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ABSTRACT 
 

Agent-based (AB) and system dynamics (SD) modeling and simulation techniques have been 

studied and used by various research fields. After the new hybrid modeling field emerged, the 

combination of these techniques started getting attention in the late 1990’s. Applications of using 

agent-based (AB) and system dynamics (SD) hybrid models for simulating systems have been 

demonstrated in the literature. However, majority of the work on the domain includes system 

specific approaches where the models from two techniques are integrated after being 

independently developed. Existing work on creating an implicit and universal approach is limited 

to conceptual modeling and structure design.   

 

This dissertation proposes an approach for generating AB-SD hybrid models of systems by using 

Systems Modeling Language (SysML) which can be simulated without exporting to another 

software platform. Although the approach is demonstrated using IBM’s Rational Rhapsody® it is 

applicable to all other SysML platforms. Furthermore, it does not require prior knowledge on 

agent-based or system dynamics modeling and simulation techniques and limits the use of any 

programming languages through the use of SysML diagram tools. The iterative modeling 

approach allows two-step validations, allows establishing a two-way dynamic communication 

between AB and SD variables and develops independent behavior models that can be reused in 

representing different systems. The proposed approach is demonstrated using a hypothetical 

population, movie theater and a real–world training management scenarios. In this setting, the 

work provides methods for independent behavior and system structure modeling. Finally, 

provides behavior models for probabilistic behavior modeling and time synchronization.   
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CHAPTER ONE: INTRODUCTION 
 

Even though the benefits to integrating the agent-based (AB) and system dynamics (SD) modeling 

techniques are recognized in literature, the current body of knowledge lacks research on studies 

focusing on common approaches in methodologies. Furthermore, the issues that arise from their 

integration are evaluated using existing simulation platforms from each individual research 

domain. However, utilizing a new external platform, such as Systems Modeling Language (SysML) 

– that has been found beneficial for both discrete and continuous modeling techniques 

separately – has recently been evaluated under this research effort. This dissertation describes 

contributions to the field of AB-SD hybrid modeling and simulation technique. It describes an 

approach and demonstrates its potential applications in population dynamics modeling and 

project management using hypothetical and real-life scenarios, respectively. It uses Systems 

Modeling Language (SysML) for modeling and simulating multi-method simulation model 

development on a software platform Rational Rhapsody® by IBM which can also be implemented 

on any other SysML platforms. 

 

 

Research Background 

 

Agent-based (AB) and system dynamics (SD) modeling techniques have separately been 

considered among effective modeling methods in literature. However, their combination can be 
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considered the least studied among published literature on hybrid models. The majority of the 

reviewed work from this domain includes examples and methods of two techniques being 

modeled separately, as sub-models of each other. The two models would later be combined to 

simulate the conditions of the dominant technique – as a dependent component – driven from 

its sub-model’s behavior – as an independent component. In studies using this structure, the 

dynamic information exchange is often one-way – from the technique with independent behavior 

to the dependent one.  

 

Unified Modeling Language (UML) representations are considered a common practice, 

particularly in computer science, for AB, SD and AB-SD simulations. However, limited work has 

been published on using its extension, i.e., Systems Modeling Language (SysML). According to 

the existing literature two distinct groups of practices emerged. While some researchers and 

practitioners still prefer UML diagrams for conceptual modeling, some studies from system 

sciences has captured systems using SysML. However, use of SysML is limited to conceptual 

modeling. In the second group, SysML is evaluated as a platform for modeling systems which 

could later be exported to external statistical simulation tools such as Matlab or Modelica. 

Limited studies are published on the topic and only one modeling technique was used for 

exploratory purposes. 
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Problem Statement 

 

The literature review revealed an ongoing argument on AB-SD hybrid modeling technique. Some 

studies in literature advocate potential benefits that can be achieved through the integration of 

the two techniques, whereas some describe the issues arising from their differences of most basic 

modeling notions.  Time and event synchronizations, continuous versus discrete behaviors, top-

bottom versus bottom-up approaches are among examples of these issues. The majority of the 

existing literature on the topic consists of one school evaluating the other’s performance as an 

alternative modeling approach using the same or a similar case. Furthermore, existing knowledge 

on AB-SD modeling methodology has provided case specific approaches rather than a generalized 

methodology. 

 

The need for identifying a common platform and a universal approach for AB-SD hybrid modeling 

and simulation has often been mentioned. However, existing literature is limited to studies using 

approaches where the two techniques are integrated after independently being modeled. 

Furthermore, AB-SD hybrid modeling and simulation within an external platform to both domain 

applications, such as SysML, has not been evaluated. Finally, potential benefits of an approach 

adapting model-based systems engineering (MBSE) methodologies for managing complexity and 

changes has not been researched.  
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Objective 

 

As a result, the main objective of this dissertation is to develop an approach for agent-based and 

system dynamics hybrid modeling and simulation using Systems Modeling Language (SysML) to 

be used for understanding and studying system’s emerging behavior over time. 

 

 

Contributions 

 

This dissertation demonstrates an approach, which implicitly develops and simulates an AB-SD 

hybrid model of a system without requiring any prior knowledge on either modeling techniques. 

It uses SysML diagrams and objects to minimize the use of programming languages and adapts 

model-based systems engineering (MBSE) methodologies to create a holistic approach that can 

be applied to different domains or fields.   

 

The approach starts from the problem identification phase of modeling and simulation 

methodology. Conducts input analysis through requirement analysis and distributes findings in 

multi dimensions. Specifically, in the proposed approach first, problem scope and boundaries, 

system limitations and expected behavior are analyzed. Second, gathered knowledge is used to 

identify physical components of the system. Finally derived behavior is merged and distributed 

over the physical components of the system. This methodology allows establishing a two-way 

dynamic continuous link between AB and SD mathematical models. Adapted MBSE approach 
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provides a top-bottom modeling approach that is the basic notion for SD modeling. The bottom-

up approach required for ABM is captured through the proposed process flow in behavior 

analysis phase. Furthermore two step validation approaches recommended by both AB and SD 

modeling techniques are supported by individual behavior validations in behavior analysis and 

overall model validations after structure analysis. SysML provides the external platform where 

the two techniques are combined, which is found beneficial in literature in supporting AB and SD 

modeling efforts separately.  

 

In addition to its contribution to AB-SD hybrid modeling, the proposed approach also provides 

methods that can be adapted by general modeling concepts. Specifically, through modularized 

behavior analysis, it allows changing, verifying and validating behavior independently. 

Furthermore, this allows modeling generic behavior rather than developing case-specific 

applications. As a result, it provides modeled behavior that can be re-used and customized for 

different applications. Overall the proposed methodology will: 

 

● Provide a generalized AB-SD modeling and simulation framework  

● Extend the MBSE approach for systems modeling using hybrid simulation platforms 

● Propose an approach for modeling reusable behavior 

● Provide alternative hybrid system architectures 

● Develop case studies to demonstrate potential applications 
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Proposed approach provides an output from distributed behavior composed of previously 

analyzed and integrated inputs. Output from the simulated systems will aid stakeholders in 

understanding behavioral and structural dependencies and impact of decisions or external 

events. Thus, in overall the results collected through this approach will; 

 

 Support stakeholders by providing the capability to run strategic what-if scenarios 

 Support system analysis efforts through long term dynamic behavior analysis  

 Identify factors that has the highest impact on the behavior caused by direct and/or 

indirect relations 

 

 

Document Outline 

 

This dissertation starts with a brief introduction on the topic and outlines the findings from 

literature review on each related field.  

 

Later describes the Methodology in four main phases, requirements analysis, behavior analysis, 

structure analysis and validation and verification, which are further grouped according to the 

common phases used in MBSE approach.  

 

In Methodology Verification, this dissertation provides an approach for modeling probabilistic 

behavior in SysML and compares the outputs with results collected from another simulation 
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platform AnyLogic. In addition, proposes an approach for managing time synchronization issues 

arising from AB and SD integration and verifies the overall approach by testing the significance 

of correlation and autocorrelation between independently-modeled agents using a hypothetical 

movie theater system.  

 

The proposed approach first is demonstrated using a hypothetical giraffe population observation 

system for modeling and simulating population dynamics which is a common application area in 

both modeling techniques. Second, applies the approach on a real-world case study for training 

management. Through this case study this section demonstrates how the behavior is derived and 

distributed over the two system components, employee and organization. It shows the verified 

and validated overall model of the training management system and uses the model to study the 

change in count of people waiting for training over a four year period. 

 

Finally, in Conclusion, contributions of the proposed methodology and possible extensions for 

future work are discussed. 
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CHAPTER TWO: RELATED WORK 
 

The literature review starts with a brief description on agent-based (AB), system dynamics (SD) 

and AB-SD combined simulation techniques. Later, model based system engineering approaches 

that can be applied to modeling for simulation and existing literature on applications using 

Systems Modeling Language (SysML) are reviewed. 

 

 

System Dynamics Modeling and Simulation 

 

System dynamics (SD) is a technique to present, understand and explain complex problems 

(Radzicki et al., 2008). A critical factor in a system dynamics model is the identification of its 

objective (Forrester, 1987). It is efficient in modeling complex systems since it is based on 

nonlinear dynamics and feedback control. SD has diverse application areas such as transportation 

(Haghani, Lee, & Byun, 2003), healthcare (Homer & Hirsch, 2006), project management (Sterman, 

1992) and so on.  

 

SD utilizes human behavior by incorporating social psychology, organization theory and 

economics (Sterman, 2001). Models created by system dynamics are generalizable and enable 

the processing and analysis of graphically depicted data. These properties make system dynamics 

attractive for organizational models (Popova and Sharpanskykh, 2010). For example, SD was 
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shown to support identifying the gap between organizations and individuals learning and later 

used this understanding in reducing fragmented learning (Romme and Dillen, 1997, Dangelico et 

al. (2010)). The model analyses the district evolution according to a multiple dimensions such as 

institutional, economical, and social issues. Van Olmen et al. (2012) introduce a framework for 

health systems research, which can be used in two different applications of health systems. 

Schwaninger and Rios (2008) use system dynamics with viable system model for modeling 

organizational cybernetics. The main goal of the model is increasing the capabilities of the users 

in dealing with challenging issues in organization and society. Robbins (2005) proposes a system 

dynamics model with interdependent parameters as a support tool for decision-makers in nation 

building to investigate different sets of decision approaches at a regional level.  

 

Different approaches in SD modeling have been suggested in literature. For example, Coyle 

(2001a) suggests using five stage approach where Towill (1993) further separates them in to nine 

stages. However, a common approach in all is the iterative nature of the overall process. 

Compared to methodology approaches, validation techniques in SD modeling is not a common 

topic in the domain (Barlas, 1996). Although this is in some ways contradicted by Sterman (1992), 

there is a gap in provided validation techniques that are specifically customized for SD. Barlas 

(1996) suggests a two-phase validation approach, where structure-oriented behavior and 

resulting behavior patterns are validated separately.  

 

Overall, the principles of system dynamics modeling, such as the ability to study the effects of 

individual variables and their interactions, provide a pragmatic and holistic nature (Romme and 
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Dillen, 1997) that is found useful in modeling humans as social systems that are characterized by 

“dynamic complexity” (Senge, 1990). 

 

 

Agent Based Modeling and Simulation 

 

Agent-based modeling and simulation (ABMS) is an approach for modeling complex systems 

composed of autonomous actors, interactions of actors,  the environment in which these actors 

interact and the rules defining the interactions (Macal, 2010). Actors in ABMS are named as 

‘agents’.  Agents are autonomous and they interact with each other according to the protocols 

defining their behaviors (Bandini, 2012).  These protocols generally consist of simple rules. 

However, the combination of agents and their interactions creates a complex structure, which is 

used to understand the behavior of systems under various conditions. Therefore, ABMS is 

applicable to complex models, where traditional modeling tools are generally not sufficient 

(Macal, 2010). ABMS also incorporates features using advances in computational power and data 

storage capabilities. These technological improvements enable enhancements in modeling the 

complexity designed through ABMS by bridging macro and micro levels of a system (Macy and 

Willer, 2002).  

  

ABMS is an active research area with numerous applications, such as organizations (Bonabeau, 

2002, Van Dam et al., 2007), economics (Charania et al., 2006), epidemics (Carley et al., 2006), 

social systems modeling (Kohler and Gummerman, 2001), influence (Marsell et al., 2003) and so 
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on. One of the emerging concepts in ABMS research is organizational management and human 

behavior modeling. Rojas-Villafane (2010) use ABMS to create a model named Team 

Coordination Model (TCM), which estimates the performance of a team according to its 

composition, coordination mechanisms and characteristics of the job. The rules defining the 

behaviors of agents in TCM are individual team design factors and the overall performance of the 

model is validated by comparisons against real team statistics. As hierarchical structures are 

increasingly adopted by organizations and most of the activities are automatized, ABMS can be 

used to model organizations efficiently. Montealegre Vazquez and López (2007) develop a model 

for open hierarchical organizations, in which each member of the organization is modeled as an 

agent and the norms are used to define the behavior of agents.  The organizational culture model 

by Harrison and Carrol (2006) also models the members of the organization as agents. In this 

model, interactions of the agents are modeled as social influences and the observed 

organizational property of the model is the cultural heterogeneity in the organization. Rivkin and 

Siggelkow (2003) use ABMS to model the decision behavior of top management agents in an 

organization. They observe properties of vertical hierarchy in organizations and identify 

circumstances in which vertical hierarchies may lead to inferior long-term performance. 

 

ABMS uses agent-oriented approach rather than process oriented, which is not common to most 

simulation approaches (Macal & North, 2010). Although majority of the literature agrees on the 

high-level modeling phases, a common modeling technique that could represent different types 

of applications has not yet been identified (Gilbert & Bankes, 2002). The limited work on design 

concept standardization and protocols has been identified as an issue in very recent studies 
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(Collins, Petty, Vernon-Bido, & Sherfey, 2015).  A commonality in all reviewed literature is the 

ground-up approach (e.g., Masad & Kazil, 2015, Macal & North, 2007), which starts with simplest 

agent and extends it according to problem description.  

 

 

AB-SD Hybrid Models 

 

Availability of data and improvements in computational power has increased the use of 

simulation in various fields in academia and government industry. This trend is also observed in 

hybrid simulation platforms, especially in the area of manufacturing (e.g., Jahangirian, Eldabi, 

Naseer, Stergioulas, & Young, 2010). System dynamics (SD) and discrete event simulation (DES) 

combinations consists the majority of the published research. However, agent based modeling 

and simulation (ABMS) and SD combinations are found less researched and understood (Swinerd 

& McNaught, 2012) even though each separately are considered to be among the most important 

methods (Lättilä, Hilletofth, & Lin, 2010). Scholl (2001) points out this gap in literature, and 

discusses potential benefits of their combinations to the common applied research fields.  

 

In addition to techniques used in hybrid modeling, one can also find commonalities in individual 

AB and SD modeling methods. For example, Coyle (2001b) describes a method for SD modeling 

which starts by identifying system actors and their possible states. Later, he continues by 

identifying rules and conditions for state transitions.  However, the basic notion in their approach 

can be categorized as to be completely opposite of one another. Where ABM uses ground-up 
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approach SD is modeled using top-down notion (Macal & North, 2007). Among the first to be 

published in the domain, Phelan (1999) identifies three core differences between the two 

modeling techniques as their agenda, technique basis and epistemology. However, more 

differences have been argued by researchers in later years (Pourdehnad, Maani, & Sedehi, 2002 

and Figueredo & Aickelin, 2011). Conceptual models are commonly used for identifying scope, 

interactions and behavioral dependencies of systems in literature (e.g., Gilli, Mustapha, Frayret, 

Lahrichi, & Karimi, 2014 and Größler, Stotz, & Schieritz, 2003). Furthermore, Unified Modeling 

Language (UML) is often used to represent agent states in studies from computer science fields 

(e.g., Borshchev & Filippov, 2004). Existing literature include studies that are in its early design 

phases (Gilli et al., 2014) or providing result from exploratory applications (e.g., Akkermans, 

2001). 

 

 

Model Based Systems Engineering (MBSE) Approach 

 

Model-based design has been identified as an approach that can aid in issues arising from human-

system interaction (Sage and Rouse, 2009). There is not a standardized methodology for MBSE 

approach (Ramos, Ferreira, & Barcelo, 2012); however, the majority of the well-known MBSE 

approaches utilize the Vee-Model (Figure 1) (Sellgren, Törngren, Malvius, & Biehl, 2009) and 

extend it according to their domain. Harmony SE is one these approaches (Hoffmann, 2014) 

where, prior to modeling, behavior is decomposed and modeled individually according to 

requirements and later after architectural design phase, are allocated to the responsible parts of 
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the system. Potential benefits from adapting MBSE is pointed out by a questionnaire conducted 

by Pastrana (2014) where later, a roadmap is suggested for designing conceptual models of 

distributed and hybrid simulation systems. 

 

 

Figure 1 Vee- Model (INCOSE, 2011) 

 

 

Systems Modeling Language (SysML) 

 

The holistic approach required in modeling complex systems are supported by four key modeling 

facets, called pillars including nine diagrams, that consist of requirements, behavior, structure 

and parametric relationships (Ramos et al. 2012). Figure 2 captures the representation of 

diagrams published by Object Management Group (OMG) included in each pillar (Hause, 2006). 

Although Package and Use-Case diagrams are not included in this representation they are also 

considered a part of structure and behavior pillars, respectively. 
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Figure 2 Four Pillars of Model Based Systems Engineering (OMG, 2007) 

 

 

Modeling and Simulation with SysML  

 

Recent capabilities introduced by IBM’s Rational Rhapsody provides a platform for modeling 

continues dynamics using SysML. According to Euler’s method (Huntsville, 2014) one can solve a 

differential equation by approximating its solution at a discrete sub-division, referred to as steps, 

of a continuous time interval. This can be expressed as: 
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𝑓(𝑃) =
𝑑𝑃

𝑑𝑡
≈

∆𝑃

∆𝑡
= 𝑓(𝑃𝑛) 

 

Furthermore, this approximation is used to approximate the change, and hence, predict the 

future value of continuous function P from its initial or current value. The discrete equation is 

expressed as: 

𝑃𝑛+1 = 𝑃𝑛 + ∆𝑡𝑓(𝑃𝑛), 

 

where n is the computation count and t is the time step. Johnson et al. (2007) propose a 

methodology using Modelica internal behavior equations to create relationships among 

components where they represented algebraic equations with conditional logic, which add 

capability to add stakeholder requirements to system behavior (Johnson et al., 2011). McGinnis 

and Ustun (2009) demonstrate method for linking SysML with a simple discrete simulation model 

using Arena where they create a simulation from its conceptual model. 

 

Among reviewed literature, the three most common diagrams used to capture behavior are, 

Parametric Diagrams (ParD) (T. Johnson, Paredis, & Burkhart, 2011 and T. A. Johnson, Jobe, 

Paredis, & Burkhart, 2007), Sequence Diagrams (SeqD) (David, Idasiak, & Kratz, 2010) and 

Statechart Diagrams (STM) (Silhavy, Silhavy, & Prokopova, 2011). In studies using ParD, equations 

are added as parametric constraint blocks with a composition relation to the owner block. This is 

consistent to composition relation between the agents and their behavior suggested by Bersini 

(2012).  Furthermore, when used, SeqD and STM are added to the owning block. The main 
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commonality among these studies is that the behaviors are created after the structure analysis 

phase.  

 

Majority of the proposed designs in literature-focusing on architectural design for different types 

of simulation- revealed two distinct perspectives: proposing a design of the actual system and of 

the conceptual model for the actual system’s simulation model. Studies from the first group, such 

as the block definition diagram (BDD) suggested by Johnson et al. (2011), decompose the system 

according to the actual components of the system. This is also common to studies suggesting a 

multi–level approach for modeling hybrid models (Basole & Bodner, 2015). The decomposition 

approach in studies belonging to the second group is based on the components of the model, 

which is similar to approach used in software development. For example, Swinerd & McNaught 

(2012) propose three design structures for SD-ABM models, which are decomposed according to 

SD and ABM parts of the system. There are few studies that captured both perspectives such as 

the mapping of domain and analysis meta-models proposed by Huang, Ramamurthy, & Mcginnis 

(2007). Additional to SysML, studies using Unified Modeling Language (UML) (such as Bersini, 

2012), are also reviewed to capture alternative proposals for developing a universal ontology.  

 

Existing research on single type models showed SysML being used either to support conceptual 

model development, similar to UML (Silhavy et al., 2011), or as foundation for models that could 

be exported to other simulation software such as Modelica (Johnson, Jobe, Paredis, & Burkhart, 

2007) or Arena (Mcginnis & Ustun, 2009).  
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Even though there is an increasing interest in literature, where SysML is used to support modeling 

efforts, a gap exists in the domain, which adapts MBSE methodologies for modeling and 

simulating systems within SysML. Furthermore, an approach which implicitly drives an agent-

based and system dynamics hybrid model of a system has not been provided. The few studies 

published on agent-based and system dynamics hybrid modeling and simulation domain use 

SysML to design the architectural components of a system’s model.  
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CHAPTER THREE: METHODOLOGY 
 

Commonly used agent-based (AB) and system dynamics (SD) modeling techniques and 

alternative workflow suggestions are summarized in Chapter 2. Even though each separately is 

considered to be effective methods (Lättilä et al., 2010),  there is very little research on agent-

based and system dynamics (AB-SD) combinations. Furthermore, majority of the work focuses 

on model conceptualization and formulation and does not provide an approach that can 

consistently be used all throughout the modeling and simulation workflow.  

 

Computing power advancements paired with large amount of data collected over the years 

significantly increase AB-SD modeling and simulation capabilities. However, these advancements 

also increase the intricacy and the scale of modeled environments and introduce three core 

challenges. First, high complexity is difficult to be included using the ground-up approach. 

Second, the involvement of stakeholders-from various fields and backgrounds-introduces 

additional needs and expectations, each facing unavoidable changes due to shifts in 

environmental conditions. Finally, the need to maintain the coherency and efficiency of validated 

models through structural or behavioral change requests that arise from emerging variables, 

constraints or states. This research proposes an approach for modeling and maintaining AB-SD 

hybrid models of systems using Systems Modeling Language (SysML).  
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This section describes the methodology in four main phases. As shown in Figure 3, it starts with 

requirements analysis and is followed by behavioral and structural design. Finally, it explains the 

methods for validation and verification.  

 

 

Figure 3 High-Level Methodology Process 

 

A generic package diagram is created to capture this relation between the behavior and the 

responsible part of the environment in Figure 4. The two packages, Pkg Structure and Behavior 

Analysis, represent the high-level folders in the SysML project tree. An Agent block captured 

under Pkg Structure Analysis is used to represent the physical entity which is a part of the 

environment with a specific behavior that is defined under Pkg Behavior Analysis.  
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Figure 4 Behavior to Structure 

 

For simplicity, only high-level, potential components were used where both behavior blocks were 

allocated to a single part of the model. However, since the level of behavioral complexity and the 

associated structure is unique to each environment under study, a component may be 

responsible for more than one behavior. With the same token, more than one component may 

be involved in executing one behavior.  This is further discussed in Structure Analysis section of 

this chapter.  

 

Through the remainder of this dissertation the word agent is used to describe all environment 

members which or who are simulated using agent-based simulation technique. Furthermore, the 

word actor is used as a specific role to describe persons or systems who are external to system 

under development (Ramos et al., 2012). Finally, the word location is used to describe the area 

where agents and/or actors exist. 
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Requirements Analysis 

 

Grouping similar requirements is a common approach both in academia and private industry 

(Friedenthal, Moore, & Steiner, 2009). Method uses five main groups for capturing the identified 

capabilities and conditions expected from the model. The first two of five can be classified as 

system-driven. These two groups include behavioral and structural requirements of the system. 

The third and fourth groups can be classified as program-driven. Third group consists of 

translation rules that are used for building the designed model in the selected simulation 

environment or language. If the modeler is using the same two software consistently and neither 

has gone through any significant updates, no change in the specifications is expected and 

therefore can be imported for all new model designs. The fourth group captures model validation 

and verification test specifications and includes a list of the variables and their expected values 

that will be used within statistical tests. The final group can be classified as customer-driven. It is 

used to list the variables, values of which must be collected for output analysis.  

 

Different methodologies used in requirements analysis and management are not covered within 

the scope of this dissertation. Further reading on the topic can be found in most SysML and MBSE 

books (e.g. Weilkiens, 2006 and Friedenthal et al., 2009).  
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Define Behavior 

 

The developed process flow for behavior analysis can be grouped in seven phases as captured in 

Figure 5. Phase 1 starts with Use Case Diagram (UCD) design, and is followed by the next phase 

where each behavioral requirement is linked to associated use case(s). In the third phase, 

activities, involved per each use case, are mapped using the Activity Diagram (ActD). Then, the 

interaction between environment components and between actors and environment 

components are generated using Sequence Diagram (SeqD). Ports and interfaces are created in 

the fifth phase in order to establish the connection for message exchange between all members. 

In the sixth phase, initial Statechart Diagrams (STMs) are created and finally the model is 

compiled for behavior verification. The following sub-sections of behavior analysis follow the 

order of phases captured in Figure 5. 

 

 

Figure 5 Behavior Analysis 
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Create Use Case Diagrams (UCD) 

 

UCD is used to identify environment boundaries, scope, and model behavior and any internal and 

external interactions defined within the project scope. A flow chart is developed for creating the 

UCD.  First the modeler identifies actors, their relation with the system and the types of their 

behavior, referred to as functions. Later, similar actions are repeated to identify the emphasis, 

and impact of location conditions and events if any are included within the environment 

boundaries.   

 

The process starts by adding all members of environment, which are involved in, have impact on 

or simply observe outcomes. These can include stakeholders, external systems, agents and even 

locations other than the one considered within the focus. Later, by iterating a series of decisions, 

the modeler identifies the actors’ relations to the modeled system and their time or SD driven 

behaviors. Agents who are identified as a part of the environment are not added to UCD as actors. 

However, their behaviors are added as functions within the system boundary box. Later in section 

Structure Analysis, these are added as a part of the environment and designed behaviors are 

allocated to each responsible party.  

 

Location of agents may play an important role in the design depending on the type of 

environment scenario. For example, studies focusing on influenza outbreak (eg. Lukens et al., 

2014) often derive contact rate from the distance between agents. In such cases, location of each 

agent is considered as a factor impacting experiment results and therefore may be included in 
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UCD. After completing the process for an actor, modeler goes back to beginning and repeats the 

decisions with the new actor selected. UCD is completed once all the actors, functions and their 

associations are linked. The activity flow capturing this description is represented in Figure 6.  

 

There is not a specific order suggested for actor selection. However, leaving the actors who are 

the focus of interest, to the last is recommended. This may help modelers to clarify environment 

boundaries and some of the assumptions prior to decisions requiring more details.  

 

 

Link Requirements to UCD’s 

 

The specific relation type between identified requirements and the model elements can be added 

manually or using a matrix view. In this phase, a generic relation “trace” can be used to map the 

use cases to the corresponding requirements. UCD can be used for visual verification to confirm 

that all required behaviors have been captured. Furthermore, it can be used as a map to add 

“satisfy” relation to the corresponding behavior block created from identified use cases. Multiple 

matrix views focusing on specific behavior or part can be created to simplify table contents when 

modeling complex systems. 
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Figure 6 Use Case Diagram Development Process 
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Create Activity Diagrams (ActD) 

 

The activity diagram is used to capture the sequence of actions that needs to be executed in 

order to satisfy the goal defined by a use case (Weilkiens, 2006). The path of sequence execution 

is represented using control or object flows depending on the type of information necessary for 

executing an activity. If a system consists of activities common to more than one use case, they 

can be designed either explicitly as an operation or in groups as behaviors. Furthermore, an 

activity can be an action state or a message. Although multiple actions can be represented as 

embedded code within a single activity, it is not recommended. This method would not simplify 

the modeling of system behavior complexity, therefore would eliminate the benefits that can be 

achieved using MBSE approach.  

 

Developed flow (Figure 7) starts by adding the actions of the selected use case and placing them 

in the diagram in a sequential order. A decision, fork and join nodes are later added if necessary 

to represent conditional reactions of the system. In the third step, the variables, which will be 

used either at the decision nodes or within actions, are added to the associated behavior block. 

Common variables must be added only once and to the responsible behavior block. For example, 

simulation time variable would only be added to the update time behavior block. Later during 

structural design these common variables will be allocated to all parts of the system. A star is 

added to this step to indicate that it is optional. The modeler can also use the sequence diagrams 

to identify variables and add them to the associated behavior block.  Remaining steps focus on 

capturing internal and external message exchange.  
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Figure 7 Activity Diagram Development Process 

 

First actions belonging to actors, who or which are external to the system scope and trigger a 

behavior sequence, are added as messages. From system’s perspective, these are incoming 

messages from an external source, therefore are represented using an inwards direction at the 

actor pin. These steps are not performed if there are any actions that are waiting for an action to 
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be completed by a different behavior block within the system. The waited actions are captured 

only at the ActD of the behavior block responsible of performing the action. Therefore, when 

modeling systems with complex behavior, activity diagrams must be created simultaneously. 

Instead of waiting to complete one ActD, when identified, the required action can be added as a 

message to the ActD of the responsible behavior block. Last group of steps focuses on identifying 

and adding such actions as messages. Process flow of the described method is captured in Figure 

7. 

 

Required ActDs such as “update_time” or “update_dynamics” can be used to start the modeling 

in this phase. If this is the first time this methodology is being used, modeler would create them 

manually and save the project. If not, a previously saved project with only the two use cases and 

their behavior blocks, can be imported using the “Add to model” menu option in Rhapsody (IBM, 

2014).  

 

The ActD for “update_time” behavior consists of one action, “increment_clock”. Furthermore, it 

is responsible of starting the overall system execution and updating the internal clock. As a result 

it consists of two message actions and one action with embedded code that will increment the 

clock (Figure 8). A variable named “Tnow” is added to the block representing the time of the 

simulation in days.  
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Figure 8 Update Time Activity Diagram 

 

The second ActD created or imported satisfies the “update_dynamics” use case behavior. This is 

the behavior that is used to model the system dynamics parts of the model. Hence, it consists of 

an action named “update_dynamics” that will be executed after receiving the new time message 

“send_update”. This has the code embedded for updating variables identified as stock and 

dynamic. The second action has the code for updating rates per time increment measure t (e.g. 

weeks, days) after receiving the corresponding messages from those behavior blocks.  

 

 

Generate Sequence Diagrams (SeqD) 

 

Harmony Profile allows automated generation of sequence diagrams (SeqD) from created ActDs, 

including operations such as: 

 Generate operations from action names 

 Create events 
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 Create interface 

 Add corresponding operation and event realizations (Hoffmann, 2014). 

 

One or more SeqDs can be created for a behavior block. However, to maintain modularity at least 

one SeqD per behavior block should be created. If Harmony profile is not used for SeqD 

generations, each listed operation has to be completed manually. Later in the SeqD operations 

and events should be assigned to message and event tools, simultaneously, as realizations. Only 

the messages exchanged between the system and actors are shown in initial SeqDs since these 

are created from the black-box activity diagrams. Internal messages are added to the SeqD after 

the actions are allocated to the responsible system parts during architectural design phase. 

Depending on the level of detail required, the behavior and conditional rules can be planned 

using SeqD. Although this is not required, it would lay the grounds for mapping the rules for state-

based behavior and support designing efforts. Rhapsody diagram tools can be used to add 

conditions and logic for operation sequence. All types of operator based interactions added to 

SeqD are only added as a visual guidance and are not included in the compiled simulation 

execution file (IBM, 2014).  

 

 

Create Ports and Interfaces 

 

Similar to SeqD generation, ports and interfaces can be created automatically using the Harmony 

toolkit. This option will move all external events to corresponding interfaces and add receptions 
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to the receiving party. Finally, it will add parts of the behavior block and interacting actors to 

capture their communication using an Internal Block Diagram (IBD). Each behavior block created 

up until this phase will have its own IBD. The main purpose is to identify the specific behavior 

block, where the overall system is required to interact with an actor in the environment 

surrounding itself.   

 

 

Define States 

 

In behavioral design phase decomposed blocks are treated individually. Therefore one state 

diagram is created for each behavior block. The states and transition conditions are added 

according to the logic identified in SeqDs. The modeler can embed the code for operations during 

any state after SeqD design. However, all remaining code should be embedded during state 

definition. In order to maintain modularity, elements from the Rhapsody toolbar should be used 

rather than embedding complex conditions or loops within one operation.  

 

“UC_update_time” is designed to be used for representing the internal clock of the system. As a 

result, it is set to be incremented once per day continuously. However, for simulations that are 

time bounded, an end state can be added using a conditional trigger for the final transition. As 

captured in Figure 9, only one of the operations defined in Figure 8 Update Time  is used at this 

step. Any internal messages such as “sim_start” or “send_update” are added after the system is 

decomposed to its parts during structure analysis phase. 
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Figure 9 Update Time State Diagram 

 

After establishing system clock, the simulation time units for continuous variables are modeled 

according to user preference. The graphical representation for the population net flow can be 

shown as in Figure 10.  

 

 

Figure 10 Population Count Over Time 

 

Then the equation for a population at time t using 1 week increments can be expressed as: 

 

 

In system dynamics, birth and death rates of a population are assumed to be proportional to the 

population (Cellier, 1991). This relation is captured using a feedback from the population to 

corresponding rates as shown in Figure 11. 

 population(𝑡+1) = population(𝑡) + 𝑏𝑖𝑟𝑡ℎ_𝑟𝑎𝑡𝑒𝑡 − 𝑑𝑒𝑎𝑡𝑒_𝑟𝑎𝑡𝑒𝑡 (3.1) 
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Figure 11 Population Count with Feedback 

 

Therefore, the population equation, where BR and DR represent the birth and death rate 

proportions at time t, is used as: 

 

 

And therefore: 

 

 

Even though in Eq. (3.3) the two rate proportions are represented as dynamic variables, they can 

also be assumed as constant over time for the focused population type when there is a lack of 

contradicting evidence.  

 

On the other hand, AB-SD hybrid modeling technique can be used to derive these rates from the 

simulated agent behavior, allowing the modeler to eliminate the proportion estimations and any 

associated errors. As a result, Eq. (3.1) must be used in operations when modeling stock variables 

 

population(𝑡+1)

= population(𝑡) + (BR(𝑡) × population(𝑡)) − (DR(𝑡) × population(𝑡)) 

(3.2) 

 population(𝑡+1) = population(𝑡) + ((BR(𝑡) − DR(𝑡)) × population(𝑡)) (3.3) 
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that depend on agent behavior, such as “update_population()”.  In order to maintain validity after 

this elimination, the modeler is required to provide more detailed information about the 

population at time 0 compared to SD modeling.  

 

 

Behavior Verification 

 

Similar to previous phases, the verification of decomposed behavior is done individually. First, 

developed model is compiled using simulated time in MSVC environment with C++ language and 

any possible issues are fixed. Later the program is executed and the individual behavior of each 

block is observed using simulated statecharts and sequence diagrams (IBM, 2014). As the final 

step, properties of all variables are checked for any errors.   

 

Overall, the purpose of behavior analysis can be summarized as following: 

 Identify system requirements 

 Identify system scope and boundaries 

 Identify the modularized actions and reactions of the system to the external triggers 

 Identify its interaction with the surrounding environment and conditions 

 Derive resulting behavior from findings gathered above for verification 
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Define Structure 

 

The process flow for structure analysis is grouped in three phases that are system decomposition, 

behavior allocation and verification and validation as captured in Figure 12. Behavior allocation 

is further completed in four sub-phases where names have been kept the same on purpose to 

point out the shared diagrams between the two analyses.   

 

 

Figure 12 Structure Analysis 

 

 

Create Block Definition Diagrams 

 

In literature review, the two approaches used in system decomposition for system modeling were 

discussed. During initial research efforts the selected system was decomposed according to its 

conceptual model parts. (Soyler Akbas, Mykoniatis, Angelopoulou, & Karwowski, 2014). Hence, 

the training system was decomposed as Agent-Based Model and System Dynamics Model (Figure 

13). However as SD and ABM parts were further decomposed; behavior allocation and 
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maintenance became more complex. Furthermore, overall model design became too customized 

for providing quick changes to significant behavioral adaptations and for the capability to export 

specific behavior to be used in other systems. 

 

 

Figure 13 Initial Block Definition Diagram of a Training System 

 

Main focus of the modeling effort must be used to identify the best approach for system 

decomposition. If the goal is to study the behavior of a system itself, using a SD-ABM simulation 

technique rather than conceptualizing its model, the system must be decomposed according to 

its physical components. The main goal of this research is proposing a methodology for modeling 

system behavior over a time period. Therefore, this work discusses and showcases systems that 

are decomposed into its physical components. Three high level simple system structures are 

created to guide component identification. They are grouped according to the differences in main 

focus and information exchange between its components (Table 1).  



 
38 

Table 1 System Decomposition Types 

Decomposition Type Information Type Explanation 

 

One Way 
Agents to Location 

 Main system focus is the location 

 Common location shared by all agents 

 Changes in environment do not impact 
agent behavior 

 Changes in agent behavior impact the 
location  

 

One Way 
Location to Agents  

 Main system focus is agents 

 Unique location per agent  

 Changes in location impact agent 
behavior 

 Changes in agent behavior do not impact 
their location 

 

Two Way 
Agents to Location 
& 
Location to Agents 

 System focus is both 

 Common location shared by all agents 

 Changes in environment impact agent 
behavior 

 Changes in agent behavior impact their 
environment 
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The “Agent” is used to represent unique objects, people, locations, which can be grouped under 

one goal. Similarly, “Location” represents a physical or conceptual location common or unique to 

agents. Both can include SD models. With the same token, both or sub-parts of both can be 

modeled as agents in AB models. This is further explained in the following section under each 

category.  

 

 

Decomposition Type I 
 

This type consists of models focusing on locational factors changing due to agent behavior 

independent of the location. Both location and agent can represent more than one unique part 

of the system. However, this layout assumes no interaction between individuals existing in 

different locations. The method provides the use of this structure only if there is a possible scope 

change in the future to include agents within the focus or they share conditions that impact both 

of their behavior in the environment over time. If not, Agents must be represented as actors 

under UCD, as externals only impacting the system. The farmers’ impact on ecological carbon 

and nitrogen stock model introduced by Gaube et al., 2009 is an example of this type. In this 

study one can see the impact of farmers’ work on the flows however the impact of nitrogen and 

carbon on an individual farmer is negligibly small and therefore not included.  
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Decomposition Type II 
 

Type II can be used when the system focus is completely opposite to described in Type I. Hence, 

must be used when simulating systems where the change in an agent is driven by the changes in 

its location or locations. This design assumes each location is unique to an agent therefore, the 

system focus does not include location based interactions between agents. Simple supply-chain 

models can be given as examples of this type. Manufacturers’ decision making process at a micro 

level driven from the status of the raw material in their area of service can be modeled using this 

structure.  

 

 

Decomposition Type III 
 

In systems that require two way dependencies between its agent(s) and location(s) the model 

must be structured with parallel hierarchy using type III. This structure can allow actors to share 

the existing location conditions or resources and locations to drive their change based on 

individual and combined behavior simultaneously. Most of the population studies can be given 

as examples in this group such as the model proposed by Chaim, 2008.  Using this structure, 

location dependent agents with unique SD or AB behaviors can be modeled at a micro level where 

their impact on the population can be modeled at a macro level under location.  
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Complex Decompositions 
 

A combination out of the three proposed decomposition types can be used when modeling 

complex systems. Systems should be studied according to interdependencies among its 

components and the project scope to find the most suitable combination. For example a supply 

chain system including buyers, product manufacturers and raw material manufactures shared by 

all high level manufacturers can be decomposed using two Type II and one Type I decomposition 

structures as shown in Figure 14. However, if the original scope does not include the impact of 

factory locations they can be eliminated from the design.  

 

 

Figure 14 Complex Supply Chain System Decomposition 

 

This methodology can be useful for long term projects as they can be more open to project scope 

changes. Such a system model which originally consists of a single type, can be later extended to 

include micro details. 
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Allocate Behavior 

 

Modeler can merge behavior designed in the previous section with the main system block after 

the system is decomposed to its components. This action will copy all operations and attributes 

into the main system block with a trace relation added, linking it back to the original behavior 

block. Later, the behavior is allocated to each responsible component using the graphs previously 

created or duplicated. This is further explained in the following sections. Similar to behavior 

analysis, the modeler can choose to complete the remaining phases either manually or by using 

Harmony profile tools. 

 

 

Create White-Box Activity Diagrams (ActD) 
 

In this phase, first, previously created ActDs are duplicated and renamed as White-box ActDs. 

Later, a swim lane is added for each system part and operations are placed-by moving- under the 

responsible block.  

 

 

Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces 
 

After each behavior is allocated to the responsible part of the system Harmony profile can be 

used for generating the SeqDs and for creating the ports and event interfaces. This is executed 
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by following the steps discussed under each corresponding topic of behavior analysis. Differently, 

in this phase, if any of the operations are modified this action’s impact on the verified behavior 

cannot be analyzed. Therefore, necessary changes must be applied on the responsible behavior 

block and all behavior must be re-merged and allocated.  

 

 

Define States 
 

In this step, a state chart is created for each part of the system. Later, previously modeled states 

of the behavior blocks are duplicated and placed within each, creating integrated state charts. 

Organization of states in these integrated statecharts is modeler’s choice. However, “and-states” 

for parallel behaviors should be used rather than complete integrations. This way, if conditions 

in one behavior change, the states for that behavior could easily be identified and modified 

without requiring any changes in the other sections. 

 

 

Verify and Validate System 

 

Verification of the overall model is done visually, in three steps using simulated SeqD and 

statecharts. First, events and message sequences are checked to verify the communication 

between the different parts of the system. Second step focuses on state transitions. In this step, 

time and rate based and probabilistic triggers are observed that belong to either a single part of 



 
44 

the system or to randomly selected objects of parts whose multiplicities are more than one. In 

the final step of verification, function executions are checked by observing the change in variable 

values over time.  

 

Output variables identified for validation during requirements analysis phase are used to conduct 

statistical output analysis. A hypothesis test, such as difference of means, is used to calculate the 

significance of difference between the model output and collected data from the real system.   
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CHAPTER FOUR: METHODOLOGY VERIFICATION 
 

Two challenges were faced when the methodology was applied using IBM’s Rational Rhapsody. 

This section describes these issues and proposes solutions for overcoming these limitations. It 

starts with probabilistic behavior under Variability and later continues with time synchronization.  

 

 

Variability 

 

Rhapsody is not designed as a simulation tool and default C++ package does not come with a 

predefined math library functions. Therefore a random number following a specific distribution 

cannot be generated, except for uniform distribution. To eliminate this limitation a 

“generate_variate” behavior is created for systems which consists of behaviors with defined 

distributions. This behavior block includes calculations adapted from random variate generation 

techniques as functions.  

 

For example, the associated variables and operations allocated to a “rate” block and the 

pseudocode of the algorithm for creating duration based state change that is exponentially 

distributed with a rate 0.1 per day are presented in Figure 15 and Algorithm 1, respectively. 
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Figure 15 Rate Block Values and Operations 

 

Algorithm 1 Generate Timeout 

1: Date: Day count at timeout 

2: Ln[100]: Array storing -ln(i/100) where int i ~ U(0,100) 

3: U: Generated integer ~ U(0,100) 

4: Uni: Value at Ln[U] 

5: While on transition between states 

6:      if next state has distributed transition then 

7:           Generate uniform variable U 

8:           Set Uni  Ln[U] 

9:           Calculate exponential variate Date with rate 0.1 

10:      end if 
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Exponential distribution has a CDF that can be invertible. As a result, variates in this example are 

generated using inverse transformation technique that can be recalculated for different rate 

values. Additional to inverse transformation technique, functions included within this behavior 

block also includes convolution and composition methods to support different distribution types.  

 

Two population models, one in AnyLogic and the other in Rhapsody, are created for validation 

analysis with 50 agents and used to check for evidence of a statistical difference between the 

two software outputs. Table 8 in the Appendix captures the cumulative arrival transition 

frequencies recorded per software. These values are also plotted against days (Figure 16). 

 

 

Figure 16 Cumulative Frequency of Arrival Transitions 
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In cases of correlated outputs, such as this, mean of differences recorded for t = 0, 1…, 50 can be 

used for testing statistical difference. Where Xt and Yt represent the outputs recorded on day, t, 

from AnyLogic and Rhapsody, respectively, the test criteria are as follows: 

 

 𝐻0: 𝐷𝑡 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐷𝑡 = 𝑋𝑡 −  𝑌𝑡 

 

 𝐻𝑎: 𝐷𝑡 ≠ 0 

 

�̅� =
1

50
∑ 𝐷𝑡

50

𝑡=1

≅ −0.27451 

 

𝑆𝐷 =  √
1

(50 ∗ 49)
∑(D𝑡 −  �̅�)2

50

𝑡=1

≅ 1.3723 

 

Tcalculation ≅ −0.200  

 

 T0.025,49 ≅ 1.96 

 

Since 𝑇𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 falls within ±1.96 there is not significant evidence supporting a statistical 

difference between the two outputs from AnyLogic and Rhapsody.  
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Time Synchronization 

 

Rhapsody provides two configurations for simulating time (IBM, 2014). The modeler can either 

use real-time to trigger time-based events or simulated time option, which updates the time, 

based on event completion using a virtual clock. In models where only one behavior block 

includes time-triggered events, operations or states, these two preset configurations are very 

useful in simplifying the implementation process. However, in models where more than one 

behavior block have time-dependent simultaneous actions, either of the two default 

configurations result in verification issues during model execution due to asynchronous behavior.  

 

Figure 17 captures the sequence of events in a simple movie theater scenario which was created 

to demonstrate this issue. The system in the scenario is composed of one part, Movie Theater 

that interacts with Guests actors. Furthermore, it is responsible of providing an environment 

where guests could use to watch a movie. As a result, one behavior block representing the 

watch_movie use case was created to capture this behavior. The scenario has three message 

exchanges between the guests and the movie theater. First, the movie theater gets a notification 

of arrival. When all the guests arrive, it sends “movie_start” message and starts the 120-min 

timer. A timer is also started at Guests, when they receive the message, which counts up until 

their exit time that is randomly distributed between 118 to 122 min. At the end of their exit time, 

they leave feedback by sending a message back to movie theater block.  
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Figure 17 Movie Theater Sequence Diagram 

 

Individual states of the movie theater, on the left, and guest agent, on the right, executing this 

behavior are captured in Figure 18. Number, one through four are used indicate the conditions, 

event triggers, and operations and their description are given as follows: 

 

 Movie Theater 

1. In “WaitFor_arrival” state the theater counts the “arrive” messages guests send. 

After each message, the theater checks if the room capacity “count” has been 

reached and exits the state. 

2. When the room is full, sends the “movie_start” message to each guest. 
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3. “ShowMovie” state stays active for 120 minutes. This behavior is assigned using a 

time trigger function “tm(duration)”. During this state it starts collecting the 

feedback from guests who are leaving before the movie ends. 

4. Waits until feedback is collected from all guests 

 

 Guest Actor 

1. Each guest notifies the theater when they arrive. 

2. They wait for all guests to arrive. 

3. They leave the movie theater randomly between 118 to 122 minutes after the 

movie starts. 

4. They give a feedback with a score between 1 and 10 before exiting. 
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Figure 18 Movie Theater and Guest Agent Behavior 

 

Figure 19 shows the expected sequence of events and states of guest actor and the movie 

theater. Verification of the model includes checking the correctness of the event sequence 

indicated by the rectangle box.  The correct behavior is guests with “leaveTime” less than 120 

minutes sending their feedback before and the remaining sending it after the movie is over. The 

scenario was executed 31 times representing a day with 11 shows using a 30 guest capacity. 

However, due to generated random numbers being the same, no difference was observed 

between 31 iterations. 
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Figure 19 Expected Output 
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Three groups of tests were conducted to eliminate design technique as the potential cause for 

errors. First, to confirm independency between show times for other tests, the significance of 

correlation between observed error counts (y) and show times (x) were tested. A hypothesis test 

was designed as follows: 

 

𝐻0 =  𝜌 = 0 𝑎𝑛𝑑 𝐻𝑎 =  𝜌 ≠ 0 

 

𝑤ℎ𝑒𝑟𝑒 ∝= 0.05, 𝑡9,0.975 = ± 2.262 

 

Correlation coefficient of the sample, r, was calculated using the following formula (UA, 2015): 

 

 

𝑟 =̃− 0.31105 

 

Confidence limits for 𝑟9,0.975 was calculated using the following formula (UA, 2015): 

 

 

𝑟9,0.975 =̃ (−0.7786 , 0.5786) 

 

 𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

1

√∑ (𝑥𝑖 − �̅�)2𝑛
1 √∑ (𝑦𝑖 − �̅�)2𝑛

1

 (4.1) 

 𝑟𝑛−2,0.975 =
−1 ± 𝑡𝑛−2,0.975(√𝑛 − 2)

𝑛 − 1
 (4.2) 
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Where n is the sample size, calculated 𝑟 is found within the confidence limits suggesting not 

enough evidence supporting a correlation between observed errors and show times. Later, the 

correlation between successive error counts is tested using first order autocorrelation 

coefficient. The correlation Eq. (4.1) is modified to test for observations with lag 1 for 

𝑥𝑖 = Error Count𝑖 and 𝑥𝑖+1 = Error Count𝑖+1 (UA, 2015) as follows: 

 

𝑟1 =
∑ (𝑥𝑖 − �̅�𝑖)(𝑥𝑖+1 − �̅�𝑖+1)𝑛−1

1

√∑ (𝑥𝑖 − �̅�𝑖)2𝑛−1
1 √∑ (𝑥𝑖 − �̅�𝑖+1)2𝑛

2

=̃− 0.08139 

 

Similarly, confidence limits are calculated by adjusting Eq. (4.2) to test r at different levels of k, 

time lag, as follows (UA, 2015): 

 

𝑟𝑛−𝑘−1,0.975 =
−1 ± 𝑡𝑛−𝑘−1,0.975(√𝑛 − 𝑘 − 1)

𝑛 − 𝑘
= (−0.7786 , 0.5786) 

 

The two calculations are repeated for different values of k and the results are plotted as shown 

in Figure 20. Additional to confidence limits, the r values are also compared with simple 

approximation limits, ±2/√𝑛. All r values for lags 1 to 7 are found within the confidence limits 

suggesting not enough evidence to recognize an autocorrelation between occurrences. 
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Figure 20 Error Count Correlogram 

 

Grouping observed errors according to the guest “leaveTime” shows that all errors occurred 

when the leaveTime is equal the movie duration, 120 seconds. Eight out of eleven shows has 

guests with wrong behavior and the highest guest count is observed during Show 8. A final test 

is conducted testing significance of correlation between counts of guests with leaveTime at 120 

versus observed errors, which are captured in Table 2.  

 

Magnitude of r and confidence limits are found -0.008, (-0.7786, 0.5786), using (1) and (2) 

respectively. Tests results indicate not enough evidence of correlation between the two 

outcomes. Since all three tests have failed to reject 𝜌 = 0 there is not enough evidence 

suggesting a design methodology error. Furthermore, with 95% confidence this is rather due to 

Rhapsody’s back-end event execution ordering logic. 
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Table 2 Experiment Results 

Show Id 
y = Guest Count with 
wrong behavior 

x = Guest Count with 
leaveTime at 120 minutes 

Show 1 6 Guests 8 Guests 

Show 2 4 Guests 11 Guests 

Show 3 4 Guests 8 Guests 

Show 4 0 Guests 6 Guests 

Show 5 0 Guests 11 Guests 

Show 6 2 Guests 4 Guests 

Show 7 1 Guest 12 Guests 

Show 8 7 Guests 8 Guests 

Show 9 0 Guests 8 Guests 

Show 10 2 Guests 4 Guests 

Show 11 2 Guests 9 Guests 

 

 

Maintaining correct sequence and synchronization between various behavior blocks, where 

more than one time based conditions, require adding extra messages or triggered operations 

within the modeled behavior.  As a result, modifying derived behavior-in order to maintain its 

validity only for an issue within Rhapsody applications-can jeopardize efforts to capture the true 

representation of the actual system. Furthermore, they are required for all systems sharing the 

same behavioral patterns and not just the one example provided in this section. Therefore a 

generic solution is proposed rather than a quick work around adjusted to only one particular 

case. This solution also aligns with the purpose of this study for creating re-usable behavioral 

models. 
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Proposed Solution 

 

Rather than cluttering the correct representation of the system with extra operations or events, 

in order to maintain synchronization when modeling SD-ABM systems, method provides an 

explicit behavior named “update_time” as demonstrated for movie theater system UCD captured 

in Figure 21.  

 

 

Figure 21 Update Time Use Case 

 

A behavior is created which consists of an operation, “increment_clock” and a message 

“send_update” as captured in Figure 22. Although this behavior can be added with the remaining 

behavior at the initial UCD design phase, it can also be added to completed models. In such cases, 

the same design flow is used, and the behavior allocated to the location part of the main system.  

 

During final STM update the behavior is added as a parallel state to existing states of location 

block and for all remaining parts and members of the environment it is added as an owner state 

named “Active”.   
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Figure 22 Update Time Activity Diagram 

 

For example, movie theater system has two members with time triggered behavior, the guests 

and the room. The room is responsible of updating the local time and updating the guests by 

sending a message as previously captured in Figure 22. As a result, the time trigger function 

“tm()” is only used once by the room to increment local clock in the system. As captured in Figure 

23, this behavior is added as parallel states to the existing states of the room. On the other hand, 

in the guest STM the Active owner class is added to track any messages send from room and 

update the guest clock according to local time (see Figure 24). Finally, all the remaining tm() 

operations are changed to condition based triggers using local time “tnow” variable. 
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Figure 23 Room State Diagram 

 

Additional to fixing synchronization issues, separation of this behavior can support modeling 

efforts with two main areas. First, if designed models are to be exported to a different simulation 

software, system behavior can be separated and exported explicitly. Furthermore, update time 

can also be exported explicitly to be used in modeling other systems. Rhapsody specific behavior 

such as “update_time” or “generate_variate” can be allocated to a unique system component or 

grouped under Location.  
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Figure 24 Guest State Diagram 

  

Active

Reactions

send_update/setTnow(params->tnow);

WatchingMovie

Reactions

leaveTime=gen_uniform(118,122);

leaving(gen_uniform(1,10)) to proom

[tnow==leaveTime]/
FILE * pFile;
 pFile = fopen 
("results.txt","a+");
 fprintf(pFile, 
"Iteration %d %d\n",
it,leaveTime);
fclose (pFile);
printf("%d 
%d\n",tnow,leaveTi
me)

WaitingMovie

movie_start

arrival to proom

[it>10]
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CHAPTER FIVE: POPULATION DYNAMICS CASE STUDY 
 

This sections uses a hypothetical case study to demonstrate the approach for developing and 

simulating an AB-SD hybrid model of a selected system using SysML. Wild life has been a 

commonly studied area in AB modeling (Akbas et al., 2015). Therefore, a hypothetical example is 

created to demonstrate the methodology focusing on the status of giraffe population in Africa 

over time. Five facts (GCF, 2014) and two assumptions about giraffes are selected to describe 

specific procedures under different conditions.  

 Leopard, lion, and hyena are among their predators.  

 60, 8 and 3% of calves are killed during their first, second and third year, respectively.  

 Females mature at age 4 and gestation and nursing lasts for 57 to 65 and 4 to 52 weeks, 

respectively.  

 Males start propagating after 7 years old.  

 Average life span is 25 years.  

 Assumed ratios for bull to cow and adults to calves are 1 to 1 and 10 to 1, respectively. 

 

 

Requirements Analysis 

 

According to the 5 requirement groups identified in Methodology chapter, all except first and 

last conditions listed above are grouped under behavioral requirements and the remaining two 
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are grouped under structural. On the other hand, the output of interest -status of population- 

would be added to the output requirements. A screenshot from Rhapsody® model tree capturing 

these requirements and their groups are shown in Figure 25. 

 

 

Figure 25 Giraffe Population Scenario Requirements 

 

 

Define Behavior 

 

The behavior of the giraffe population observation system is modeled in seven steps. It starts 

with Use Case Diagram (UCD) design and demonstrates the process flows within the developed 

approach.  
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Create Use Case Diagrams (UCD) 

 

The first step in the process flow is adding all actors identified by the stakeholders to the UCD. 

As a result, all agents identified in requirements analysis, such as Leopard and Giraffe are added 

as actors to UCD, as can be seen in Figure 26.  

 

 

Figure 26 Use Case Diagram - Action 1 

 

Once all are added, the possibility for grouping any actors is investigated. Given the scope of the 

scenario, the stakeholder’s interest in leopards, lions and hyenas do not go further than their 

total hunting success. Therefore, even though they were originally listed separately, these three 

actors can be grouped under the role “Predators” and represented as one actor. The resulting 

logic flow and UCD are captured in Figure 27 and Figure 28Error! Reference source not found., 

respectively. 
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Figure 27 Use Case Diagram Actor Definition 

 

 

Figure 28 Use Case Diagram - Action 2 

 

The modeler now can start with function identification per each actor. In this system, the actor 

identified as the Stakeholders is a type of giraffe conservation society and has two main duties. 

First, they are responsible of providing scientific findings on giraffe population and second, act as 

the observers who are interested in the outcomes of the model. Provided information include 

initial conditions within the environment that have an impact on system behavior, such as initial 

population count and male to female ratio. This behavior is represented using 

“set_initial_conditions” use case and an association link is added from the stakeholder actor. At 

any time during UCD design, modeler can add a list of these variables as a requirement under the 
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output requirements group if not added during requirements analysis phase. Figure 29 highlights 

the path taken back to Pick Actor action after analyzing Stakeholders actor.  

 

 

Figure 29 Use Case Diagram Stakeholder Definition 

 

The second actor, Predators, interacts with the environment by killing the giraffes. However, this 

behavior is explained from giraffes’ perspective using probability of death. Therefore their impact 

is not a part of the main focus in the environment. For this scenario, both situations for the final 

decision can be true. If the stakeholders suggest a possibility for model extension in the future 

focusing on any predator behavior, the modeler would keep this actor and take the path shown 

in Figure 30Error! Reference source not found.. On the other hand, if an extension towards this 
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direction is not within stakeholder interests, this actor can be deleted. It is important to note 

that, this should only be considered if no interaction exists between the selected actor and any 

member of the environment. 

 

  

Figure 30 Use Case Diagram Predator Definition 

 

The final actor Giraffe is a part of the main environment scope, therefore is not included as an 

external member in the UCD. Later in architectural design this will be added as a part of the 

system structure. Provided assumptions suggest two functions, “reproduce“ and “die” and no 

information is given about the effect of their location information nor is included within 

environment interests. Reproduce is defined as a duration triggered function and die is defined 

as a success rate changing over time. Since the time is used by more than one a use case named 

“update_time” is added to keep the behavior synchronized. This is further explained in Time 
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Synchronization section of chapter Methodology Verification. Finally, to capture the change in 

population count over time, “update_dynamics” use case is added.  

After identifying all actors and use cases, each actor is connected with the corresponding use 

cases via the “Association” link to represent the relations. The resulting UCD and corresponding 

decision path is captured in Figure 31 and Figure 32, respectively.  

 

 

Figure 31 Finalized Use Case Diagram 

 



 
69 

 

Figure 32 Giraffe Action Flow 
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Link Requirements to UCD’s 

 

A trace relation between identified requirements and the model elements such as “die” use case 

are added to demonstrate the matrix view as shown in Figure 33. After adding the relations, 

individually entered requirements can be brought to the UCD to verify that all has been captured 

and linked with the appropriate relation type to the associated use case as shown in Figure 34.  

 

 

Figure 33 Requirements Matrix View 
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Figure 34 Finalized Use Case Diagram 
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Create Activity Diagrams (ActD) 

 

The ActD for system specific use cases includes the actions belonging to “reproduce” and “die” 

behaviors as captured in Figure 35 and Figure 36 simultaneously. According to system 

description, pregnancy lasts between 57 to 65 weeks after propagation. To capture this duration 

“pregnancy_duration” and “pregnancy_status” variables are added to the reproduce behavior 

block.  

 

 

Figure 35 Reproduce Activity Diagram 

 

There are four conditions that result in the death of a giraffe. Three of them are their chance of 

survival after a predator attack. If they survive all, they will die at the end of their natural life 

span. To capture this behavior, four variables, “age”, “survival_chance”, “survival_duration” and 

“life_span” are added. If the modeler is using Rhapsody with the Harmony Profile, embedded 

code for each action can be added during state definition phase.  
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Figure 36 Die Activity Diagram 

 

The ActDs for remaining behavior blocks, such as update_time and update_dynamics, are not 

created nor modified for this example. After UCD design, previously modeled behavior of those 

blocks are imported to be reused for modeling the giraffe observation system.  

 

Generate Sequence Diagrams (SeqD) 

 

Depending on the level of detail required, the behavior and conditional rules can be planned 

using SeqD. Although this is not required, it would lay the grounds for mapping the rules for state-

based behavior and support designing efforts. For example, the default SeqD generated for “die” 

ActD using Harmony profile would include RNDsurvival() operation as captured in Figure 37. Note 

that the “die” message- originally included in the black-box ActD- is an internal message and is 

not included in the initial SeqD.  

 

According to system definition, the chance of survival increases as calves grow older. The ones 

who survive first year get a new value for the survival_chance and this loop continues until they 

die because off old age. Since the embedded code used in RNDsurvival() operation does not 
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change, to avoid clutter in the model, attack success can be created as the operation parameter 

as shown in Figure 37.  

 

 

Figure 37 Sequence Diagram of Die Behavior 

 

Figure 38 captures the modified SeqD for the die ActD. First, die behavior block is responsible of 

identifying the survival_chance for a newborn calve with a 60% attack_success value. At age 52 

weeks, RNDsurvival(8) is executed to calculate their chance of survival during second year. The 

same logic is applied throughout their lives with decreasing attack_success rates. During any age, 

if the outcome of their survival chance is 0, they die at the end of their survival_duration value.  

 

Following the same procedure the SeqD for reproduce behavior block is created. There are four 

conditions the system must satisfy before executing the propagate() operation. After female 

calves reach the end of fourth year, if they are not pregnant and there are adult males in the 

system, they initiate propagation. Following the pregnancy duration, they give birth. This 

sequence repeats until they reach the end of their life spans.  
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Figure 38 Modified Sequence Diagram of Die Behavior 
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Pregnancy_duration and pregnancy_status variables were already identified and added during 

ActD design phase. Additional to these, four more variables gender, age, life_span and 

adult_male_count were identified using the interaction operators. Age and life_span variables 

and their condition iteration were already added to the overall system when they were added to 

the die behavior block. Hence, this loop operation was not included in the final SeqD. Remaining 

two variables were added to the reproduce behavior block (Figure 39). 

 

   

Figure 39 Modified Sequence Diagram of Reproduce Behavior 

 

The SeqDs for update_dynamics and update_time behavior blocks are explained in the Time 

Synchronization section of Methodology Verification chapter.  
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Create Ports and Interfaces 

 

System’s reaction to any predator was not included in the system focus identified during the UCD 

design. As a result, the associated behavior blocks do not require a message exchange (Figure 

40). Therefore, generated IBDs only include the parts of behavior blocks without any connection 

to an actor.  

 

 

Figure 40 Die Behavior Internal Block Diagram of Actual Scenario 

 

This would be different if further information was available on predators, such as their attack 

frequencies or impact of attack success on time between attacks. Such interaction would initially 

be captured in the die behavior block ActD as a message action and later be added to the SeqD. 

Additional to the block part (sender), the resulting IBD would have included the predator actor 

(receiver) as can be seen in Figure 41. 
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Figure 41 Alternative Scenario Internal Block Diagram 

 

 

Define States 

 

Statecharts belonging to the giraffe population observation system, update_dynamics, 

set_initial_conditions, die and reproduce are shown in Figure 42, Figure 43, Figure 44 and Figure 

45, respectively.  

 

In the sample giraffe population system the rates and stock variables are set to update once per 

week (tm(7)) as captured in Figure 42,.  
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Figure 42 Update Dynamics State Diagram 

 

 

According to the requirements identified during the first part of the proposed process flow, the 

giraffe population requires two unique operations for setting the initial conditions for actors, 

which are define_gender() and define_initial_age() as can be seen in Figure 43. For the purpose 

of this study ages of the alive giraffes at time 0 were assumed uniformly distributed between 

new born and 22 years. Similarly the gender was assigned randomly following U(0,1), keeping the 

1 to 1 bull to cow ratio. 

 

 

Figure 43 Set Initial Conditions State Diagram 
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Die behavior is designed to have two states as alive or dead. According to requirements, while 

alive, the actors can die due to an attack or old age. The change in survival probability per age 

group was explained in detail in the previous section. Three conditions were added triggering a 

transition to dead state in order to capture the corresponding sequence and logic (Figure 44). For 

example, if they survived the attacks for a year, their survival chances are recalculated. With the 

same token, if they survived the attacks encountered during their lifetime, they finally die after 

reaching their lifespan.  

 

 

Figure 44 Die State Diagram 

 

Finally, reproduce behavior is designed to have three states. First the female waits until reaching 

maturity. After pregnancy they stay in the nursing state for the duration they were assigned. 

However, a control condition was added for the triggers leaving waiting_age and nursing states, 

checking the availability of mature enough adult males in the system (Figure 45).   
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Figure 45 Reproduce State Diagram 

 

It is important to note the impact of the requirements analysis step in the process flow. For 

example, the current design assumes none of the cows are pregnant or nursing at time 0. STM 

design would have been different in cases where further information on pregnant to nursing 

ratios among cows are provided and is an interest to the stakeholders. 

 

 

Behavior Verification 

 

Simulated SeqDs and statecharts are used to verify independently modeled behavior. A 

screenshot from the simulated reproduce behavior output can be seen in Figure 46. Following 

the age requirement fulfillment, the cow executes propagate() operation and transitions to 

pregnancy state. After waiting till the end of pregnancy, behavior transitions into nursing state, 

confirming the designed behavior. An end state is only included in the set_initial_conditions 
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behavior, therefore all remaining behaviors loop between different states according to existing 

conditions. As the final step, properties of all variables are checked for any errors.   

 

 

Figure 46 Simulated Sequence Diagram for Reproduce Behavior  

 

Overall, the purpose of behavior analysis can be summarized as following: 

 Identify system requirements 

 Identify system scope and boundaries 

 Identify the modularized actions and reactions of the system to the external triggers 

 Identify its interaction with the surrounding environment and conditions 

 Derive resulting behavior from findings gathered above for verification 
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Define Structure 

 

Structure modeling starts with decomposing the system according to its physical components 

using Block Definition Diagrams. Later previously modeled independent behavior is merged and 

distributed to the responsible part of the system.  

 

 

Create Block Definition Diagrams 

 

Giraffe population observation system is decomposed using Type III decomposition structure due 

to the two way dependency between the giraffes and their location.  Initially eighty giraffes are 

created sharing one location, Africa, as can be seen in Figure 47. 

 

 

Figure 47 Block Definition Diagram 
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Allocate Behavior 

 

After system decomposition independent behavior blocks are merged under the main system 

block “Giraffe_Population_Observation”.  Later using white-box ActDs each activity is allocated 

to the responsible system component.  

 

 

Create White-Box Activity Diagrams (ActD) 
 

First, previously created ActDs are duplicated and renamed as White-box ActDs. Later, a swim 

lane is added for each system part, such as Giraffe, and operations are placed-by moving- under 

the responsible block. For example, one operation RNDSurvival() is identified and an event 

message “die” under the die behavior (Figure 48 (a)). Since chance of survival after an attack is 

unique to each giraffe, the owner of the operation is itself. In the previous section, provided 

methodology for modeling rate attributes was described, such as death_rate being derived from 

the population behavior. As a result the message event “die” is placed to the receiver component, 

location, leaving an activity under Giraffe (Figure 48 (b)).  
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Figure 48 (a) Black-Box and (b) White-Box Activity Diagram Views 

 

These steps are repeated for the all remaining ActDs, update_time, set_initial_conditions, 

update_dynamics and reproduce, as can be seen Error! Reference source not found.Figure 49, 

Figure 50, Figure 51 and Figure 52, respectively. 

 

 

Figure 49 White-Box Activity Diagram of Update Time Behavior 
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Figure 50 White-Box Activity Diagram of Set Initial Conditions 

 

 

Figure 51 White-Box Activity Diagram of Update Dynamics Behavior 

 

 

Figure 52 White-Box Activity Diagram of Reproduce Behavior 
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Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces 
 

After each behavior is allocated to the responsible part of the system Harmony profile is used for 

generating the SeqDs and for creating the ports and event interfaces.  

 

Define States 
 

Location part of the system is responsible of executing two behaviors. After starting the 

simulation it transitions to an “Active” state where it performs Update_time and 

update_dynamics behaviors, which are integrated as and-states. Update_dynamics is responsible 

of updating the population variable and the weekly rates on the seventh day every week (Figure 

53). 

 

 

Figure 53 Location State Diagram 
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The behaviors of giraffes are activated when the simulation clock starts running at the location. 

The initially deployed giraffes, who are assumed to be already in the environment, are assigned 

a random gender, age and survival_chance (based on the initial age group) to represent a 

uniformly distributed population. Furthermore, gender of a calf born after time 0 is randomly 

selected based on the cow to bull proportions within the population. This logic is designed to 

satisfy the ratio requirement identified in problem description. 

 

Contradictory to using “and-states”, such-as in Figure 53, the reproduce behavior was added as 

a subset to being alive (see Figure 54). Later, alive state was further divided into two “and-states” 

and the top portion was used to show the gender of a giraffe after maturity to demonstrate 

simulated view when in parallel states.  

 

 

Verify and Validate System 

 

Three tests are conducted to validate the behavior designed for Giraffe Population Observation 

System. First the model is verified using the simulated SeqD and statecharts. Later, results from 

30 simulation iterations are collected using an initial population size of 140 giraffes for the second 

and third tests. Three values at any given time t in days for population count, births and deaths 

per week, are collected and their averages are plotted in Figure 55Error! Reference source not 

found.. Two expected behaviors are tested as follows: 
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Figure 54 Giraffe State Diagram 
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 Correct representation of agent (giraffe) behavior was captured- When creating initial 

population, none of the female giraffes are pregnant. Therefore, the output is checked 

for any births occurring before the minimum pregnancy duration, 57 weeks. As can be 

seen from the plotted output, no births can be observed up until the minimum required 

pregnancy duration indicated with an orange arrow.   

 

 Correct representation of population dynamics was captured- The synchronization 

between birth/death rates and population count are checked to confirm correctness of 

the SD calculations. For example, during the time indicated within the grey box, three 

giraffes die on different weeks of the sixth year. Overall population count also decreases 

by three by the end of year six as a result of the change in death rates on matching weeks. 
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Figure 55 Giraffe Population Behavior 
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CHAPTER SIX: TRAINING MANAGEMENT CASE STUDY 
 

In this section the application of the developed approach is demonstrated using a real-life case 

study focusing on a training management project which was planned and executed when a large-

scale company had decided to adapt a new software technology in 2009. The project required 

1255 employees’ attendance from different divisions and backgrounds. This new technology was 

the same as to what engineers had already been using; however, the processes were changed. 

When they were used to working on locally saved files, and sharing these documents mostly using 

emails, employees were asked to do all using this new technology. In addition to the extra work 

created by the efforts spent on a new technology, each employee was asked to attend an eight-

hour (full-day) training. At the end of four fiscal years (FY), in 2012, only 1007 employees out of 

1255 were trained where the total training capacity was over 2300 seats (Figure 56). 

Furthermore, by 2011, more than 29% of trained were returning for a second training. Obtained 

data included versions of a Microsoft Excel sheet saved at different times over the project 

duration, created for attendance tracking. The purpose of the modeling effort focusses on 

supporting project management team by simulating the training bubble to be used for training 

scheduling.  
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Figure 56 Total Training Attendance 

 

 

Training Management as Complex Adaptive Systems 

 

Two characteristics that are most commonly observed in complex systems are emergence of a 

pattern and continual appearance of new entity kinds (Levin, 2002) or large number of interacting 

entities (Morel and Ramajujam, 1999). Emergence was explained as being dynamic behavior of 

balanced negative and positive feedback rather than being the absence of tension (Newell, 2008).  

Because of the variety in forms of complexity, one cannot conclude that all complex systems are 

adaptive (Levin, 2002). Furthermore, complexity in systems cannot be explained by chaos (Bak, 

1996, p. 31), meaning systems with simple dynamics can be very complex thus they do not have 

to be chaotic to be accepted complex (Morel and Ramanujam, 1999).   
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The existence of complexity in learning systems, a phrase introduced by Davis and Simmt (2003) 

describing collective classroom components, is advocated by also other researchers (Burns and 

Knox, 2011, Davis and Sumara, 2006).  Newell (2008), following Davis, Simmt and Sumara’s 

published arguments on how individual learner and teacher dynamics interacts and emerges as 

learning, evaluates the potential benefits and challenges of accepting this theory.  

  

Unlike immediate training climate, studies on organizations as systems has a longer history, and 

today, they are accepted as “dynamic systems of adaptation and evolution that contain multiple 

parts which interact with one another and the environment” (Morel and Ramanujam, 1999).  

Furthermore, their nested structure continuously interacts with other macro and micro, systems 

and sub-systems, respectively (Folke & Folke, 1992). New systems may arise from emerging 

dynamics as part of the system, due to change processes occurring with an organization (Dooley 

and Van de Ven, 1999). Bot (2012) has listed the most common properties of complex systems in 

a study where he looked into the complexity of learning a third language. Training management 

was evaluated with respect to each property listed by Bot, and the findings were captured in 

Table 3. Explanations and case examples were supported with findings from literature. The 

findings support the theory of training management emerged as complex adaptive-derived from 

its evolution through a life-cycle iterations-system that interacts with other complex adaptive 

systems such as technology and economy.   
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Table 3 Complex System Properties, Adapted from Bot, 2012 

Complex System Properties Training Management System Properties 

Complex systems are sets of interacting variables. 
Training management interacts with organization 
system (macro) and knowledge transfer variables 
(micro). 

In many complex systems, the outcome of development 
over time cannot be predicted … because the variables 
that interact keep changing over time. 

Although there are techniques to support training 
planning often times changes in duration, cost, 
training performance occur. 

Dynamic systems are always part of another system, 
going from sub-molecular particles to the universe. 

Training management system is part of knowledge 
transfer system. 

As they develop over time, dynamic subsystems appear 
to settle in specific states, which are preferred but 
unpredictable, so-called ‘attractor states.’ 

Employees within an organization create a unique 
knowledge share structure creating a culture which 
emerges individual and organization’s learning state. 
Weick (1979) 

Systems develop through iterations of simple procedures 
that are applied over and over again, with the output of 
the preceding iteration as the input of the next. 

Training is applied in organizations in iterations, the 
lessons learned from each experience (outputs) feeds 
the following management strategy as inputs. 
(Armstrong, 2003) 

The development of a dynamic system appears to be 
highly dependent on its beginning state. Minor 
differences at the beginning can have dramatic 
consequences in the long run. … 

If started without well planning the effects of each 
variable and their interactions, training efforts will fail 
costing the investments and time of the stakeholders. 

In dynamic systems, changes in one variable have an 
impact on all other variables that are part of the system: 
systems are fully interconnected. 

In training management, change in one variable for 
instance organization’s climate or available resources 
will trigger a change in the whole system will affect 
outcomes. 

In natural systems, development is dependent on 
resources: … all natural systems will tend to entropy 
when no additional energy is added to the system. 

Training management rely on the resource availability, 
depletion of any resource will trigger system’s state to 
change to ‘steady-state’. 

Systems develop through interaction with their 
environment and through internal self-reorganization. 

Training has emerged from interaction of systems such 
as learning, organization and technology. Through 
time its internal interactions derived management 
variables (Dooley and Van de Ven, 1999) 

Because systems are constantly in flow, they will show 
variation, which makes them sensitive to specific input at 
a given point in time and some other input at another 
point in time. 

Due to continuous change in it is variables such as 
humans and technology same management 
approaches will result in varying outputs. 
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Model Development 

 

Structural and behavioral characteristics of the systems, such as input analysis, are identified first, 

through requirements analysis. Later identified behavior is individually modeled under behavior 

analysis. After verification, the behavior is integrated and allocated to parts of the system in 

structure analysis. Finally, the model is verified and validated and the findings are discussed. 

 

 

Requirements Analysis 

 

The majority of the work completed in this phase consists of input analysis. Each of the original 

training status report snapshots included training dates of ranging from 3,000 to 10,000 

employees, which also consisted of contradicting or duplicate information. First, using the latest 

report, a skeleton list including the generated id’s of employees located in US, who had either 

attended training or was required to attend in the future is generated. Later all ID’s in each 

snapshot that were not included in this list are deleted. Each duplicate id is deleted after 

confirming all attendance data are successfully copied in to the remaining. Due to the length of 

the project, some sessions had been renamed over the years, and to avoid double-counting, a 

total of 13,173 data points are checked individually for potential duplicate attendance 

information. Using the data population increase, training attendance, attendance probability and 

training schedule are studied as further explained respectively in the following sections. 
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Population Increase 
 

A change in the population count was observed according to the snapshots taken randomly 

during the four year project timeline. During project kick-off in October 2009, the initial number 

of employees, who would be invited for trainings, was 476. This number almost tripled by the 

end of fiscal year (FY) 2012. Although there were new hires, the majority of this increase was 

driven by the changes in project scope. As time progressed employees from additional 

departments were also included. The dates of the snapshots and corresponding count of 

employees included in each report is shown in Table 4. 

 

Table 4 Population Increase per Snapshot 

Snapshot Date Invited Trainee Count Cumulative Time in Between (Days) 

10/1/2009 476 0 

7/26/2010 784 571 

8/27/2010 785 603 

10/14/2010 865 651 

3/2/2011 948 790 

7/1/2011 1,000 911 

10/18/2011 1,058 1,020 

11/2/2011 1,089 1,035 

4/9/2012 1,136 1,194 

8/1/2012 1,192 1,308 

9/25/2012 1,255 1,363 

 

 

A scatter plot of total employee count per date can be seen in Figure 57. According to the R-

square value, more than 99% of the change in invitation count can be expressed in terms of days 
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passed. In other words, there is not enough evidence to reject that any future total invitation 

count could be predicted by the days passed.  

 

 

Figure 57 Total Employee Count per Snapshot 

 

As a result, the constant rate, 0.5661 per day, from the fitted equation can be expressed in SD 

as can be seen in Figure 58. 

 

 

Figure 58 SD Representation of Population Increase 
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Training Attendance 
 

The first focus in the attendance analysis is the behavior of employees who had attended a 

training more than once over the years. However, out of 1255, only eight employees had 

attended training three times and none had attended more than that. Due to the limit of this 

data and its ratio to the total sample size, the dates from their third attendance is not included 

in the study. The date of the first training and the time, in days, until the second training are 

mapped and checked for any outliers.  

 

A scatter plot is created to test dependency between the first training date and the time until the 

second, Delay, as captured in Figure 59. The total sample size is 124 with a mean and standard 

deviation at 436 and 230 days, respectively. The R-Square value, 0.133, of the fitted equation is 

not significant enough to reject dependency.  

 

 

Figure 59 Delay vs Initial Training Date 



 
100 

However, considering the high mean and standard deviation in delay, only a part of the data from 

FYs 2011 and 2012 could have been recorded. In other words, since the study has ended at the 

end of FY 2012, if any had attended their first training during that year any delay larger than 360 

days would not be recorded. Furthermore, this limit for FY 2011 would be 720 days.  As a result, 

as the initial training date increased, this limit had to decrease. To confirm this theory, the 

dependency between the two using the data from FY 2009 and 2010 is tested. The highest R-

square value is observed using linear regression, at 0.0049, as captured in Figure 60. According 

to updated test statistics, dependency between the observed delay and the initial training date 

is rejected. As a result, the data collected from the first two FYs only is used for the remaining 

analysis under training attendance section.  

 

 

Figure 60 FY 2009 and 2010 Delay vs Initial Training Date 

 

Next, the autocorrelations, r, for lag values, j, from 1 to 80 are calculated using equation (4.1). r 

values for all lags including 1, which is 0.008 lower than the limit, are within the confidence 
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intervals calculated at 0.05 significance, using equation (4.1). A snapshot of the plot is shown in 

Figure 61.  

 

 

Figure 61 FY '09 and '10 Autocorrelation Plot 

 

After completion of the independence tests, the data is ranked and imported into Arena’s Input 

Analyzer software to find the best fit. Figure 62 captures a histogram of data with the fitted 

distribution line and the best fit p-values are captured in Table 5.  

 

 

Figure 62 Delay Data Fit 
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Table 5 Attendance Distribution Fit Test Results 

Data Group Sample Size Distribution Chi-Square P-Value KS P-Value 

FY ’09 – ‘10 22 TRIA(113, 284, 1130) 0.227 >0.15 

 

Out of 1152 employees who attended training over the four-year project duration, 145 of them 

had attended a second training. As a result, identified delay distribution is distributed randomly 

only to 12.6% of the total trained. 

 

 

Attendance Probability 
 

The attendance probabilities is the second focus of the attendance studies. Different from the 

first focus explained in the previous section, where the behavior was distributed over the 

employees, the attendance counts are studied per training base. There are a total of 144 trainings 

offered over the four-year project, where, the attendance count mean and standard deviations 

are at 7.87 and 4.19, respectively. Following the same steps, a scatter plot of relation is created 

as can be seen in Figure 63. The highest R-square value, 0.0038, is achieved using a linear fit. 

There is significant evidence to reject dependency between attendance counts recorded and 

training dates.  

 

Later a scatter plot is created to check for any autocorrelation for different lags, j, changing from 

1 to 142 (Figure 64). Only one r value is observed slightly out of the confidence limits at lag 36. 
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Probability of getting an r value within the confidence limits is therefore 0.993. At 0.05 

significance, this suggests enough evidence to reject any autocorrelation.  

 

 

Figure 63 Attendance Count per Training 

 

 

Figure 64 Attendance Count Autocorrelation Plot 
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After completion of the independence tests, the data is ranked and imported into Arena’s Input 

Analyzer software to find the best fit. Figure 65 captures a histogram of data with the fitted 

distribution line and the best fit p-values are captured in Table 6.  

 

 

Figure 65 Attendance Count Data Fit 

 

Table 6 Attendance Count Distribution Fit Test Results 

Data Group Sample Size Distribution Chi-Square P-Value SE 

FY ’09 – ‘12 144 UNIF(0.999 ,16) >75 0.0081 

 

 

During model validation and verification the average of total attendance collected at the end of 

FY 12, from 31 iterations, does not reveal significant evidence to reject the validity of the model. 

The t test result is -1.1529, between (+/-) 2.3556 t value at 0.05/2 significance. However, when 

the results are plotted comparing iteration average with the actual data, an unexpected behavior 

is observed.  Figure 66 captures the resulting plot. While the simulated data followed a relatively 

linear increase in cumulative attendance the actual data showed an increasing increase.  
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Figure 66 Initial Simulation Output 

 

Due to the scattered behavior observed at the tail of the its autocorrelation plot, initially, a serial 

correlation following a specific pattern, similar to a seasonal correlation, was not expected. 

However, when each FY year is separately analyzed multiple correlation coefficients over the 

confidence interval are observed for FY 09 and 10. The values are even higher when the two were 

combined. On the other hand, FY 11 and 12, when studied separately and combined, shows no 

significant correlation. The two correlograms are shown in Figure 67, on the left and right 

respectively.  
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Figure 67 Updated Training Attendance Autocorrelation Plots 

 

FY 09 and 10 are tested for its significance in fitting a time dependent equation, due to failing 

independency requirement of data fitting. Highest R-square value, 0.3029 is achieved using an 

exponential relation between the time of training and attendance counts per training. Although 

R-square value does not find enough evidence to reject the data is a good fit, it is also not enough 

to confirm a good fit (The Pennsylvania State University, 2015). The first issue is that R-squared 

value displayed is calculated using continuous prediction values. The fitted equation can be used 

if the model is SD based only. Since the case model is AB-SD with continuous interaction, a 

decimal value would be rounded to the nearest integer, which might result in a lower R-squared.  

Hence, the sum of squares (SSR) and total sum of squares are calculated for the rounded values 

of predicted attendance (Table 11 in Appendix E). 

 

The new R-squared value calculated from the rounded predictions is found by dividing the sum 

of SSR by SSTO. The new fitted equation is y = 1.8206e0.0029x with R-squared at 0.681. Attendance, 

rounded predicted attendance and the initial trend line is shown in Figure 68. 
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Figure 68 Actual vs Predicted Data 

 

The remaining part of the data collected during FY 11 and 12 are later, combined and re-fitted to 

find the best distribution. With 0.0155 and 0.454 square error and Chi-square p-values, 

respectively, Uniform (0.999, 16) fit is again found the best fit. 

 

 

Training Schedule 
 

The project team had never picked a random date for a training, rather, most of the trainings 

were scheduled during the months without vacations or per request or according to a strategic 

decision.  As a result, an input analysis is not conducted for the training schedule. Dates in 

between each training are calculated and used as is within the model. A full list of training dates 

and attendance counts can be found in APPENDIX C: TRAINING SCHEDULE. 
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Define Behavior 

 

The first step in behavior definition is UCD creation. Following the proposed decision flow, 

employee agent is removed as an actor, since they are a part of the system scope. Later, their 

behavior, “attend_training” is added as a UC. Similarly, the company is also removed as an actor 

and its specific behavior “train” is added as a UC. Once all system specific behavior was captured, 

pre-modelled common behaviors such as “update_time”, “update_dynamics” and 

“set_initial_conditions are imported. The resulting UCD is shown in Figure 69. 

 

 

Figure 69 Training Management System Usecase Diagram 

 

After identifying the UCs, their relations to requirements are established. Once all functional 

requirements are traced back, their black box ActD are designed. First behavior is 

“attend_training” whose behavior is based on three conditions. First, class availability is checked 

and does not continue with registration unless a seat is available. Second, a decision whether to 

show-up to a registered class is made. Finally, re-taking training decision is made. If no-show or 

re-take decisions are made, the behavior goes back to the beginning and waits for a seat 

availability. This flow is captured in the black-box diagram as shown in Figure 70. The second 
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behavior “train” is responsible of sending invitations and calculating how many employees show-

up at a training (Figure 71).  

 

 

Figure 70 Attend Training Black-box Activity Diagram 

 

 

Figure 71 Train Black-box Activity Diagram 

 

The final black-box, set_initial_conditions, is responsible of assigning an employee id to agents 

and importing training schedule that is previously identified in the requirements analysis (Figure 

72). The remaining two behaviors update_time and update_dynamics use imported ActD that 

are previously captured in the Methodology section.  
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Figure 72 Set Initial Conditions Black-box Activity Diagram 

 

Any interaction or communication with an external agent, actor, is not identified during UCD 

design phase. As a result, generated SeqD only lists identified activities within each behavior 

block. With the same token, IBDs only shows the behavior itself without any connection between 

them and an actor. In this case study, all variables and operations are added during STM design 

phase. Algorithms and corresponding attributes used in each operation are as follows:  

 

Algorithm 2 Check Class Availability 

1: seat_id: seat number per training 

2: class_capacity: 16 

3: if seat_id < class_capacity then 

4:           Return 1 

5:           else 

6:           Return 0 

7:      end if 

 

Algorithm3 Register Session 

1: registration_list[16]: array storing employee ids who have registered per training 
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2: i: registration_list array number 

3: Set registration_list[i]= employee_id 

4: i ++ 

 

 

 

 

Algorithm 4 Check Re-take 

1: U1: Generated random number from U(1,100) 

2: a: Lower end of triangular distribution, 113 

3: b: Higher end of triangular distribution, 1130 

4: c: Mean of triangular distribution, 284 

5: retake_probability: identified value for retake percentage, 20.6 

6: delay: waiting time till second attendance 

7: total_retakers: retake_probability % of trained 

8: if total_retakers <= retake_probability * trained then 

9: Set retake_decision=1 

10:           Generate U1 

11:           If U1 < ((c-a)/b-a))) then 

12:                       Set delay= b – sqrt((b-a) * (c-a) * (U2/100)) + 0.5 

13:               else 

14:                         Set delay= b – sqrt ((b-a) * (b-c) * (1- (U2/100))) + 0.5 

15:               end if 

16: end if 
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Algorithm 5 Calculate No-Show 

1: attendance_count: Generated random number from U(1,16) 

2: total_attendance: Cumulative value of attendance_count 

3: date: simulation time 

4: b: Higher end of triangular distribution, 1130 

5: c: Mean of triangular distribution, 284 

6: retake_probability: identified value for retake percentage, 20.6 

7: delay: waiting time till second attendance 

8: Generate U1 

9: if time <= 730 then 

10:            Set attendance_count= 1.8206 * exp (0.0029 * date) 

11:             else 

12:             Generate attendance_count 

13: end if 

14: Set total_attendance= total_attendance + attendance_count 

 

 

Algorithms 2, 3 and 4 are placed in corresponding operations of attend_training behavior. Later 

each operation are added as a transition response or rule to STM diagram design. For example, 

behavior would not change to “Registered_for_training” unless the class had seats available and 

the behavior would proceed after registering for the upcoming session. The STM captured in 

Figure 73 shows these operations and three states of attend_training behavior. The SD part of 

the simulation includs two stock variables training_bubble and trained. When an employee 

moves to the “Trained” state they increase the “training_rate” by 1. Similarly, if they decide to 
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re-take training after waiting for assigned delay duration, they move to “Waiting_training” state, 

increasing “return_rate” by 1. Two operations, “get_trained” and “decide_retake”, are 

responsible of these actions, respectively. 

 

 

Figure 73 Attend Training State Diagram 

 

The “train” behavior STM is designed to have two states (Figure 74). When the day, tnow, 

matches the date on the imported training schedule, it transitions to “In_training” state. After 

waiting 1 day in training, it goes back to waiting state until the next training day. Remaining 

algorithm, “Calculate No-Show”, is executed before the training starts on the same day.  
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Figure 74 Train State Diagram 

 

Indirectly, a two way dynamic interaction between the AB and SD models is established by 

implementing these behaviors. First, AB to SD dependency is created by checking the ratio of re-

takers to Trained stock variable in the population under check_retake operation. Second, two 

operations decide_retake and get_trained are responsible of updating the two of the rates in SD, 

return_rate and training_rate, respectively, creating SD to AB dependency. Final SD model is 

achieved when the STM for update_dynamics is finalized resulting in a relation, which is shown 

in Figure 75.  Each behavior block is verified prior to moving to next phase following the visual 

verification techniques discussed in Methodology section. 

 

 

Figure 75 SD Representation of Training Management System 
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Define Structure 

 

During UCD analysis, two agents, employee and company are identified as parts of the system. 

Their relation is identified as Decomposition Type III due to the two way dependency between 

them. As a result the BDD of training management system is designed with two parts, which are 

also connected to one another (Figure 76).  

 

 

Figure 76 Training Management System Block Definition Diagram 

 

After structure identification, all behavior blocks are merged with the main system block, 

Training_Management_System. Following the steps proposed under methodology, behavior is 

allocated to responsible system part. The resulting IBD of the system parts are captured in 

Appendix E, Figure 86. Finally, behavior states are distributed and integrated using and-states in 

part STMs.  
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Employee STM 
 

Each employee is assigned a unique ID at the simulation start, which is allocated from 

set_initial_conditions behavior block. Until simulation end notification, each employee stays in 

active state. However, when in Active state, they wait for an invitation from the company in order 

to be included in the population. After receiving an invitation they start executing the 

attend_training behavior. Finally, at the end of simulation each writes training attendance date(s) 

to a text file with their unique employee ids (Figure 77). 

 

 

Figure 77 Employee State Diagram 
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Company STM 
 

The company is responsible from importing the training schedule at the simulation start which 

was allocated from set_initial_conditions behavior block. It remains in Active state until reaching 

simulation end time, 1455 days and sends the simulation end event to each employee. When in 

Active state, it simultaneously executs three sub-states. First sub-state includes the behavior 

from update_time behavior block. At the end of each day, it updates the stock variables and rates 

and writes them to a text file with the current day’s number. The second sub-state is responsible 

of sending the invitations for the next training to each employee currently in population. The final 

sub-state is responsible of running the training operation.  

 

It is important to note the direct relation between input analysis conducted under requirements 

analysis section and corresponding behavior allocation. For example, attendance count is studied 

using the attendance count data per training and the fit is distributed among the trainings but 

not to employees. As a result Calculate No-show operation is allocated to the company and is 

used in its STM. The resulting STM is shown in Figure 78. 
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Figure 78 Company State Diagram 
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Verify & Validate 

 

Additional to verification completed under behavior design phase, visual and statistical tests are 

conducted on the integrated model. First, randomly 10 employees, out of 1255 created, are 

selected. Their and company’s simulated statecharts are watched simultaneously for any 

potential logic errors. A screenshot capturing this process is shown in Figure 79. 

 

Second, simulated sequence diagram is used with 30 random employees, different from the first 

10, with the company to verify the behavior sequence. For example, an agent selected with a 

small employee ID is expected to register for a training while some other would be waiting for 

training. With the same token, due to population size changes, an agent might not be invited at 

all. Figure 80 shows an example of the three cases simulated using a SeqD.  
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Figure 79 Simulated Statecharts 
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Figure 80 Simulated Sequence Diagram 

 

After verifying the model built, population, total attendance and total trained averages from 33 

iterations are visually compared to the actual data. Due to its deterministic nature population 

count is not used for validating the model. It is important to note that, total attendance is studied 

as an input, however, as separately for different behaviors distributed among employees and 
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trainings. In other words, total attendance depends on agents’ decision to attend a training the 

second time as much as the count of employees who showes-up to the training. As a result, while 

the two are considered as inputs, the value of total attendance is an output to that combined 

behavior. With the same token, total employees trained depends on total attendance due to 

class size limitation and their chance to show-up-both directly and indirectly. Figure 81 captures 

the outputs versus actual data plotted over the duration of the project.  

 

 

Figure 81 Simulation Outputs 
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The validity of the model is statistically tested after completing visual checks. Since the input 

suggested a non-stationary system, from FYs 09 and 10 to FYs 11 and 12, over a finite time, two 

tests are conducted for the two outputs, at the end of FYs 10 and 12 null and alternative 

hypotheses tests are; 

 

𝐻0: �̅�(𝑡)𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑋(𝑡)𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝐻𝑎: �̅�(𝑡)𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ≠ 𝑋(𝑡)𝑑𝑎𝑡𝑎 

 

A table including each replication value at t 730 and 1460 days can be found in APPENDIX D: 

SIMULATION OUTPUT. Table 7 captures the actual data collected, average and standard deviation 

of the replications, t-test results and t-value at 0.05 significance for 32 degrees of freedom. Each 

test value is within the confidence interval. As a result, there is not enough evidence contradicting 

the validity of the model and the alternative hypotheses are all rejected. 

 

Table 7 Output Analysis 

 

Total Attendance 

FY 10 

Total Attendance 

FY 12 

Total Trained 

FY 10 

Total Trained 

FY 12 

Collected Data at t 497 1152 470 1007 

Replication Mean 496.879 1147.576 470.636 1005.303 

Replication Std. Dev. 3.879 34.710 3.471 33.005 

t-test -0.191 -0.732 1.053 -0.295 

t-value at 0.025 ± 2.352 ± 2.352 ± 2.352 ± 2.352 
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Results 

 

One of the outputs studied in the simulation is count of employees currently waiting for training, 

often referred to as “training bubble” (Enos, 2011). The bubble consists of two groups of 

employees. First group, referred to as group 1 in this section, includes employees hired during 

the project timeline or added to due training scope changes. This group is studied under 

population increase section of input analysis. Total population count with respect to total trained 

per snapshot is shown in Figure 82. The bubble values for group 1 are calculated by subtracting 

total trained from the total population and is represented with a line. 

 

 

Figure 82 Training Bubble from Population Increase 

 

Project team would use the values from group 1 to schedule future trainings. As a result, majority 

of the group 1 bubble behavior is explained when plotted with the training frequencies (Figure 

83, highest bar representing 10 trainings per four weeks). For example, as a result of regressive 

trainings offered till the end of FY 11 – until Day 1065- project team was able to drop group 1 
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bubble almost to half. In FY 12, due to group 1 dropping to 250, the training frequency was 

dropped to as low as zero. However, during the first quarter of FY 12 there was an unexplained 

increase observed in the group 1 bubble. Furthermore, towards the end of FY 12 - although the 

training frequencies were increased - group 1 training rate has continuously decreased. This 

resulted in a higher group 1 bubble value compared to end of FY 11.  

 

 

Figure 83 Group 1 Training Bubble 

 

One of the factors affecting unexpected bubble behavior is the re-takers and it was not accounted 

for in training planning. 25.67 % of the employees trained in FYs 09 and 10 had re-attended a 

training by the end of FY 12. At the end of FY 12, the ratio of re-takers was 12.59 % of the total 

training attendance. However due to the large delay between two attendances, averaging at 

500.26 days, this ratio may have increased if data had been collected also for FYs 13 and 14.  

 

Simulated bubble values consists both employees from group 1 and re-takers. Validated model 

is used to simulate its change till the end of FY 12. The outputs are plotted using the same graph 
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as captured in Figure 84. Two unexpected behaviors that were identified in group 1 bubble counts 

are highlighted using two rectangles on the figure. First one is the spike observed in beginning of 

FY 12, captured in left rectangle. The same spike is not recorded in the simulated bubble. On the 

contrary, a small decrease is observed which corresponded to the training frequencies. Similarly, 

increasing training frequency towards the end of FY 12 has actually showed a decrease in the 

simulated bubble. This is highlighted using the rectangle on the right. Decrease in simulated 

bubble during a population increase suggests that re-takers had the majority in each training 

class that was organized for the new hires. Although the training frequency was increased 

towards the end of FY 12 it was not enough to compensate for the amount of seats re-takers 

were using.  

 

 

Figure 84 Simulated Training Bubble  
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 
 

This dissertation describes the work on developing a methodology for modeling and simulating 

systems with agent-based (AB) and system dynamics (SD) modeling techniques using Systems 

Modeling Language (SysML). A methodology is provided, which extends Model-based systems 

engineering (MBSE) approach establishes a two way dynamic and continuous communications 

within the hybrid platform.  Hypothetical and real-world examples are developed on Rational 

Rhapsody to demonstrate proposed methodology. 

 

Main challenges in model development can be grouped in four areas. First is the increasing 

variation in backgrounds of stakeholders.  Every individual or group of individuals adds the know-

how from their perspectives in collaborations.  Furthermore, they expect to see how their input-

either previous analysis results or pure data-is integrated into the model and impact the system 

outcomes. After input analysis, provided methodology combines findings in two dimensions. First 

analysis results are integrated within a behavior. Secondly, they are used for identifying 

responsible system components. Resulting system model provides an output of a distributed 

behavior composed of integrated inputs. Second challenge is the increasing complexity of 

modeled systems. This dissertation provides an approach for managing this complexity and 

proposes a technique for identifying and modeling particular behavior and responsibilities of 

system parts.   
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The third challenge is more specific to long term projects. It is the need to maintain the coherency 

and efficiency of verified and validated models through behavioral and structural change 

requests. Proposed approach allows changing, verifying and validating modularized behavior 

independently. In other words, an independent behavior block where a change is requested can 

be modified, verified and validated and re-allocated to the structural component without 

impacting the validity in other behavior blocks.  

 

The final challenge is reusability of modeled behavior. Today, modeling efforts often start from 

scratch even if same behavior exists in a previously developed model for a different case by the 

same person or group. Provided methodology models behavior and allocates it to a particular 

structure. This approach allows modeling the generic behavior rather than the particular case. 

Therefore, each behavior block can be separately exported and imported later to be used for a 

different case. 

 

Two challenges were faced while working with Rhapsody. First was modeling a behavior, which 

follows a probabilistic distribution. An operation implementing random variate generation 

technique was added to overcome this limitation. The output from generated variates was 

compared to values collected from a simulation software, AnyLogic, and not enough evidence 

was found suggesting difference in means. The second challenge was maintaining the simulation 

time synchronization between different components of the system. A behavior block was 

provided representing a virtual clock that was responsible of updating time within each 

component. 
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Additional to its support during model development, provided approach can play an important 

role in identifying key factors deriving the system behavior and in providing insight to measures 

that can be collected for system evaluation, and analysis. Furthermore, holistic nature of 

provided approach allows the proposed methodology to be applicable to different areas of 

research. This work demonstrated its application for population dynamics and scheduling 

problems. Future applications can include modeling crowd behavior based on geographical 

locations. Influenza outbreak modeling can be an example to such application. Furthermore, the 

provided method can be extended for hybrid models with alternative configurations. First, 

current method’s performance can be evaluated when applied to develop a selected 

configuration, such as discrete event simulation and system dynamics combinations. Later, if 

necessary, provided steps can be adjusted specifically for each hybrid modeling technique 

combinations.  
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APPENDIX A: EXAMPLE MODELS – MOVIE THEATER SEQUENCE DIAGRAM 
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Figure 85 Movie Theater Sequence Diagram 
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APPENDIX B: EXPONENTIAL VARIATE DATE 
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Table 8 Generated Date Frequency 

Days 

AnyLogic Rhapsody 

Days 

AnyLogic Rhapsody 

Transitioning Agent Count Transitioning Agent Count 

0 0 0 26 46 45 

1 5 7 27 48 46 

2 8 10 28 48 47 

3 11 14 29 48 47 

4 16 20 30 48 48 

5 21 22 31 48 48 

6 25 24 32 48 49 

7 28 25 33 48 49 

8 31 29 34 48 49 

9 33 30 35 48 49 

10 34 34 36 49 49 

11 35 34 37 49 49 

12 36 36 38 49 49 

13 36 38 39 49 50 

14 37 39 40 49 50 

15 38 40 41 49 50 

16 41 41 42 49 50 

17 41 42 43 49 50 

18 42 42 44 49 50 

19 44 42 45 49 50 

20 44 45 46 49 50 

21 45 45 47 49 50 

22 45 45 48 50 50 

23 45 45 49 50 50 

24 46 45 50 50 50 

25 46 45    
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APPENDIX C: TRAINING SCHEDULE 
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Table 9 Training Dates and Attendance Counts 

Training 

Date 

# of 

Employees 

Training 

Date 

# of 

Employees 

Training 

Date 

# of 

Employees 

Training 

Date 

# of 

Employees 

1/1/2009 16 5/3/2010 16 5/2/2011 3 2/27/2012 3 

3/3/2009 3 5/5/2010 16 5/9/2011 11 3/5/2012 16 

5/12/2009 5 6/14/2010 13 5/20/2011 5 3/12/2012 16 

6/30/2009 13 6/16/2010 13 5/31/2011 8 3/19/2012 9 

7/7/2009 1 6/21/2010 13 6/6/2011 4 3/20/2012 9 

7/8/2009 5 6/23/2010 15 6/8/2011 11 3/21/2012 10 

7/10/2009 7 6/28/2010 10 6/9/2011 6 3/27/2012 11 

7/16/2009 5 7/19/2010 10 6/11/2011 2 4/9/2012 9 

7/22/2009 2 7/21/2010 11 6/13/2011 6 4/16/2012 11 

7/23/2009 5 7/26/2010 9 6/14/2011 5 4/30/2012 7 

7/30/2009 7 8/23/2010 8 6/16/2011 11 6/4/2012 10 

8/5/2009 3 8/25/2010 11 6/22/2011 1 6/5/2012 12 

8/6/2009 4 9/8/2010 11 6/25/2011 6 6/18/2012 12 

8/12/2009 6 9/13/2010 11 6/27/2011 1 6/25/2012 3 

11/4/2009 1 9/23/2010 13 6/28/2011 4 6/29/2012 7 

11/23/2009 7 9/27/2010 12 7/1/2011 1 7/16/2012 3 

12/1/2009 3 9/30/2010 11 7/11/2011 14 7/19/2012 1 

12/3/2009 3 10/4/2010 14 7/13/2011 2 7/30/2012 9 

12/14/2009 8 10/6/2010 11 7/18/2011 11 8/6/2012 5 

12/16/2009 11 10/11/2010 9 7/20/2011 2 8/7/2012 7 

1/5/2010 9 10/14/2010 6 7/21/2011 5 8/8/2012 5 

1/7/2010 9 10/18/2010 4 8/3/2011 6 8/13/2012 8 

1/25/2010 1 11/1/2010 11 8/4/2011 13 8/14/2012 4 

2/1/2010 7 11/8/2010 10 8/5/2011 14 8/15/2012 5 

2/4/2010 7 11/11/2010 10 8/8/2011 1 8/21/2012 3 

2/8/2010 7 12/1/2010 10 8/30/2011 13 9/11/2012 5 

2/15/2010 3 12/8/2010 9 9/20/2011 8 9/24/2012 7 

3/15/2010 1 1/10/2011 11 10/10/2011 13 2/27/2012 3 

3/29/2010 12 1/13/2011 6 10/11/2011 9 3/5/2012 16 

3/31/2010 8 1/17/2011 5 10/12/2011 11 3/12/2012 16 

4/6/2010 12 2/7/2011 11 10/13/2011 5 3/19/2012 9 

4/8/2010 16 2/10/2011 1 10/18/2011 12 3/20/2012 9 

4/12/2010 9 2/14/2011 10 11/1/2011 2 3/21/2012 10 

4/14/2010 9 2/21/2011 7 11/11/2011 1 3/27/2012 11 

4/19/2010 12 2/28/2011 8 12/6/2011 2 4/9/2012 9 

4/20/2010 9 3/14/2011 3 12/19/2011 9 4/16/2012 11 

4/22/2010 9 3/27/2011 10 1/24/2012 10 4/30/2012 7 

4/27/2010 15 4/4/2011 13 2/16/2012 2 6/4/2012 10 

4/29/2010 12 4/8/2011 1 2/21/2012 11 6/5/2012 12 
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APPENDIX D: SIMULATION OUTPUT 
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Table 10 Simulation Results per Replication 

  
Total Attendance 
FY 10 

Total Attendance 
FY 12 

Total Trained 
FY 10 

Total Trained 
FY 12 

Replication 1 503 1142 468 1009 

Replication 2 499 1169 469 1031 

Replication 3 503 1151 469 1009 

Replication 4 498 1106 469 967 

Replication 5 502 1168 467 1027 

Replication 6 490 1135 468 999 

Replication 7 490 1182 468 1037 

Replication 8 495 1172 470 1032 

Replication 9 500 1130 464 993 

Replication 10 503 1198 466 1052 

Replication 11 497 1136 468 999 

Replication 12 501 1103 468 959 

Replication 13 495 1042 470 909 

Replication 14 503 1118 470 970 

Replication 15 496 1196 466 1051 

Replication 16 495 1117 471 971 

Replication 17 497 1163 470 1018 

Replication 18 496 1153 471 1007 

Replication 19 499 1150 470 1009 

Replication 20 495 1154 475 1009 

Replication 21 493 1195 478 1047 

Replication 22 497 1160 478 1012 

Replication 23 497 1138 476 993 

Replication 24 496 1146 476 999 

Replication 25 498 1131 472 989 

Replication 26 493 1206 473 1063 

Replication 27 493 1082 472 943 

Replication 28 493 1181 471 1034 

Replication 29 497 1120 475 978 

Replication 30 497 1144 468 1000 

Replication 31 503 1163 470 1018 

Replication 32 491 1175 470 1033 

Replication 33 492 1144 475 1008 
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APPENDIX E: TRAINING MANAGEMENT SYSTEM INTERNAL BLOCK DIAGRAM 
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Figure 86 Training Management Internal Block Diagram 

 

  



 
140 

APPENDIX F: ATTENDANCE COUNT REGRESSION ANALYSIS 
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Table 11 Attendance Regression Analysis 

Observation 
Predicted  
Attendance 

Round SSR SSTO Observation 
Predicted  
Attendance 

Round SSR SSTO 

1 2.877 3 34.703 34.703 29 9.316 9 0.012 0.794 

2 3.546 4 23.921 15.139 30 9.484 9 0.012 9.666 

3 4.106 4 23.921 16.885 31 9.541 10 1.230 50.539 

4 4.193 4 23.921 62.266 32 9.656 10 1.230 0.012 

5 4.205 4 23.921 15.139 33 9.714 10 1.230 0.012 

6 4.231 4 23.921 3.576 34 9.860 10 1.230 9.666 

7 4.307 4 23.921 15.139 35 9.890 10 1.230 0.012 

8 4.385 4 23.921 47.485 36 9.949 10 1.230 0.012 

9 4.398 4 23.921 15.139 37 10.099 10 1.230 37.321 

10 4.491 4 23.921 3.576 38 10.160 10 1.230 9.666 

11 4.573 5 15.139 34.703 39 10.282 10 1.230 50.539 

12 4.586 5 15.139 23.921 40 10.343 10 1.230 50.539 

13 4.669 5 15.139 8.357 41 11.658 12 9.666 16.885 

14 6.003 6 8.357 62.266 42 11.727 12 9.666 16.885 

15 6.353 6 8.357 3.576 43 11.904 12 9.666 16.885 

16 6.507 7 3.576 34.703 44 11.976 12 9.666 37.321 

17 6.546 7 3.576 34.703 45 12.156 12 9.666 1.230 

18 6.765 7 3.576 0.794 46 12.944 13 16.885 1.230 

19 6.806 7 3.576 4.448 47 13.021 13 16.885 4.448 

20 7.225 7 3.576 0.012 48 13.217 13 16.885 0.012 

21 7.268 7 3.576 0.012 49 14.372 14 26.103 0.794 

22 7.670 8 0.794 62.266 50 14.458 14 26.103 4.448 

23 7.833 8 0.794 3.576 51 15.076 15 37.321 4.448 

24 7.903 8 0.794 3.576 52 15.303 15 37.321 4.448 

25 7.998 8 0.794 3.576 53 15.767 16 50.539 16.885 

26 8.167 8 0.794 34.703 54 15.957 16 50.539 9.666 

27 8.881 9 0.012 62.266 55 16.101 16 50.539 4.448 

28 9.260 9 0.012 9.666      
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