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ABSTRACT

With the increased penetration of Distributed Generators (DGs) in the contemporary Power Sys-

tem, having knowledge of rapid Real-Time electro-mechanical Dynamic States has become crucial

to ensure the safety and reliability of the grid. In the conventional SCADA based Dynamic State

Estimation (DSE) speed was limited by the slow sampling rates (2-4 Hz) so State Estimation was

limited to static states such as Voltage and Angle at the buses.

Fortunately, with the advent of PMU based synchro-phasor technology in tandem with WAMS, it

has become possible to avail rapid real time measurements at the network nodes. In this paper,

we have proposed a novel Machine Learning (Artificial Intelligence) based Real-Time Neuro-

adaptive Algorithm for rotor angle and angular frequency estimation of synchronous generators,

here proposed algorithm is based on reinforcement learning and adapts in real-time to achieve

accurate state estimates. Applicability and accuracy of the proposed method is demonstrated under

the influence of noise and faulty conditions. Simulation is carried out on Multi-Machine scenario

(68 bus 16 generator NETS-NYPS model).
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CHAPTER 1: INTRODUCTION

1.1 Introduction to the Power System State Estimation

From the 19th century with the first Power System built in England it has kept growing throughout

the world to light up billions of domestic and industrial entities, it is undeniably a fundamental part

of the human life and advancement.

Fundamentally, Power System a big network of transmission lines, distribution, loads and gener-

ators. It is a highly dynamic system, with time varying loads and energy sources. At any given

time, complete knowledge of operating conditions of the power system can be assessed by know-

ing variable quantities known as states. With respect to time evolution, states can be categorized

into static states (slow changing) and dynamic states (Relatively fast as compared to Static States).

States such as Voltage (V ), Current (I), relative angles (θ), Real (P ) and Reactive Power (Q) are

Static States and Generator rotational speed (ω) & angle (δ) are the Dynamic States of the system.

Having accurate knowledge of the states is essential for control, monitoring and analysis of the

system to ensure proper functioning of the system. In reality all the states of the system are not

easily accessible it can be computed from the measurements (by knowing the relation between

measurement and states). Many of the times measurements itself are corrupted by noise and/or

accurate relation between measurement and state is not accurately known in such cases we have to

rely on the best estimates of the states calculated using the state estimation algorithms.

Initially, Power System was assumed to be Quasi-Steady State. With the increasing deployment

of Distributed Generators (DG), SMART loads, Demand Response (DR), Electric Vehicles Charg-

ing Units etc. dynamics of the Power Systems has become rapidly varying and the quasi-stable

assumption will not be favorable to ensure the proper knowledge of the states. It has become im-
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portant to know the Real-Time Electro-Mechanical States dynamic states of the system for better

control, monitoring, protection and reliability of the system.

In traditional grid static state estimation was based on slow measurements (0.2-0.1 Hz) acquired

through Supervisory Control and Data Acquisition (SCADA) system. Due to lack of fast measure-

ments at faster rates it was not possible to perform dynamic state estimation. With introduction of

rapid phasor measurement technology [8] [9] [10] based devices known as Phasor Measurement

Units (PMU) it has become possible to avail rapid synchronized measurements of the wide area

power system.

1.2 Phasor Measurement Unit (PMU)

Phasor is a complex quantity. In electrical often a sinusoidal associated with its relative angle. Pha-

sor Measurement Unit (PMU) is an embedded system which incorporates sensing circuits, Digital

Signal Processing (DSP) unit, Global Positioning System (GPS) and communication Unit. It com-

putes phasors quantities such as Voltage, Current magnitudes and angle, Real & Reactive Power

from the measurements at the system buses which are measured synchronously which are linked

to the common time base using GPS; time accuracy of about ±2 µ sec [17]. This time stamped

measurements are transmitted to control center, where all these measurements from various system

nodes are processed to observe steady and dynamic states of the system.

Time stamp on the various PMUs are essential to synchronize measurements from the all the

system buses where PMU is installed. At the time of writing, PMUs support sampling rate of

up to 600Hz [9].
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1.3 Literature Review

The traditional grid has for long been dependent on the synchronous generators. With increas-

ingly sophisticated asynchronous Distributed Generation (DG) technologies such as solar, wind

& storage devices with its unconventional benefits, is rapidly penetrating the power grid. Hence,

power flow patterns which were traditionally assumed to be quasi-steady-state can no longer be

predicted accurately with the same assumptions. Having accurate knowledge of the dynamic states

the system in Real-Time is vital to the safe and stable operation of the power grid. Rotational

angle and frequency of the synchronous generators are most important quantities for the transient

stability and control. Traditionally, supervisory control and data acquisition (SCADA) based ap-

proaches were unable to capture rapidly changing electromechanical dynamics of the system (such

as generators rotor angle and frequency) due to its slow sampling rates (usually 0.2-0.4 Hz).

Fortunately, with the advent of Phasor Measurement Units (PMUs) in tandem with Wide Area

Measurement System (WAMS) technology, it has become possible to acquire rapid real-time mea-

surements at the system nodes over a wide geographical area in synchronized manner, these avail-

able measurements are known as synchro-phasors. Time synchronization is possible due to GPS

in PMUs which are synchronized to the same time clock. Measurements acquired from PMUs

contains phasors such as Voltage, Current, Angle, and Real & Reactive Power which is transmitted

in time stamped packets to the central control center to be processed in a synchronous manner in

order to avail the dynamic states of the system.

Dynamic State Estimation (DSE) of the Synchronous generators is a nonlinear problem. For

linear Kalman Filter based approach deems highly compromising in terms of accuracy. There-

fore, numerous approaches for nonlinear DSE has been proposed and studied in the literature

[4, 5, 7, 22, 24]. Which, includes Extended Kalman Filter (EKF) [22], Unscented Kalman filtering

(UKF) [4–6, 16, 19]. EFK linearizes the system model at the current state estimate which assumes

3



state trajectories to be linear around the neighborhood which may result in erronious estimates.

Moreover, linearization requires computations of the Jacobian matrices at each iteration; which

increases the computational overhead. To which UKF is presented to be a derivative free solu-

tion for this problem which does not require linearization instead it uses nonlinear transformation

on states and covariances for approximating the Probability Distribution Function to the Gaussian

distribution. Which also requires generation of sigma points. Even though UKF and EKF has a

good performance it suffers from the Curse of Dimensionality problem as dimension of state space

increases. Moreover, for Kalman Filter to produce optimal estimate its crucial to have accurate

knowledge of the system model and noise statistics.

In the recent literature [3], few AI based methods have been investigated AI based methods are

shown to be more effective, since, it doesnt require having knowledge of the exact model and

parameters, which limits the performance of many of the conventional methods. Neural network

is widely known for its universal function approximation capabilities. So, efficient algorithm can

be designed to un-tap its potential in accurately estimating states of the highly nonlinear systems;

furthermore it can be adapted on-line to learn the adapting parameters of the system without ex-

plicitly knowing the mathematical model for the system. However, these techniques needs off-line

supervised learning [?, 3], which requires large good quality data which should well covers every

possible scenario beforehand to carry out neural network training. After training neural network

stops adapting and hence becomes static; which may not respond to the disturbances.

Algorithm proposed in this paper uses a small network which learns and adapts in Real-Time,

which serves as a plug n play ad-hoc algorithm which doesnt require any prior training. Adaptive

neural network also responds to the changing environment which makes it an efficient method.

This thesis is organized in following structure. Section-II discusses Neural Network modeling.

Section-III discusses problem formulation; which includes power system dynamic and algebraic
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modeling. Section-IV discusses the proposed ANN based DSE method. Section-V provides the

result of the proposed method on various simulation and test cases.

1.4 Thesis Organization

The organization of the thesis is as follows. Chapter-2 discusses the State of the art Neural Network

techniques with its variants. Chapter-3 discusses the Power System Network and power generator

model along with the test model used for the simulation. Chapter-4 Discusses the Nonlinear State

estimation algorithm using Neural Network which is developed to estimate generator angle and

angular frequency along with the simulation results.
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CHAPTER 2: ARTIFICIAL NEURAL NETWORK

An Artificial Neural network (ANN) is a state of the art Machine Learning algorithm which known

for its universal function approximation capability. Machine Learning is a branch of Artificial

Intelligence (AI) which gives computers ability to adapt and learn without being explicitly pro-

grammed. Depending on the nature of learning. There are three forms of training methodologies

as follows .

2.1 Types of Training

In supervised learning pair of correct behavior y and inputs x are known beforehand the task is to

learn function f such that error between ya and y is minimized, where ya = f(x).

In unsupervised learning correct behavior y for the given input x is not known beforehand and in

such scenarios algorithm is programmed to analyze certain features of the input data to categorize

or to predict the output y.

Reinforcement learning is a Reward/ Penalty based algorithm where x and z are known and the

task is fit function f to find correct y.

y = f(x) z = f(y) (2.1)
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2.2 Design of Neural Network

2.2.1 Single Neuron

Neural network is at the center of the State Estimation algorithm we are going to develop in the

subsequent chapters. Artificial Neural Network (ANN) is the state of the art algorithm widely

known for its universal function approximation capabilities. In general, ANN is composed of basic

processing unit called as neuron as shown in the in the figure (2.2). Each neuron has an output, an

activation function, a summer, a bias and can have multiple inputs with associated weighted links

(known as weights denoted by ’w’).

Figure 2.1: Single Neuron

For N input neuron with sigmoid activation function σ(x) output y is calculated as,

s =
N∑
i=1

xiwi y =
1

1 + e−s
(2.2)

Here, x is the input vector and w is the weight vector.
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2.2.2 Single Hidden Layer Neural Network

Function approximation capabilities can be enhanced by adding a multiple neuron in the network

like structure layer. Such multiple inputs, multiple outputs, single hidden layered neural Network

is depicted in the figure (2.2).

Figure 2.2: Single Hidden Layer Neural Network

Data from the input layers are multiplied by corresponding weights, summed together and passed

through the activation function to produce outputs of the hidden layer. Output of the hidden layer is

applied to subsequent layer and multiplied with corresponding weights to produce hidden outputs

this process is iterated till the output of final layer is generated completing a forward pass or also

known as forward propagation.
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2.2.2.1 Forward Propagation

So, as explained before forward propagation is process of calculating outputs based on inputs. For

an ANN with N inputs, M outputs, and H unit single hidden layers; with sigmoid activation func-

tion σ(x) in the hidden layer and linear output layer as depicted in the figure (2.2), output y of the

network when presented input vector x can be calculated using the equation.(2.3) - equation.(2.5).

sj = bj +
N∑
i=1

w
(1)
ji xi j ∈ {1, H} (2.3)

hj = σ(sj) =
1

1 + e−sj
j ∈ {1, H} (2.4)

yj =
M∑
i=1

hiw
(2)
ij + b

(2)
j j ∈ {1,M} (2.5)

Here, considered neural network is single hidden layer network. Where, x is an input vector y is

the output vector. w(1) and w(2) are the weight matrices of the input to hidden and hidden to output

layer respectively. w(1)
ji denotes the weight (scalar) connecting jth hidden neuron to the ith input.

b
(1)
j is the bias of the jth neuron in the hidden layer. b(2)j is the bias in stage two i.e. of the output

layer.

Choice of activation function is usually chosen to be a continuously differentiable nonlinear or

linear function. Sigmoid is the most commonly used activation function in many applications.

Output layer in our case is linear and other layers are sigmoid.
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2.2.2.2 Objective Function

Learning of the neural network is carried iteratively using based on the training methodologies

discussed until the desired performance objective is met. Performance objective for the optimiza-

tion algorithm is often defined in terms of expectation of the Least Mean Square (LMS) measure.

Performance objective is slightly modified here in back-propagation algorithm to make it simpler,

following is the general objective function of the neural network training, and for M outputs can

be defined by as,

J =
1

2

M∑
i=1

(yai − ynni
)2 (2.6)

We will see J with a subscript Jk most of the time denoting cost at the time instance k, after using

subscript explicitly it may be dropped thereafter just to make expression easily representable.

In order to minimize the objective function, error between actual output ya and neural network out-

put ynn is back-propagated through chain rule of derivate (known as back-propagation algorithm)

and the weights are updated using gradient descent based optimization, this algorithm is iterated

till the desired cost objective is achieved. Goal can be to minimize or maximize the objective

function based on the formulation.

Objective as a function of weights and biases is not quadratic in nature due to nonlinear activation

function (sigmoid). Depending on the size of the network, surface of the cost function becomes

even more complex. Also, parameters of the network are initialized randomly which is important to

ensure neural network don’t get stuck in the same local minima each time parameters re-initialized.

Initial network parameters are the crucial factor on which convergence time is dependent. In some

cases if desired performance is not met within the reasonable time then network parameter can be
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reinitialized and algorithm is re-run until the desired performance is achieved.

2.2.2.3 Back-Propagation

2.2.2.3.1 Chain Rule

Output of the neural network is function of weights and biases which are variable parameters used

to tune the network until the desired objective is met. Back propagation is nothing but the chain

rule of derivative as given in the equation.(2.7), which transfers error from the output layer to the

weights and biases.

∂J

∂W
=
∂J

∂y
.
∂y

∂h
.
∂h

∂s
.
∂s

∂W
(2.7)

∂J

∂yi
=

1

2
.
∂

∂yi

∑
(ti − yi)2 = (yi − ti) i = 1, 2, ...M (2.8)

∂y

∂h
=

∂

∂h
σ(x) = σ′(x) = h(s)(1 + h(s)) (2.9)

∂y

∂h
= 1 forlinearoutput (2.10)

∂h

∂s
=
∂h

∂s
h(s)(1 + h(s)) (2.11)

∂s

∂w
= h(s) (2.12)
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∂s

∂a
= W (2.13)

2.2.2.3.2 Gradient Descent

Once we have corresponding error value for each parameter (weight and bias) it can be updated

using the optimization algorithm. Gradient descent (equation.(2.14)) is a simple yet effective

optimization algorithm used to optimize parameters based on the gradient obtained using back-

propagation.

W = W − γ dJ
dW

(2.14)

2.2.2.3.3 Learning Rate

Here, γ is a positive constant known as learning rate. Usually, γ < 1. If the is too low learning

algorithm takes too long to converge, If gamma is too high solution can be obtained fast but with

theres high probability of divergence. It should be chosen to be moderate and depends on many

factors such as size of the neural network, objective function etc.

Its a good practice to start with small value such as 0.001 and increase it by the factors of 10 till

the satisfactory performance is achieved and then it can be fined tuned.
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CHAPTER 3: POWER SYSTEM MODELING

3.1 Transient

Power System is a network of power source, transmission & distribution systems and loads.

In steady state form generator is expected to run at a constant frequency known as a synchronous

frequency (ωsync ) and constant rotor angle (δ) relative to rotor angle of the swing bus generator.

Hence in the steady state generator dynamics dδ/dt and dω/dt are expected to be zero. Ideally, in

the steady state in mechanical power Pm matches the electrical power Pe; difference Pm − Pe is

zero.

As any parameter such as input torque, load at the Electrical terminal (Pe) or any internal machine

parameter, short circuit in the generator happens it causes the imbalance between Pm and Pe and

causes non-zero domega/dt and consequently Nature of this disturbance can be seen as the swing-

ing oscillations over nominal values of ω and δ called as Swing or Electromechanical Oscillations

of the Power System (OEs). Effects can also be directly seen on V and θ of the buses.

Commonly, Power system has multiple such interconnected generators serving shared loads, any

type of disturbance is propagated through the network with the electro-mechanical velocity; less

than few micro-seconds.
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3.2 Generator Model

3.2.1 Swing Model

For a multi-machine power system model of ith synchronous generator can be modeled using a set

of nonlinear ordinary differential equation (ODE) equation.(3.1) (also known as the classical model

of the generator or swing model). Swing model basically governs the swing of the generators shaft

in case of imbalance between Pm and Pe. Usually this imbalance is caused in the overload at the

terminals, internal short circuit, faulty situations etc.

Figure 3.1: Generator Equivalent Model

The synchronous machine can be represented by the simplified electrical model known as classical

model as in the figure (3.1). Here, R is considered to be negligibly small and hence R = 0. X ′d is

the d-axis reactance of the rotor. Ig is the current injected by generator into the grid.

dωi
dt

=
ωs
2H

[Pmi
− Pei −Di(ωi − ωs)]

dδi
dt

= ωB(ωi − ωs)
(3.1)

Where,

Pei =
|Ei||Vi|
X ′d

sin(δi − θi) (3.2)
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3.2.2 Swing Equation numerical Integration (Rectangular Rule)

Swing governed by the swing model above is continues in nature, for simulation purposes swing

equation is discretized and numerical integration is performed which approximates the continuous

behavior in the simulated environment. Numerical integration techniques such as Eulers method

or rectangular rule, Ranga-Kutta method can be used. Here in equation.(3.3) forward rectangular

method is used.

After sampling equation.(3.1) at a sampling interval T with forward rectangular based numerical

integration we obtain discretized form of the swing model as,

ωik+1
= ωik + T

ωs
2Hi

[Pmi
− Peik −Di(ωik − ωs)]

δik+1
= ωB(ωi − ωs)

(3.3)

Here, i is the generator index, δ is generator angle in radians (also known as the power angle),

ω is generator angular frequency, ωB is the base frequency ωB = 2πf , (here f = 60Hz), ωs is

angular frequency of swing generator, Pm is the mechanical power (assumed to be constant), Pe is

the electrical power, E is the internal emf the generator X ′d is the transient reactance seen by the

generator, D is the damping co-efficient of the generator. V is the voltage at the bus node and θ is

the bus angle.

Where, T is the simulation step time. Numerical Accuracy can be improved further by reducing

simulation step time T and/or by using numerical integration techniques such as Modified Eulers

method, 4th order Runge-Kutta method etc.
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3.3 Network Model

3.3.1 16 Gerator 64 Bus Model

The network model used here for simulation is the New England Test System (NETS)/New York

Power System (NYPS) 16-generator 64-bus system model [13]. This model is simulated in MAT-

LAB for 20.0 seconds with the simulation step of 0.02 sec. Three phase fault applied at the bus

number 28 on line between 28 to 29 at 5.10s and cleared at 5.15s.

3.3.2 Measurement Model

Measurement model for the Multi-machine power system consisting of the m bus n generators in

terms of bus voltage and angles can be given by equation (3.7) relates generators internal voltage

and angle (E∠δ) to the voltage and angle (V ∠θ) at bus nodes by the following algebraic equation.

The relation can be obtained using the expanded system matrix model equation.(3.4) [24].

E∠δ
V ∠θ

 =

YGG YGL

YLG YLL


E∠δ
V ∠θ

 =

IG∠δ
0

 (3.4)

Where, Yexp is the expanded nodal matrix, comprises of YGG, YGL, YLG and YLL sub-matrices

which are generator, generator to load, load to generator and load to load admittance matrices

respectively, IG is the current flowing out of the generator terminal. RV = Y −1LL YLG can also be

defined as reconstruction matrix.

V = Y −1LL YLGE (3.5)
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V ∠θ = RVE∠δ (3.6)



V1

V2
...

Vm


=



RV11 RV11 . . . RV1n

RV21 RV22 . . . RV2n

...
... . . . ...

RVm1 RVm2 . . . RVmn





E1

E2

...

Em


(3.7)

Measurements are represented in rectangular co-ordinates in the formulation in the subsequent

chapters so real and imaginary part of the measurement function obtained from equation.(3.7) is

obtained as given in equation.(3.8) to equation.(3.9).

Re(Vi) = |RVi1 ||E1|cos(∠RVi1+δ1) + |RVi2||E2|cos(∠RVi2+δ2)+

.....+ |RVin ||E1|cos(∠RVin+δn) (3.8)

Im(Vi) = |RVi1 ||E1|sin(∠RVi1+δ1) + |RVi2||E2|sin(∠RVi2+δ2)+

...+ |RVin ||E1|sin(∠RVin+δn) (3.9)
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CHAPTER 4: KALMAN FILTER

4.1 Kalman Filter

Kalman Filter is a widely known state estimation algorithm for estimating the correct states based

on noisy measurements obtained over time. It works in two steps, prediction and correction step.

Prediction step uses system model such as equation.(3.3) to predict the next state and error covari-

ance. Correction step uses measurements and error to calculate accurate state.

Kalman filter is an optimal estimator in a sense that it minimized the mean of the squared error

given system model is linear. Many Kalman Filtering based approaches has been developed in

the literature. Power system swing model discussed in our case is highly nonlinear and linear

approximation performs poorly. Which requires nonlinear variants of the kalman filter such as

Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). This chapter develops EKF

and UKF based formulations which are used to compare againts Neuro-Adaptive Learning based

algorithm.

4.2 Extended Kalman Filter (EKF)

Extended Kalman filter is also a similar two-step Kalman Filter variant, In its formulation it uses

nonlinear system for the state prediction with the linearized system based error covariance update.

We have used the similar formulation of EKF as in the [23], in this thesis only stage-2 approach as

given in [23] is considered.
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In kalman filter system is modeled as a stochastic process as given in equation.(4.1).

dx

dt
= f(x, u, t, w) (4.1)

Here, x ∈ Rn is a n dimensional state vector, u ∈ Rp is input and w ∈ Rn is noise vector. State

prediction of EKF is calculated based on equation.(4.2), for P−k system is linearized at x̂k, which

requires calculation of Jacobian matrices Ak. Also Hk for calculation of Kk in equation.(4.3).

Prediction


x̂−
k = f(x̂k−1, uk−1, 0)

P−
k = AkPk−1A

T
k + WkQk−1W

T
k

(4.2)

Correction


Kk = P−

k HT
k (HkP

−
k HT

k + VkRkV
T
k )−1

x̂k = x̂−
k + Kk(zk − h(x̂−

k , 0))

Pk = (I − KkHk)P
−
k

(4.3)

4.2.1 Jacobian Matrices

Jacobian matrix here is the partial derivatives of function with respect to systems states. Matrix A

is a nxn, H is mxn,V and W are nxn matrices. As given in the equation.(4.4) jacobian matrices

are calculated at current estimate x̂k.

A =
∂f(x)

∂x

∣∣∣∣
x̂k

W =
∂f(x)

∂x

∣∣∣∣
x̂k

H =
∂h(x)

∂x

∣∣∣∣
x̂k

V =
∂h(x)

∂x

∣∣∣∣
x̂k

(4.4)
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4.2.1.1 System Matrix A

Ac is the continuous time system matrix. Entries of the matrix Ac are the partial derivatives of the

generator model with respect to states in this case δ and ω. Elements of Ac are calculated as given

in equation.(4.5)-equation.(4.12).

Ac[2i−1,2i−1]
= 0 (4.5)

Ac[2i−1,2i]
= ωB (4.6)

Ac[2i,2i−1]
= − ω0|Ei|

2HiX ′di

[
cosδiRe(Vi) + sinδi

∂Re(Vi)
∂δi

+ sinδiIm(V i)− cosδi ∂Im(Vi)
∂δi

]
(4.7)

Ac[2i,2i] = −
ω0

2Hi

Di (4.8)

Ac[2i−1,2j−1]
= 0 (4.9)

Ac[2i−1,2j]
= 0 (4.10)

Ac[2i,2j−1]
= − ω0|Ei||

2HiX ′di

[
sinδi

∂Re(Vi)
∂δj

− cosδi ∂Im(Vi)
∂δj

]
(4.11)

Ac[2i,2j] = 0 (4.12)
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To compute on a digital computer system is discretized hence, transition matrix of the system is

given by equation.(4.13) and equation.(4.14). Here in equation.(4.13) and equation.(4.14) forward

rectangular rule is used to carry out numerical integration.

xk = Axk−1 + wk−1 (4.13)

A = I + Ac T (4.14)

Here, T is the sampling time.

4.2.1.2 Measurement Matrix H

Similarly, measurement function h(x, t) is linearized around x̂ to avail linearized measurement

model. Here measurement vector y = [Re(V1)Im(V1)Re(V2)Im(V2)...Re(Vm)Im(Vm)]. Individ-

ual terms of the matrix H are given in the equation.(4.16) -equation.(4.18) which are obtained by

taking partial derivatives of the equation.(3.8) and equation.(3.9) with respect to states δ and ω.

H =



∂ReV1
∂δ1

∂ReV1
∂ω1

∂ReV1
∂δ2

∂ReV1
∂ω2

. . . . . . ∂ReV1
∂δn

∂ReV1
∂ωn

0 0 0 0 . . . . . . 0 0

∂ReV2
∂δ1

∂ReV2
∂ω1

∂ReV2
∂δ2

∂ReV2
∂ω2

. . . . . . ∂ReV2
∂δn

∂ReV2
∂ωn

0 0 0 0 . . . . . . 0 0

...
...

...
... . . . ...

...
...

...
...

... . . . ...
...

∂ReVn
∂δ1

∂ReVn
∂ω1

∂ReVn
∂δ2

∂ReVn
∂ω2

. . . . . . ∂ReVn
∂δn

∂ReVn
∂ωn

0 0 0 0 . . . . . . 0 0



(4.15)
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∂Re(Vi)

∂δj
= −|RVij ||Ej|sin(∠RVij+δj) (4.16)

∂Im(Vi)

∂δj
= |RVij ||Ej|cos(∠RVij+δj) (4.17)

∂Re(Vi)

∂ωj
=
∂Im(Vi)

∂ωj
= 0. (4.18)

4.3 Unscented Kalman Filter (UKF)

Unscented Kalman Filter is based on Unscented Transform technique devised by Ulhmann for

approximating probability distribution passed through a non-linear function. It is based on the idea

that it is easier to approximate probability distribution than approximating the nonlinear dynamic

function.

Formulation of Unscented Kalman Filter is based on 4 steps i) Generation of Sigma Points ii)

State Prediction iii) Measurements Prediction iv) Update

First step in UKF is to generate sigma points as given in equation.(4.19) - equation.(4.20). Mean

and co-variance of the sigma point is similar to mean and co-variance (Px) of the actual state x.

For the system with N dimensional state vector there are 2N sigma points.

Generation of Sigma Points

χ0 = x̂k−1 (4.19)

χi = x̂k−1 +
1

η
(
√
Px)l i = 1, 2, ...N (4.20)
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χi = x̂k−1 −
1

η
(
√
Px)l i = N + 1, ...2N (4.21)

Here, (
√
Px)l is the lth column vector of the matrix (

√
Px)l

In the step generated sigma points are given to the system model to generate 2N predicted states

using sigma points based on which priori state estimate x̂k− is calculated.

State Prediction

x̂−k =
1

2N

2N∑
i=0

f(χ̂ik−1, uk−1, 0) (4.22)

P−xxk =
1

2N

2N∑
i=0

(χ̂ik − x̂−k )(χ̂ik − x̂
−
k )

T +Qk−1 (4.23)

Measurements Prediction

In the measurement step similar approach as in the previous step is used. All the generated sigma

points are used to generate 2N measurements and then mean measurement is calculated.

Ẑk = h(χ̂−k , 0) (4.24)

ẑk =
1

2N

2N∑
i=0

h(χ̂−k , 0) (4.25)

P−yyk =
1

2N

2N∑
i=0

(Ẑik − ẑ−k )(Ẑik − ẑ
−
k )

T +Qk−1 (4.26)

P−xyk =
1

2N

2N∑
i=0

(Ẑik − χ̂i−k )(Ẑik − χ̂i
−
k )

T +Rk−1 (4.27)
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Update

Kk = PxyP
−
yy1 (4.28)

x̂k = x̂−k +Kk(zk − ẑk) (4.29)

Pxxk = P̂−xxk −KkPyyK
T
k (4.30)

4.3.1 Numerical Stability

Although UKF is computationally efficient as compared to EKF and has an advantages over EKF

as it does not need linearization. It has its own drawback for higher dimensional systems. As

number of states increases above twenty there will be higher degree of nonlinearity which may

cause instability in the UKF approach [12].

Specifically, in UKF as dimension of state space increases positive definiteness of Pxx matrix

cannot be ensured. Which is required to calculate square root based cholesky based factorization.

So, to ensure the positive definiteness of the matrix nearest Semi-positive definite matrix Pxx is

calculated in each step as discussed in [12].
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CHAPTER 5: NEURO-ADAPTIVE DYNAMIC STATE ESTIMATION

5.1 Introduction to Dynamic State Estimation

State estimation is basically a problem of inferring the internal unknown state based on the avail-

able related noisy measurements. Estimate of the state x is denoted by x̂. More specifically x̂j|k

is the estimate of the state x at time instance j based on measurements yk at or upto instance k.

When, j > k, xj|k is called a smoothed estimate, when j = k, xj|k is called a filtered estimate and

when j > k, xj|k is called a predicted estimate.

Dynamic State Estimation in Power System has been an active research lately. Its very important

to know correct state of the system to take appropriate control and monitoring action to ensure

reliability and stability of the Power System. With advancement in the Phasor Measurement Units

(PMU) in the Power System it has become easily possible to get samples of the Voltages and

Angles at the systems nodes at much higher rates. This has made it possible to know the dynamic

states of the system.

5.2 Neuro Adaptive Dynamic State Estimation

In this subsection we introduce the Neuro-Adaptive Dynamic State Estimation Algorithm (NA-

DSE) as depicted in the figure (5.1) where we need the models developed in the previous subsec-

tions.
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5.2.1 Problem Formulation

In the proposed algorithm Feed Forward Neural Network (FFNN) is used to predict state estimate

δ̂k+1 and ω̂k at instant k as depicted the fig (5.1) & algorithm (1). Input to the neural network

are the bus voltages at the generator terminals V and angle θ available from the PMUs. Neural

network outputs are the estimated states; generators internal angles δ (a step-ahead prediction) and

angular frequency ω of the generator shaft.

δ̂j,k+1

ω̂j,k

 = fNN(WNN ,

Vk
θk

) (5.1)

Here, WNN is weight and biases of the neural network, k is the current time instance, j ∈ 1,m is

the generator. This algorithm utilizes a step-ahead prediction for the angle estimation δ̂k+1.

In traditional supervised learning approach it is essential to generate representative training set

of thousands of input output pairs; which should necessarily include all the possible fault case

scenarios. All of these is required beforehand to train neural network in off-line mode. Apparently,

neural network needs to be updated in case of any measure changes in the systems configuration.

Figure 5.1: Neuro-Adaptive Dynamic State Estimation Algorithm
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In contrast, in the proposed algorithm adaptation of the ANN is carried out instantaneously in Real-

Time. The major issue with for state estimation with ANN in real time is that it does not have true

state available to training. So, problem in this approach is to design an appropriate error measure

so that correct error is back propagated in order to minimize the difference between estimated state

and actual state.

For this purpose, objective function is designed based on the instantaneous measurements yk which

is a function of state xk as given in the given in the equation.(5.3) and equation.(5.4). Formulation

of the algorithm is similar to two step approach in Kalman Filter. Neural Network Estimates

the current state based on the measurement and system model is used to predict the next state.

Subsequently, next step measurements are estimated as a function of states and error is computed

as the actual measurements are availed from the PMU. Instantaneous error is back-propagated to

ANN1 and ANN2 which learn to minimize the measure in equation (5.2). Weights and biases are

updated using the gradient descent based optimization.

5.2.2 Learning Objective & Algorithm

Since, actual state is not available in state estimation algorithm supervised learning based objective

function cannot be used. Instead yk which is a function xk is used to formulate the objective

function for learning. This approach is called as reinforcement learning.

Here, in the equation (5.2) J1 & J2 are the objective function for δ and ω training respectively.

Subscript k denotes the training instant, which can be subsequently be dropped after mentioning

explicitly. η < 1 is the weight factor for the error accumulation term, also can be seen as a memory

of the objective function, varying η will affect the response of the estimation. Typical value of the
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eta is suggested to be around 10γ for good results in this particular case.

Jjk = αjEjk + ηj

k∑
i=1

Eji j ∈ {1, 2} (5.2)

E1k =
n∑
j=1

1

2
(θjk+1

− θ̂jk+1
)2 (5.3)

E2k =
n∑
j=1

1

2
(δjk+1

− δ̂jk+1
)2 (5.4)

ANN can be seen as a short term local function approximator, hence, need to use of large multi-

layer ANN is obviated. Hence, quick response is achieved, with the sufficiently small learning

rates. Clearly, ANN can be a single hidden layer network with moderate number of neurons in the

hidden later to achieve accurate nonlinear function mapping. Empirically based on error measures

size of the hidden layer is determined to be approximately half the size of input to achieve good

results.

Supervised learning is not a particularly necessary or recommended in this approach, unless large

and deep network is being used.

5.2.3 Neural Network Design

Size of the neural network depends used in this paper is 32 and 16 hidden layers for δ and ω

respectively with 32 input 16 output in both the cases. There are 2 neural networks for δ and ω

estimation each has 32 inputs. ANN1 has [V1θ1V2θ2 .... V32θ32]T as inputs and x = [δ1δ2 .... δ32]
T as

output. ANN2 has [δ1θ1δ2θ2 .... δ32θ32]T Gradient descent algorithm based numerical optimization

has been used in Back-Propagation based learning.
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Algorithm 1: NA-DSE Real Time Adaptive Learning Algorithm
begin

note: inputs and outputs are in vector form INITIALIZATION
WNN1

←− N(0, σ2 = 0.12)

WNN1
←− N(0, σ2 = 0.012)

0 < α ≤ 1 0 ≤ η < 1 γ1, γ2 < 1

δ̂0 = 1nx1
ω̂0 = 1nx1
while k >= 1 do

STEP-1 (ESTIMATE STATES)
δ̂k+1 = fNN1(Vk, θk) – PREDICT
ω̂k = fNN2(δk, θk) – ESTIMATE
STEP-2 (PREDICT NEXT STATES)
δ̂k+1 = fmodel(δ̂k, θ̂k)
STEP-3 (PREDICT MEASUREMENT)
θ̂k+1 = hmeas(E∠δ̂k+1)
STEP-4 (CALCULATE ERROR)
E1k =

∑n
j=1

1
2
(θjk+1

− θ̂jk+1
)2

E2k =
∑n

j=1
1
2
(δjk+1

− δ̂jk+1
)2

Jjk = αjEjk + ηj
∑k

i=1Eji j ∈ {1, 2}
STEP-5 (ADAPT NERUAL NETWORK)
WNN1 := WNN1 − γ1 ∗ ∂J1

∂WNN1

WNN2 := WNN2 − γ2 ∗ ∂J2
∂WNN2

k ←− k + 1

Introducing term η makes neural network comparatively stable and allows smaller learning rate

which makes it less sensitive to the noise.
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Table 5.1: Neural Network Architecture

Parameters ANN1-δ ANN2-ω

Hidden 32 16
Inputs 32 32

Outputs 16 16
γ 0.07 0.04
α 0.4 0.6
η 0.7 0.09

30



CHAPTER 6: SIMULATIONS AND RESULTS

Three test scenarios have been considered here to carry out the simulation. Performance of the

proposed method is compared with the Extended Kalman and Unscented Kalman based methods.

It is evident from the results that computational complexity for the proposed method is around 64%

as that of the EKF method.

More real-life system is used for simulation purpose which is a 16 generators 68 bus NETS-NYPS

system. Test has been simulated for 10 seconds with the time step of 0.01 seconds. Parameter such

as H-inertia, D-Damping ratio is assumed to be known. In almost all of the real life cases PMU

measurements at generator buses are measured and available so, in this scenario generator buses

measurements are assumed to be available.

6.1 Test Case Studies

6.1.1 Case -1

Three phase fault at the bus 29 (from 28-29) has been generated at t=1.1s and cleared at t =

1.15 sec. Single hidden layer Feed Forward ANN with sigmoid activation function in the hidden

layer and linear output function is used. For 16 generators.

PMU measurements are assumed to be noisy with standard deviation of 1e-4 per, also for extended

kalman filter wk ∼ N(0,Wk = 0.75x10−5) and vk ∼ N(0, Vk) = diag(1x10−5)Pk0 = 0nxn.

Where n is the number of states to be estimated. Performance measure of the estimation error is

computed as a Root mean square error for time instance Tf for EKF and ANN and is calculated

using the equation (6.1).
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Figure 6.1: NETS-NYPS (16 Generators 68 Bus System)

In this case η = 0 so error accumulation is not considered and as can be seen from the figure (6.6)

continuous offset in the estimation of ω and ω̂ can be observed. Introducing the error accumulation

in the objective function reduces the this error as objective of ANN is to minimize the cost function.

Hence, a better tracking can be achieved.

As compared to EKF ANN is closely tracks the state trajectories which is clearly visible from the

figure (6.1.2) & figure (6.6). Also, ANN based algorithm does not assume noise characteristics be

known. Whereas performance of the Kalman Filter based approached depends on the knowledge

of the accurately knowing the noise statistics.

E =
1

Tf

√∑
(xil − x̂ik)2 (6.1)
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Figure 6.2: Case-1 Generator Angles - simulated with η = 0 (Fault at bus 28 to 29 applied at t =
1.0sec)

Figure 6.3: Case-1 Generator Speed - simulated with η = 0 (Fault at bus 28 to 29 applied at t =
1.0sec)
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6.1.2 Case -2

In this case formation of neural networks remains the same as discusses in the case-1, here in case-

2 we have added an extra error accumulation term η
∑
E in the cost function as discussed early at

the end of the case-1. Performance of the algorithm as can be seen from figures (6.1.2) & (6.6) can

be seen to be quite improved.

Figure 6.4: Case-2 Generator Angles - simulated with η = 0.7 (Fault at bus 28 to 29 applied at t =
5.0sec)
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Here, these parameters serves as a heuristic addition to twig the sensitivity of the ANN to the error

where, α serves as a sensitivity of the ANN to the current error and η decides the memory of the

accumulated error. Values of both of these factors depends on the factors such as size of the neural

network, output scale, simulation time step. But, suggested values for α is between 0.5 to 0.7 and

for η is 0.8 depending on the performance.

Figure 6.5: Case-2 Generator Angles - simulated with η = 0.7 (Fault at bus 28 to 29 applied at t =
5.0sec)
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Figure 6.6: Case-2 Generator Frequency -simulated with η = 0.09 (Fault at bus 28 to 29 applied
at t = 5.0sec)
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CHAPTER 7: CONCLUSION

In this paper, we discussed a Machine Learning (AI) based approach to the on-line dynamic state

estimation of angle and frequency of synchronous generators using rapid measurements available

from PMU. This algorithm utilizes a universal function approximation capabilities of the neural

network to model nonlinear relation between measurement and the state. Also, the proposed algo-

rithm learns in real-time without any prior training on neural network and also, is computationally

around 500% efficient than EKF algorithm. Considering this approach as a starting point of fea-

sible use of ANN in power system it serves as basic framework to lay a sophisticated work in the

future.

37



LIST OF REFERENCES

[1] A Chakrabortty and P P Khargonekar. Introduction to wide-area control of power systems.

American Control Conference (ACC), 2013, pages 6758–6770, 2013.

[2] Min Chee Choy, Dipti Srinivasan, and Ruey Long Cheu. Neural networks for continuous

online learning and control. IEEE transactions on neural networks / a publication of the

IEEE Neural Networks Council, 17(6):1511–1531, 2006.

[3] Alberto Del Angel, Pierre Geurts, Damien Ernst, Mevludin Glavic, and Louis Wehenkel.

Estimation of rotor angles of synchronous machines using artificial neural networks and local

PMU-based quantities. Neurocomputing, 70(16-18):2668–2678, 2007.

[4] Esmaeil Ghahremani and Innocent Kamwa. Dynamic state estimation in power system by

applying the extended kalman filter with unknown inputs to phasor measurements. IEEE

Transactions on Power Systems, 26(4):2556–2566, 2011.

[5] Esmaeil Ghahremani and Innocent Kamwa. Online State Estimation of a Synchronous Gener-

ator Using Unscented Kalman Filter From Phasor. IEEE Transactions on Energy Conversion,

26(4):1099–1108, 2011.

[6] Esmaeil Ghahremani and Innocent Kamwa. Local and wide-area PMU-based decentralized

dynamic state estimation in multi-machine power systems. IEEE Transactions on Power

Systems, 31(1):547–562, 2016.

[7] Chakphed Madtharad, Suttichai Premrudeepreechacharn, and Neville R. Watson. Power sys-

tem state estimation using singular value decomposition. Electric Power Systems Research,

67(2):99–107, 2003.

38



[8] A G Phadke. A New Measurement Technique For Tracking Voltage Phasors ,Power System

Frequency,And Rate of Change of Frequency. IEEE Transactions on Power Apparatus and

Systems, PAS-102(5):14, 1983.

[9] A G Phadke. Synchronized phasor measurements in power systems. IEEE Computer Appli-

cations in Power, 6(2):10–15, 1993.

[10] A. G. Phadke, J. S. Thorp, and K. J. Karimi. State estimation with phasor measurements.

IEEE Transactions on Power Systems, 1(1):233–238, 1986.

[11] S. Pillutla, A. Keyhani, and I. Kamwa. Neural network observers for on-line tracking of

synchronous generator parameters. IEEE Transactions on Energy Conversion, 14(1):23–30,

1999.

[12] Junjian Qi, Kai Sun, Senior Member, Jianhui Wang, and Senior Member. Dynamic State

Estimation for Multi-Machine Power System by Unscented Kalman Filter with Enhanced

Numerical Stability. IEEE Transactions on Smart Grid, 3053(c):1–13, 2016.

[13] Graham Rogers. Power System Toolbox Version 3.0 ©. Rivers, (905):1–123, 2008.

[14] Kr Shih and S Huang. Application of a robust algorithm for dynamic state estimation of a

power system. Power Systems, IEEE Transactions on, 17(1):141–147, 2002.

[15] Dan Simon. Kalman Filtering. Embedded System Programming, (June):72–79, 2001.

[16] Abhinav Kumar Singh and Bikash C Pal. Decentralized Dynamic State Estimation in Power

Systems Using Unscented Transformation. 794 IEEE TRANSACTIONS ON POWER SYS-

TEMS, 29(2):794–804, 2014.

[17] Energy Society. IEEE Standard for Synchrophasor Measurements for Power Systems IEEE

Power & Energy Society, volume 2011. 2012.

39



[18] Jeffrey K Uhlmann, Simon J Julier, and Michael Csorba. covariance intersection. 2017.

[19] E A Wan and R van der Merwe. The Unscented Kalman Filter for Nonlinear Estimation.

IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium,

pages 153–158, 2000.

[20] Shaobu Wang, Wenzhong Gao, and A P Sakis Meliopoulos. An Alternative Method for Power

System Dynamic State Estimation Based on Unscented Transform. IEEE Transactions on

Power Systems, 27(2):942–950, 2012.

[21] Jie Yan, Chen Ching Liu, and Umesh Vaidya. PMU-based monitoring of rotor angle dynam-

ics. IEEE Transactions on Power Systems, 26(4):2125–2133, 2011.

[22] Jinghe Zhang, Greg Welch, and Gary Bishop. Observability and estimation uncertainty anal-

ysis for PMU placement alternatives. North American Power Symposium 2010, NAPS 2010,

2010.

[23] Jinghe Zhang, Greg Welch, and Gary Bishop. A Two-Stage Kalman Filter Approach for

Robust and Real-Time Power System State Estimation. IEEE TRANSACTIONS ON SUS-

TAINABLE ENERGY, 5(2):1–8, 2014.

[24] Kevin Schneider Zhenyu Huang. Feasibility Studies of Applying Kalman Filter Techniques

to Power System Dynamic State Estimation. The 8th International Power Engineering Con-

ference (IPEC 2007), pages 376–382, 2007.

[25] N Zhou, D Meng, Z Huang, and G Welch. Dynamic State Estimation of a Synchronous Ma-

chine Using PMU Data: A Comparative Study. IEEE Transactions on Smart Grid, 6(1):450–

460, 2015.

40


	Online Neuro-Adaptive Learning For Power System Dynamic State Estimation
	STARS Citation

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Introduction to the Power System State Estimation
	1.2 Phasor Measurement Unit (PMU)
	1.3 Literature Review
	1.4 Thesis Organization

	CHAPTER 2: ARTIFICIAL NEURAL NETWORK
	2.1 Types of Training
	2.2 Design of Neural Network
	2.2.1 Single Neuron
	2.2.2 Single Hidden Layer Neural Network
	2.2.2.1 Forward Propagation
	2.2.2.2 Objective Function
	2.2.2.3 Back-Propagation
	2.2.2.3.1 Chain Rule
	2.2.2.3.2 Gradient Descent
	2.2.2.3.3 Learning Rate




	CHAPTER 3: POWER SYSTEM MODELING
	3.1 Transient
	3.2 Generator Model
	3.2.1 Swing Model
	3.2.2 Swing Equation numerical Integration (Rectangular Rule)

	3.3 Network Model
	3.3.1 16 Gerator 64 Bus Model
	3.3.2 Measurement Model


	CHAPTER 4: KALMAN FILTER
	4.1 Kalman Filter
	4.2 Extended Kalman Filter (EKF)
	4.2.1 Jacobian Matrices
	4.2.1.1 System Matrix A
	4.2.1.2 Measurement Matrix H


	4.3 Unscented Kalman Filter (UKF)
	4.3.1 Numerical Stability


	CHAPTER 5: NEURO-ADAPTIVE DYNAMIC STATE ESTIMATION
	5.1 Introduction to Dynamic State Estimation
	5.2 Neuro Adaptive Dynamic State Estimation
	5.2.1 Problem Formulation
	5.2.2 Learning Objective & Algorithm
	5.2.3 Neural Network Design


	CHAPTER 6: SIMULATIONS AND RESULTS
	6.1 Test Case Studies
	6.1.1 Case -1
	6.1.2 Case -2


	CHAPTER 7: CONCLUSION
	LIST OF REFERENCES

