

have been developed for various applications.  

 Optical fiber and fiber devices have obviously been widely used for telecommunications, 

which was their initial application. However, they have found use in many other areas as well. 

One of these areas is medical applications, such as laser scalpels [17] and optical tweezers [18]. 

Another growing area of research for optical fiber and fiber devices is sensing [19], which is the 

focus of this dissertation. 

Benefits of Optical Fiber Sensing 

 Sensing environmental conditions from a remote location is important for industries such 

as aerospace, oil, civil engineering, etc. There are many obstacles that need to be overcome when 

sensing in certain extreme conditions; for instance, the ability to measure temperatures over 

1000°C, or the need to inexpensively sense the strain in a structure thousands of meters long. 

There have been many developments in sensors that use resistive elements, i.e. strain gauges and 

thermocouples. However, these elements are susceptible to electromagnetic influence from the 
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environment. They are also relatively expensive when considering applications needing hundreds 

of sensors multiplexed for distributed measurements. Additionally, many current sensors require 

substantial operating costs and cannot be interrogated from remote distances. 

 Fiber optic devices for sensing offer solutions to all of these problems. High temperature 

sensing, low cost devices, multiplexing, long range interrogation, and independence from 

electromagnetic interference are all possible through new fiber optic technology. Additionally, 

optical fibers are compact and lightweight, enabling simple integration into existing structures. 

Many fiber optic devices can be used for sensing strain, temperature, pressure, curvature, liquid 

levels, etc. Some areas where fiber optic sensors are currently be used are airplane wings, wind 

turbines, bridges, pipelines, and oil wells. 

Types of Optical Fiber Sensors 

 There are many types of fiber optic sensors. Fiber Bragg gratings are very common and 

have been shown to be able to measure strain and temperature, as well as other measurands, with 

relative simplicity and high sensitivity [19–22]. FBGs are periodic modulations of the refractive 

index of the core of an optical fiber, generally written through illumination of ultraviolet light 

through a phase mask [23]. The periodic change in index causes a narrowband reflection at the 

wavelength satisfying the Bragg condition, which is dependent on the core index of refraction 

and the period of the modulation. Because the reflected wavelength is a function of the index and 

the period of modulation, it is sensitive to environmental changes and changes in fiber length. 

Tracking of the reflected wavelength is a fairly simple interrogation method, and many FBGs 
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can be multiplexed together for distributed measurement [24]. However, while fiber sensing has 

been dominated by FBGs, they suffer from degradation at temperatures above a few hundred 

degrees Celsius, limiting their applications. In order to increase this temperature limitation, 

FBGs written with femtosecond pulses [25], regenerated FBGs [26], and FBGs in Sapphire 

fiber [27] have all been developed. Many other optical fiber based sensors can have much higher 

damage threshold temperatures, allowing for a wider range of sensing applications. Both 

Rayleigh and Brillouin scattering have been successfully used to measure temperature, strain, 

and polarization [19,28–33]. Rayleigh scattering is the random scattering of light off of particles 

that are much smaller than the wavelength. This scattering can be tracked, and changes can be 

correlated to environmental effects. Brillouin scattering is similar, but here the effect is caused 

by the interaction of the optical photons with acoustic phonons, caused by the χ3 nonlinearity of 

the material. Again, because of the dependence of this effect on the fiber’s refractive index, it is 

sensitive to environmental changes. Both Rayleigh and Brillouin scattering based sensing have 

the benefit of being distributed measurements, leading to more information than point sensors, 

such as FBGs [34]. However, the measurement and characterization of these effects is much 

more complex and generally requires advanced computation. Interferometric fiber sensors are 

also relatively common for measuring many parameters in a variety of configurations [19,35–

39]. One of the simplest interferometric sensing configurations is the Fabry-Perot 

resonator [40,41]. A Fabry-Perot cavity is created by two reflecting surfaces, which cause sharp 

resonances in transmission. These resonances are highly dependent on the distance between the 

two reflectors, and therefore on strain and pressure. Another type of interferometric fiber sensor 
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is based on the Sagnac effect [42,43]. This uses the interference of two beams that traverse the 

same optical path in opposite directions, and is mainly used in measuring orientation and current. 

In addition to these, many interferometric fiber sensors are based off of the multimode 

interference (MMI) in multimode fibers (MMF) or few mode fibers (FMF). 

SMS Sensor Review 

 Multimode interference in fibers is a promising avenue for many sensing needs. The first 

demonstration of sensing using MMI was in 1979 when Layton et al. showed that sound could be 

sensed by looking at the phase change between two interfering spatial core modes in a fiber [44]. 

MMI can also use the interference of core-cladding modes, as well as polarimetric modes [45]. 

The transmission characteristics of MMF spliced between two SMFs, known as SMS structures, 

were first investigated in 2003 [46]. Later that year, Mehta et al. showed for the first time that a 

displacement sensor could be formed with a single mode fiber-multimode fiber-mirror 

configuration [47]. In 2006, Li et al. demonstrated a temperature sensor working up to 

800°C [48] using the interference of several higher order linearly polarized (LP) modes in a 

single mode fiber-multimode fiber-cleaved facet configuration. However, these configurations 

do not offer the possibility of multiplexing, due to their reflective design. A transmissive SMS 

structure can be multiplexed by simply splicing multiple devices together. Zhang et al. showed a 

transmissive refractive index sensor in 2010 using a SMS structure [49]. 

 The previously mentioned SMS devices all used either no core or large core step index 

fiber as the fiber supporting multiple modes. However, it is also possible to use MMI for sensing 
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with graded index fiber [50], photonic crystal fiber [51], and multicore fiber (MCF) [52]. These 

special fiber designs lead to greater control over the modes that are interfering. Specifically, 

MCFs have shown great promise in sensing temperature [53], strain [54], and refractive 

index [55].  

 Unfortunately, the geometry of the aforementioned multicore devices is fairly complex, 

using suspended core fiber or etching of the fiber cladding. A simpler fiber design will increase 

the applicability of the sensors, primarily when high levels of multiplexing are needed. Also, 

using multiple cores instead of large cores or graded index cores allows for greater mode-

matching to the SMF fiber. By designing the cores of the MCF to match the mode field of the 

fundamental mode from the SMF, very low splice losses can be achieved. This makes 

multiplexing many sensors into one fiber with low overall transmission loss possible. 
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CHAPTER 2: MULTICORE FIBERS FOR SENSING  

Supermode Interference of Multicore Fiber 

 In a multicore fiber, modes involving multiple numbers of cores are called supermodes. 

Supermodes are the superposition of the individual LP modes of each of the cores, and are only 

supported by MCF with cores close enough together that the light can evanescently couple 

between them [56]. If more than one supermode is excited in a MCF, multimode interference, 

similar to that observed in MMF, will occur [57]. The origin and various characteristics of MMI 

in an SMS structure has been outlined by Kumar et al. [46]. Because each mode has a different 

propagation constant, a phase difference develops between them as they propagate down the 

MMF, as shown in Eqn. 3, where φ is the phase difference, β is the propagation constant of each 

mode, m is the mode number, and L is the length of fiber.  

Δ𝜙 = (𝛽𝑚 − 𝛽𝑚+1)𝐿   ( 3 ) 

This phase difference was then expanded by Kumar to be the following: 

Δ𝜙 =
2√2Δ

𝑎
𝐿 +

4(𝑚+1)Δ

𝜋𝑎2𝑛
𝐿𝜆 ( 4 ) 

where Δ is the refractive index difference of the core and cladding, a is the core radius, and n is 

the core refractive index of the MMF. This shows that the phase difference is linearly dependent 

on the wavelength, which shows that it will produce a periodic modulation of power in spectrum 

when the light from the MMF is coupled into a SMF. The periodicity of the modulation was also 

derived by Kumar to be: 
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Δ𝜆2𝜋 =
𝜋2𝑎2𝑛

2Δ𝐿
 ( 5 ) 

 While the fiber investigated above was a standard MMF and not a MCF, the basic 

periodically wavelength dependent transmission spectrum they derived also applies to the MCF 

devices. However, while the MMI produced from supermodes is similar to that produced by 

standard MMF or FMF, MCFs have a distinct advantage over these fibers. The advantage is the 

large number of degrees of freedom one has when designing a MCF vs. a MMF. In a MMF, you 

only have the choice of core size, refractive index difference, and possibly the refractive index 

profile. In a MCF you can vary the number of cores, size of the cores, placement of the cores, 

index profiles of the cores, and the pitch of the cores, in order to achieve the desired supermodes. 

This allows for much greater control over the coupling from an excitation fiber to the MCF, as 

well as control over which supermodes and how many supermodes propagate along the MCF, as 

will be shown in the following section. 

 Assuming each core only supports the fundamental LP01 mode, the multi-supermode 

interference created in the MCF is stable and predictable, unlike other MMFs which can support 

thousands of modes. Also, the cores and the corresponding supermodes of the MCF can be mode 

matched to SMF, resulting in very low loss coupling between the two fibers. This makes it 

attractive for sensor devices utilizing the SMS design. 

 The operation of the MCF as a sensor is fairly straightforward. The power in the MCF 

will be distributed throughout multiple supermodes, which will interfere throughout propagation 

down the MCF. When the light is coupled into the second single mode fiber in an SMS device, 

the power transmitted will be highly dependent on the distribution of light in the cores of the 
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MCF. Due to the wavelength dependency of the interference, the transmission spectrum will 

have a periodic modulation, as previously mentioned. 

 This transmission spectrum can then be used for sensing. Both the length and the 

refractive index of a fiber are sensitive to temperature, stress, pressure, etc. Thus, a change in the 

fiber’s environment will cause an overall shift of the spectrum, which can then be tracked and 

used to measure the environmental changes. This sensitivity is based on the properties of the 

glass, namely the photo-elastic coefficient and the thermo-optic coefficient, which determine the 

change in refractive index for an applied strain and temperature, respectively, as well as Young’s 

Modulus and the thermal expansion coefficient, which determine the dimensional changes for an 

applied force and temperature, respectively. 

Multicore Fiber Design 

 The design of the multicore fiber is an integral part of creating an optimal sensor. Several 

different designs have been explored in both simulation and experiment in order to determine the 

desired sensing parameters [58]. The most critical aspect of the design is the coupling from the 

SMF to the MCF, and the MMI this coupling produces in transmission. This was studied for 

MCF with three, seven, and 19 cores in both experiment and simulation. A finite difference 

method (FDM) mode solver in a commercial software package (FimmWave by Photon Design) 

was used to design the various MCF and measure their coupling and transmissive properties.  
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 The number of supermodes in the MCF is determined by the number of cores and how 

many modes each core supports. Assuming each core is single mode, the number of supermodes 

equals the number of cores, times two for polarization degeneracy [59]. 

 Figure 1. Facet images of a seven and 19 core fiber and a sample of their simulated 

modes. 

 Five of the supermodes supported by a seven core fiber and four of those supported by a 

19 core fiber are shown in Fig. 1, along with the facet image of the fabricated fiber (made in 

CREOL). All of the supported supermodes are not always excited, and the percentage of light in 

each of the modes varies greatly with the excitation condition. For instance, for a SMS sensor 

configuration, the MCF will be excited by the fundamental mode of the SMF. In this case, only 

supermodes that are circularly symmetric with intensity in the central core will be excited. For 

the three and seven core fibers, two supermodes will be excited, and for the 19 core fiber, four 

supermodes will be excited. In Fig. 1, these are modes one and two for the seven core fiber, and 

the four modes shown for the 19 core fiber. The number of excited modes leads to drastically 

different transmission spectra. For the seven core fiber, the interference of modes one and two 

causes the intensity to oscillate between the central and the outer cores, resulting in a sinusoidal 
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transmission spectrum when the light is collected with a second SMF. The spectral periodicity is 

determined by the difference in propagation constants of the supermodes, as shown in Eqn. 3. 

Figure 2 shows an example simulated SMS device with a seven core fiber. The interference 

within the MCF is clear, shown by the light coupling back and forth from the central to the outer 

cores as modes one and two are interfering. Figure 2 shows the interference for just one 

wavelength, but as mentioned previously this interference is wavelength dependent. As the 

physical origin of this interference is the difference in the propagation constants of the 

supermodes, and the difference in propagation constants varies with wavelength, the power 

distribution across the cores at the facet of the second SMF will vary periodically in the spectral 

domain, and the amount of light collected by the second SMF will vary accordingly.  

Figure 2. Simulated SMS device, showing MMI in a seven core fiber.  

 The transmission modulation period and modulation depth are highly dependent on 

several MCF design parameters, such as number of cores, core size, and core-to-core spacing. 

For a seven core fiber, the transmission spectrum is clearly periodic with sharp spectral features 

due to the interference of only two supermodes. Figure 3 shows an example transmission 

spectrum of a seven core fiber SMS device. 
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Figure 3. Transmission spectrum of a seven core fiber SMS device, showing interference of two 

supermodes. 

 A three core MCF also produces a sinusoidal transmission spectrum, as two supermodes 

are also excited in this fiber by a SMF. While both the three and seven core fibers have 

sinusoidal transmission spectra, the seven core fiber has a distinct advantage over the three core 

fiber in that it is symmetric. The symmetry of the seven core fiber will cause it to be much less 

sensitive to polarization than the asymmetric, birefringent three core fiber. This is shown in Fig. 

4, where the MMI minima shifts in wavelength 10x more in the three core fiber than the seven 

core fiber when switching the polarization of the input light from the SMF in simulation. This 

makes the seven core fiber more attractive due to its simple periodic MMI and rigidity to 

polarization changes within the sensing setup. 
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Figure 4. Simulated transmission spectra of TE polarized light and TM polarized light for a (a) 

three core MCF and a (b) seven core MCF. 

 The seven and 19 core fibers were fabricated using the stack and draw method with Ge-

doped silica [5]. The refractive index profile of the drawn fiber was measured using a refractive 

index profilometer from Interfiber Analysis (IFA-100). The measured profile is shown in Fig. 5. 

The refractive index was measured for several different wavelengths, and was then fit to a 

Cauchy equation, Fig. 6. The dispersion relation was then included in the simulation. Small 

deformations and asymmetries in the drawn fibers were attempted to be matched in the 

simulation in order to obtain the most accurate spectra possible. 

 SMS devices were then created by splicing short lengths of the MCF between two SMFs 

(SMF28 from Corning). The splicing was performed with the SMF-SMF program of an Ericsson 

Splicer (FSU 995 PM). Four cm of seven core fiber and 12 cm of 19 core fiber were used in 

order to obtain several modulation periods in our wavelength region of interest, as the period of 

interference is dependent on the MCF length [47,60]. 
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Figure 5. Measured refractive index profile of a seven core MCF. 

Figure 6. MCF refractive index values measured with a Cauchy fit. 

 A comparison between the simulated and experimentally measured transmission spectra 

is shown in Fig. 7. The small variations between the simulation and experiment are attributed to 

the margin of error in measuring the fiber geometry and refractive index of the drawn fiber. 
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Figure 7. Simulated and measured transmission spectra of SMS devices with (a) seven and (b) 19 

core fiber. 

 As previously mentioned, the SMF excites four supermodes in the 19 core fiber because 

of their central core intensity and radially symmetry. With four supermodes interfering within 

this MCF, a much more complicated transmission spectrum is produced. The periodicity is less 

clear, and the minima are not as sharp as with the three and seven core fibers. 

 As it has been determined that seven is the optimal number of cores for an SMS sensor 

utilizing MCF due to its predictable periodicity and symmetry, the exact geometry of these seven 

cores, including core size and spacing, was further investigated. The desired parameters of the 

SMS sensor are low transmission loss and sharp spectral features. This will allow several sensors 

to be connected in a chain for multiplexed measurements along the length of fiber. 

a) b) 
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 In simulation it was found that the maximum depth of modulation occurred when equal 

amounts of the two interfering supermodes were excited by the SMF, because only when the two 

modes are equal in amplitude can complete destructive interference in the center core occur. This 

is demonstrated in Fig. 8, where the fraction of light excited in each mode (red and blue lines) is 

compared to the transmission spectrum of the SMS device (black line).  

Figure 8. Comparison of transmission spectrum and excited mode power for a seven core device 

in simulation. 

 The fractional power excited in the supermodes is wavelength dependent because of the 

dependence of the mode field diameter (MFD) of both the SMF and MCF on the core and 

cladding refractive indices, which are wavelength dependent due to dispersion. Clearly the 

sharpest spectral features are observed when the mode fractional power is equally divided 

between the two interfering supermodes. Therefore, the mode field overlap between the SMF 
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and the seven core fiber at a given wavelength is a critical aspect in the design of the MCF for 

sensing applications. 

 This was experimentally verified by comparing two fabricated seven core fibers with 

slightly different core geometries. The first fiber has 9.5 μm diameter cores, 13.6 μm pitch, and 

125 μm outer diameter, as shown in Fig. 9 (a). The overlap between SMF and this fiber leads to 

61% excitation of the center-only mode, and 38% excitation of the all-core mode. With this 

unequal excitation, a maximum modulation depth of 12 dB was measured, as shown in Fig. 9 (c). 

Alternatively, the second fiber has 9.2 μm diameter cores, an 11 μm pitch, and 125 μm cladding 

(Fig. 9 (b)). With this small change in geometry, the excitation is now split almost equally 

between the two supermodes, and the maximum modulation depth reached 35 dB, also shown in 

Fig. 9(c). The second fiber design was optimized to have the maximum modulation depth near 

1550 nm, but the wavelength can be tuned for other applications by changing the MCF geometry 

or the SMF input. 
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Figure 9. Facet images of the two tested seven core fibers (a) and (b), and (c) their respected 

transmission spectra. 

 In addition to sharp spectral features, high overall transmission is also important for an 

optimal sensor design. Low loss devices enable splicing multiple sensors together in a chain for 

multiplexed measurements along the length of the fiber. 100% transmission of the device can 

only occur when the fundamental mode of the SMF can be perfectly represented by the 

combination of supermodes of the MCF. As the total power excited in the two interfering 

supermodes of the MCF approaches 100%, the maximum transmission of the device also 

approaches 100%, as shown in Fig. 10.  

a) 

b) 

c) 
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Figure 10. Maximum transmission for various excited mode powers from simulation. 

Figure 11. Transmission spectra of five individual sensors and a single multiplexed chain. 
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The loss of the spliced device with the optimal seven core design was measured to be less than 

0.05 dB experimentally, showing both good mode field overlap as well as low splice loss 

between the SMF and the MCF. 

 Because of the high overall transmission obtained, multiple sensors were able to be 

multiplexed into a single chain. An example chain with five sensors is shown in Fig. 11. Here, 

slightly different lengths of MCF were used in order to space out the locations of the MMI 

minima, so each sensor can be individually monitored with a single transmission measurement. 

In simulation, the maximum number of MCF sensors that could be multiplexed within the C-

band (1530-1565 nm) was investigated. Using the optimal seven core fiber design with very 

sharp spectral features, it was possible to multiplex 17 total sensors, with 11 within 35 nm (the 

same bandwidth as the C-band), as shown in Fig. 12.  

Figure 12. Simulated transmission spectrum of 17 MCF sensors with 2 cm lengths in a single 

fiber chain. 
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 The sensor minima within this range all were still fairly sharp, with at least 10 dB depth 

and about 3 nm spacing between them. However, the level of transmitted light dropped 

extremely low, down to about 160 dB, which is below the noise floor of many spectral analysis 

instruments. If high levels of multiplexing are needed, larger spectral windows would need to be 

used in order to increase the spacing between each sensor’s minima and increase the 

transmission level between the minima. 

 The design of the MCF has been optimized, with the final design being seven cores, 

approximately 9 μm core diameters and an 11 μm pitch, and a numerical aperture of 0.13. When 

using SMF28 as the input/output fiber, this causes a mode field excitation close to 50%:50% for 

the two interfering supermodes at the wavelength of 1550 nm, leading to high overall 

transmission and very sharp spectral features, enabling multiplexing as well as high resolution 

sensing. 

Sensitivity Measurements 

Temperature 

 One of the most unique and advantageous aspects of this MCF sensor is its ability to 

withstand high temperatures. As previously mentioned, FBGs can only withstand temperatures 

up to 200-300°C, and there are many applications that require much higher temperatures. 

Industries such as oil drilling and nuclear power plants require sensors that can withstand harsh 

environments as well as temperatures well above a few hundred degrees Celsius.  
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 Recently there have been many attempts to increase the maximum operational 

temperature with various fiber sensor designs. An SMS sensor utilizing photonic crystal fiber 

(PCF) was shown to be capable of measuring 500°C [61]. This required selectively collapsing 

regions of the PCF, as well as precise offset splicing. Demas et al. showed a fiber-optic sensor 

capable of measuring up to 1000°C with a device utilizing a PCF and a CO2 laser-written long-

period grating [62]. Also, alternative methods for writing FBGs have been developed in order to 

increase their ability to withstand high temperatures. Femtosecond written gratings [25] and 

regenerated FBGs [22] have both been reported to withstand temperatures up to 1000°C. 

However, these gratings have more complicated fabrication processes, and regenerated gratings 

have significantly reduced reflectivities.  

 The MCF device, as previously mentioned, has a very simple design and fabrication 

process. As it consists of only two standard splices, two people were able to fabricate over 120 

sensors in less than two days. In addition to being very simple and inexpensive to fabricate, this 

device has a much higher temperature limit than most standard fiber sensors. 
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 The temperature sensitivity of the MCF sensor has been measured up to 1000°C with a 

very stable response [63]. This was measured in a high temperature oven with a 

superluminescent diode (SLD) and an optical spectrum analyzer (OSA) and is shown in Fig. 13.  

Figure 13. Transmission spectra of a 2 cm MCF sensor measured in a high temperature oven up 

to 1000°C [63]. 

 The wavelength shift with temperature was observed from room temperature to 1000°C, 

held for five hours, and then cooled back to room temperature. The sensor’s response is shown in 

Fig. 14. This cycle was repeated five times, and no hysteresis or degradation of the spectrum was 

observed, making them extremely useful for harsh environment applications. 
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Figure 14. Sensor wavelength shift of seven core fiber device in a high temperature oven. 

 It was observed that the wavelength shift with temperature was not linear throughout the 

entire temperature range measured. The assumed reason for this is a variation in the thermo-optic 

coefficient with increasing temperature, which has been previously studied for cryogenic 

temperatures [64]. The experimental result was used in combination with simulation in order to 

determine the thermo-optic coefficient of the MCF as a function of temperature. The thermo-

optic coefficient is what determines the shift of the refractive index of a material with change in 

temperature and is given by Eqn. 6: 

𝑛(T + ΔT) = n(T) + αΔT    ( 6 ) 

where n is the index of refraction, T is the initial temperature, ΔT is the change in temperature, 

and α is the thermo-optic coefficient. 



26 

 

Figure 15. Measured wavelength shift and corresponding calculated thermo-optic coefficient. 

 While the length of the fiber also changes with temperature due to the thermal expansion 

coefficient, this effect is negligible when compared to the index change. By comparing the 

experimentally measured wavelength shift to that produced in simulation by adjusting the 

refractive index, a thermo-optic coefficient was calculated and fit to a cubic function from 0-

600°C and a linear function from 600-1000°C, as shown in Fig. 15. The calculated value of the 

thermo-optic coefficient as a function of temperature was found to be: 

𝑑𝑛

𝑑𝑇
= 1.2 + 0.01𝑇 − 9.4𝑥10−6𝑇2 − 2.3𝑥10−10𝑇3       20°C <  T <  600°C                ( 7 )        

𝑑𝑛

𝑑𝑇
= 6.43                                        600°𝐶 < 𝑇 < 1000°𝐶               ( 8 ) 
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Strain 

 While high temperature measurements are the primary application, the multicore sensor 

can also be used to sense alternative parameters, such as strain or longitudinal force [65]. As the 

fiber is pulled along its axis, the refractive index of the glass changes and the fiber elongates. 

The longitudinal force applied causes a strain, ε, in the fiber which leads to a change in its length, 

L, shown in Eqn. 9. 

𝜀 =
Δ𝐿

𝐿
 ( 9 ) 

Also, the refractive change is dependent on the applied strain as shown in Eqn. 10, where ρ is the 

photo-elastic coefficient of the material. 

𝑛(ε + Δε) = n(ε) + ρΔε ( 10 ) 

 These effects will shift the MMI pattern in a similar way to temperature. An example of a 

shift in the MMI of the transmission spectrum in shown in Fig. 16. Here, the spectrum shifts 

negatively in wavelength with an applied strain.  
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Figure 16. Wavelength shift measured from an applied strain on a MCF sensor. 

 Fiber optic sensors have been used to measure strain in a variety of configurations, and 

the sensitivity has been increased through methods such as inflating long period fiber Bragg 

gratings using a CO2 laser [66] and reducing the cladding diameter of a fiber containing an 

FBG [67]. Reducing cladding diameter was shown to be a much simpler and more effective 

approach, so its effect on the MCF sensors was investigated. 

 An experimental setup to measure the force and strain sensitivity of the MCF sensor was 

developed, and is shown in Fig. 17. A fiber chain was created with a standard FBG with 125 μm 

outer diameter (OD) to be used as a reference, a second FBG with an etched cladding, and a 

section of MCF with an etched cladding, in order to compare the sensitivities of the MCF and the 

FBG, as well as understand the relationship between sensitivity and cladding diameter. The ends 
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of the fiber chain were then wound around posts to ensure they didn’t slip as the fiber was 

pulled.  

Figure 17. Experimental setup for measuring strain sensitivity and comparing MCF and FBG 

sensors. 

One post was fixed, while the other was placed on a translation stage, applying longitudinal force 

to the fiber as it moved out along its axis. A broadband source (BBS) was used with an OSA to 

measure the MCF spectra, and simultaneously, an Optical Backscatter Reflectometer (OBR) was 

used to measure the FBG’s reflections. 

 The refractive index change and elongation of the fiber caused by the applied force 

according to the photo-elastic coefficient and Young’s Modulus, shifts the interference pattern of 

the transmission spectrum. A comparison of wavelength shifts is shown for three sensors, an 

MCF sensor in Fig. 18 (a) and two FBGs in Fig. 18 (b). As all three sensors are in a single fiber 

chain, the applied force is consistent for each sensor, but the stress experienced by each one is 

dependent on the fiber’s outer diameter because stress is equal to force/area. A smaller cross 

sectional area of the fiber produces a higher stress, which leads to a higher strain, according to 

Young’s modulus as shown here: 

𝐸 = 𝜎𝜀 =
𝐹/𝐴

Δ𝑙/𝑙
 ( 11 ) 
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where E is Young’s Modulus, which is 73 GPa for fused silica, σ is stress, ε is strain, F is force, 

A is cross-sectional area, l is the fiber length, and Δl its change due to the applied force.  

Figure 18. Example wavelength shifts caused by applied longitudinal force for a MCF sensor (a) 

and an FBG (b). 

 A smaller outer diameter therefore leads to a higher strain for a given applied force, 

which in turn leads to a larger wavelength shift in transmission. A plot of the wavelength shift 

for both the MCF sensor and the FBGs as a function of applied force is shown in Fig. 19.  

The strain sensitivity of each device is constant, while the force sensitivity increases with 

decreasing outer diameter. A summary of all devices tested as a function of fiber outer diameter 

is shown with a parabolic fit in Fig. 20, which agrees with the dependence of the strain on the 

cross-sectional area of the fibers. 
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Figure 19. Example wavelength shift of three sensors in a chain. 

Figure 20. Summary of all measured sensitivities for MCF and FBG devices as a function of OD. 
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 Decreasing the OD of the MCF is a simple way to increase the sensitivity of the sensor to 

force, and can be done through fiber etching or initially fabricating a MCF with a smaller 

cladding. The 42 μm MCF sensor had an overall sensitivity increase of 7x that of a 125 μm MCF 

device, and 12x that of a standard FBG. Etched FBGs showed a similar increase in sensitivity,  

also following a (1/OD2) dependence, but were consistently about 40% less sensitive than the 

MCF devices with the same OD. 

 In addition to measuring strain individually, a method for simultaneous measurement of 

strain and temperature was developed by combining two multicore sensors with different outer 

diameters. FBGs have been used in configurations for decoupling simultaneous strain and 

temperature measurements [68,69], as well as fiber optic sensors operating on the principle of 

MMI [50,70].  Because the sensitivity of the MCF device to longitudinal force can be easily 

tuned through the OD, two devices can be used in combination to decouple force and 

temperature measurements. This experiment was performed with a fiber chain now consisting of 

a standard 125 μm OD FBG for reference again, a 125 μm OD section of MCF, and an 80 μm 

OD section of MCF. The two MCF segments were suspended in glass capillaries over hot plates 

for temperature tuning, and the whole chain was placed in the same force application setup as 

Fig. 17. The transmission spectra of the two MCF devices is shown in Fig. 21 (a). Splicing the 

two devices together into a chain creates the transmission spectrum shown in Fig. 21 (b).  
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Figure 21. Transmission spectra of two MCF devices separate (a) and spliced in a chain (b). 

 While both sensors are still clearly visible when spliced together, better definition could 

be achieved by selecting sensors whose minima were further spaced out in wavelength. The 

location of the minima is easily tuned by fiber length, as shown here [60]. With both MCF 

devices now in a single chain, their responses to various changes can be monitored 

simultaneously with one transmission spectrum. 

 As force is applied to the fiber chain, both minima shift in wavelength, but by varying 

amounts as shown in Fig. 22. This is due to the difference in fiber outer diameter of the two 

sensors. 
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Figure 22.  Response of sensor chain to applied longitudinal force. 

 The temperature sensitivity of each device was also measured using hot plates and was 

found to be 29 pm/°C, equal for both devices because outer diameter has no effect on the 

temperature sensitivity. The response of the MCF devices to both an application of longitudinal 

force as well as a temperature increase is shown in Fig. 23. To determine the strain and the 

temperature experienced by the MCF devices, the following equations can be used:  

Δ𝜆80 = 𝑎Δ𝐹 + 𝑐Δ𝑇 ( 12 ) 

Δ𝜆125 = 𝑏Δ𝐹 + 𝑐Δ𝑇 ( 13 ) 

where a and b are the force sensitivities shown in Fig. 19, and c is the temperature sensitivity 

listed above. 
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Figure 23. Response of sensor chain to applied force and temperature. 

 The experimental results were found to be very accurate. Using the measured shift with 

these equations, the temperature was calculated to be 134°C, while a thermal camera image of 

the hot plates gave a value of 133°C, which is within 1% of the experimental measurement. The 

measured force was 0.33 N, corresponding to a strain of 0.905 mε for an OD of 80 μm, and 

0.371 for 125 μm. The measured strain form the 125 μm OD reference FBG was 0.381 mε, with 

is within 3% of the calculated value. 

 Next, the MCF sensors were strength tested to know their maximum measureable 

strength before breaking. Using 125 μm OD fiber, MCF to SMF splices were stressed in a similar 

setup to Fig. 17, until the splice breaking point. This test was repeated several times and 

compared to SMF to SMF splices in the same setup. It was found that the MCF-SMF splices 
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that the MCF-SMF splices are just as strong as typical SMF-SMF splices, and they are robust 

enough to withstand environments with up to several millistrain applied. It is important to note 

that decreasing the outer diameter may in turn decrease the strength of the fiber, as the 42 μm OD 

sensor only withstood up to 3 mε before failure, but this has not been fully investigated. 

Bending 

 In addition to temperature and strain, the MCF sensors are also sensitive to bending. The 

ability to measure the curvature of an object is extremely important in applications such as 

mechanical and aerospace engineering, and structural health monitoring. The bending sensitivity 

was investigated with a simple experiment using the seven core fiber [71]. However, this 

experiment only gives information about the radius of curvature of the fiber, without any 

directional dependence. An example plot of the wavelength shift for various radii of curvature is 

shown in Fig. 24. 

Figure 24. Transmission spectra shift of two MCF sensors as a function of bending radius [72]. 
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 Knowing both the radius of curvature and the direction of the bending can be very useful 

in evaluating structural integrity, as these parameters help in identifying deformations and 

stresses in structures. Many fiber sensing systems have been investigated for applications as 

direction-sensitive bending sensors. The majority of these sensor systems employ some form of 

fiber grating, including long period gratings [73], cladding waveguide gratings [74], and FBGs in 

MCF [75]. While grating based systems such as these have been able to successfully measure 

bending while distinguishing multiple directions, the fabrication of the gratings is a fairly 

complicated process. In addition to grating-based systems, a commercial shape sensing system 

based on Rayleigh scattering was developed by Luna Technologies. This system has high 

accuracy and requires a MCF, but does not need any type of grating. However, the optical 

frequency domain reflectometry method used is computationally complex and requires the 

sweeping of a tunable laser source, resulting in high cost instrumentation [76]. The MCF sensors 

based on the MMI from coupled cores are generally much simpler to fabricate, however, they 

still rely on spectral analysis instrumentation, such as an OSA. By combining the MCF with a 

Photonic Lantern (PL), the need for spectral analysis can be eliminated and replaced by simple 

power measurements [77]. 

Photonic Lantern Experiment 

 A PL is an all-fiber device consisting of a number of SMFs that are fused together and 

tapered down to form a single MMF or FMF [16], and a representation of a PL is shown in Fig. 

25. This device is reciprocal, in that either the MMF or the SMFs can be used as the input, 
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depending on the application. Generally, there is no direct correlation between the SMF and the 

modes of the MMF, as the initial applications of the PL only required transfer between single 

mode and multimode systems. One example of this application is astronomical 

instrumentation [78], where light collected into a MMF via a telescope needs to be transferred 

into SMF in order to utilize narrow bandwidth FBGs. 

Figure 25. Schematic showing the basic device structure of a photonic lantern [79]. 

 More recently, mode-selective PLs have been developed, where the SMFs are mapped to 

the modes of the MMF [80]. This is a developing technology with the main application being 

spatial division multiplexing in telecommunications [16,79]. When a mode-selective PL is used 

with the SMF end as the input, each SMF excites a different LP mode in the output MMF, with 

low cross-talk between the modes.  

 In the following experiment, the PL is used in the opposite direction, with the power in 

the various modes of a FMF being measured through its corresponding SMF output. This ability 

to measure the power in each mode of a MMF using an all-fiber device leads to new possibilities 

for the field of fiber sensing. 

 In order to get both radius of curvature and bending direction information, a three core 

fiber is used in conjunction with a mode-selective PL. The MCF has strongly coupled cores, 

similar to the seven core fiber that was previously demonstrated as being bend-sensitive [71]. 



39 

 

This combination of all-fiber devices has several benefits over the previous experiment. The PL 

allows for the interrogation to be done with a power meter, as opposed to a spectrum analyzer, 

lowering the cost of the instrumentation as well as increasing the measurement sensitivity. 

Additionally, the amount of information gained from one experiment is multiplied by the number 

of channels of the PL, as each mode will have its own response to bending. Finally, using a three 

core fiber instead of the seven core fiber adds asymmetry into the system which makes it 

direction sensitive. 

 The MCF used was fabricated in-house using the stack and draw method. The three cores 

are 9 μm in diameter, with a pitch of 11 μm, and the fiber outer diameter is 120 μm. The fiber 

was fabricated from Ge-doped silica, with a Δn of 7×10−3 and each core had an NA of 0.14. The 

cross section of the MCF is shown in Fig. 26. The mode-selective PL was also fabricated in-

house by first drawing four Ge-doped graded-index fibers (GIF) with a Δn of 16×10−3 and core 

sizes of 20, 18, 15, and 6 μm. The GIFs are spliced to SMF ensuring the excitation of only the 

LP01 mode. The various core sizes will excite different LP modes in the FMF (LP01, LP11a;b, 

LP21a;b, and LP02, respectively [79]. Six GIFs (one each of the 20 and 6 μm and two each of the 

18 and 15 μm diameter) are then inserted into a low index capillary made of fluorine-doped glass 

with a Δn of −9×10−3 relative to fused silica in the arrangement shown in Fig. 26. A CO2 laser 

tapering station (LZM-100 by AFL) is then used to taper the filled capillary. As the device is 

tapered to a final taper ratio of 15.9∶1 over a 50 mm length, the individual cores become 

negligible and the light is guided in the cladding of the GIFs, which in the tapered section, form a 

FMF with a core size of 18 μm. This end of the lantern is spliced to a FMF with a core size of 15 
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μm and a Δn of 11×10−3 that supports only the six LP modes previously mentioned. The 

experimental setup used is shown in Fig. 26. 

Figure 26. Experimental setup for bending test with a PL, showing the MCF cross section as well 

as the arrangement of SMF in the lantern.  

 The light source used was a SLD centered at 1550 nm coupled into a SMF, which then 

was used to excite the three core fiber, with one of the three cores being centrally aligned with 

the core of the SMF. The MCF supports three polarization degenerate supermodes, as shown in 

Fig. 27. As previously described, there will be supermode interference within the MCF [58]; 

however, by using a very short section of MCF, the spectral period of the interference pattern 

will be hundreds of nanometers, and the interference fringes will be outside of the SLD 

bandwidth. In order to obtain a smooth transmission spectrum throughout the ~40 nm bandwidth 

of the SLD, a 0.5 cm section of three core fiber was used. The MCF is then spliced to the FMF 

end of the PL that supports the six LP modes shown in Fig. 27. The output power from the SMF 

outputs of the lantern is then measured with an integrating sphere (IS). The MCF section is bent 

by fixing the fiber inside of a plastic tube and forcing it to bend through the inward movement of 
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a translation stage in a similar setup to [71], which allows for complete control over the bending 

radius and direction. 

Figure 27. Simulated modes of each fiber in the bending experiment: SMF, MCF, FMF, GIFs of 

varying core size, respectively. 

 Bending the MCF changes the refractive index profile, and therefore changes the 

supermodes, their excitation from the SMF, and their propagation. Altering the supermodes of 

the MCF then changes the excitation of the FMF modes. The power in each of the FMF modes is 

measured from the SMF outputs of the PL, and the change in relative power of each mode is 

measured as a function of radius of curvature of the MCF bending, which is then is repeated for 

multiple bending directions. Before discussing the relative power measurements, it was verified 

that a change of the excited power of the FMF modes was being observed and the power changes 

were not caused by a spectral shift due to multimode interference. To do this, the transmission 

spectrum of the entire experimental fiber chain was recorded as the MCF was bent. As shown in 

Fig. 28, the total power of mode LP11a transmitted through the PL does in fact increase and 

decrease with bending, with no noticeable spectral shift. Figure 28 (a) shows small interference 
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fringes caused by the multiple excited modes of the FMF which do not shift as the MCF is bent 

in either direction by a radius of 23 cm. Figure 28 (b) shows the same spectra, smoothed by a 

Savitzky-Golay filter, clearly showing the total change in power for this mode, which for the 

same bending radius is dependent on the bending direction. 

Figure 28. Transmission spectra of the LP11a mode when bent in two directions with a radius of 

23 cm, with spectral smoothing applied during the post processing. (a) A nine-point Savitzky–

Golay smoothing filter was used showing the multimode interference occurring within the FMF, 

and (b) with a 65 point filter, more clearly showing the total power difference. 

 The relative power shift (change in power/initial power or ΔP∕Po) measured for each of 

the six lantern modes for four bending directions is shown in Fig. 29. Each mode power responds 

differently to bending, and this response changes with bending direction. For some modes, the 

relative power change was as high as 80%, showing exceptional sensitivity. As shown in Fig. 29, 

the change in relative power can be either linear or curved with respect to the inverse radius of 

curvature, depending on the mode and the direction of bending. The highest sensitivity observed 
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experimentally was in the direction of 270° for the LP21a mode, with 20.2%∕m−1 with respect to 

the inverse radius over the region from 0.01 to 0.04 cm−1, or 2.3%/cm with respect to the radius 

of curvature from 20 to 40 cm.  

Figure 29. Relative power shifts of each of the FMF modes measured as a function of the inverse 

radius of curvature for four different bending directions 
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the bending setup; however, this experiment was not done with that knowledge. Using a PL with 

six modes, each mode having different responses to bending, enough information can be 

obtained in order to fully measure the angle and the radius of curvature of the bend 

simultaneously.  

 To verify the necessity of the MCF as the bend sensitive element, the experiment was 

repeated with the previous setup, but with a section of the FMF being bent while the MCF was 

kept straight. Bending the FMF resulted in very small changes in the power of the modes. For a 

bending radius of 27 cm, the total relative power shift was less than 4% for all modes and 

bending directions, with the average being only 1.6%. This measured sensitivity is clearly 

significantly lower than that measured while bending the MCF section, showing that the high 

sensitivity of this system is dependent on the strong coupling of the supermodes in the MCF.  

 To gain more understanding as well as predictive capabilities in designing a 3D fiber 

optic bending sensor with MCF, the device was simulated using commercial waveguide software 

FimmWave. The SMF–MCF–FMF fiber chain was created, and bending was applied to the MCF 

segment with full control over both the radius of curvature and the direction of the bend. The 

power in each of the FMF modes was calculated as a function of inverse bend radius for several 

different bending directions, two of which as shown in Fig. 30. Very similar slopes and total 

relative power changes to those measured experimentally were observed in simulation, giving 

confidence to the accuracy of the sensing system. The simulations also show a large directional 

dependency. Figure 30 (a) was calculated for a bending direction of 90° and Fig. 30 (b) was 
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calculated for 180°. As the orientation of the three MCF cores was not known experimentally, an 

exact match between the measured mode power shifts and those in simulation was not obtained.   

Figure 30. Simulated relative power shifts of all six FMF modes for bending in two directions. 

 In addition to simulating the SMF-MCF-FMF chain, the simulation of the photonic 

lantern was also done. The photonic lantern device made in FimmWave consists of a six core 

fiber with differently sized cores, which is tapered down into a single FMF, as shown in Fig. 31. 

While the real PL will be made with six separate fibers being fused together as opposed to a six 

core fiber, the differences in the resulting modes should be small. 
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Figure 31. Model of six channel mode-selective PL, showing the cross-section of the six core 

fiber, and the tapered device. 

 Six different LP modes are then generated at the input of the FMF when exciting the six 

input fibers with SMF. Shown in Fig. 32 are the simulated modes from FimmWave obtained by 

exciting each SMF individually, clearly showing each of the expected LP modes of the FMF. 

Now that this PL has been simulated, it will be relatively simple to change the core sizes, 

tapering ratio, etc. in order to design new PLs in the future for sensing or other applications. 

Figure 32. Simulated modes of a six mode PL in FimmWave. 

 One potential application of this combined MCF and PL device is multiplexing for 

multiple point measurements. This could be done by connecting the LP01 output SMF of one 
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device to the next input SMF in a chain, enabling the reconstruction of the full 3D shape of the 

fiber by using the remaining five modes of each device. A similar multiplexing technique was 

recently used with FBGs in cladding waveguides of a fiber [74]. That method requires a 

spectrometer, whereas the MCF with PL approach requires only a power meter as the 

interrogation system. In addition, it also has orders of magnitude higher sensitivity than the 

grating approach. This is the first time, to our knowledge, that a PL has been used for shape 

sensing applications. Our results show high sensitivity to bending over a wide range of radii of 

curvature, as large as 10 m, making this approach useful for applications requiring knowledge of 

the curvature and direction of bending for small curvature applications. 

Direction-Sensitive Measurement with known Orientation 

 In the previous experiment, the orientation of the three core fiber was unknown. This 

limited our understanding of the direction-sensitive measurements and our ability to fully 

characterize the sensor. In order to improve understanding, the bending sensitivity of the three 

core fiber was explored in several directions in simulation in FimmWave. 
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Figure 33. Orientation of three core fiber used in simulation. 

 The three core fiber was oriented so that the cores were symmetric about the vertical axis, 

as shown in Fig. 33. A 1.6 cm section of MCF between two SMFs was then bent by 1°, or a 

radius of curvature of about 0.9 m, in the ±x and ±y directions which are shown in Fig. 33. The 

transmission spectra obtained from this simulation are shown in Fig. 34. 

 

Figure 34. Transmission spectra of a three core fiber sensor being bent in the (a) y direction and 

(b) x direction. 
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These spectra show that when the three core fiber is bent in the y direction, the wavelength shifts 

with a sensitivity of about 6 nm/degree, and the shift is positive in the positive y direction, and 

negative in the negative y direction. In the x direction, there is no wavelength shift and only a 

decrease in total power for both directions. These results can be explained by looking at the 

supermodes of the three core fiber, shown in Fig. 27. When bent in the y direction, two of the 

supermodes will be directly affected by the induced refractive index change. When bent in the 

positive y direction, the upper two cores will be compressed, leading to an increase in the 

refractive index. When bent in the negative y direction, the upper cores will experience a strain 

and therefore a decrease in the refractive index. This is the cause for the opposite directions of 

the wavelength shift in transmission. When bent in the x direction, the index change is 

symmetric, meaning one of the upper cores will experience an index increase and the other a 

decrease. This averages out to no effective index change, and therefore no wavelength shift in 

transmission. The decrease in total power is attributed to simply the loss of some of the core light 

into the cladding of the fiber. 

 This measurement was performed in experiment by a colleague [81]. They made one 

major change to the setup, in that instead of splicing a second SMF to the end of the 3 core fiber, 

a flat cleave was used to reflect a small percentage of the light back through the MCF and input 

SMF, and the transmission spectra was then measured in reflection. This was done so that the 

facet of the MCF was exposed, and a camera could then be used to determine the orientation of 

the three cores. 
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 The cores were arranged to match that shown in Fig. 33. The MCF was then bent in the 

same four directions, and the reflected spectra were measured. The results agreed fairly well with 

the simulation. For the y direction, there was a positive wavelength shift for the positive 

direction, and an equal and opposite negative shift for the negative direction. The sensitivity 

measured was less than that calculated in FimmWave, about 4 nm/degree as compared to 6 

nm/degree, shown in Fig. 35. The most probable reason for this is the orientation of the cores. If 

the three core fiber was not exactly vertical, the asymmetry of the location of the two upper cores 

would cause a variation in the sensitivity. 

Figure 35. Wavelength shift measured for a three core fiber in the y direction [81]. 

 For the x direction, minimal wavelength shift and a decrease in intensity was observed 

for the negative direction, similar to that found in simulation. In the positive x direction, the 

results differed and the intensity increased slightly, unlike the simulation. The assumed reason 
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for this is again the orientation of the three core fiber, or possible some other asymmetry in the 

experimental system, such as asymmetry in the drawn three core fiber or an offset in the SMF-

MCF splice. 

 These results show a clearly direction-sensitive three core fiber sensor that can be easily 

understood and characterized. The stark differences between the changes in the transmission 

spectra for the four bending directions will enable simple measurements and calculations for 

both the bending radius and direction of curvature. 

Summary 

 The sensitivity of the MCF sensors has now been measured with respect to temperature, 

strain, and bending. From the many experiments, it was found that the MCF sensors can stably 

withstand temperatures of up to 1000°C and have higher temperature sensitivity than FBGs. It 

was also found that the MCF are more sensitive to strain than FBGs and that the sensitivity to an 

applied longitudinal force can be tuned through decreasing the MCF cladding diameter. Using 

two sensors with two different ODs enables the decoupling of temperature and longitudinal force 

measurements with a single transmission spectrum. Additionally, a mode-selective photonic 

lantern was integrated into the sensing setup, enabling high sensitivity direction-sensitive 

bending measurements, without the need for expensive spectral analysis equipment. A simpler 

bending experiment with the three core fiber showed clear directional dependence that can be 

easily understood and characterized. 
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Air Hole Multicore Fiber 

 After optimizing the design of MCF for sensing, and characterizing the sensitivity of the 

sensors for several sensing applications, work has begun on designing a new fiber for increased 

sensitivity to pressure and acoustic waves. The new fiber will still be a MCF operating on the 

principle of supermode interference, however, it will also contain large air holes. Large air holes 

have been previously shown to increase the sensitivity of fiber sensors to pressure, as they allow 

for more deformation of the fiber than solid silica fibers [82–84]. 

Design 

 Several initial designs were first tested in simulation using FimmWave. The designs use 

the hexagonal structure of the seven core fiber, but replace some of the cores with air holes. For 

instance, replacing three of the outer cores with air holes leaves four coupled cores to generate 

supermode interference, similar to the seven core fiber. Additional rings of air holes can be 

added around the cores as well. This design is shown in Fig. 36 (a). The supermode interference 
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was shown to be very similar to that of the seven core fiber, with two main supermodes excited, 

and a sinusoidal interference pattern in transmission, as shown in Fig. 36 (b). 

Figure 36. Design of MCF with 15 air holes and (b) its corresponding transmission spectrum 

from an SMS device. 

 The design with 15 air holes and four cores shown above was then stacked and drawn. 

The drawing parameters, namely the pressure applied to the air holes, was varied as the fiber was 

drawn in order to adjust the amount that the air holes were inflated. Four different bands of fiber 

were drawn with slightly different parameters: (1) 122μm OD, low pressure; (2) 128μm OD, 

high pressure; (3) 110μm OD, high pressure; and (4) 100μm OD, high pressure. The cross 

section of two of the bands are shown in Fig. 37. The higher pressure bands have a higher air to 

silica ratio, but also more deformed cores. 
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Figure 37. Cross-sections of drawn air hole MCF of (a) band one and (b) band four. 

Sensor Fabrication 

 After fabricating the fiber, splicing it to SMF was attempted in order to form SMS 

devices. First, the standard SMF-SMF program of an arc fusion splicer was used. However, 

because of the air holes, the alignment had to be done manually. Also, the temperature of the arc 

was too high, and the air holes of the MCF collapsed over several hundred microns, as shown in 

Fig. 38. 

Figure 38. Images of SMF and air hole MCF before and after splicing with SMF-SMF program 

of an arc fusion splicer. 
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 Splicing was then attempted using a CO2 laser splicer. This splicer allowed for full 

control of the program parameters, as well as automatic alignment. In order to keep the air holes 

from collapsing, the power of the laser was decreased from the standard SMF program level, 

until the air holes appeared to be unaffected. Splices shown in Fig. 39 were obtained, showing 

relatively strong fusion, without any collapse.  

Figure 39. Images of SMF to air hole MCF splices from a CO2 laser splicer after optimization. 

 However, while the splices appeared to be optimized, the MMI of the devices was very 

inconsistent, and most of the time there was almost no interference observed in transmission. As 

is clear from comparing Fig. 36 to Fig. 37, the model in FimmWave does not exactly match the 

drawn fiber. This is because the initial model was based on the design of the fiber stack, and not 

on the drawn cross-section. During drawing, the air holes were significantly inflated, leaving 

only a small ring of cladding around each of the four cores. The model was adjusted to more 

closely approximate the drawn fiber. As shown in Fig. 40 (a), each core has a small ring of 
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cladding around it, while the area surrounding the cores is air. The SMF-MCF-SMF chain was 

then created and the transmission spectrum is shown in Fig. 40 (b). While it still shows the 

expected sinusoidal transmission spectrum from the interference of two supermodes, the period 

of the interference is much wider than that obtained from the previous model. This is due to the 

air separating the cores, which decreases the coupling between them. Figure 40 (b) shows the 

spectrum of a typical device length, 2 cm, which has a period of about 400 nm. When testing the 

spliced devices, the wavelength range measured is usually narrower than this, which explains 

why the expected MMI was not observed.  

Figure 40. Cross-section of new air hole MCF model and (b) transmission spectrum of the SMS 

device for a typical MCF length. 

 When splicing longer sections of the air hole MCF between SMF, decreasing the MMI 

period [63], the MMI became clear within the spectral region being measured. With band one of 

the fiber, very long device lengths, on the order of 20 cm, were needed in order to have several 

interference minima within the spectral range measured (1450-1650 nm). Band three, with higher 
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pressure and a smaller OD, had stronger coupling between the cores, and showed several minima 

with the spectral range of interest with lengths of 5-10 cm. This device length is more compact 

and simpler to implement as a sensor, so band three was selected for making the initial devices. 

Figure 41 shows some example spectra obtained from the SMS devices using band three of the 

air hole MCF. The supermode interference is clear and sinusoidal, but is much less strong than 

the all-solid MCF, with minima depths on the order of 5 dB.  

Figure 41. Example spectra of SMS devices made with band three of the air hole MCF. 
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The splice loss was measured for three of the band three devices and the average loss per splice 

was measured to be 1.4 dB. While not as low as the solid MCF, this loss is still suitable for an 

SMS device being used as a sensor. 

Sensitivity Measurements 

Bending 

 While the main purpose of the air holes in the MCF is to increase the sensitivity to 

pressure, other sensing experiments were attempted with the band three devices to compare their 

sensitivity to the solid MCF. First, the sensitivity of the air hole MCF to bending was tested. The 

same plastic tube and translation stage setup from the previous bending tests was used. The first 

observation made was that the MMI of the air hole MCF devices is extremely sensitive to any 

small changes. When bent to the same radius of curvature as previous tests with solid MCF, the 

MMI changed completely and could not be tracked. Very large bending radii were measured, and 

smoothing was applied to the measured spectra in Origin in order to be able to accurately track 

the MMI as the MCF was bent. Shown in Fig. 42 is the shifting spectra, unsmoothed and 

smoothed. As shown, the MMI did in fact shift with bending, but was impossible to track 

without significant smoothing. 
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Figure 42. Transmission spectra of an air hole MCF device as it is bent, (a) unsmoothed and (b) 

smoothed. 

Figure 43. Transmission spectra of (a) solid MCF and (b) air hole MCF devices as they are bent 

to a radius of 85 cm. 

 In order to directly compare the sensitivity of the solid and the air hole MCF to bending, 

two sensors were tested together over the same range of bending radii. Figure 43 shows a focus 

on one MMI minima for each sensor as they are bent from straight to a radius of 85 cm.  
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While the spectrum of the solid MCF is much clearer than the air hole MCF, the sensitivity of 

the air hole MCF is about 50 times higher than the solid MCF.  

Temperature 

 Next, the sensitivity of the air hole MCF to temperature was measured using a hot plate. 

The main difficulty of this experiment was the relatively long length of the sensor. The hot plate 

does not have a uniform surface temperature, so the whole length of the 8 cm sensor was most 

likely not experiencing the same temperature. To help with the temperature disparities across the 

hot plate surface, the sensor was placed in a glass tube, which was then held between metal 

plates on the hot plate surface. A temperature sensitivity was measured, but was not repeatable or 

linear.  The sensitivity measured is approximately the same as that of the solid MCF in this 

temperature regime, ~20 pm/°C, as shown in Fig. 44. 

Figure 44. Air hole MCF sensor response to temperature for two different trials. 
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Strain 

 In addition to temperature and bending, the sensitivity of the air hole MCF was tested 

with respect to strain. In a setup similar to that shown in Fig. 17, one of the air hole MCF sensors 

was tested in comparison to an FBG. Similarly to the bending measurement, the spectra needed 

to be smoothed in order to be tracked in wavelength. The smoothed spectra measured as strain 

was applied to the air hole MCF is shown in Fig. 45. The measured sensitivity compared to the 

standard FBG is shown in Fig. 46. The sensitivity of the air hole MCF is about three times higher 

than the FBG. However, the solid seven core fiber previously measured had a sensitivity of a 

about -2.24 nm/mε, so the addition of the air holes in the MCF only increased the strain 

sensitivity by about 50% over the solid fiber. 

 Figure 45. Smoothed transmission spectra of an air hole MCF sensor as strain is applied. 
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Figure 46. Measured wavelength shift of an air hole MCF sensor and an FBG.  

Pressure 

 As mentioned initially, the main goal for this fiber is to increase the sensitivity of the 

MCF to pressure, so the next step for these sensors is to test their response to pressure and 

acoustic waves. A controlled pressure setup is currently being developed. The sensitivity of the 

air hole MCF will be compared to that of the solid MCF. If the sensitivity of the air hole MCF is 

in fact significantly higher than the solid fiber, as it is expected to be, new designs with increased 

air/silica ratios may be tested in order to maximize the sensitivity of the device to pressure. 

 Additionally, these devices are being tested in an acoustic tank. A sound wave is a 
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source is used, the amount of light that is transmitted will modulate along with the acoustic 

wave. This is because the laser wavelength is stable, while the transmission spectrum from the 

MCF will be modulated in wavelength. Therefore, if the laser light that is transmitted by the 

MCF is observed on an oscilloscope or an electrical spectrum analyzer (ESA), the amplitude will 

be modulated with the frequency of the sound wave. 

Figure 47. Experimental setup for measuring sensitivity of MCF to acoustic waves. 

 A setup for measuring acoustic sensitivity of the MCF has been developed and initial 

testing has begun. The current setup is shown in Fig. 47. A tunable laser (1525-1610 nm) is used 

as the source, enabling different points along the sensor’s interference pattern to be chosen and 

compared. The sensor is submerged in a water tank whose inner walls are covered in a sound 

absorbing material in order to minimize reflections of the sound waves. A function generator is 

connected to a transducer that is placed in the tank. The transmitted power through the sensor is 

measured with a photodetector that goes into an ESA. 
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 Initial results with this setup and the solid seven core fiber have shown strong acoustic 

sensitivity, but with low stability and repeatability. Shown in Fig. 48 is the signal amplitude from 

the ESA, as the function generator is tuned from 10-90 kHz. Up to 45 dB signal to noise ratio is 

observed, however, these results varied drastically from sensor to sensor, and also with the 

position of the MCF in the tank. 

Figure 48. ESA signal of solid MCF response to acoustic waves tuned from 10-90 kHz. 
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 Initial measurements have also been performed on an air hole MCF sensor. The sensor 

used was made from band three of the fiber with a 10 cm length. The spectra of the sensor when 

measured flat on the table as well as when in was mounted in the acoustic setup are shown in 

Fig. 49. Clearly, the high bend sensitivity of this sensor caused the spectrum to change when 

placed in the mount, however, there is still sufficient MMI present for testing the acoustic 

sensitivity.  

Figure 49. Transmission spectra of 10 cm air hole MCF sensor measured flat on the table (a), and 

in the acoustic mount (b). 
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of a solid MCF sensor. If the air hole MCF was optimized in design and splicing so that the MMI 

was comparable to that of the seven core fiber, the sensitivity would be expected to be one to two 

orders of magnitude higher for acoustic measurements. 

Figure 50. Amplitude signal from the air hole MCF on an oscilloscope when excited by a 14 kHz 

wave. 

 The tank setup, as well as the sensor mount, need to be further investigated in order to 

understand the inconsistencies previously observed. With a more robust setup, the solid and air 

hole MCF sensors can be more directly compared, and the sensitivity improvement caused by the 

addition of the air holes could be better understood. Additionally, the dependence of the ratio of 

silica to air in the air hole MCF can be explored with various designs of MCF. 
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Summary and Outlook 

 As shown, MCFs in SMS sensors have been extensively explored. The design of the 

MCF was analyzed in depth in simulation, and the optimal design for mode matching to standard 

SMF was developed. Varying the number of cores in the MCF allowed for better understanding 

of the MMI and polarization effects. The critical aspects of the design for high overall 

transmission and sharp spectral features for a given wavelength range are now understood, and 

can be tuned for different wavelengths or for different SMFs for other applications. It was also 

determined that the sensors can be fabricated simply, inexpensively, and reproducibly when two 

students fabricated and characterized 126 sensors in two days, as part of a contract deliverable. 

 In addition to optimizing the design of the sensors, their sensitivity to various measurands 

was also explored in depth. It was found that the MCF sensors could stably measure 

temperatures up to 1000°C and had a higher temperature sensitivity than standard FBGs. This, 

coupled with their inexpensive fabrication and compact size, make the sensors very attractive for 

industries with harsh environments. 

 The MCF sensors were tested for their sensitivity to strain, and directly compared to 

FBGs. They were founds to be 40% more sensitive to strain than FBGs.  It was also found that 

the sensitivity to applied longitudinal force was dependent on the MCFs OD, and a sensitivity 

increase of a factor of seven was achieved through etching away some of the cladding of the 

MCF. Decoupling of temperature and longitudinal force measurements was achieved by using 

two MCF sensors with two different ODs and a single transmission spectrum. 
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 The MCF fiber was also found to be sensitive to bending. In order to be able to measure 

both the radius of curvature of the bend and its direction, a three core fiber replaced the seven 

core fiber because of its asymmetry. A developing fused fiber device, mode-selective photonic 

lantern, was used in conjunction with the MCF sensor in order to eliminate the need for 

expensive spectral analysis equipment in the interrogation of the sensor. These tests showed both 

high bending sensitivity as well as direction sensitivity, only using a power meter as the 

interrogation instrument. A simple experiment with the same three core fiber was able to show 

clear and easy to characterize direction sensitive bending measurements, with good agreement to 

simulation. 

 Finally, a new design of MCF was explored for potential applications of pressure and 

acoustic sensing. This fiber, in addition to four coupled cores, has many large air holes 

surrounding the cores. This increases the deformability of the fiber and should increase the 

sensitivity of the MCF to pressure. Fiber was designed and drawn, and initial sensors were made. 

Bending experiments showed extremely high sensitivity when compared to the solid seven core 

fiber, but with much less clear MMI. An initial acoustic test also showed significantly higher 

sensitivity when compared to the solid MCF, but instabilities in the current setup haven’t 

allowed for reproducible direct comparisons between the two sensors. 

 In conclusion, an inexpensive and simple to fabricate sensor based on MCF has been 

developed and extensively tested. This sensor has similar operation to standard FBGs, but with 

higher sensitivity and a much higher temperature limit, making it suitable for many applications. 

A new design has shown strong potential for greatly increasing the MCF sensitivity and may be 
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able to further expand its possible applications. Because of the great potential demonstrated here, 

this fiber sensor design has been patented by UCF [85]. Also, a start-up company, Multicore 

Photonics, is in the process of commercializing the sensor, which includes making packaged 

prototypes and introducing the MCF devices to industries where they could potentially have a 

large market. 
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CHAPTER 3: HOLLOW CORE FIBER 

 Hollow core fibers (HCF) are optical fibers that guide light in an air core, as opposed to a 

solid material, such as glass. Instead of total internal reflection, HCF uses alternate guiding 

mechanisms such as the anti-resonant [86–90] or photonic bandgap effects [91,92].  HCFs based 

on the anti-resonant effect are quickly gaining attention for their excellent guiding properties, 

such as low loss and wide transmission windows [89]. While the first generation of HCFs were 

based on band-gap supported light guidance [92], anti-resonant HCFs (ARHCFs) achieve low 

propagation losses due to the strong suppression of coupling between the core modes and any 

available mode in the surrounding of the core [89]. Only around specific resonance wavelengths, 

strong coupling to outside modes leads to significant propagation losses of the core modes. 

Various ARHCF designs have been investigated in both simulation and experiment in an attempt 

to reduce the overall attenuation and bend-induced losses as well as to shift the resonance 

wavelengths and provide customized ranges of high transmission [86–88,90,93,94].  

Sensing with Hollow Core Fiber 

 In addition to a wide variety of other applications, HCF can also be used for sensing. 

Specifically, gas sensing is possible within these fibers’ cores. We are currently involved in a 

project with Mesa Photonics, LLC, who are working to make a compact Raman air sensor for 

NASA to be used in future astronaut suits. HCF will be used to measure the gases present in the 

suits. Current commercial HCFs based on the photonic bandgap effect have small core sizes on 
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the order of 5 μm and limited transmission window bandwidth. Our goal is to first fully 

characterize and optimize Mesa’s current system, and then to design a new HCF that will better 

meet their needs. 

 Currently, Mesa is using a commercial HCF from NKT Photonics, which has a small core 

size of 6.6 μm and a small transmission window around 580 nm. The facet image and measured 

transmission spectrum of this fiber are shown in Fig. 51. 

Figure 51. Facet image and transmission spectrum of 18 cm of commercial HCF NKT 580. 

 Mesa is currently using a 532 nm diode laser and is attempting to measure several 

common gases with detection wavelengths ranging from 570-660 nm, as shown in Table 1. 

The commercial fiber being used only has high transmission in the window from about 530-630 

nm, limiting the range of gases that can be measured. 
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Table 1. List of gases and their detection wavelengths for Mesa's Raman air sensor. 

  

 We recently began fabricating and characterizing HCF in-house at CREOL. This HCF is 

based on the anti-resonant effect, meaning there are specific wavelengths where the light is 

resonant with the silica structure and does not propagate in the core. These wavelengths are 

determined by the thickness of the silica boundaries, shown in Eqn. 14: 

𝜆𝑚 =
2𝑡

𝑚
√𝑛2 − 1 ( 14 ) 

where λm is the resonance wavelength, t is the silica thickness, m is the order of the resonance, 

and n is the index of refraction of the silica. Several different designs have been fabricated and 

the characterization is ongoing. For example, Fig. 52 shows a scanning electron microscope 

(SEM) image of a HCF with eight non-touching rings, each about 19 μm in diameter, and a large 

air core of 70 μm. The thickness of the rings is 1 μm.  
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Figure 52. SEM image of a non-touching ring HCF, draw 347, band 2 

 The expected resonances from Eqn. 14 are approximately 2220 nm, 1120 nm, 750 nm, 

and 560 nm. The measured spectrum is shown in Fig. 53 and resonances matching approximately 

1120 nm, 750 nm, and 560 nm are clearly visible. This fiber has a broad flat transmission 

window in the near infrared region, but little to no guidance in the visible. For the Mesa project, 

guidance around 500-700 nm is required, so the design will have to be altered in order to be able 

to use this HCF for that application. However, assuming the required silica thickness can be 

achieved, the transmission window should be much broader than that of the commercial HCF 

currently being used. 
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Figure 53. Transmission spectrum of non-touching ring HCF, draw 347, band 2. 

 In order to determine the optimal design of HCF for Mesa’s application, COMSOL 

Multiphysics was used to model various HCF and their loss spectra. COMSOL was used in place 

of FimmWave due to the need for a highly adaptable mesh for this fiber, because of the contrast 

of the large core size compared to the very small feature size of the cladding elements. It had 

previously been found that an element size of λ/4 was needed in the thin silica cladding elements 

in order to obtain an accurate simulation [90]. Additionally perfectly matched boundary layers 

were used in order to eliminate modes in the outer tube, and focus only on the core and cladding 

modes. The eight non-touching ring design was kept as the starting point, and the size of the 

rings and their thickness was varied until an optimal design was found. The final design for the 
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400 600 800 1000 1200 1400 1600
-100

-75

-50

-25

d
B

m

Wavelength (nm)

 1 m AR-HCF

         Draw 347_2



75 

 

μm core size (measured between inner edges of two opposing rings). The fiber design and the 

loss spectra of this fiber are shown in Fig. 54. 

Figure 54. The COMSOL HCF design for Mesa (a) and its loss spectrum (b). 

 As shown in Fig. 54, the loss in the range from 530 nm – 660 nm is very low, less than 

0.02 dB/m. The third and fourth resonances are located just outside of this range. While this 
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would increase the fabrication tolerance. With thinner rings, for example 400 nm, the first 
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on the thickness in fabrication.  

550 600 650

0.01

0.1

1

L
o

s
s
 (

d
B

/m
)

Wavelength (nm)

a) b) 



76 

 

Loss in Hollow Core Fibers 

 The propagation loss of the HCF was measured in order to better understand and improve 

the fabrication processes. There are several causes of loss in ARHCF [89]. At the resonances, 

light is coupled from the core into the cladding, so the loss is extremely high at these 

wavelengths and gradually decreases as you move away in wavelength. Apart from the 

resonances, the theoretical fundamental cause of the core attenuation is leakage loss. 

Additionally, material absorption can also lead to loss, though the core light generally has very 

little overlap with the glass (as low as 0.01% [7]) so the effect of the material on the loss is 

generally low. In fabrication, however, imperfection loss is the dominating cause of the 

fundamental mode propagation loss. Imperfections refer to the non-uniformity of the structure, 

variation in the structure along the fiber, large nodes or flattened edges caused by too much 

fusion, or any other deformity in the fiber structure. 

 As ARHCF designs are currently being investigated, one of the main goals of new 

designs is to minimize the attenuation of the light in the fiber core. The first HCF to guide by the 

anti-resonant effect were Kagome fibers [102,103], which extended the transmission bandwidth 

and reduced the field overlap with the glass structure when compared to photonic bandgap 

fibers [104]. These fibers achieve low propagation losses due to strong suppression of coupling 

between the core modes and cladding modes. In order to increase the inhibited coupling between 

the core and cladding, a negative curvature, or hypocycloid, HCF fiber was developed in both 

simplified designs [105] and full lattice Kagome designs [106].  It was found that the core 

boundary shape has a strong influence on the guidance properties of all HCF, and its accurate 
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control is required in order to achieve low propagation losses [87,107–110]. In ARHCF, strong 

coupling to outside modes occurs around specific resonance wavelengths, and as these 

resonances are dependent on the thickness of the core wall, open boundary ARHCF were 

proposed in order to maintain constant core wall thickness and increase the transmission 

bandwidth over closed boundary designs [95]. 

 In order to measure the propagation loss of the ARHCF, cutback measurements were 

performed. These measurements were performed with a supercontinuum source and an OSA. 

The HCF was excited through butt-coupling of the SMF of the light source to the HCF. While 

there is a large mismatch in core sizes of these fibers, the coupling loss was relatively low, and 

the signal to noise levels measured were more than sufficient for these measurements. The output 

of the HCF was then imaged on a charge-coupled device (CCD) in order to optimize the 

alignment. After aligning the input, the output light was then butt-coupled to the collection fiber 

(105/125) and connected to the OSA. 

 The transmission spectra were then measured as the ARHCF was cut down to shorter 

lengths. The power transmitted can be measured as a function of fiber length and a linear fit can 

then be applied to the data to calculate the loss at various wavelengths.  

 First is an example cut back measurement for an ARHCF with touching capillaries, 

forming a closed boundary core. The core is 48 μm in diameter (measured between the inner 

edges of two opposing capillaries), the capillaries are 30 μm along the long axis, the thickness of 

the capillaries is 770 nm, and the outer diameter of the fiber is 150 μm, shown in Fig. 55.  
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Figure 55. SEM image of an eight ring, closed boundary ARHCF. 

 Figure 56 (a) shows the transmission spectra measured for various fiber lengths. The loss 

at 1300 nm is shown in Fig. 56 (b) to be about 1.4 dB/m. This loss is fairly high and limits 

possible applications of this fiber that would need lengths longer than a few meters. 

Figure 56. (a) Transmission spectra of various lengths of the eight ring, closed boundary core 

ARHCF, (b) calculated loss from the cutback measurement. 
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control over the core wall thickness, which should lead to lower loss and narrower resonances. 

The fiber shown here, in Fig. 57, had a core of 70 μm in diameter (measured between the inner 

edges of two opposing rings), rings with19 μm inner diameter and a 1.2 μm glass wall thickness, 

and an OD of 150 μm. The measured loss was approximately 0.7 dB/m at 1500 nm. This is half 

that of the closed boundary ARHCF. While the fusion at the boundary is not the only difference 

in the fiber geometries, it can be assumed that the improvement in the attenuation can be 

partially attributed to the change in boundary.  

Figure 57. (a) SEM image of an eight ring, open boundary core ARHCF, (b) transmission spectra 

of various lengths, and (c) calculated loss from the cutback measurement. 
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Thirdly, an ARHCF with seven non-touching rings, with 150 μm OD, 45 μm core 

diameter, 18 μm ring diameter, and 420 nm ring thickness was measured. The number of rings 

was reduced from eight to seven in order to increase the coupling of the higher order core modes 

into the cladding. The SEM image of this fiber is shown in Fig. 58, along with the measured 

transmission spectra, and the transmitted power as a function of length for two wavelengths, 750 

nm and 1500 nm. The loss measured here, 0.4 dB/m and 0.6 dB/m, respectively, is again lower 

than the previous design, which may be attributed to the change in the number of rings. 

Figure 58. (a) SEM image of the seven ring, open boundary core ARHCF, (b) transmission 

spectra of various lengths, and (c), calculated loss form the cutback measurement. 
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Finally, a new design was fabricated and tested which has a nested structure. This refers 

to secondary capillaries within each of the cladding capillaries. An example design is shown in 

Fig. 59 (a) [86], and the SEM image of the fabricated fiber is shown in Fig. 59 (b). Obviously, 

the obtained fiber structure varies from the original design, but this fiber was still characterized 

for propagation loss. The measured spectra and corresponding loss is shown in Fig. 59 (c) and 

(d).  

Figure 59. (a) Design of a nested ARHCF [86], (b) SEM image of a drawn nested ARHCF, (c) 

transmission spectra measured for various lengths, and (d) the calculated loss from the cutback 

measurement. 

600 800 1000 1200 1400 1600
-100

-80

-60

-40

-20

0

d
B

m

Wavelength (nm)

 5 m

 3.75 m

 2.65 m

 1.65 m

 .75 m

0 1 2 3 4 5
-30

-28

-26

-24

-22

-20

d
B

m

Length (m)

1.9 dB/m @ 1200 nm

d) 

a) 

b) 

c) 



82 

 

Due to the variation in structure, the loss measured was significantly higher than that measured 

for the previous non-nested structures, most likely due to the non-uniformity of the cladding 

elements. 

 In addition to variations in the design of the ARHCF, another factor in decreasing the 

propagation loss is the material used. All ARHCFs shown here have been fabricated with Quartz 

glass. This glass is inexpensive and low quality, and was used with the purpose of obtaining all 

necessary drawing parameters needed for fabrication of these different designs of ARHCF. Now 

that the fabrications steps and drawing parameters have been optimized, we will begin using a 

more expensive, higher quality glass material for all future draws. The increase in the quality of 

the glass material should reduce the attenuation that has been measured. A first draw with higher 

quality fused silica glass (F300 from Heraeus) showed an approximate loss of less than 0.1 dB/m 

over several hundred nanometers, but the length of fiber drawn was not enough to do an accurate 

cutback measurement. 

Mode Analysis of Hollow Core Fiber 

 While many of the ARCHFs’ guidance characteristics have been studied in detail, the 

higher order mode (HOM) content has not been looked at in depth experimentally. They are 

generally assumed to be approximately single mode, mostly determined from camera images of 

the near field [95,96] or recently, through selective excitation of the HOMs [97]. Understanding 

the mode content of ARHCFs is crucial for their applications, which include high power 

delivery [98], UV and mid-IR transmission [95,96],  sensing [99], nonlinear fiber optics  [100], 
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and in-fiber gas lasers. Recently, a mid-IR gas laser around 3.1 μm operating in both continuous 

wave and pulsed modes was demonstrated using two different ARHCFs inside the laser 

cavity [101].  

 Here we show an analysis on the mode content of two geometric designs of ARHCF. 

Using spatially and spectrally resolved imaging (S2), the number of guided modes as well as the 

distribution of power between them can be accurately measured [111,112]. S2 uses both the 

spatial and the spectral interference produced by the propagation of multiple modes in FMFs to 

simultaneously image all of the supported modes and measure their relative intensities. This 

method has been used to measure passive and rare-earth doped large mode area fibers, few-mode 

fibers for space division multiplexing, photonic band-gap fibers, and more [113–116]. 

 First, we examined a fiber with eight non-touching rings surrounding the air core. The 

core of the fiber is 70 μm in diameter (measured between the inner edges of two opposing rings), 

the rings have a 19 μm inner diameter with a 1.2 μm glass wall thickness, and the OD is 150 μm. 

The transmission spectra of 4 m of this fiber is shown in Fig. 60 (a), along with an SEM image of 

the fiber facet. Two resonances located at 850 nm and 1250 nm are clearly visible, corresponding 

to Eqn. 14. 
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Figure 60. (a) Transmitted white light spectrum of 4 m of non-touching ring HCF with an SEM 

facet image. (b) Simulated loss spectrum from COMSOL with the fiber design inset. 

  Using a cut back measurement, a propagation loss of 0.68 dB/m was measured around 

1500 nm. In order to verify the experimental results and gain predictive capabilities, simulations 

were performed using COMSOL Multiphysics. The non-touching ring fiber was created, shown 

in the inset of Fig. 60 (b), and the loss spectrum of its fundamental mode was calculated. The 

calculated loss spectrum is presented in Fig. 60 (b), beneath the measured transmission spectrum 

of the fiber. Clearly, the resonances appear at the same locations, corresponding to the wall 

thickness of the rings. 
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Figure 61. Experimental setup used for S2 measurement. An example near field of the non-

touching ring ARHCF is shown above the CCD and an example transmitted light spectrum with 

multimode interference is shown next to the OSA. 

 The S2 measurement setup is illustrated in Fig. 61. A supercontinuum source (NKT 

Photonics SuperK Compact) is used as the broad band light source, SMF is used as the excitation 

fiber, a microscope objective (MO) and lens (L) are used in a 4-f configuration to image the near 

field of the ARHCFs on a CCD as well as on the facet of the S2 collection fiber (CF, a 50 μm 

GIF), using a 50/50 beam splitter (BS). This enables a visual check on the input alignment 

conditions, e.g., the verification that most of the light is launched into the fundamental mode. An 

example fiber mode from an ARHCF is shown above the setup in Fig. 61. The S2 measurement 

is then performed as the collection fiber scans across the image of the ARHCFs facet on a 2D 

translation stage while the OSA measures the spectral interference at each location. All S2 

measurements shown for this fiber were measured for 1400 nm - 1600 nm, as this range is 

spectrally flat and far from the fiber’s resonances. The spectral interference pattern shown in Fig. 

61 clearly shows a periodic modulation, indicating there are at least two modes present in the 

core of the fiber. 
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 The HOMs present after propagation through various lengths of the non-touching ring 

HCF and their dependence on bending were investigated using this method. Figure 62 shows the 

combined Fourier spectrum from all of the measurements taken after propagating through 3.35 m 

of this fiber straight and bent to a diameter of 55 cm. The straight fiber clearly shows three peaks 

in the Fourier spectrum. These peaks correspond to the group delay difference (GDD) between 

the fundamental mode and the respective HOM with intensity distributions shown above them. 

Asymmetry in the drawn fiber is the assumed reason for the difference in effective index of the 

two LP02–like modes. The power in each of these three modes is less than 1%, with about 0.7% 

in LP11 and 0.3% in each of the LP02 modes, calculated with the method described by Nicholson 

et al. [16]. Using the approximation that almost all of the light is in the fundamental mode, Otto 

et. al [117] simplified the calculation to simply: 

𝐼𝐻𝑂𝑀 ≈  
𝑇𝐻𝑂𝑀

2

4
𝐼𝐹𝑀 ( 15 ) 

where IHOM is the intensity in the HOM, THOM is the height of the peak in the Fourier transform, 

and IFM is the intensity of the fundamental mode. 
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 As the ARHCF is bent, the first two higher order mode peaks drop into the noise, and the 

third shifts in GDD. This shows that the bending caused the power in the first two HOMs to be 

coupled out of the core, while the effective refractive index difference between the fundamental 

mode and the second LP02 mode decreased. 

Figure 62. Fourier spectra of straight and bent non-touching ring HCF, with mode images above 

the corresponding peaks. 
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 A dependence of the HOM content on the fiber length of the non-touching ring fiber was 

then investigated by analyzing the S2 measurements. Figure 63 shows the Fourier spectra of two 

of these measurements, taken as the length of the fiber was cut from 3.2 m down to 2 m. The 

same three HOM peaks are clearly visible, but a notable change in the peak height of the LP02 

modes can be seen as the HCF was cut to 2 m. The height of the LP11 peak did not change 

significantly, indicating that the propagation loss of this mode is similar to the propagation loss 

of the fundamental mode. The loss measured from a cut back of this fiber was 0.68 dB/m in the 

region from 1400-1600 nm, and is shown as the black squares in the inset of Fig. 63. The loss of 

the combined LP02 modes was found to be approximately 4.2 dB/m from the S2 measurement, 

corresponding to the red circles in the inset.  

Figure 63. Fourier spectra of two lengths of non-touching ring HCF. (inset) Loss cut back 

measurements. 
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 When the length of this fiber was cut to 0.5 m, the power in the HOMs increased 

significantly, and several more modes appeared at higher GDDs. At this short length of ARHCF, 

only approximately 50% of the light was guided in the fundamental mode, while the rest was 

divided among 5 higher order modes.  

 In addition to calculating the fundamental mode loss as a function of wavelength, Fig. 60 

(b), the loss of the first HOMs was also calculated using COMSOL at the wavelength of 1550 

nm. The loss of LP11 was found to be 0.6 dB/m, which is similar to the experimentally measured 

total loss of this fiber, 0.68 dB/m integrating from 1400 nm to 1600 nm. This agrees with the S2 

measurement, where no significant change in the amplitude of the LP11 peak was observed as the 

fiber was cut from 3.2 m to 1.5 m.  The loss of the LP02 mode at 1550 nm was calculated to be 

3.7 dB/m. Again, this is comparable to the measured loss obtained from the S2 measurement, 

approximately 4.2 dB/m. Our simulation shows that the loss values calculated from S2 agree with 

the theoretical predications. The only major difference was the loss of the fundamental mode, 

which simulation calculated to be just 0.13 dB/m at 1550 nm. The measured loss is higher than 

this theoretical value due to imperfections in the drawn fiber which increase the overall 

attenuation.  

 The measurements on this fiber show that HOMs are in fact supported and can propagate 

in the core of the ARHCF. While at a length of 3.35 m more than 98% of the power is in the 

fundamental mode, this low HOM content can still have a significant impact depending on the 

application of the ARHCF. This HOM content can be further mitigated by either bending the 

fiber, or by using longer lengths. 
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  Next, an ARHCF with touching capillaries that form a closed boundary core was 

investigated. An SEM image of the fiber is shown in the inset of Fig. 64. The core is 48 μm in 

diameter (measured between the inner edges of two opposing capillaries), the capillaries are 30 

μm along the long axis, the thickness of the capillaries is 770 nm, and the outer diameter of the 

fiber is 150 μm. The transmission spectra for 4 m of this fiber is shown in Fig. 64. Due to the 

locations of the resonances of this fiber, it was investigated in the region from 1100 nm – 1300 

nm by S2 imaging. The average propagation loss measured in this wavelength range was 1.1 

dB/m.  A 4 m long piece of the ARHCF was measured straight and bent at various bending 

diameters.  

Figure 64. Transmitted white light spectrum of 4m of the touching ring HCF. (inset) SEM image 

of fiber facet. 

600 800 1000 1200 1400
-80

-70

-60

-50

-40

-30

-20

-10

Wavelength (nm)

T
ra

n
s
m

it
te

d
 S

p
e

c
tr

u
m

 (
d

B
m

)



91 

 

 Figure 65 shows the corresponding Fourier spectra of the straight fiber and bent to a 

diameter of 75 cm. Only one peak was visible, and the reconstructed LP11-like mode image is 

shown above it. As the fiber is bent, the GDD of the LP11 mode shifts to smaller values, similarly 

to the non-touching ring ARHCF discussed above. In addition to shifting in GDD, the intensity 

of the peak decreases with decreasing bending diameter, showing the coupling of the LP11 mode 

to cladding modes of the fiber. The dependence of the power in LP11 is shown in the inset of Fig. 

65 as a function of the bending diameter. With 4 m straight, the power in the LP11 mode was 

very low, approximately 0.01%. As the fiber is bent to a diameter of 35 cm, this power decreases 

to 0.001%.  

Figure 65. Fourier spectra of straight and bent touching ring HCF, with mode image above the 

corresponding peak. (inset) Power in LP11 as a function of bending diameter. 
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  The length dependence of the HOM content was also determined with a cut back S2 

measurement. As expected, Fig. 66 shows an increase in the peak intensity of the LP11 mode as 

the fiber is cut to a shorter length. Shown in the inset of Fig. 66 is a comparison of the total loss 

measured in a cut back measurement (black squares), and the loss of power in LP11 obtained 

from the S2 measurement (red circles). The estimated loss of the LP11 mode (red line in the inset) 

is 3.7 dB/m, which is much higher than the total propagation loss of 1.1 dB/m. At a length of 

only 1 m, the power in LP11 was still relatively low, at a value of about 0.9%. 

 We have to the best of our knowledge experimentally measured the mode content of 

ARHCFs using spatially and spectrally resolved imaging for the first time. Both fibers analyzed 

showed some HOM content, with the majority of the light being guided in the fundamental 

mode.  

Figure 66. Fourier spectra of two lengths of touching ring HCF. (inset) Loss cut back 

measurements. 
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 The HOM content found in the core of the closed boundary design fiber was significantly 

lower than that measured in the non-touching ring fiber. At a straight length of 3 m, the non-

touching ring fiber contained about 1.3% HOM content, while the touching design only 

contained 0.1% of LP11.  Both fibers showed that, in general, the HOMs had higher bending loss 

and propagation loss than the fundamental mode, enabling possible mitigation of these modes 

through bending or using longer lengths of ARHCF. While the fundamental mode losses of the 

fibers shown here (~1 dB/m) and the HOM losses (~4 dB/m) allow for sufficiently single mode 

operation after a few meters of ARHCF, much lower fundamental mode losses and higher HOM 

extinction ratios have been shown to be possible. Recently, the experimentally measured 

propagation losses of ARHCF with similar designs reached values lower than 0.1 dB/m in the 

same wavelength regimes [93].  Also, simulations have shown HOM extinction ratios over 50 for 

a touching ring HCF [118] and 500 for a nested anti-resonant nodeless HCF [94]. 
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 As fabrication of the ARHCFs improved at CREOL, mode analysis measurements 

continue on the various designs. An improvement has been made to the S2 analysis code in 

MatLab in order to smooth Fourier spectra. This was done through zeropadding, or simply 

adding a number of zeros to the end of the measured transmission spectra before taking the 

Fourier transform.  

Figure 67. Comparison of Fourier spectra before and after zeropadding was implemented. 

In doing this, the number of data points in the Fourier spectra increased, and the peaks 

corresponding to the HOMs were smoothed. This increases the accuracy when measuring the 

mode power. An example of the improvement from adding zeropadding is shown in Fig. 67. 

0.0 0.5 1.0 1.5 2.0

-20

-15

-10

-5

d
B

GDD (ps/m)

 Original

 with Zero Padding



95 

 

Summary and Outlook 

 Hollow core fibers based on the anti-resonant effect have been introduced, and their 

guiding mechanism and benefits over previous hollow core designs have been analyzed. A 

specific sensing application has been discussed, and a design for that application has been 

optimized in COMSOL, showing a customized transmission window for a Raman gas sensor. 

 Additionally, many fabricated ARHCF designs have been characterized for their 

propagation loss. An analysis on the dependence of the fiber design on the measured loss has 

agreed with the predicted improvements from variations in the cladding structure. To date, the 

lowest propagation loss measured has been with a seven ring, open boundary core design, and a 

value of ~ 0.2 dB/m has been obtained around the wavelength of 800 nm. With the same design 

and a higher quality glass, the loss appeared to drop lower than 0.1 dB/m from 700-1100nm from 

an initial measurement. 

 Finally, two ARHCFs have been analyzed in detail using spatially and spectrally resolved 

imaging, in order to understand their HOM content, and how that changes as a function of fiber 

length and bending radius. This is the first detailed experimental analysis of HOM content in 

ARHCF. Both fibers were shown to have some small percentage of HOM content at lengths of a 

few meters, but these HOM could be decreased by simply using longer lengths or bending the 

ARHCF. 

 The work shown here has helped in understanding the dependence of the ARHCF design 

parameters on both the propagation loss and mode content of the fibers. All measurements agree 

well with simulations, and will allow for further improvements in future designs for various 
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applications. One specific application that we are working towards, the Raman air sensor for 

astronaut suits, shows great potential as only a small change in the current ARHCF designs will 

greatly improve both the coupling efficiency and the transmission bandwidth from the currently 

used system at Mesa Photonics. 

  



97 

 

CHAPTER 4: CONCLUSION 

 In this dissertation, several different designs of specialty optical fiber were explored for 

uses in sensing applications. A complete investigation of coupled multicore fiber for various 

sensing applications has been presented. The benefits of this sensor configuration, such as high 

overall transmission, high sensitivity, sharp spectral features, and simple fabrication were 

explored and compared to traditional fiber sensors. The optimization of the MCF design was 

completed in simulation and verified by experiment, resulting in a publication in Optics 

Letters [58]. Spectral features were measured to be as deep as 35 dB, device loss was measured 

to be only 0.05 dB per splice, and 126 sensors were successfully fabricated and characterized by 

two students in two days. This sensor design has been patented by UCF and is in the process of 

being commercialized by a startup company, Multicore Photonics. 

 Sensitivity measurements were performed on the MCF sensors for temperature, strain, 

and bending. The MCF sensors were shown to be able to withstand temperatures up to 1000°C, 

making them suitable to be harsh environment sensors. Additionally, a simple method for 

increasing the sensitivity of the MCF to longitudinal force was shown to multiple the sensitivity 

of the MCF sensor by a factor of seven. Also, a configuration for decoupling force and 

temperature was presented and has been published in Photonics Technology Letters [65]. Finally, 

a developing all-fiber device, a photonic lantern, was used in conjunction with the MCF in order 

to increase sensitivity, add directional sensitivity, and lower the cost of the sensor interrogation 

for bending measurements. This combined device was published in Optics Letters [77]. 
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 A new design for the MCF was proposed, adding large air holes into the fiber in order to 

increase sensitivity to pressure and acoustic waves. Initial bands of fiber have been drawn, and 

the first SMS devices were spliced. Sensitivity to temperature, strain, bending, and acoustic 

waves has been measured. Initial results show drastic increases in sensitivity to bending and 

acoustic waves, compared to the solid MCF. The spectra of the SMS devices show that the 

design of the air hole MCF needs to be further optimized in order to obtain cleaner, more easily 

tracked MMI, but the increase in sensitivity measured to date shows great potential for many 

applications. 

 Additionally, ARHCF in various designs have been explored. In simulation, an ARHCF 

for a Raman air sensor was optimized for a specific wavelength range. Also, the dependence of 

the design of the cladding structure on the propagation loss was analyzed through a series of 

cutback measurements on fiber fabricated at CREOL. These measurements showed an 

improvement in the loss for an open boundary design, seven cladding rings, and higher quality 

material. Finally, the mode content of ARHCF was investigated using S2 imaging. A comparison 

between measurement and simulation showed good agreement, and understanding of possible 

ways to mitigate HOM content was developed. These measurements will help to improve future 

designs of ARHCF for applications such as high power delivery, UV and Mid IR transmission, 

gas sensing, and in-fiber lasers. 

 The work presented here shows significant progress in the field of sensing using specialty 

optical fibers. Sensors based on coupled MCF have shown great promise, and now can be further 

developed, i.e. harsh environment packaging, in order to enter commercial viability. The air hole 
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MCF sensors have shown great promise in their extreme sensitivity, but need further fiber design 

and splicing development in order to become reliable sensors. The work shown on ARHCF has 

pushed forward the development in CREOL’s ability to fabricate these complex and highly 

desirable fibers. The capability to design and fabricate these fibers has opened up many 

possibilities for future applications, including unique in-fiber sensors. 
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