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ABSTRACT 

A recent method for solving singular perturbation problems is examined.  It is designed 

for the applied mathematician or engineer who needs a convenient, useful tool that requires little 

preparation and can be readily implemented using little more than an industry-standard software 

package for spreadsheets.  In this paper, we shall examine singularly perturbed two point 

boundary value problems with the boundary layer at one end point.  An initial-value technique is 

used for its solution by replacing the problem with an asymptotically equivalent first order 

problem, which is, in turn, solved as an initial value problem by using cubic splines.  Numerical 

examples are provided to show that the method presented provides a fine approximation of the 

exact solution. 

The first chapter provides some background material to the cubic spline and boundary 

value problems.  The works of several authors and a comparison of different solution methods 

are also discussed.  Finally, some background into the specific singularly perturbed boundary 

value problems is introduced.  The second chapter contains calculations and derivations 

necessary for the cubic spline and the initial value technique which are used in the solutions to 

the boundary value problems.  The third chapter contains some worked numerical examples and 

the numerical data obtained along with most of the tables and figures that describe the solutions.  

The thesis concludes with some reflections on the results obtained and some discussion of the 

error bounds on the calculated approximations to the exact solutions for the numeric examples 

discussed. 

  



iv 

 

 

 

 

 

 

 

 

 

  

This thesis is dedicated to my wife Katiuska and to my students, who have continuously 

reminded me of the value of patience and persistence.  It is also dedicated to my family, who 

remind me that the most imposing of tasks can be accomplished one small step at a time. 

  



v 

 

ACKNOWLEDGEMENTS 

 Dr. Ram Mohapatra has been an ideal mentor and thesis advisor.  His sage advice, 

thoughtful criticism, and continual encouragement have been instrumental to the completion of 

this thesis.  I would also like to thank Dr. David Rollins whose meticulous attention to detail was 

greatly needed and deeply appreciated.  Finally, I would thank Richard Weinsier and Diane 

Vargas whose steadfast support aided in the writing of this thesis in innumerable ways.  



vi 

 

TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES ......................................................................................................................... ix 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

CHAPTER 2: INTRODUCTORY DISCUSSION FOR THE METHOD ..................................... 7 

The Cubic Spline......................................................................................................................... 7 

The Initial-Value Technique ..................................................................................................... 19 

CHAPTER 3:  NUMERICAL EXAMPLES ................................................................................ 24 

Linear Singular Perturbation Problems with Left-end Boundary Layer ................................... 24 

Example 1 ............................................................................................................................. 24 

Example 2 ............................................................................................................................. 28 

Example 3 ............................................................................................................................. 31 

Linear Singular Perturbation Problems with Right-end Boundary Layer ................................ 34 

Example 4 ............................................................................................................................. 34 

Example 5 ............................................................................................................................. 37 

Nonlinear Singular Perturbation Problems with Left-end Boundary Layer ............................. 39 

Example 6 ............................................................................................................................. 39 

Example 7 ............................................................................................................................. 43 

CONCLUSION ............................................................................................................................. 46 



vii 

 

LIST OF REFRENCES ................................................................................................................ 48 

  



viii 

 

LIST OF FIGURES 

Figure 1:  Graph of the solution y(x) for the differential equation (30) and (31) ......................... 18 

Figure 2:  Graph of the spline solution of Example 1 ................................................................... 27 

Figure 3:  Graph of the spline solution of Example 2 ................................................................... 31 

Figure 4:  Graph of the spline solution of Example 3 ................................................................... 34 

Figure 5:  Graph of the spline solution of Example 4 ................................................................... 36 

Figure 6:  Graph of the spline solution of Example 5 ................................................................... 39 

Figure 7:  Graph of the spline solution of Example 6 ................................................................... 42 

Figure 8:  Graph of the spline solution of Example 7 ................................................................... 45 

  



ix 

 

LIST OF TABLES 

Table 1: Numerical results with h=0.01 ........................................................................................ 17 

Table 2: Numerical results of Example 1 with 
3 310 ,  10h     ................................................ 25 

Table 3:  Numerical results of Example 1 with 
3 310 ,  10h     ............................................... 26 

Table 4:  Numerical results of Example 1 with 
4 410 ,  10h     ............................................... 27 

Table 5:  Numerical results of Example 2 with 
3 310 ,  10h     ............................................... 29 

Table 6:  Numerical results of Example 2 with 
3 310 ,  10h     ............................................... 30 

Table 7:  Numerical results of Example 2 with 
4 410 ,  10h     ............................................... 30 

Table 8:  Numerical results of Example 3 with 
3 310 ,  10h     ............................................... 32 

Table 9:  Numerical results of Example 3 with 
3 310 ,  10h     ............................................... 33 

Table 10:  Numerical results of Example 3 with 
4 410 ,  10h     ............................................. 33 

Table 11:  Numerical results of Example 4 with 
3 310 ,  10h     ............................................. 35 

Table 12:  Numerical results of Example 4 with 
3 310 ,  10h     ............................................. 35 

Table 13:  Numerical results of Example 4 with 
4 410 ,  10h     ............................................. 36 

Table 14:  Numerical results of Example 5 with 
3 310 ,  10h     ............................................. 37 

Table 15:  Numerical results of Example 5 with 
3 310 ,  10h     ............................................. 38 

Table 16:  Numerical results of Example 5 with 
4 410 ,  10h     ............................................. 38 

Table 17:  Numerical results of Example 6 with 
3 310 ,  10h     ............................................. 41 

Table 18:  Numerical results of Example 6 with 
3 310 ,  10h     ............................................. 41 



x 

 

Table 19:  Numerical results of Example 6 with 
4 410 ,  10h     ............................................. 42 

Table 20:  Numerical results of Example 7 with 
3 310 ,  10h     ............................................. 44 

Table 21:  Numerical results of Example 7 with 
3 310 ,  10h     ............................................. 44 

Table 22:  Numerical results of Example 7 with 
4 410 ,  10h     ............................................. 45 

 



1 

 

CHAPTER 1: INTRODUCTION 

 The cubic spline interpolation is based on the engineering tool used to draw smooth 

curves through a finite number of points.  The engineer’s spline consists of weights attached to a 

flat surface at the points to be connected, and a flexible strip is then bent across each of the 

weights, resulting in a smooth curve; the mathematical spline uses a similar principle.  The 

points to be connected represent numerical data, and the “weights” are represented by numerical 

coefficients for a cubic polynomial that “bend” the line so that it passes continuously through 

each of the data points [5].  Since real-world numerical data is often difficult to analyze, finding 

a function that specifically relates the data is usually difficult to obtain and use.  For example, in 

the study of heat transfer, problems of the deflection of plates and in a number of other scientific 

applications, we find a system of differential equations of different order with different boundary 

conditions. Many problems are formulated mathematically in boundary value problems for 

second order differential equations as in heat transfer and deflection in cables.  Instead of trying 

to fit one function as the solution to the differential equations, we can use the series of unique 

cubic polynomials fitted between a set of data points.  We will stipulate that the curve obtained 

must be continuous and smooth, and we can then use this cubic spline to interpolate data and 

rates of change over an interval. 

A boundary value problem has conditions specified at the extremes of the independent 

variable.  If the problem is dependent on both space and time, then instead of specifying the 

value of the problem at a given point for all time, the data could be given at a given time for all 

space. For example, the temperature of an iron bar with one end kept at absolute zero and the 
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other end at the freezing point of water would be a boundary value problem. There are three 

types of boundary value problems, namely problems dealing with Dirichlet boundary conditions, 

Neumann boundary conditions, and Cauchy boundary condition 

If the boundary gives a value to the problem then it is a Dirichlet boundary condition. For 

example if one end of an iron rod had one end held at absolute zero then the value of the problem 

would be known at that point in space.  A Dirichlet boundary condition imposed on an ordinary 

differential equation or a partial differential equation specifies the values a solution is to take on 

the boundary of the domain. The question of finding solutions to such equations is known as the 

Dirichlet problem.   

If the boundary gives a value to the normal derivative of the problem then it is a 

Neumann boundary condition. For example if one end of an iron rod had a heater at one end then 

energy would be added at a constant rate but the actual temperature would not be known.  A 

Neumann boundary condition imposed on an ordinary differential equation or a partial 

differential equation specifies the values the derivative of a solution is to take on the boundary of 

the domain. 

If the boundary has the form of a curve or surface that gives a value to the normal 

derivative and the problem itself then it is a Cauchy boundary condition.  A Cauchy boundary 

condition imposed on an ordinary differential equation or a partial differential equation specifies 

both the values a solution of a differential equation is to take on the boundary of the domain and 

the normal derivative at the boundary.  It basically corresponds to imposing both a Dirichlet and 

a Neumann boundary condition.  Cauchy boundary conditions can be understood from the theory 
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of second order ordinary differential equations, where to have a particular solution one has to 

specify the value of the function and the value of the derivative at a given initial or boundary 

point. 

E.A. Al-Said has solved the system of second-order boundary value problems of the type 

( ),                               

" ( ) ( ) ( ) ,       

( ),                               

f x a x c

u g x u x f x r c x d

f x d x b

 


    
  

    (i)  

 

with the Dirichlet boundary conditions 

1 2( )  ( ) =u a and u b        (ii)  

assuming the continuity conditions of u  and 'u  at c  and d , and where f  and g  are continuous 

functions on [ , ]a b  and [ , ],c d  respectively. The parameters 
1 2, ,r    are real finite constants.  He 

used a cubic spline function to develop a numerical method for computing smooth 

approximations to the solution and its derivatives for a system of second-order boundary-value 

problems of the type (i) [2]. 

A. Khan and T. Aziz applied parametric cubic spline functions to develop a new 

numerical method for obtaining smooth approximations to the solution of the system of 

second-order boundary value problem of the type (i) having Dirichlet boundary conditions [9]. 

Siraj-ul-Islam and Ikram A. Tirmizi have applied non-polynomial spline functions that 

have a polynomial and trigonometric parts to develop a new numerical method for obtaining 

smooth approximations to the solution of the system of second-order boundary value problem of 

the type (i) having Dirichlet boundary conditions [16]. 
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 Arshad Khan has derived a uniformly convergent uniform mesh difference scheme 

using parametric cubic spline for the solution of the two-point boundary value problem with 

Dirichlet boundary conditions of the type 

0 1

"( ) ( ) ( ) ( ),

( )= ,    ( )= ,

y x f x y x g x a x b

y a y b 

   
    (iii) 

where ( )f x  and ( )g x  are continuous functions on [ , ]a b  and 0 1, , ,a b    are arbitrary real finite 

constants.  Such problems arise plate deflection theory and a number of other scientific 

applications [10].  In general it is difficult to obtain the analytical solution of (iii) for arbitrary 

choices of ( )f x  and ( ).g x   The standard numerical methods for the numerical treatment of (iii) 

consist of finite difference methods discussed by many authors. 

The literature of numerical analysis contains little on the solution of second order two-

point boundary value problems subjected to Neumann boundary conditions.  M.A. Ramadan and 

I.F. Lashien have used both polynomial and non-polynomial spline functions to develop numerical 

methods for obtaining smooth approximations for the solution of the linear second order two-point 

boundary value problem subjected to Neumann boundary conditions [14]. 

Albasiny and Raghavarao solved linear second order two-point boundary problem (i) 

subjected to Dirichlet boundary conditions using cubic polynomial spline [1] [13]. Blue solved 

this problem using quintic polynomial spline [4], while, Caglar et al. solved this problem using 

cubic B-spline [6]. 

Singular perturbation problems occur commonly in many branches of mathematics.  The 

governing equations of various mathematical models in physical, biological, economic, or 
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engineering applications often involve characteristics that make it difficult to obtain an exact 

solution to a problem.  Some solutions may have a closed form, but result in a complicated 

integral solution, while solutions to other models are more easily obtained but result in an infinite 

series solution. 

When a large parameter or small parameter occurs within the mathematical model in one 

of these processes, perturbation methods are used to construct a series of simpler equations 

which can be used to approximate the solution to the problem.  In general, many techniques used 

to solve singularly perturbed problems consist of dividing the problem into inner and outer 

regions, expressing the inner and outer solutions as asymptotic expansions, equating terms in the 

expressions developed to determine the constants in the expressions, and uniting the inner and 

outer solutions to obtain the final valid solution to the problem.  However, the difficulties in 

using these techniques often arise when matching the coefficients in the inner and outer 

expansions in order to yield the final solution.  Recently, non-asymptotic methods have been 

used to solve certain classes of singularly perturbed problems, replacing singularly perturbed 

two-point boundary value problems by initial-value techniques. 

We shall investigate an initial-value technique for singularly perturbed two-point 

boundary value problems via cubic splines introduced by Manoj Kumar, Pitam Singh, and 

Hradyesh Kumar Mishra.  The initial-value technique will be examined and tested an alternate 

method to approximate solutions.  The approximate solutions will then be compared to the exact 

solutions to see if the method is successful for solving ordinary differential equations.  Then the 
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method will be applied to approximate solutions to linear and nonlinear singularly perturbed 

boundary value problems. 
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CHAPTER 2: INTRODUCTORY DISCUSSION FOR THE METHOD 

The Cubic Spline 

 We want to fit a piecewise function of the form 

1 1 2

2 2 3

1 1

( ),  

( ),  
( )

              

( ),  n n n

s x x x x

s x x x x
S x

s x x x x 

 


 
 

  

     (1) 

where is is a third-degree polynomial defined by 

3 2( ) ( ) ( ) ( )i i i i i i i is x a x x b x x c x x d          (2) 

for 1,2, , 1.i n   

 The first and second derivatives are also necessary to the process and are given by 

2( ) 3 ( ) 2 ( )i i i i i is x a x x b x x c           (3) 

( ) 6 ( ) 2i i i is x a x x b         (4) 

for 1,2, , 1.i n   

 The cubic spline will need to conform to the following four properties: 

1. The piecewise function ( )S x  will interpolate all the data points; that is,  

( )i iS x y       (5) 
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for 1,2, , 1.i n    Since each 1[ , ]i i ix x x  , ( ) ( )i iS x s x , and from (2) we have 

3 2

( )

( ) ( ) ( )

i i

i i i i i i i i i i i

i i

y s x

y a x x b x x c x x d

y d



      



    (6) 

for 1,2, , 1.i n   

2. The function ( )S x  will be continuous on the interval 1[ , ]nx x .  Then we must ensure that 

each sub-function must join at the data points, so for 2, ,i n , we have 

1( ) ( )i i i is x s x       (7) 

Then using equation (2), we have  

( )i i is x d  

and 

3 2

1 1 1 1 1 1 1 1( ) ( ) ( ) ( )i i i i i i i i i i i is x a x x b x x c x x d             
   (8) 

so
 

3 2

1 1 1 1 1 1 1( ) ( ) ( )i i i i i i i i i i id a x x b x x c x x d            
   (9) 

for 2,3, , 1.i n   If we let 1i ih x x    in equation (9), we have 

3 2

1 1 1 1i i i i id a h b h c h d           (10) 
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for 2,3, , 1.i n   

3. The function ( )S x  will be continuous on the interval 1[ , ]nx x .  In order to ensure that the 

curve is smooth across the interval, the derivatives must be equal at the data points; that is, 

1( ) ( )i i i is x s x
       (11) 

for 2,3, , 1i n   

Then using equation (3), we have  

( )i i is x c   

and 

2

1 1 1 1 1 1( ) 3 ( ) 2 ( )i i i i i i i i is x a x x b x x c     
     

 

so
 

2

1 1 1 1 13 ( ) 2 ( )i i i i i i i ic a x x b x x c        
   (12) 

for 2,3, , 1.i n   If we let 1i ih x x    in equation (12), we have 

2

1 1 13 2i i i ic a h b h c    
     (13) 

for 2,3, , 1.i n   
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4. The function ( )S x  will be continuous on the interval 1[ , ]nx x .  In order to ensure that the 

curve is continuous across the interval, the second derivatives must be equal at the interior data 

points; that is, 1( ) ( )i i i is x s x
  for 1,2, , 1.i n   

 From equation (4) we have ( ) 6 ( ) 2 ,i i i is x a x x b    so 

( ) 6 ( ) 2 ,i i i is x a x x b   
    (14)

 

( ) 6 ( ) 2i i i i i is x a x x b   
 

( ) 2i i is x b 
 

for 2,3, , 2.i n   

 Since we must have ( )is x continuous across the interval, 1( ) ( )i i i is x s x
  for 

1,2, , 1.i n   

Then combining this and equation (14), we have that 

1 1( ) 6 ( ) 2i i i i i is x a x x b 
         (15) 

1 1 1( ) 6 ( ) 2i i i i i is x a x x b  
         (16) 

If we let 1i ih x x   in equation (14) and (16), we have 

1 1 1( ) 2i i is x b  
        (17) 
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12 6 2i i ib a h b         (18) 

 At this point, we could substitute M for s”(x) and express the equations above in terms of 

Mi and yi to determine the weights of ai , bi , ci , and di.[7]  We will instead simplify these 

equations by making a substitution using equation (3): 

( )i i i

i i

s x c

m c

 

       (19) 

and expressing the equations above in terms of mi and yi.  We can then determine the remaining 

coefficient ai, bi, and di.  We want to relate the cubic spline function to boundary value problems 

and initial value problems with boundary conditions given in terms of function values and first 

derivatives.  We note that di has already been determined to be  

.i id y       (20) 

We can similarly use equation (3) as 

2

1 1 1

2

1 1 1

3 ( ) 2 ( )

3 ( ) 2 ( )

i i i i i i i i

i i i i i i i i

c a x x b x x c

m a x x b x x m

  

  

    

    
   (21) 

Using equation (2) we can write 

3 2

1 1 1 1

3 2

1 1 1 1

( ) ( ) ( )

( ) ( ) ( )

i i i i i i i i i i i

i i i i i i i i i i i

d a x x b x x c x x d

y a x x b x x m x x y

   

   

      

      
   (22) 
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We can now use equations (21) and (22) to determine expressions for ai and bi.  Let h = xi+1  xi 

and solve the system: 
1

3 2

1

3 2

( )

i i i i

i i i i i

m m a h b h

y y m h a h b h





  


   
 

Multiplying (21) by h , (22) by 2, and combining equations results in the following equation: 

3

1 1

1 1

2 3

( ) 2( )

( ) 2( )
.

i i i i i

i i i i
i

h m m y y a h

m m y y
a

h h

 

 

   

 
 

    (23) 

Multiplying (21) by h , (22) by 3, and combining equations results in the following equation: 

2

1 1

1 1

2

( 2 ) 3( )

3( ) ( 2 )
.

i i i i i

i i i i
i

h m m y y b h

y y m m
b

h h

 

 

    

 
 

    (24) 

We can now write the function S(x) strictly in terms of mi and yi , and we have 

31 1

2 3

21 1

2

( ) 2( )
( ) ( )

3( ) ( 2 )
                  ( )

                                    ( )

i i i i
i

i i i i
i

i i i

m m y y
S x x x

h h

y y m m
x x

h h

m x x y

 

 

  
   
 

  
   
 

  

   (25) 

 We will finally rewrite the cubic spline function S(x) in terms of its first derivatives by 

collecting terms for mi and yi.  We had let h = xi+1 – xi for the previous equations.  Collecting 

terms for mi , we have 
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3 2

2

2 2

2

( ) 2 ( )
( )

( )
( ) 2( ) ( )

i i i i
i i

i i
i i i

m x x m x x
m x x

h h

m x x
x x x x h x x h

h

 
  


      

 

and expanding terms in the brackets yields 

2 2

1 12

2

1

2

( )
( ) 2

( )( )
.

i i
i i

i i i

m x x
x x x x

h

m x x x x

h

 




    

 

    (26) 

Collecting terms for mi+1 , we have 

3 2

1 1

2

2

1

2

( ) ( )

( )
[ ]

i i i i

i i
i

m x x m x x

h h

m x x
x x h

h

 



 



 

 

and rewriting h in the brackets, yields 

2

1 1

2

( ) ( )i i im x x x x

h

  
 .     (27) 

Collecting terms for yi , we have 

3 2

3 2

3 2 3

3

2 ( ) 3 ( )

2( ) 3( )

i i i i
i

i
i i

y x x y x x
y

h h

y
x x x x h h

h

 
 

     
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and expanding terms in the brackets yields 

2

1
13

2

1

3

( )
[2 2 ]

( ) [2( ) ]
.

i i
i i i

i i i

y x x
x x x x

h

y x x x x h

h







  

  

    (28) 

Finally, collecting terms for yi+1 , we have 

3 2

1 1

3 2

2

3

2 ( ) 3 ( )

( )
[ 2( ) 3 ]

i i i i

i i
i

y x x y x x

h h

y x x
x x h

h

   



  

 

and since h = xi+1  – xi , we have 

2

1 1

3

( ) [2( ) ]i i iy x x x x h

h

   
.     (29) 

 The cubic spline function S(x) in terms of its first derivatives S’(x) is now given by 

2 2

1 1 1

2 2

2

1

3

2

1 1

3

( )( ) ( ) ( )
( )

( ) [2( ) ]
               

( ) [2( ) ]
                             

i i i i i i

i i i

i i i

m x x x x m x x x x
S x

h h

y x x x x h

h

y x x x x h

h

  



 

   
 

  


  


   (30) 

where h = xi+1 – xi will be used as the mesh size for calculating the spline function. 

We will now differentiate with respect to x and simplify the equation. 
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Differentiating (30) with respect to x, we obtain 

1 1 1 1

2 2

1 1 1

3 3

( )( 2 3 ) ( )( 2 3 )
'( )

6 ( )( ) 6 ( )( )
               

i i i i i i i i

i i i i i i

m x x x x x m x x x x x
S x

h h

y x x x x y x x x x

h h

   

  

     
 

   
 

    (31) 

We differentiate (31) again with respect to x, and we have 

1 1 1

2 2

1 1 1

3 3

2 (2 3 ) 2 ( 2 3 )
''( )

6 ( 2 ) 6 ( 2 )
               

i i i i i i

i i i i i i

m x x x m x x x
S x

h h

y x x x y x x x

h h

  

  

   
  

   
 

    (32) 

which yields 

1 1 1 1 1
1 2 2

1 1 1 1 1

3 3

2 (2 3 ) 2 ( 2 3 )
''( )

6 ( 2 ) 6 ( 2 )
               

i i i i i i i i
i

i i i i i i i i

m x x x m x x x
S x

h h

y x x x y x x x

h h

    


    

   
  

   
 

 

Final simplification results in 

1 1

2 2

1 1

2 2

2 4 6 6
''( )

2 4 6 6
''( )

i i i i
i

i i i i
i

m m y y
S x

h h h h

m m S S
S x

h h h h

 

 

   

   
     (33) 

If we consider an initial-value problem 

( , )
dy

f x y
dx

        (34) 
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0 0( )y x y        (35) 

then from the chain rule, we have 

2

2

d y f f dy

dx x y dx

 
 
   and  

1 1 1 1 1 1 1

1 1 1 1 1 1 1

''( ) ( , ) ( , ) ( , )

''( ) ( , ) ( , ) ( , )

i i i i i i i

i i i i i i i

f f
y x x y x y f x y

x y

f f
y x x S x S f x S

x y

      

      

 
 
 

 
 
 

    (36) 

When we equate the two expressions (33) and (36), we obtain 

1 1
1 1 1 1 1 12 2

2 4 6 6
( , ) ( , ) ( , )i i i i

i i i i i i

m m S S f f
x S x y f x S

h h h h x y

 
     

 
    

     (37) 

and we will use this equation to compute the values of Si and in turn use (30) to get S(x). 

 Let us consider a brief numerical example to illustrate the cubic spline method of solving 

a differential equation.  Consider the initial value problem 

dy
y

dx
        (38) 

(0) 1y         (39) 

Equating (33) and (36) we have 

1 1
12 2

2 4 6 6i i i i
i

m m S S
S

h h h h

 
         (40) 

From (38), we can replace the mi in (40) and we have 
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1 1
12 2

2 4 6 6i i i i
i

S S S S
S

h h h h

 
         (41) 

 and solving for Si+1 we have 

1 2

(2 6)

( 4 6)
i i

h
S S

h h





           (42) 

and we can now use the initial value to calculate next value in the sequence.  The numerical 

results are given in Table 1 for h = 0.01.  The graph of the function y(x) is given in Figure 1. 

Table 1: Numerical results with h=0.01 

x y(x) 

exact 
solution 

0 1 1 
0.01 1.010050167 1.010050167 

0.1 1.105170917 1.105170918 
0.2 1.221402755 1.221402758 
0.3 1.349858802 1.349858808 

0.4 1.491824689 1.491824698 
0.5 1.648721259 1.648721271 
0.6 1.822118785 1.8221188 
0.7 2.013752688 2.013752707 
0.8 2.225540904 2.225540928 
0.9 2.45960308 2.459603111 

0.99 2.691234435 2.691234472 

1 2.718281791 2.718281828 
 

We see that the data points are remarkably close the exact solution for a reasonably small step 

size, and the data points can be used now to provide a solution for the differential equation. 
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Figure 1:  Graph of the solution y(x) for the differential equation (30) and (31) 
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The Initial-Value Technique 

 In their paper, Kumar, Singh, and Mishra [12] introduce an initial-value technique for 

singularly perturbed two-point boundary value problems with a layer on the left (or right) end of 

the underlying interval in which the original second order problem is replaced by an 

asymptotically equivalent three first-order initial-value problems, which are then solved via 

cubic spline.  For convenience, we will call this method the initial-value technique.  We first 

consider a linear singularly perturbed two-point boundary problem of the form: 

"( ) ( ) '( ) ( ) ( ) ( ),  [ , ]u x p x u x q x u x r x x a b         (43) 

( )u a         (44) 

( )u b         (45) 

where  is a small positive parameter (0 1)   and  ,   are known constants.  We assume 

that p(x), q(x), and r(x) are sufficiently continuously differentiable functions in [a, b], and 

furthermore, we assume that ( ) 0p x M   throughout the interval [a, b], where M is some 

positive constant.  This assumption implies that the solution of (43), (44), and (45) will be in the 

neighborhood of x = a. 

 Since singular perturbation problems exhibit boundary layer behavior of the solution, the 

solution of (43), (44), and (45) is given by 

( )/( , ) ( ) ( ) t xu x v x w x e         (46) 

with 
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 ( ) ( )

x

a

t x p d           

where 
0

( , ) ( ) n

n

n

v x v x 




  and 
0

( , ) ( ) n

n

n

w x w x 




  (cf.[17, p.292]), so we have 

 ( )/

0 0

( , ) ( ) ( )n n t x

n n

n n

u x v x v x e   
 



 

 
   

 
      (47) 

with 

( ) ( )

x

a

t x p d    .     (48) 

Differentiating (47) with respect to x yields 

( )/ ( )/

0 0 0

( )
'( , ) '( ) '( ) ( )n n t x n t x

n n n

n n n

p x
u x v x w x e w x e    



  
 

  

     
       

    
      (49) 

( )/ ( )/

0 0 0

2

( )/ ( )/

0 0

( )
''( , ) ''( ) ''( ) 2 '( )

( ) '( )
                                ( ) ( )

n n t x n t x

n n n

n n n

n t x n t x

n n

n n

p x
u x v x w x e w x e

p x p x
w x e w x e

 

 

   


 
 

  
 

  

 
 

 

     
       

    

      
      

     

  

  


 (50) 

We can now substitute (47), (48), and (49) in (43), and we have 
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1 1 ( ) / ( ) /

0 0 0

1 ( ) / 2 ( ) /

0 0

''( ) ''( ) 2 '( ) ( )

                           ( ) [ ( )] ( ) '( )

                         

n n t x n t x

n n n

n n n

n t x n t x

n n

n n

v x w x e w x e p x

w x e p x w x e p x

 

 

  

 

  
   

  

 
  

 

   
    
   

   
    
   

  

 

2 1 ( ) /

0 0

( ) /

0

      [ ( )] ( ) ( ) ( )

                                     ( ) ( ) ( )

n t x n

n n

n n

n t x

n

n

p x w x e q x v x

q x w x e r x





 



 
 

 






   
    

   

 
  

 

 



  (51) 

By restricting these series to their first terms, we the get 

0 0 0 0

( ) /

0 0

( ) '( ) ( ) ( ) [ 2 ( ) '( ) '( ) ( )

     ( ) '( ) ( ) ( )] ( )t x

p x v x q x v x p x w x p x w x

p x w x q x w x e r x

   

  
 

 We therefore have the following: 

0 0( ) '( ) ( ) ( ) ( )p x v x q x v x r x      (52) 

and 

0 0[ ( ) ( )] ( ) ( )
d

p x w x q x w x
dx

      (53) 

The representations (47) and (48) can be inserted to the boundary conditions (44) and 

(45), and the boundary conditions become 

0 0( ) ( )v a w a         (54) 

and 

0 ( )v b        (55) 
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where the exponentially small term ( ) /t be   is neglected in order to obtain the boundary condition 

(55) at x = b.  The differential equation (52) can be solved with the boundary condition (55) to 

determine
0 ( )v x , then 

0 ( )w x  is determined by solving the differential equation (53) with the 

boundary condition
0 0( ) ( )w a v a  . 

From (48), we have ( ) ( )

x

a

t x p d    , so '( ) ( )t x p x  with ( ) 0t a    

 The three initial-value problems corresponding to (43), (44), and (45) are given by [12] 

(IVP.I) 0 0( ) '( ) ( ) ( ) ( )p x v x q x v x r x   with 0 ( )v b       (56) 

(IVP.II)  0 0( ) ( ) ( ) ( )
d

p x w x q x w x
dw

  with 0 0( ) ( )w a v a      (57) 

(IVP.III) '( ) ( )t x p x  with ( ) 0t a          (58) 

These initial-value problems are independent of the perturbation parameter and will be solved by 

the cubic spline method.  For the problems exhibiting right-end behavior, we use the three initial-

value problems as well. 

 We consider a linear singularly perturbed two-point boundary problem of the form: 

"( ) ( ) '( ) ( ) ( ) ( ),  [ , ]u x p x u x q x u x r x x a b         (59) 

( )u a         (60) 

( )u b         (61) 
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where   is a small positive parameter (0 1)   and  ,   are known constants.  We assume 

that p(x), q(x), and r(x) are sufficiently continuously differentiable functions in [a, b], and 

furthermore, we assume that ( ) 0p x M   throughout the interval [a, b], where M is some 

negative constant.  This assumption implies that the solution of (43), (44), and (45) will be in the 

neighborhood of x = b. 

 Therefore the three initial-value problems corresponding to (43), (44), and (45) are given 

by[12] 

(IVP.I) 0 0( ) '( ) ( ) ( ) ( )p x v x q x v x r x   with 0 ( )v a       (62) 

(IVP.II)  0 0( ) ( ) ( ) ( )
d

p x w x q x w x
dw

  with 0 0( ) ( )w a v b      (63) 

(IVP.III) '( ) ( )t x p x  with ( ) 0t b          (64) 

These initial-value problems are independent of the perturbation parameter and will be solved by 

the cubic spline method. 
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CHAPTER 3:  NUMERICAL EXAMPLES 

Linear Singular Perturbation Problems with Left-end Boundary Layer 

Example 1 

First, consider the following homogeneous singular perturbation problem from Bender and 

Orzag [3, p.480, Problem 9.17 with  =0] 

"( ) '( ) ( ) 0

[0,1] , (0) 1 , (1) 1.

y x y x y x

x y y

   

  
     (65) 

Here we note that ( ) 1,  ( ) 1,  ( ) 0p x q x r x    . 

 From (56), we have 0 0 0'( ) ( ) 0 with (1) 1v x v x v   , so 0 0 0''( ) '( ) ( )v x v x v x   we can set 

i iv m and we have 1nv  , so the resulting equation from (37) is 

2

1 1 16 6 2 4i i i i iv v hm hm h v      . 

2

1 16 ( 6) 2 4 0i i i iv h v hm hm       

2

1(6 2 ) [ 4 6] 0i ih v h h v        

2

1

[ 4 6]

(6 2 )
i i

h h
v v

h


  



 

In an effort to make the method readily accessible, we will be using an industry-standard 

software package for spreadsheets (Microsoft EXCEL) to solve for 0 ( )v x  and then, 0 ( )w x . 



25 

 

From (57), we have 0 0 0 0'( ) ( ) 0 , (0) 1 (0)w x w x w v    , so 0 0'( ) ( )w x w x   we can set 

i iw m  and we have 1 01 (0)w v  , so the resulting equation from (37) is 

2

1 1 16 6 2 4i i i i iw w hm hm h w       . 

2

1 16 (6 ) 2 4 0i i i iw h w hm hm       

2

1(6 2 ) [4 6] 0i ih w h h w       

1 2

(6 2 )

[4 6]
i i

h
w w

h h





 
 

From (58) we have ( )t x x  after integrating and applying the initial condition.  The numerical 

results are given in Table 2 for 310  . 

Table 2: Numerical results of Example 1 with 
3 310 ,  10h     

x v(x) w(x) 

0 0.367879441 0.632120559 
0.001 0.368247505 0.631488965 
0.01 0.371576691 0.625832939 
0.02 0.375311099 0.619607861 
0.03 0.379083038 0.613444703 
0.04 0.382892886 0.60734285 
0.05 0.386741023 0.60130169 
0.1 0.40656966 0.571985387 
0.3 0.496585304 0.468333227 
0.5 0.60653066 0.383464362 
0.7 0.740818221 0.313974983 
0.9 0.904837418 0.257078101 

1 1 0.232621634 
 



26 

 

 The solution to (65) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with ( )t x x .  The 

results are given in Table 3 and Table 4 for 310  and 410   respectively, and compared to 

the exact solution.  The graph of the cubic spline function is given in Figure 2.  The exact 

solution to (65) is given by 

2 1 1 2

2 1

( 1) (1 )
( ) ,  

m m x m m x

m m

e e e e
y x

e e

  



 

where 
1

1 1 4

2
m





  
  and 

1

1 1 4

2
m





  
  . 

Table 3:  Numerical results of Example 1 with 
3 310 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 
0.001 0.6005593120 0.6007917971 2.3249E-04 
0.01 0.3716051038 0.3719723959 3.6729E-04 
0.02 0.3753111001 0.3756783508 3.6725E-04 
0.03 0.3790830381 0.3794501927 3.6715E-04 

0.04 0.3828928860 0.3832599056 3.6702E-04 
0.05 0.3867410235 0.3871078683 3.6684E-04 
0.1 0.4065696597 0.4069350065 3.6535E-04 
0.3 0.4965853038 0.4969323412 3.4704E-04 
0.5 0.6065306597 0.6068333956 3.0274E-04 
0.7 0.7408182207 0.7410400560 2.2184E-04 
0.9 0.9048374180 0.9049277258 9.0308E-05 

1 1.0000000000 1.0000000000 0.0000E+00 
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Table 4:  Numerical results of Example 1 with 
4 410 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 
0.0001 0.6004371364 0.6004603902 2.3254E-05 
0.001 0.3682761742 0.3683129549 3.6781E-05 
0.002 0.3686159376 0.3686527200 3.6782E-05 
0.003 0.3689847366 0.3690215189 3.6782E-05 
0.004 0.3693539059 0.3693906880 3.6782E-05 
0.005 0.3697234445 0.3697602265 3.6782E-05 

0.1 0.4065696597 0.4066062453 3.6586E-05 
0.3 0.4965853038 0.4966200590 3.4755E-05 
0.5 0.6065306597 0.6065609809 3.0321E-05 
0.7 0.7408182207 0.7408404411 2.2220E-05 
0.9 0.9048374180 0.9048464646 9.0466E-06 

1 1.0000000000 1.0000000000 0.0000E+00 

 

 

Figure 2:  Graph of the spline solution of Example 1 
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Example 2 

 Next, consider the following non-homogeneous singular perturbation problem from fluid 

dynamics for fluid of small viscosity [15, Example 2] 

"( ) '( ) 1 2

[0,1] , (0) 0 , (1) 1.

y x y x x

x y y

   

  
     (66) 

Here we note that ( ) 1,  ( ) 0,  ( ) 1 2p x q x r x x    . 

 From (56), we have 0 0'( ) 1 2  with (1) 1v x x v   , so we can set 1 1 2i im x   , so the 

resulting equation from (37) is 

2

1 16 6 2 4 2i i i iv v hm hm h     . 

2

1 16 6 2 (1 2 ) 4 (1 2 ) 2i i i iv v h x h x h        

2

1 16 2 (1 2 ) 4 (1 2 ) 2

6

i i i
i

v h x h x h
v      
  

From (57), we have 0 0 0'( ) 0 , (0) 1 (0)w x w v   , so 0 ( ) 1w x   and the resulting equation from 

(37) is simply 

1i iw w   

From (58) we have ( )t x x after integrating and applying the initial condition.  The numerical 

results are given in Table 5 for 310  .  The spline function is graphed in Figure 3. 
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Table 5:  Numerical results of Example 2 with 
3 310 ,  10h     

x v(x) w(x) 

0 -0.999999833 1 

0.001 -0.998998667 1 

0.01 -0.989898185 1 

0.02 -0.97959657 1 

0.03 -0.969094988 1 

0.04 -0.95839344 1 

0.05 -0.947491925 1 

0.1 -0.88998485 1 

0.3 -0.609964883 1 

0.5 -0.24995825 1 

0.7 0.19003505 1 

0.9 0.710015017 1 

1 1 1 
 

 The solution to (66) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with ( )t x x  .  

The results are given in Table 6 for 310  and Table 7 for 410   and compared to the exact 

solution [12].  The exact solution is given by 

/

1/

(2 1)(1 )
( ) ( 1 2 )

(1 )

xe
y x x x

e












 
   


. 

  



30 

 

Table 6:  Numerical results of Example 2 with 
3 310 ,  10h     

x y(x) exact solution error 

0.0000 0.0000000000 0.0000000000 0.0000E+00 
0.0010 -0.6311195588 -0.6298573177 1.2622E-03 
0.0100 -0.9898546001 -0.9878746909 1.9799E-03 
0.0200 -0.9795999979 -0.9776399979 1.9600E-03 
0.0300 -0.9691000000 -0.9671600000 1.9400E-03 
0.0400 -0.9584000000 -0.9564800000 1.9200E-03 
0.0500 -0.9475000000 -0.9456000000 1.9000E-03 
0.1000 -0.8900000000 -0.8882000000 1.8000E-03 
0.3000 -0.6100000000 -0.6086000000 1.4000E-03 
0.5000 -0.2500000000 -0.2490000000 1.0000E-03 
0.7000 0.1900000000 0.1906000000 6.0000E-04 
0.9000 0.7100000000 0.7102000000 2.0000E-04 

1.0000 1.0000000000 1.0000000000 0.0000E+00 
 

Table 7:  Numerical results of Example 2 with 
4 410 ,  10h     

x y(x) exact solution error 

0.0000 0.0000000000 0.0000000000 0.0000E+00 
0.0010 -0.6320205488 -0.6318941447 1.2640E-04 

0.0100 -0.9989536001 -0.9987538092 1.9979E-04 
0.0200 -0.9979959979 -0.9977963979 1.9960E-04 
0.0300 -0.9969910000 -0.9967916000 1.9940E-04 
0.0400 -0.9959840000 -0.9957848000 1.9920E-04 
0.0500 -0.9949750000 -0.9947760000 1.9900E-04 

0.1000 -0.8900000000 -0.8898200000 1.8000E-04 
0.3000 -0.6100000000 -0.6098600000 1.4000E-04 
0.5000 -0.2500000000 -0.2499000000 1.0000E-04 
0.7000 0.1900000000 0.1900600000 6.0000E-05 
0.9000 0.7100000000 0.7100200000 2.0000E-05 

1.0000 1.0000000000 1.0000000000 0.0000E+00 
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Figure 3:  Graph of the spline solution of Example 2 

 

Example 3 

 Now, consider the following variable coefficient singular perturbation problem from 

Kevorkian and Cole [8, Eqs. (2.3.26) and (2.3.27) with 1/ 2   ] 

1
"( ) 1 '( ) ( ) 0

2 2

[0,1] , (0) 0 , (1) 1.

x
y x y x y x

x y y


 

    
 

  

    (67) 

Here we note that
1

( ) 1 ,  ( ) ,  ( ) 0
2 2

x
p x q x r x     . 
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 The solution to (67) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with

2( ) / 4t x x x   .  The results are given in Table 8 and Table 9 for 310  and in Table 10 for 

410   and compared to the exact solution [12].  The spline function is graphed in Figure 4.  

The exact solution is given by 

 21 1
( ) exp ( / 4) /

2 2
y x x x

x
   


. 

Table 8:  Numerical results of Example 3 with 
3 310 ,  10h     

x v(x) w(x) 

0 0.5 -0.5 
0.001 0.500250125 -0.5 
0.01 0.502512563 -0.5 
0.02 0.505050505 -0.5 
0.03 0.507614213 -0.5 
0.04 0.510204082 -0.5 
0.05 0.512820513 -0.5 
0.1 0.52631579 -0.5 

0.3 0.588235294 -0.5 
0.5 0.666666667 -0.5 
0.7 0.769230769 -0.5 
0.9 0.909090909 -0.5 

1 1 -0.5 
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Table 9:  Numerical results of Example 3 with 
3 310 ,  10h     

x y(x) exact solution error 

0 0.0000000000 0.0000000000 0.0000E+00 
0.001 0.3162644138 0.3162644138 -3.0755E-11 
0.01 0.5024892882 0.5024892882 -4.8775E-11 
0.02 0.5050505040 0.5050505039 -4.8915E-11 
0.03 0.5076142132 0.5076142132 -4.9052E-11 
0.04 0.5102040817 0.5102040816 -4.9188E-11 
0.05 0.5128205129 0.5128205128 -4.9323E-11 
0.1 0.5263157895 0.5263157895 -4.9981E-11 
0.3 0.5882352942 0.5882352941 -5.2084E-11 
0.5 0.6666666667 0.6666666667 -5.2156E-11 
0.7 0.7692307693 0.7692307692 -4.6595E-11 
0.9 0.9090909091 0.9090909091 -2.5136E-11 

1 1.0000000000 1.0000000000 0.0000E+00 

 

Table 10:  Numerical results of Example 3 with 
4 410 ,  10h     

x y(x) exact solution error 

0 0.0000000000 0.0000000000 0.0000E+00 

0.001 0.3160806821 0.3160806821 -2.9532E-14 
0.01 0.5002273683 0.5002273683 -4.6962E-14 
0.02 0.5005004995 0.5005004995 -4.6851E-14 
0.03 0.5007511267 0.5007511267 -4.6851E-14 
0.04 0.5010020040 0.5010020040 -4.6851E-14 
0.05 0.5012531328 0.5012531328 -4.6740E-14 
0.1 0.5263157895 0.5263157895 -4.8184E-14 
0.3 0.5882352941 0.5882352941 -5.2180E-14 
0.5 0.6666666667 0.6666666667 -5.3735E-14 
0.7 0.7692307692 0.7692307692 -4.7184E-14 
0.9 0.9090909091 0.9090909091 -2.6867E-14 

1 1.0000000000 1.0000000000 0.0000E+00 

 

  



34 

 

 

Figure 4:  Graph of the spline solution of Example 3 

 

Linear Singular Perturbation Problems with Right-end Boundary Layer 

Example 4 

First, consider the following homogeneous singular perturbation problem 

"( ) '( ) 0

[0,1] , (0) 1 , (1) 0.

y x y x

x y y

  

  
     (68) 

Here we see that ( ) 1,  ( ) 0,  ( ) 0p x q x r x    . 

 The solution to (68) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with ( ) 1t x x   .  

The results are given in Table 11 and Table 12 for 310  and Table 13 for 410    and 
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compared to the exact solution [11].  The spline function is graphed in Figure 5.  The exact 

solution is given by:  
( 1)/

1/

1
( )

1

xe
y x

e













. 

Table 11:  Numerical results of Example 4 with 
3 310 ,  10h     

x v(x) w(x) 

0 1 -1 
0.2 1 -1 
0.4 1 -1 

0.6 1 -1 
0.8 1 -1 
0.9 1 -1 

0.92 1 -1 
0.94 1 -1 
0.96 1 -1 
0.98 1 -1 
0.99 1 -1 

0.999 1 -1 

1 1 -1 
 

Table 12:  Numerical results of Example 4 with 
3 310 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 
0.2 1.0000000000 1.0000000000 0.0000E+00 
0.4 1.0000000000 1.0000000000 0.0000E+00 
0.6 1.0000000000 1.0000000000 0.0000E+00 
0.8 1.0000000000 1.0000000000 0.0000E+00 
0.9 1.0000000000 1.0000000000 0.0000E+00 

0.92 1.0000000000 1.0000000000 0.0000E+00 
0.94 1.0000000000 1.0000000000 0.0000E+00 
0.96 1.0000000000 1.0000000000 0.0000E+00 
0.98 0.9999999979 0.9999999979 0.0000E+00 
0.99 0.9999546001 0.9999546001 0.0000E+00 

0.999 0.6321205588 0.6321205588 0.0000E+00 

1 0.0000000000 0.0000000000 0.0000E+00 
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Table 13:  Numerical results of Example 4 with 
4 410 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 
0.2 1.0000000000 1.0000000000 0.0000E+00 
0.4 1.0000000000 1.0000000000 0.0000E+00 
0.6 1.0000000000 1.0000000000 0.0000E+00 
0.8 1.0000000000 1.0000000000 0.0000E+00 
0.9 1.0000000000 1.0000000000 0.0000E+00 

0.92 1.0000000000 1.0000000000 0.0000E+00 
0.94 1.0000000000 1.0000000000 0.0000E+00 
0.96 1.0000000000 1.0000000000 0.0000E+00 

0.998 0.9999999979 0.9999999979 0.0000E+00 
0.999 0.9999546001 0.9999546001 0.0000E+00 

0.9999 0.8646647168 0.8646647168 0.0000E+00 

1 0.6321205588 0.6321205588 0.0000E+00 
 

 

Figure 5:  Graph of the spline solution of Example 4 
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Example 5 

First, consider the following homogeneous singular perturbation problem 

(1 )/

"( ) '( ) (1 ) ( ) 0

[0,1] , (0) 1  , (1) 1 1/ .

y x y x y x

x y e y 

 

 

   

    
    (69) 

Here we see that ( ) 1,  ( ) (1 ),  ( ) 0p x q x r x      . 

 The solution to (69) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with ( ) 1t x x   .  

The results are given in Table 14 and Table 15 for 310  and in Table 16 for 410  , and 

compared to the exact solution [11].  The spline function is graphed in Figure 6.  The exact 

solution is given by 

(1 )( 1)/( ) xy x e    . 

Table 14:  Numerical results of Example 5 with 
3 310 ,  10h     

x v(x) w(x) 

0 1 0.367646878 
0.2 0.818567023 0.449134729 
0.4 0.670051972 0.548684122 
0.6 0.548482448 0.670298347 

0.8 0.448969645 0.818868007 
0.9 0.406203912 0.90507961 

0.92 0.398152572 0.923381899 
0.94 0.390260818 0.942054291 
0.96 0.382525485 0.961104272 
0.98 0.374943474 0.980539477 
0.99 0.371209012 0.990403967 

0.999 0.367879809 0.999366829 

1 0.367511746 1.000367696 
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Table 15:  Numerical results of Example 5 with 
3 310 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 
0.2 0.8185670233 0.8187307531 1.6373E-04 
0.4 0.6700519716 0.6703200460 2.6807E-04 
0.6 0.5484824479 0.5488116361 3.2919E-04 
0.8 0.4489696447 0.4493289641 3.5932E-04 
0.9 0.4062039117 0.4065696597 3.6575E-04 

0.92 0.3981525722 0.3985190411 3.6647E-04 
0.94 0.3902608177 0.3906278354 3.6702E-04 
0.96 0.3825254852 0.3828928860 3.6740E-04 
0.98 0.3749434762 0.3753111009 3.6762E-04 
0.99 0.3712539764 0.3716216392 3.6766E-04 

0.999 0.7355263194 0.7357592502 2.3293E-04 

1 1.3678794412 1.3678794412 0.0000E+00 
 

Table 16:  Numerical results of Example 5 with 
4 410 ,  10h     

x y(x) exact solution error 

0 1.0000000000 1.0000000000 0.0000E+00 

0.2 0.818717108 0.818730753 1.3645E-05 
0.4 0.670297703 0.670320046 2.2343E-05 
0.6 0.548784197 0.548811636 2.7439E-05 
0.8 0.449299011 0.449328964 2.9953E-05 
0.9 0.4065391690 0.4065696597 3.0491E-05 

0.92 0.3984884899 0.3985190411 3.0551E-05 
0.94 0.3905972382 0.3906278354 3.0597E-05 
0.96 0.3828622566 0.3828928860 3.0629E-05 
0.98 0.3752804505 0.3753110989 3.0648E-05 

0.999 0.3682622060 0.3682928592 3.0653E-05 
0.9999 0.7357395039 0.7357588860 1.9382E-05 

1 1.3678794412 1.3678794412 0.0000E+00 
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Figure 6:  Graph of the spline solution of Example 5 

Nonlinear Singular Perturbation Problems with Left-end Boundary Layer 

Example 6 

For the nonlinear boundary value problems, we convert the nonlinear singular perturbation 

problem is converted to a sequence of linear singular perturbation problems by using 

quasilinearization, and then the outer layer solution is taken to be the initial approximation.  

First, consider the following singular perturbation problem from Kevorkian and Cole [8 and 

Cole, p. 56, Eq. (2.5.1)] 

"( ) ( ) '( ) ( ) 0

[0,1] , (0) 1 , (1) 3.9995.

y x y x y x y x

x y y

   

   
     (69) 
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The initial approximation can be taken from the problem 

( ) '( ) ( ) 0y x y x y x   .    (70) 

Given the value at x = 0, we must suppose '( ) 0y x  , and ( )y x C  and further that 

( ) 2.9995y x x   in order to satisfy the condition at x = 1.We can the use the linear problem 

 
   "( ) 2.9995 '( ) 2.9995 0

[0,1] , (0) 1 , (1) 3.9995

y x x y x x

x y y

     

   
   (71) 

as the linear problem concerned to (69).  We can now solve the linear problem as the 

approximation to the nonlinear problem (69) and we have ( ) 2.9995,  ( ) 0,  p x x q x   and 

( ) 2.9995r x x  . 

 The solution to (69) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with

2( ) / 2 2.9995t x x x  .  The results are given in Table 17 and Table 18 for 310  and in Table 

19 for 410  , and compared to the exact solution [8, p. 57-58, Eqs. (2.5.5), (2.5.11), and 

(2.5.14)].  The spline function is graphed in Figure 7.  The exact solution is given by  

1 1 2( ) tanh( ( / ) / 2)y x x c c x c    

where 1 2.9995c   and 2 1 1 1(1/ ) log [( 1) /( 1)]ec c c c   .  For this example, we have a boundary 

layer of width ( )O   at x = 0 [12] 
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Table 17:  Numerical results of Example 6 with 
3 310 ,  10h     

x v(x) w(x) 

0 2.9995 -3.9995 
0.001 3.0005 -3.998167055 
0.01 3.0095 -3.986210417 
0.02 3.0195 -3.973008859 
0.03 3.0295 -3.959894455 
0.04 3.0395 -3.946866343 
0.05 3.0495 -3.933923676 
0.1 3.0995 -3.870463059 
0.3 3.2995 -3.635853993 
0.5 3.4995 -3.428061223 
0.7 3.6995 -3.242735572 
0.9 3.8995 -3.076420118 

1 3.9995 -2.019543562 
 

Table 18:  Numerical results of Example 6 with 
3 310 ,  10h     

x y(x) exact solution error 

0 -1.0000000000 -1.0000000000 0.0000E+00 

0.001 2.8014429835 2.4569396723 -3.4450E-01 
0.01 3.0095000000 3.0095000000 -8.8063E-13 
0.02 3.0195000000 3.0195000000 -1.0836E-13 
0.03 3.0295000000 3.0295000000 -1.0703E-13 
0.04 3.0395000000 3.0395000000 -1.0569E-13 
0.05 3.0495000000 3.0495000000 -1.0525E-13 
0.1 3.0995000000 3.0995000000 -9.9032E-14 
0.3 3.2995000000 3.2995000000 -7.7272E-14 
0.5 3.4995000000 3.4995000000 -5.5067E-14 
0.7 3.6995000000 3.6995000000 -3.3307E-14 
0.9 3.8995000000 3.8995000000 -1.1546E-14 

1 3.9995000000 3.9995000000 0.0000E+00 
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Table 19:  Numerical results of Example 6 with 
4 410 ,  10h     

x y(x) exact solution error 

0 -1.0000000000 -1.0000000000 0.0000E+00 
0.0001 2.8003936357 2.4560396723 -3.4435E-01 
0.001 3.0005000000 3.0005000000 1.3540E-12 
0.002 3.0015000000 3.0015000000 2.1059E-12 
0.003 3.0025000000 3.0025000000 2.1041E-12 
0.004 3.0035000000 3.0035000000 2.1019E-12 
0.005 3.0045000000 3.0045000000 2.0997E-12 

0.1 3.0995000000 3.0995000000 1.8994E-12 
0.3 3.2995000000 3.2995000000 1.4770E-12 
0.5 3.4995000000 3.4995000000 1.0552E-12 
0.7 3.6995000000 3.6995000000 6.3283E-13 
0.9 3.8995000000 3.8995000000 2.1094E-13 

1 3.9995000000 3.9995000000 0.0000E+00 
 

 

Figure 7:  Graph of the spline solution of Example 6 
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Example 7 

Finally, let us consider the following singular perturbation problem from Bender and Orszag [3, 

p. 463,  Eq (9.7.1)] 

( )"( ) 2 '( ) 0

[0,1] , (0) 0 , (1) 0.

y xy x y x e

x y y

   

  
     (72) 

The initial approximation can be taken from the problem and we can then use the linear problem

2 2 2
"( ) 2 '( ) ( ) ln 1

1 1 1

[0,1] , (0) 0 , (1) 0

y x y x y x
x x x

x y y


    

       
      

  

   (73) 

[11] as the linear problem concerned to (72).  We can now solve the linear problem as the 

approximation to the nonlinear problem (72) and we have
2

( ) 2,  ( ) ,  
1

p x q x
x

 


and

2 2
( ) ln 1

1 1
r x

x x

    
          

. 

 The solution to (72) using (46) has the form 
( ) /( ) ( ) ( ) t xu x v x w x e    with ( ) 2t x x .  

The results are given in Table 20 and Table 21 for 310  and in Table 22 for 410  , and 

compared to the exact solution [3, p. 463, Eq. (9.7.6)].  The exact solution is given by  

2 /( ) log (2 /(1 )) log (2) x

e ey x x e     

For this example, we have a boundary layer of width ( )O   at x = 0 [3].  The spline function is 

graphed in Figure 8. 
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Table 20:  Numerical results of Example 7 with 
3 310 ,  10h     

x v(x) w(x) 

0 0.693147181 -0.693147181 
0.001 0.69214768 -0.69349361 
0.01 0.68319685 -0.696603721 
0.02 0.673344553 -0.700043194 
0.03 0.663588378 -0.703465851 
0.04 0.653926467 -0.706871936 
0.05 0.644357016 -0.710261687 
0.1 0.597837001 -0.726973392 
0.3 0.430782916 -0.790294192 
0.5 0.287682072 -0.848904887 
0.7 0.16251893 -0.903722359 
0.9 0.051293294 -0.955399758 

1 0 -0.980217321 
 

Table 21:  Numerical results of Example 7 with 
3 310 ,  10h     

x y(x) exact solution error 

0 0.0000000000 0.0000000000 0.0000E+00 

0.001 0.5982935261 0.5983404102 4.6884E-05 
0.01 0.6831968483 0.6831968483 -2.2989E-11 
0.02 0.6733445533 0.6733445533 -2.9037E-11 
0.03 0.6635883783 0.6635883783 -2.8005E-11 
0.04 0.6539264674 0.6539264674 -2.7013E-11 
0.05 0.6443570164 0.6443570164 -2.6060E-11 
0.1 0.5978370008 0.5978370008 -2.1825E-11 
0.3 0.4307829161 0.4307829161 -1.0948E-11 
0.5 0.2876820725 0.2876820725 -5.3993E-12 
0.7 0.1625189295 0.1625189295 -2.3527E-12 
0.9 0.0512932944 0.0512932944 -5.9214E-13 

1 0.0000000000 0.0000000000 0.0000E+00 
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Table 22:  Numerical results of Example 7 with 
4 410 ,  10h     

x y(x) exact solution error 

0 0.0000000000 0.0000000000 0.0000E+00 
0.0001 0.5992363968 0.5992399156 3.5188E-06 
0.001 0.6921476788 0.6921476788 4.0590E-13 
0.002 0.6911491779 0.6911491779 -2.8977E-14 
0.003 0.6901516716 0.6901516716 -2.8755E-14 
0.004 0.6891551593 0.6891551593 -2.8866E-14 
0.005 0.6881596390 0.6881596390 -2.8866E-14 

0.1 0.5978370008 0.5978370008 -2.2760E-14 
0.3 0.4307829161 0.4307829161 -1.0658E-14 
0.5 0.2876820725 0.2876820725 -5.2736E-15 
0.7 0.1625189295 0.1625189295 -2.4147E-15 
0.9 0.0512932944 0.0512932944 -8.3267E-16 

1 0.0000000000 0.0000000000 0.0000E+00 
 

 

Figure 8:  Graph of the spline solution of Example 7 
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CONCLUSION 

 The initial-value technique described by Kumar, et al. has been examined as a method for 

solving singularly perturbed two-point boundary value problems.  For each problem examined, 

we computed the solution numerically by solving three initial value problems, which are deduced 

from the original problem.  In general, the numerical solution of a boundary value problem will 

be more difficult to calculate than the numerical solutions of the initial-value problems.  It is 

generally preferable to convert the second order problem into first order problems.   

 This technique was implemented using standard, readily available software spreadsheet 

program (Microsoft EXCEL), which makes it easy to implement on any computer and requires 

only modest preparation.  No knowledge of differential equations is required to complete the 

process, and minimal knowledge of Calculus is required for the process.   We implemented the 

method on linear boundary value problems with both right-end and left-end behavior.   Using 

quasilinearization, we were able to approximate the solutions to nonlinear boundary value 

problems with left-end behavior. 

 We used two specific values of and used the same value for the mesh size, but the data 

suggests that increasing the mesh size provides a proportionally better approximation.  The 

approximation became more accurate for smaller values of .  Thus the initial-value technique 

provides a reasonable approximation for the solution of the problem, and the cubic spline method 

was easily implemented to solve the initial-value problems.  In addition, the step size used for the 

calculations could easily be varied in order to more closely approximate the values near the 

boundary points. 
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 By calculating the first derivatives along with the point values, we were also able to build 

a spline function to graph the solutions and to calculate any values other than the nodes.  The 

numerical results indicate that the initial-value technique is accurate and suitable for solving 

linear and nonlinear problems with thin layers.  The spline is also useful for providing the 

additional data points that can then be used to refine the spline near the boundary points.  Once 

the spline is calculated using an equal step size, another calculation can be used to refine the 

spline near the boundary values using a smaller step size as needed. 

 The error estimate for the cubic spline method for the first-order problems is described in 

Kumar’s papers.  For a function
4[ , ]y C a b , the cubic spline method described provides a 

fourth-order approximation to the solution of the initial-value problems used for the initial-value 

technique.  Also, the error bounds for both cubic splines and cubic Hermite splines have an error 

bound that is also  4O h .  For the solution to the nonlinear problems, the convergence is 

quadratic.   
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