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ABSTRACT 

 

The vast majority of valuable agronomic traits are encoded polygenetically. Chloroplast 

genetic engineering offers an alternate approach to multigene engineering by allowing the 

insertion of entire pathways in a single transformation event, while being an environmentally 

friendly approach. 

Stable integration into the chloroplast genome and transcription of the phaA gene coding 

for β-ketothiolase was confirmed by Southern and northern blots. Coomassie-stained gel and 

western blots confirmed hyperexpression of β-ketothiolase in leaves and anthers, with high 

enzyme activity. The transgenic lines were normal except for the male sterile phenotype, lacking 

pollen. Scanning electron microscopy revealed a collapsed morphology of the pollen grains. 

Transgenic lines followed an accelerated anther developmental pattern, affecting their 

development and maturation, resulting in aberrant tissue patterns. Abnormal thickening of the 

outer wall, enlarged endothecium and vacuolation, decreased the inner space of the locules, 

affecting pollen grain and resulted in the irregular shape and collapsed phenotype. Reversibility 

of the male sterility phenotype was achieved by exposing the plants to continuous illumination, 

producing viable pollen and copious amounts of seeds. This is the first report of engineered 

cytoplasmic male sterility and offers a new tool for transgene containment for both nuclear and 

organelle genomes. 

Detailed characterization of transcriptional, posttranscriptional and translational 

processes of heterologous operons expressed via the chloroplast genome is reported here. 

Northern blot analyses performed on chloroplast transgenic lines harboring seven different 
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heterologous operons, revealed that in most cases, only polycistronic mRNA was produced or 

polycistrons were the most abundant form and that they were not processed into monocistrons. 

Despite such lack of processing, abundant foreign protein accumulation was detected in these 

transgenic lines. Interestingly, a stable secondary structure formed from a heterologous bacterial 

intergenic sequence was recognized and efficiently processed, indicating that the chloroplast 

posttranscriptional machinery can indeed recognize sequences that are not of chloroplast origin, 

retaining its prokaryotic ancestral features. Processed and unprocessed heterologous polycistrons 

were quite stable even in the absence of 3�UTRs and were efficiently translated. Unlike native 5� 

UTRs, heterologous secondary structures or 5�UTRs showed efficient translational enhancement 

independent of any cellular control. Finally, we observed abundant read-through transcription in 

the presence of chloroplast 3�UTRs. Such read-through transcripts were efficiently processed at 

introns present within native operons.   Addressing questions about polycistrons, as well as the 

sequences required for their processing and transcript stability are essential for future approaches 

in metabolic engineering. 

Finally, we have shown phytoremediation of mercury by engineering the mer operon via 

the chloroplast genome under the regulation of chloroplast native and heterologous 5�UTRs. 

These transgenenic plants hyperexpress were able to translate MerA and MerB enzymes to levels 

detectable by coomassie stained gel. The knowledge acquired from these studies offer guidelines 

for engineering multigene pathways via the chloroplast genome. 
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GENERAL INTRODUCTION 

 

In the past, most plant genetic engineering approaches involved the insertion of single 

genes to confer new traits of defined and will understood characteristics. Traits such as herbicide 

resistance, disease resistance or insect resistance improved the value of our crop plants, 

increasing yield and decreasing cost. However, the potential of single gene genetic engineering is 

limited because a majority of the agronomic traits are multigenic and complex. Advancement in 

the understanding of complex metabolic pathways as well as the improvement in plant genetic 

engineering methodologies are shifting the focus of the field from single gene engineering to 

multigene engineering for the expression of metabolic pathways.  

Plant genetic engineering is achieved by nuclear transformation or by chloroplast 

(plastid) transformation. Typically, plant nuclear genes are transcribed monocistronically, 

representing a major disadvantage when multiple genes are engineered into the nuclear genome 

for the expression of metabolic pathways. The expression of foreign genes via the nuclear 

genome can vary greatly from plant to plant due to position effect and gene silencing (Fagard 

and Vaucheret, 2000). In multigene engineering, having to choose the transgenic line with the 

best expression among many transgenic lines for the successive insertion of a second gene, or to 

backcross two single gene homozygous nuclear transgenic lines for the insertion of two genes in 

a single plant can be a very arduous task, this multipliesthe task when even more number of 

genes need to be inserted for the completion of a pathway. Additionally, possible segregation of 

transgenes during subsequent generation may disrupt the proper function of the genetically 

engineered pathway (Yin et al., 2004).  Nevertheless, few multigene pathways have been 
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engineered using nuclear genetic engineering. Sequential sexual crossing allowed the 

introduction of several genes in a single plant for the expression of IgA antibodies (Ma et al., 

1995) and the production of polyhydroxybutyrate (Nawrath et al., 1994; Bohmert et al., 2000). 

Similarly, three genes were introduced into rice to generate the biosynthetic pathway for β-

carotene expression (Ye et a., 2000), this effort required seven years for completion. Recently, 

sequential transformation of Arabidopsis thaliana with three genes resulted in the production of 

polyunsaturated omega-3 and omega-6 fatty acids in plants (Baoxiu et al., 2004). A better way to 

engineer multigenes in plants is through chloroplast transformation. 

 

Chloroplast Genetic Engineering 

 

 The technology of chloroplast transformation was concived in 1987 when Daniell and 

McFadden were able to transform isolated chloroplasts. Their �in organello� expression system 

was able to efficiently and in a prolonged manner transcribe, translate, and express foreign genes 

(Daniell et al. 1987, 1986, 1983; Daniell and Rebeiz, 1982). In 1986 Daniell et al. transformed 

the cyanobacterium Anacystis nidulant with the E. coli expression vector pBR322. One year later 

they expressed the small and large subunist of ribulose bisphophate carboxylase/oxygenase and 

the selectable marker chloroamphenicol acetyltransferase (CAT) in isolated etioplasts. From 

these preliminary studies they developed the concept of chloroplast genetic engineering (Daniell 

and McFadden, 1988 U.S. Patents; Daniell, World Patent, 1999). The discovery of a new 

transformation method called gene gun, or biolistic method, (Sanford et al. 1986) allowed 

chloroplast transformation without the need of chloroplast isolation and protoplast. The gene gun 
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method overcame the problems encountered with other methods, such as the DNA 

microinjection and polyethylene glycol treatment (Daniell et al., 1999), because it allows the 

direct targeting of DNA into the cells and into the chloroplast by means of sub-micron size 

particles of idle gold or tungsten. Chloroplast genetic engineering was accomplished in several 

phases. The transient expression of foreign genes in chloroplast was first shown in dicots with 

the expression of chloroamphenicol acetyl transferase (Daniell et al. 1990) and β-glucoronidase 

(Ye et al. 1990). These studies were followed by the first reports of transient expression in 

monocots (Daniell et al. 1991), where albino plants derived from anther culture were used to 

demonstrate sub-cellular localization of transgene product, this was the first report that 

unequivocally demonstrate expression of a foreign gene in chloroplast (Daniell et al., 1991). The 

use of the gene gun as a gene delivery method increases chloroplast transformation�s efficiency 

200-fold. Unique to chloroplast transformation was the development of a foreign gene 

expression system, which used autonomously replicating chloroplast expression vectors (Daniell 

et al. 1990). Stable integration of a selectable marker gene into the tobacco chloroplast genome 

of a higher plant (Svab and Maliga, 1993) was also accomplished using the gene gun.  

Chloroplast transformation would not be possible without the development of a suitable 

selection method to propel the advancement of chloroplast transformation technlogy. The 

translational machinery of plastids is of prokaryotic origing, containing 70S ribosomes, although 

the plant cell is eukaryotic and contains 80S ribosomes. The 70S ribosomes are sensitive to 

antibiotics such as spectinomycin and streptomycin. These antibiotics block the translocation of 

peptidyl-tRNA from the A-site to the P-site by inhibiting the elongation process in the ribosome, 

which enables the protein synthesis (Brink et al., 1994). Spontaneous mutations in the coding 
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sequences of the 16S rRNA can confer resistance to spectinomycin and streptomycin (Svab and 

Maliga, 1991). Resistance to these antibiotics can also result from the insertion of the E. coli 

chimeric aadA gene into the chloroplast genome (Goldshmid-Clermomt, 1991). The aadA gene, 

codes for the enzyme amynoglycoside 3�- adenyl transferase which transfers the adenyl moiety 

of ATP to spectinomycin, inactivating this antibiotic (Daniell et al., 2001a). Thus the aadA gene 

can be used as a selectable marker for chloroplast transformation. This selection has been 

successful in regeneration of transgenic chloroplast that can resist up to 500 µg/ml of 

spectinomycin. The antibiotic selection allows for the visual selection of transformed cells that 

proliferate from a bleached callus and allow the transformed chloroplast and the cell to 

proliferate and grow. In past years, the fear of using antibiotic resistance genes for selection of 

transgenic crops pushed the scientific community to find a non-antibiotic selection (Daniell, 

1999). A new environmentally friendly and non-antibiotic selection system has been discovered 

in which the betaine aldehyde dehydrogenase (BADH) was used and this gene conferd resistance 

to the plant toxic betaine aldehyde chloride (BA) (Daniell et al., 2001a, b) This system is 

completely safe given that BADH is a plant gene that does not confer resistance to antibiotics, 

while allowing for the effective selection of the transformed chloroplast (Daniell et al.2001). 

Other selectable markers and reporter genes such as green fluorescent proteins (gfp gene), 

aminoglysoside phosphotransferase (aphA-6 gene), neomycin (nptII gene), β-glucoronidase 

(uidA) and chloroamphenicol acetyl transferase (cat gene) have been used in the selection of 

chloroplast transformants in different species.  

Only recently has the applicability of chloroplast genetic engineering for the expression 

of traits of agronomic and commercial value been demonstrated. High expression levels of 
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protein have been achieved by the expression of the foreign genes in the chloroplast of higher 

plants. For example, chloroplast transgenic plants expressing the cryIAc gene were able to kill 

B.t. toxin resistant insects, becoming the first report of chloroplast transformation expressing this 

traits (McBride et al. 1995). Later, expression of the cryIIA gene via chloroplast transformation 

produced plants that were able to kill insects that were up tp 40,000 fold resistant to B.t. (Kota et 

al. 1999). Finally, the introduction of the native cry2Aa2 operon into tobacco chloroplast lead to 

the formation of cuboidal crystals and the highest ever accumulation of a foreign protein in 

plants, 46.1% total soluble protein was observed (De Cosa et al., 2001). The hyper expression of 

proteins in chloroplast is due to several factors which include the high copy number of 

chloroplast genomes per cell (gene dosage), which can be as many as 10,000 copies per cell 

because mature tobacco plants can have up to 100 genomes per chloroplast and 100 chloroplast 

per cell (Bendich, 1987). Additionally, expression of foreign proteins in chloroplast can be 

enhanced by the use of chloroplast 5� regulatory secuences. Finally, proteins expressed in the 

chloroplast are protected from the cytoplasmic environment, including nuclear encoded 

proteases. Additionally, the integration of transgene into the chloroplast occurs by site-specific 

homologous recombination (Daniell et al., 2000), which allows the integration of the foreign 

gene without position effect (Bogarad, 2000) or gene silencing.  The chloroplast transformation 

vectors are designed to have homologous recombination sequences (homologous flanking 

sequences) that direct the transgenes efficiently into specific regions of the chloroplast genome. 

Homologous recombination in chloroplasts is facilitated by a chloroplast-encoded recombinase 

encoded by the recA gene (Bock and Hagemann, 2000).  
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Chloroplast genetic engineering has been used for the production of biopharmaceuticals 

including vaccines and human therapeutic peptides. In this approach the chloroplast transgenic 

plants serve as bioreactors for production of large quantitities of the desired biopharmaceutical. 

Plants are suitable for production of biopharmaceuticals because they use sunlight as their source 

of energy, which makes it cheap, and procedures for large-scale agricultural production are 

already in place. A protein such as human somatotropin (hst gene), which is used in the treatment 

of hypopituitary dwarfism in children, was produced via chloroplast transformation to up to 7% 

tsp (Staub et al., 2000).  Recently, human serum albumin (hsa gene), which is extensively used 

in treatments of cirrhocis, burns and blood volume disorders was expressed in chloroplast to 

levels of up to 11.1% tps (Fernandez-San Millan et al., 2003). In addition to the previous reports, 

chloroplast transformation has been successufuly used for the expression of vaccines. The 

integration of the native colera toxin B gene  (ctxB) into tobacco chloroplasts led to expression of 

CTB to 4.1% tsp (Daniell et al., 2001c). Additonally, it was observed that CTB was in its 

pentameric functional form, indicating that there is proper disulfide bond formation in 

chloroplasts. This important observation opened the door for the expression of complex 

multimeric proteins that need to be assembled in order be functional. Recently, a plant vaccine 

against Bacillus anthracis was produced via chloroplast genetic engineering by the integration 

and expression of the protective antigene gene (pa), this plants expressed PA to concentrations of 

78 µg/mL (Daniell et al., 2004).  With the observed expression levels, 600 million doses of 

vaccine per acre, free of contaminants could be produced. Recent investigations have shown that 

chloroplast expression is possible in chloroplast of other useful crops besides that of tobacco 

(Sidorov et al. 1999; Daniell, 1999). Kumar et al., (2004) demonstrated that carrots could be 
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transformed, selected, and effectively regenerated. In this report, homoplasmy of the carrot 

plastid genomes was achieved, as well as abundant expression of the foreign gene in 

chromoplasts of the carrot root. They reported that foreign gene expression in chromoplast was 

about 70% the expression in leaf. This indicates that chloroplast transformation can be applied to 

express foreign genes in plant plastids of different species. Additionally, this work opened the 

door for the production of edible vaccines that will not have to be purified from the plant, and 

with n increased shelf life without the requirements of current vaccines for refrigeration.  

 

Multigene Engineering via Chloroplast Transformation 

 

The majority of the aforementioned examples demonstrated the applicability of 

chloroplast transformation for the expression of simple traits of agricultural and commercial 

value requiring the integration of a single gene for the expression of the new trait. The vast 

majority of agronomic traits are quantitative and controlled polygenetically. Plant genetic 

engineering is shifting gears for the production of more complex traits, often requiring the use of 

multigenes for their completion and proper functioning.  

A suitable approach to engineering multigene pathways is to do it via the chloroplast 

genome. Chloroplast genetic engineering possesses many advantages that make it a suitable 

place to engineer multigene pathways. Among the most important advantages of chloroplast 

engineering is the ability of chloroplast to effectively transcribe operons and translate 

polycistronic mRNA. Integration of multigene operons into the chloroplast genome occurs by 

homologous recombination, which allows the targeting of several genes in a single 
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transformation event, thus removing the possibility of detrimental position effect. Additionally, 

chloroplast genetic engineering offers increased transgene containment due to the maternal 

inheritance of chloroplasts. So far, no size limitation for foreign operons has been reported in 

chloroplast.  Because the chloroplast is the site of photosynthesis, carbohydrate and fatty acid 

biosynthesis, it is the logical place to genetically engineer different metabolic pathways. One 

example of carbohydrate engeneering by chloroplast genetic engineering was the production of 

the osmoprotectant trehalose in tobacco chloroplast (Lee et al., 2003). This osmoprotective sugar 

has been proposed as a safe preservative for foods and therapeutics, and was recently approved 

by the Food and Drug Administration (FDA) and the European Union regulation system 

(Schiraldi et al., 2002). The chloroplast has also been engineered with the accD gene, the 

expression of this gene increased the levels of the plastid encoded acetyl-CoA carboxylase 

subunit and consequently increase the levels of fatty acid biosynthesis in chloroplast of the 

transgenic plants (Madoka, et al., 2002). Zhang et al (2001) demonstrated the possibility of 

increasing amino acid content in plants by introducing a feedback insensitive mutant version of 

the antranilate synthase α-subunits into the chloroplast genome. The expression of this 

deregulated enzyme increased the levels of tryptophan. 

Multigenes have been only recently engineered via the chloroplast genome to produce 

new metabolic traits. The Bt cry2Aa2 operon was used as a model system to test the feasibility of 

multigene operon expression in genetically engineered chloroplast (De Cosa et al., 2001). In this 

report, the expression of the operon containing selectable marker aadA, orf1, orf2 (chaperone) 

and cry2Aa2 gene lead to the formation and accumulation of CRY2AaA crystals in the 

chloroplast to 46.1% total soluble protein. Later, targeting of an operon containing the three 
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bacterial genes for the biosynthetic pathway of polyhydroxybutyrate resulted in the expression of 

the biopolymer in plastids (Lossl et al., 2003). More recently, a multigene operon comprising a 

selectable marker and the merA and merB genes coding for the phytoremediation pathway of 

organic-mercury lead to the detoxification of phenylmercuric acetate to the far less toxic 

elemental mercury, and conferred resistant to high concentration of organomercurial to the 

transgenic plants (Ruiz et al., 2003). These examples support the applicability of multigene 

engineering for the expression of metabolic pathways via the chloroplast genome. Chloroplast 

transformation has also conferred resistance to herbicides (Daniell et al., 1998), conferred 

drought tolerance (Lee et al., 2001), and phytoremediation capabilities (Ruiz et al., 2003). 

 

Rationale and Approach 

 

In plant and animal cells, nuclear mRNAs are translated monocistronically. This poses a 

serious problem when engineering multiple genes in plants (Bogarad, 2000). Therefore, in order 

to express the polyhydroxybutyrate polymer or Guy�s 13 antibody, single genes were first 

introduced into individual transgenic plants, these plants were then back-crossed to reconstitute 

the entire pathway (Nawrath et al. 1994; Ma et al. 1995).  Similarly, in a seven-year effort, Ye et 

al introduced a set of three genes for a short biosynthetic pathway that resulted in β-carotene 

expression in rice.  In contrast, most chloroplast genes of higher plants are co-transcribed 

(Bogarad, 2000). Multiple steps of chloroplast mRNA processing are involved in the formation 

of mature mRNAs.  Expression of polycistrons via the chloroplast genome provides a unique 

opportunity to express entire pathways in a single transformation event. Additionally, chloroplast 
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genetic engineering is an environmentally friendly approach resulting in containment of foreign 

genes and hyper-expression (Daniell, 1997, 1999). The objective of this investigation is to 

develop recombinant DNA vectors harboring multigene constructs that can be expressed 

polycistronically via chloroplast genetic engineering, producing new metabolic traits. Because 

there are only a few studies reporting foreign multigene operons in chloroplast, not much 

information is available in the molecular regulation and modification of these operons. In order 

to further study these processes, we proposed the creation of chloroplast transgenic lines 

expressing multigene cassettes for the expression of β-ketothiolase. Additionally, we will 

engineer the degradative pathway for organomercurials via chloroplast transfomation. The plants 

harbouring these multigene constructs will be characterized at the DNA, RNA and protein levels 

to understand the new characteristics imparted by these operons. Finally, this work will focus in 

the characterization of posttranscriptional modifications of foreign operons in chlroplasts. For 

this purpose, multiple plant lines engineered with foreign operons will be employed and 

characterized for RNA stability, posttranscriptional modifications, and translation. The extent of 

this research will provide useful insite into genetic engineering and expression of multigene 

operons via the chloroplast genome, and may facilitate the construction of future multigene 

operons. 
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ENGINEERING MALE STERILITY VIA THE CHLOROPLAST GENOME 

 

      Introduction 

 

PHB synthesis takes place by the consecutive metabolic action of β-ketothiolase (phaA 

gene), acetoacetyl-CoA reductase (phaB) and PHB synthase (phaC). Poirier et al., (1992) 

reported the expression of PHB in plants for the first time by expressing the phaB and phaC 

genes in the cytosol via nuclear transformation; taking advantage of available cytosolic 

acetoacetyl-CoA. This approach yielded very low levels of PHB; but severe pleiotropic effects 

were observed in the transgenic plants.  In an attempt to increase the PHB yield in plants, 

Nawrath et al (1994) introduced the phbA, phbB and phbC genes in individual nuclear 

Arabidopsis transgenic lines and reconstructed the entire pathway, targeting all enzymes to the 

plastids. This approach resulted in PHB expression up to 14% leaf dry weight, and no pleiotropic 

effects. This suggested that the depletion of metabolites from essential metabolic pathways in the 

cytoplasm might have caused the pleiotropic effects, and that by targeting the enzymes to 

chloroplast, which is a compartment with high flux through acetyl-CoA, the adverse effects were 

overcome. When expression of optimized gene constructs, PHB yield increased up to 40% leaf 

dry weight, but this was accompanied by severe growth reduction and chlorosis (Bohmert et al., 

2000), indicating that targeting the PHB pathway to the chloroplast can result in pleiotropic 

effects, at higher concentrations of polymer synthesis (Bohmert et al., 2002). Lossl et al. (2003) 

reported the expression of PHB in tobacco by expressing phaA, phaB and phaC via plastid 

transformation. The expression of PHB resulted in severe growth reduction and authors 
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concluded that in tobacco significant levels of PHB could only be achieved if a sufficient pool of 

acetyl-CoA precursor is generated (Lossl et al., 2003). Additionally, they observed that when the 

transgenic plants were grown autotrophycally, PHB levels significantly decreased which 

overcame the stunted phenotype, but male sterility was still observed. It was not known whether 

the polymer or other metabolic factors were responsible for the male sterile phenotype (Lossl et 

al., 2003).  

In an attempt to address the role of phaA expression in the pleiotropic effects observed in 

transgenic plants expressing PHB, Bohmert et al., expressed the phbA gene constitutively and 

under inducible promoters via the nuclear genome (Bohmert et al., 2002). Constitutive 

expression of the phbA gene led to a significant decrease in transformation efficiency, inhibiting 

the recovery of transgenic lines and prevented analysis of plants expressing the β-ketothiolase 

gene (Bohmert et al., 2002). Such toxic effect exerted by phbA expression was speculated to be 

the result of PHB biosynthesis intermediates or its derivatives, the depletion of the acetyl-CoA 

pool, or of interaction of the β-ketothiolase with other proteins or substrates (Bohmert et al., 

2002). 

While investigating the phb operon, we proposed to address the specific role of β-

kethiolase (phaA gene) that result in pleiotropic effects in transgenic plants by expressing the 

polydroxybutyrate pathway. Therefore, we hyperexpressed the β-ketothiolase gene by inserting 

the transgene into the chloroplast genome under the regulation of the psbA promoter and 5� 

untranslated region (5�UTR), and assessed the effects of phaA expression in the chloroplast 

transgenic plants at the molecular and physiological levels.  

Because transgenes that are engineered into our annual crops could be introgressed into 
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wild crops, persist in the environment and have negative ecological consequences, it may be 

necessary to engineer a male sterility system that is 100% effective (Stewart et al., 2003). Several 

natural gene containment systems available today, rely on nuclear and mitochondrial mutations 

that occur spontaneously and render the plant male sterile (Kriete et al., 1996), but such naturally 

occurring systems are not available for most crops used in agriculture. In currently available 

cytoplasmic male sterile lines, nuclear genome controls various restoration factors (often 

controlled by multiple loci), which are not fully understood. Also cytoplasmic male sterility has 

been associated with such diseases as southern corn blight (CMS-T) and cold susceptibility 

(CMS Ogura). Male-sterility systems have been created by different mechanisms and most of 

these affect tapetum and pollen development (Kriet et al., 1996; Yui et al., 2003; Zheng et al., 

2003). Unfortunately, additional severe phenotypic alterations observed in male sterile lines 

precluded their use in agriculture (Hernould et al., 1999; Napoli et al., 1999; Goetz et al., 2001).   

The engineering of a cytoplasmic male sterility system has been proposed as a feasible 

way to address concerns with today�s male sterility systems, but this has been elusive so far 

(Perez-Prat and van Lookeren, 2002). In this study, the phaA gene is constitutively expressed, 

and fully regenerated transgenic plants are recovered. Therefore, evaluation of the specific effect 

of β-ketothiolase in the transgenic lines was possible for the first time. Detailed characterization 

revealed that severe pleiotropic effects such as stunted phenotype and chlorosis observed during 

polyhydroxybutyrate expression (Bohmert et al., 2000; Lossl et al., 2003) were not observed 

during phaA expression via chloroplast transformation, with the exception of complete (100%) 

male sterility. Such elimination of pleiotropic effects was not surprising because the chloroplast 

genetic engineering system has been able to overcome the toxic effects (stunted growth, 
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chlorosis and infertility) associated with nuclear expression of the trehalose (Lee et al., 2003), 

xylanase (Leelavanthi et al., 2003) and cholera toxin B subunit (Daniell et al., 2002) gene, 

producing totally normal plants that were healthy and fertile. In this report, we characterize the 

male sterile phenotype generated by the expression of β-ketothiolase in chloroplast transgenic 

plants and demonstrate the first engineered system for cytoplasmic male sterility in plants.  

 

Materials and Methods 

 

Chloroplast Vector Construction 

 

Native Genes Primer Design and Gene Amplification 

 

Plasmid DNA (pJKD 1425) from Acinetobacter sp (accession number) coding for the 

complete polyhydroxybutirate metabolic pathway and containing the functional phaA gene (β-

ketothiolase) was kindly provided by Metabolix (Cambridge, MA).Isolation and amplification of 

the phaA gene from the native plasmid was performed by polymerase chain reaction (PCR) with 

the utilization of phaA specific 5� and 3� flanking DNA primers. All primers were designed 

using the QUICKPRI program of the DNASTAR software. NdeI and NotI restriction sites were 

engineered in the 5� and 3� primers, respectively, to allow directional cloning into the suitable 

vectors. The 5� and 3� primers had 15 bases of homology with the 5� and 3� ends of the phaA 

gene, respectively. Either primer contain 10 bases, which are upstream of the NdeI restriction site 

in the 5�primer or downstream of the NotI restriction site in the 3� primer to facilitate subsequent 
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restriction digestions, these regions base-pare with the regions flanking the phaA gene in the 

native plasmid DNA.  

The primers were diluted to 100 µM to make the stock solution and from these working 

solutions were produce by further dilution to 10 µM, the solutions were kept at -20°C. The PCR 

reaction for the amplification of the phaA gene was as follows: 1 µL of DNA (100-200 ng), 5 µL 

of 10X buffer, 1 µL of 10 mM dNTP (200-250 µM), 1 µL of each of 10 µM forward an reverse 

primers, 0.5 µL Pfu Turbo polymerase (2.5 U) (Stratagene, La Jolla, CA) and 40.5 µL dH2O to a 

total volume of 50 µL. The polymerase chain reaction was performed using the Gene Amp PCR 

system (Perkin-Elmer) according to the manufacturers instructions. The amplification was 

carried out during 30 cycles with a program that alternated temperatures and time in the 

following way: denaturation at 94°C for 1 min, primers anneling at 65°C for 1 min, and gene 

extension at 72°C for 2 min (for the phaA).  The 30 cycles were preceded by denaturation of the 

PCR reaction for 5 min at 94°C and were followed by a 72°C final extension time. The PCR 

products were cloned immediately after the PCR run ended.  

 

pCR2.1-5�UTR-phaA Vector Construction 

 

The PCR product (phaA gene) was cloned into the vector pCR2.1-5�UTRpsbA, which 

contained the functional psbA gene promoter and 5� regulatory sequence, by directional cloning 

after NdeI and NotI restriction digestion of the PCR product and vector.  The digestion reactions 

for the PCR amplified phaA and the pCR2.1-5�UTRpsbA were performed as follow: 5 µL of 
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vector DNA (0.25 µg) or 5 µL of phaA (1.0 µg), 1.0 µL of NdeI, 1.0 µL NotI, 2µl of 10X 

reaction buffer compatible with NdeI/NotI, and 11 µL of sterile Milli Q water were added for a 

final volume of 20 µL. The restriction digestions were incubated at 37°C for 2 hours. The 

reactions were run in a 0.8% agarose gel and the bands of interest were cut out and eluted from 

the gel for later ligation. 

 

DNA Band Elution from the Agarose Gel 

 

A commercial gel extraction kit (Qiagen gel extraction kit) and protocol was use to 

extract the DNA bands from the agarose gel, the bands were projected by placing the gel on a 

flat UV transiluminator. They were then cut out with a razor blade and placed into a 1.5 

microcentrifuge tube. The two pieces of gel containing the bands of interest plus the tube were 

weighed, knowing previously the weight of the tube to determine the volume of the gel.  Three 

volumes of buffer QG (for example: 900 ml to 300 mg of gel) were added to the tube. The 

sample was incubated at 50°C for 10 minutes to melt the agarose gel. To help the melting 

procedure, the sample was vortexed about 3 times. After the gel had melt one volume of 

isopropanol was added and then mixed by vortex.  The mixture was added to a QIA quick spin 

column and centrifuged for 1 minute at 13,000 rpm. The flow through was discarded and 750 µl 

of buffer PE were added to the column. The column was centrifuged for 1 minute at 13,000 rpm. 

The flow through was discarded and the column was centrifuged for an additional minute at 

maximum speed to remove any trace of isopropanol. The column was transferred to a sterile 

micro centrifuge tube and 50 µL of EB buffer (elution buffer) were added to the column to elute 
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the DNA and then the column was centrifuged for 1 minute at maximum speed. Flow through 

was used in subsequent steps. 

 

Ligation Reaction 

 

The sample obtained from the gel elution was concentrated in a speed-vac until the 

volume reached 15 µl. Then, 1µl of T4 DNA ligase and 4 µl of 5X T4 DNA ligase buffer were 

added to the 15 µl of DNA to complete the reaction mixture (final volume of 20 µL). The 

reaction mixture was incubated over night at 14°C to allow ligation to take place. Followed, 

ligated vector containing the insert was cloned into plasmid receptive ultra competent E. coli 

cells. 

 

Ultra Competent Cells Preparation 

 

100 µL of Cells from a overnight culture of E. coli XL1 Blue MRF�ab Tc growing on LB 

liquid media was inoculated in 50 mL of SOB media at 37°C and shaken at 275 rpm until the 

optical density was 600 nm (this is approximately 3 hours). Following, the culture was incubated 

on ice for 10 minutes and then spun at 2,500 x g for 10 minutes at 4°C.  The pellet was 

resuspended on 20 mL of ice-cold transformation buffer (TB: 10 mM PIPES, 55 mM MnCl2, 15 

mM CaCl2, 250 mM KCl, adjust pH to 6.7 with KOH before adding the MnCl2, and filter 

sterilize).  The mixture was put on ice for 10 more minutes and then centrifuged at 2,500 x g for 

10 minutes at 4°C. The cells pellet was re-suspended in 4 ml of ice cold TB and DMSO was 



 18

added to a final concentration of 7% (about 280 µL in 4 mL of sample). The mixture was placed 

on ice for 10 minutes and then aliquoted into 200 µL and stored into the Deep Freezer (-80°C). 

 

E. coli Transformation With The Plasmid pCR2.1-5�UTR-phaA 

 

In a 15 mL falcon tube, 100 µL of ultra competent cells and 5 µL of DNA (pCR2.1-

5�UTR-phaA) from the ligation reaction were added and gently mixed. The mixture was placed 

on ice for 30 minutes and was shaken about 3 times. Followed, the transformation mixture 

containing cell and DNA was heat-shock treated for exactly 45 seconds at 42 °C without 

agitation. The tube was inmediately returned to the ice and incubated there for 2 more minutes. 

Later, 900 µL of LB (Luria Bertani) medium was added and the transformed cells were allowed 

to grow at 37 °C for 1 hour at 225 rpm in a rotary shaker. After the 1-hour incubation, 100 µL of 

cells were spread onto a LB plate containing 100 µg/mL of ampicillin. The rest of the 900 µL 

were centrifuged at 8,000 rpm and the pellet was re-suspended in only 100 µL of LB medium 

and plated onto the solid LB medium. The plated cells were incubated overnight at 37°C. The 

next day the cells that were growing on the plate were selected and inoculate in LB broth with 

100 µg/mL of ampicillin to perform plasmid isolation and restriction analysis to confirm that the 

phaA gene was cloned into the pCR2.1-5�UTR. 
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Mini Plasmid Isolation Of pCR2.1-5�UTR-phaA 

 

From an overnight culture of the selected colonies, 1.5 ml were transferred to a micro 

centrifuge tube and centrifuged for 1 min at 8,000 rpm at room temperature in the Fisher 

Marathon Micro H centrifuge. The supernatant was discarded and 200 µL of solution I (50 mM 

glucose; 10 mM EDTA; 25 mM Tris, pH 8.0), and 2 µl of RNase A were added to the pellet and 

vortexed to resupend.  200 µL of solution II (100 µl of 2 N NaOH; 100 µL of 10% SDS; 800 µL 

sterile water) was added to the tube and mixed by inverting five to six times, and then incubated 

on ice for 5 minutes. Solution III (60 mL of 5 M NaOAc; 11.5 mL glacial acetic acid; 28.5 mL 

sterile water) was added and then mixed by inverting 5-6 times and then incubated for 15 min on 

ice. After incubation, the samples were centrifuged for 5 minutes at 12,000 rpm at 4°C in a 

Savant µ Speed Fuge. The supernatants were transferred to fresh sterile tubes and 2 volumes of 

95% ethanol were added followed by mixing by inverting 5 to 6 times, then the samples were 

incubated on ice for 10 min.  The samples were centrifuged at 12,000 rpm at 4°C for 15 min. The 

supernatants were discarded and the pellets were dried in a Savant DNA speed-vac on medium 

setting for 5 minutes. The dried pellets were re-suspended in 50 µl of TE (Tris-EDTA) buffer 

and 4 µl of each of the samples were run on a 0.8% agarose gel for 40 minutes at 60 volts to 

confirm the successful isolation of plasmid. 
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Verification of phaA Gene Integration into pCR2.1-5�UTR Vector 

  

The plasmid DNA isolated from the different bacterial clones were subjected to 

restriction digestion with NdeI and NotI to cut out the phaA gene from the pcR2.1-5�UTR vector 

and positive identify the integration of the phaA gene. The digestion reactions were performed as 

explained previously in the vector construction section. The digested samples were resolved in 

8% agarose gel stained with Ethidium bromide. One of the clones characterized positive for the 

integration of phaA was used for Midi-prep plasmid isolation and further studies. 

 

Midi-prep of Plasmids pCR2.1-5�UTR-phaA 

 

A midi plasmid isolation (Bio-Rad Quantum Prep midiprep kit) was performed from an 

overnight culture of the E. coli clone containing the pCR2.1-5�UTR-phaA vector. Fifty mL of 

culture was transferred from the 250 mL Erlenmeyer flask to a 50 mL conical tube and spun 

down for 5 minutes at 5,000 rpm. The supernatant was discarded and 5 mL of Cell Resuspension 

Solution was added to the pellet to resuspend it by vortexing. Followed, 5 mL of Cell Lysis 

Solution was added to the sample, and the sample was mixed by inverting the tube 6-8 times. 5 

mL of Neutralization Solution was added to the sample and was mixed by inverting 6-8 times. 

The sample was centrifuged for 10 minutes at 8,000 rpm and the supernatant was poured 

carefully into a new 50 mL tube to which 1 mL of the Quantum Prep matrix was added and then 

swirled for 30 seconds. The sample was centrifuged for 2 minutes at 8,000 rpm and the 

supernatant was discarded. Followed, 10 mL of wash buffer was added to the matrix pellet and 
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the pellet was resuspended by shaking. The sample was centrifuged for 2 minutes at 8,000 rpm, 

the supernatant was discarded and the pellet was re-suspended in 600 µL of wash buffer by 

vortexing. Re-suspended sample was transferred to a provided spin column (and collection tube) 

and centrifuged for 30 seconds at 12,000 x g. Flow through was discarded and 500 µL of wash 

buffer was added to the column and centrifuged for 30 seconds at 12,000 x g. The flow through 

was discarded and the column was spun for an extra 2 minutes at maximum speed to remove any 

residual wash buffer. The spin column was transferred to a sterile 2 ml microcentrifuge tube and 

600 µL of TE buffer were added to the matrix. The column was spun down for 2 minutes at 

maximum speed and the flow through plasmid DNA was recovered and kept at -20°C for further 

studies. 

 

PhaA Gene Sequencing 

 

The pCR2.1-5�UTR-phaA vector and the vector specific M13 forward and M13 reverse 

primers, which flank the multiple cloning site of the pCR2.1 vector, along with an internal 

primer specific for the phaA gene were used to sequence the entire 5�UTR psbA and the phaA 

gene. Three independent reactions with each of the primers were performed. Before setting up 

the sequencing reactions the ng grams of DNA needed for the reaction were calculated 

accordingly to the size of the vector plus insert, the size is approximately 5.0 kb what required 

165 ng of DNA. To achieve the required DNA amount in the reaction, 1.65 µL of plasmid DNA 

from a stock solution of 100 µg/µL was added into a PCR tube and the volume was broght to 5 

µL with sterile water. Followed, the sample was heat diluted in the termocycles at 96°C for 1 
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minute and then allowed to cool to room temperature. Then, 1 µL of primer from a 5 µM stock 

solution and 4 µL fo DTCS quick start master mix were added for a total sample volume of 10 

µL. The samples were put into the thermocycler and were amplified with the next sequencing 

PCR program for 30 cycles: 96°C for 20 seconds (denaturation), 50°C for 20 seconds (annealing 

temperature), 60°C for 4 minutes (extension); and a final hold at 4°C.  

After the PCR the samples were purified by ethanol precipitation by first adding 2 µL of 

50:50 mixture of NaOac and EDTA, followed by 0.5 µL of glycogen into the 10 µL PCR 

reactions. Then, 60 µL of ice cold 95% EtOH were added, mixed and immediately centrifugated 

at 14,000 rpm at 4°C for 15 minutes. The supernatant was removed and the pellet was rinsed 

with 400 µL ice cold 70% EtOH. The sample was centrifugated at 14,000 rpm at 4°C for 4 

minutes. The supernatant was removed and the pellet was vacuum dried for 10 minutes. Finally, 

the sample was resuspended in 20 µL of sample loading solution and stored at 4°C until was time 

to use. The DNA sequencing was performed in a Beckman Coulter sequencer at the UCF 

sequencing facility. Finnally, electrophoregram was compared with gene bank sequences by 

using the BLAST 2 Sequences program from the NCBI website. 

 

pLDR-5�UTR-phaA Vector Construction 

 

The vector pCR2.1-5�UTR-phaA and the chloroplast transformation vector pLD-ctv were 

restriction digested with NdeI and NotI, the samples were resolved in a 0.8% agarose gel an the 

DNA fragment corresponding to the digested pLD-ctv vector and to the 5�UTR-phaA construct 
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were eluted from the gel. Followed, these samples were used for ligation and subsequent E. coli 

transformation and confirmation of integration of the 5�UTR-phaA insert into the pLD-ctv 

vector. These procedures were performed essentially as described earlier in this chapter in the 

Materials and Methods section. 

 

Chloroplast Transformation and Selection of Transgenic plants 

 

Preparation of Tobacco Tissue Culture Media 

 

MS Medium 

 

The Murashige and Skoog (MS) medium is used at different stages of tobacco tissue 

culture, and is essential for seed germination, plant propagation and root induction after the 

second round of regenerative selection after bombardment.  The medium was prepared by 

mixing in a 1-L beaker, 4.3-g packet of MS salt mixture (Invitrogen) and 30 g of sucrose, 

adjusting the volume to 900 mL with sterile Milli Q water and adjusting the pH to 5.8 with 1N 

KOH. Finally, the volume was broght to 1000 mL and 6 g of Phytagar for a final concentration 

of 0.6% was added. The medium was autoclaved for 20 minutes at 121°C. After autoclaving, the 

medium was allowed to cool to 40°C before antibiotics were added. The plant medium was 

poured into deep Petri dishes, jars or Magenta boxes. 
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RMOP Medium 

 

RMOP medium or regeneratin medium is used for the induction of shoots from tobacco 

leaves after the bombardment procedure. The medium is essentially made as explained for MS 

medium with the exception that the following phytohormones and nutrient need to be added: 100 

mg of myo-inositol, 1 mL of a 100 mg/mL thiamine-HCl solution, 1 mL of a 100 mg/mL 6-

benzylaminopurine (BAP) solution, and 100 µL of a 100 mg/mL naphtaleneacetic acid (NAA) 

solution 

 

Spectinomycin Solution 

 

Spectinomycin is the antibiotic normally used for selection of chloroplast transformants  

in tobacco and it is prepared by dissolving  1 g spectinomycin into 10 mL of sterile Milli Q water 

at a final concentration of 100 mg/mL. The solutions have to be filter-sterilized under aseptic 

conditions and stored at -20°C. 

 

Preparation for Bombardment 

 

Preparation of Tobacco Tissues for Bombarment 

 

The leaf materials used for chloroplast transformation were obtained by either 

germinating untransformed tobacco seeds in MS medium or by micropropagation through nodal 



 25

sections from an existing untransformed tobacco plant growing in MS medium. The leaves used 

in the bombardments were green leaves with no damages or defects with an approximate size of 

2 in. × 1 in. 

 

Preparation of Consumables for Bombardment 

 

The consumables to be used during bombardment were prepared in advanced to the day 

of bombardment. The macrocarrier holder, stopping screens, filter paper and Kimwipes were 

autoclaved and dried in the heat oven. Consumables such as macrocarriers and rupture disks that 

are not autoclavable were sterilized by submerging them in 100% ethanol for 10 minutes and 

then allowed them to dry over sterile Kimwipes in the laminal flow hood. 

 

Preparation of Gold Particles Suspensions 

 

The gold particles to be used for bombardment were make in advance and stored at -20°C 

were they are good for up to 6 months. 50 mg of gold particles (0.6 µM) were put into a 1.5-mL 

centrifuge tube to which 1 mL of 100% ethanol (molecular grade) was added, and then it was 

mixes by vortex for 3 minutes. Followed, the gold particles were pelleted by centrifugation at 

maximun speed for 2-5 minutes in a benchtop microcentriguge. Then the supernatant was 

discarded and the pellet was resuspended in 70% ethanol by vortexing for 2 minutes. The 

suspension was incubated for 15 minutes at room temperature and the content was mixed 3 times 

during the incubation. The gold particles were pelleted by centrifugation at maximun speed for 3 
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minutes and the supernatant was removed. The particles were completely resuspendend in 

destilles 1 mL of sterile Milli Q water by vortex-mix for 1 minute. The gold particles were 

allowed to settle down for 1 minute and a final centrifugation at maximun speed for 2 minutes 

was carried out to pellet particles still in suspension. Finally, the supernatant was discarded and 

the previous 3 steps were repeated twice. After the final wash with water the pelleted gold 

particles were resuspended in 50% glycerol for a final gold concentration of 60 mg/mL. Gold 

particle suspension was stored at �20°C.  

 

Particle Bombardment of Tobacco Leaves 

 

DNA Coating of the Gold Particles 

 

In a 1.5-mL centrifuge tube 50 µL of gold particles from the previously made stock 

suspension (60 ng/mL) were added, followed by 10 µL of plasmid DNA (in this case pLDR-

5�UTR-phaA), and a 5 seconds vortex-mix. Then, the following chemical solutions were added 

in strick order and mixed by vortex for 5 seconds after each addition, first 50 µL of 2.5 M CaCl2 

(freshly made) and 20 µL of 0.1 M spermidine-free base. After the last chemical addition the 

suspension was vortexed for 20 minutes at 4°C. Followed, 200 µL of room temperature absolute 

ethanol were added to the mixture and were mixed by vortexing for 5 seconds, immediately the 

mixture was centrifuge for 30 seconds at 3,000 rpm to pellete the gold particles.  The supernatant 

was removed and the ethanol wash was repeated four more times. After the final step the gold 
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particles were resuspended in 30 µL of 100% ethanol and the particles were kept on ice until 

ready to use (the gold particles were used within 2 hours). 

 

Tobacco Leaf Samples for Bombardment 

 

A single DNA-gold particle mixture (30 µL) is enough for 5 bombardments, for that 

reason 6 (5 for bombardment and 1 negative control) leaves from fully expanded, undamaged 

green leaves were obtained from a young wild type tobacco plant growing in MS medium in a 

glass jar. The collected leaves were placed adaxial on Petri dishes (100� x 25�) containing 

RMOP medium with out antibiotic selection and to which sterile Whatman filter disk were 

previously placed on their surface. The Petri dishes containing leaves were cover until ready to 

bombard. 

 

Macrocarrier Loading 

 

The sterile macrocarriers were placed inside the macrocarrier holder with its concave side 

facing outward. The final insertion of each the macrocarrier was performed by using the 

macrocarrier insertion tool in a push and rotate motion. Followed, 5 µL of the gold carrying the 

plasmid DNA (microcarrier) were added to the center of the macrocarrier, and spread until the 

target area was completely covered. Before each addition of gold particles to the macrocarriers 

the gold particles were thoroughly resuspended to inhibit the formation of clump. Any remaining 
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gold particle after the loading of the five macrocarriers can be use for a second application into 

one or more of the macrocarriers. 

 

Particle Bombardment 

 

The inner chamber, the internal parts, the door and the outside of the gene gun were 

sterilized with 70% ethanol before bombardment. Followed, the helium tank valve was opened to 

the maximum position and the helium pressure was regulated by rotating the adjustment handle 

of the helium regulator clockwise until the gauge measured 1350 psi. Then, the vaccum pump 

and the gene gune were turned on. A rupture disk (1100 psi) was placed into the rupture disk-

retaining cap and position it into the gene gun tightly followed by placing the stopping screen 

into microcarrier launch assembly. The macrocarrier holder containing the loaded macrocarrier  

was positioned into the microcarrier launch assembly and covered with the macrocarrier 

coverlid. The microcarrier launch assembly was placed into the gene gun. Then, target plate shelf 

was taken out of the gene gun and the cover of the Petri dish containing the leaf was removed. 

The Petri dish was placed on top of the target plate shelf making sure that the leaf covered the 

target area. The loaded target plate shelf was inseted into the gene gun and the gene gun door 

was closed. By pressing the vac/vent/hold switch to the vacuum position a 28 Hg in vacuum was 

achieved, then quickly the vac/vent/hold switch was changed to the hold position in a single and 

fast motion, finally, the Fire switch was holded to the fire position until the helium pressure 

gauge in the gene gun indicates 1,100 psi and the rupture disk bursted and a small explosion was 

herd. After this step, the fire switch was release and the pressure of the chamber was recostitute 
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by switching the vac/vent/hold switch to the vent position and wait until pressure in the vacuum 

gauge reads zero. The bombarded leaf was taken out, covered and sealed with parafilm. The gene 

gun consumables (rupture disk, stopping screen) were replaced for the subsequent bombardment. 

 

Tobacco Tissue Regeneration and Selection 

 

The Petri dishes containing the bombarded leaves were incubated in the dark for 48 hours 

at 27°C and after the 48 hours the leaves were cutted into small pieces of about 5 mm2   each and 

placed in RMOP media plates (Petri dish 100� x 25�) containing 500 µg/mL spectinomycin 

antibiotic for selection; this is called first round of selection. The bombarded side of the leaves 

was put in direct contact with the selection media (RMOP medium induces shoot formation). 

Then, the leaf tissues were incubatedat 27°C in a photoperiod of 16 hours light and 8 hours dark, 

the first putative transgenic shoots were observed after 4 to 6 weeks on selection. Once the 

putative transgenic shoots growing in first selection developed leaves and achieved a size of 

about 1 cm2, they were placed in second round of selection. For the second round of selection, 

leaves from the primary shoot were cut in pieces of about 2 mm2 and were placed on RMOP 

medium plates (Petri dishes 100� x 25�) containing spectinomycin. Again the abaxial side of the 

leaf was placed in contact with the medium. Putative transgenic shoots took about 3 weeks to 

develop. Once the shoot developed into a normal plant with a size of 1 to 2 inches in the second 

round of selection, the plant was detached from the adjacent callus by cutting through the stem 

close to the callus and the chloroplast transgenic plant was transferred to a third round of 

selection. For the third round of selection the plants were grown in MS medium jars containing 
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spectinomycin. This step (third round of selection) induces the formation of roots and the proper 

development of the plant. The transgenic plants took around 4-8 weeks to fully develop. Then, 

they were moved to soil. To transfer the plant to soil, the plant was first gently pulled out from 

the media and the roots were washed thoroughly with tap water to remove any agar attached to 

the roots. Finally, the plants were grown in a high nutrient soil in a photoperiod of 16 hours light 

and 8 hours dark at 27°C in a growth chamber. Seeds were collected from T0 generation 

transgenic plants. The material and methods used for the transformation of tobacco chloroplast 

have been previously published (Daniell, 1997; Daniell et al., 2004; Kumar and Daniell, 2004). 

 

Characterization of Chloroplast Transgenic Plants 

 

Plant DNA Extraction Procedure 

 
The DNeasy Plant Mini Kit (QIAGEN, inc, Valencia, CA) was used for the isolation of 

total DNA from wild type and transgenic plants as follows; 100 mg of tissue sample were 

removed from the plant using aseptic techniques, placed into a microcentrifuge tube, and grinded 

by using a micro pestle in 400 µL of buffer AP1 and 4 µL of RNase A (stock solution 100 

mg/ml). The mixture was incubated for 10 minutes at 65°C and mixed about 2-3 times during 

incubation by inverting the tube. 130 µL of buffer AP2 were added to the lysate, vortexed and 

incubated for 5 minutes on ice. Following, a centrifugation was done at maximum speed for 5 

minutes and the supernatant was transferred to the supplied spin column (lilac) sitting in a 2 mL 

collection tube. The centrifugation was performed at full speed for 2 minutes. The flow through 

was transferred to a new tube and 1.5 volumes of buffer AP3 were added to the lysate and mixed 
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immediately. 650 µL of the mixture was applied to a DNeasy mini spin column (clear) and 

centrifuged for 1 minute at 8000 rpm. The flow through was discarded and the collection tube 

reused to repeat the previous step with the rest of the sample. The tube with the flow through was 

discarded and the column was placed in a supplied 2 mL tube. 500 µL of buffer AW were added 

to the column and then it was centrifuged for 1 minute at 8,000 rpm. The flow through was 

discarded, and the tube was reused. The Dneasy column was washed once again with 500 µL of 

AW buffer and buffer was removed by centrifuging for 2 minutes at maximum speed. The 

Column was transferred to a clean 1.5 mL tube and 100 µL of preheated (65°C) buffer AE were 

directly delivered into the Dneasy membrane. The membrane was incubated for 5 minutes at 

room temperature and then centrifuged at 8,000 rpm for 1 minute to elute the DNA. The DNA 

was kept at -20°C. 

 

Confirmation of Chloroplast Integration by PCR 

 
Isolated total plant DNA from untransformed and transgenic plants was used as the 

template for PCR reactions. The PCR primer pairs 3P-3M and 4P-4M were used to confirm the 

integration of the gene cassette into the chloroplast, essentially as described previously. Primer 

pair 5P-2M, 5P-phaA internal and 5P-3�phaA were used to confirm the presence of the phaA 

gene. PCR analysis was performed using the Gene Amp PCR System 2400 (Perkin Elmer, 

Chicago). The 50 µL PCR reaction was setted the following way: 1 µL of 100 ng/ul genomic 

DNA, 5 µL of 10X PCR reaction buffer, 1 µL of 10 µM forward primer, 1 µL of  10 µM reverse 

primer, 0.5 µL of Taq DNA polymerase and 41.5 µL of sterile Milli Q water. The PCR reaction 
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was carried for 30 cycles with a program that alternates temperature and time in the following 

manner: 94°C for 1 minute, 65°C for 1 minute, the elongation step is carried at 72°C for an 

amount of time that depends on the primer pair to be used (usually 1 min per 1,000 bases). 

Cycles were preceded by denaturation for 5 minutes at 94°C and followed by a final extension 

time of 5 minutes at 72°C. The PCR amplification products were detected by electrophoresis in a 

0.8% agarose gel stained with ethidium bromide (EtBr). 

 

Southern Blot Analysis 

 

Restriction Digestion of Plant DNA 

 

Genomic DNA (2 µg) from T0 and T1 generation plants as well as wild type was digested 

with a suitable restriction enzyme. The restriction digestion produced DNA fragments of defined 

size; these fragments should have at least 2 kb difference between the transgenic fragment and 

the wild type fragment to allow good resolution. The restriction digestion was performed as 

follows: 2 µg plant total DNA, 2 µL of 10X reaction buffer, 1 µL BamHI restriction enzyme, and 

water to bring the volume to 20 µL. The reaction was placed a 37°C overnight. 

  

Agarose Electrophoresis and DNA Transfer 

 

The BamHI restriction digested DNA from transgenic lines and wild type along with a 

suitable positive control and molecular weight marker were loaded into a 0.7% agarose gel  (0.7 
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g agarose in 100 ml total volume) containing 5 µL of EtBr obtained from a 10 mg/mL stock 

solution. The gel was run for 2.5 hours at 55 volts. After the run was completed the DNA was 

transfer by capillarity to a nylon membrane as following explained. The unnecessary portions of 

the gel were removed and the upper right corner of the gel was removed to serve as an 

orientation mark. Followed the gel was depurinated by immersing it in 0.25 M HCL for 15 

minutes and was shaked until the color of the sample dye changed to yellow. Then, the gel was 

washed twice for 5 minutes in distilled water and then equilibrated in transfer buffer (0.4 N 

NaOH and 1 M NaCl) for 20 minutes, the gel was always in agitation. Four pieces of Whatman 

paper and the nitrocellulose membrane were cut to fit the size of the gel. The upper right size of 

the membrane was cut to serve as an orientation mark. The membrane was briefly rinse in 

destilled water and equilibrated by immersing it in transfer buffer for 5 minutes in agitation. In a 

glass tray, a stack of two sponges was placed and enough transfer buffer was poured to cover the 

sponge that is in contact with the glass tray. Followed, two pieces of Whatman paper previously 

soaked in transfer buffer were placed on top of the sponges. Extra transfer buffer was poured 

onto the Whatman paper to soak and remove any air bubbles and the gel was placed facing down 

on the Whatman paper. Then, the pre-equilibrated nylon membrane was placed on top of the gel 

making sure that its cut corner is touching the cut corner of the gel, more transfer buffer was 

added remove any air bubbles. Two additional Whatman papers were placed on top of the 

membrane, followed by a stack of paper towels. A 500 g weight was placed on top of the transfer 

set up to accelerate the capillary transfer. The next day the membrane was removed from the 

transfer set up and was washd in 2X SSC (0.3 M NaCl and 0.03 M sodium citrate) for 5 minutes 

on agitation. The membrane was allowed to dry for 5 minutes onto a Whatman paper and then 
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cross-linked in the GS GeneLinker (Bio-Rad, Hercules, CA) at setting C3 (150 mjoules). The 

cross-linked membrane was covered with saran wrap and stored in a dry place until ready to use. 

 

Generation of Probes  

 

The flanking sequence probe (0.81 kb) was obtained by BglII/BamHI restriction digestion 

of plasmid pUC-ct, which contains the chloroplast flanking sequence (trnI and trnA genes). The 

phaA probe (1.3 kb) was obtained by NdeI/NotI restriction digestion of plasmid pCR2.1-5�UTR-

phaA. The digestion reaction was setted up by adding; 1 µg of DNA, 2 µL of 10 X buffer and 1 

µL of each of the restriction enzymes, finally the volume was broght to 20 µL with destilled 

water. The digestion reactions were performed overnight at 37°C. The restriction digested probes 

were purified by agarose gel electrophoresis followed by gel elution accordingly to the QIAquick 

gel extration kit (QIAGEN inc, Valencia, CA) protocol and the final DNA elution step was 

performed with 50 µl of distilled water. 

 

Probe Labeling 

 

Fourty five µL of probe DNA (50-250 ng) was denature by incubating the DNA for 5 

minutes at 94°C and then immediately placing the tube on ice for 3 minutes followed by a pulse 

centrifugation to bring droplets down. The denatured probe was added to the Ready-To-Go 

Labeling Beads tube (Amersham Biosciences, USA) and content was mixed by flicking. 5 µL 

(50 µCi) of α32P (dCTP) were added to the reaction mix and then was incubated for 1 hour at 
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37°C. Unbound radio labeled nucleotide were removed by passing the probe mixture through the 

ProbeQuant G-50 Micro Colums (Amersham Pharmacia Biotech Inc, USA) according to the 

vendor�s instructions. The radiolabeled probe and other radioactive materials were stored in a -

20°C freezer according to the institutional radiation safety guidelines. 

 

Prehybridization, Hybridization and Membrane Washing 

 

The Quick-Hyb solution (Stratagene, USA) was pre-warmed for 10 minutes at 68°C. 

Followed, the blot was placed into a hybridization bottle with the top face of the blot facing in 

toward the solution and then 5 mL of the preheated Quick-Hyb solution was added. The bottle 

with the membrane inside was incubated for 1 hour at 68°C in a hybridization incubator (Fisher 

Biotech, USA). Fifteen minutes before the end of the prehybrydization step, 100 µL salmon 

sperm DNA (10 mg/mL) were added to 5 µL of the radiolabeled probe and were incubated at 

94°C for 5 minutes (this step denatures the DNA). Followed, the hybridization step was 

performed by the addition of the probe and samon sperm DNA to the membrane, which was 

incubate for 1 hour at 68°C. After the 1 hour incubation the radioactive hybridization solution 

was discarded into the liquid radioactive waste container. Followed, the membrane was wash 

twice, for 15 minutes each wash, with 50 mL of 2X SSC / 0.1% SDS buffer solution. These two 

washes are performed at room temperature. The final two washes were performed for 15 minutes 

at 60°C (to increase stringency) with 0.1X SSC / 0.1% SDS buffer solution. 
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Autoradiography 

 

The radio labeled membrane was raped in saran wrap, and then placed into a film-

developing cassette (contain the intensifiying screen) and was taken to the dark room. Under safe 

light (red light) the x-ray film was placed on top of the blot and was incubate (blot and film) at �

70°C for the appropriate exposure time. Then, the exposed x-ray film was developed in the Mini-

Medical Series x-ray film processor (AFP Imaging, Elmsford, NY). 

 

Northern Blot Analysis 

 

RNA Extraction 

 

Total plant RNA from untransformed and chloroplast transgenic plants, was isolated by 

using the RNeasy Mini Kit (Qiagen, Valencia, CA) and protocol. All the instruments were 

washed with DEPC water (1ml DEPC in 999ml of water to kill Rnases) and then autoclaved to 

remove the RNases. 100 mg of leaf material were taken from a plant growing in a glass jar 

constaining MS medium. The leaf material was freezed liquid nitrogen and then grinded 

thoroughly with a mortar and pestle. The powder was transferred to a 1.5 mL RNase free tube 

that was previously cooled in liquid nitrogen. Followed, 450 µL of buffer RLT (to which βME 

was added previously) was added, then vortexed and placed at 56°C for 3 minutes. The lysate 

was transferred into a QIAshredder spin column (lilac) that was placed into a 2 mL collection 

tube and centrifuged for two minutes at maximum speed. The flow-through fraction (~225 µL) 
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was transferred to a new tube and 0.5 volumes of ethanol were added and mixed by pipetting. 

The mixture (~650 µL) was transferred to an Rneasy mini column (pink) that was placed in a 2 

mL collection tube. It was then centrifuged for 15 seconds at 10,000 rpm and the flow-through 

was discarded. Followed, 700 µL of buffer RW1 were added to the column and then centrifuged 

for 15 seconds at 10,000 rpm to wash the column. The flow-through and collection tube were 

discarded.  The Rneasy column was transferred to a new collection tube and 500 µL of buffer 

RPE were added to the column, followed by a centrifugation step for 15 seconds at 10,000rpm. 

The flow-through was discarded and the column was washed again with 500 µL of RPE buffer 

and centrifuged as explained in the previous step. Then, the column was transferred to a Rnase 

free new 2 mL tube and centrifuged for 1 minute at maximum speed to remove any residual 

buffer. The column was transferred to a new 1.5 Rnase free tube and the RNA was eluted from 

the membrane by applying 50 µL of RNase-free water directly onto the Rneasy membrane. The 

tube plus the column were centrifuged for 1 minute at 10,000 rpm. Two µL of the eluted RNA 

was used to measure consentration and the rest was kept at �80 °C until ready to use. 

 

RNA Agarose/Formaldehyde Gel 

 

One hundred mL of 1.2% agarose gel was made by adding 1.2 g of agarose into a RNase 

free bottle, followed by the addition of 87 mL of DEPC water. The agarose was melted in the 

microwave. The liquid agarose was cooled down until the flask reached approximately 60°C. 

Then, 10 mL of MOPS buffer (200 mM MOPS, 50 mM Sodium acetate, 10 mM EDTA and 

adjusted pH to 7 with NaOH), 3 ml of 37% formaldehyde and 5 µL of ethidium bromide were 
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added to the liquid agarose, mixed and poured into the casting tray. The gel was allowed to 

solidify for 30 minutes. Followed, the gel running chamber was filled with running buffer (1X 

MOPS). The samples were prepared by adding 5 µL total RNA (for a final concentration of 2.5 

µg) and 15 µL of RNA sample buffer into a 1.5 mL. Then the samples were mixed and incubated 

at 65°C for 15 minutes. The RNA ladder was prepared by adding 7 µL of RNA ladder and 7 µL 

of loading buffer, then mixed and incubated for 15 minutes at 65°C. Once the samples and ladder 

were loaded, the gel was run at 55 volts for 2.5 hours. 

 

RNA Transfer 

 
After the completion of the gel run, a picture of the RNA gel was taken and the RNA was 

blotted to a nitrocellulose membrane by capillarity transfer as followed explained. The gel was 

placed in a tray with RNase free water and gently shaken for 15 minutes. This step was repetead 

once. Followed, a long wet wick (made of Whatman paper) was placed onto the island that had 

been previously placed into a tray containing 20X SSC. A tube was rolled over the long wick to 

flush away any bubbles. The gel was placed face down on the long wick. The nitrocellulose 

membrane and two Whatman filter paper pieces were cut to perfectly fit the gel. The 

nitrocellulose membrane was soaked into DEPC water and then immediately into 20X SSC. The 

membrane was placed on top of the gel and bubbles were removed by rolling a tube over the 

membrane. Followed, the two filter papers were soaked into 20X SSC and placed on top of the 

nitrocellulose membrane, again bubbles were removed. A stack of paper towels was placed on 

top of the filter papers, and a cover and weight were placed on top of the paper towels. The next 
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morning, the membrane was removed from the setup, and the lanes were marked with a pencil. 

Following, the membrane was rinsed for a few seconds in a tray containing 2X SSC and then 

allowed to air dry on top of a Whatman paper. The gel was checked under the UV light to verify 

that the transfer was complete. Followed, the membrane was cross-linked using the Bio-Rad GS 

Gene Cross Linker at setting C3 (150 mjoules). The membrane with the Whatman paper was 

wrapped in saran wrap and stored in a dry place until use.  

The phaA probe generation, labeling reaction, prehybridization/hybridization, membrane 

washing steps, and autoradiography were performed essentially as explained above in the 

Southern-Blot section. 

 

Western-Blot Analysis 

 

Protein samples were obtained from 100 mg of leaf material from wild type and 

transgenic lines by grinding the tissue to a fine powder in liquid nitrogen, subsequent 

homogenization in 200 µL plant protein extraction buffer (100 mM NaCl, 10 mM EDTA, 200 

mM Tris-HCl, 0.05% (w/v) Tween-20, 0.1% (w/v) SDS, 14 mM β-mercaptoethanol (BME), 400 

mM sucrose and 2 mM phenylmethylsulfonyl fluoride) and a centrifugation step at 15.7 × g for 1 

minute to remove solids. Protein concentrations were determined by Bradford assay (Bio-Rad 

Protein Assay) with bovine serum albumin as the protein standard. Proteins were resolved by 

electrophoresis in a 12% (v/v) SDS-PAGE (Laemmli, 1970) and then transferred to a 

nitrocellulose membrane (Bio-Rad, Hercules, CA). The membrane was blocked for 1 hr with 

PTM buffer: 1 x PBS (phosphate buffer solution), 0.05% (v/v) Tween-20 and 3% (w/v) non-fat 
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dry milk. The membrane was probed for 2 hrs with rabbit anti-β-kethiolase antibody (Metabolix, 

Cambridge, MA) in a dilution of 1:1,000, then rinsed with water twice and probed with alkaline 

phosphatase-conjugated secondary antibody (goat anti-rabbit, Sigma) for 1.5 hrs in a 1:20,000 

dilution. Finally, the membrane was washed 3 times for 10 minutes with PT buffer (1x PBS, 

0.05% (v/v) Tween-20) and one time with 1 x PBS, followed by incubation in Lumi-phos WB 

(Pierce, Rockford, IL) reagent for the alkaline phosphatase reaction. Film exposure took place 

for 3 minutes. 

 

β-Ketothiolase Activity Assay 

 

Protein samples were obtained by grinding 1 g of leaf tissue to a fine powder in liquid 

nitrogen, followed by the addition of 2 ml ice cold β-ketothiolase extraction buffer (100 mM 

Tris-HCl pH 8.1, 50 mM MgCl2, 5 mM βME) and homogenization. The homogenates were 

centrifuged for 10 minutes at 4°C at 5,000 g, and the supernatant was passed through PD-10 

columns (Amersham, Arlington Heights, IL) containing Sephadex G-25 M for desalting, and 

elution was optimized for the recovery of proteins of size range 25 to 60 kDa. Protein 

concentration was determined by a Bradford assay. β-ketothiolase activity was measured 

spectrophotometrically at 304 nm in the thiolysis direction (breaking down acetoacetyl-CoA to 

acetyl-CoA) by monitoring the disappearance of acetoacetyl-CoA for 60 seconds, which in the 

presence of Mg ion forms a magnesium enolate with absorbance at 304 nm; this protocol is an 

adaptation of the protocol by Senior and Davis (1973). The reaction took place in a total volume 

of 1 ml containing 62.4 mM Tris-HCl pH 8.1, 50 mM MgCl2, 62.5 µM CoA, 62.5 µM 
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Acetoacetyl-CoA (substrate was dissolved in sterile MilliQ water) and a volume of 50 mM 

phosphate buffer pH 4.7 equal to the volume of substrate used. The volume was brought 990 µl 

with sterile water. At the end 10 µl of plant extract (β-ketothiolase sample) were added, 

completing the 1 mL volume. The plant extract containing the β-ketothiolase was added at the 

end immediately before the sample reading. In this assay, the enzyme specific activity is given in 

units per mg of total plant protein and 1 unit is defined as the degradation of 1 µmol/min of 

acetoacetyl-CoA under standard reaction conditions. 

Example: 

Step 1: Assay for measuring acetoacetyl-CoA concentration for thiolase assay 

a) Blank spectrophotometer at OD 304 with the following sample in a quartz cuvette: 

31.2 µL from 2 M Tris-HCl, pH 8.1 

500 µL from 100 mM MgCl2 

10 µL from 50 mM phosphate buffer, pH 4.7 

458.8 µL H2O 

b) Measure at OD 304 of subtrate: 

31.2 µL from 2 M Tris-HCl, pH 8.1 

500 µL from 100 mM MgCl2 

10 µL substrate 

10 µL from 50 mM phosphate buffer, pH 4.7 

448.8 µL H2O 

c) Calculation of the concentration of acetoacetyl-CoA: 
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Absorbance 304 nm × (1÷extintion coefficient of sustrate) × (Moles÷L) × (1000 µL÷10 µL) × 

dilution factor = M/L 

The extintion coefficient used for acetoacetyl-CoA was 16.9 × 103 cm-1M-1. 

The dilution factor used was equal to 1. 

Step 2: β-ketothiolase activity assay 

a) Blank spectrophotometer with the following sample: 

31.2 µL from 2 M Tris-HCl, pH 8.1 

500 µL from 100 mM MgCl2 

62.5 µL from 1 mM CoA (final concentration 62.5 µM CoA) 

Volume of 50 mM phosphate buffer, pH 4.7 is equal to the volume of substrate to be used 

Bring to 1 mL total volume with water 

b) Meassure slope due ti enzyme activity: 

31.2 µL from 2 M Tris-HCl, pH 8.1 

500 µL from 100 mM MgCl2 

62.5 µL from 1 mM CoA (final concentration 62.5 µM CoA) 

62.5 µM acetoacetyl-CoA substrate (volume to be added is calculated from the empirical 

substrate concentration) 

Volume of 50 mM phosphate buffer, pH 4.7 is equal to the volume of substrate to be used 

Bring to 990 mL with water 

At the end at 10 µL of enzyme (plant lysate or purified enzyme) 

c) Calculation of β-ketothiolase activity 
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i. Corrected Slope = slope of assay with enzyme � slope of assay without enzyme 

ii. Corrected slope OD/sec × 60 sec/min × 1/Extintion coefficient substrate × mole/L × 106 

µmol/mol × 0.001 L volume of enzyme assay = Y µmol/min = Y Units 

iii. Specific activity (Units/mg) = (Z units/mL) ÷ by protein concentration of enzyme in mg/Ml 

 

Scanning Electron Microscopy 

 

Scanning electron microscopy (SEM) was performed at the AMPAC facility at the 

University of Central Florida. Anthers and pollen samples were gold coated on a Sputter Coater 

(Emitech, Houston, TX) with a gold film thickness of 150 Amstroms. SEM pictures were 

produced using the scanning electron microscope model JSM-6400F (JEOL, Peabody, MA), and 

the x-ray energy dispersive spectrometer (Edax, Mahwah, NY) at an acceleration voltage of 6 

kV.  

 

Histological Analysis of Anthers 

 

Anthers at relevant developmental stages were dissected from flower buds (all sepals and 

petals were removed to allowed better penetration of the fixative) and fixed in 3 % (v/v) 

glutaraldehyde in phosphate buffer for 12 hours at room temperature, applying a continuous 

vacuum for the first 3 hrs of incubation and degassing (by bringing the vacuum up and down 

slowly) for 10 min at 1 hr, 2hr and 3 hr. The volume of 3 % glutaldehyde solution used was 5 

mL or 10 mL depending on the zise of the anters. The fixed anthers were dehydrated in an 
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ethanol series (5%, 10 % to 80 % in increments of 10%, 95 % and 100 %) for 30 min per 

gradient treatment, under constant vaccum. Samples were kept overnight in fresh 100 % ethanol 

with no vaccum application and were washed twice the next day for 1 hr in 100 % ethanol with 

no vaccum. The ethanol was removed from the tissue samples and then the samples were treated 

with a gradient (25 %, 50%, 75%) of Citro Solv clearing (Fisher, Pittsburgh, PA) reagent for 30 

min per gradient treatment with no vaccum. Followed, the samples were treated with 100% Citro 

Solv for 1 hour with out vaccum application, this step was repeated twice. Without removing the 

Citro Solv 15 chips of Paraplast Plus (Fisher, Pittsburgh, PA) were added and left overnight at 

room temperature. Next day the solution was incubated 42°C to solubilized the remaining 

paraplast. Followed, 5 more chips were added and the solution was incubated at 42°C for 3 

hours, this step was repeated twice. The paraffin/Citro Solv solution was removed and the tissue 

was embedded by adding 10 mL of molten paraffin to the tissue samples. The molten paraffin 

was changed every 8 to 12 hours for 3 days. Paraffin treated tissue was finally embedded into 

paraffin blocks by using the Leica EG 1160 paraffin embedding station (Leica, Solms). A metal 

blade microtome, model HM 315 (MICROM, Walldorf) was used for tissue embedded 

sectioning. Finally, tissue sections were put onto Superfrost/Plus microscope slides, which were 

placed in slide holders were they were allowed to driedout. Followed, slides were placed in an 

oven at 42°C to remove excess paraffin from the tissue section. Once most of the paraffin was 

melted and removed the slide containing the tissue sections were diped into 100% Citro solved 

for 15 minutes. Then, the slides were removed and inmerse into fresh 100% Citro Solv for 15 

more minutes. Finally, the tissue sections were rehydrated with a decendent ethanol gradient 

(100%, 75%, 50%, 25%, 10% and water) for 10 minutes per gradient treatment. The tissue 
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sections were stained 0.05 % (w/v) toluidine blue. Tissue slides were observed under the 

Olympus BX60F5 light microscope and Olymppus U-CMAD-2 camera (Olympus, Melville, 

NY). Flower developmental stages were characterized following the procedure described by 

Koltunow et al.  (1990). 

 

Reversibility of Male Fertility 

 

Two independent transgenic plants were moved to a separate growth chamber after the 

first indication of flower bud formation and were kept away from any contact with wild type and 

other transgenic lines; the flowers were covered with thin transparent plastic bags to inhibit any 

possibility of cross pollination. Bags were only removed to take pictures. Transgenic plants were 

kept under continuous illumination for 10 days with a photon flux density of 11,250 µEm-2 

supplied throughout this period. The number of flowers developed was counted daily throughout 

these ten days, while newly formed flowers, senescent flowers, and fallen flowers were recorded. 

The development of fruit capsules and seeds were also counted. After the 10 days, a 16 hrs light/ 

8 hrs dark photoperiod was reestablished, while the plants were kept from contact with any other 

plant for 20 days to allow maturation of the fruit capsules and to harvest seeds produced during 

continuous illumination. 
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Results 

 

Chloroplast Transformation Vector 

 

The Acinetobacter sp (accession: L37761) gene, phaA (1179 bp) coding for β-

ketothiolase was amplified by PCR and cloned into the chloroplast transformation vector (pLD-

ctv) to finally produce the pLDR-5�UTR-phaA vector (Fig 1). The vector contains homologous 

recombination sequences (flanking sequences), which allow site-specific integration by 

homologous recombination into the inverted repeat region of the chloroplast genome in between 

the trnI (tRNA Ile) and trnA (tRNA Ala) genes (Ruiz et al., 2003). This specific targeting 

mechanism allows high efficiency integration of the transgene construct containing the aadA 

(aminoglicoside 3�-adenylyltransferase) gene, which confers spectinomycin resistance and the 

phaA genes. The transcription of the aadA and phaA gene is driven by the constitutive action of 

the chloroplast 16S ribosomal RNA gene promoter (Prrn), which is found upstream of the aadA 

gene and should produce dicistrons (aadA-phaA). Additionally, the psbA gene promoter and 5� 

regulatory sequence (5� untranslated region; 5� UTR), which is known to enhance translation of 

foreign genes (Eibl et al., 1999; Fernandez-San Millan et al., 2003; Daniell et al., 2004a; Dhingra 

et al., 2004), was used upstream of the phaA gene and should produce phaA monocistrons. At 

the 3� end of the gene construct is the 3� psbA untranslated region (3�UTR), which is known to 

be involved in mRNA abundance and stability in chloroplast (Marchfelder and Binder, 2004). 
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Figure 1: pLDR-5�UTR-phaA Vector Construction 
The map shows the specific steps and restriction enzymes used in the vector construction as well 
as additional restriction sites in the gene construct. PCR product phaA, was cloned inframe into 
the pCR2.1-5�UTR vector. The final step shows the integration of the 5�UTR-phaA gene 
construct into the pLD-ctv vector to for the functional pLDR-5�UTR-phaA vector. 
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Transformation and Selection of Chloroplast Transgenic Plants 

 

 Chloroplast transgenic plants were obtained through particle bombardment following the 

method described previously (Daniell, 1997; Daniell et al., 2004a; Kumar and Daniell, 2004a). 

More than 10 positive independent transgenic lines were obtained. Transgenic lines transformed 

with the pLDR-5�UR-phaA vector as explained in the Materials and Methods section were 

passed through a selection process. Three days after bombardment the bombarded leaf tissue was 

placed on regeneration media with 500 µg /mL spectinomycin antibiotic. After 3 to 4 weeks in 

selection the first putative transgenic shoots were observed (Fig 2A). The transgenic shoot is 

characterized by being green over a background of bleach leaf material (Fig2A). From the first 

selection the transgenic lines were move to second selection, were pieces of leaf material from 

the transgenic plant recovered from first selection were placed in media with 500 µg/mL 

spectinomycing for selection (Fig 2B). During this selection many more shoots identical (clones) 

to the parental primary transgenic shoot are generated (Fig 2B). Because the initial leaf tissue use 

in secondary selection is transgenic the callus does not bleach as much as in first selection, 

allowing faster regeneration of the transgenic clones. This step increases homoplasmy by 

selecting the transgenic chloroplast and genomes. Finally, once fully regenerated plants are 

recovered from second selection, these are transfer to third selection. Third selection is 

performed in MS medium amended with 500 µg/mL spectinomycin to induce rooting and the 

developments of a fully normal plant (Fig 2C). Finally, the transgenic plants were move to soil 

and allowed to grow to collect seeds. Transgenic seeds were recovered from the different 
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transgenic lines and were germinating in MS medium with 500 µg/mL spectinomycing to 

demonstrate maternal inheritance of the genetic engineered traits. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Selection of Chloroplast Transgenic Plants 
A, Transgenic plant shoot in first selection (RMOP medium with 500 µg/mL spectinomycing). 
B, Second selection in RMOP medium with spectinomycin shows multiple transgenic shoot. C, 
Third selection in MSO medium with spectinomycin. 
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Molecular Characterization of Chloroplast Transgenic Plants 

 

In this report, several transgenic lines are characterized, confirming that independent 

chloroplast transgenic lines show little variation in foreign gene expression (Daniell et al., 2001). 

PCR based analysis with the primer pairs, 3P and 3M and 4P-4M were used to test the 

integration of the transgene construct into the chloroplast genome. The 3P and 4P primers land 

on the native chloroplast genome, upstream of the gene cassette, and the 3M and 4M primers 

land on the aadA gene, which is located within the gene cassette (Fig 3A). If site-specific 

integration has occurred, a PCR product of 1.65 kb should be obtained, such product was 

detected in transgenic lines (Fig 3C lanes 2, 3). Untransformed plants as well as mutant plants, 

which had undergone spontaneous mutation of the 16S rRNA gene and acquired resistance to 

spectinomycin, did not show any PCR product, indicating that these plants are negative for 

integration (Fig 3C lane 1). The integration of the aadA gene, as well as the phaA was further 

confirmed by the use of primer pairs 5P-2M, 5P-3�phaA, and 5P-phaAinternal, which produce 

PCR products of sizes 3.56 kb, 2.0 kb and 1.5 kb, respectively. These primers land at different 

location within the gene construct (see Fig 3A). Results revealed specific PCR size products in 

the transgenic lines (Fig 3C lanes 4-6), confirming the presence of the phaA gene. 

The DNA from T0 and T1 generation transgenic plants as well as from wild type plant 

(wt) was extracted and used for Southern-blot analysis (Fig 3D-G). The flanking sequence probe 

of size 0.8 kb (Fig 3B), which hybridizes with the trnI and trnA genes, allows the detection of 

site-specific integration of the transgene cassette as well as the achievement of homoplasmy of 

the transgenic chloroplast genome. Additionally, the phaA probe (~1.2 kb) was used to confirm 
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the presence of the phaA gene. DNA from untransformed plants and transgenic lines were 

digested with BamHI (Fig 3A and B) and probed with either a flanking sequence probe or a 

phaA probe, resulting in the detection of a 10 kb transgenic chloroplast fragment (Fig 3D-G 

lanes 2-4).  The detection of a 7.1 kb fragment by the flanking sequence probe in the wild type 

indicated that these chloroplasts lacked the integration of the foreign genes (Fig 3D, F lane 1). 

The fact that no 7.1 kb size fragment (wt size) in the transgenic sample was observed indicated 

that homoplasmy had been achieved through the selection process even in T0 (Fig 3D lanes 2-4) 

and was maintained in T1 generation (Fig 3F lanes 2-4), confirming stable integration of foreign 

genes within all chloroplast genomes (to the limits of detection by Southern blots). The lack of 

signal in the wild type when screened with the phaA probe indicated the absence of phaA gene 

(Fig 3E,G lane 1). If any unexpected size fragment was observed in the transgenic samples when 

probing with the transgene, unspecific integration into another plant genome would be indicated 

(Daniell and Parkinson, 2003). This was not observed. 

Transcript abundance and stability from chloroplast transgenic plants was studied by 

northern-blot analysis using the gene specific probe phaA on total plant RNA (Fig 3H). The 

chloroplast transgenic lines were expected to transcribe a 2,255 nt dicistron (aadA-phaA) from 

the upstream 16S promoter (Prrn), in addition to a 1,384 nt monocistron (phaA) transcribed from 

the psbA promoter located upstream from the phaA gene (Fig 3H lanes 2-3). The results showed 

both the monocistron and dicistron transcripts were abundant in the transgenic plants, probably 

because of the action of the psbA and Prrn promoters, which are strong promoters. Additionally, 

larger size transcripts were detected, with one of them correlating with the size of a transcript 

starting at the chloroplast native 16S promoter (Prrn) and terminating at the 3� UTR psbA; the 
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predicted size of this transcript is 4,723 nt.  Other transcripts detected may be either read through 

(because 3� UTR does not terminate transcription efficiently in chloroplast) or processing 

products. 
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Figure 3: Molecular Characterization of Transgenic Lines  
A, Schematic representation of the transformed chloroplast genome and the pLDR-5�UTR-phaA construct. Landing 
sites for the primer pairs and expected sizes of PCR products are shown. BamHI restriction sites, DNA fragment 
produced after restriction digestion and the phaA probe, used in Southern-blot analyses are shown. B, The map 
shows the wild-type chloroplast genome, restriction digestion sites used for Southern-blot analysis, expected 
fragment size after digestion and the flanking sequence probe. C, PCR analysis of wild type and putative 
transformants. Top panel, transgenic line 4B; bottom panel is transgenic line 4A. 1: Untransformed wild type; 2: 3P-
3M (1.65 kb); 3: 4P-4M (1.65 kb); 4: 5P-2M (3.56 kb); 5: 5P-3�phaA (2.0 kb); 6: 5P-phaAinternal (1.5 kb); 7: 
positive control (pLD-5�UTR-phbA plasmid DNA) 5P-phbAinternal (1.5 kb); M: marker. D and F, Southern-blot 
analysis of T0 and T1 generation transgenic lines, respectively, with the chloroplast flanking sequence probe; 10 kb 
fragment showing integration of transgenes observed, 7.1 kb fragment detected in wild type sample. E and G, 
transgenic T0 and T1 plants, respectively, and wild type plant probed with the phaA probe. 10 kb fragment observed 
in transgenic lines but not in wild type. H, northern-blot analysis using the phaA probe. Mononocistron and 
polycistrons containing the phaA gene observed in the transgenic lines.  In figure 1D-H; 1: wild type; 2-4: 
chloroplast transgenic lines 4a, 4b, 4c, respectively. 
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β-Ketothiolase Expression and Activity 

 

To confirm expression of β-ketothiolase in the chloroplast transgenic lines, 

untransformed and transformed plants were subjected to western-blot analysis by using anti-β-

ketothiolase antibody. Chloroplast-synthesized β-ketothiolase treated with β-mercaptoethanol 

(BME) and boiled appeared mostly as monomeric forms (40.8 kDa), or in polymeric forms, 

which included the homotetrameric form (163 kDa) (Fig 4B lanes 2-6). No β-ketothiolase was 

detected in wild type samples (Fig 4B lane 1).  The appearance of a distinct band at 40.8 kDa in 

the Coomassie-stained sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) gel 

(Fig 4A lanes 1-4) but not in the unstransformed sample (lane 5) suggests that the chloroplast 

transgenic plants were expressing high levels of β-ketothiolase (Fig 4A). 

The activity of the chloroplast-expressed β-ketothiolase was measured in the thiolysis 

direction (breaking down acetoacetyl-CoA to acetyl-CoA) spectrophotometrically at 304 nm (Fig 

4C). The chloroplast transgenic lines showed β-ketothiolase activities that were up to 30-fold 

higher than previous levels demonstrated from nuclear transgenic plants. No endogenous β-

ketothiolase activity was detected in untransformed tobacco plants. The chloroplast transgenic 

lines showed levels of activity that reached 15.38 U/mg total plant protein and compared 

positively with the levels of activities obtained for our purified bacterial β-ketothiolase, 48.41 

U/mg. The high levels of enzymatic activity correlated well with the high amounts of protein 

detected by the Coomassie-stained gel and western-blot analyses performed on total plant 

samples; these results suggested that the enzyme was in its biosynthetically active form 
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(tetramer). No adverse effects were observed in the transgenic lines hyperexpressing β-

ketothiolase. Compartmentalization of proteins in chloroplasts has been shown to avoid 

pleiotropic effects, as previously reported for CTB (Daniell et al., 2001a), trehalose (Lee et al., 

2003) and xylanase (Leelavathi et al., 2003). 
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Figure 4: β-Ketothiolase Characterization in Transgenic Lines 
A, Coomassie-stain shows abundant β-kethothiolase expression in transgenic plants, 15 µg total 
plant protein was used per lane.  M: marker; 1-3: transgenic lines 4a, 4b, 4c, respectively; 4: 4a 
T1 generation; 5: wild type; 6: bacterial purified β-ketothiolase (positive control). B, western-blot 
analysis: 10 µg total plant protein from transgenic lines and wild type were loaded per lane, anti-
β-ketothiolase antibody was used. 40.8 kDa monomers as well as multimers can be observed in 
transgenic lines. 1: wild type; 2-4: transgenic lines 4a, 4b, 4c, respectively; 5-6: 4a and 4b T1 
generation, respectively. C, β-kethotiolase activity was measured spectrophotometrically at 304 
nm. WT: wild type; A, B: transgenic lines 4A and 4B under continuous light for 5 days; C: 
transgenic line 4B under normal photoperiod (16hr light).  
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Male Sterility Characterization 

 

From the 10 T0 transgenic lines expressing β-ketothiolase, 100 % of the flowers produced 

by transgenic plants failed to develop fruit capsules and seeds, finally senescing and falling off 

(Fig 5, a-c). The male sterility phenotype was maintained in T1 generation transgenic lines. T0  

(Fig 5, l) and T1  (Fig 5, m) generation transgenic plants showed no difference in growth and 

development when compared to untransformed tobacco plants under the same growth conditions. 

Chlorophyll content analysis of three independent T1 transgenic lines showed average 

chlorophyll content of 1.90 ± 0.12 mg/g fresh weight. The chlorophyll content of three wild type 

plants average, 1.92 ± 0.20 mg/g fresh weight. These results showed that the chlorophyll levels 

in the leaves of the transgenic lines expressing β-ketothiolase were similar to the levels in wild 

type tobacco plants, confirming that chloroplast biosynthetic functions and integrity of the 

thylakoid membranes, although β-ketothiolase was hyperexpressed. However, the chloroplast 

transgenic lines showed specific defects in anther development and failed to produce viable 

pollen. The anthers were characterized by the lack of pollen grains (Fig 5, h) or when pollen 

grains were formed, they were abnormal with a collapsed phenotype (Fig 6). Additionally, the 

stamens were shorter (Fig 5, f) than in wild type plants (Fig 5, g), adding a degree of severity to 

the male sterile phenotype. To investigate that plants were sterile due to lack of pollen or non-

viable pollen, emasculated wild type flowers were pollinated with the pollen from the transgenic 

anthers, but these crosses failed to produce any seeds. The shorter stamens may be a 

consequence of the failure of the cells to elongate in the central and upper parts of the anther 

filament. To investigate the possibility of female infertility affecting the transgenic plants, they 
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were fertilized with pollen from wild type. The transgenic plants developed normal fruit capsules 

(Fig 5, j) and normal seeds that were able to germinate and develop normally (Fig 5, k). The T1 

seedlings grew well in the medium supplemented with 500 µg/ml spectinomycin and were 

identical to the parental line (T0) and Southern blot analysis showed the presence of the gene 

construct (Fig 1F, G). 

Scanning electron microscopy was performed on transgenic anthers as well as wild type 

anthers to further characterize male sterility in transgenic plants. The SEM revealed that the 

pollen grains in the transgenic anthers exhibited collapsed morphology and consisted of a 

heterogeneous population with respect to size and shape (Fig 6, d-f). Wild type anthers showed a 

homogenous population of pollen grains of uniform size and shape (Fig 6, a-c). The apparent 

lack of turgidity of the transgenic pollen may be produced by lack of intracellular material, 

resulting in the distorted and collapsed morphology. The aberrant pollen morphology observed 

under the SEM may account for the inability of the transgenic plant to produce seeds. 
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Figure 5: Characterization of male sterility, growth and development. 
A-C, Flowers from transgenic lines; note the absence of fruit capsules and fallen flowers. D and 
E, wild type tobacco flowers and fruit capsules. F and G, comparison of stamens and stigma. 
Note shorter stamens in transgenic lines (F). H and I, comparison of mature anthers. Note 
abundant pollen in untransformed plant (I) and the lack of pollen in transformed anther (H). J, 
transgenic fruit capsule with seeds developed after pollination of transgenic stigma with wild 
type pollen. K, germination and growth of T1 seedlings on medium with 500 µg/ml 
spectinomycin. wt: wild type; 4A: T1 transgenic line 4A; 4B: T1 transgenic line 4B, obtained 
after pollination with WT pollen.  L and M, comparison of growth and development. L, wild type 
and T0 generation transgenic line (4A) grown for two months in soil. M, wild type and T1 
generation independent transgenic lines 4A, 4B, 4C and 4D 1.5 month after germination.  
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Figure 6: Scanning Electron Micrograph 
SEM pictures of pollen grains in anthers of wild type (A-C) and transgenic (D-F) plants at 
different magnifications. Magnification: A, D: × 500; B, E: ×1000; C: ×3500; F: ×3000. 
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β-Ketothiolase Expression in Anthers 

 

Plastids in anthers may be in low abundance when compared to the numbers in leaves, 

but they produce enough β-ketothiolase to affect pollen development in anthers.  As shown in 

figure 7, flowers and specifically anthers were green during anther development (stage 1 of 

flower development is shown). This means that chloroplasts are present and are metabolically 

active. Northern-blot analysis of leaves showed that the mRNAs coding for β-ketothiolase are 

found in monocistronic and polycistronic form, the monocistron form being the most abundant 

transcript (Fig 1H). The same pattern was maintained in the phaA transcripts in flowers and 

anthers (Fig 7B). Northern-blot analysis of transgenic flowers and anthers showed that 

transcription of the phaA gene occurs in the flower and anther; this was expected because Prrn 

and psbA promoters are constitutive promoters, allowing transcription to occur in both 

photosynthetic as well as non-photosynthetically active plastids (Fig 7B). The translation of the 

phaA monocistron is under the light regulated psbA 5� regulatory sequence but because the 

flowers, as well as anthers are green, containing photosynthetically active chloroplasts, 

translation was quite efficient (Fig 7C). β-ketothiolase was detected by western-blot in both 

whole flowers and anthers from transgenic plants, confirming that the β-ketothiolase was present 

during anther development, and should play a role in the male sterility phenotype (Fig 7C). 
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Figure 7: β-Ketothiolase Expression in Anthers  
A, Pigmentation of anthers during flower development in transgenic plants, Stage 1 of flower 
development is shown. B, Northern-blot analysis of flower and anthers. Monocistrons and 
polycistron are observed. 3 µg of total plant RNA was loaded per lane and the phaA probe was 
used. M: marker; 1: transgenic flower; 2-3: transgenic anthers form line 4A and 4B; 4: wild type 
flower; 5: transgenic leaf line 4A; 6: wild type leaf. C, β-ketothiolase expression in transgenic 
flower and anther detected by western-blot analysis, lanes 2 and 3, respectively. RNA and 
protein samples used per lane were the product of the combined extraction from flowers or 
anthers from stage 1 and 3. 
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Anther Development and Male Sterility 

 

Analysis of anther development revealed that the anthers of the transgenic lines followed 

an accelerated pace in their development and maturation resulting in aberrant tissue patterns (Fig 

8). At stage �3 of flower development the WT plants showed a normal pattern of tissue 

development, where all major tissues were differentiated, the anther had acquired its 

characteristic shape, all tissues were interconnected and there was presence of callose 

depositions between microspore mother cells. This pattern was not followed in the transgenic 

lines, which at stage �3, showed characteristics of a more advanced stage. The transgenic anthers 

at stage �3, showed the microspores in tetrads, with stomium differentiation occurring and the 

tapetum was shrunken and broken. This pattern presented characteristics of more advanced 

stages of flower development, which included stages +1 and +2. Additionally, the transgenic 

anthers showed abnormal development of the epidermis and endothecium, probably resulting in 

the aberrant shape of anthers. The anthers of the transgenic lines at stage �2 were also advanced 

in the aberrant phenotype with the microspores already separated, a developmental step that 

should have been observed at stage +2. Again the tapetal layer was broken. We noticed that the 

transgenic anthers at stage �5, which is a very early stage of flower development, showed great 

similarities with stage �2 in the wild type plants, but aberrant pattern of tissue development could 

still be observed. At stage �1 in transgenic line the tapetum was shrunken and discontinuous and 

formation of  pollen grains was evident at stage 1. These morphological changes observed in 

stage �1 and +1 should be observed at much later stages, +3 and +4. At early stages of floral 

development (stages -5 to +1), transgenic lines showed accelerated anther development, which 
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averaged +3 stages ahead from the wild type plants. At late stages of floral development, 

accelerated phenotype increased even more, at an average of 4 to 6 stages ahead of wild type. At 

stage +2 in the transgenic lines, cells adjacent to the stomium had degenerated and only remnants 

of the tapetum were observed. The thickening of the outer wall is accompanied by enlarged 

endothecium and vacuolation, which greatly decreased the inner space of the locules, crushing 

pollen grains and resulted in the irregular shape and collapsed phenotype. The developmental 

changes observed in the transgenic anthers at stage +2, although aberrant, were similar to the 

ones observed in wt at stage +6. In the wild type, abundant normal pollen grains were observed. 

Almost complete degradation of the connective tissue that separates the pollen sac occurred at 

stage +3 in transgenic anthers, while this occurred at stage +9 in wild type plants. Finally, both 

wild type and transgenic anthers were bilocular, connective tissue was absent but the major 

difference was that abundant pollen was present in the WT (stage +11) but not in transgenic 

anthers (transgenic, stage +9). Additionally, the pollen grains formed in transgenic anthers were 

collapsed. The data presented here allows us to understand the effect of β-ketothiolase during 

anther development in the transgenic lines.  

Anther development is a very complex process involving the coordination of several 

genes and the specific development and maturation of several tissues and cells (Yui et al., 2003); 

any defect in these well-coordinated processes may lead to dysfunctional pollen. Many male-

sterility systems produced by mutations or nuclear expressions of foreign proteins have shown to 

interfere with the function or differentiation of tapetum, indicating that this tissue is essential for 

the production of viable pollen (Goetz et al., 2001). Here we observed that the tapetum of the 

transgenic lines was severely impaired. The tapetum is critical for the development of pollen by 
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secreting essential substances such as proteins (Yui et al., 2003), carbohydrates (Goetz et al., 

2001) and lipids (Zheng et al., 2003) into the locules. Developing microspores and the 

surrounding tapetal cells have been shown to be particularly active in lipid metabolism (Zheng et 

al., 2003). The precise differentiation and maturation of tapetum with respect to microspore 

development is of major importance for the successful production of pollen. Here we observed 

complete dysfunction in the anther tissue differentiation patterns, which may be caused by an 

alteration in chloroplast fatty acid metabolism in the transgenic lines expressing the phaA gene, 

affecting the development of pollen grains. 
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Figure 8: Analysis of Anther Development 
Bright-field photographs of wild type (wt) and transgenic anthers at different developmental 
stages (S). Anthers at the designated stages were fixed, embedded with paraffin, and sliced into 5 
and 10 µm transverse sections. The fixed sections were stained with toluidine blue and visualized 
under the light microscope at a magnifications of  ×100. C, connective tissue; E, epidermis; En, 
endothecium; MMC, microspore mother cells; Msp, microspores; PS, pollen sac; S, stomium; T, 
tapetum. 
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Reversibility of Male Fertility 

 

To test whether depletion of the acetyl-CoA pool destined for de novo fatty acid 

biosynthesis in chloroplast by β-ketothiolase is the cause of the male sterility phenotype, we 

decided to explore if a continuous light could revert male fertility of the chloroplast transgenic 

lines. It has been shown that the intermediates of fatty acid biosynthesis change during the 

transition to darkness in leaves and chloroplasts in a manner consistent with control at the levels 

of ACCase (Post-Beittenmiller et al., 1991). Recent reports have shown light-dependent 

regulation of ACCase by the redox status of the plastid whereby the enzyme is more active under 

the reducing conditions observed in light (Page et al., 1994; Kozaki et al., 2000). Therefore, two 

independent transgenic lines 4A and 4B were exposed to continuous light for a period of 10 

days. These plants had been previously characterized and shown to be 100% male sterile, unable 

to produce any fruit capsules or seeds. These plants were isolated from all other plants 

(transgenic and wild types) in a growth chamber at the first indication of flower bud 

development (before any flower was opened), and the flowers were covered with transparent 

plastic bags to avoid of cross-pollination. We observed that from a total of 20 flowers produced 

during the 10 days of illumination by the two transgenic plants, 4 flowers were able to produce 

pollen (Fig 9A), normal length anther filaments (Fig 9A), developed fruit capsules (Fig 9B) and 

produced seeds (Fig 9C). Transgenic line 4A produced 3 viable flowers during the 10 day 

continuous light photoperiod, all of them being produced between days 8 and 10. Transgenic line 

4B produced one viable flower at day 9 and was able to produce additional viable flowers three 
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days after the 10 days assay was completed. The seeds recovered (Fig 9C) from the reverted 

male fertility study were able to germinate in a medium with 500 µg/mL spectinomycin (Fig 

9D), indicating that these seedlings were transgenic and contained the transgene; wild type 

tobacco seedlings were bleached (Fig 9E). These findings support the hypothesis that an increase 

in ACCase activity outcompetes, at least partially, the removal of acetyl-CoA by β-ketothiolase.  

Additionally, this line of evidence shows that male sterility is caused by the effect of β-

ketothiolase expression in the chloroplast and not by any other unknown process.  
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Figure 9:  Reversibility of male fertility after 10 days under continuous light.  
A, transgenic flower after 9 days in continuous light. A, note normal length of the anther 
filaments and pollen grains.. B, fully developed fruit capsules containing seeds from transgenic 
lines. C, abundant seeds from transgenic fruit capsule. D, seedlings produced via the reversibility 
to male fertility. Transgenic seeds germinated and grown green in medium supplied with 500 
µg/mL spectinomycin. E, bleached wild type tobacco seedlings. 
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Discussion 

 

We have shown that the hyperexpression of β-kethothiolase via chloroplast 

transformation resulted in normal growth and pigmentation, even when the activity of the 

enzyme was very high. Succesful expression of β-ketothiolase in transgenic plants showed that 

this enzyme could be safely expressed in the chloroplast and suggested that the complete PHB 

pathway needs to be expressed in order to cause the stunted phenotype. Although no growth 

reduction was observed in the chloroplast transgenic lines expressing β-ketothiolase, 100% male 

sterility was observed. This was interesting and worthy of further investigation because of the 

importance of the production of male sterile lines in gene containment and hybrid seed 

production (Perez-Prat and van Lookeren, 2002). Because the expression of β-ketothiolase did 

not disrupt growth and normal development, with the exception of the lack of pollen formation, 

the expression of β-ketothiolase may be used as a mechanism to generate a male sterility system, 

producing 100% infertility that can be applied to different plant species. Concerns related to 

constitutive expression of phaA can be easily overcome by restricting phaA expression to the 

anthers, where pollen formation occurs. Such transgenic plant systems expressing a chloroplast 

targeted T7 RNA polymerase via the nuclear genome, regulating the expression of a chloroplast 

integrated transgene under the g10 T7 promoter has been reported in the literature (McBride et 

al., 1994; Magee and Kavanagh, 2002). A similar approach in which the T7 RNA polymerase 

gene regulated by an anther specific promoter could be used to specifically induce phaA 

expression in anther plastids for transgene containment or hybrid seed production. 
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Here we demonstrate that it is possible to revert the chloroplast transgenic lines to 

fertility by continuous light exposure. This supports a mechanism of action in which β-

ketothiolase depleted the pool of acetyl-CoA in the chloroplast, but by increasing acetyl-CoA 

carboxylase (ACCase) activity by continuous light (Post-Beittenmiller et al., 2001; Kozaki et al., 

2000; Page et al., 1994), ACCase was able to compete more effectively for acetyl-CoA, thereby 

increasing the levels of plastidic fatty acid biosynthesis.  Developing microspores and 

surrounding tapetal cells have been shown to be particularly active in lipid metabolism (Yui et 

al., 2003), which is especially needed for the formation of the exine pollen wall from 

sporopollenin (Wang et al., 2001; Ariizumi et al., 2003, 2004). Support for the normal growth 

and development observed in the chloroplast transgenic lines expressing phaA also comes from 

studies where a mutant plant with 10% activity of acyl-CoA synthase showed normal content of 

lipids in leaves and normal growth (Schnurr et al., 2002), indicating that under normal growth 

conditions, even severely impaired plants in fatty acid biosynthesis were able to grow normally. 

Alternatively, the formation of acetoacetyl-CoA or β-ketothiolase itself may have a detrimental 

effect on chloroplast metabolism. This view is hard to support from our results, because neither 

β-ketothiolase expression, nor acetoacetyl-CoA was affected by continuous illumination.  

Chloroplasts genetic engineering approach offers a number of attractive advantages, 

including high-level transgene expression (Daniell and Dhingra et al., 2002a), multi-gene 

engineering in a single transformation event (DeCosa et al., 2001; Daniell and Dhingra, 2002; 

Ruiz et al., 2003; Lossl et al., 2003), transgene containment via maternal inheritance (Daniell et 

al., 2002b), lack of gene silencing (Ruiz et al., 2003),lack of position effect due to site specific 

transgene integration and lack of pleiotropic effects due to sub-cellular compartmentalization of 
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transgene products (Daniell et al., 2001a; Lee et al., 2003).  Genetically engineered cytoplasmic 

male sterile via the chloroplast genome may be used for the safe expression of foreign genes via 

the nuclear genome and in those rare cases where plastids genomes are transferred paternally 

(Hagemann, 2004) or biparentally (Smith et al., 1986; Wang et al., 2004).  Recently, plastid 

transformation was demonstrated in carrot (Kumar et al., 2004b), showing hyperexpression of 

the transgene in non-green plastids to levels of up to 75% the expression in leaf chloroplast. 

Additionally, plastid transformation of recalcitrant crops such as cotton (Kumar et al., 2004c) 

and soybean (Dufourmantel et al., 2004) indicates that chloroplast genetic engineering has 

overcome major hurdles and allows the application of the cytoplasmic male sterility system to 

commercially important crops. 

In currently available cytoplasmic male sterile lines, nuclear genome controls various 

restoration factors and such factors are often located at multiple loci and are poorly understood.  

Also, CMS has been associated with rare diseases (Wise et al., 1999).  In the case of β-

ketothiolase induced male sterility, fertility can be obtained by the use of regulatory or inducible 

elements instead of constitutive expression; this would also increase the applicability of the 

cytoplasmic male sterility system for the production of hybrid crops. Also, a major disadvantage 

of nuclear-engineered male sterility is the possibility of seed production in the field, that could 

spread introduced traits.  In contrast, if male sterility is engineered via the plastid genome, such a 

situation could be averted because of maternal inheritance of transgenes, which will not allow 

the male sterility trait to be diluted out.  Thus, this is a novel approach for creating male sterile 

transgenic plants, which may help advance the field of plant biotechnology through effective 

transgene containment.    
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CHARACTERIZATION OF HETEROLOGOUS MULTIGENE OPERONS IN 

TRANSGENIC CHLOROPLASTS: TRANSCRIPTION, PROCESSING AND 

TRANSLATION 

 

Introduction 

 

Plastid genes in higher plants are mainly organized as operons, of which more than sixty 

have been described in tobacco chloroplast genome (Sugita and Sugiura, 1996).  These may 

group genes of related or unrelated functions, the former being the most common (Barkan, 1988; 

Rochaix, 1996).  Most of these genes are transcribed into polycistronic precursors that may be 

later processed and modified to render the transcripts competent for translation (Eibl et al., 1999; 

Barkan & Goldschmidt-Clermont, 2000; Monde et al., 2000b). 

The processing mechanisms for translation regulation in chloroplast genes of higher 

plants are still largely unknown.  The general consensus is that most primary transcripts require 

processing in order to be functional (Barkan, 1988; Zerges, 2000; Meierhoff et al., 2003), and 

that post-transcriptional RNA processing of primary transcripts represents an important control 

of chloroplast gene expression (Hashimoto et al., 2003; Nickelsen, 2003; Marchfelder & Binder, 

2004).  However, it is believed that more than one pathway may be involved in transcript 

processing (Danon, 1997; Choquet and Wollman, 2002). 

For example, several studies have shown that the regulation of gene expression in the 

chloroplast relies more on RNA stability than on transcriptional regulation (Deng and Gruissem, 

1987; Jiao et al., 2004).  This stability is mainly influenced by the presence of 5'UTRs (Eibl et 
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al., 1999; Zou et al., 2003), nuclear factors (Lezhneva and Meurer, 2004) and 3' UTRs (Adams 

and Stern, 1990; Chen and Stern, 1991, Marchefelder and Binder, 2004), without which rapid 

degradation or low accumulation of primary transcripts has been observed.  The role of plastid 

3'UTR differs from the one 3' untranslated regions (UTR) have been known to have in 

prokaryotes as effective transcription terminators; a role that was observed to be ineffective in 

chloroplasts (Stern and Gruissem, 1987).   

Translation has been also a crucial step in the regulation of gene expression, as in many 

cases protein levels in the chloroplast did not correlate with steady-state transcript abundance 

(Monde et al., 2000b).  Therefore, the transcription of native chloroplast operons and their post-

transcriptional and translational patterns have been the target of several studies.  These have led 

to observations in which intercistronic processing was shown to enhance translation in 

chloroplast operons, such as the maize psbB and pet clusters (Barkan, 1988; Barkan et al., 1994).  

This translation enhancement may be aided by the formation of stable hairpin structures in the 

intergenic region of the polycistronic transcript, which contains the ribosome-binding site and 

the start codons, thus preventing translation unless this site is spliced (Barkan et al., 1994; 

Barkan, 2004).   

Intergenic secondary structures have also been observed in tobacco, which play a role in 

monocistron processing prior to translation (Hirose and Sugiura, 1997).  However, species such 

as Arabidopsis (Meierhoff et al., 2003), tobacco (Monde et al., 2000a) and spinach (Westhoff 

and Herrmann, 1988) have a different mechanism than maize for the translation of the same petD 

gene.  In vivo mRNA studies in tobacco revealed that the translation of the petD gene depends 

upon the establishment of dicistrons and tricistrons of this gene.  This alternative processing, 



 75

which produces monocistronic petD, causes the degradation of the transcript, inhibiting 

translation (Meierhoff et al., 2003; Tanaka et al., 1987; Monde et al., 2000a, b).  In 

Chlamydomonas, nearly all chloroplast genes appear to be transcribed as monocistronic mRNAs, 

with translation being an essential regulatory step of gene expression (Rochaix et al., 1989; 

Zerges and Rochaix, 1994). Thus, different species may experience various processing 

mechanisms for the same gene cluster.  Other mechanisms have also been observed, such as 

alternative processing, which produces a start codon triggered by C to U editing (Hirose and 

Sugiura, 1997; del Campo et al., 2002). These examples provide evidence of different 

modifications of primary transcripts for efficient translation.   

Traditionally, plant genetic engineering had involved the introduction of single genes 

through nuclear transformation.  In the past decade, the introduction of multiple genes has also 

been successful through nuclear transformation, allowing the incorporation of complete 

metabolic pathways (Ma et al., 1995; Nawrath et al., 1994; Ye et al., 2000).  However, this was 

the result of a long process of integration of individual transgenes followed by breeding to 

reconstruct the desired pathways.  Additionally, transgene segregation from nuclear transformed 

plants may be possible in subsequent generations, which may result in loss of function of the 

introduced pathway. Furthermore, plant nuclear genes are typically transcribed 

monocistronically, which requires separate promoter sequences for each of the introduced genes.  

Expression of foreign genes may also be influenced by position effects and gene silencing, 

causing levels of gene expression to vary among independent transgenic lines (Daniel and 

Dhingra, 2002). 
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On the other hand, plant genetic engineering through chloroplast transformation presents 

several additional advantages over nuclear transformation, such as their ability to efficiently 

transcribe and translate operons (DeCosa et al., 2001; Lossl et al., 2003; Ruiz et al., 2003), as 

well as to confer hyperexpression capability (Daniell et al., 2004c).  In addition, chloroplasts are 

able to accumulate foreign proteins that are toxic in the cytoplasm, such as cholera toxin B 

subunit (Daniell et al., 2001), trehalose (Lee et al., 2003), and xylanase (Leelavathi et al., 2003), 

without any deleterious effect, due to compartmentalization of transgene products (Bogorad, 

2000). Concerns about position effect are also eliminated because of site-specific integration of 

transgenes via homologous recombination of chloroplast DNA flanking sequences (Daniell et 

al., 2002) and, because chloroplasts are maternally inherited in most crops, the risk of 

outcrossing transgenes to related species through pollen is minimized (Daniell, 2002). 

Transformation of plastids in non-green tissues, such as carrots, offer promising options for oral 

delivery of vaccine antigens (Kumar et al., 2004a).  

As foreign genes are engineered into operons, the resulting transcript differs from the 

native operons by lacking native intergenic sequences that can form stable secondary structures.  

These sequences are removed during cloning or by PCR amplification of the heterologous genes.  

The effect of such modifications in transcription and translation has not yet been investigated for 

heterologous operons harboring multiple genes.  Therefore, the purpose of this study is to 

examine how foreign operons engineered via the chloroplast genome are transcribed, processed 

and translated.  The results obtained provide sufficient evidence to suggest that engineered 

polycistrons in chloroplast transgenic lines are efficiently translated and that processing into 

monocistrons is not required to obtain hyperexpression of transgenes.  Additionally, this study 
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provides insight into the role of bacterial intergenic spacer sequences in post-transcriptional 

modifications and translation, as well as the role of 3' UTR in transcript stability.  Addressing 

questions about polycistron translation as well as the sequences required for processing and 

transcript stability are essential for future approaches using metabolic engineering.   

 

Materials and Methods 

 

Chloroplast Transformation, Selection and Characterization of Transgenic Plants 

 
The chloroplast transformation, selection and characterization of the transgenic lines used 

in this study have been previously reported (Daniell et al., 2001; De Cosa et al., 2001; Lee et al., 

2003; Fernandez-San Millan et al., 2003) with the exception of the ctb-gfp transgenic lines. 

Sterile tobacco leaves were bombarded using the Bio-Rad PDS-1000/He biolistic device as 

described previously (Daniell, 1997; Daniell et al., 2004a, b). 

 

Chloroplast Expression Vector Carrying the hsa Gene 

 

The pLDA-sdHSA vector was constructed by inserting the hsa gene (1.8 kb) into 

EcoRI/NotI sites of the multiple cloning site of the chloroplast transformation vector (pLD-ctv). 

This construct contained the hsa and a ribosome binding site sequence (ggagg) upstream of the 

gene. For the pLDA-5�UTR-hsa vector, the promoter and 5�UTR (205 bp) from psbA gene were 

amplified by PCR from tobacco chloroplast DNA and then sequenced. The subsequent in-frame 
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cloning of the promoter/5�UTR upstream and hsa gene into pLD-ctv vector by EcoRI/NotI 

digestion produced the functional gene cassette.  

 

Chloroplast Expression Vector Carrying the ctxB Gene  

 

A ribosome binding site (GGAGG) was engineered five bases upstream of the start codon 

of the ctxB gene. The PCR product was then cloned into pCR2.1 vector (Invitrogen) and 

subsequently cloned into the chloroplast transformation vector (pLD-ctv) after the sequencing of 

the open reading frame. The pLD vector carrying the ctxB gene was used for successive 

transformation of tobacco chloroplast genome according to the published protocol.  

 

Chloroplast Expression Vector Carrying the tps1 Gene 

 

The yeast trehalose phosphate synthase (tps1) gene was inserted into the XbaI site of the 

universal chloroplast expression (pCt) vector between the aadA selection marker gene for 

spectinomycin resistance and the psbA terminator to form the final pCt-tps1 vector.   

 

Chloroplast Expression Vector Carrying the Cry2Aa2 Operon 

 

The cry2Aa2 operon was inserted into the universal chloroplast expression vector, pLD 

ctv, to form the final shuttle vector pLD-BD Cry2Aa2 operon (De Cosa et al., 2001).  This 

vector contains the 16S ribosomal RNA (rRNA) promoter (Prrn) upstream of the aadA gene 
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(aminoglycoside 3�-adenylyltransferase) for spectinomycin resistance, the three genes of the 

cry2Aa2 operon, and the psbA terminator from the 3� region of the chloroplast photosystem II 

gene.   

 

Plant Transformation 

 

Tobacco leaves were transformed by particle bombardment (Bio-Rad PDS-1000He 

device), using 0.6 µm gold microcarriers coated with the pCt-TPS1 chloroplast expression 

vector, and delivered at 1,100 psi with a target distance of 9 cm (Daniell, 1997).  The bombarded 

leaves were selected on RMOP medium containing 500 µg/ml spectinomycin to regenerate the 

transformants, as previously described (Kumar and Daniell, 2004; Daniell et al., 2004a) 

 

Northern-Blot Analysis 

 

Total plant RNA from untransformed and T1 chloroplast transgenic plants, was isolated 

by using the RNeasy Mini Kit (Qiagen, Valencia, CA) and protocol.  Northern blot analyses 

were performed essentially as follows. Total RNA (1 mg) per plant sample was resolved in a 

1.2% (w/v) agarose/formaldehyde gel at 55 V for 2.5 h. The RNA was transferred overnight to a 

nitrocellulose membrane by capillarity. The next day, the membrane was rinsed twice in 2 X 

SSC (0.3 M NaCl and 0.03 M sodium citrate), dried on Whatman paper, and then cross-linked in 

the GS Gene Linker (Bio-Rad, Hercules, CA) at setting C3 (150 njouls).  
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The probes used for northern blot analyses were obtained as follows:  the aadA 

(aminoglycoside 3� adenylyl transferase) probe was obtained by BstEII/XbaI restriction digestion 

of plasmid pUC19-16S/aadA; the ctxB (cholera toxin β-subunit) and tps1 (trehalose phosphate 

synthase) probes were obtained by XbaI restriction digestion of plasmids pSBL-CTB and pSBL-

TPS1, respectively.  The plasmid pCR2.1-5�UTR-PA was digested with HindIII and BamHI to 

obtain the pa (anthrax protective antigen) probe, whereas the Cry2Aa2 (Bacillus thuringiensis 

insecticidal protein) probe was obtained by XbaI digestion of plasmid pSBL-ctv-CryIIA.  The 

hsa (human serum albumin) probe was obtained by EcoRV/NotI digestion of plasmid pCR2.1 

ATG-HSA.  

Probes were radio labeled with 32P dCTP by using Ready Mix® and Quant G-50® micro 

columns for purification (Amersham, Arlington Heights, IL). Prehybridization and hybridization 

were performed using the Quick-Hyb® solution (Stratagene, La Jolla, Ca).  The membrane was 

then washed twice for 15 min at room temperature in 2 X SSC with 0.1% (w/v) SDS, followed 

by two additional washes at 60°C (to increase the stringency) for 15 min with 0.1 X SSC with 

0.1% (w/v) SDS. Radiolabeled blots were exposed to x-ray films and then developed in the 

Mini-Medical Series x-ray film processor (AFP Imaging, Elmsford, NY). Relative transcript 

levels were measured by spot densitometry (Alphaimager 3300, Alpha Innotech, San Leandro, 

CA) on radiograms from the different northern blot analyses. 
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Western-Blot Analyses 

 

Protein samples were obtained from 100 mg of leaf material from wild-type and 

transgenic lines by grinding the tissue to a fine powder in liquid nitrogen. Subsequent 

homogenization in 200 ml plant protein extraction buffer (100 mM NaCl, 10 mM EDTA, 200 

mM Tris-HCl, 0.05% (w/v) Tween-20, 0.1% (w/v) SDS, 14 mM b-mercaptoethanol (BME), 400 

mM sucrose and 2 mM phenylmethylsulfonyl fluoride) was performed, followed by a 

centrifugation step at 15.7  ́ g for 1 minute to remove solids.  The Bacillus thuringiensis 

Cry2Aa2 protein was extracted from 100 mg of transgenic leaf material by adding 200 ml of 50 

mM NaOH to solubilize the Cry protein from the crystals formed in the transgenic plants, and 

centrifuged at 10,000 x g for 1 minute to remove cell debris. Protein concentrations for the 

samples were determined by Bradford assay (Bio-Rad Protein Assay) with bovine serum 

albumin as the protein standard.   

Proteins were resolved by electrophoresis in a 12% (v/v) SDS-PAGEgel, and then 

transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA).  The membrane was blocked 

for 1hr with PTM buffer: 1 x PBS (phosphate buffer solution), 0.05% (v/v) Tween-20 and 3% 

(w/v) non-fat dry milk. The membranes were probed with primary and secondary antibodies as 

follows: for 2 hrs with primary antibody, then rinsed with water twice and probed with secondary 

antibody for 1.5 hrs.  Finally, the membranes were washed 3 times for 15 minutes with PT buffer 

(1 x PBS, 0.05% (v/v) Tween-20) and one time with 1 x PBS for 10 minutes, followed by 

incubation in Lumi-phos® WB (Pierce, Rockford, IL) reagent for the alkaline phosphatase 

reaction or SuperSignal (Pierce) reagent for horseradish peroxidase (HRP) reaction.  
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Film exposure took place for 1, 3, 5 or 10 minutes, depending on the strength of the 

signal of each blot.  The antibodies used and their respective dilutions were the following: anti-

cry2A (Envirologix, Portland, ME), dilution 1:3,000; anti-ORF2 (Moar et al., 1989), dilution 

1:1,000; anti-HSA (Sigma, St. Louis, MO), dilution 1:3,000; anti-CTB (Sigma), dilution 1:2,500; 

anti-PA (Dr. Stephan Leppla, NIH), dilution 1:30,000.  Secondary antibodies were used as 

follows: alkaline phosphatase conjugated anti-rabbit antibody (Sigma) was used to probe against 

every primary antibody with the exception of anti-PA which was probed with HRP conjugated 

anti-mouse antibody; dilutions of 1:5,000 anti-rabbit antibody were used for anti-HSA, anti-

ORF2 and anti-Cry2A, for anti-CTB the dilution was 1:4,000. Anti-mouse antibody was used in 

a 1:5,000 dilution. 

 

ELISA Quantification  

 

The Human Albumin Quantitation Kit (Bethyl Laboratories) was used for ELISA 

quantification. Leaf material (100 mg) of the aadA-orf1-orf2-hsa transgenic line as ground in 

liquid nitrogen and resuspended in 700 ml of 50 mM NaOH. The leaf extracts were then diluted 

to fit in the linear range of the provided HSA standard.  Absorbance was read at 450 nm. The DC 

protein assay (Bio-Rad) was used to determine total soluble protein concentration following the 

manufacturer�s protocol.  
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Results 

 

Multigene Engineering in the Chloroplast 

 

Multigene engineering in the chloroplast was achieved by using several examples of 

foreign genes, promoters, and 5’ and 3’ regulatory sequences (Daniell et al., 2004a; Kumar and 

Daniell, 2004). All the constructs analyzed contained the aadA (aminoglicoside 3’-

adenylyltransferase) gene, which confers resistance to spectinomycin (Goldschmidt-Clermont, 

1991), and are driven by the constitutive chloroplast 16S ribosomal RNA gene promoter (Prrn), 

located upstream of the aadA gene.  The gene or genes of interest were inserted downstream of 

the aadA gene and were flanked at the 3’ end by the psbA untranslated region (3’UTR), which is 

involved in mRNA abundance and stability in the chloroplast (Deng and Gruissem, 1987; Stern 

and Gruissem, 1987; Marchfelder and Binder, 2004).   These cassettes were flanked at the 5’ and 

3’ ends by sequences homologous to the tobacco chloroplast trnI (tRNA Ile) and trnA (tRNA 

Ala) genes, respectively, allowing site-specific integration by homologous recombination into 

the inverted repeat region of the chloroplast genome (Daniell et al., 1988). More than thirty 

genes have been successfully integrated and expressed at this transcriptionally active spacer 

region (Daniell et al., 2004a, b). Some of the foreign genes were engineered downstream of the 

psbA promoter and 5’ regulatory sequence (5’ untranslated region; 5’UTR), which enhances 

translation (Eibl et al., 1999; Fernandez-San Millan et al., 2003; Dhingra et al., 2004).  The 

following foreign genes were inserted into the expression cassettes: aadA, human serum albumin 

(hsa), cholera toxin β subunit (ctxB) fusion with GFP (green fluorescent protein), anthrax 
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protective antigen (pa), Bacillus thuringiensis insecticidal protein (cry2Aa2), along with an 

associated chaperonin protein (orf2), and trehalose phosphate synthase (tps1). Additionally, 

transgenic lines engineered to express Cry insecticidal protein contained the entire cry2Aa2 

operon. 

 

Transcription and Translation of the cry Operon 

 
The chloroplast transgenic lines transformed with the transgene cassette containing the 

aadA gene and the complete cry2Aa2 operon were used to study the transcriptional and 

translational patterns of a heterologous operon in transgenic chloroplasts. This operon comprises 

the orf1, orf2, and cry2Aa2 genes under the regulation of the Prrn promoter (Figure 10A).  

Several transcripts were anticipated based on transcription initiation at the engineered promoter 

(Prrn promoter) and the native 16S ribosomal RNA promoter (native Prrn) in transgenic lines 

(Figure 10A). Northern blot analyses of three independent lines harboring the cry2Aa2 operon 

revealed that the predicted 4,944 nt polycistron containing all four transgenes (aadA-orf1-orf2-

cry2Aa2) was the most abundant transcript detected when the cry2Aa2 specific probe was used 

(Figure 10B, c). Interestingly, the cry specific probe also revealed a shorter transcript of about 

2,400 nt; which was of the same size as the cry2Aa2 gene (Figure 10B, a), suggesting that this 

transcript should be the cry2aA2 monocistron.  Densitometric analysis revealed that the cry2Aa2 

monocistron and the aadA-orf1-orf2-cry2Aa2 polycistron were equally abundant (Figure 10C), 

indicating that processing in the intergenic region between orf2 and cry2Aa2 occurred in about 

50 percent of the polycistrons transcribed from the engineered Prrn promoter (Figure 10A, B a, 

c). Another prominent 7,445 nt transcript was predicted to initiate from the native 16S Prrn 
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promoter (Figure 10B, e). A low intensity ~6,000 nt transcript detected (Figure 1B, d) may be 

produced by read-through of the transcript starting at the Prrn promoter and terminating 

downstream of the engineered 3’ UTR. The low intensity ~3,500 nt transcript (Figure 10B, b) 

terminates at the same location as the 6,000 nt transcript, although it is smaller due to the 

processing between orf2 and cry2Aa2.  Because this fragment only contained the cry gene and 

sequences downstream from the 3’UTR, it cannot be detected with the aadA probe. The read-

through transcripts processed downstream of the 3’UTR represent an average of 27.31 ± 2.73 % 

of those produced in these transgenic lines (Figure 10B, b, d).  

Northern blot analyses with the aadA specific probe confirmed the results observed with 

the cry2Aa2 probe. The predicted 4,944 nt polycistron that harbors the aadA gene plus the 

complete cry operon was detected as expected  (Figure 10D, c). Surprisingly, the predicted 2,528 

nt tricistron (Figure 10D, f) containing the aadA gene plus the orf1 and 2, which was expected to 

be produced by the processing (observed with the cry probe) between the orf2 and the cry2Aa2 

genes, produced a transcript of a similar intensity to that of the polycistron (Figure 10D, c, f). 

Densitometric analyses revealed a 1 to 1 ratio of the polycistron (aadA-orf1-orf2-cry2Aa2) 

versus the aadA-orf1-orf2 tricistron  (Figure 10E), due to processing in the intergenic region 

between orf2 and cry2Aa2 (Figure 10A, B). These results showed that the two transcripts 

produced by the processing in the intergenic region between orf2 and cry2Aa2 resulted in 

transcripts with a similar abundance to the complete polycistron containing all four genes and the 

3’UTR.  The fact that the tricistron containing the aadA, orf1 and orf2 genes did not contain a 

chloroplast 3’UTR but still was very stable, suggests that polycistrons are stable in the 

chloroplast even in the absence of 3’UTRs. Additionally, when the aadA probe was used, no 
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transcripts smaller than tricistrons (2,528 nt) were observed. This confirms the lack of further 

processing of polycistrons. Furthermore, computational analyses predicted that the 90 nt 

intergenic sequence between the orf2 and the cry2Aa2 genes could form a highly-stable 

secondary structure (Figure 10H), with a free energy of –16.44 kcal/mol, which masked the 

Shine-Dalgarno sequence (ribosome binding site) of the cry2Aa2 gene.  

Western blot analyses revealed that the Cry2Aa2 protein (65 kDa; Figure 10F) and the 

ORF2 protein (45 kDa; Figure 10G) were hyperexpressed in the transgenic lines. The abundant 

expression of the orf2 confirmed that polycistrons were efficiently translated without the need 

for processing into monocistrons.  
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Figure 10:  Transcriptional and translational analysis of the Cry2Aa2 operon  
A.  Schematic representation of the orf1-orf2-cry2Aa2 operon in transgenic lines, including the aadA gene and the 
upstream Prrn promoter; upstream native chloroplast 16S ribosomal RNA gene with its respective promoter and the 
trnI and trnA are shown.  Arrows represent expected transcripts and their respective sizes.  B.  RNA hybridized with 
the cry2A probe, loaded as follows:  wt: wild type control; lanes 1, 2 and 3: cry2Aa2 operon transgenic lines.  
Transcripts of the cry2Aa2 operon are indicated by lowercase letters and correspond to the transcripts depicted in A. 
C. Relative transcript abundance for each sample hybridized with the cry2A probe.  D.  Transcript analysis showing 
RNA hybridization with the aadA probe, loaded as follows:  wt: wild type control, lanes 1-3 = cry2Aa2 operon 
transgenic lines. Transcripts of the cry2Aa2 operon are of sizes as described for the cry2Aa2 probe; f is 
aadA/orf1/orf2 tricistron, 2,528 nt.  E. Transcript quantification for samples hybridized with the aadA probe.  F. 
Western blot analysis using the Cry2Aa2 antibody.  Lane 1: wild type control; lanes 2 and 3: cry2Aa2 operon 
transgenic lines; lane 4: positive control (Cry2Aa2 protein).  The expected polypeptide of 65 kDa is shown in both 
transgenic plants and the positive control. G. Western blot analysis using the ORF2 antibody.  Lane 1: wild type 
control; lanes 2 and 3: cry2Aa2 operon transgenic lines; lane 4: positive control (ORF2 protein).  The expected 
polypeptide of 45 kDa is shown in both transgenic plants and the positive control.  H. Predicted secondary mRNA 
structure of the intergenic sequence between the orf2 and cry2Aa2 genes.  The arrow indicates the Shine-Dalgarno 
sequence or ribosome-binding site (RBS). 
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Transcription and Translation of the hsa Operon 

 

 Chloroplast transgenic lines transformed with 3 different multigene constructs, all 

containing the human serum albumin (hsa) gene, were used to study transcription, translation 

and posttranscriptional modifications. The Prrn promoter drives the operon downstream in all 

three constructs. The first transgenic line has an operon formed by the aadA followed by the hsa 

gene, the second transgenic line contained a four gene operon formed by the aadA, orf1, orf2 

and hsa genes. The third transgenic line harbored an expression cassette that contained the aadA 

gene under the direct transcriptional regulation of the Prrn promoter, and the hsa gene under the 

transcriptional regulation of the psbA promoter and the translational enhancement of the 5’ UTR 

psbA. This transgenic line was predicted to produce a monocistronic hsa transcript (Figure 11A). 

Northern blot analyses of the transgenic lines expressing the aadA-hsa operon with the 

hsa and the aadA probes revealed that the most abundant transcript was a dicistron of a predicted 

2,797 nt (aadA-hsa, Figure 11B, D, b), followed by two polycistronic transcripts, one transcribed 

from the native 16S Prrn promoter of an expected size of 5,298 nt (Figure 11B, D, h), and the 

other of 3,200 nt transcribed (Figure 11B, D, d) from the engineered Prrn promoter, terminating 

downstream of the 3’UTR of the gene cassette. No monocistrons were detected in these 

transgenic lines. Quantification of transcripts from the northern blots obtained with the hsa probe 

revealed that the polycistrons transcribed from the engineered Prrn promoter accounted for 65.49 

± 3.26% of the transcript detected in these lines (Figure 11C). The polycistrons terminating 

downstream of the 3’UTR in the trnA region and the one transcribed from the native16S Prrn 

were 24.93 ± 2.11% and 9.57 ± 1.29% of the total transcripts, respectively (Figure 11C). Values 
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for the northern analysis performed with the aadA probe were similar, with 61.83 ± 3.37% for 

the polycistron transcribed from the engineered Prrn promoter, 31.71 ± 3.14% and 6.46 ± 0.26% 

for the read-through transcript and the polycistron transcribed from the native promoter, 

respectively (Figure 11E). This analysis confirmed that there is abundant read-though 

transcription.  

The transgenic lines containing the aadA-orf1-orf2-hsa operon showed a similar 

transcription pattern with respect to the aadA-hsa transgenic line when probed with the hsa or 

aadA probe.  The most abundant transcript was the polycistron containing all four genes 

(predicted size of 4,397 nt), which was transcribed from the engineered Prrn promoter, 

representing 68.08 ± 1.72 % and 65.54 ± 1.49% of the total transcripts detected with the hsa or 

aadA probe, respectively (Figure 11B, D, f). Additionally, the predicted 6,898 nt polycistron 

originating at the Prrn native promoter was also detected (Figure 11D, k) and this represented 

6.79 ± 0.44% of the polycistrons (Figure 11E). A ~5,200 nt transcript (Figure 11B, D, g) 

obtained from the engineered 16S Prrn and processed downstream of the 3’UTR was also 

detected. This transcript was about 27.67 ± 1.08% and 31.92 ± 1.72% of the polycistrons 

detected with the aadA or hsa probes (Figure 2C, E), respectively. Finally, transgenic lines 

engineered with the aadA-5’UTR-hsa construct produced transcripts about 200 nt longer than 

the transgenic lines transformed with the aadA-hsa construct (Figure 11B, D, c, i). This increase 

in transcript size is due to the presence of the psbA5’UTR and promoter. Additionally, this 

transgenic line produced an abundant hsa monocistron (2,069 nt) that accounted for 50% of the 

total transcript detected with the hsa probe (Figure 11B, C a); this transcript was not detected 

with the aadA probe (Figure 11D). The polycistrons transcribed from the engineered Prrn and 
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native promoter were 28.72 ± 3.04 % and 9.36 ±1.66% of the transcripts produced (Figure 11A). 

Similar transcript abundance was detected in northern blot analyses in which the aadA probe was 

used.  Additionally, read-through transcripts processed downstream of the transgene cassette, in 

the trnA native gene, were detected (Figure 11B, D letters e, j). The combined abundance of 

these transcripts was 15.5% (Figure 11A), whereas the overall polycistron abundance in this 

transgenic line was as much as the monocistronic transcript. 

Western blot analyses of the different constructs showed abundant expression of the HSA 

protein (69 kDa) in the transgenic lines harboring the 5’UTR-hsa and the orf1,2-hsa constructs 

(Figure 11F). Transgenic lines expressing the monocistrons showed expression levels similar to 

the orf1-orf2-hsa transgenic line where only polycistrons were translated.  The abundant 

translation of ORF2 protein (45 kDa) from the aadA-orf1-orf2-hsa transgenic lines (Figure 11G) 

transcribing only tricistrons and polycistrons support the view that polycistrons are highly stable 

in the chloroplast and can be efficiently translated without further processing. Hyperexpresion of 

the hsa gene in this transgenic line at levels similar to psbA-5’UTR-hsa transgenic lines again 

confirm similar translation efficiency of polycistrons and monocistrons (Figure 11F).   

HSA accumulation under different periods of illumination was monitored by ELISA 

analyses on the aadA-orf1-orf2-hsa transgenic line to determine whether hsa expression under 

the cry 5’UTR is light dependent or developmentally regulated.  The data obtained after young, 

mature and old leaves were exposed to periods of 0, 4, 8, and 16 hours of light, revealed no 

significant differences among age of leaf or among different periods of illumination.  Therefore, 

HSA accumulation in this transgenic line regulated by a heterologous UTR is independent of 

light regulation and is free of cellular control (Figure 12).  
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Figure 11:  Transcriptional and translational analysis of the HSA operons   
A. Schematic representation of the hsa operons (rbshsa, 5’UTRhsa, orf1-orf2-hsa) in transgenic lines, including the 
aadA gene and upstream Prrn promoter; upstream native chloroplast 16S ribosomal RNA gene and promoter as well 
as trnI/trnA genes are shown.  Arrows represent expected transcripts and their respective sizes.  B.   RNA 
hybridization with the hsa probe.  M: molecular weight marker; wt: wild type; lanes 1-3: rbs-hsa transgenic lines; 
lanes 4-6: 5’UTR-hsa transgenic lines; lanes 7-9: orf1,2-hsa transgenic lines.  The transcripts observed correspond 
to those indicated in A. by lowercase letters. C. Relative abundance of the transcripts obtained with the hsa probe. 
D.  mRNA transcripts hybridized with the aadA probe and loaded in the same order as in B.  Transcripts a-i 
corresponded to the same transcripts observed in B, “k” is 16rrn/hsa polycistron, 6,898 nt. E. Quantification of the 
transcripts obtained with the aadA probe.  F. Western blot analysis using the HSA antibody.  Lane 1:  wild type 
control.  Lanes 2-3: RBS-hsa transgenic lines; lanes 4-6: 5'UTRhsa transgenic lines.  Lane 5 was left blank.  Lanes 7 
and 8: orf1,2-hsa transgenic lines.  Lane 9: positive control (HSA protein).  All samples presented 66 kDa and 97 
kDa peptides, corresponding to the size of the HSA protein, and its dimeric form, respectively. G.  Western blot 
analysis using the ORF2 antibody.  Lanes 1-2: orf1,2-hsa  transgenic lines; lane 3: wild type control; lane 4: positive 
control (ORF protein).  45 kDa ORF2 and 90 kDa dimer are shown. 
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Figure 12:  ELISA analysis of the orf1-orf2-hsa transgenic line.  
Total soluble protein content of young, mature and old leaf extracts of the orf1-orf2-hsa 
transgenic lines determined by ELISA analyses.  Transgenic plants were subjected to the 
following light conditions: 4, 8, and 16 hours of light, as well as total darkness. 
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Transcription and Translation of the tps1 Operon 

 

The tps1 gene coding for trehalose phosphate synthase was engineered into a two-gene 

operon, formed by the aadA and the tps1 genes, and transcribed from the engineered Prrn 

promoter (Figure 13A). Northern blot analyses with either the tps1-specific or aadA-specific 

probes detected the expected 2,717 nt dicistron (aadA-tps1) as the most prominent transcript 

(Figure 13B, D, a).  Densitometric analyses of the northern blots showed that the aadA-tps1 

dicistron accounted for 43.27 ± 2.85% of the total transcripts detected by the tps1 probe, and 

59.78 ± 5.45 % of the total transcript when the aadA probe was used (Figure 13C, E). A 

predicted 5,218 nt polycistron observed in the northern blots with either the tps1 and aadA 

probes (Figure 13B, D, c), is transcribed from the native 16S Prrn (Figure 13A).  Additionally, 

the tps1 probe detected less abundant polycistrons of sizes ~3,500 nt (Figure 13B, D, b) and 

~6,500 nt (Figure 13B, d), transcribed from the engineered Prrn promoter and the native 16S 

Prrn promoter, respectively, terminating downstream of the 3’UTR. The 3,500 nt polycistron 

was also detected by the aadA probe. Transcripts that ended in the trnA intron region 

(downstream of the engineered 3’UTR) were also detected in the cry transgenic lines (Fig 

13B,D), indicating that this region may contain processing sequences. The transcripts processed 

at the trnA location account for about 37% of the total transcripts detected in the transgenic lines 

(Figure 13C, E). Transcripts longer than the 6,500 nt polycistrons may be read-through, 

terminating at undetermined locations and these were not quantified densitometrically.  No 

monocistron was detected in the northern blots with the tps1 probe or the aadA probe, indicating 
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that there is no processing of the polycistron in these transgenic lines, whereas larger transcripts 

detected are likely to be read-through.  

Western blot analyses performed to detect the trehalose phosphate synthase revealed 

efficient translation of polycistrons, as shown by the abundant accumulation of a 65 kDa 

polypeptide corresponding to this protein (Figure 13F). Because no monocistrons for tps1 or 

aadA were detected in the northern blot analyses, hyperexpression of TPS1 should thus be the 

result of efficient translation of polycistrons in transgenic chloroplasts. 
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Figure 13:  Transcriptional and translational analysis of the tps1 operon  
A.  Schematic representation of the tps1 operon in transgenic lines, including the aadA gene and 
upstream Prrn promoter; upstream native chloroplast 16S ribosomal RNA gene and promoter as 
well as trnI/trnA genes are shown.  Arrows represent expected transcripts and their respective 
sizes.  B.  Northern blot analysis obtained by hybridization with the tps1 probe, loaded as 
follows:  wt: wild type control; lanes 1, 2 and 3: tps1 transgenic lines. Transcripts of the tps1 
operon corespond to those depicted in A, indicated with lowercase letters.    C. Relative 
transcript abundance obtained with the tps1 probe.  D. RNA transcripts hybridized with the aadA 
probe, loaded as follows:  wt: wild type control; lanes 1-3: tps1 transgenic lines.  Transcript 
bands obtained for the tps1 operon are of sizes as described for tps1 probe (B).  D. Relative 
abundance of transcripts in each sample after hybridization with the aadA probe. E. Western blot 
analysis using the TPS1 antibody. Lane 1: positive control (TPS1 protein); lane 2: wild type 
control; lane 3: tps1 transgenic line.  A polypeptide of 65 kDa was observed in the transgenic 
clone, corresponding to the expected size of the TPS1 protein, as observed in the positive 
control. 
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Transcription and Translation of the ctb Operon 

 

RNA from chloroplast transgenic lines transformed with the aadA-ctxb or 5’UTR-ctxb-

gfp fusion constructs were also analyzed by northern blots. The aadA-ctxb transgenic lines 

showed dicistrons and polycistrons, whereas the 5’UTR-ctxb-gfp transgenic lines showed 

monocistrons along with several polycistrons. Predicted dicistrons of 1,317 nt (Figure 14B, D, a) 

and 2,322 nt (Figure 14B, D, d) transcribed from the engineered Prrn promoter were detected 

with either the ctxb or aadA probe. Additionally, polycistrons transcribed from the native 16S 

Prrn were observed in both transgenic lines. In the aadA-ctxb transgenic line, the polycistron 

was of a predicted size of 3,818 nt (Figure 14B, D, f), while in the aadA-5’-UTR-ctxb-gfp 

transgenic line was 4,823 nt (Figure 14B,D, g); both polycistrons code for four genes (16 rRNA 

gene, trnI gene plus the two foreign genes). Polycistronic transcripts of higher molecular weight 

were read-through (Figure 14B, D, i, h), as well as transcripts of ~ 2,200 nt  (Figure 14A,B letter 

c) and 3,500 nt (Figure 14A, B, e) obtained from the engineered Prrn promoter and processed 

downstream of the 3’UTR present in the gene construct.  The cxtb-gfp monocistron of 1,389 nt 

(Figure 14B, b) was detected with the ctxb probe but not with the aadA probe; beside this 

transcript, no other monocistron was detected in these analyses.  Its relative abundance was 

42.10 ± 3.18% of the total transcripts in the 5’UTR-ctxB-gfp transgenic lines, while the total 

combined abundance of the polycistrons was about 56%, with the polycistron transcribed from 

the engineered Prrn accounting for 22.94 ± 1.31% of the total transcripts (Figure 14C). For the 

aadA-ctxB transgenic line, 100% of the transcripts were polycistrons, of which the most 

abundant transcript was the aadA-ctxB dicistron, with about 45% of the total transcripts, 
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followed by approximately 30% of the polycistron transcribed from the engineered Prrn and 

processed downstream at the trnA gene (Figure 14D, E). 

The western blot analyses showed that transgenic lines expressing either CTB or CTB-

GFP fusion produced large amounts of either protein (Figure 14F, G).  CTB protein was detected 

as a higher molecular weight polypeptide (trimer of 35kDa) than the E. coli expressed CTB 

(Figure 14F). High protein levels were also detected for the gfp-ctxB fusion protein (Figure 14G) 

and was detected in the monomeric form (45 kDa).  Interestingly, expression levels in both 

transgenic lines were similar, even though in the aadA-5’UTR-ctxb-gfp transgenic line the more 

abundant transcript was the monocistron.  This again suggests that polycistrons are translated as 

effectively as monocistrons. 
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Figure 14:  Transcriptional and translational analysis of the CTB operons 
A. Schematic representation of the 5’UTRctb-gfp and RBS-ctb operon in transgenic lines, including the aadA gene 
and the upstream Prrn promoter; upstream native chloroplast 16S ribosomal RNA gene with its respective promoter 
and the trnI and trnA are also shown.  Arrows represent expected transcripts and their respective sizes. B.  Northern 
blot analysis showing RNA hybridized with the CTB probe.  Samples were loaded as follows:  M: molecular weight 
marker; wt: wild type control; lanes 1-3: 5'UTR-ctb-gfp transgenic lines; lanes 4-6: rbs-ctb transgenic lines.  The 
transcripts and respective sizes correspond to those indicated in A with lowercase letters.  C.   relative transcript 
abundance of the samples shown in B. D.  RNA hybridization using  the aadA probe, and loaded according to the 
following:  M: molecular weight marker; wt: wild type control; lanes 1-3: RBS-ctb transgenic lines.  Lanes 4-6: 
5'UTR-ctb-gfp transgenic lines.  Lanes marked with (--) are blank.   The transcripts observed correspond to the same 
as in B.  E. Relative transcript abundance for the samples shown in C.  F.  Western blot analysis of the RBS-CTB 
transgenic lines using anti-CTB antibody.  Lanes 1-3: transgenic clones; lane 4: wild type control; lane 5: positive 
control (CTB protein).  CTB from transgenic lines is in trimeric form. E.  Western blot analysis of the 5'UTR-ctb-
gfp transgenic lines using the CTB antibody.  Lane 1: Wild type control.  Lanes 2-5: transgenic lines.  Lane 6:  
positive control (CTB protein). 
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Discussion 

 

The chloroplast genome has been engineered with single genes to confer useful 

agronomic traits including herbicide resistance (Daniell et al., 1998), insect resistance (McBride 

et al., 1995; Kota et al., 1999, De Cosa et al., 2001), disease resistance (DeGray et al., 2001), 

drought (Lee et al., 2003), salt tolerance (Kumar et al., 2004a), and phytoremediation (Ruiz et 

al., 2003).  Recent success in transforming the chloroplast genome of several major crops, 

including cotton (Kumar et al., 2004b) and soybean (Dufoumantelr et al., 2004) has opened this 

field for commercial development. Because most of the desired traits require multigene 

engineering, it is important to understand transcription, posttranscriptional changes and 

translation of heterologous polycistrons within plastids.  

Transcript analyses performed in this study repeatedly confirmed that different transgenic 

lines harboring multigenic operons generated polycistrons as the most abundant transcript form.  

Additionally, in most of the transgenic lines analyzed, these were not processed to monocistrons, 

in contrast to the general consensus for native chloroplast translation mechanisms (Barkan, 1988; 

Barkan et al., 1994; Zerges, 2000; Meierhoff et al., 2003).  This shows that multigene operons 

engineered into the chloroplast genome do not require processing of polycistrons to 

monocistrons or dicistrons for efficient translation. It is also evident that heterologous bacterial 

sequences can form stable secondary structures, which are recognized by the chloroplast 

processing machinery.  This is the case for the cry2Aa2 transgenic line, in which the native 

Bacillus thuringiensis operon containing an intergenic sequence between the orf2 and cry2Aa2 

genes formed a stable secondary structure.  Densitometry analyses of northern blots for the 
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cry2Aa2 transgenic lines revealed that the processing in the orf2-cry2Aa2 intergenic region 

occurred in about 50% of the polycistronic transcripts transcribed from the engineered Prrn 

promoter.  De Cosa et al., (2001), reported that the Cry2Aa2 protein accumulated up to 46% of 

the total soluble protein in the transgenic leaves, the highest ever reported in transgenic plants. 

To achieve such levels of expression of Cry2Aa2, optimal translation should have been achieved.  

Additionally, the formation of Cry2Aa2 cuboidal crystals detected in the transgenic lines 

depended on hyperexpression of the chaperone encoded by the orf2 gene.  This chaperone was 

found to be in a 1:1 ratio to the Cry2Aa2 protein (DeCosa et al., 2001).  Orf2 transcripts were 

found only in polycistronic forms, indicating that hyperexpression was the result of translation of 

polycistrons. 

Previous reports have shown that intergenic sequences that form stable secondary 

structures, masking the ribosome-binding site may affect the translation of the downstream gene 

(Barkan et al., 1994; Hirose and Sugiura 1997; Del Campo et al., 2002).  Additionally, processes 

of these secondary structures have been reported as part of a release mechanism in chloroplasts 

which endonucleolytically free the ribosome-binding site and allow translation of the 

downstream gene (Zerges, 2000). Enhancement of translation has been observed through the use 

of the 5’UTR psbA upstream of a foreign gene, in which nuclear encoded factors in response to 

light bind to the 5’ UTR and release the multiple ribosome binding sites from the inhibitory 

effect of the stem loop, allowing efficient ribosome binding and increasing translation (Bruick 

and Mayfield, 1999; Eibl et al., 1999; Fernandez-San Millan et al., 2003). However, in the case 

of the cry 5’UTR, although translation enhancement occurs, it is not light-dependent, as the 

aadA-orf1-orf2-hsa transgenic lines showed no difference in HSA accumulation in response to 
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light or dark conditions, in contrast to those transformed with the hsa gene and native psbA 

5’UTR. This shows that the heterologous cry2aA2 operon UTR region is independent of nuclear 

and chloroplast control, unlike the psbA regulatory sequences (Fernandez San Millan, et al., 

2003; Zerges, 2004).  Such heterologous UTRs have played a major role in transgene 

expressionin non-green tissues, such as carrot roots (Kumar et al., 2004a), or in non-green 

cultured cells (Kumar et al., 2004 a, b), to facilitate transformation of recalcitrant crops.   

Data shown here supports the idea that engineered operons in the chloroplast, which do 

not carry any intergenic sequences capable of forming stable secondary structures can be 

translated very efficiently and are not processed into monocistrons. The processing observed in 

the cry2Aa2 transgenic lines may be due to endonucleolytic cleavage of the stem loop, but it 

does not indicate that this processing has to occur in order for translation to take place.  An 

interesting observation is that the aadA-orf1-orf2 tricistron produced by the processing event 

does not contain a 3’ UTR region, yet this transcript is as abundant as the polycistrons, which 

contain the 3’UTR and translated efficiently. This shows that polycistrons may be stable in 

chloroplast even in the absence of 3’UTR. 

In chloroplasts, all of the genes in the 16S rrn operon, including the trnA, trnI, as well as 

23S, 4.5S and 5S rrn genes (which are downstream of the integrated transgenes), are transcribed 

from the native Prrn promoter.  Therefore, disruption of these polycistrons by the insertion of the 

foreign operon due to effective termination at the 3’ untranslated regions would mean that the 

trnA and other downstream genes will not be transcribed, affecting chloroplast protein synthesis.  

However, this was not the case; all the transgenic lines grew similar to the wild type plants, 

indicating that the read-through transcripts formed by the insertion of foreign operons were 
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sufficient for optimal ribosome synthesis in chloroplasts.  Read-through transcripts processed at 

the trnA region accounted for about 26 to 39% of the total transcripts in all transgenic lines 

tested whereas, in HSA-expressing transgenic lines, this percentage was between 15% and 32%. 

Introns within the trnA gene undergoes splicing and other posttranscriptional modifications in 

order to produce the functional trnA (Barkan et al., 2004). Therefore, such processing may 

modify polycistronic transcripts that read through from the 3’UTR psbA engineered in these 

chloroplast vectors.  Additionally, larger size polycistrons were also detected, although they were 

not quantified. 

The transcript profile for the transgenic lines 5’UTR-hsa and 5’UTR-ctxb-gfp, which are 

the only two transgenic lines in this study that transcribed monocistrons, was very similar. The 

monocistronic transcripts accounted for about 42% to 50% of the total transcripts examined. The 

total polycistronic levels in these two transgenic lines, including read-through transcripts were 

between 50% and 57%. In all the transgenic lines that do not transcribe monocistrons, the most 

abundant transcript was transcribed from the engineered Prrn promoter, terminating at the 

3’UTR; this transcript accounted for 43% to 59% of the total transcripts detected. 

CTB protein was detected in the western blots as a higher molecular weight polypeptide 

(trimer of 35 kDa) than the E. coli expressed CTB.  Functional CTB is pentameric (58 kDa) in 

structure, with monomers linked by disulfide bonds.  E. coli cannot form disulfide bonds in the 

cytoplasm (Daniell et al., 2001); therefore this pentameric structure is produced.  Even when �-

mercaptoethanol was used and the samples were boiled, no monomeric CTB (11.8 kDa) was 

obtained, and suggesting that expression in the chloroplast facilitates the assembly and increase 

the stability of foreign proteins. 
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The ability to engineer foreign genes without promoters or other regulatory sequences has 

several advantages. Repetitive use of promoters or regulatory sequences is known to cause 

transgene silencing. Also, repeated sequences may cause deletion of the transgene (Iamtham and 

Day, 2000).  Observations reported here clearly demonstrate the uniqueness of transcription and 

processing of heterologous operons.  

While endogenous polycistrons require processing for effective translation, this is not 

required for hyperexpression of foreign operons. Native polycistrons require chloroplast specific 

3’UTR for stability, which is not required for heterologous polycistrons. Untranslated regions in 

native transcripts are regulated by nuclear factors, whereas heterologous transcripts are free of 

such regulations. Specific nuclear-encoded factors recognize sequences in native transcripts for 

the processing of primary mRNA (Barkan, 2004).  This is not the case in foreign operons where 

heterologous sequences can be recognized and processed by the chloroplast posttranscriptional 

machinery. Finally, in both native and foreign operons there are abundant read through 

transcripts that allow the expression of genes downstream of 3’UTRs. Addressing questions of 

the translation of polycistrons and sequences required for transcript processing and stability is 

essential for metabolic engineering.  Knowledge of such factors will allow us to engineer 

pathways that will not be under the complex post-transcriptional regulatory machinery of the 

chloroplast. 

One of the primary advantages of using heterologous sequences for the enhancement of 

gene expression is the lack of cellular control over these sequences, allowing the enhancement of 

transgene expression in green and non-green tissues. Recently, the use of the g10 5’UTR made 

possible the transformation of non-green plastids of carrot (Kumar et al., 2004a).  Additionally, 
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the use of a gene cassette containing the selectable marker genes under the regulation of 

heterologous UTRs, increased transformation efficiency and made cotton plastid transformation 

possible (Kumar et al., 2004b).  In this study, we report the translational enhancement by 

heterologous 5’UTR, the translation of polycistronic transcripts without processing, and the 

stability of heterologous polycistrons lacking a 3’UTR. These results suggest that is possible to 

effectively express multiple genes via the chloroplast genome without significant intervention of 

chloroplast regulation.  The findings of this study should facilitate multigene engineering via the 

plastid genome in both green and non-green plastids.  
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CHLOROPLAST GENETIC ENGINEERING FACILITATES MERCURY 

PHYTOREMEDIATION: STUDIES AND CAPABILITIES 

 

Introduction 

 

Phytoremediation is the use of plants for in-situ restoration of contaminated 

environments. This technique would be a cost-effective and environmently friendly approach 

with big advantages for large-scale cleanups of contaminated sites (Meagher et al., 2000; 

Doucleff and Terry, 2002). Other techniques have been implemented in the past with little 

success because they were costly and threatened the safety of our environment. Current 

remediation methods to clean up heavy metal-contaminated soils include flushing, chemical 

reduction/oxidation and excavation, retrieval, and off-site disposal, all of which are expensive, 

environmental invasive, and labor intensive (Karenlampi et al., 2000).  

Plants have a high capacity for adaptation to different environments and a natural 

resistance against different toxic pollutants. Some plants possess intrinsic bioremediation 

pathways that allow them to brake down and bioremediate various organic compounds, such as: 

PCBs, PAHs, chlorinated solvents, explosives (TNT), nutrients and surfactant agents 

(GWRTAC: http://gwrtac.org). In the environment, plants like Brassica juncea (Indian mustard), 

Brassica oleracea (cabbage) and sunflower can accumulate high concentrations of heavy metals 

and radionuclides (hyper-accumulator plants), and have been used for uptake of cesium-137, 

strontium-90, and uranium in places like Chernobyl, Ukraine and Ashtabula, Ohio (US 

Department of Energy: http://www.em.doe.gov). In order to determine that phytoremediation is 
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cost effective, the rate of plant uptake should be greater than one percent of the weight of the 

plant per harvest, and the time to complete the remediation treatment must be between two and 

ten years (US Department of Energy: http://www.em.doe.gov). Today, phytoremediation has 

been cost effective in soil remediation of low cesium and strontium concentration with a cost that 

ranges from 50 to 100 dollars per ton. Water phytoremediation, also called rhizofiltration, has 

been effective in uranium cleanup, the cost for removing close to 100% of the contaminant being 

between 2 and 6 dollars per 1,000 gallons of water. The expenses involved in phytoremediation 

are much lower compared with other non-plant techniques (US Department of Energy: 

http://www.em.doe.gov). Plants also have high public acceptance (especially via chloroplast 

engineering), they are cheap and non-invasive, and they help contain disrupted ecosystems. 

Plants have different mechanisms to absorb and detoxify pollutants from the environment, 

examples of these are: phytoextraction (the uptake and translocation of metals from the soil to 

the tissue by the root), phytodegradation (the brake down of contaminants), and 

phytovolatilization (the uptake and transpiration of the contaminant in a modified form by the 

plant) (http://www.epa.gov.htm). These characteristics, among many others, make plants 

advantageous for bioremediation. This is true though plants have limited applicability for 

treatment of polluted places with intermediate and high levels of toxic compounds or for metals 

or compounds to which the plant is not adapted. Genetic engineering can integrate new traits 

from organisms like bacteria (which have a higher capability to survive and change their 

environment) to confer new traits to plants in order to enhance their phytoremediation 

capabilities and the resistance of the plants to the toxic pollutants. 
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Urgent Need for Phytoremediation of Mercury and Organomercurials 

 

One of the most toxic pollutants threatening our health and ecosystem is mercury. 

Mercury is a toxic heavy metal that is commonly released into the environment as a byproduct of 

different chemical reactions of modern industries and can also be introduced from environmental 

sources (Patra and Sharma, 2000). Power plants in the US emit about 48 tons of mercury 

annually and it would cost 40,000 to 70,000 dollars to remove each pound of mercury with 

currently available technologies (New York Times Feb 24, 2004). The present world production 

of mercury is about 9,000 tons/year (http://www.chem.ualberta.cal.htm).  Mercury (Hg) pollution 

of soil and water is a world-wide problem (Dean et al., 1972; Kramer and Chardonnens, 2001). 

The extent to which Hg is harmful depends on the form of mercury present in the ecosystem. 

Inorganic forms of Hg are less harmful than organic forms partly because they bind strongly to 

the organic components of soil. Because of this, Hg does not tend to contaminate the ground 

water except when Hg leaches from a municipal landfill (USEPA, 1984). On the other hand, 

organomercurial compounds may be 200 times more toxic than inorganic Hg (Patra and Sharma, 

2000) and methyl-Hg is especially toxic (Meagher and Rugh, 1997).  

 Mercury is usually released in its metal or ionic form, accumulating in the sediments of 

lakes and oceans, becming rapidly methylated by bacteria (Ex. Desulfovibrio desulfuricans), 

producing 200 fold more toxic methylmercury or organomercurial (Compeau et al.1985; Gilmour 

et al. 1992) which is eventually released into water (Harada et al. 1995). Methylmercury is 

trapped into small fish when the water passes through their gills, or they feed on phytoplanktons 

that carry high concentrations of the pollutant. Predatory fish, as bass in fresh water and tuna in 
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salt water, live for long periods of time feeding on smaller fish. During their life span, they can 

accumulate high levels of methylmercury that can reach 1.0 ppm in water with normal levels of 

mercury, and up to 30 ppm in areas with high mercury pollution  (http://ehpnet.niehs.nih.gov). 

The biomagnification of methyl mercury represent a risk for people and animals that feed from 

these fishes (Minamata Disease Research Group, 1968; Harada et al.1995; Patra and Sharma, 

2000).  

Organomercurials are more toxic due to their increased hydrophobicity, which allows 

them to cross lipid membranes. Organomercurials are neurotoxins easily absorbed into blood and 

known to harm fetuses and young children; over 90% of the intake of methylmercury is absorbed 

into blood compared with only 2% of inorganic mercury (http://www.chem.ualberta.cal.htm). 

Both organomercurials and mercury have the tendency to accumulate in the tissue 

(biomagnification), especially in the membrane bound organelles. In plants, organic mercury 

crosses the lipid membrane of organelles poisoning essential oxidative and photosynthetic 

electron transport chains more easily than metallic mercury (Rugh et al. 1996). These properties, 

in addition to the wealth of knowledge on genes that catalyze the degradative pathways for 

mercury and organomercurials make this an ideal target for phytoremediation. 

 

Bacterial Mer operon 

 

The genes for mercury resistance are widespread among the prokaryote kingdom and are 

known as mer genes. These genes are found in operons of bacterial plasmids, transposons and in 

bacterial chromosomes (Foster, 1983, 1987; Summers et al. 1978, 1986; Radford et al., 1981). 
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Different genes constitute these operons, some examples are: the transport and uptake genes (mer 

T, P, C and F) and the regulatory genes (mer R and D). But the two most important genes are the 

merA that codes for the mercuric ion reductase, and the merB that codes for the organomercurial 

lyase (Foster, 1983, 1987; Summers et al. 1978, 1986). MerA is a 1.7 kb gene that codes for a 69 

kDa soluble enzyme (Jackson and Summers, 1981). MerA enzyme is a NADPH-dependent flavin 

adenine dinucleotide-containing disulfide oxidoreductase. The mercuric ion reductase enzyme 

contains an active-site thiolate that acts as an electron donor (Stanisich et al., 1977), and it has 

been shown in vitro to requiere NADPH for activity (Fox and Walsh, 1982, 1983; Schottel, 

1978; Summer and Sugarman, 1974). The flavoprotein encoded by merA uses NADPH as a co-

factor to catalyze the enzymatic reduction of Hg2+ to a volatile, non-reactive and less toxic form 

of mercury (Hg0) (Begley et al. 1986). MerB is a 638 bp gene that codes for the soluble 24 kDa 

organomercurial lyase. The organomercurial lyase undergoes the protonolysis of 

organomercurials by cleavage of the carbon-mercury bond (Resing et al., 1992), releasing a 

reduced organic moiety and the mercury ion; which is then detoxified by the mercuric ion 

reductase (Jackson et al. 1982; Barrineau, 1983). A polycistron containing both genes should 

allow effective degradation of mercury and organomercurials. The main site of action of 

organomercurial is within chloroplasts in plants, and the ability of chloroplasts to express 

bacterial operons, and several other environmental benefits of chloroplast genetic engineering 

make this an ideal pathway for engineering via the chloroplast genome. 
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Site of Action of Organomercurials and Mercury in Chloroplast 

 

Organomercurials and mercury accumulate in the tissue, especially in the membrane 

bound organelles (Rugh et al.1996).  In photosynthetic organisms, the main site of action of 

mercury damage seams to be the chloroplast thylakoid membrane and photosynthesis. 

Organomercurial compounds strongly inhibit electron transport, oxygen evolution (Bernier et al., 

1993), Hill reaction, photophosphorylation, and quench chlorophyll fluorescence in photosystem 

II (Kupper et al., 1996). Mercury affects the oxygen-evolving complex (OEC) that is found in the 

photosystem II bounded to the thylakoid membrane (Bernier et al. 1993). Among the constituents 

of this supramolecular complex are three extrinsic polypeptides (EP) of 16, 23, 33 kDa 

respectively; and two inorganic cofactors, chloride and calcium (Bernier and Carpentier, 1995). 

It has been shown that 30 minutes of incubation of PSII sub-membrane fragment in the presence 

of 10 µM HgCl2 causes 40% depletion of the EP33 (Bernier and Carpentier, 1995). EP33 is 

gradually released with increasing concentrations of mercury up to 10 µM (Bernier and 

Carpentier, 1995) but decreased activity seems to take place at much lower mercury 

concentrations than the required for the release of the EP33 polypeptide (Bernier and Carpentier, 

1995). Mercury treatment of PSII leads to a strong inhibition of oxygen evolution by removal of 

EP33 (Bernier and Carpentier, 1995). Mercury reduces chlorophyll fluorencence due to 

additional inhibitory sites at the donor side of PSII, including damage to the light-harvesting 

complexes and structural changes in the antenna pigments that affect the primary photochemistry 

(Rashid et al., 1990; Bernier et al., 1993; Rashid et al., 1994; Bernier and Carpentier, 1995; Sabat 

et al., 1996). Mercury can replace the Mg ion from chlorophyll, leading to the reduction of 
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chlorophyll content (Prasad and Prasad, 1987). Sen and Mondal (1987) and Sinha et al., (1996) 

reported a 26% reduction of chlorophyll content in Silvia natans and 35% in Bacopa monnieri at 

5 µg/mL HgCl2, although this two species have inherent mercury resistance. Additionally, 

mercury is an inhibitor of photosynthetic electron transport at the level of plastocyanin (Trebst, 

1980).  

 

Phytoremediation Studies via Nuclear Transformation 

 
All of the attempts to genetically engineer plants with improved phytoremediation have 

previously been based on transformation of nuclear genome. Several studies have successfully 

integrated bacterial genes into nuclear genome to produce plants that were specifically 

engineered for phytoremediation of metal-polluted environment (Heaton et al., 1998; Rugh et al., 

1998; Nies, 1999) and TNT (Salt et al. 1998). Among several reports on phytoremediation, one 

of the most interesting is the use of nuclear modified plants for bioremediation of mercury and 

organomercurials. In these report a nuclear modified form of the merA (mercury ion reductase) 

and merB (organomercurial lyase) genes were used to transform plants, conferring resistance to 

mercury and organomercurials respectively (Bizily et al. 1999, 2000; Rugh et al. 1996). One 

drawback of nuclear genetic engineering is that it requires several backcrosses to create the 

complete pathway that detoxifies mercury and organomercurials (Bizily et al. 2000). This results 

in variations in expression levels among different transgenic lines and tolerance to different 

concentrations of organomercurials, up to 10 µM (Bizily et al. 2000). Another concern over the 

use of nuclear transformed plants in-situ is the escape of the foreign genes via pollen (Daniell, 
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1999; Bogorad, 2000). Most importantly, the enzymes were not targeted to chloroplasts where 

mercury accumulates and is most toxic. 

 

Mercury Translocation from Root to the Above Ground Tissues 
 

The integration of foreign genes into plant genomes has been shown to alter the 

mobilization of metal ions, including uptake into the root, sequestration and detoxification 

(Kärenlampi et al., 2000; Singh et al., 2003). However, a major limitation of all of these studies 

is the inability to transport organic or inorganic mercury to above grown tissues, which constitute 

more than 90% of the plant biomass. There is considerable body of evidence to show that 

translocation of Hg[II] from root to shoot is negligible or non-existent (Hannerz, 1968; Boney, 

1971; De et al., 1985; Suszcynsky and Shann, 1995 ). Heaton et al (2003) compared the 

accumulation of Hg[II] by wild type and nuclear transgenic rice plants expressing the merA gene, 

while growing in hydroponic media or in soil with HgCl2; mercury accumulated in high 

concentrations in roots when grown in hydroponic media, and was poorly translocated to shoots. 

This same study showed that translocation of Hg[II] into shoots decreased even more when the 

plants were grown in soil. According to Godbold and Huttermann, (1986), mercury induced root 

damage may have serious consequences for nutrient and water supply to above ground plant 

parts, and should be taken into account when assessing the effect of mercury on the physiology 

of leaves. However, there are differences in how the inorganic and organic forms of mercury 

carry out cell injury. While inorganic mercury (HgCl2 in particular) affects the plasma 

membrane, methyl mercury may primarily affect organelle metabolism in the cytoplasm, which 
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subsequently affects membrane integrity. Furthermore, there are no reports showing that organic 

mercury is transported from roots to shoots. 

In sharp contrast to lack of transport of Hg[II]  from root to shoot, several investigators 

have reported that the main site of damage of organomercurial compounds is the chloroplast 

(Kupper et al., 1996, Patra and Sharma, 2000). Organomercurial compounds have been shown to 

strongly inhibit chloroplast functions, including electron transport, oxygen evolution (Bernier et 

al. 1993), Hill reaction, photophosphorylation, chlorophyll fluorescence (Kupper et al., 1996) 

and chlorophyll content (Prasad and Prasad, 1987; Sen and Mondal, 1987). Such discrepancy 

may be due to the fact that photosynthesis studies were carried out in isolated chloroplasts in 

which transport of Hg[II] from root to shoot was irrelevant.  In order to address these conflicts, 

the merA and merB genes were engineered via the chloroplast genome and both enzymes were 

compartmentalized within the chloroplasts (Ruiz et al., 2003). In contrast to nuclear 

transformation and expression of both enzymes in the cytosol, compartmentalization within 

chloroplast dramatically increased the resistance of transgenic plants to the toxic effects of the 

organomercurial, phenyl mercuric acetate (Ruiz et al., 2003). If the chloroplast is the main site of 

mercury damage as has been proposed, then detoxification in transgenic plants expressing the 

merA and merB genes should occur in the chloroplast. However, transport of Hg[II] from root to 

shoot is negligible to non existent (Sen and Mondal, 1987; Suszcynsky and Shann, 1995). 
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Rationale and Approach 

 

We reported for the first time the use of chloroplast genetic engineering to enhance the 

capabilities of plants for phytoremediation (Ruiz et al., 2003). More importantly, we report the 

construction of and optimized operon for the phytoremediation of organomercurials via 

chloroplast genetic engineering. This work will increase the applicability of the system for 

polluted environments with extremely high levels of organomercurial contamination. To 

accomplish the aforementioned, the native bacterial genes merA and merB were placed under the 

translation enhancement of chloroplast specific 5’UTRpsbA and g10 5’UTR. Additionally, 

3’UTRs are also engineered in the operon to increase transctipt stability and abundance. Finally, 

we report the molecular characterization of chloroplast transgenic plants expressing the 

optimized merA and merB operon.  The effective integration and expression of this operon in 

chloroplast will also increase our knowledge of multigene engineering in chloroplast, validating 

the applicability of the chloroplast system for the expression of complex metabolic pathways. 

Additionally, we test the hypothesis that mercury detoxification occurs in leaves 

(chloroplasts) and that sufficient quantities of mercury are transported from roots to shoots for 

this to occur. Such transport showed dramatically enhancment of phytoremediation capabilities, 

which is currently limited to roots, which account for less than one tenth of the total plant 

biomass.  Finally, we determined whether the insertion of merA and merB genes into the tobacco 

chloroplast genome is of value in the phytoremediation of mercury supplied in inorganic forms 

and in organic forms. Furthermore, since the combined action of merA and merB is to convert 

mercury into the volatilizable elemental form, we determined whether detoxification in the 
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transgenic plants is accompanied by the conversion of mercury into the volatile form. The 

specific objectives of this study therefore are to determine the extent to which chloroplast 

transformation with merA and merB genes results in the uptake and translocation of Hg 

compounds from roots to shoots when plants are supplied with PMA or HgCl2. Additionally, to 

study the volatilization rates of elemental mercury in transgenic plant and determine their 

applicability for phytoremediation when mercury is supplied in organic as well as inorganic 

forms. Because mercuy is such a toxic environmental pollutant there is urgent need for the 

cleanup of the contaminated areas. Here we show that by genetically engineer the chloroplast 

with a multigene operon for the degradative pathay of organomercurials we could bioremediate 

extremely high levels of organic-mercury. Additionally, the results shobioof mercury we 

coulchloroplast transgenic plants as an effective phytoremediation system for extremely polluted 

environments. This study also supports the idea that the chloroplast can be transformed with 

complex operons for the development of novel metabolic pathways in plants. 
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Materials and Methods 

 

Construction of tobacco Optimized Phytoremediation Vectors (Second Generation) 

 

The bacterial native genes, merA (1.69 kb) and merB (638 bp) that encode the mercuric 

ion reductase and the organomercurial lyase, respectively, were amplified by PCR from E. coli 

strains harboring plasmids NR1 (containing the full length merA) and R831b (containing full the 

length merB). Isolation and amplification of the merA and merB gene from the native plasmids 

was performed by polymerase chain reaction (PCR) with the utilization of specific 5’ and 3’ 

flanking DNA primers. All primers were designed using the QUICKPRI program of the 

DNASTAR software. NdeI and NotI restriction sites were engineered at the 5’ and 3’ of the 

merB primers, respectively, to allow directional cloning into the suitable vectors. The 5’ and 3’ 

primers had 15 bases of homology with the 5’ and 3’ ends of the merB gene, respectively. Either 

primer contain 10 bases, which are upstream of the NdeI restriction site in the 5’primer or 

downstream of the NotI restriction site in the 3’ primer to facilitate subsequent restriction 

digestions, these regions base-pare with the regions flanking the merB gene in the native plasmid 

DNA.  The 5’ primer of merA was designed with a SmaI restriction site followed by an NdeI 

restriction site that flanked the phaA coding region.  The 3’ primer of merA was engineered with 

a BamHI restriction site flanking the merA coding region. Either primer contain 10 bases, which 

are upstream of the SmaI restriction site in the 5’primer or downstream of the NotI restriction site 

in the 3’ primer to facilitate subsequent restriction digestions, these regions base-pare with the 

regions flanking the merA gene in the native plasmid DNA. The PCR reaction and amplification 
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protocol for the merA and merB genes were performed as explained in the material and methods 

section in chapter 1, with the exception that the gene elongation time for the PCR reaction was 

adjusted as follows; 2 minutes for merA and 1 minute for merB. 

The PCR amplified merB gene was cloned into the vector pCR2.1-5’UTRpsbA, which 

contained the functional psbA gene promoter and 5’ regulatory sequence, by directional cloning 

after NdeI and NotI restriction digestion of the PCR product and vector.  The digestion reactions 

for the PCR amplified merB and the pCR2.1-5’UTRpsbA were performed as follow: 5 µL of 

vector DNA (0.25 µg) or 5 µL of phaA (1.0 µg), 1.0 µL of NdeI, 1.0 µL NotI, 2µl of 10X 

reaction buffer compatible with NdeI/NotI, and 11 µL of sterile Milli Q water were added for a 

final volume of 20 µL. The restriction digestions were incubated at 37°C for 2 hours. The 

reactions were run in a 0.8% agarose gel and the digested vetor and merB gene were eluted 

together and used for ligation and subsequent E. coli transformation. Finally, transgenic E. coli 

clones containing the pCR2.1-5’UTR-merB vector were verified for the integration of the merB 

gene by restriction digestion with NdeI and NotI to cut out the merB gene from the pcR2.1-

5’UTR-merB vector and positive identify the integration of the merB gene. All the cloning and 

reaction setting were performed as explained in the materials and methods section in chapter 1. 

The vector pCR2.1-5’UTR-merB and the chloroplast transformation vector pLD-ctv were 

restriction digested with NdeI and NotI, the samples were resolved in a 0.8% agarose gel an the 

DNA fragment corresponding to the digested pLD-ctv vector and to the 5’UTR-merB construct 

were eluted from the gel. Followed, these samples were used for ligation and subsequent E. coli 

transformation and confirmation of integration of the 5’UTR-merB insert into the pLD-ctv 

vector. These procedures were performed essentially as described ealier. 
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The PCR amplified merA gene and the pBSK vector were restriction digested with SmaI 

and BamI restriction enzymes, and their digested products were ligated and cloned into E. coli to 

produce the vector pBSK-merA. This vector was used for the successive directional cloning of 

the 5’UTR g10 into the SmaI and NdeI restriction sites flanking the 5’ end of the merA coding 

region to produce vector pBSK-g10-merA. The g10 5’UTR was obtained from the pBSK-g10 

vector by double digestion with SmaI and NdeI.  The 3’rpsT was inserted downstream of the 

merA gene by digestion of both pBSK-g10-merA and pCR2.1-rpsT with BamHI and NotI 

restriction enzyme. The restriction-digested product of the reaction were ligated and cloned into 

E. coli to produce vector pBSK-g10-merA-rpsT.  The construct g10-merA-rpsT was cloned into 

the pLDR-5’UTR-merB vector by digesting both vector with EcoRV and ligating the g10-merA-

rpsT fragment into the pLDR-5’UTR-merB to produce the final chloroplast transformation 

vector pLDR-g10-merA-rpsT-5’UTR-merB. 

 

MerA and merB Gene Sequencing 

 

The pCR2.1-5’UTR-merB and the pBSK-g10-merA-rpsT vector were use for to sequence 

the complete merA and merB constructs before any successive cloning step.  Vector specific 

M13 forward and M13 reverse primers, which flank the multiple cloning site of the pCR2.1 

vector, along with an internal primer specific for each of the merA gene were used to sequence 

the entire 5’UTR psbA-phaA gene, as well as the g10-merA-rpsT. Three independent reactions 

for each of the gene constructs, using the suitable primers were performed as explained in the 

material and methods section in chapter 1. The DNA sequencing was performed in a Beckman 
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Coulter sequencer at the UCF sequencing facility. Finnally, electrophoregram was compared 

with gene bank sequences by using the BLAST 2 Sequences program from the NCBI website. 

 

Bombardment and Selection of Transgenic Plants 

 

The steps involved in the gene delivery by particle bombardment and the selection 

process of the transgenic Nicotiana tabacum var Petit Havana lines were performed essentially 

as describe in the Material and Methods section in Chapter 1 (Daniell, 1997; Daniell et al., 2004; 

Kumar and Daniell; 2004. Tobacco leaves were bombarded using Bio-Rad PDS-1000/He 

biolistic device (Bio-Rad, Hercules, CA). After bombardment, leaves were placed on 

Regeneration Medium of Plants (RMOP) containing 500 µg/ml spectinomycin for two rounds of 

selection on plates and subsequently moved to jars on Murashige and Skoog medium (MS) 

containing 500 µg/mL spectinomycin. Finally, homoplasmic plants were transferred to high 

nutrient soil and grown in a growth chamber at a temperature of 26°C in a 16 hours ligh 

photoperiod. 

 

Confirmation of Chloroplast Integration by PCR 

 

Plant DNA was isolated using the Qiagen DNeasy Plant Mini Kit (Qiagen, Valencia, 

CA). The PCR primer pairs 3P-3M and 5P-2M were used to confirm the integration of the gene 

cassette into the chloroplast and the presence of the genes of interest respectively essentially as 
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described in the Materials and Methods section in Chapter 1 (Guda et al., 2000; Daniell et al, 

2004; Kumar and Daniell; 2004). PCR analysis was performed using the Perkin Elmer Gene 

Amp PCR System 2400 (Perkin Elmer, Chicago, IL). 

 

Southern Blot Analysis 

 

The total plant DNA was obtained from transgenic plants as well as from untransformed 

tobacco plants using the Dneasy Plant Mini Kit (Qiagen, Valencia, CA). Southern blot analyses 

were performed essentially as described previously (Daniell et al., 2004; Kumar and Daniell, 

2004) Briefly; 2 µg of plant DNA was digested with BglII and separated on a 0.8% agarose gel at 

50 V for 2 hours. The gel was soaked in 0.25 N HCl for 15 minutes and then rinsed 2 times with 

water.  The gel was then soaked in transfer buffer (0.4 N NaOH, 1 M NaCl) for 20 minutes and 

transferred overnight to a nitrocellulose membrane by capillarity.  The next day the membrane 

was rinsed twice with 2X SSC (0.3 M NaCl, 0.03 M Sodium citrate), dried on a Whatman paper, 

and then cross-linked in the GS GeneLinker (Bio-Rad, Hercules, CA) at setting C3 (150 njouls). 

The flanking sequence probe was obtained by BglII/BamHI digestion of the plasmid pUC-ctv 

that contains the chloroplast flanking sequences (trnI and trnA genes). The merAB probe was 

obtained by EcoRI digestion of plasmid pCR2.1-merAB (Ruiz et al., 2003).  Probes were 

radiolabeled with 32P by using Ready Mix and Quanttm G-50 Micro columns for purification 

(Amersham, Arlington Heights, IL).  Prehybridization and hybridization were performed using 

the Quick-Hyb solution (Stratagene, La Jolla, Ca). The membrane was washed twice for 15 min 
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at room temperature in 2 X SSC with 0.1% (w/v) SDS, followed by two additional washes at 

60°C (to increase the stringency) for 15 min with 0.1 X SSC with 0.1% (w/v) SDS. Radiolabeled 

blots were exposed to x-ray films and then developed in the Mini-Medical Series x-ray film 

processor (AFP Imaging, Elmsford, NY). Detailed methods for each of the steps described above 

can be find in the Material and Method section in Chapter 1. 

 

Northern Blot Analysis 

 

The RNeasy Mini Kit and protocol was used to isolate total RNA from plant tissues 

(Qiagen, Valencia, CA). Northern blot analysis were performed essentially as described 

previously (Ruiz et al., 2003). The merA, merB and merAB probes were used to probe different 

RNA blots. The merA probe was made by cutting out the merA gene from the pCR2.1-merA 

vector with EcoRI.  The merB probe was made by cutting out the merB gene from the pCR2.1-

merB vector with EcoRI. The merAB probe was produced by digesting the pCR2.1-merAB 

vector with EcoRI. Restriction fragments were exiced  and eluted from the gels. Total RNA (2.5 

µg) per plant sample was resolved in a 1.2% agarose/formaldehyde gel. The probe labeling 

reaction, pre-hybridization/hybridization steps, membrane washing step and autoradiography 

were performed as explained in the Southern blot section in the materials and methods. 
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Results 

 

Chloroplast Transformation Vector 

 

The bacterial genes, merA (1.7 kb) coding for mercuric ion reductase and the mer gene, 

which code for organomercurial lyase wer amplified by PCR and subsequently cloned into the 

chloroplast transformation vector (pLD-ctv) to finally produce the pLDR-g10-merA-rpsT-

5’UTR-merB vector (Fig 15). Detailed vector construction including PCR amplification and 

intermediary vectors can be found in the Material and Methods section. The vector contains 

homologous recombination sequences (flanking sequences), which allow site-specific integration 

by homologous recombination into the inverted repeat region of the chloroplast genome in 

between the trnI (tRNA Ile) and trnA (tRNA Ala) genes. This specific targeting mechanism 

allows high efficiency integration of the transgene construct containing the aadA 

(aminoglicoside 3’-adenylyltransferase) gene, which confers spectinomycin resistance and the 

phaA genes. The aadA, merA and merB genes are transcribed constitutively from chloroplast 

16S ribosomal RNA gene promoter (Prrn), which is found upstream of the aadA gene and 

should produce tricistrons (aadA-merA-merB). Additionally, the psbA gene promoter, which is a 

constitutive promoter, and the psbA 5’ regulatory sequence (5’ untranslated region; 5’ UTR), 

which is known to enhance translation of foreign genes, was used upstream of the merB gene 

and should produce merB monocistrons. The organomercurial lyase encoded by merB is the 

limiting factor in the bioremediation pathway of mercury, because of that we enhace the 

translation of this gene by using the 5’UTR from the psbA gene. At the 3’ end of the gene 
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construct is the 3’ psbA untranslated region (3’UTR), which is known to be involved in mRNA 

abundance and stability in chloroplast. The gene 10 5’ UTR derived from bacteriophage is 

known to enhance translation in chloroplasts considerably when fused to endogenous promoters 

(Staub et al., 2000). In addition, it is free from developmental or light regulation, because it is 

derived from a foreign source. In this expression cassette, merA should be transcribed as a 

dicistron in the chloroplasts, because the upstream gene, aadA, is devoid of a 3’ UTR and the 

gene 10 5’ UTR is promoterless, been the gene cassette Prrn promoter the only promoter 

upstream of the aadA and merA genes. Additionally, the g10-merA cassette was coupled to the 

3’UTR of rps gene. This region has shown to increase transcript stability and abundance. 
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Figure 15: pLDR-g10-merA-rpsT-5’UTR-merB 
The map shows the specific steps and restriction enzymes used in the vector construction. PCR 
products, mer A and merB were cloned into suitable vectors inframe to 5’ untranslated regions 
and 3’UTRs. The final step shows the integration of the merA and merB optimized operon into 
the pLD-ctv vector to form the functional pLDR-g10-merA-rpsT-5’UTR-merB vector. 
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Transformation and Selection of Chloroplast Transgenic Plants 

 

 Transgenic lines transformed with the pLDR-g10-merA-rpsT-5’UR-merB vector as 

explained in the Materials and Methods section were passed through a selection process. Three 

days after bombardment the bobarded leaf tissue was placed on regeneration media with 500 µg 

/mL spectinomycin antibiotic. After 3 to 4 weeks in selection the first putative transgenic shoots 

were observed (Fig 16A). The transgenic shoot is characterized by being green over a 

background of bleach leaf material (Fig 16A). From the first selection the transgenic lines were 

move to second selection, were pieces of leaf material from the transgenic plant recovered from 

first selection were placed in media with 500 µg/mL spectinomycing for selection (Fig 16B). 

During this selection many more shoots identical (clones) to the parental primary transgenic 

shoot are generated (Fig 16B). Because the initial leaf tissue use in secondary selection is 

transgenic the callus does not bleach as much as in first selection, allowing faster regeneration of 

the transgenic clones. This step increases homoplasmy by selecting the transgenic chloroplast 

and genomes. Finally, once fully regenerated plants are recovered from second selection, these 

are transfer to third selection. Third selection is performed in MS medium amended with 500 

µg/mL spectinomycin to induce rooting and the developments of a fully normal plant (Fig 16C). 

Finally, the transgenic plants were move to soil and allowed to grow to collect seeds. Transgenic 

seeds were recovered from the different transgenic lines and were germinating in MS medium 

with 500 µg/mL spectinomycing to demonstrate maternal inheritance of the genetic engineered 

traits. 
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Figure 16: Selection of Chloroplast Transgenic Plants 
A, Transgenic plant shoot in first selection (RMOP medium with 500 µg/mL spectinomycing). 
B, Second selection in RMOP medium with spectinomycin show multiple transgenic shoot. C, 
Third selection in MSO medium with spectinomycin. 
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Molecular Characterization of Chloroplast Transgenic Plants 

 

PCR Analysis 

 

Chloroplast transgenic plants were obtained as described previously in the material and 

methods section in chapter I.  More than 20 positive independent transgenic lines were obtained 

with the contruct. In this report, we show the results from transgenic lines transformed with the 

pLDR-G10-merA-rspT-5’UTR-merB. The variability in expression levels among independent 

chloroplast transgenic lines were minimal as reported previously (Daniell et al., 2001A) and the 

results shown here correlate well with the results of other transgenic lines with the same 

chloroplast vectors. 

 The primer pair 3P and 3M was used to test the integration of the transgene cassette into 

the chloroplast genome at very early stages during the selection process. The 3P primer lands in 

the native chloroplast genome and the 3M primer lands in the aadA gene that is present within 

the gene cassette (Fig 17A). If integration has occurred, a 1.65 kb PCR product should be 

obtained (Fig. 17A, E). The untransformed control and the mutants (caused by the spontaneous 

mutation of the 16S rRNA gene which confers resistance to spectinomycin) did not show any 

product, confirming that these plants are negative for integration of transgenes (Fig. 17B, E). The 

integration of transgenes (aadA, merA and merB), was further tested by using the 5P/2M primers 

and PCR analysis. The 5P and 2M primers annealed to the internal region of the aadA and trnA 
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genes, respectively (Fig. 17A). The product size of positive transgenic clones was 3.89 kb, while 

the mutants and untransformed control did not show any PCR product (Fig. 17 C, D, F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: PCR Analysis of Control and Putative Transformant 
a) Schematic representation of the landing sites for the primer pairs 3P-3M and 2P-2M. 
Additionally, amplification product sizes are indicated. b and e) Multiple putative transgenic 
lines show a 1.65 kb amplification product when the 3P-3M primer pair was used, indicating 
chloroplast integration.  c, d, f ) Transgenic lines test positive (4.5 kb PCR product) for the 
presence of aadA, merA and merB genes in chloroplast; 5P-2M primer pair was used.  
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Southern Blot Analysis 

 

DNA from full-grown transgenic plants was extracted and used for the Southern blot 

analysis (Fig. 18).  The 0.81 kb flanking sequence probe that hybridizes with the trnI and trnA 

genes (Fig. 18A) allowed detection of the site-specific integration of the gene cassette into the 

chloroplast genome. The transformed chloroplast genome digested with BglII restriction enzyme 

produced two fragments, one of 4.7 kb and a shorter one of 1.5 kb (Fig. 18A, 3B, 3C). The 

untransformed chloroplast genomes digested with BglII yield a 4.47 kb fragment (Fig. 18A, B, 

C).  The flanking sequence probe also showed that homoplasmy of the chloroplast genomes was 

achieved through the selection process. Southern blots confirmed stable integration of foreign 

genes into all of the chloroplast genomes because the 4.47 kb untransformed fragment was not 

detected in the transgenic lines, this confirmed homoplasmy. Southern blots screened with the 

merAB probe (2.3 kb in size) showed integration of specific genes, merA and merB by two 

fragments of 7.3 kb and 1.5 kb (Fig. 18A, 3D). The control untransformed tobacco plants and 

mutants did not show this fragment (Fig. 18D). If the merAB probe would have detected any 

unexpected size fragments, it might be a non-specific integration into other plant genomes 

(nuclear or mitochondria) as discussed elsewhere (Daniell and Parkinson, 2003); but this was not 

observed.  The transgenic plants were fully characterized via PCR and Southern blot analysis, 

which showed site-specific integration of the genes into the chloroplast genome and achievement 

of homoplasmy even at very early stages of selection (T0). 
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Figure 18: Southern Blot Analysis 
A, Schematic representation of the untransformed chloroplast genome, size of the wild type 
DNA fragment produced by BglII restriction digestion as well as the flanking probe used for 
Southern blot analysis are shown. B, Schematic representation of the transformed chloroplast 
genome, BglII restriction sites used for Southern blot analysis and the specific DNA fragments 
sizes are shown. C and D, Southern blot analysis of transgenic lines (4, 7, 28) with the flanking 
probe and the merAB probe, respectively. 7.3 kb and 1.5 kb fragments observed in transgenic 
lines but not in wild type. The wild type (wt) fragment of  4.47 kb detected with the flanking 
probe is shown. 
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Northern Blot Analysis 

 

Total RNA from plants transformed with the pLDR-g10-merA-rpsT-5’UTR-merB was 

extracted and used to perform the northern blot analysis with three different probes (the merA, 

merB, merAB). The merA probe clearly showed a tricistron containing the aadA, merB and 

merA genes of size 4,214 nt, which is transcribed from the engineered Prrn promoter. 

Addtionally, a polycistron of size 6,715 nt transcribed from the native 16S ribosomal RNA 

promoter (Prrn) was also detected, this polycistron contained the 3 foreign gene plus the 

upstrams native 16S rrn and trnI genes (Fig. 19A). The merB probe detected the tricistron (4,214 

nt), the polycistron transcribed from the native 16S promoter and a monocistron (838 nt) 

corresponding to the merB transcript (Fig. 19B). This monicistron is more abundant due to the 

action of its upstream psbA promoter, which is a strong promoter. The merAB probe helped to 

visualize different transcripts in a single blot, the aadA-merA-merB tricistronic transcript (4,214 

nt), the merB monocistron (838 nt) and the polycistron transcribed from the native 16S promoter 

(Fig. 19C). The northern blot analyses showed that the monocistron was the most abundant 

transcript detected although the dicistron and polycistron transcribed from the engineered and 

native 16S Prrn promoter, respectively, were also very abundant. Other transcript sizes detected 

can be explained as readthrough transcripst. Interestingly, read though polycistrons transcribed 

from the psbA promoter (engineered), the engineered Prrn promoter and the native Prrn 

promoter and which termininate in the intronic region of the trnA gene downstream of the gene 

construct were also bundant, demonstrating that 3’ untranslated region in chloroplast are not 

strong termination.  
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Figure 19: Northern Blot Analysis 
A, Schematic representation of the different RNA species detected in the transgenic lines and the 
spected sizes. B, merB probe was used. C, merAB probe was used D, merA probe was used. wt: 
wild type; 4, 7 and 28 are chloroplast transgenic lines. 
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Protein Expression in Chloroplast Transgenic Plants 

 

To confirm hyperexpression of the Mer enzymes in the chloroplast transgenic lines, 

untransformed and transformed plants were subjected to SDS-PAGE and subsequent stained 

with Coomasie dye. In our previous report (Ruiz et al., 2003), chloroplast transgenic lines 

expressing the MerA and MerB enzymes were able to resist high concentration of 

phenylmercuric acetate, although this was true expression level of the two enzymes was not 

detectable in Coomasie stained gels. A good way to characterize enhancement in expression 

produced by the use of the 5’ regulatory sequences, used in this study would be the detection in a 

Coomasie stained gel.  

The appearance of a distinct band at 69 kDa in the Coomassie-stained sodium dodecyl 

sulfate-polyacrylamide electrophoresis (SDS-PAGE) gel (Fig 20A lanes 1-4) but not in the 

unstransformed sample (lane 5) suggests that the chloroplast transgenic plants were expressing 

high levels of mercuric ion reductase (Fig 20A). Failiure to the detect MerB enzyme may be 

because the merB gene is under the regulation of psbA 5’UTR, which is light regulated. Because 

this plants were not tested under continious light exposure, maximal expression of merB was not 

achieved. 
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Figure 20: Coomassie Stained Gel 
Abundant expression of mercuric ion reductase in the chloroplast of transgenic lines. 20 µg of 
total plant protein were loded per lane. M, molecular marker; WT, unstransformed tobacco plant 
protein; 4, chloroplast transgenic line 4. 
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Discussion 

 
Several reports have shown that it is possible to enhance 300 to 500-fold the levels of 

transgene expression in chloroplasts if appropiate regulatory sequences (5’UTRs) are used 

instead of the ribosme binding site (RBS) alone (Staub et al., 2000; Fernandez-San Millan et al., 

2003).  Enhancing the levels of enzyme expression is definetly essential for the phytoremediation 

of polluted environments with very high levels of mercury. Additionally, organomercurials can 

effectively move across cellular membranes, achiving extremely high levels of mercury inside 

the cell or organelles. In this study, we developed a chloroplast transgenic line that harbours 

constructs with the merA and merB genes under the translational enhancement of the gene 10 

5’UTR and the psbA 5’UTR, respectively. Additionally, 3’UTR for each of the two genes were 

engineered to provide increased stability of the transgene transcripts. The mer genes were 

directly amplified from the bacterial native plasmid with out codon optimization, because the 

chloroplast can effectively transcribe and translate genes from prokaryotic origin. This facilitates 

genetic manipulations (Kota et al., 1999; DeCosa et al., 2001; Ruiz et al., 2003). The chloroplast 

nature additionally facilitates the integration of the multigene construct through homologous 

recombination, allowing specific targeting of multigenes in a single transformation event without 

position effects. 

Homoplasmic chloroplast transgenic lines harboring the construct aadA-g10 5’UTR-

merA-rpsT-5’UTRpsbA-merB-3’UTRpsbA were achieved after 3 rounds of selection in medium 

with 500 µg/mL spectinomycin. Spectinomycin is a suitable selectable agent because it targets 

the chloroplast 70S ribosome. Several chlroplasts transgenic lines obtained after the first round 
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of selection tested positive by PCR for site-specific integration and for the complete presence of 

the multigene construct. Further characterization of the transgenic lines by Southern blot analysis 

after the third round of selection revealed that homoplasmy was achieved during T0 generation. 

Absence of any detectable native untransformed chloroplast genomes not only confirmed 

homoplasmy, but also facilitated the detection of transgene copy numbers in each cell.  It is 

known that mature leaf cells in tobacco contain about 10,000 copies of chloroplast genomes per 

cell (Bendich, 1987).  By virtue of achieving homoplasmy, it is inferred that there are 10,000 

copies of transgenes per cell. Achieving homoplasmy will also increase the gene dosage of the 

transgene and will assure that the foreign traits will not be dilited out over time. Additionally, the 

presence of the merA and merB genes in the targeted region (trnI-trnA spacer region) was also 

confirmed by Southern blot analysis. Any unspected DNA fragment detected in the Southern blot 

analysis will indicate that integration of the transgene construct occurred in the nuclear or 

mitochondrial genome.   

Northern blot analysis of total plant RNA revealed that the transcriptional unit (operon) 

containing the merA and merB was efficiently transcribed. Because transcription inintiation may 

occurr from either of three promoters, three transcripts of major abundance were detected. The 

merB monocistron transcribed from the psbA promoter was the most abundant transcript, 

followed by the aadA-merA-merB tricistron which is transcribed from the construct Prrn 

promoters. Finally, abundant transcription was also detected for the polycistron transcribed from 

the native Prrn. All of these promoters are constitutive promoters, which proves abundant 

transgenes transcripts. Interestingly, the northern blot analyses performed with the merA, merB 

and merAB probes revealed transcripts that read-through over the 3’UTR psbA, which is in the 
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gene construct, terminating drownstream at the trnA gene. This data coincides with the results 

shown in Chapter 2, where polycistronic transcripts were processed at a region located in the 

trnA gene. These results confirmed that 3’UTRs are not strong terminators in chloroplasts. This 

study demonstrates that the chloroplast can be engineered polycistronnically for metabolic 

engineering allowing the expression of multiple genes and the use of multiple regulatory 

sequences for the efficient transcription and translation of foreign operons without the disruption 

of the proper transcriptional function of the chloroplast. 

In addition to the construction and molecular characterization of chloroplast transgenic 

lines harboring optimized vectors for organomercurial and mercury phytoremediation, we have 

also shown for the first time that chloroplast transgenic plants expressing the merA and merB 

genes can resist, accumulate, translocate, and bioremediate high concentrations of 

phenylmercuric acetate and mercury chloride.  The transgenic lines that only contain Shine-

Dalgarno sequences for the translation of the merA and merB genes were able to germinate and 

grow in concentrations of PMA of up to 200 µM. The resistance to organomercurials was 

increased to 400 µM if mature plants were used instead of seedlings.  

This study shows that use of the chloroplast genome to express foreign genes offers 

several advantages to enhance mercury phytoremediation over nuclear transformation. High 

volatilization rates, as well as the Hg hyper accumulation in the root followed by the efficient 

translocation from roots to shoots in the chloroplasts transgenic plants provide support to the 

efficient conversion of organic-Hg and Hg[II] to the rapidly volatilized Hg[0] in the green 

tissues. Detoxifying organomercurial to elemental Hg, by expressing the MerA and MerB 

enzymes in the chloroplasts, protects cell normal functions and produce a continuous gradient for 
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Hg. In addition, this could allow Hg to move from one cell to the next either by crossing the cell 

membrane or via plasmodesmata, until reach the higher regions of the plant. In wild type plants, 

on the other hand, the greater toxicity of mercury is due to a higher toxicity to root metabolism, 

rather than a greater root uptake, disrupting normal cell functions and impeding the movement of 

Hg to other cells. 

Most importantly, chloroplast genetic engineering presents an advantageous system for 

phytoremediation due to the uniparental inheritance of plastids, which prevents pollen 

transmission of foreign genes, making chloroplast genetic engineering a safer option for in situ 

phytoremediation. This study also provides a useful example of multigene engineering via the 

chloroplast genome for the production of a metabolic pathway. 
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GENERAL DISCUSSION 

 

The scientific community has witnessed the evolution of plant genetic engineering from 

the expression of single genes of defined characteristics, to the development of polygenic 

metabolic pathways of complex functions. The expression of multiple genes is a difficult task 

when the nuclear genome is the target for the genetic manipulation. Alternatively, chloroplast 

transformation can result in a more efficient way to introduce and effectively express a multi 

gene pathway in plants. Because the chloroplast can transcribe polycistrons and multiple genes 

can be targeted to specific regions inside the chloroplast in a single transformation event, the 

chloroplast is a valuable tool for metabolic engineering. 

Although the inherent advantages of the chloroplast system have been proven for the 

expression of agronomic traits and therapeutic proteins encoded by single genes, only few 

reports have shown the use of chloroplast genetic engineering for multigene metabolic 

engineering. The targeting of the cry2a2 operons into chloroplast encoding a total of four genes 

demonstrated that the chloroplast expresses very large multigene constructs effectively (De Cosa 

et al., 2001). More recently, the value of chloroplast metabolic engineering was established when 

a three gene operon expressing the enzymes for the degradative pathway of mercury conferred 

resistance and phytoremediation capabilities to chloroplast transgenic plants exposed to high 

levels of mercury (Ruiz et al., 2003).  Finally, an operon containing the three genes for the 

biosynthesis of polyhydroxybutyrate was integrated into the chloroplast, producing the first 

report of PHB expression via chloroplast transformation (Lossl et al., 2003). However, this 

report was shadowed by limited expression levels and pleiotropic effects produced by the 
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expression of PHB in chloroplast. Aforementioned reports indicate that a better understanding of 

chloroplast biology at the levels of transcription, translation, post-transcription, and metabolism 

is needed for the efficient expression of complex pathways.  

The expression of the biopolymer polyhydroxybutyrate represents a real alternative to the 

use of synthetic non-biodegradable polymers if it could be in cost-efective, yet abundant 

quantities. All attempts to express PHB in plants either by nuclear or chloroplast transformation 

have failed. To understand this pathway its detrimental effects to plants, we have turned our 

attention to the expression of β-ketothiolase, which is the first enzyme of the PHB biosynthetic 

pathway. This enzyme has been pointed to as the main cause for the detrimental effects observed 

in plants expressing PHB. So far, no reports of plants expressing β-ketothiolase have been found. 

Understanding the role of β-ketothiolase will help in designing of an effective metabolic 

pathway for the expression of PHB in chloroplasts and will further increase our knowledge of 

chloroplast biology and metabolism. We hyperexpressed β-ketothiolase via the chloroplast 

genome, and, in constrast to the previos reports for PHB expression, our chloroplast transgenic 

plants did not show any sign of pleiotropic effects, growing as well as wild type tobacco plants. 

Bohmert et al., (2002) reported that the integration of the phaA gene into the nuclear genome 

dramatically decreased transformation efficiency, inhibiting the recovery of fully regenerated 

transgenic plants. In contrast, we reported the characterization of multiple independent lines 

expressing the phaA gene.  

The chloroplast transgenic lines expressing the phaA gene turned out to be male sterile. 

Molecular and histological characterization of the transgenic plants revealed that the expression 

of β-ketothiolase in the anthers led to a severe phenotype characterized by aberrant anther tissue 
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patterns, and collapsed pollen grains. Interestingly, this phenotype may represent a valuable tool 

for the production of male sterile lines. The expression of the phaA gene produced 100% male 

sterility; this is an advantage over current male sterility systems, which do not achieve complete 

male sterility. The expression of the phaA gene to produce male sterility has several advantages, 

among them is the idea that male sterility can be engineered by incorporating the phaA gene as a 

foreign gene in a multigene construct. Expression of the phaA gene can be targetted to anthers 

by the use of tissue specific or inducible promoters, and by the use of regulatory sequences. 

Tissue specific expression of β-ketothiolase in the anthers can lower concerns related to the 

constitutive expression of β-ketorhiolase. Additionally, this system has the possibility of being 

used as a uniform mechanism to produce male sterile lines in different plant species.  

The study of β-ketohiolase via chloroplast genetic engineering has provided the first 

report of a genetically engineered cytoplasmic male sterily system in plants. Additionally, this 

report has increased our knowledge of the PHB metabolic pathways, revealing that β-

ketothiolase is not the causative of the pleiotropic effect, at least when expressed by itself. 

Additional studies with constructs containing different combinations of the three genes involved 

in PHB expression are needed in order to pin point the key steps involved in toxicity by PHB.  

We have consicely shown that chloroplasts are able to efficiently translate foreign 

polycistrons without processing into monocistrons. Also, we observed that the chloroplast can 

recognize and process stable secondary structures produced from heterologous sequences 

inserted during cloning or from the foreign organism. Intergenic sequences that form stable 

secondary structures and mask the ribosome-binding site may affect the translation of the 

downstream gene and are removed by processing of the transcripts, enabling translation (Barkan 
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et al., 1994; Hirose and Sugiura 1997; Del Campo et al., 2002). The factors involved in 

processing of the secondary structures in the native chloroplast transcripts have been shown to be 

target-specific, targeting specifc sequences inside the steem loops. Although, this is the case for 

native sequences, the processing event observed in our transgenic plants occurred within a 

heterologous sequence, indicating that there is some degree of flexibility in the sequences 

recognized inside the secondary structures. Alternatively, the processing machinery may target 

specific secondary structures beside specific sequences. Finally, we have shown that 

polycistronic mRNA lacking 3’UTR is stable and can be translated. These results are important 

for multigene engineering because they  facilitate the expression of multigenes by unerstanding 

the role of different sequences withing a foreign operon. 

Finally, we have shown that heterologous pathway can be engineered via the chloroplast 

genome to confer complex new traits that improve our environment. The expression of the merA 

and merB genes via the chloroplast genome promoted the detoxification of high concentrations 

of organomercurials, and confered resistance to high levels of the toxic chemical (Ruiz et al., 

2003). We reported the hyperexpression of the merA and merB genes using chloroplast and 

heterologous 5’UTR. This is an important report that shows the increased capabilities, 

applicability and the potencial of multigene genetic engineering via the chloroplast genome. This 

provides an excellent example of how metabolic engineering can improve our quality of life. 

This pathway provides a good example for beneficial effects of plants genetic engineering. The 

knowledge adquired from the results of this research will certainly offer insight for the effective 

expression of multigene metabolic pathways via chloroplast genetic engineering. 
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