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ABSTRACT 

From cell phones, laptops, desktops, TVs, to projectors, high reliability LCDs have 

become indispensable in our daily life. Tremendous progress in liquid crystal displays (LCDs) 

has been made after decades of extensive research and development in materials, device 

configurations and manufacturing technology.  

Nowadays, the most critical issue on viewing angle has been solved using multidomain 

structures and optical film compensation. Slow response time has been improved to 2-5 ms with 

low viscosity LC material, overdrive and undershoot voltage, and thin cell gap approach. Moving 

image blur has been significantly reduced by impulse driving and frame insertion. Contrast ratio 

in excess of one million-to-1 has been achieved through local dimming of the segmented LED 

backlight. The color gamut would exceed 100% of the NTSC (National Television System 

Committee), if RGB LEDs are used. Besides these technological advances, the cost has been 

reduced dramatically by investing in advanced manufacturing technologies.  

Polymer-stabilized blue phase liquid crystal displays (BPLCDs) based on Kerr effect is 

emerging as a potential next-generation display technology. In comparison to conventional 

nematic devices, the polymer-stabilized BPLCDs exhibit following attractive features: (1) 

submillisecond response time, (2) no need for molecular alignment layers, (3) optically isotropic 

dark state when sandwiched between crossed polarizers, and (4) transmittance is insensitive to 

cell gap when the in-plane electrodes are employed.  

However, aside from these great potentials, there are still some tough technical issues 

remain to be addressed. The major challenges are: 1) the operating voltage is still too high (~50 

Volts vs. 5 Volts for conventional nematic LCDs), and the transmittance is relatively low (~65% 
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vs. 85% for nematic LCDs), 2) the hysteresis effect and residual birefringence effect are still 

noticeable, 3) the mesogenic temperature range is still not wide enough for practical applications 

(40 
o
C to 80 

o
C), and 4) the ionic impurities in these polymer-stabilized nano-structured LC 

composites could degrade the voltage holding ratio, which causes image sticking. 

In this dissertation, the BPLC materials are studied and the new BPLC device structures 

are designed to optimize display performances.  

From material aspect, the electro-optical properties of blue phase liquid crystals are 

studied based on Kerr effect. Temperature effects on polymer-stabilized blue phase or optically 

isotropic liquid crystal displays are investigated through the measurement of voltage dependent 

transmittance under different temperatures. The physical models for the temperature dependency 

of Kerr constant, induced birefringence and response time in BPLCs are first proposed and 

experimentally validated. In addition, we have demonstrated a polymer-stabilized BPLC mixture 

with a large Kerr constant K~13.7 nm/V2 at 20 oC and =633 nm. These models would set useful 

guidelines for optimizing material performances.  

From devices side, the basic operation principle of blue phase LCD is introduced. A 

numerical model is developed to simulate the electro-optic properties of blue phase LCDs based 

on in-plane-switching (IPS) structure. Detailed electrode dimension effect, distribution of 

induced birefringence, cell gap effect, correlation between operation voltage and Kerr constant, 

and wavelength dispersion are investigated. Viewing angle is another important parameter. We 

have optimized the device configurations according to the device physics studied. With proper 

new device designs, the operating voltage is decreased dramatically from around 50 Volts to 

below 10 Volts with a reasonably high transmittance (~70%) which enables the BPLCDs to be 

addressed by amorphous silicon thin-film transistors (TFTs). Moreover, weak wavelength 
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dispersion, samll color shift, and low hysteresis BPLCDs are achieved after their root causes 

being unveiled. Optimization of device configurations plays a critical role to the widespread 

applications of BPLCDs. 

In addition to displays, blue phase liquid crystals can also be used for photonic 

applications, such as light modulator, phase grating, adaptive lens and photonic crystals. We will 

introduce the application of blue phase liquid crystal as a modulator to realize a viewing angle 

controllable display. The viewing angle can be tuned continuously and precisely with a fast 

response time. The detailed design and performance are also presented in this dissertation. 
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

Liquid crystal (LC) was first discovered in 1888 by an Austrian botanist Friedrich 

Reinitzer and the name was coined in 1904 by a German physicist Otto Lehmann. Liquid crystal 

is an intermediate state of matter between isotropic fluids and crystalline solids. It can be also 

viewed as a liquid in which an ordered arrangement of molecules exists. Based on the different 

orderings of molecules and their optical properties, liquid crystals can be divided into 

thermotropic, lyotropic and polymeric phases, among which a lot of research work has been done 

towards the thermotropic phase [1, 2]. Many thermotropic LCs exhibit a variety of states as 

temperature increases: from solid to anisotropic liquid crystal, to isotropic liquid when thermal 

energy deteriorates the delicate cooperative ordering of the LCs, and finally to vapor state [3, 4]. 

After decades of active research, device development, and massive investment in 

manufacturing technology, liquid crystals have been extensively used in display applications and 

liquid crystal display (LCD) industry has dominated flat panel display market. Nowadays, LCDs 

have become indispensable in our daily life, ranging from cell phones, computers, TVs, to data 

projectors [5].  

Figure 1.1 depicts the basic structure of a transmissive LCD. A LCD panel usually 

consists of a backlight unit, polarizers, driving circuits, a liquid crystal layer and color filters. 

Liquid crystal is non-emissive; therefore a backlight is needed to illuminate the LC panel. The 

backlight films, such as light guide plate, diffuser, and brightness enhancement films, are 

employed in the backlight unit to make the light distribution more uniform. The LC layer is 

http://en.wikipedia.org/wiki/Thermotropic
http://en.wikipedia.org/wiki/Lyotropic
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sandwiched between two crossed linear polarizers. Thin-film-transistor (TFT) arrays are usually 

used to drive the pixels. The RGB color filters are fabricated on the top substrate to make a full-

color display.  

 

Figure 1.1 Device structure of a tranmissive TFT-LCD 

The first liquid crystal display device was developed in the mid-1960s with dynamic 

scattering mode (DSM) [6]. To address the stability issue of DSM mode, the twisted nematic (TN) 

LCD mode was proposed in the 1970s [7, 8]; to improve the resolution, the super twisted 

nematic LCD mode were invented [9]; to widen the viewing angle and increase the contrast ratio, 

in-plane switching (IPS) mode [10] and vertical alignment (VA) mode were developed in the 

1990s and then implemented in the 2000s [11]. The LCD industry has been continuingly 

advanced by the development of new technology. The most critical issue on viewing angle has 
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been further addressed by using multidomain structures and optical film compensation. The 

motion image blur has been significantly reduced by impulse driving and frame insertion. The 

color shift at oblique viewing angle has been dramatically reduced by eight domain approach via 

two transistors. The contrast ratio has exceeded one million-to-1 through local dimming of the 

LED backlight. The color gamut would exceed 100% NTSC, if RGB LEDs are used. Besides 

these technological advances, the cost is also reduced dramatically by investing in advanced 

manufacturing lines. However, there’s still an urgent need for fast response time. 

Fast response time not only reduces the undesirable motion picture image blurs but also 

enables color sequential liquid crystal displays (LCDs) using RGB (red, green, blue) LED 

backlight [12, 13]. The latter is particularly attractive because it eliminates spatial color filters, 

which in turn triples the optical efficiency and resolution density. Higher optical efficiency leads 

to lower power consumption which implies to energy saving and longer battery life. However, in 

order to minimize color breakup in color sequential displays, the LC response time should be less 

than one millisecond which imposes a big challenge to nematic LCDs [14, 15]. Various 

approaches for reducing LC response time have been developed, such as thin cell gap [16, 17],
 

overdrive and undershoot voltage [18, 19], bend cell [20-22], and low viscosity LC materials 

[23]. However, the state-of-the-art LC response time is around 2-3 ms. Therefore, developing 

LCDs with submillisecond response time is in need. 

1.2 Introduction to Blue Phase Liquid Crystals 

Recently, a promising new technology involving blue phase liquid crystal (BPLC) is 

emerging [24]. BPLC was first discovered by Reinitzer in 1888 on the melting behavior of 

cholesteryl benzoate. It turned blue as it changed from clear state to cloudy upon cooling. This is 
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also the origin of the name of blue phase LC. Blue phase is a distinct thermodynamic phase that 

appears over a narrow temperature range (1–2oC) between the chiral-nematic/cholesteric (CH) 

and isotropic phases. Figure 1.2 shows the schematic plot of the phases between nematic and 

isotropic phases. The top part shows that non-chiral molecules having only nematic and isotropic 

phases, as the temperature increases, the liquid crystals will directly transform to isotropic phase; 

the bottom part depicts that for chiral molecules, as the temperature increases, three stages of 

blue phases (BP-I, BP-II and BP-III) would appear between chiral-nematic (i.e., cholesteric) 

phase and isotropic phase [25].  

 

Figure 1.2 Schematic picture of the temperature region near the nematic-to-

isotropic phase transition. Top: nonchiral molecules have only nematic and 

isotropic phases; Bottom: three stages of blue phases appear between chiral 

nematic/cholesteric (CH) phase and isotropic phase. 
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BP-I and BP-II exhibit three-dimensional periodic structures in the director field as 

shown in Figure 1.3. They have body-centered and simple cubic symmetry, respectively. BP-III 

is seemingly amorphous; it has a same symmetry as the isotropic phase.  

 

Figure 1.3 Cubic structures of BP-I and BP-II. 

Figure 1.4 is the molecular structure of blue phase LC with cubic structure. The liquid 

crystal molecules have a double-twist alignment filled up in a cylinder. There is in fact unlimited 

number of helical axes presented; however the structure was named double-twist. The LC 

directors perform a 45 degree rotation from the center line. Due to the orientation of the LC 

molecules, microscopically, blue phase is optically anisotropic. The diameter of the cylinder is in 

the range the pitch length of the chiral nematic LC of ~100 nm. Because of this small range local 

reorientation, blue phase has a very fast response. So far, a microsecond-response BPLC with 39 
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µs decay time at room temperature has been demonstrated [26]. The double-twist cylinders 

further form the cubic symmetry, therefore, blue phase is optically isotropic macroscopically. 

The double-twist alignment is more stable than the single-twist structure such as the chiral 

nematics with normal helical structure. However, the double-twist cylinders cannot fill the cubic 

space completely uniformly to allow the directors to be matched everywhere. Meiboom has 

introduced the defect theory that defects occur at the intersections between the double-twist 

cylinders in the cubic structure [27]. The cubic structure of blue phase is stabilized by the lattice 

defects. The disclination lines in Figure 1.4 (d) are the defect lines.  

 

Figure 1.4 Blue phase LC structure at the microscopic level: (a) double-twist 

alignment of LC molecules; (b) double-twist cylinder; (c) lattice cubic symmetry 

formed by double-twist cylinders and (d) disclination lines of singularity in 

molecular alignment. 
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The temperature range in which the defect structure exists is very narrow (around 1-2 oC) 

and is a problem from the viewpoint of practical applications. In 2002, Kikuchi proposed a 

polymer stabilization method in which an equilibrium phase is thermodynamically stabilized by 

the coexistence of a polymer. Polymer chains are formed selectively in the dislination core, and 

therefore the blue phase composite does not require a thermal energy to keep the disclination 

core isotropic at a temperature below isotropic phase. Through this method, the temperature 

range is reported to be expanded to more than 60 degree including room temperature.[28]  

In a cholesteric (chiral nematic) liquid crystal, the selective reflection wavelength is 

λ=n⋅P, where n is the average refractive index and P is the pitch length. The reflection band has a 

bandwidth Δλ=Δn⋅P, where Δn is the LC birefringence and Δλ is relatively broad. For BP-I and 

BP-II, because of the cubic symmetry, there are several selective reflections of incident light 

corresponding to different crystal planes, known as the Bragg diffractions. However, the color 

being reflected is not always blue as it’s been first discovered by Reinitzer, the reflection 

wavelength is affected by the chirality, the lattice parameter (a), and the direction and Miller 

indices (h, k, l) of the Bragg plane. The reflection wavelength can be expressed as: 

222

2

lkh

na


  (1.1) 

For BP-I, the lattice constant corresponds to one pitch length (P) and diffraction peaks 

appear when the sum of the Miller indices (h+k+l) is equal to an even number, such as (110), 

(200), and (211). For BP-II, the lattice constant corresponds to half a pitch length (P/2). The 

diffraction peaks of BP-II could appear no matter the sum of the Miller indices (h+k+l) is even or 

odd, such as (100) and (110) . The pitch length of a BPLC is slightly different from that of chiral 

nematic phase. The reflection bandwidth is also much narrower than that of chiral nematic phase 
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[29]. Figure 1.5 shows the platelet textures of two BPLCs under crossed polarizers [30]. The 

different colors of the left and right pictures are from different pitch lengths. The multiple colors 

in each picture correspond to different crystal planes (Miller indices). For display applications, 

by adjusting the chirality in the BPLC, the reflection band can be shifted outside the visible 

spectral region. 

 

Figure 1.5 BPLC platelet textures under polarizing optical microscope with 

different chiral concentrations. 

As introduced before, macroscopically, BPLC appears optically isotropic. According to 

Kerr effect [31], if an electric field is applied to the BPLC, birefringence will be induced and the 

LC refractive-index distribution becomes anisotropic. When the BPLC device is sandwiched 

between two crossed polarizers, the transmittance gradually increases as the voltage increases. 

Therefore, from application viewpoint, blue phase LCs with fast response are of interest for high 

speed light modulators, tunable photonic crystals, as well as displays.  

In comparison to conventional nematic LCDs, polymer-stabilized blue phase exhibits 

some very attractive features: 1) It does not require any alignment layer, such as polyimide, 

which not only simplifies the manufacturing processes but also reduces the cost. 2) Its response 
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time is in the submillisecond range, which helps to minimize the motion-image blur and, more 

importantly, enables color-sequential displays without pigment color filters if an RGB LED 

backlight is used. The major impacts of eliminating color filters are threefold: (i) it enhances 

optical efficiency by ~3X, resulting in lower power consumption if the same display brightness is 

compared; (ii) it increases device resolution by 3X (i.e., crisper images); and (iii) it reduces 

production cost. 3) The dark state of a blue phase LCD is optically isotropic so that its viewing 

angle is wide and symmetric. Optical compensation films may or may not be needed, depending 

on the actual applications. 4) The transmittance is insensitive to the cell gap, as long as the cell 

gap exceeds about 3 m depending on the IPS electrodes employed. This cell-gap insensitivity is 

particularly attractive for fabricating large-screen or single-substrate LCDs, in which cell-gap 

uniformity is a big concern, or for single substrate LCDs for slimness and light weight. 

Although polymer-stabilized blue phase LCDs hold so many promises, some tough 

technical issues remain to be overcome before the widespread applications. The major challenges 

are: (1) The operation voltage is still too high (~50 Vrms vs. 5 Vrms for conventional nematic 

LCDs), (2) the transmittance is relatively low (~65% vs. 85% for nematic LCDs), (3) the 

mesogenic temperature range is still not wide enough for practical display applications (from –

40
o
C to 80

o
C), and (4) other challenges such as hysteresis, long term stability and residual 

birefringence. The operating voltage of a blue phase LCD is primarily governed by the induced 

birefringence which in turn is dependent on the Kerr constant (K) of the LC composite and the 

electric-field strength. Therefore, developing new blue phase LC materials with a large Kerr 

constant and new device structures for enhancing the effective electric-field intensity are 

urgently needed. 

In this dissertation, electro-optic properties of blue phase LCs are studied. A computation 
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numerical model is developed to understand the underlying device physics of BPLCDs. 

Parameters affecting the device performance with an in-plane-switching (IPS) structure, such as 

electrode dimension, induced birefringence distribution, cell gap, the relationship of Kerr 

constant and voltage are investigated. Viewing angles are also studied. The device physics study 

provides guidance to the optimization of blue phase liquid crystal devices. New configurations 

are proposed to achieve low operating voltage, low color shift, hysteresis-free and wavelength-

dispersion-free BPLCDs. Those approaches will undoubtedly accelerate the emergence of BPLC 

as next-generation display and photonic devices. 
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CHAPTER 2: ELECTRO-OPTICS OF POLYMER-STABILIZED BLUE 

PHASE LIQUID CRYSTALS 

2.1 Kerr Effect 

Kerr effect is a type of quadratic electro-optic effect caused by an electric-field-induced 

ordering of polar molecules in an optically isotropic medium. It usually exists in crystals with 

centro-symmetric point groups. If an electric field E is applied to a Kerr medium, such as 

polymer-stabilized BPLC or optically isotropic LC composite, birefringence will be induced 

which is related to E as:[31] 

2KEnind   (2.1) 

where  is the wavelength and K is the Kerr constant. From Eq. (2.1), the induced birefringence 

is linearly proportional to E
2
. 

 

Figure 2.1 Electro-optic effect on BPLC refractive index ellipsoid: (a) BPLC 

without an electric field, (b) positive  BPLC with an electric field, and (c) 

negative  BPLC with an electric field. 
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The induced anisotropy will be along the direction of the electric field. Consequently, the 

isotropic sphere will appear as an elongated (Figure 2.1(b)) or a flattened (Figure 2.1(c)) 

ellipsoid, depending on whether the host LC has a positive or negative dielectric anisotropy () 

[32]. Eq. (2.1) is valid only when the electric field is weak. As E keeps increasing, the induced 

birefringence will gradually saturate, as clearly described by the following extended Kerr 

effect:[33]  

]))/(exp[1( 2

ssind EEnn   (2.2) 

where ns denotes the saturated induced birefringence and Es is the saturation electric field. In 

the weak field region (E<<Es), we can expand Eq. (2.2) and deduce the Kerr constant as:   

)/( 2

ss EnK   (2.3) 

From Eq. (2.3), a BPLC material with high ns and low Es will result in a large Kerr 

constant. Roughly speaking, ns governs the optical property (e.g., maximum phase change) and 

Es determines the electric property (operating voltage) of a BPLC material. As will be discussed 

in detail later, Kerr constant plays a key role on the operating voltage of the BPLC devices. A 

typical Kerr constant of BPLC composite is around 1 nm/V
2
. In 2009, Kikcuhi et al.[34] reported 

a polymer-stabilized isotropic phase (PSIP) composite with K~10 nm/V
2
 and its operating 

voltage in an IPS cell (5 m electrode width and 10 m electrode gap) is ~50 Vrms. 

2.2 Temperature Effect 

Although Kerr constant plays a crucial role on the performance of a PSBP or PSIP BPLC 

composite, only scattered data are available in literatures discussing about its temperature effect 
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[35]. Moreover, the response time of these LC composites are highly sensitive to the operating 

temperature. In this section, the temperature dependent Kerr constant and response time will be 

presented, as well as the correlation between these experimental results with physical models 

[36]. Very good agreement between experiment and theory is found.  

We have set up an experiment using UCF BPLC material, the host nematic LC has a 

birefringence of 0.17 (λ=589nm, T=20 oC) and clearing temperature of 94 oC. It was mixed with 

chiral dopants (22.7% Merck CB15 and 4.7% ZLI-4572), monomers (3.9% RM257, 4.6% 

Aldrich M1, and 7.7% EHA) and photoinitiator (1.5% darocur). The reason that we mixed some 

M1 is to lower the operating voltage [37]. Usually, the blue phase temperature range is rather 

narrow (~3-5oC) and we need to control the temperature uniformly across the cell. To overcome 

this problem, we could conduct UV curing in an isotropic state. Similar to that cured at a blue 

phase, the curing in an isotropic phase also produces nanostructured optically isotropic 

composite and its electro-optic properties still follow Kerr effect. In our experiment, we filled the 

BPLC mixture into an IPS cell with a cell gap of 7.5 µm. The ITO (indium tin oxide) electrode 

width is 10 µm and electrode gap is 10 µm. UV curing process was performed at 70 oC (isotropic 

state) for 30 min. After polymerization, the clearing temperature of the PSIP composite was 

measured to be Tc~54 oC, which was only ~5oC below that of the host LC/chiral mixture (before 

mixing with the monomers). 

We first measured the voltage-dependent transmittance (VT) of our IPS cell by placing it 

between two crossed polarizers. A CW He-Cd laser (λ=441.8 nm) was used as the light source. 

The main reason that we chose a shorter wavelength rather than a He-Ne laser (λ=633 nm) was 

to obtain a transmission peak at a lower voltage. 
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Figure 2.2 Voltage dependent normalized transmittance curves of the IPS PSIP 

composite cell measured from 15 
o
C to 37.5 

o
C. Electrode width=10 µm, 

electrode gap=10 µm and cell gap=7.5 µm. λ=441.8 nm. 

Figure 2.2 shows the normalized VT curves measured from 15 oC to 37.5 oC (where the 

total phase retardation is still larger than 1π). As the temperature increases, the on-state voltage 

(Von; corresponding to the peak transmittance) shifts to the right, indicating that Kerr constant 

decreases with the temperature. From Figure 2.2, the on-state voltage of our PSIP sample occurs 

at Von ~90 Vrms at 15oC. A high Von implies a relatively small Kerr constant. We fitted the VT 

curves shown in Figure 2.2 with the extended Kerr effect model [Eq. (2.2)] at each temperature. 

The obtained K values are plotted in Figure 2.3. As the temperature increases, the Kerr constant 

decreases gradually. 
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Figure 2.3 Kerr constant with the reciprocal of temperature (red line: linear fit of 

the Kerr constant with the reciprocal of temperature according to Eq. (2.8). T: 

Kelvin temperature. The fitting parameter is 25 /1008.1 VKm   ). 

To explain this trend, we need to derive the temperature dependent Kerr constant. It has 

been reported by Gerber
 
that the Kerr constant can be approximated by the following equation 

[38]: 

.
)2(

~
2

2

2 




 k

P
n

E

n
K oind 


 (2.4) 

where indn  is the induced birefringence, n ,   and k are the intrinsic birefringence, dielectric 

anisotropy, and elastic constant of the host LC material, and P is the pitch length. Furthermore, 

we know that n ,   and k are related to the nematic order parameter (S) as Snn o ~  [39],
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TS /~ , and 
2~ Sk  [40].  

Next, we should consider the temperature dependent pitch length. If a cholesteric LC 

exhibits a pre-transitional phenomenon, like the Smectic-A phase, then its temperature-dependent 

pitch length can be expressed as [41]: 

'

1 )
*

*
( 


T

TT
PPP o  (2.5) 

where Po is the cholesteric LC pitch length, T* is the Sm-A phase transition temperature, and P1 

and ’ are fitting parameters. In the example shown in Ref. 41, T*~297.5 K, '

1 *)/1(  TP =230 

nm, and ' ~0.78. In the vicinity of T*, P is indeed sensitive to the temperature. However, if the 

temperature is far away from T*, which is, T>>T*, then Eq. (2.5) can be simplified to: 

'230  TnmPP o . (2.6) 

Under such condition, the second term in Eq. (2.6) is much smaller (<1%) than the first 

term (Po is usually ~350 nm) and can be neglected. In our BPLC composite, although there is no 

Sm-A phase we can still treat T* as a virtual transition temperature with T>>T*. Thus, we can 

ignore the temperature effect of pitch length in Eq. (2.5). 

Plugging these parameters into Eq. (2.4), we find the temperature dependent Kerr 

constant has following simple form:  
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 . (2.7) 

Thus, in theory the Kerr constant is linearly proportional to the reciprocal temperature, 

and α is the proportionality constant. However, as the temperature approaches the clearing point 

(Tc) of the LC composite, Kerr constant should vanish (or at least dramatically decreased) 
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because both n and  are approaching zero. To satisfy this boundary condition, we rewrite Eq. 

(2.7) as follows: 

)
11

(
cTT

K  . (2.8) 

Eq. (2.8) predicts that Kerr constant decreases linearly with reciprocal of temperature 

(1/T) and eventually vanishes as the temperature reaches clearing point.  

In experiment, we could treat the linear coefficient α and clearing temperature Tc as 

fitting parameters. Results are depicted in Figure 2.2. From fittings, we find

25 /1008.1 VKm    and Tc=327.58 K (54.43 
o
C). The fitted Tc matches very well with the 

measured clearing temperature (54 
o
C) of the LC composite. Thus, Eq. (2.8) actually has only 

one adjustable parameter which is α.   

In Figure 2.2, as the temperature decreases (or 1/T increases) the Kerr constant gradually 

deviates from the linear extrapolation. This is because in the low temperature region the higher 

order term of the elastic constant becomes increasingly important and should be included: [42] 

42
2

1 PSaSak   (2.9) 

where a1 and a2 are coefficients, and 4P is the fourth rank of the order parameter. From previous 

experimental results, in the low temperature region the second term in Eq. (2.9) makes ~30-40% 

contribution to enhance the elastic constant [43].
 
Thus, the Kerr constant in the lower 

temperature region may not increase as rapidly as the fitting line shows. 

From Eq. (2.1) and the VT curves shown in Figure 2.1, we could also extrapolate the data 

of the saturated induced birefringence ns under different temperatures. Results are depicted in 

Figure. 2.4. As the temperature increases, ns decreases gradually. To understand the responsible 
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physical mechanisms, we need to know the temperature dependent birefringence of the BPLC 

composite system.   

 

Figure 2.4 Temperature dependent saturated induced birefringence. Open circles 

are experimental data and line represents fitting using Eq. (2.10) with 

(ns)o=0.159 and β=0.25. 

Temperature dependent ns is proportional to order parameter (S) which in turn can be 

approximated by Haller’s semi-empirical equation [44]: 

Snn oss )( , (2.10) 

and 
)/1( cTTS  . (2.11) 

Here, (ns)o is the extrapolated birefringence at T=0 K, Tc is the clearing temperature of 

our LC composite (~54oC), and the exponent β is a material constant. For many nematic LC 

materials studied, β is ~0.210.06 [45, 46]. Eq. (2.10) works well as long as the temperature is 

not too close (within 1oC) to the clearing point. As shown in Eqs. (2.10) and (2.11), there are two 
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fitting parameters: (ns)o and β. From the fitting curve shown in Figure 2.4, we find (ns)o=0.159 

and β=0.25. We also measured the temperature dependent birefringence of our nematic host and 

found (ns)o-host =0.275 and βhost=0.245. The material constant β of the PSIP composite keeps 

almost the same as that of the host LC material. It means that the polymer only helps to stabilize 

the molecular arrangement in the LC composite but does not affect the intrinsic material property 

of the host LC too noticeably. On the other hand, knowing (ns)o-host =0.275 and LC 

concentration (~54.8%) in our LC/polymer composite we estimate that (ns)o~0.151. In 

comparison, through fitting our obtained (ns)o is 0.159. The difference is less than 5%. This is 

another success between our experimental results and physical models. 

To further verify the model, we have done another experiment with Chisso’s BPLC 

material designated as JC-BP01M [47]. We injected JC-BP01M into an IPS cell with cell gap 

d=7.5 µm, ITO (indium tin oxide) electrode width w=10 µm and electrode gap l=10 µm. We then 

heated the cell from chiral nematic phase to blue phase with the temperature slightly higher than 

the BP-I transition temperature. We held the temperature for 1 min and then conducted UV 

curing (intensity ~20 mW/cm
2
 and ~365 nm). After polymerization, the clearing temperature of 

the PSBP composite was measured to be Tc~70 
o
C. We measured the VT curve of our IPS cell 

with a He-Ne laser (λ=633 nm).  

Figure 2.5 is the normalized VT curves from 15
 o

C to 65 
o
C. Figure 2.6 shows the linear 

fit of the Kerr constant with the reciprocal temperature according to Eq. (2.8). Different from the 

UCF BPLC material, the fitting parameter is 25 /10644.2 VKm   . Here, we have for the 

first time demonstrated a polymer-stabilized BPLC mixture with a large Kerr constant K~13.7 

nm/V
2
 at 20

o
C and =633 nm. The corresponding on-state voltage is ~48Vrms in an IPS cell with 
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10-m electrode width and 10-m electrode gap. By fitting the VT curves shown in Figure 2.5 

with extended Kerr effect model, we also obtained ns at different temperatures in Figure 2.7. 

From the fitting curve shown in Figure 2.7, we find (ns)o=0.232 and β=0.25. From the two sets 

of experiments with UCF PSIP material and Chisso PSBP (JC-BP01M), our proposed physical 

model between Kerr constant and temperature has been substantially validated. 

 

Figure 2.5 Measured VT curves of the IPS PSBP cell (Chissco JC-BP01M) at 

elevated temperatures. Electrode width=10 m, electrode gap=10 m, and cell 

gap=7.5 m. λ=633 nm. 
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Figure 2.6 Linear fit of Kerr constant with reciprocal temperature according to Eq. 

(2.8). T: Kelvin temperature. The fitting parameter is 25 /10644.2 VKm   . 

 

Figure 2.7 Temperature dependent saturated induced birefringence. Open circles 

are experimental data and solid line represents fitting using Eq. (2.10) with 

(ns)o=0.232 and β=0.25. 
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2.3 Optical Response Time  

Fast response time is one of the most attractive features of PSBP or PSIP LCDs since it 

helps to reduce motion blur and enable color-sequential display while minimizing color breakup. 

For the experiment in Sec. 2.2 with UCF PSIP material, besides the VT curves, we also measured 

the decay time of our LC composite from 22.5 
o
C to 40 

o
C. We did not measure the rise time 

because it depends on the applied voltage [48].
 
The decay time is defined as 100%-10% 

transmittance change. The measured data are plotted in Figure 2.8.  

 

Figure 2.8 Temperature dependent decay time. Dots are experimental data and 

line represents fitting using Eq. (2.14) with B=7.1610
-23

 ms and Ea=1.31 eV 

As the temperature increases, the decay time decreases rapidly. At room temperature, the 

response time of BPLC is indeed experimentally shown being submillisecond. For example, we 

note from Figure 2.8 that the response time is decreased by 2X when the temperature is increased 

by merely 4-5 degrees. This changing rate is ~3X more sensitive than that of most nematic LCs. 
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To understand this phenomenon, we need to develop a physical model to explicitly 

correlate the temperature dependent response time with LC parameters. The free relaxation time 

of a polymer-stabilized blue phase or optically isotropic LC composite can be approximated by 

[5, 49]: 

2

2

1

)2( 




k

P
 , (2.12) 

with γ1 being the rotational viscosity, P the pitch length, and k the elastic constant. As 

discussed in Eq. (2.6), the pitch length is insensitive to the temperature and can be treated as a 

constant.  

From mean field theory [40],
 
elastic constant is related to the nematic order parameter (S) 

as 
2~ Sk . With regard to rotational viscosity, the following modified Arrhenius model works 

well to describe the temperature dependent rotational viscosity of nematic LCs [50, 51]:
 
 

)/exp(~1 TKES Ba , (2.13) 

where Ea is the activation energy of molecular rotation and KB is the Boltzmann constant. 

With Eq. (2.13) and treating P as a constant, we can rewrite Eq. (2.12) as: 
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Eq. (2.14) has two unknowns: B and Ea. As shown in Figure 2.8, Eq. (2.14) fits quite well 

with our measured response time data. Through fitting, we obtain B=7.1610
-23

 ms and Ea=1.31 

eV. The obtained activation energy is ~3X higher than that of E7 [50, 52]. Our host nematic LC 

has a similar viscosity and Ea as E7. The increased Ea is believed to originate from the viscous 

chiral dopants (22.7% Merck CB15 and 4.7% ZLI-4572). 
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From Eq. (2.14), we can check how much temperature change is needed in order to result 

in a 2X reduction in response time. To do so, we set =1 when T=T1 and =2 when T=T2, 

assuming T2>T1. Our objective is to find (T2-T1) which will make 2=0.51. With some algebra 

and assuming =0.25, we derive following equation: 

./693.0 2112 aB ETTKTT   (2.15) 

Substituting T2=T1+(T2-T1) to the right side of Eq. (2.15) and assuming (T2-T1)<< T1, we 

find: 

./693.0 2
112 aB ETKTT   (2.16) 

Let us assume T1 is around room temperature (~300K) and use Ea ~1.31 eV, we find T2-

T1 ~ 4K. That is to say, the response time will decrease by 2X as the operating temperature 

increases by merely ~4 
o
C. This change rate is ~3X more sensitive than E7 and MLC-6608 

because our LC composite has 3X higher Ea than E7 and MLC-6608 [43]. 

From Eq. (2.14), a low viscosity host (smaller activation energy) is always in favor for 

achieving fast response time. However, there are tradeoffs between response time and Kerr 

constant. For example, from Eq. (2.4) a smaller elastic constant k and a larger pitch length P 

leads to a larger Kerr constant, but from Eq. (2.14) the response time will be slower. Similarly, a 

larger dielectric anisotropy helps to enhance Kerr constant, but it could dramatically increase 

viscosity and thus slow down the response time. The polymer-stabilized blue phase or optically 

isotropic liquid crystal composite is a complex system, as it consists of nematic liquid crystal 

host, chiral agents, and two types of monomers. Both material optimization and UV curing 

process need to be optimized.  
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2.4 Summary 

In this chapter, we studied the basic electro-optic properties of blue phase liquid crystal 

materials. We have introduced Kerr model and extended Kerr model. Temperature effects on 

polymer-stabilized blue phase or optically isotropic liquid crystal displays are also investigated. 

Through the measurement of voltage dependent transmittance under different temperatures, an 

analytical approximation between Kerr constant and temperature is proposed for the first time. In 

addition, we have demonstrated a polymer-stabilized BPLC mixture with a large Kerr constant 

K~13.7 nm/V2 at 20 oC and =633 nm. Finally, the optical response time and its temperature 

dependency is discussed and validated through experiment and model. In all aspects, good 

agreement between experiment and physical model is obtained. These models will undoubtedly 

benefit us with more understanding of the material performance. The study of basic electro-optic 

properties of blue phase liquid crystals will provide useful guidelines to the optimizations of 

BPLC materials for practical applications. 
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CHAPTER 3: DEVICE PHYSICS OF BLUE PHASE LIQUID CRYSTAL 

DISPLAYS 

As above mentioned, polymer-stabilized blue phase liquid crystals exhibit several 

attractive features for display and photonic applications but also have some technical challenges. 

In this chapter, to better understand the underlying operation mechanisms, we will explore the 

device physics. 

3.1 Blue Phase Liquid Crystal Displays with In-Plane-Switching Fields 

Typically, for display applications, the LC layer is sandwiched between two crossed 

linear polarizers. The operation mechanism of a polymer-stabilized blue phase liquid crystal 

display (BPLCD)
 
is drastically different from conventional nematic LCDs in that the former is 

based on Kerr effect-induced isotropic-to-anisotropic transition while the latter relies on the 

anisotropic-to-anisotropic LC director reorientation. Moreover, the optic axis of the induced 

birefringence in BPLC is along the direction of the electric field. To achieve effective phase 

retardation, the induced birefringence should be parallel to the BPLC cell substrates, that is, a 

lateral electric field is desired. Among the present LCD modes, in-plane-switching (IPS) LCD 

can effectively generate horizontal electric fields; therefore, in blue phase LCD devices, IPS 

electrodes are commonly employed. 

Figure 3.1 illustrates the basic operation principles of a BPLCD in a planar in-plane-

switching (IPS) cell, where w is the electrode width and l is the electrode gap. When there’s no 

electric field applied, the symmetric cubic structure in a polymer-stabilized BPLC appears to be 

optically isotropic. Therefore, the linearly polarized light passing the bottom polarizer 

experiences no phase retardation in the BPLC layer, thus it cannot pass the crossed analyzer. 
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When an electric field is applied, the BPLC becomes anisotropic according to the Kerr effect, 

thus, the linearly polarized light passing the bottom polarizer can pass the analyzer on the top.  

 

Figure 3.1 Operation principle of a BPLCD. Left: without electric field, BPLC 

appears to be optically isotropic; right: with electric field, BPLC becomes 

optically anisotropic. 

The output transmittance of a uniaxial medium placed between two crossed linear 

polarizers is 
22

0 )2/sin()2sin( TT  , where  is the angle between optic axis of the uniaxial 

media and the absorption axis of the polarizer, =2dn/ is the phase retardation of the uniaxial 

medium. The angle  needs to be 45
o
 away from the linear polarizer absorption axis in order to 

obtain maximum transmittance. In other words, the induced n also needs to be along that 

direction to have a maximum transmittance. Moreover, to get the maximum phase retardation , 

the induced birefringence should also be along the horizontal direction parallel to the substrate 

surface. Therefore, the stronger horizontal fields will benefit. 
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3.2 Computational Analysis of IPS-BPLCDs 

In this section we will introduce the computational model developed [53, 54] for 

characterizing the electro-optic properties of the BPLC materials with in-plane switching (IPS) 

cells [55]. Also will be investigated here are the dependence of BPLCD electro-optics on 

different parameters such as electrode configuration, LC birefringence, cell gap, Kerr constant 

and wavelength dispersion. The viewing angle performance will also be looked into. 

Strictly speaking, to accurately compute the detailed molecular distribution of BPLCs in 

response to an external field, both Landau free energy and electric energy need to be considered, 

which turn out to be quite complicated [3, 27]. However, macroscopically the isotropic to 

anisotropic transition of BPLC can be described by Kerr effect. Thus, the electro-optic properties 

of a BPLCD can be simulated by computing the induced birefringence profile based on Kerr 

effect. The amplitude of the induced birefringence (n) can be characterized by Eq. (2.1), or to 

be more accurate, by the extended Kerr model in Eq. (2.2). For display applications, a BPLC cell 

is placed between two crossed linear polarizers. Without the applied voltage, each small blue 

phase unit is optically isotropic, having refractive indices identical along its principal coordinates. 

This leads to a very good dark state. When an electric field E is applied, birefringence will be 

induced by the electric fields and the refractive index ellipsoid will have its optic axis aligned 

along the direction of the E vector. The horizontal electric fields are in favor because they will 

induce phase retardation for the incident light. 

Figure 3.2 shows the proposed flow chart of the numerical model for the BPLCD 

calculation. First, we compute the potential distribution Ф from solving the Poisson equation 

(Ф) = 0 and then calculate the distribution of electric field E in the media. Based on the 
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obtained electric field, we calculate the induced birefringence distribution n from Eq. (2.1) and 

assign the local optic axis direction of each unit along the E vector. After obtaining the 

birefringence and optic axis distribution, we adopt the extended Jones matrix [56] to compute the 

related electro-optic properties, such as voltage-dependent transmittance curve (VT), viewing 

angle, and color shift, etc.  

 

Figure 3.2 The flow chart of the BPLCD modeling based on Kerr effect. 
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3.2.1 Electric Field Effect 

Electrode structure affects the driving voltage and peak transmittance of an IPS BPLC 

cell. The induced birefringence of BPLC is proportional to E
2
, and is influenced by both 

amplitude and direction of the electric field. Since the induced refractive index ellipsoid is along 

the electric field direction, for the BPLC cell at 45
o
 away from the polarizer’s transmission axis, 

a horizontal electric field is needed to provide phase retardation for intensity modulation. Thus, 

in an IPS cell the transmittance is mainly contributed from the spacing area where the electric 

field is more horizontally distributed. There is only a tiny and negligible contribution on top of 

the pixel and common electrodes where the electric field is mostly in vertical direction. 

Figure 3.3 depicts the transmittance curves at different voltages of the IPS BPLC cell at 

different positions. The high transmittance occurs mainly at the spacing area between electrodes. 

The incident wavelength is 550 nm and Kerr constant is K~12.68 nm/V
2
. In the IPS BPLC cell, 

even at a high voltage (V~52 Vrms) the transmittance above electrodes is still negligible. This is 

because the optic axis of the refractive index ellipsoid on top of the electrodes is almost 

perpendicular to the electrodes and thus parallel to the normal incident light. Different from the 

IPS BPLC cell, in a conventional nematic IPS cell, the horizontal rotation of LC molecules 

between the pixel and common electrodes will produce a weak in-plane LC rotation above the 

electrode surfaces because the LC is a continuum material. This in-plane LC rotation will also 

contribute to a weak transmittance above electrodes that adds to the overall transmittance. 

Nevertheless, in the IPS BPLC cell the induced n above the electrode surfaces will only act on 

the oblique incident light to make the viewing angle more symmetric. 
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Figure 3.3 Transmittance curves at different voltages of the BPLCD in a 10-m 

IPS cell (w=5 m and l=10 m) at =550 nm (the maximum transmittance from 

parallel polarizers is 34.83%). 

The electrode dimensions affect the electro-optic properties of the blue phase LC device. 

Figure 3.4 shows the voltage-dependent transmittance curves of IPS BPLC cells with different 

electrode width w and spacing width l [24]. The Kerr constant employed in the simulation is 

K=12.68 nm/V
2
.  
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Figure 3.4 Voltage-dependent transmittance of BP IPS cells with different w-l 

ratios and cell gaps. 

First, let us compare the three 10-m thick IPS cells with electrode width w=2 m and 

spacing l varying from 2 m to 4 m (open squares, triangles, and circles). Both on-state voltage 

and peak transmittance decrease as the electrode spacing decreases. For the same electrode width, 

a smaller electrode spacing l results in a stronger horizontal electric field, so the driving voltage 

is lower. However, the smaller electrode spacing reduces the effective area of the horizontal field 

from which the transmittance is gained; therefore the optical efficiency is also lower. We further 

compare the 10-m IPS cell with electrode width w=5 m and spacing l=10 m (IPS 5-10, blue 

filled circles) with the 10-m thick IPS cell with electrode width w=2 m and spacing l=4 m 

(IPS 2-4, dark red open squares). They have the same w-l ratio. The lower driving voltage results 

from a stronger electric field due to a smaller electrode spacing (l=4 m). IPS 5-10 has a slightly 

higher peak transmittance than IPS 2-4. This can be explained by the depth of the electric field 
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penetrating from the bottom electrodes to the LC layer. According to the Poisson equation 

2=0, the penetrating depth is proportional to the dimensional size (w+l). Thus, the electric 

field penetrates deeper into the LC layer in the IPS 5-10 cell than IPS 2-4, resulting in a higher 

induced birefringence and peak transmittance. As described earlier, the area on top of the 

electrodes in BPLC cells do not contribute to the transmittance because the electric field is 

primarily longitudinal. However the conventional nematic IPS cell, unlike the BPLC, has a weak 

in-plane LC rotation above the electrodes that enhances the optical efficiency. As a result, the 

overall optical transmittance of BP LCDs is slightly lower than that of conventional IPS LCDs 

3.2.2 Induced Birefringence Distribution and Cell Gap Effect 

The transmittance of a nematic IPS cell is largely affected by the cell gap, since the phase 

is continuously accumulated along the cell gap. However, in an IPS BPLC cell the transmittance 

is quite insensitive to the cell gap. As illustrated in Figure 3.4, for the electrode dimensions w=5 

μm and l=10 μm (IPS 5-10), the transmittance remains almost the same for cell gap d=5 μm and 

d=10 μm.  

To better understand the transmittance and electric field distribution, we plot the induced 

birefringence distribution at on-state voltage (where maximum transmittance occurs) in Figure 

3.5 and Figure 3.6 for IPS 5-10 and IPS 2-4 (both of them have a cell gap of 10 μm), respectively. 

Two different Kerr constants are employed for comparison: Ka=1.268 nm/V
2
 and Kb=12.68 

nm/V
2
. Here n denotes the overall induced birefringence by the applied electric field, regardless 

of the field direction; neff is the effective birefringence for the normal incident light that 

contributes to the phase change. For IPS 5-10, the on-state voltage (Von) is 167 Vrms at Ka and 53 

Vrms at Kb; while for IPS 2-4, the on-state voltage is 121 Vrms at Ka  and 38 Vrms at Kb. We can see 
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from the plot that with the same electrode dimension, the Kerr constants do not affect the on-

state induced birefringence.  

 

Figure 3.5 Spatial profiles of induced birefringence and effective birefringence in 

IPS cells: w is the electrode width, l is the spacing width. (a) overall induced n 

of IPS 5-10 at Ka, (b) induced neff  of IPS 5-10 at Ka, (c) overall induced n of 

IPS 5-10 at Kb, (d) induced neff of IPS 5-10 at Kb. (Kb=10 Ka =12.68 nm/V
2
) 
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Figure 3.6 Spatial profiles of induced birefringence and effective birefringence in 

IPS cells: w
 
is the electrode width, l is the spacing width. (a) overall induced n of 

IPS 2-4 at Ka, (b) induced neff of IPS 2-4 at Ka, (c) overall induced n of IPS 2-4 

at Kb, (d) induced neff of IPS 2-4 at Kb. (Kb=10 Ka=12.68 nm/V
2
) 

From Figures 3.5(a), 3.5(c), 3.6(a) and 3.6(c), on top of the electrodes, although n is 

comparatively large and extended deep into the LC layer, it is induced by the vertical electric 

field which does not contribute to the transmittance. This is also verified that in Figures 3.5(b), 

3.5(d), 3.6(b) and 3.6(d) where neff is almost zero on top of the electrodes. The induced 

birefringence at the spacing area is not only very small but also decays fast with the cell gap. 
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Thus, as long as the cell gap is larger than the penetrating depth in the vertical direction, the 

transmittance will be insensitive to the cell gap. The tiny difference between the 5-μm and 10-μm 

cells of IPS 5-10 structure in Figure 3.4 may come from the passivation layer. It has a much 

smaller dielectric constant than the LC composite, making the electric energy more concentrated 

in the LC layer of the 5-μm cell. If the cell gap is smaller than the effective penetrating thickness, 

for example, when the IPS 5-10 has a cell gap of d=2 μm, we find in Figure 3.4 that the on-state 

voltage is higher. In this case, a larger electric field is needed to gain the same phase change in a 

smaller cell gap. The feature of cell gap insensitivity provides a large tolerance to the large panel 

LCD fabrication since the uniformity of the cell gap is fairly difficult to control. 

As shown in Figures 3.5 and 3.6, IPS 5-10 and IPS 2-4 differ in that the latter has a 

shorter penetrating depth, a faster decay in birefringence, and its amplitude near the electrode 

bottom is larger. This is actually the result of the electric field concentration difference, and again 

it explains why the IPS 2-4 structure yields a lower driving voltage and a slightly lower 

transmittance. 

3.2.3 Operating Voltage and Kerr Constant  

The operating voltage of a BPLCD is primarily governed by the induced birefringence 

which in turn is dependent on the Kerr constant of the LCs and the electric field strength. On one 

hand, investigation on the device structure unveils influence from the electric field to the driving 

voltage and the transmittance; on the other hand, from the material side the LC parameters 

directly affect the display performance. In this section, we analyze the Kerr constant effect.  
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Figure 3.7 (a) VT curves with different Kerr constants for IPS 2-4, (b) VT curves 

with different Kerr constants for IPS 2-4, (c) linear plot between on-state voltage 

and K1 . 
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Figures 3.7(a) and 3.7(b) are the plots of simulated voltage-transmittance curves with 

K1=12.68 nm/V
2
, K2=2K1, K3=5K1 and K4=10K1 for two IPS structures: w=2 μm, l=4 μm, and 

w=5 μm, l=10 μm. For both structures, the peak transmittance does not change with K. Figure 

3.7(c) depicts the on-state voltages for the above four K values as well as K5=0.1K1 and 

K6=0.2K1. Surprisingly, the on-state voltages exhibit a linear relationship with 2/1K , although 

the electric field is quite nonuniform. The red and blue lines are the linear fittings with the 

following equation:   

K
AVon

1
 , (3.1) 

The proportionality constant A for IPS 2-4 and IPS 5-10 is A1=4.31 μm
1/2

 and A2=5.94 

μm
1/2

, respectively. With the same Kerr constant, the on-state voltage of IPS 2-4 is ~40% lower 

than that of IPS 5-10, but its transmittance is slightly (~3%) lower. As abovementioned, the Kerr 

constant represents the influence from the material side to the driving voltage, while A represents 

the effect from the device design. Larger Kerr constant and smaller A will lead to a lower 

operating voltage. For low power TFT-LCDs, it is highly desirable to have Von<10 Vrms. To 

achieve this goal, from Figure 3.7 we need to continue to improve the Kerr constant of the BPLC 

material and optimize the electrode configuration. 

As referred to Fig. 3.5, although the K value may not be the same, for a given electrode 

structure, the induced birefringence distribution at its corresponding on-state voltage is basically 

the same, and thus results in a same peak transmittance. According to Eq. (2.1), at a given 

wavelength the induced birefringence is directly related to KE
2
. Then, we can conclude that for a 

given IPS electrode dimension operating at the on-state voltage, if the electric field E is uniform 

in the IPS cell, then KE
2
 will be a constant. As E=V/L, KV

2
 is also a constant, and Eq. (3.1) holds 
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for this straightforward case. However, in a real IPS structure, E is not uniform spatially. It is 

surprising to see that the linear relationship as shown in Eq. (3.1) is still valid according to our 

simulation results. In an IPS cell, the KE
2
 value may differ at different areas because of the E 

distribution, but it remains a constant for the same area in the cell regardless of the variance of K. 

The voltage V is related to the electric field E as LVE  /  ( L is the infinitesimal change in 

distance), as long as the cell is operated under the on-state voltage, the KV
2 

value would stay 

constant for the same area of the cell despite of the K variation. 

From Eq. (3.1), the operating voltage of a BPLC device is governed by material (thru K) 

and device configuration (thru A). We have also validated the assumption experimentally.  

In Chapter 2, we have discussed the temperature effect and obtained the voltage 

dependent normalized transmittance curves of the IPS LC composite cell measured from 15 
o
C to 

37.5 
o
C. From the experimental data shown in Figure 2.2, we obtain the on-state voltage at 

different temperatures. We then plot Von against the inverse of the square root of Kerr constant. 

Results are shown in Figure 3.8. Indeed, a straight line passing through the origin is obtained. 

From the slope, we find A=6.07 μm
1/2

 for our IPS structure.  

Similarly, using the same IPS structure but with different BPLC material (Chissco 

material), we obtain the on-state voltage at different temperatures in Figure 2.5 and then plot Von 

against K/1  in Figure 3.9. From the slopes in Figure 3.9, we find A=5.92 μm
1/2

. This result 

agrees well with the same IPS structure but with a low-K BPLC material in Figure 3.8, in which 

A=6.07 μm
1/2

. From Eq. (3.1), both device configuration (thru A) and large K material play 

important roles for lowering the operating voltage. For the first time, the theoretical prediction of 

Eq. (3.1) is validated experimentally. 
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Figure 3.8 Linear fit of Von vs. K
-1/2

 according to Eq. (3.1) with A=6.07 μm
1/2

.  

 

Figure 3.9 Linear fit of Von vs. 1/ K  according to Eq. (3.1) with A=5.92 μm
1/2

.  
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3.2.4 Wavelength Dispersion 

For BPLC, or more generally the optically isotropic liquid crystals, the Kerr constant K is 

wavelength dependent and can be described by the single-band model as [39, 57]
 

2*2

2*2







GK  (3.2) 

Here * is the mean resonance wavelength and G is a proportionality constant. For E-7 

type LC mixtures (n~0.22), *~200-250 nm due to elongated -electron conjugation [39]. In 

principle, from Eq. (3.2) we could obtain G and * values by measuring the Kerr constant of the 

BPLC cell at two wavelengths.  

 

Figure 3.10 Measured VT curves and fittings of the BPLC in a 10-m IPS cell 

with electrode width w=10 m and spacing l=10 m at different wavelengths. 

In an experiment, we prepared a BPLC cell in the IPS structure using Chisso’s JC-

BP01M BPLC material. The IPS cell has an electrode width of 10 m and gap width between the 
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electrodes is also 10m. The cell gap is 10 m. We have measured the voltage-dependent 

transmittance (VT) curves at room temperature (~22
o
C) at 500nm, 550nm, and 650nm. The 

driving frequency is 100 Hz. By fitting the VT curves with the model we have established, we 

can obtain the parameters for the above three wavelengths. Figure 3.10 shows the measured VT 

curves and fittings of the BPLC at different wavelengths. From the parameters obtained, we have 

also deduced the parameters for other wavelengths in Table 3.1. 

Table 3.1 Fitting parameters for BPLC at different wavelengths. 

G (nm
-2

) λ* (nm) Es (V/µm) λ (nm) K (nm/V
2
) ∆ns 

2.8 218 4.2 450 21.9 0.174 

2.8 218 4.2 500 18.6 0.164 

2.8 218 4.2 550 16.3 0.158 

2.8 218 4.2 633 13.5 0.151 

2.8 218 4.2 650 13.1 0.15 

2.8 218 4.2 660 12.8 0.149 

 

As we can see from the figure and the data table, the Kerr constant decreases when the 

wavelength increases. Compared to the nematic IPS or FFS cell, the IPS BPLC cell exhibits 

larger color dispersion. In a conventional nematic IPS or FFS cell, the on-state LC profile 

consists of two connected twist-nematic (TN) cells with reserve twist sense [58], thus there is a 

self-compensation for wavelength dispersion from this special two-TN-cell profile. However, in 

the IPS BPLC cell, the transmittance originates from pure phase retardation effect, similar to a 

vertical alignment (VA) cell. A shorter wavelength has a larger Kerr constant to get a larger n/ 



43 

value, which will result in a lower on-state voltage. However, different from the nematic VA cell, 

the induced birefringence (bright state) of the IPS BPLC cell has multi-domain structure 

originating from the electric field profiles. In an IPS cell, horizontal fields dominate between 

electrode gaps, and vertical components dominate above the electrode surfaces. Because each 

local induced birefringence also aligns with the electric field, the electric field-induced refractive 

ellipsoids in the whole cell will gradually align from vertically to horizontally starting from the 

electrode center to the electrode gap region. This multi-domain profile leads to a more symmetric 

and wider viewing angle, as will be discussed later.  

3.2.5 Viewing Angle 

When no voltage is applied, the BPLC is macroscopically optically isotropic. The LC 

index ellipsoid is like an ideal sphere that has a very good dark state. As a result, the dark-state 

light leakage only occurs at an off-axis incidence that merely comes from the effective angle 

deviation between two crossed linear polarizers, i.e., two crossed linear polarizers at a normal 

incidence is no longer perpendicular to each other at an oblique incidence. At the voltage-on state, 

although electric field induces birefringence and the LC index ellipsoid is elongated, the overall 

cubic symmetry of the BPLC is not changed. This again leads to a symmetric view of the LCD. 

Due to these features which are different from conventional nematic liquid crystals, the iso-

brightness contour of the IPS BPLC cell is more symmetric. Another advantage is that the liquid 

crystal alignment and rubbing which may cause light leakage for conventional LCDs do not exist 

here. 
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Figure 3.11 Simulated isocontrast plots of the IPS BPLC cell: (a) without 

compensation films, and (b) with a biaxial compensation film. The biaxial film 

parameters are: Nz =0.5, R0=(nx-ny)d=/2. BPLC IPS cell parameters are: d=10 

m, w=5 m, l=10 m and =550 nm. 
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Figures 3.11(a) and 3.11(b) are the isocontrast plots of an IPS BPLC cell at =550 nm, 

with electrode width w=5 m, spacing l=10 m and cell gap d=10 m. As expected, the viewing 

angle is more symmetric even using an IPS structure with merely 2D lengthwise strips. To 

compensate the viewing angle, both uniaxial films and biaxial films can be employed to suppress 

the light leakage at dark state and expand the viewing angle. The biaxial film compensated 

isocontrast plot is shown in Figure 3.11(b). The biaxial film employed has the following 

parameters: Nz =0.5 and R0 = (nx-ny)d=/2 [59]. The cell dimensions used in simulation are: 

electrode width w=5 m, spacing width l=10 m, and =550 nm. We find that the contrast ratio 

over 1000:1 can be expanded to ~55
o
-66

o 
with compensation films. The viewing angle of this 

simple IPS BPLCD is comparable to that of a conventional four-domain IPS structure with 

zigzag electrodes. 

3.3 Summary 

In this chapter, we have discussed the device physics of blue phase LCDs. For display 

applications, we have introduced an in-plane-switching (IPS) structure with lateral fields to 

induce the effective birefringence. The computational model was developed to characterizing the 

Kerr effect in BPLC cells. With this numerical calculation model, parameters affecting the 

electro-optics of BPLCDs in IPS structures, such as electric field effect, induced birefringence 

distribution, cell gap effect, operating voltage and Kerr constant effect, and wavelength 

dispersion are investigated. Viewing angle is also discussed. The study of the device physics can 

provide guidelines for future device optimization.  
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CHAPTER 4: DEVICE CONFIGURATION OPTIMIZATIONS OF 

BLUE PHASE LIQUID CRYSTAL DISPLAYS 

Blue phase exhibits some great features of submillisecond response time, wide viewing 

angle, no alignment layer needed and cell gap insensitivity which opens a new window for 

display applications. However, there are still technical challenges to be overcome, among which 

high driving voltage is the most severe one since it increases the power consumption, and 

disables the a-Si TFT driving. Other issues include color shift, hysteresis, wavelength dispersion, 

long term stability, residual birefringence, and voltage holding ratio, etc. To solve these problems, 

developing new BPLC materials and optimizing device configurations are both very important. 

In this chapter, we will focus on the optimization of BPLCD through device configuration 

modification.  

4.1 Low Voltage BPLCDs 

To successfully drive blue phase LCs to realize different grayscales, a strong electric field 

along horizontal direction is desired. Therefore, the most effective driving electrodes currently 

available should be IPS switching electrodes. However, in a conventional IPS electrode 

configuration, the electric field is confined near the surface, and only the LC molecules in this 

shallow region contribute to the induced birefringence. As a result, the required voltage is high 

and transmittance is low. As shown in Figure 2.5 from Chapter 2, even with a large Kerr constant 

of 13.7 nm/V
2
 (Chisso JC-BP01M), the on-state voltage is still as high as ~50 Volts at room 

temperature. 50 Volts is too high for amorphous-silicon thin-film transistors (a-Si TFTs) 

addressing. Therefore, there is an urgent need to address this critical issue of high driving voltage.  

From material side, developing BPLC materials with larger Kerr constant can 
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significantly lower the operating voltage. In addition to material, device configuration also plays 

a significant role for reducing the operating voltage. There has been various electrode 

configurations proposed to generate strong and deep electric fields for lowering the operating 

voltage of BPLC devices, such as wall-shape electrode and corrugated electrode structure as 

shown in Figure 4.1 and Figure 4.2 [60, 61]. For both structures, the driving voltage can be lower 

because the incident light can experience a uniform electric field. However, their fabrication 

process is comparably complicated and difficult to realize.  

In this chapter, we will discuss our proposed electrode configurations. With an optimized 

electrode structure, a larger horizontal electric field component and better uniformity across the 

horizontal direction are achieved. Therefore, the operating voltage can be dramatically reduced. 

Reducing operating voltage is critical to BPLC device as it will enable a-Si TFT addressing and 

save power consumption. In this way, it will effectively accelerate the emergence of BPLCD. 

 

Figure 4.1 Cross-section view of BPLCD structure with wall-shape electrodes. 
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 Figure 4.2 Cross-section view of BPLCD structure with corrugated driving 

electrodes. 

4.1.1 BPLCDs with FFS Structure 

Aside from IPS structure, fringing field switching (FFS) structure [55] is also widely 

employed in wide-view nematic LCDs. Figure 4.3(a) is the typical FFS electrode configuration. 

Electrode dimension in a FFS cell is distinguished by the electrode width w and the gap distance 

g between two electrodes in Figure 4.3(a). The basic structure of FFS is similar to IPS except for 

the much smaller electrode gap of l. In the FFS structure, both w and g are smaller than the cell 

gap. In IPS cell, horizontal electric field is dominant between the electrodes. However, in the 

FFS mode, when l<d, the fringing field exists above the electrodes. The fringing fields are able 

to reorient the LC directors above the electrodes. Therefore, for nematic LC with a FFS mode, 

the transmittance is higher. 
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Figure 4.3 (a) A FFS cell structure, and (b) voltage-dependent transmittance 

curves for IPS and FFS cells with different electrode dimensions. Cell gap is 10 

µm for all the curves. 

We have simulated the BPLC with FFS electrode structure in Figure 4.3(b). If we 

compare the FFS structure with different w:g ratios under the same cell gap d=10 μm, curves in 

Figure 4.3(b) demonstrate the trend that the smaller the w:g ratio, the lower the on-state voltage 

and the faster the transmittance increases at a low voltage. This is because with the same 
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electrode width w, a larger gap g provides a deeper penetration of the electric field in the LC 

layer which helps to lower the operation voltage. 

In Figure 4.3(b), IPS BPLC has much higher optical efficiency at the on-state voltage 

than the FFS structure. As introduced before, IPS provides more horizontal electric field in the 

spacing area, while FFS structure exerts a strong vertical field. In the FFS cell, the vertical field 

is in favor to the reorientation of nematic LCs on top of the electrodes for enhancing 

transmittance, but does not contribute to the birefringence we need in BPLCs. However, at low 

operating voltages, such as 10-25 Vrms, the transmittance of the FFS structure is higher and 

increases faster than that of the IPS structure. The strongest horizontal electric field is present at 

the edges of electrodes but decreases to minimum at the center of the gap between two electrodes. 

From the potential distribution in a FFS cell, the electric field at electrode edge is much stronger 

than that in an IPS cell. It can quickly rotate the LCs, so that the transmittance in FFS rises faster 

than that of IPS cell in the low voltage regime. As the voltage increases, the horizontal field in 

IPS cell becomes stronger than FFS cell so that FFS cannot compete with IPS cell for the peak 

transmittance. Therefore, FFS offers a steeper transmittance at low voltage but saturates at a 

much lower transmittance than IPS (Figure 4.3(b)). This phenomenon has been confirmed in our 

experiment. Current a-Si TFT technology can only carry a low voltage at ~15-20Vrms, in this case, 

compared to an IPS structure the FFS structure is in favor as it provides a higher transmittance at 

low voltage side. 

4.1.2 BPLCDs with Double-Penetrating Fringing Fields 

Figure 4.4(a) depicts a traditional planar IPS cell employed in BPLCDs; Figure 4.4(b) 

shows the proposed device structure with an etched bottom substrate. The glass substrate 
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between the electrodes is etched with a depth h. In this design, the fringe fields penetrate into 

both sides of the substrate. As a result, the BPLC molecules filled in the etched part of the 

substrate also contribute to phase retardation so that the driving voltage will be lowered [62]. 

 

Figure 4.4 (a) BP LCD with conventional IPS structure and (b) BP LCD with 

double-penetrating fringe fields. 

To evaluate the performance of the proposed structure, we calculate the voltage-

dependent transmittance (VT) curves with the simulation described in Chapter 3. The Kerr 

constant is K=12.68 nm/V
2
 (=550 nm) and the refractive index of the host LC is 1.5. The 

dielectric anisotropy is assumed to remain unchanged under different voltages. The transmittance 

is normalized to that of two parallel polarizers (34.83%). 
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 Figure 4.5. Simulated VT curves of the BPLC cell with etched (a) IPS 5-10 

substrate and (b) IPS2-4 substrate. =550 nm; h (in µm) is the etching depth. 

Figure 4.5 shows the simulated VT curves (=550 nm). Figure 4.5(a) is for IPS 5-10 

(w=5 µm, l=10 µm, and d=10 µm). From previous studies, the operating voltage and 
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transmittance are insensitive to the cell gap, as long as d>3 m. The line with the black squares 

is the planar IPS structure without etching; others are with a certain etching depth (h) on the 

substrate. The voltage at the peak transmittance (Vp) for the planar IPS 5-10 is ~47 Vrms. As the 

etching depth increases, Vp decreases. When the etching depth exceeds ~2 µm, Vp drops by ~26% 

and saturates at ~35 Vrms. The peak transmittance of the etched structure stays almost the same as 

that of planar IPS.   

Similarly, Figure 4.5(b) shows the simulated VT curves at =550 nm for IPS2-4 (w=2 µm, 

l=4 µm, and d=10 µm). The line with black squares represents the planar IPS structure without 

etching; others are with a certain etching depth (h) on the bottom substrate. The operating 

voltage of the planar IPS 2-4 is Vp~33 Vrms. As the etching depth increases to h=0.5 µm, Vp 

decreases to ~25 Vrms. As h continues to increase to 1 µm and beyond, Vp saturates at ~23 Vrms, 

which means the on-state voltage is lowered by ~30.3%. Such a small etching depth can be 

easily achieved by the wet etching process.  

The larger electrode spacing in IPS 5-10 (Figure 4.5(a)) than IPS 2-4 (Figure 4.5(b)) 

results in a weaker electric field intensity so that the driving voltage is higher. However, 

according to the typical Poisson problem in the form of 2=0, the penetrating depth of the 

electric fields into the LC medium strongly depends on the dimension (w+l). As a result, IPS 2-4 

has a shallower electric field penetration depth than IPS 5-10 so that its maximum transmittance 

is ~5% lower. It is also because of this shallower electric field, in the etched IPS 2-4 cell only 

those LCs near the surface (above and below) can be activated. This explains why in Figure 4.5(a) 

(IPS 5-10) the etching depth saturates at ~2 µm, while it is only ~1 µm in Figure 4.5(b) (IPS 2-4). 
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Figure 4.6 Simulated isocontrast plots of BPLC in traditional IPS [(a) and (c)] and 

etched IPS substrate [(b) and (d)]. (a) and (b) are without any compensation film, 

and (c) and (d) are with a biaxial film. 

For this design, double-penetrating fringe fields can be generated and the operating 

voltage compared to the traditional planar IPS structure can be dramatically lowered. Besides, 

the small etching depth on the substrate can be easily achieved by the wet etching process.  

We chose IPS 2-4 as an example for viewing angle comparison. The etching depth is set 

at 1 m. Figure 4.6(a) and Figure 4.6(c) are the isocontrast plots of traditional IPS structure 
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without and with a biaxial compensation film. Similarly, Figure 4.6(b) and Figure 4.6(d) are the 

corresponding isocontrast plots for BPLCDs with etched IPS substrate. The biaxial film applied 

in Figure 4.6(c) and Figure 4.6(d) has following parameters: Nz =0.5 and R0 = (nx-ny)d =/2 [63]. 

For both device configurations, the viewing angle is wide and symmetric. The viewing angle for 

the etched structure is somewhat wider than that of planar IPS cell. This is due to the additional 

symmetric domains formed in the etched areas. 

In all, we proposed an IPS structure for lowering the operating voltage of BP-LCDs with 

a simple etching process. From simulations, the operating voltage can be reduced by ~30% in the 

IPS structure, if the etching depth is exceeds a certain small value. Moreover, the etched 

structure improves the viewing angle because of the generated symmetric domains in the etched 

areas. 

4.1.3 BPLCDs with Protrusion Electrodes 

To further reduce the operating voltage, deeper penetration into the LC bulk region is 

needed. In the conventional planar IPS structure, we could strengthen the horizontal electric field 

by reducing the electrode gap. However, as the electrode gap becomes narrower the penetration 

depth becomes shallower. The tradeoff is the reduced optical efficiency. Figure 4.7 is proposed 

protruded electrode design with trapezoid shape [31]. The BPLC layer is interposed between two 

glass substrates, which are further sandwiched between two crossed polarizers; pixel and 

common electrodes are made with the trapezoid-shaped protrusion structure. The trapezoid 

dimension is defined as follows: w1 is the bottom width, w2 is the top width, h is the height, and l 

is the space between common and pixel electrodes. The protrusion structures have been widely 

used in multidomain vertical alignment (MVA) LCDs for obtaining wide viewing angle [32][33]. 
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Besides, it can be made transparent with organic positive photoresist so the aperture ratio of the 

LC panel will not be sacrificed. In this design, the induced birefringence on top of the electrode 

does not contribute to the transmittance since the electric field is almost vertical. But compared 

with traditional IPS structure, stronger horizontal electric fields are generated between the pixel 

and common electrodes. Moreover, the field is able to penetrate deeply into the LC bulk region. 

The former plays a key role to reduce operating voltage while the latter helps to achieve high 

transmittance. This explains why a much lower on-state voltage is needed for the protruded 

electrode design. 

 

Figure 4.7 BPLCD structure with trapezoid-shaped protrusion electrodes and 

electric field lines. 

For the protruded electrode with w1=2 m, w2=1 m, h=2 m, and l=4 m shown in 

Figure 4.8, the peak transmittance is ~71% (normalized to the transmittance of two parallel 

polarizers) at 17 Vrms. Compared to the conventional IPS structure with electrode width w=2 m 
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and electrode gap l=4 m (designated as IPS 2-4) with Von~38 Vrms and peak transmittance 

~66.5%, our protrusion electrode shows a significant reduction in driving voltage while 

maintaining a relatively high transmittance.  

 

Figure 4.8 Normalized VT curves for protrusion electrodes with different 

dimensions. 

To understand the underlying physics, we plot in Figure 4.9 the effective induced-

birefringence (δneff) distribution for the protrusion electrode structure and IPS 2-4 structure. δneff 

is the effective birefringence that the normal incident light experiences. It is different from the 

induced birefringence n in Eq. (2.1), which is the overall induced-birefringence of the BPLC 

material regardless of the electric field direction and the effectiveness whether the n will 

contribute to the transmittance.  
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Figure 4.9 Induced effective birefringence (δneff ) distribution for (a) conventional 

IPS cell with strip electrode with electrode width w=2 m, spacing l=4 m, and 

cell gap d=10 m, and (b) protrusion electrode with w1=2 m, w2=1 m, h=4 m 

and l=4 m, cell gap d=10 m. 
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From Figure 4.9, δneff is almost zero on top of the electrode for both structures since the 

electric field there is almost vertically distributed so that it does not provide phase change for the 

normal incident light. Nevertheless, the protrusion structure has a thicker penetrating depth and a 

larger δneff value in the effective region. This is the reason why a much lower on-state voltage is 

needed for the protrusion electrode design.  

Figure 4.8 also shows the influence of electrode dimension on the voltage-dependent 

transmittance (VT) curve. Different electrode dimension generates different electric fields 

distribution in the BPLC cell. In comparison to the structure with parameters: w1=2 m, w2=1 

m, h=2 m, and l=4 m, if the spacing width l is decreased to 3 m or 2 m, then the on-state 

voltage is lowered to 13 Vrms  or 9.9 Vrms, respectively. This is attributed to the stronger electric 

field generated as the electrode gap gets smaller. However, the tradeoff is the lower transmittance. 

This is because the effective volume with horizontal electric field that accumulates the phase for 

the transmittance is smaller. If the size of w2 is increased to 2 m, the electric field near the 

bottom of the cell will be more uniformly distributed in horizontal direction. As a result, denoted 

by the black line in Figure 4.8, the operating voltage is reduced to 12 Vrms. Again, the tradeoff 

will be that the transmittance is lower since larger w2 reduces the effective spacing area between 

the electrodes. If we increase the protrusion height h to 4 m, the peak transmittance would 

increase to 74.2% at 13 Vrms. The electric field in this case is stronger and more uniform as 

compared to the one with a 2 m height. Therefore, a lower driving voltage is needed. 

Meanwhile, the penetration of electric field gets deeper into the LC medium which enhances the 

transmittance. However, a 4 m height protrusion electrode may be difficult to fabricate. 
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Figure 4.10 Isocontrast plots of the BPLC cell with protrusion: (a) without 

compensation films, and (b) with biaxial compensation films. The biaxial film 

parameters are: Nz=0.5, R0=(nx-ny)d=/2.   
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In the voltage-off state, blue phase LC is optically isotropic so the dark state is very good. 

We have calculated the isocontrast contours for the protrusion electrode structure with 

dimensions of d=10 m, w1=2 m, w2=1 m, h=2 m, and l=4 m and =550 nm. The contrast 

ratio (CR) of 200:1 is over 30
o
 without any compensation film in Figure 4.10(a). In Figure 

4.10(b), adding a half-wave biaxial film
 
greatly suppresses the off-axis light leakage of the two 

crossed polarizers, so that CR=1000:1 can reach about 60
o
. This result is even better than that of 

the strip-electrode IPS BPLC cell we reported previously
 
because the peak transmittance for the 

protrusion electrode is slightly higher. While blue phase liquid crystals have a really good dark 

state, the contrast ratio is mainly governed by the on-state transmittance. 

 

Figure 4.11 Angular dependent (azimuthal and polar) light transmittance for: (a) 

strip electrode (parameters: electrode width w=2 m, and spacing l=4 m), and (b) 

protrusion electrode (parameters: w1=2 m, w2=1 m, h=2 m, and l=4 m). 

At off-angle incident, the vertical part of the field is no longer vertical to the incident 

light, so the curved electric field will compensate the transmittance. Figure 4.11 shows the 

angular dependent (azimuthal and polar) light transmittance for (a) strip electrode (parameters: 
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electrode width w=2 m, and spacing width l=4 m) and (b) protrusion electrode (parameters: 

w1=2 m, w2=1 m, h=2 m, and l=4 m). The polar angle of the protrusion structure with a 

transmittance of ~60% is over 50
o
 while the strip electrode structure is only ~30

o
. The 

increasingly curved electric field in z-direction of protrusion electrode compensates more than 

the strip electrodes due to its deeper penetration layer into the LC bulk region. The iso-brightness 

contour plots in Figure 4.11 matches the induced effective birefringence distribution in Figure 

4.9. 

 

Figure 4.12 VT curves with different Kerr constants for protrusion electrode 

structure with w1=2 m, w2=1 m, h=4 m and l=4 m, cell gap d=10 m, inset 

is the linear plot between on-state voltage and K1 . 

In addition to optimizing the device structure for generating strong and deep electric 

fields, it is equally important to develop LC materials with a larger Kerr constant. Figure 4.12 
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depicts the simulated VT curves at =550 nm under different Kerr constants (K1=12.68 nm/V
2
, 

K2=3K1, K3=5K1) for the protrusion electrode structure with dimensions of d=10 m, w1=2 m, 

w2=1 m, h=2 m, and l=4 m. With the increased Kerr constant, the on-state voltage is reduced 

from 17Vrms, to 9.7Vrms and to 7.5Vrms. The low voltage operation would reduce the power 

consumption of the display devices. Amazingly, the on-state voltage is linearly proportional to 

2/1K , although the electric field generated from the protrusion electrodes is not uniform. Shown 

in the insert of Figure 4.12, the red line is the linear fitting for K1, K2, K3, K4=2K1, and K5=4.5K1 

with the linear equation as we proposed in Chapter 3, section 3.23:   

K
AVon

1
 .  (4.1) 

Here, the device proportionality constant A=1.91 μm
1/2

. We can conclude that for a given 

structure, while Kerr constant K represents the influence from the material side to the driving 

voltage, the device constant A represents the effect from the device design. Larger Kerr constant 

K and smaller device proportionality constant A will lead to a lower operating voltage.  

To illustrate the importance of device structure, we compared the planar IPS electrodes 

with protrusion electrodes. From the experiment described in Chapter 2, section 2.2, and the 

analysis from Chapter 3, section 3.2.3, we have employed an IPS cell with a cell gap of 7.5 µm, 

and the ITO (indium tin oxide) electrode width of 10 µm and the electrode gap of 10 µm. We 

filled the same type of IPS cell with both the UCF BPLC material and Chisso BPLC material JC-

BP01M. We find the device constant A is around 6 μm
1/2

. Here, compared to the planar IPS cell, 

the protrusion electrode reported in Figure 4.12 has a device proportionality constant A=1.91 

μm
1/2

, which indeed indicates that a small A coefficient helps to lower the operating voltage.  
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In conclusion, the protrusion electrode structure is a feasible configuration for 

dramatically reducing the operating voltage of blue phase LCDs while keeping a reasonably high 

transmittance. There are already prototypes manufactured with this type of electrodes from 

leading LCD manufacturers such as Samsung and SEL lab [64, 65]. By optimizing the protrusion 

structure, the operating voltage can be successfully reduced to ~10 Vrms. This is an important 

milestone because the device can be driven by a-Si TFTs. With continuous development of large 

Kerr constant BPLC materials, the voltage can be reduced further. 

4.1.4 BPLCDs with Extra Guiding Fields 

In this section, the electrode configuration with extra guiding fields is proposed. The 

cross-section schematic view of the LC cell configuration is shown in Figure 4.13. 

 

Figure 4.13 BPLCD configuration with extra guiding fields. 

Different from the electrode structures proposed in the sections before, there is another 

common electrode formed on the inner surface of the top glass substrate providing the extra 

guiding fields, wherein these electrodes are further controlled by the driving TFT and switch unit. 
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Similarly, the LC layer is interposed between two glass substrates, which is further sandwiched 

between two crossed polarizers; the protruded part on the bottom substrate can be part of the 

bottom glass substrate and can be obtained by etching, photolithography, or the like methods on 

the glass substrate; the protruded part can also be an insulating layer on top of a flat glass 

substrate; a pixel electrode is formed on the surface of the protruded part; a common electrode is 

formed on the surface of adjacent protruded part. A retardation film, such as a biaxial film or 

uniaxial film, can be laminated between the bottom and the top polarizers to expand the viewing 

angle of the display. Electrodes may have the same width or different width. As shown the figure, 

l is the gap between adjacent electrodes on the bottom substrate, lt is the gap between adjacent 

electrodes on the top substrate, w is the pixel electrode width, h is the etching depth for the 

undercut, and d is the cell gap. 

Figure 4.14 shows the electric field lines distribution for the BPLCD structure in Figure 

4.13. Usually, on top of the electrode, the electric field lines are perpendicular to the electrode. 

Therefore, very little phase retardation is accumulated and this part does not contribute much to 

the transmittance. For this proposed structure, both the common electrodes on the top and bottom 

substrates guide the electric field, so the electric field in the horizontal direction near the edge 

surface of the electrodes is stronger. BPLC in this area can contribute more to the overall 

performance. Besides, unlike the conventional IPS structure that the electric field is penetrated 

into only the LC region on top of the electrodes, the electrode on the protruded part enables a 

double-penetration electric field deep into the LC bulk area, that is, the electric field penetrates 

into the LC regions both above and below the electrodes. This adds to the overall transmittance 

while lowering the operating voltage. 
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Figure 4.14 Electric field lines distribution for the BPLCD with extra guiding 

fields. 

Different shapes of electrodes would result in different operating voltages and 

transmittance. Shown in Figure 4.15 are the examples of different electrodes structures with extra 

guiding fields. They all have extra electrodes on the top substrates. The electrodes can be 

common electrodes or floating electrodes. The sizes of the electrodes width and gap width 

between the electrodes can be optimized to the different structure accordingly. 
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Figure 4.15 Proposed BPLCD electrode structures with extra guiding fields 

Figure 4.16 shows the corresponding voltage-dependent transmittance curves with a Kerr 

constant K=1.268×10
-8

m/V
2
. For comparison, curve 1 is for the traditional IPS structure with the 

electrode width w=2μm, and spacing between electrodes l=4μm. The peak transmittance is 63.4% 

at 33Vrms. Curve 2 is one example of the structure in Figure 4.16(a), the top common electrode is 

aligned with the bottom common electrode, with wt=wb=2 µm, lt=10 µm, lb=4 µm, d=3 µm, h=1 

µm. The operating voltage is 66% at 22 Vrms, which is ~30% lower than that in curve 1. For this 

configuration, to fully use the electric field generated, it is preferred that h to be higher than the 

sing-side penetration depth of the pixel electrodes. Curve 3 is one example of the structure in 
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Figure 4.16(b), the top common electrode is aligned with the bottom common electrode, with 

wt=wb=2 µm, lt=10 µm, lb=4 µm, d=5 µm, h=2 µm. The operating voltage is only 13 Vrms, much 

lower than that with curve 2. This is because the electric field is stronger since the two sides of 

the protruded part are also coated with ITO. Curve 4 is one example of the structure in Figure 

4.16(c), the top common electrode is aligned with the bottom common electrode, with wt=wb=2 

µm, w2=1 µm, lt=10 µm, lb=4 µm, d=6 µm, h=2 µm. The peak transmittance is 72.5% at 16 Vrms. 

Compared with the rectangular bottom pixel electrode, the one with the trapezoid shape has 

higher efficiency since there is more effective LC region; but the operating voltage is also a little 

higher, the weaker electric field comes from the larger distance between the top of the 

protrusions. If the distance between the common electrodes lb is smaller, the electric field will be 

stronger, and the operating voltage can be lowered to below 10 volts.  

 

Figure 4.16 Voltage-Transmittance curves for different BPLCD electrode 

structures with extra guiding fields 
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Overall speaking, compared with the proposed electrode structures without extra guiding 

fields, the current design has both the common electrodes on the top and bottom substrates 

guiding the electric field, so the electric field in the horizontal direction near the edge surface of 

the electrodes is stronger. Therefore, BPLC in this area can contribute more to the overall 

performance. Thus, a lower driving voltage and higher transmittance can be achieved.  

4.2 Low Wavelength Dispersion BPLCDs 

As discussed in Chapter 3, Kerr constant decreases as the wavelength increases and 

gradually saturates. Therefore, the voltage-transmittance curves for red, blue and green colors do 

not overlap. 

 

Figure 4.17 VT curve of IPS 2-5 BPLCD at 450nm, 550nm and 650nm. 

According to the parameters in Table 3.1, we have simulated the VT curves of an IPS 

BPLCD at three different wavelengths, and results are shown in Figure 4.17. The IPS structure 
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has an electrode width of 2µm and electrode gap of 5µm. The dispersion of VT curves for R, G 

and B colors is quite severe. That means, each color has a different on-state voltage. To 

accurately control the gray levels, three gamma curves settings are needed for R, G and B colors 

separately. This adds a great burden to the electronics driving. In order to realize a single gamma 

curve driving, ideally the red, blue and green pixels should have the same VT curves. Therefore, 

the wavelength dispersion issue needs to be addressed. 

In order to achieve the same on-state voltage for R, G and B pixels, the electric fields in 

the red, blue and green pixels should generate the same phase retardation profile at the same 

applied voltage. As the Kerr constant increases with decreasing wavelength, the average electric 

field in red pixel should be stronger than that of green pixel, and the average electric field in 

green pixel should be stronger than that of blue pixel.  

 

Figure 4.18 Simulated VT curve of IPS BPLCD at 450nm, 550nm and 650nm. 

The w-l ratios are different for RGB pixels as indicated. 
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According to the guidelines mentioned above, we propose an approach that different 

electrode width w and gap width l ratios can be applied to R, G and B color pixels. Figure 4.18 

shows the result of an exemplary configuration by changing the w-l ratios of the electrode width 

and gap. In this IPS structure, for red pixels the electrode width is 2µm and gap between 

electrodes is 5µm; for green pixels the electrode width is 2µm and gap between electrodes is 

6.2µm; and for blue pixels the electrode width is 2µm and gap between electrodes is 8.2µm. The 

larger the gap width, the weaker the electric field at the same applied voltage. As a result, we can 

see in Figure 4.18 that the voltage dependent transmittance curves of red, green and blue pixels 

overlap very well with each other.  

We also propose another approach that the shape of the electrodes can be different in each 

pixel. Figure 4.19 shows the result of the exemplary configuration by changing the protrusion 

electrode height. In this structure with protruded electrodes in a trapezoid shape as proposed in 

section 4.1.3, the bottom width of the trapezoid electrode is fixed at 2 µm, the top width of the 

trapezoid electrode is fixed at 1 µm, and gap between electrodes is fixed at 4 µm. A larger height 

of the trapezoid electrode will result in a stronger electric field. Therefore, for red pixels the 

height is 2.6 µm; for green pixels the height is 2 µm; and for blue pixels the height is 1.35 µm. 

Compared to the VT curves in Figure 4.17 that have the fixed electrode width 2µm and gap 5µm, 

the new configurations (Figures 4.18 and 4.19) have eliminated the wavelength dispersion. The 

elimination of the wavelength dispersion has therefore enabled single gamma driving for gray 

level control. 
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Figure 4.19 Simulated VT curves of BPLCD with trapezoid electrodes at 450nm, 

550nm and 650nm. The heights of the trapezoid electrodes are different for RGB 

pixels as indicated. 

4.3 Low Color Shift BPLCDs 

Color shift is another important factor to determine the color uniformity of a display 

device at different viewing directions. For high-end LCD devices, small color shift is one of the 

major challenges. In this section, the modeling of color shift will be introduced. We will 

calculate the color shift of a conventional IPS blue phase LCD with stripe electrodes, and then 

propose device designs for suppressing color shift.  

The CIE 1931 XYZ color space is one of the first mathematically defined color spaces. It 

was created by the International Commission on Illumination (CIE) in 1931. This three-valued 

(X, Y, Z) system can effectively model the appearance of the colors by human eyes, including the 

specifications from the observer, e.g., light source, devices and other aspects of the viewing 
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conditions.  

The CIE color space defines all the colors in terms of three imaginary primaries X, Y, 

and Z based on the human visual system. The X, Y, Z tristimulus values of a color stimulus 

which represent the luminance of the colors are expressed as: 
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where k is a constant, I(λ) is the spectral power distribution at the given wavelength,   ,   , 

and    are the color-matching functions that can be thought of as the spectral sensitivity curves of 

three linear light detectors that yield the CIE XYZ tristimulus values.  

In this model, Y means luminance, Z is quasi-equal to blue stimulation, or the S cone 

response, and X is a mix (a linear combination) of cone response curves chosen to be orthogonal 

to luminance and nonnegative. Since the human eye has three types of color sensors that respond 

to different ranges of wavelengths, a full plot of all visible colors is a three-dimensional figure. 

However, the concept of color can be divided into two parts: brightness and chromaticity. The 

CIE XYZ color space was deliberately designed so that the Y parameter was a measure of the 

brightness or luminance of a color. The chromaticity of a color was then specified by the two 

derived parameters x and y, two of the three normalized values which are functions of all three 

tristimulus values X, Y, and Z: 
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The CIE 1976 color space is a simple-to-compute transformation of the CIE 1931 color 

space. It is also called (u’,v’) diagram. The (u’,v’) coordinates are related to the (x, y) coordinates 

as: 
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The chromaticity coordinates (u’,v’) are usually measured by a spectro-radiometer in the 

visually most color deviating areas such as the horizontal and vertical directions of an LCD panel. 

Based on Eq. (4.4), the color difference of any two points (1 and 2) can be calculated 

using the following formula: 

2

12

2

12 )''()''('' vvuuvu 
.
 (4.5) 

The (u1', v1') coordinates is usually the value at normal viewing angle and the (u2', v2') 

values are the values at viewing angles with an oblique viewing angle. 

Current research of BPLC for display applications is conducted under the traditional 

stripe electrode structure using IPS cells, as depicted in Figure 4.20(a). The cell is placed 
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between two crossed linear polarizers. The horizontal electric fields generated from IPS 

electrodes induce phase retardation for the incident light. Here, w represents the electrode width 

and l is the spacing between the electrodes. Figure 4.20(b) shows the zigzag electrode structure 

for blue phase LCDs, where α stands for the bending angle of the electrodes. In this section, the 

color shift, transmittance, and viewing angle between these two electrode configurations will be 

compared. 

 

Figure 4.20 (a) Stripe electrode structure and (b) zigzag electrode structure for 

BPLC IPS cells. 

During simulations, we calculated a blue phase LC cell with an electrode width w=5 µm, 

spacing between electrodes l=10 µm, Kerr constant K~12.7 nm/V
2 

and wavelength λ=550 nm. 

Unlike conventional LCDs which are affected by the cell gaps, the transmittance does not change 

too much with cell gap variance in BPLCs. Therefore, all the simulations used throughout this 

section have a cell gap d=10 µm. 
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Figure 4.21 Simulated bright state color-shift of the IPS BPLC cell with strip 

electrode without compensation film: (a) with CCFL light source, and (b) with 

LED light source. IPS cell parameters are: d=10 m, w=5 m and l=10 m. 

We have calculated the color shift for the IPS BPLC cell with stripe electrodes. Figure 

4.21(a) show the bright state color shift in CIE 1931 using a CCFL light source of the strip 

electrode structures, while Figure 4.21(b) is with the LED light source. The dots in the figures 

represent the color shift from the standard white point. We used the real data on light source, 
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polarizer, compensation film, and color filters in the calculations. The wavelength dependent 

Kerr constant is also taken into consideration as discussion before: 

2*2

2*2







GK  (4.6) 

here, we use the parameter G~8.7810
-2 

V
-2

 and *~250 nm under the assumption that 

K~12.7 nm/V
2 

at λ=550 nm. [59] Under this circumstance, we can obtain the Kerr constants in 

the visible range by Eq. (4.6) for the color shift. 

Due to the unique symmetric feature of blue phase liquid crystals, even with only the 

stripe electrode structure, a multi-domain-like distribution of induced n in the IPS structure 

could be produced to make the viewing angle symmetric. The color shift of the bright state is 

reasonably small; we obtained the u’v’= (0.0030, 0.0077, 0.0327) for CCFL backlight and 

u’v’= (0.0023, 0.0062, 0.0283) for LED backlight with RGB primaries, respectively.  

Nevertheless, if we use 90
o
 zigzag electrodes instead of the stripes, more sub-domains 

will be created. Liquid crystal molecules are rotating into the complementary directions, 

resulting in an even better and more uniformly compensated bright state. With the same BPLC 

material, Figure 4.22(a) and Figure 4.22(b) are the calculated results for the bright state color 

shift based on CIE 1931 using a CCFL backlight and a LED backlight for the zigzag electrode 

structure. Compared with Figure 4.21(a) and Figure 4.21(b), the color shift with zigzag electrode 

structure is significantly suppressed. Quantitatively, the u’v’ values are reduced to (0.0019, 

0.0028, 0.0161) for the employed CCFL light source and (0.0013, 0.0024, 0.0127) for the LED 

light source at RGB primaries.  
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Figure 4.22 Simulated bright state color-shift of the IPS BPLC cell with zigzag 

electrode without compensation film: (a) with CCFL light source, and (b) with 

LED light source. IPS cell parameters are: d=10 m, w=5 m and l=10 m. 

We have also studied the bending angle effect and electrode structure effect of the zigzag 

electrodes. As shown in Figure 4.20(b), the zigzag electrode is bent at an angle α, which is the 

angle between the two arms of the electrode. A series of zigzag electrodes are alternatively 
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arranged to form inter-digital electrodes on the same substrate as the common electrode and the 

pixel electrode, respectively, which are connected to thin-film transistors (TFTs) in a practical 

LCD panel.  

 
Figure 4.23 Simulated VT curves of the IPS BPLC cell with zigzag electrode 

structure for different bending angles at =550 nm 

Voltage dependent transmittance curves for three different bending angles α=110
o
, 90

o
 

and 70
o
 are shown in Figure 4.23, respectively. The transmittance has been normalized to the 

maximum transmittance of two parallel polarizers. It has been reported by Lu, et al [66] that for 

conventional nematic liquid crystal in an IPS cell with zigzag electrode structures, the larger the 

bending angle, the lower the operating voltage and the higher the transmittance. As the bending 

angle of the zigzag electrode decreases, higher on-state voltage is needed for the required 

effective projected electric field to switch the LC directors. However, among the three zigzag 

structures of blue phase LC in the IPS cell described here, the 90
o
 bending angle has the highest 

transmittance. Their on-state voltage is roughly the same. The reason comes from the unique 

symmetric molecular structure of the blue phase LCs. The 90
o
 bending angle can always be an 
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optimal, because it provides a more symmetric electric field for BPLCs so that a larger maximum 

electric-induced birefringence can be obtained. In the previous calculation of the color shift, the 

bending angle is also set at 90
o
. 

Electrode dimension plays an important role in the electro-optic properties of the IPS 

BPLC cell. To better understand the zigzag electrode structure, we compared it with the strip 

structure in the following ways with different electrode dimensions as shown in Figure 4.24. The 

transmittance is normalized to the maximum value from two parallel polarizers (34.83%). 

 

Figure 4.24 VT curves of the IPS BP cell with different electrode dimensions and 

structures at 550 nm. 

In the strip-electrode IPS cell, transmittance mainly originates from the induced 

birefringence by Kerr effect in the electrode spacing area [53]. Smaller spacing width l will result 

in a stronger electric field intensity which in turn leads to a lower driving voltage Von. The zigzag 

structure shows exactly the same trend. The VT curves of the zigzag structure with the electrode 

dimensions of [w=5 m, l=5 m] demonstrate lower driving voltages than those of [w=5 m, 
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l=10 m]. Considering that only the regions between electrodes contribute to the transmittance, a 

larger l/w ratio is in favor. As shown in Figure 4.24, both for strip electrode structure and zigzag 

electrode structure, the dimensions of [w=5 m, l=10 m] with l/w=2 have a higher 

transmittance than the dimension [w=5 m, l=5 m] with l/w=1.  

 

Figure 4.25 (a) 2D and (b) 3D views of the transmittance profile for the zigzag 

structure with w=5 m, l=5 m, α=90
o
, legend bar shows the normalized 

transmittance. 

If we compare the strip structure with the zigzag structure individually, we may find out 

that for the same electrode width and spacing width, zigzag structure exhibits a little lower 

transmittance. This is attributed to the dead zones at the turning corners of the zigzag electrodes 

shown in Figure 4.25. The dead zone forms a horizontal disclination line locating at the position 

of ~30 μm in y direction in Figure 4.25(a). The electric fields in the dead zones do not effectively 

induce birefringence for the LCs so that they make no contribution to the transmittance. 

As introduced in Chapter 3 that the viewing angle of BPLCD is wide and symmetric. 

Here we compared the viewing angle of the IPS cell with strip electrodes and zigzag electrodes. 
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Figure 4.26(a) and Figure 4.26(b) are the isocontrast plots of the IPS BPLC cell with strip 

electrodes, while Figure 4.26(c) and Figure 4.26(d) are the plots with zigzag electrodes. The 

biaxial film compensated plots shown in Figure 4.26(b) and Figure 4.26(d) have the following 

parameters: Nz=0.5 and R0 = (nx-ny)d=/2. The cell dimensions used in simulation are: cell gap 

d=10 m, electrode width w=5 m, spacing width l=10 m, and =550 nm. We find that the 

contrast ratio over 1000:1 can be expanded to ~55
o
-66

o 
with compensation films for both 

structures. The viewing angle for both strip and zigzag electrode structures is reasonably wide 

and comparable to a conventional four-domain nematic IPS LCD with zigzag structure. 

It should be also noticed that although the plots for strip electrode and the zigzag 

electrode are very similar, the zigzag electrode has a slightly narrower viewing angle. This can 

be explained by their corresponding luminance polar contour plots shown in Figure 4.27(a) and 

4.27(b). For BPLCs, the isotropic dark state is perfect and is affected only by the light leakage 

from the crossed polarizers at oblique incidence. The on-state transmittance of the zigzag 

electrode structure is a little lower than that of the strip electrode structure due to the presence of 

dead zones, so the contrast ratio is somewhat lower, too. This can be considered as one of the 

differences between BPLCDs and conventional LCDs. Despite of the a little lower luminance 

and contrast ratio, the brightness is more uniformly distributed in Figure 4.27(b). This is related 

to the four-domains formed by zigzag electrodes. The on-state brightness for the same electrode 

structure with and without compensation film is similar since compensation film is only used to 

compensate the light leakage induced by the crossed polarizers at oblique angle at dark state. 

Nevertheless, for both structures, the contrast ratio for the one with compensation film is larger 

than the one without. 
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Figure 4.26 Isocontrast plots of the IPS BPLC cell: (a) (b) strip electrodes without 

and with compensation films, and (c) (d) zigzag electrodes without and with 

compensation films. Biaxial film parameters: Nz=0.5, R0= (nx-ny)d=/2. IPS cell 

parameters: d=10 m, w=5 m, and l=10 m and =550 nm. 



84 

 

Figure 4.27 Illuminance polar charts for the IPS BPLC cells: (a) strip electrodes, 

and (b) zigzag electrodes. Cell parameters: d=10 m, w=5 m, and l=10 m and 

=550 nm. (No compensation films are used). 
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We have studied the zigzag electrode structure for blue phase LCDs and compared its 

performances with the traditional strip electrode structure. The 90
o
 bending angle is found to be 

the best for zigzag structure in which the viewing angle is wide and symmetric, and the color 

shift is significantly suppressed. However, a tradeoff in slightly lower transmittance is found 

because of the presence of dead zones. This reduced transmittance also causes a slightly lower 

contrast ratio.  

4.4 Low Hysteresis BPLCDs 

Hysteresis is a common phenomenon in polymer-stabilized LCs [5] including polymer-

stabilized BPLCs. Detailed mechanisms depend on the polymer concentration and composition 

[67], and UV curing conditions. Hysteresis affects the accuracy of gray-scale control and should 

be eliminated. There is an urgent need to develop hysteresis-free BPLC devices.  

In this section, we correlate the hysteresis of a polymer- stabilized BPLC with the peak 

electric field of different IPS electrode dimensions. If the peak electric field is below a critical 

field (~5 V/µm), hysteresis is negligible. Based on this guideline, we propose elliptical 

protrusion electrodes with reduced peak electric field to achieve hysteresis-free BPLC devices. 

We have prepared three BPLC samples with following IPS electrode width (w) and gap 

(l): 10-10, 5-5, and 2-4 (unit: µm). The BPLC material (JC-BP01M) has a Kerr constant of ~13.7 

nm/V
2
 at =633 nm. The IPS 10-10 device exhibits a fast response time (~1 ms), high contrast 

ratio (~1000:1), and hysteresis ~6%. The peak transmittance depends on the individual electrode 

width and gap, and is in the 60-80% range [68]. We measured the VT curves for two cycles of 

ascending and descending voltage scans at 25
o
C. The transmittance was normalized to that when 

the BPLC cell was in an isotropic state and the two polarizers are in parallel position. Hysteresis 
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is defined as the voltage difference V at half-maximum transmittance between voltage-up and -

down scans devided by the on-state voltage (Von) as 

onV

V
H


  (4.7) 

Table 4.1 lists the measured Von and hysteresis of the three IPS BPLC cells. From Table 

4.1, Von varies according to the w-l ratio. At a given voltage, a smaller electrode gap results in a 

stronger electric field and thus the on-state voltage is lower. 

Table 4.1 IPS test cell with different electrode dimensions. 

Cell Von  (V) Hysteresis Emax at Von (V/µm) 

10-10 (25
o
C) 56.7 6.4% 9.65 

5-5 (25
o
C) 50.7 10.1% 17.53 

2-4 (25
o
C) 40.0 10% 16.95 

 

To investigate the electric field effects on hysteresis, we simulated the electric field 

distribution at on-state voltage for each cell and found that the peak electric field (Ep) is located 

near the edge of the electrodes. Results are also included in Table 4.1. Although the 10-10 IPS 

cell has the highest on-state voltage (Von~56.7V at 25
o
C), its Ep is the lowest among the three 

compared because of its large electrode gap. The Ep of the 5-5 and 2-4 IPS cells is almost twice 

as large as that of the 10-10 cell. From Table 4.1, the measured hysteresis is strongly correlated 

to the electric field strength. The stronger the peak electric field, the larger the hysteresis. 

To further investigate the correlation between electric field and hysteresis, we did another 

experiment using the same BPLC material with a 10-10 IPS cell. We measured the voltage- 
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dependent transmittance (VT) curves at room temperature (~23°C) with a He-Ne laser (λ=633 

nm). A root-mean-square voltage of 100 Hz was used to drive the cell. For the full transmittance 

cycle, we ascended the voltage to the peak transmittance and then descended the voltage. It is 

known that Kerr constant decreases as the temperature increases [36]. Therefore, at 23°C the on-

state voltage occurs at Von= 52.8V. A hysteresis of ~6.5% is found. We then drove the cell to the 

80%, 55% and 25% of the peak transmittance with the corresponding voltage of 42.4V, 36.0V 

and 28.6V, respectively. Results are plotted in Figure 4.28. We notice that the hysteresis is 

vanished if the applied voltage is limited to 28.6V. According to the electric field distribution 

calculation, the peak electric field is Ep~5 V/µm, which is the critical electric field for achieving 

hysteresis-free operation with this polymer-stabilized BPLC (JC-BP01M). This critical field 

could vary depending on the polymers employed and their concentrations. 

 

Figure 4.28 Measured hysteresis of the IPS 10-10 cell at room temperature (23°C). 

=633 nm. 
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As the electric field intensity increases, three distinct transformations in BPLCs could 

occur [69]: 1) local reorientation of molecules caused by Kerr effect: its response time is ~0.1 ms; 

2) lattice distortion in BP-I: its response time is ~10 ms; and 3) phase transition to a lower-

symmetry phase, i.e., switching from BP-I to BP-II: its response time is more than a few seconds. 

The local LC director reorientation in the double twist cylinder is the main reason for the 

submillisecond fast response time. However, the induced lattice distortion and phase transition 

by the increased electric field not only have slow response time but also cause hysteresis and 

ultimately irreversible structural damage. The induced lattice distortion and phase transition will 

induce residual birefringence. In the voltage descending process, it would lead to a higher 

transmittance when compared at the same voltage in the ascending process, which leads to the 

occurrence of the hysteresis. This coincides with our polarized optical microscope (POM) 

observation in Figure 4.29, the higher transmittance takes place at the edges of the electrodes 

where the electric field is stronger. In all, to eliminate hysteresis, the induced lattice distortion 

and phase transition should be avoided.  

 

Figure 4.29 POM image of the 10-10 IPS BPLC cell at Von. 

From the above analysis, we should operate the device below the critical field so that the 

electrostriction effect will not take place. For this BPLC sample, the critical field for hysteresis-
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free operation is ~5 V/µm. Once we have determined the critical field, in the following Section, 

we could modify the device structure, e.g., changing the protrusion shape and depth, so that the 

peak electric field is kept below critical field for eliminating hysteresis. Meanwhile, the 

transmittance and contrast ratio can be maximized. 

We have compared several device structures and calculated the electric field distribution 

at on-state voltage with the same BPLC material used in the previous IPS test cells. For a 2-4 IPS 

cell, the measured on-state voltage is 40V and the peak electric field at the edge of the electrode 

(Ep) is 16.95 V/µm. The calculated horizontal (Ex) and vertical (Ez) electric field distributions are 

shown in Figure 4.30(a). When an electric field is applied, macroscopically, the blue phase LC 

index ellipsoid elongates along the direction of the electric field for the material with positive 

dielectric anisotropy. That is, the anisotropy appears with the optical axis along the field 

direction. The electric field has two components: Ex and Ez, but only the horizontal component 

contributes to the overall transmittance. We can see from Fig. 2(a) that vertical fields are strong 

on top of the common or pixel electrodes because electric fields are perpendicular to the 

electrodes, while the horizontal component (Ex) is strong in the gap area between the electrodes. 

The total electric field at each point is calculated as 22

zx EEE  . Through the calculation, the 

peak values for Ex, Ez and E may not be at exactly the same point, as shown in Figure 4.30, but 

they are all around the edges of the electrodes and are strongly related to the shape of the 

electrodes. If we use the 2-4 trapezoid structure with protrusion height of 2 µm in Figure 4.30(b), 

Von is decreased to 17 V and the electric field at the edge of the electrode is substantially reduced 

as compared to the planar IPS structure, while the field in the gap area is still large. However, 

due to the sharp taper angle of the protrusion, the field is still strong, especially at the edge of the 

electrodes.  
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Figure 4.30 Simulated horizontal (Ex) and vertical (Ez) electric field distribution 

for the specified device configurations: (a) planar IPS electrode with width w=2 

m and gap l= 4 m. Cell gap d=7 m and V=40 Vrms; (b) trapezoid protrusion 

electrode with w=2 m, l= 4 m, and height h= 4 m. Cell gap d=10 m and 

V=17 Vrms; (c) elliptical protrusion electrode with w=2 m, l= 4 m, and h= 2 m. 

Cell gap d=10 m and V=18Vrms; and (d) elliptical protrusion electrode with w=2 

m, l= 4 m, and h= 4 m. Cell gap d=10 m and V=13 Vrms. 

To further decrease the peak electric field, we changed the trapezoid protrusion to 

elliptical shape, and the sharp taper angle is now smooth. From Table 4.2, the peak electric field 
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is reduced from 8.65 V/µm for the trapezoid protrusion to 6.85 V/µm for the elliptical protrusion. 

If the height of the elliptical shape electrode is increased to 4 µm, the peak field is further 

reduced to 5 V/µm. As depicted in Figure 4.30 with such a low peak electric field the device 

would be free from hysteresis. 

Table 4.2 Electric field distribution for different cell configurations 

Cell Von (V) Ex_max (V/µm) Ez_max (V/µm) Emax (V/µm) 

2-4 IPS (d=7µm) 40 15.53 12.92 16.95 

2-4 protrusion 

(d=10µm, h=2µm) 17 7.68 3.97 

 

8.65 

2-4 elliptical 

(d=10µm, h=2µm) 18 6.84 6.09 

 

6.85 

2-4 elliptical 

(d=10µm, h=4µm) 13 5.08 5.00 

 

5.08 

 

In this section, we have explored the physical mechanism for hysteresis and found that 

hysteresis effect is directly related to the electric field strength generated from the electrodes. 

Through experiment, we also found that the critical electric field for hysteresis-free operation is 

~5 V/µm. To reach this goal, we proposed an elliptical protrusion electrode structure for BPLC 

devices. In comparison to the planar IPS electrode structure, the protruded elliptical electrode 

exhibits a 3 times lower on-state voltage. Compared with trapezoid electrode, the elliptical shape 

is more realistic to the actual fabrication profile. Moreover, its peak electric field is weaker 

which is favorable for hysteresis-free device operation. The established guidelines are useful for 

optimizing BPLC devices in order to eliminate hysteresis while keeping high contrast ratio and 

maximum transmittance. 
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4.5 Summary 

In this chapter, we have discussed various device optimization methods to improve the 

overall performance of blue phase liquid crystal displays. The low voltage BPLCDs are 

presented. The traditionally IPS structure is simple but the driving voltage is too high. The FFS 

structure keeps the simplicity in fabrication and provides a higher efficiency at low voltage side. 

The structure with double-penetrating fields lowers ~30% of the driving voltage and can be 

easily achieved by the etching process. The protrusion electrodes substantially lower the 

operating voltage; however, its fabrication complexity is increased. The structure with extra 

guiding fields adds to the effective region around the electrode edge area that lowers the voltage. 

What’s more, low wavelength dispersion BPLCDs are realized by different pixel electrode 

designs that can generate different electric fields in RGB pixels; low color shift BPLCDs are 

obtained by employing zigzag electrode structure; and, low hysteresis BPLCDs are optimized by 

control the peak electric field to be lower than the critical fields. In all, the low voltage, low 

wavelength dispersion, low color shift, and low hysteresis BPLCDs can be achieved. The 

optimization methods from the device side will largely improve the performance of BPLCDs and 

can largely accelerate the emergence of blue phase LCDs. 
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CHAPTER 5: PHOTONICS APPLICATIONS OF BLUE PHASE 

LIQUID CRYSTATLS 

In addition to displays, BPLCs are promising candidates for photonic applications as 

well. Based on the Kerr effect, birefringence can be induced according to the electric field. 

Therefore, blue phase liquid crystals can serve as a fast switching light modulator, such as a high 

efficiency tunable phase grating [70], polarization independent adaptive microlens [71], 

polarization independent gradient-index (GRIN) lens and cylindrical lens [72], etc.  

In this chapter, the application of blue phase liquid crystal as a modulator to control the 

viewing angle of a liquid crystal display will be introduced. As we all know, wide viewing angle 

is a critical requirement for high-end LCDs. To realize wide-view, various LC modes such as in-

plane switching (IPS), fringe-field switching (FFS), multi-domain vertical alignment (MVA) [73] 

and patterned vertical alignment (PVA) [74] have been developed. With proper phase 

compensation, the light leakage at oblique angles is dramatically suppressed, resulting in a wide 

viewing angle. In the meantime, the protection of privacy is becoming more important nowadays 

and thus an on-demand controllable viewing angle is highly desirable. Several approaches have 

already been proposed to control the viewing angle by using dual backlight system [75], or pixel 

division method [76].  

The method we proposed of using a blue phase liquid crystal (BPLC) layer to control the 

viewing angle is applicable to all the LCD modes without affecting the on-state transmittance. 

The viewing angle can be tuned continuously with a fast response time. 

As introduced before in Chapter 2, section 2.1, in blue phase, the induced birefringence 

(n) by the Kerr effect is directly proportional to the wavelength, Kerr constant, and square of 

the electric field amplitude. Consequently, the isotropic sphere will appear as an elongated 
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(Figure 2.1(b)) or a flattened (Figure 2.1(c)) ellipsoid, depending on whether the host LC has a 

positive or negative dielectric anisotropy ().  

Therefore, the viewing angle can be tuned continuously by adjusting the applied voltage 

of the BPLC layer. Depicted in Figure 5.1 is the proposed device structure for the viewing angle 

controllable display with a BPLC layer. In Figure 5.1(a), the LCD panel is originally well-

compensated and can be of any modes, such as IPS, and MVA, etc. The BPLC layer can be 

sandwiched above or below the initially wide-view LCD. When there is no external electric field, 

the BPLC cell is optically isotropic and will not affect the viewing angle of the display. With a 

voltage, the BPLC cell will act as an additional positive or negative C-film to disturb the well-

compensated wide-view LCD. The actual viewing angle will depend on the applied voltage.  

 

Figure 5.1 (a) Device configuration for a viewing angle controllable liquid crystal 

display; (b) Poincaré sphere representation.   

Compared to other dual cell approaches, such as homogenous cell [77], the blue phase 

cell exhibits two major advantages: 1) simple fabrication: The blue phase LC cell does not 

require any surface alignment layer and, moreover, the electric fields are in longitudinal direction. 
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This can be achieved easily by planar ITO electrodes on both substrates. Such an electrode 

configuration is much simpler than that used in a blue phase LCD, in which lateral fields are 

needed and the IPS electrodes are more complicated to fabricate. 2) Blue phase LC exhibits 

submillisecond gray-to-gray response time, which is at least 10 times faster than the 

corresponding homogeneous cell. 

Poincaré sphere representation is an elegant geometrical means for solving problems 

involving the propagation of polarized light through birefringent and optically active media [78]. 

The mechanism of the proposed device can be explained by the Poincaré sphere depicted in 

Figure 5.1(b). The unpolarized light from backlight unit passing through the bottom polarizer 

(point P) will become linearly polarized with its polarization state locating at point T. At oblique 

view, the absorption axes of polarizer (point P) and analyzer (point A) do not locate on the S2 

axis. For an uncompensated LCD panel, point T deviates from point A, but a well-compensated 

LC layer will then move the polarization state T to the absorption axis of the analyzer (point A), 

so a good dark state is achieved. When the light hits the positive  BPLC layer, it will act like a 

positive C-film and rotate point A clockwise around the CO axis to point G. On the other hand, if 

the BPLC has a negative  it will act like a negative C-film and rotate point A counterclockwise 

around the CO axis to point H. As a result, point G or H deviates again from the absorption axis 

of the analyzer (point A). The well-compensated wide-view LCD can be switched gradually to 

be narrow-view according to the voltage applied. Because the BPLC layer is an isotropic 

medium at V=0, so the light remains in point A and the good dark state will not be affected. This 

method works equally well for all the display modes. In addition, BPLCs have a sub-millisecond 

response time that enables a rapid transition between wide view and narrow view. Moreover, the 

fabrication of the BPLC cell is also simple because no alignment layer is needed.  
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To prove this concept, we conducted device simulations using a nematic IPS cell as an 

example. The cell parameters are listed as follows: cell gap dIPS=4 μm, electrode width w=5 µm, 

electrode spacing l=10 µm, LC ∆n=0.096 and wavelength =550 nm. The BPLC cell is 

comprised of plane ITO electrode on both substrates with a cell gap dBP=5 m. The electric field 

is in the longitudinal direction. The BPLC material we used has a Kerr constant K= 12.68 nm/V
2
 

at =550 nm. 

Figure 5.2(a) shows the isocontrast plot for an IPS cell without any compensation film. 

The viewing angle is relatively poor; the 10:1 contrast ratio (CR) only extends to ~65
o
 polar 

angle. This is due to the large dark-state light leakage along the bisectors. Figure 5.2(b) is the 

isocontrast plot of a well-compensated IPS-LCD by a biaxial film with d(nx-ny)= λ/2, and Nz=0.5. 

The BPLC layer is optically isotropic at V=0. The CR of the well-compensated IPS-LCD is high. 

The display is in the wide-view mode. When the voltage is gradually increased from 0 Vrms 

(Figure 5.2(b)), 5 Vrms (Figure 5.2(c)), 8 Vrms (Figure 5.2(d)), 10 Vrms (Figure 5.2(e)), to 20 Vrms 

(Figure 5.2(f)), the viewing angle gets narrower. Comparing Figure 5.2(b) with Figure 5.2(f), we 

find that the viewing angle can go far below the original display without compensation film. 

However, as shown in Figure 5.2 (f), although the privacy protection is still imperfect along the 

horizontal and vertical directions, the region is getting smaller as the voltage increases. 
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Figure 5.2 Isocontrast plots of (a) an IPS LCD without compensation film, and 

viewing angle controllable IPS with a biaxial film and a positive BPLC layer at (b) 

V=0, (c) V=5 Vrms, (d) V=8 Vrms, (e) V=10 Vrms, and (f) V=20 Vrms. =550 nm. 

Depicted in Figure 5.3 are the isocontrast ratio plots for a viewing angle controllable 

display with a negative BPLC layer. This BPLC layer functions like a negative C-film. When the 

voltage is gradually increased from 5 Vrms (Figure 5.3(a)) to 8 Vrms (Figure 5.3(b)), 10 Vrms 

(Figure 5.3(c)) and 20 Vrms (Figure 5.3(d)), the polar angles for CR=100:1 decrease from 60
o
 to 
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40
o
, 30

o
 and then 15

o
. And for CR=10:1, in Figure 5.3(b), 5.3(c) and 5.3(d), the polar angles are 

60
o
, 50

o
 and 25

o
. This again demonstrates the outstanding performance of the proposed viewing 

angle controllable displays. Besides, the symmetry of the contrast ratio contour is also 

remarkable.  

 

Figure 5.3 Isocontrast plots of viewing angle controllable IPS cell with a negative 

BPLC layer at (a) V=5 Vrms, (b) V=8 Vrms, (c) V=10 Vrms, and (d) V=20 Vrms. 

=550 nm. 

According to Eq. (2.1), if we define VBP as the applied voltage to BPLC layer and dBP as 

the thickness of the BPLC layer, and if we replace the electric field E with VBP/dBP, we will have 

the following expression for the C-film like BPLC layer: 
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On one hand, if we keep on increasing the voltage VBP, the induced birefringence will be 

larger and the resulted viewing angle will become narrower. Although there is saturation on the 

induced the birefringence, new blue phase material can always be developed to match the design 

requirement. On the other hand, by adjusting the thickness of the BP layer dBP, the operation 

voltage needed to change the viewing angles can be modified. That is, a thinner BPLC cell will 

experience a stronger vertical electric field and thus a lower voltage is needed. To further lower 

the operation voltage VBP, we can use a blue phase material with a larger Kerr constant K.  

From Eq. (5.1), the induced birefringence can be tuned continuously by the voltage. 

Therefore, to obtain a specific view angel for the display, we just need to find out the induced 

birefringence needed, and then simply apply the corresponding voltage. The induced 

birefringence is uniformly distributed all over the BPLC cell, which adds to the accurateness of 

the control. Moreover, the overall transmittance of the original panel will not be affected by the 

uniform BPLC layer. A tradeoff is the increased panel thickness and weight. 

Aside from the IPS example we discussed above, the proposed configuration in Figure 

5.1(a) works equally well for other display modes, such as FFS, MVA and PVA, in which 

different compensation schemes with uniaxial or biaxial films have been proposed [79]. 

Therefore, as long as the LCD is initially well-compensated, the viewing angle can always be 

controlled by the applied voltage of the inserted BPLC layer.  

In this chapter, we have demonstrated a method to control the display viewing angles 

using an inserted blue phase liquid crystal cell. This method works well for all the LCD panels 

originally compensated by uniaxial or biaxial films. The viewing angle can be tuned 

continuously by electronically controlling the induced birefringence of the blue phase LC layer. 

Moreover, the BPLC layer has a simple fabrication process without alignment layer and 
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submillisecond response time. The transmittance of the original LCD panel will not be affected 

by the BPLC cell. It is believed that this approach will have a strong potential for future display 

applications. 
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CHAPTER 6: SUMMARY 

In this dissertation, we investigate blue phase liquid crystal displays based on Kerr effect. 

Compared to conventional nematic LCDs, the polymer-stabilized blue phase LCD exhibits 

several very attractive features that it does not require any alignment layer, the dark state of a 

blue phase LCD is optically isotropic, it is insensitive to the cell gap with IPS type electrodes, 

and most importantly, it demonstrates submillisecond response time. However, there are still 

technical challenges to overcome, such as high driving voltage, color shift issue, hysteresis issue, 

wavelength dispersion, long term stability, residual birefringence, and voltage holding ratio, etc. 

To solve these problems, material development and new device configuration are both important.  

The basic properties of blue phase liquid crystals are introduced in Chapter 1, following 

which the electro-optic properties of BPLCs are discussed in Chapter 2. Based on Kerr effect, the 

optically isotropic blue phase LC can become anisotropic with the electric fields. The 

temperature effects are studied theoretically and experimentally. It is found that as the 

temperature increases, both Kerr constant, induced birefringence, and response time decrease 

except at different rates. The theoretical simulated relation between the on-state voltage, Kerr 

constant and device factor is experimental validated. Moreover, the temperature dependency on 

response time is validated through experiment and model. In all aspects, good agreement 

between experiment and physical model is found. These proposed models will undoubtedly 

provide the guidance to optimize the material system design and the device performances.  

To further study the electro-optics and the underlying operation mechanism of the 

polymer-stabilized blue phase liquid crystal displays, a numerical computational model based on 

Kerr effect is developed. Parameters affecting the electro-optics of BPLCDs in in-plane-
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switching (IPS) structures, such as electric dimension, induced birefringence, cell gap, and 

wavelength dispersion are investigated. In addition, we also find the origins for symmetric 

viewing angle of IPS BPLC structures even using a 2D electrode structure. This numerical model 

provides a useful tool to understand the underlying physics and optics of BPLCDs, and also to 

improve the performance by optimizing the display structures. 

We have discussed various device optimization methods to improve the overall 

performance of blue phase liquid crystal displays. The high driving voltage is one of the most 

severe issues since it hinders the a-Si TFT driving. In Chapter 4, the low voltage BPLCDs 

designs are presented. The traditionally IPS structure is simple but the tradeoff is the high 

operating voltage which is a burden for the current a-Si TFT driving. The FFS structure keeps the 

simplicity in fabrication and provides a higher efficiency at low voltage side. The structure with 

double-penetrating fields lowers ~30% of the driving voltage and can be easily achieved by the 

etching process. The protrusion electrodes design substantially lower the operating voltage from 

50 volts to below 10 volts; however, its fabrication complexity is increased. To further lower the 

voltage, the approach with extra guiding fields is proposed to enlarge the effective region around 

the electrode edge area. These designs can dramatically reduce the operating voltage to below 10 

volts and for the first time a-Si TFT driving is enabled. Aside from low voltage designs, low 

wavelength dispersion BPLCDs are realized by different pixel electrode designs so that different 

electric fields are generated in RGB pixels; low color shift BPLCDs are obtained by employing 

zigzag electrode structure to create four domains; what’s more, low hysteresis BPLCDs are 

optimized by controlling the peak electric field to be lower than the critical field. In all, the low 

voltage, low wavelength dispersion, low color shift, and low hysteresis BPLCDs can be achieved. 

The optimization methods from the device side will effectively improve the performance of 
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BPLCDs and can largely accelerate the emergence of blue phase LCDs. 

Last but not least, blue phase liquid crystals exhibit a uniform optically isotropic to 

anisotropic transition with fast response time, and a simple fabrication process without alignment 

layer which are in favor to many photonic applications, such as phase grating and lens designs. 

Chapter 5 mainly focuses on the application of viewing angle controllable display by a BPLC 

layer. With this approach, the viewing angle can be tuned fast and continuously by electronically 

controlling the induced birefringence of the BPLC layer. Further research is undergoing to take 

advantage of the unique properties of BPLCs. 

In conclusion, the fast-response blue phase liquid crystal displays are explored 

systematically in this dissertation. Optimizations on device configurations are conducted to 

improve the overall performance of the blue phase liquid crystal displays. One of the most severe 

issues for a-Si TFT driving is solved with low voltage blue phase liquid crystal displays. We 

believe this work will make an important impact to the development of blue phase LCDs.  



104 

LIST OF REFERENCES 

[1] I. C. Khoo and S. T. Wu, Optics and nonlinear optics of liquid crystals. Singapore ; River 

Edge, NJ: World Scientific, 1993. 

[2] P. Yeh and C. Gu, Optics of liquid crystal displays. New York: Wiley, 1999. 

[3] P. G. d. Gennes, The physics of liquid crystals. Oxford Eng.: Clarendon Press, 1974. 

[4] S. Chandrasekhar, Liquid crystals, 2nd ed. Cambridge England ; New York, NY, USA: 

Cambridge University Press, 1992. 

[5] D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices. Hoboken, NJ: John 

Wiley, 2006. 

[6] J. Goodby, "The Nanoscale Engineering of Nematic Liquid Crystals for Displays," Liquid 

Crystals, vol. 38, 1363–1387, 2011. 

[7] W. Helfrich and M. Schadt, "Birefringence of Nematogenic Liquids Caused by Electrical 

Conduction," Physical Review Letters, vol. 27, 561-564, 1971. 

[8] M. Schadt and W. Helfrich, "Voltage-Dependent Optical Activity of a Twisted Nematic 

Liquid Crystal," Applied Physics Letters, vol. 18, 127-128, 1971. 

[9] T. J. Scheffer and J. Nehring, "A New, Highly Multiplexable Liquid-Crystal Display," 

Applied Physics Letters, vol. 45, 1021-1023, 1984. 

[10] R. A. Soref, "Transverse Field Effects in Nematic Liquid-Crystals," Applied Physics 

Letters, vol. 22, 165-166, 1973. 

[11] M. F. Schiekel and K. Fahrensc, "Deformation of Nematic Liquid Crystals with Vertical 

Orientation in Electrical Fields," Applied Physics Letters, vol. 19, 391-393, 1971. 

[12] H. Hasebe and S. Kobayashi, "A Full-Color Field Sequential LCD Using Modulated 

Backlight," SID Int. Symp. Digest Tech. Papers, vol. 16, 81-84, 1985. 

[13] F. Yamada, et al., "Sequential-Color LCD Based on OCB with an LED Backlight," 

Journal of the Society for Information Display, vol. 10, 81-85, 2002. 

[14] S. Gauza, et al., "Fast Switching Liquid Crystals for Color-Sequential LCDs," Journal of 

Display Technology, vol. 3, 250-252, 2007. 

[15] F. C. Lin, et al., "Color-Breakup Suppression and Low-Power Consumption by Using the 

Stencil-FSC Method in Field-Sequential LCDs," Journal of the Society for Information 



105 

Display, vol. 17, 221-228, 2009. 

[16] S. T. Wu and U. Efron, "Optical-Properties of Thin Nematic Liquid-Crystal Cells," 

Applied Physics Letters, vol. 48, 624-626, 1986. 

[17] M. Z. Jiao, et al., "Alignment Layer Effects on Thin Liquid Crystal Cells," Applied 

Physics Letters, vol. 92, 061102, 2008. 

[18] S. T. Wu and C. S. Wu, "High-Speed Liquid-Crystal Modulators Using Transient Nematic 

Effect," Journal of Applied Physics, vol. 65, 527-532, 1989. 

[19] S. T. Wu, "Nematic Liquid-Crystal Modulator with Response-Time Less Than 100 µs at 

Room Temperature," Applied Physics Letters, vol. 57, 986-988, 1990. 

[20] P. J. Bos and K. R. Beran, "The Pi-Cell, A Fast Liquid-Crystal Optical-Switching 

Device," Molecular Crystals and Liquid Crystals, vol. 113, 329-339, 1984. 

[21] T. Miyashita, et al., "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid-

Crystal Cell," Japanese Journal of Applied Physics Part 2-Letters, vol. 34, L177-L179, 

1995. 

[22] F. S. Yeung, et al., "Pi-cell Liquid Crystal Displays at Arbitrary Pretilt Angles," Applied 

Physics Letters, vol. 88, 041108, 2006. 

[23] M. Schadt, "Liquid Crystal Materials and Liquid Crystal Displays," Annu. Rev. Mater. 

Sci., vol. 27, 305-379, 1997. 

[24] L. H. Rao, et al., "Emerging Liquid Crystal Displays Based on the Kerr Effect," 

Molecular Crystals and Liquid Crystals, vol. 527, 30-42, 2010. 

[25] P. P. Crooker, "Blue Phases," in Chirality in liquid crystals, H. S. Kitzerow and C. Bahr, 

Eds., New York: Springer, 2001. 

[26] Y. Chen, et al., "A Microsecond-Response Polymer-Stabilized Blue Phase Liquid 

Crystal," Applied Physics Letters, vol. 99, 201105, 2011. 

[27] S. Meiboom, et al., "Theory of the Blue Phase of Cholesteric Liquid-Crystals," Physical 

Review Letters, vol. 46, 1216-1219, 1981. 

[28] H. Kikuchi, et al., "Polymer-Stabilized Liquid Crystal Blue Phases," Nature Materials, 

vol. 1, 64-68, 2002. 

[29] H. Kikuchi, "Liquid Crystalline Blue Phases," Liquid Crystalline Functional Assemblies 

and Their Supramolecular Structures, vol. 128, 99-117, 2008. 

[30] J. Yan and S. T. Wu, "Polymer-Stabilized Blue Phase Liquid Crystals: A Tutorial," 

Optical Materials Express, vol. 1, 1527-1535, 2011. 



106 

[31] J. Kerr, "A New Relation between Electricity and Light: Dielectrified Media  

Birefringent," Philos. Mag., vol. 50, 337-348, 1875. 

[32] L. H. Rao, et al., "Viewing Angle Controllable Displays with A Blue-Phase Liquid 

Crystal Cell," Optics Express, vol. 18, 3143-3148, 2010. 

[33] J. Yan, et al., "Extended Kerr Effect of Polymer-Stabilized Blue Phase Liquid Crystals," 

Applied Physics Letters, vol. 96, 071105, 2010. 

[34] H. Kikuchi, et al., "Optically Isotropic Nano-Structured Liquid Crystal Composites for 

Display Applications," SID Int. Symp. Digest Tech. Papers, vol. 40, 578-581, 2009. 

[35] Y. Haseba, et al., "Large Electro-Optic Kerr Effect in Nanostructured Chiral Liquid-

Crystal Composites over A Wide Temperature Range," Advanced Materials, vol. 17, 

2311-2315, 2005. 

[36] L. H. Rao, et al., "Prospects of Emerging Polymer-Stabilized Blue-Phase Liquid-Crystal 

Displays," Journal of the Society for Information Display, vol. 18, 954-959, 2010. 

[37] Y. H. Fan, et al., "Fast-Response and Scattering-Free Polymer Network Liquid Crystals 

for Infrared Light Modulators," Applied Physics Letters, vol. 84, 1233-1235, 2004. 

[38] P. R. Gerber, "Electro-Optical Effects of A Small-Pitch Blue-Phase System," Molecular 

Crystals and Liquid Crystals, vol. 116, 197-206, 1985. 

[39] S. T. Wu, "Birefringence Dispersions of Liquid-Crystals," Physical Review A, vol. 33, 

1270-1274, 1986. 

[40] W. Maier and A. Saupe, "Eine Einfache Molecular-Statistische Theorie Der Nematischen 

Kristallinflüssigen phase," Z. Naturforsch, Teil A, vol. 15, 287–292, 1960. 

[41] F. Zhang and D. K. Yang, "Temperature Dependence of Pitch and Twist Elastic Constant 

in a Cholesteric to Smectic A Phase Transition," Liquid Crystals, vol. 29, 1497-1501, 

2002. 

[42] W. M. Gelbart and A. Benshaul, "Molecular Theory of Curvature Elasticity in Nematic 

Liquids," Journal of Chemical Physics, vol. 77, 916-933, 1982. 

[43] L. H. Rao, et al., "Low Temperature Effects on the Response Time of Liquid Crystal 

Displays," Applied Physics Letters, vol. 94, 071112, 2009. 

[44] I. Haller, "Thermodynamic and Static Properties of Liquid Crystals," Progress in Solid 

State Chemistry, vol. 10, 103-118, 1975. 

[45] S. T. Wu, et al., "Optimal Operation Temperature of Liquid-Crystal Modulators," Applied 

Optics, vol. 26, 3441-3445, 1987. 



107 

[46] J. Li, et al., "Temperature Effect on Liquid Crystal Refractive Indices," Journal of 

Applied Physics, vol. 96, 19-24, 2004. 

[47] L. H. Rao, et al., "A Large Kerr Constant Polymer-Stabilized Blue phase Liquid Crystal," 

Applied Physics Letters, vol. 98, 081109, 2011. 

[48] K. M. Chen, et al., "Submillisecond Gray-Level Response Time of a Polymer-Stabilized 

Blue-Phase Liquid Crystal," Journal of Display Technology, vol. 6, 49-51, 2010. 

[49] H. F. Gleeson and H. J. Coles, "Dynamic Properties of Blue-Phase Mixtures," Liquid 

Crystals, vol. 5, 917-926, 1989. 

[50] S. T. Wu and C. S. Wu, "Experimental Confirmation of the Osipov-Terentjev Theory on 

the Viscosity of Nematic Liquid-Crystals," Physical Review A, vol. 42, 2219-2227, 1990. 

[51] S. T. Wu and C. S. Wu, "Rotational Viscosity of Nematic Liquid Crystals: a Critical 

Examination of Existing Models," Liquid Crystals, vol. 8, 171-182, 1990. 

[52] M. Schadt and F. Muller, "Physical Properties of New Liquid Crystal Mixtures and 

Electrooptical Performance in Twisted Nematic Displays," IEEE Transactions on 

Electron Devices, vol. 25, 1125-1137, 1978. 

[53] Z. B. Ge, et al., "Modeling of Blue Phase Liquid Crystal Displays," Journal of Display 

Technology, vol. 5, 250-256, 2009. 

[54] Z. B. Ge, et al., "Electro-Optics of Polymer-Stabilized Blue Phase Liquid Crystal 

Displays," Applied Physics Letters, vol. 94, 101104, 2009. 

[55] S. H. Lee, et al., "Electro-Optic Characteristics and Switching Principle of A Nematic 

Liquid Crystal Cell Controlled by Fringe-Field Switching," Applied Physics Letters, vol. 

73, 2881-2883, 1998. 

[56] Z. B. Ge, et al., "Reflective Liquid-Crystal Displays with Asymmetric Incident and Exit 

Angles," Journal of the Optical Society of America A-Optics Image Science and Vision, 

vol. 22, 966-977, 2005. 

[57] S. T. Wu, et al., "Refractive-Index Dispersions of Liquid-Crystals," Optical Engineering, 

vol. 32, 1775-1780, 1993. 

[58] Z. B. Ge, et al., "Thin Cell f Fringe-Field-Switching Liquid Crystal Display with A Chiral 

Dopant," Applied Physics Letters, vol. 92, 181109, 2008. 

[59] L. H. Rao, et al., "Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based 

Liquid Crystal Displays," Journal of Display Technology, vol. 6, 115-120, 2010. 

[60] M. Z. Jiao, et al., "Low Voltage and High Transmittance Blue-Phase Liquid Crystal 

Displays with Corrugated Electrodes," Applied Physics Letters, vol. 96, 011102, 2010. 



108 

[61] M. Kim, et al., "Wall-Shaped Electrodes for Reducing the Operation Voltage of Polymer-

Stabilized Blue Phase Liquid Crystal Displays," Journal of Physics D-Applied Physics, 

vol. 42, 235502, 2009. 

[62] L. H. Rao, et al., "Low Voltage Blue-Phase LCDs with Double-Penetrating Fringe 

Fields," Journal of Display Technology, vol. 6, 287-289, 2010. 

[63] X. Y. Zhu, et al., "Analytical Solutions for Uniaxial-Film-Compensated Wide-View 

Liquid Crystal Displays," Journal of Display Technology, vol. 2, 312-312, 2006. 

[64] D. Kubota, et al., "A New Process for Manufacture of Low Voltage, Polymer-Stabilized 

Blue Phase LCDs," SID Int. Symp. Digest Tech. Papers, vol. 42, 125-128, 2011. 

[65] H. Lee, et al., "The World's First Blue Phase Liquid Crystal Display ", SID Int. Symp. 

Digest Tech. Papers, vol. 42, 121-124, 2011. 

[66] R. B. Lu, et al., "Bending Angle Effects on the Multi-Domain In-Plane-Switching Liquid 

Crystal Displays," Journal of Display Technology, vol. 1, 207-216, 2005. 

[67] J. Yan and S. T. Wu, "Effect of Polymer Concentration and Composition on Blue Phase 

Liquid Crystals," Journal of Display Technology, vol. 7, 490-493, 2011. 

[68] K. M. Chen, et al., "Electrode Dimension Effects on Blue-Phase Liquid Crystal 

Displays," Journal of Display Technology, vol. 7, 362-364, 2011. 

[69] H. S. Kitzerow, "The Effect of Electric Fields on Blue Phases," Molecular Crystals and 

Liquid Crystals, vol. 202, 51-83, 1991. 

[70] J. Yan, et al., "High-Efficiency and Fast-Response Tunable Phase Grating Using A Blue 

Phase Liquid Crystal," Optics Letters, vol. 36, 1404-1406, 2011. 

[71] Y. Li and S. T. Wu, "Polarization Independent Adaptive Microlens With A Blue-Phase 

Liquid Crystal," Optics Express, vol. 19, 8045-8050, 2011. 

[72] Y. Li, et al., "Polarization Independent Blue-Phase Liquid Crystal Cylindrical Lens with 

A Resistive Film," Applied Optics, vol. 51, 2568-2572, 2012. 

[73] A. Takeda, et al., "A Super-High Image Quality Multi-Domain Vertical Alignment LCD 

by New Rubbing-Less Technology," SID Int. Symp. Digest Tech. Papers, vol. 29, 1077-

1080, 1998. 

[74] K. H. Kim, et al., "Domain Divided Vertical Alignment Mode with Optimized Fringe 

Field Effect," Proc. 18th Int’l Display Research Conference, 383-386, 1998. 

[75] K. W. Chien, et al., "Dual Light Source For Backlight Systems For Smart Viewing-

Adjustable LCDs," SID Int. Symp. Digest Tech. Papers, vol. 37, 1425-1427, 2006. 



109 

[76] K. Takatoh, et al., "New Peeping Prevention Technology To Control Viewing Angle 

Properties of TFT-LCDs," SID Int. Symp. Digest Tech. Papers, vol. 37, 1340-1343, 2006. 

[77] E. Jeong, et al., "Viewing Angle Switching of Vertical Alignment Liquid Crystal Displays 

by Controlling Birefringence of Homogenously Aligned Liquid Crystal Layer," Applied 

Physics Letters, vol. 90, 051116, 2007. 

[78] J. E. Bigelow and R. A. Kashnow, "Poincare Sphere Analysis of Liquid-Crystal Optics," 

Applied Optics, vol. 16, 2090-2096, 1977. 

[79] X. Y. Zhu, et al., "Analytical Solutions for Uniaxial-Film-Compensated Wide-View 

Liquid Crystal Displays," Journal of Display Technology, vol. 2, 2-20, 2006. 

  



110 

LIST OF STUDENT’S PUBLICATIONS 

JOURNAL PUBLICATIONS: 

1. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus 

integral image system design based on Fast-response liquid crystal microlens,” 

IEEE/OSA J. Display Technol. 7, 674-678 (Dec. 2011). 

2. L. Rao, J. Yan, S. T. Wu, Y. H. Chiu, H. Y. Chen, C. C. Liang, C. M. Wu, P. J. Hsieh, S. 

H. Liu, and K. L. Cheng, “Critical field for a hysteresis-free BPLC device,” IEEE/OSA J. 

Display Technol. 7, 627-629 (Dec. 2011). 

3. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically 

isotropic liquid crystals for next-generation display and photonics applications,” J. 

Materials Chem. 21, 7870-7877 (Mar. 2011).  

4. L. Rao, J. Yan, and S. T. Wu, “A large Kerr constant polymer-stabilized blue phase liquid 

crystal,” Appl. Phys. Lett. 98, 081109(Feb. 2011). 

5. L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase 

liquid crystal displays,” J. Soc. Info. Disp. 18, 954-959 (Nov. 2010). 

6. L. Rao, H. C. Cheng, and S. T. Wu, “Low Voltage Blue-Phase LCDs with Double-

Penetrating Fringe Fields,” IEEE/OSA J. Display Technol. 6, issue 8, 287-289 (Aug. 

2010).  

7. L. Rao, Z. Ge, S. Gauza, K. M Chen, and S. T. Wu, “Emerging liquid crystal displays 

based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 526, 185–197 (Jul. 2010).  

8. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced 

birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Optics 

Express 18, 11450-11455 (May. 2010). 

9. H. C. Cheng, L. Rao, and S. T. Wu, “Color Breakup Suppression in Field-Sequential 

Five-Primary-Color LCDs,” IEEE/OSA J. Display Technol. 6, 229-234 (Apr. 2010).   

10. L. Rao, Z. Ge, and S. T. Wu, “Zigzag electrodes for suppressing the color shift of Kerr 

effect-based Liquid Crystal Displays,” IEEE/OSA J. Display Technol. 6, issue 4, 115-120 

(Apr. 2010). 

11. S. Yoon, M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, A. K. Srivastava, S. H. Lee, Z. Ge, 

L. Rao, S. Gauza, and S. T. Wu, “Optimization of Electrode Structure to Improve the 

Electro-Optic Characteristics of Liquid Crystal Display Based on Kerr Effect,” Liq. Cryst. 

37, 201-208 (Feb. 2010).  



111 

12. L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase 

liquid crystal cell,” Opt. Express 18, 3143-3148 (Feb. 2010). 

13. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr 

effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105. 

(Feb. 2010)  

14. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low driving voltage blue phase liquid crystal 

displays,” Appl. Phys. Lett. 95, 231101 (Dec. 2009).  

15. M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza 

and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-

stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (Nov. 

2009).  

16. Z. Ge, L. Rao, S. Gauza, and S. T. Wu, "Modeling of blue phase liquid crystal displays," 

IEEE/OSA J. Display Technology 5, 250-256 (Jul. 2009). 

17. L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid 

crystal displays,” Appl. Phys. Lett. 94, 071112 (Feb. 2009). 

CONFERENCE PROCEEDINGS: 

1. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “Hysteresis-free blue-phase 

LCDs,” SID Int. Symp. Digest Tech. Papers, vol. 43, 199-200, 2012. 

2. L. Rao, J. Yan, and S. T. Wu “Temperature effect on polymer-stabilized blue-phase 

LCDs,” SID Int. Symp. Digest Tech. Papers, vol. 42, 129-131, 2011.  

3. L. Rao, Z. Ge, and S. T. Wu “Emerging blue phase liquid crystal displays,” SPIE Optics 

+ Photonics: Liquid Crystals XIV, Proc. of SPIE, vol. 7775, 77750Y, 2010. (Invited Talk) 

4. L. Rao, Z. Ge, and S. T. Wu, “Low voltage blue phase LCDs with patterned electrodes,” 

SID Int. Symp. Digest Tech. Papers, vol. 41, 77-79, 2010. (Distinguished Student Paper 

Award)   

5. L. Rao, Z. Ge and S. T. Wu, “Viewing angle controllable displays using a blue phase 

liquid crystal cell,” SID Int. Symp. Digest Tech. Papers, vol. 41, 177-179, 2010.   

6. L. Rao, S. Gauza, S. T. Wu and X. Liang, “Low-temperature effect on the liquid-crystal 

response time of mobile displays,” SID Int. Symp. Digest Tech. Papers, vol. 40, 1000-

1002, 2009. 

7. J. Yan, M. Jiao, L. Rao, and S. T. Wu, "Recent advances in optically isotropic liquid 

crystals for emerging display applications," SPIE Photonics West, Proc. of SPIE, vol. 

7955, 79550F, 2011. (Invited paper)  



112 

8. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, "Extended Kerr 

effect in a polymer-stabilized blue-phase liquid crystal composite,” SID Int. Symp. 

Digest Tech. Papers, vol. 41, 87-89, 2010. 

MAGAZINE PUBLICATIONS: 

1. L. Rao, Z. Ge, S. Gauza, K. M. Chen, S. T. Wu and S. H. Lee, “Emerging LCDs based on 

the Kerr effect,” Information Display, 14-18, Nov. 2009 

US PATENTS PENDING: 

1. S. Gauza, S. T. Wu, Z. Ge, L. Rao, H. K. Hsu, and C. L. Chin, “Liquid crystals 

composition and liquid crystal display with patterned electrodes,” U.S. patent application 

pending, Pub. No.: US 2011/0075074 A1 (Sep. 2009). 


	Low Voltage Blue Phase Liquid Crystal Displays
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background and Motivation
	1.2 Introduction to Blue Phase Liquid Crystals

	CHAPTER 2: ELECTRO-OPTICS OF POLYMER-STABILIZED BLUE PHASE LIQUID CRYSTALS
	2.1 Kerr Effect
	2.2 Temperature Effect
	2.3 Optical Response Time
	2.4 Summary

	CHAPTER 3: DEVICE PHYSICS OF BLUE PHASE LIQUID CRYSTAL DISPLAYS
	3.1 Blue Phase Liquid Crystal Displays with In-Plane-Switching Fields
	3.2 Computational Analysis of IPS-BPLCDs
	3.2.1 Electric Field Effect
	3.2.2 Induced Birefringence Distribution and Cell Gap Effect
	3.2.3 Operating Voltage and Kerr Constant
	3.2.4 Wavelength Dispersion
	3.2.5 Viewing Angle

	3.3 Summary

	CHAPTER 4: DEVICE CONFIGURATION OPTIMIZATIONS OF BLUE PHASE LIQUID CRYSTAL DISPLAYS
	4.1 Low Voltage BPLCDs
	4.1.1 BPLCDs with FFS Structure
	4.1.2 BPLCDs with Double-Penetrating Fringing Fields
	4.1.3 BPLCDs with Protrusion Electrodes
	4.1.4 BPLCDs with Extra Guiding Fields

	4.2 Low Wavelength Dispersion BPLCDs
	4.3 Low Color Shift BPLCDs
	4.4 Low Hysteresis BPLCDs
	4.5 Summary

	CHAPTER 5: PHOTONICS APPLICATIONS OF BLUE PHASE LIQUID CRYSTATLS
	CHAPTER 6: SUMMARY
	LIST OF REFERENCES
	LIST OF STUDENT’S PUBLICATIONS

