
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2015

Agent-Based and System Dynamics Hybrid Modeling and Agent-Based and System Dynamics Hybrid Modeling and

Simulation Approach Using Systems Modeling Language Simulation Approach Using Systems Modeling Language

Asli Soyler Akbas
University of Central Florida

 Part of the Computer and Systems Architecture Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Soyler Akbas, Asli, "Agent-Based and System Dynamics Hybrid Modeling and Simulation Approach Using
Systems Modeling Language" (2015). Electronic Theses and Dissertations, 2004-2019. 5167.
https://stars.library.ucf.edu/etd/5167

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/259?utm_source=stars.library.ucf.edu%2Fetd%2F5167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5167?utm_source=stars.library.ucf.edu%2Fetd%2F5167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

AGENT-BASED AND SYSTEM DYNAMICS HYBRID MODELING AND SIMULATION

APPROACH USING SYSTEMS MODELING LANGUAGE

by

ASLI SOYLER AKBAS

B.S. Systems Engineering, Yeditepe University, 2006
M.E. Engineering Management, Rochester Institute of Technology, 2007

M.S. Industrial Engineering and Management Systems, University of Central Florida, 2011
M.S. Modeling and Simulation, University of Central Florida, 2013

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Modeling and Simulation
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2015

Major Professor:
Waldemar Karwowski

ii

© 2015 by Asli Soyler Akbas

iii

ABSTRACT

Agent-based (AB) and system dynamics (SD) modeling and simulation techniques have been

studied and used by various research fields. After the new hybrid modeling field emerged, the

combination of these techniques started getting attention in the late 1990’s. Applications of using

agent-based (AB) and system dynamics (SD) hybrid models for simulating systems have been

demonstrated in the literature. However, majority of the work on the domain includes system

specific approaches where the models from two techniques are integrated after being

independently developed. Existing work on creating an implicit and universal approach is limited

to conceptual modeling and structure design.

This dissertation proposes an approach for generating AB-SD hybrid models of systems by using

Systems Modeling Language (SysML) which can be simulated without exporting to another

software platform. Although the approach is demonstrated using IBM’s Rational Rhapsody® it is

applicable to all other SysML platforms. Furthermore, it does not require prior knowledge on

agent-based or system dynamics modeling and simulation techniques and limits the use of any

programming languages through the use of SysML diagram tools. The iterative modeling

approach allows two-step validations, allows establishing a two-way dynamic communication

between AB and SD variables and develops independent behavior models that can be reused in

representing different systems. The proposed approach is demonstrated using a hypothetical

population, movie theater and a real–world training management scenarios. In this setting, the

work provides methods for independent behavior and system structure modeling. Finally,

provides behavior models for probabilistic behavior modeling and time synchronization.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Waldemar Karwowski who provided me the vision to proceed

and gave me the freedom to explore through every step of my Ph.D study. I appreciate Dr.

Christopher Geiger, Dr. Peter Kincaid and Dr. Piotr Mikusinski for serving as members of my

dissertation committee. Their suggestions and advices have helped me immensely to improve

my research. I would like to thank Dr. Christopher Geiger for creating time to meet me face-to-

face whenever I needed.

My sincere thanks go to my mentor Robert Rich who I owe a great deal both academically and

professionally. I would like to thank Dr. Charles Reilly for always being there with never ending

compassion and Dr. Michael Proctor, Dr. Pamela McCauley and Dr. Mansooreh Mollaghasemi for

all of their guidance, support and especially for showing me how to be a passionate instructor. I

owe an appreciation to all of my friends and family who were always there for me. They have

been the sources of laughter and support and never let me feel alone. I would like to thank my

best friend, my sister, Esin Soyler for providing unflagging support and always cheering me up

when I needed the most.

This dissertation is dedicated to my loving husband, Dr. Mustafa Ilhan Akbas who always stood

by me through the good and bad since the first day in this endeavor. He has been a constant

source of support, joy and encouragement during the challenges of graduate life.

v

TABLE OF CONTENTS

LIST OF FIGURES .. ix

LIST OF TABLES .. xiii

CHAPTER ONE: INTRODUCTION ... 1

Research Background ... 1

Problem Statement ... 3

Objective ... 4

Contributions .. 4

Document Outline ... 6

CHAPTER TWO: RELATED WORK ... 8

System Dynamics Modeling and Simulation ... 8

Agent Based Modeling and Simulation ... 10

AB-SD Hybrid Models .. 12

Model Based Systems Engineering (MBSE) Approach .. 13

Systems Modeling Language (SysML) .. 14

Modeling and Simulation with SysML .. 15

CHAPTER THREE: METHODOLOGY .. 19

Requirements Analysis .. 22

Define Behavior... 23

Create Use Case Diagrams (UCD) ... 24

vi

Link Requirements to UCD’s... 25

Create Activity Diagrams (ActD) ... 27

Generate Sequence Diagrams (SeqD) .. 30

Create Ports and Interfaces ... 31

Define States .. 32

Behavior Verification .. 35

Define Structure .. 36

Create Block Definition Diagrams .. 36

Allocate Behavior ... 42

Verify and Validate System .. 43

CHAPTER FOUR: METHODOLOGY VERIFICATION ... 45

Variability .. 45

Time Synchronization.. 49

Proposed Solution .. 58

CHAPTER FIVE: POPULATION DYNAMICS CASE STUDY ... 62

Requirements Analysis .. 62

Define Behavior... 63

Create Use Case Diagrams (UCD) ... 64

Link Requirements to UCD’s... 70

Create Activity Diagrams (ActD) ... 72

Generate Sequence Diagrams (SeqD) .. 73

Create Ports and Interfaces ... 77

Define States .. 78

Behavior Verification .. 81

vii

Define Structure .. 83

Create Block Definition Diagrams .. 83

Allocate Behavior ... 84

Verify and Validate System .. 88

CHAPTER SIX: TRAINING MANAGEMENT CASE STUDY ... 92

Training Management as Complex Adaptive Systems.. 93

Model Development ... 96

Requirements Analysis ... 96

Define Behavior .. 108

Define Structure ... 115

Verify & Validate .. 119

Results ... 124

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK ... 127

APPENDIX A: EXAMPLE MODELS – MOVIE THEATER SEQUENCE

DIAGRAM ... 130

APPENDIX B: EXPONENTIAL VARIATE DATE .. 132

APPENDIX C: TRAINING SCHEDULE ... 134

APPENDIX D: SIMULATION OUTPUT ... 136

APPENDIX E: TRAINING MANAGEMENT SYSTEM INTERNAL BLOCK

DIAGRAM ... 138

APPENDIX F: ATTENDANCE COUNT REGRESSION ANALYSIS .. 140

viii

LIST OF REFERENCES ... 142

ix

LIST OF FIGURES

Figure 1 Vee- Model (INCOSE, 2011) .. 14

Figure 2 Four Pillars of Model Based Systems Engineering (OMG, 2007) 15

Figure 3 High-Level Methodology Process ... 20

Figure 4 Behavior to Structure .. 21

Figure 5 Behavior Analysis .. 23

Figure 6 Use Case Diagram Development Process ... 26

Figure 7 Activity Diagram Development Process .. 28

Figure 8 Update Time Activity Diagram .. 30

Figure 9 Update Time State Diagram .. 33

Figure 10 Population Count Over Time .. 33

Figure 11 Population Count with Feedback .. 34

Figure 12 Structure Analysis ... 36

Figure 13 Initial Block Definition Diagram of a Training System .. 37

Figure 14 Complex Supply Chain System Decomposition .. 41

Figure 15 Rate Block Values and Operations .. 46

Figure 16 Cumulative Frequency of Arrival Transitions .. 47

Figure 17 Movie Theater Sequence Diagram ... 50

Figure 18 Movie Theater and Guest Agent Behavior ... 52

Figure 19 Expected Output ... 53

Figure 20 Error Count Correlogram .. 56

Figure 21 Update Time Use Case .. 58

x

Figure 22 Update Time Activity Diagram .. 59

Figure 23 Room State Diagram ... 60

Figure 24 Guest State Diagram ... 61

Figure 25 Giraffe Population Scenario Requirements .. 63

Figure 26 Use Case Diagram - Action 1 ... 64

Figure 27 Use Case Diagram Actor Definition ... 65

Figure 28 Use Case Diagram - Action 2 ... 65

Figure 29 Use Case Diagram Stakeholder Definition .. 66

Figure 30 Use Case Diagram Predator Definition ... 67

Figure 31 Finalized Use Case Diagram .. 68

Figure 32 Giraffe Action Flow ... 69

Figure 33 Requirements Matrix View ... 70

Figure 34 Finalized Use Case Diagram .. 71

Figure 35 Reproduce Activity Diagram ... 72

Figure 36 Die Activity Diagram.. 73

Figure 37 Sequence Diagram of Die Behavior .. 74

Figure 38 Modified Sequence Diagram of Die Behavior ... 75

Figure 39 Modified Sequence Diagram of Reproduce Behavior .. 76

Figure 40 Die Behavior Internal Block Diagram of Actual Scenario .. 77

Figure 41 Alternative Scenario Internal Block Diagram .. 78

Figure 42 Update Dynamics State Diagram .. 79

Figure 43 Set Initial Conditions State Diagram ... 79

xi

Figure 44 Die State Diagram ... 80

Figure 45 Reproduce State Diagram ... 81

Figure 46 Simulated Sequence Diagram for Reproduce Behavior ... 82

Figure 47 Block Definition Diagram .. 83

Figure 48 (a) Black-Box and (b) White-Box Activity Diagram Views ... 85

Figure 49 White-Box Activity Diagram of Update Time Behavior .. 85

Figure 50 White-Box Activity Diagram of Set Initial Conditions ... 86

Figure 51 White-Box Activity Diagram of Update Dynamics Behavior ... 86

Figure 52 White-Box Activity Diagram of Reproduce Behavior .. 86

Figure 53 Location State Diagram ... 87

Figure 54 Giraffe State Diagram ... 89

Figure 55 Giraffe Population Behavior ... 91

Figure 56 Total Training Attendance .. 93

Figure 57 Total Employee Count per Snapshot .. 98

Figure 58 SD Representation of Population Increase ... 98

Figure 59 Delay vs Initial Training Date .. 99

Figure 60 FY 2009 and 2010 Delay vs Initial Training Date ... 100

Figure 61 FY '09 and '10 Autocorrelation Plot .. 101

Figure 62 Delay Data Fit .. 101

Figure 63 Attendance Count per Training .. 103

Figure 64 Attendance Count Autocorrelation Plot ... 103

Figure 65 Attendance Count Data Fit ... 104

xii

Figure 66 Initial Simulation Output ... 105

Figure 67 Updated Training Attendance Autocorrelation Plots ... 106

Figure 68 Actual vs Predicted Data ... 107

Figure 69 Training Management System Usecase Diagram ... 108

Figure 70 Attend Training Black-box Activity Diagram ... 109

Figure 71 Train Black-box Activity Diagram .. 109

Figure 72 Set Initial Conditions Black-box Activity Diagram ... 110

Figure 73 Attend Training State Diagram ... 113

Figure 74 Train State Diagram .. 114

Figure 75 SD Representation of Training Management System ... 114

Figure 76 Training Management System Block Definition Diagram ... 115

Figure 77 Employee State Diagram ... 116

Figure 78 Company State Diagram ... 118

Figure 79 Simulated Statecharts ... 120

Figure 80 Simulated Sequence Diagram ... 121

Figure 81 Simulation Outputs ... 122

Figure 82 Training Bubble from Population Increase ... 124

Figure 83 Group 1 Training Bubble ... 125

Figure 84 Simulated Training Bubble .. 126

Figure 85 Movie Theater Sequence Diagram ... 131

Figure 87 Training Management Internal Block Diagram ... 139

xiii

LIST OF TABLES

Table 1 System Decomposition Types .. 38

Table 2 Experiment Results... 57

Table 3 Complex System Properties, Adapted from Bot, 2012 .. 95

Table 4 Population Increase per Snapshot ... 97

Table 5 Attendance Distribution Fit Test Results ... 102

Table 6 Attendance Count Distribution Fit Test Results ... 104

Table 7 Output Analysis .. 123

Table 8 Generated Date Frequency .. 133

Table 9 Training Dates and Attendance Counts ... 135

Table 10 Simulation Results per Replication .. 137

Table 11 Attendance Regression Analysis .. 141

1

CHAPTER ONE: INTRODUCTION

Even though the benefits to integrating the agent-based (AB) and system dynamics (SD) modeling

techniques are recognized in literature, the current body of knowledge lacks research on studies

focusing on common approaches in methodologies. Furthermore, the issues that arise from their

integration are evaluated using existing simulation platforms from each individual research

domain. However, utilizing a new external platform, such as Systems Modeling Language (SysML)

– that has been found beneficial for both discrete and continuous modeling techniques

separately – has recently been evaluated under this research effort. This dissertation describes

contributions to the field of AB-SD hybrid modeling and simulation technique. It describes an

approach and demonstrates its potential applications in population dynamics modeling and

project management using hypothetical and real-life scenarios, respectively. It uses Systems

Modeling Language (SysML) for modeling and simulating multi-method simulation model

development on a software platform Rational Rhapsody® by IBM which can also be implemented

on any other SysML platforms.

Research Background

Agent-based (AB) and system dynamics (SD) modeling techniques have separately been

considered among effective modeling methods in literature. However, their combination can be

2

considered the least studied among published literature on hybrid models. The majority of the

reviewed work from this domain includes examples and methods of two techniques being

modeled separately, as sub-models of each other. The two models would later be combined to

simulate the conditions of the dominant technique – as a dependent component – driven from

its sub-model’s behavior – as an independent component. In studies using this structure, the

dynamic information exchange is often one-way – from the technique with independent behavior

to the dependent one.

Unified Modeling Language (UML) representations are considered a common practice,

particularly in computer science, for AB, SD and AB-SD simulations. However, limited work has

been published on using its extension, i.e., Systems Modeling Language (SysML). According to

the existing literature two distinct groups of practices emerged. While some researchers and

practitioners still prefer UML diagrams for conceptual modeling, some studies from system

sciences has captured systems using SysML. However, use of SysML is limited to conceptual

modeling. In the second group, SysML is evaluated as a platform for modeling systems which

could later be exported to external statistical simulation tools such as Matlab or Modelica.

Limited studies are published on the topic and only one modeling technique was used for

exploratory purposes.

3

Problem Statement

The literature review revealed an ongoing argument on AB-SD hybrid modeling technique. Some

studies in literature advocate potential benefits that can be achieved through the integration of

the two techniques, whereas some describe the issues arising from their differences of most basic

modeling notions. Time and event synchronizations, continuous versus discrete behaviors, top-

bottom versus bottom-up approaches are among examples of these issues. The majority of the

existing literature on the topic consists of one school evaluating the other’s performance as an

alternative modeling approach using the same or a similar case. Furthermore, existing knowledge

on AB-SD modeling methodology has provided case specific approaches rather than a generalized

methodology.

The need for identifying a common platform and a universal approach for AB-SD hybrid modeling

and simulation has often been mentioned. However, existing literature is limited to studies using

approaches where the two techniques are integrated after independently being modeled.

Furthermore, AB-SD hybrid modeling and simulation within an external platform to both domain

applications, such as SysML, has not been evaluated. Finally, potential benefits of an approach

adapting model-based systems engineering (MBSE) methodologies for managing complexity and

changes has not been researched.

4

Objective

As a result, the main objective of this dissertation is to develop an approach for agent-based and

system dynamics hybrid modeling and simulation using Systems Modeling Language (SysML) to

be used for understanding and studying system’s emerging behavior over time.

Contributions

This dissertation demonstrates an approach, which implicitly develops and simulates an AB-SD

hybrid model of a system without requiring any prior knowledge on either modeling techniques.

It uses SysML diagrams and objects to minimize the use of programming languages and adapts

model-based systems engineering (MBSE) methodologies to create a holistic approach that can

be applied to different domains or fields.

The approach starts from the problem identification phase of modeling and simulation

methodology. Conducts input analysis through requirement analysis and distributes findings in

multi dimensions. Specifically, in the proposed approach first, problem scope and boundaries,

system limitations and expected behavior are analyzed. Second, gathered knowledge is used to

identify physical components of the system. Finally derived behavior is merged and distributed

over the physical components of the system. This methodology allows establishing a two-way

dynamic continuous link between AB and SD mathematical models. Adapted MBSE approach

5

provides a top-bottom modeling approach that is the basic notion for SD modeling. The bottom-

up approach required for ABM is captured through the proposed process flow in behavior

analysis phase. Furthermore two step validation approaches recommended by both AB and SD

modeling techniques are supported by individual behavior validations in behavior analysis and

overall model validations after structure analysis. SysML provides the external platform where

the two techniques are combined, which is found beneficial in literature in supporting AB and SD

modeling efforts separately.

In addition to its contribution to AB-SD hybrid modeling, the proposed approach also provides

methods that can be adapted by general modeling concepts. Specifically, through modularized

behavior analysis, it allows changing, verifying and validating behavior independently.

Furthermore, this allows modeling generic behavior rather than developing case-specific

applications. As a result, it provides modeled behavior that can be re-used and customized for

different applications. Overall the proposed methodology will:

● Provide a generalized AB-SD modeling and simulation framework

● Extend the MBSE approach for systems modeling using hybrid simulation platforms

● Propose an approach for modeling reusable behavior

● Provide alternative hybrid system architectures

● Develop case studies to demonstrate potential applications

6

Proposed approach provides an output from distributed behavior composed of previously

analyzed and integrated inputs. Output from the simulated systems will aid stakeholders in

understanding behavioral and structural dependencies and impact of decisions or external

events. Thus, in overall the results collected through this approach will;

 Support stakeholders by providing the capability to run strategic what-if scenarios

 Support system analysis efforts through long term dynamic behavior analysis

 Identify factors that has the highest impact on the behavior caused by direct and/or

indirect relations

Document Outline

This dissertation starts with a brief introduction on the topic and outlines the findings from

literature review on each related field.

Later describes the Methodology in four main phases, requirements analysis, behavior analysis,

structure analysis and validation and verification, which are further grouped according to the

common phases used in MBSE approach.

In Methodology Verification, this dissertation provides an approach for modeling probabilistic

behavior in SysML and compares the outputs with results collected from another simulation

7

platform AnyLogic. In addition, proposes an approach for managing time synchronization issues

arising from AB and SD integration and verifies the overall approach by testing the significance

of correlation and autocorrelation between independently-modeled agents using a hypothetical

movie theater system.

The proposed approach first is demonstrated using a hypothetical giraffe population observation

system for modeling and simulating population dynamics which is a common application area in

both modeling techniques. Second, applies the approach on a real-world case study for training

management. Through this case study this section demonstrates how the behavior is derived and

distributed over the two system components, employee and organization. It shows the verified

and validated overall model of the training management system and uses the model to study the

change in count of people waiting for training over a four year period.

Finally, in Conclusion, contributions of the proposed methodology and possible extensions for

future work are discussed.

8

CHAPTER TWO: RELATED WORK

The literature review starts with a brief description on agent-based (AB), system dynamics (SD)

and AB-SD combined simulation techniques. Later, model based system engineering approaches

that can be applied to modeling for simulation and existing literature on applications using

Systems Modeling Language (SysML) are reviewed.

System Dynamics Modeling and Simulation

System dynamics (SD) is a technique to present, understand and explain complex problems

(Radzicki et al., 2008). A critical factor in a system dynamics model is the identification of its

objective (Forrester, 1987). It is efficient in modeling complex systems since it is based on

nonlinear dynamics and feedback control. SD has diverse application areas such as transportation

(Haghani, Lee, & Byun, 2003), healthcare (Homer & Hirsch, 2006), project management (Sterman,

1992) and so on.

SD utilizes human behavior by incorporating social psychology, organization theory and

economics (Sterman, 2001). Models created by system dynamics are generalizable and enable

the processing and analysis of graphically depicted data. These properties make system dynamics

attractive for organizational models (Popova and Sharpanskykh, 2010). For example, SD was

9

shown to support identifying the gap between organizations and individuals learning and later

used this understanding in reducing fragmented learning (Romme and Dillen, 1997, Dangelico et

al. (2010)). The model analyses the district evolution according to a multiple dimensions such as

institutional, economical, and social issues. Van Olmen et al. (2012) introduce a framework for

health systems research, which can be used in two different applications of health systems.

Schwaninger and Rios (2008) use system dynamics with viable system model for modeling

organizational cybernetics. The main goal of the model is increasing the capabilities of the users

in dealing with challenging issues in organization and society. Robbins (2005) proposes a system

dynamics model with interdependent parameters as a support tool for decision-makers in nation

building to investigate different sets of decision approaches at a regional level.

Different approaches in SD modeling have been suggested in literature. For example, Coyle

(2001a) suggests using five stage approach where Towill (1993) further separates them in to nine

stages. However, a common approach in all is the iterative nature of the overall process.

Compared to methodology approaches, validation techniques in SD modeling is not a common

topic in the domain (Barlas, 1996). Although this is in some ways contradicted by Sterman (1992),

there is a gap in provided validation techniques that are specifically customized for SD. Barlas

(1996) suggests a two-phase validation approach, where structure-oriented behavior and

resulting behavior patterns are validated separately.

Overall, the principles of system dynamics modeling, such as the ability to study the effects of

individual variables and their interactions, provide a pragmatic and holistic nature (Romme and

10

Dillen, 1997) that is found useful in modeling humans as social systems that are characterized by

“dynamic complexity” (Senge, 1990).

Agent Based Modeling and Simulation

Agent-based modeling and simulation (ABMS) is an approach for modeling complex systems

composed of autonomous actors, interactions of actors, the environment in which these actors

interact and the rules defining the interactions (Macal, 2010). Actors in ABMS are named as

‘agents’. Agents are autonomous and they interact with each other according to the protocols

defining their behaviors (Bandini, 2012). These protocols generally consist of simple rules.

However, the combination of agents and their interactions creates a complex structure, which is

used to understand the behavior of systems under various conditions. Therefore, ABMS is

applicable to complex models, where traditional modeling tools are generally not sufficient

(Macal, 2010). ABMS also incorporates features using advances in computational power and data

storage capabilities. These technological improvements enable enhancements in modeling the

complexity designed through ABMS by bridging macro and micro levels of a system (Macy and

Willer, 2002).

ABMS is an active research area with numerous applications, such as organizations (Bonabeau,

2002, Van Dam et al., 2007), economics (Charania et al., 2006), epidemics (Carley et al., 2006),

social systems modeling (Kohler and Gummerman, 2001), influence (Marsell et al., 2003) and so

11

on. One of the emerging concepts in ABMS research is organizational management and human

behavior modeling. Rojas-Villafane (2010) use ABMS to create a model named Team

Coordination Model (TCM), which estimates the performance of a team according to its

composition, coordination mechanisms and characteristics of the job. The rules defining the

behaviors of agents in TCM are individual team design factors and the overall performance of the

model is validated by comparisons against real team statistics. As hierarchical structures are

increasingly adopted by organizations and most of the activities are automatized, ABMS can be

used to model organizations efficiently. Montealegre Vazquez and López (2007) develop a model

for open hierarchical organizations, in which each member of the organization is modeled as an

agent and the norms are used to define the behavior of agents. The organizational culture model

by Harrison and Carrol (2006) also models the members of the organization as agents. In this

model, interactions of the agents are modeled as social influences and the observed

organizational property of the model is the cultural heterogeneity in the organization. Rivkin and

Siggelkow (2003) use ABMS to model the decision behavior of top management agents in an

organization. They observe properties of vertical hierarchy in organizations and identify

circumstances in which vertical hierarchies may lead to inferior long-term performance.

ABMS uses agent-oriented approach rather than process oriented, which is not common to most

simulation approaches (Macal & North, 2010). Although majority of the literature agrees on the

high-level modeling phases, a common modeling technique that could represent different types

of applications has not yet been identified (Gilbert & Bankes, 2002). The limited work on design

concept standardization and protocols has been identified as an issue in very recent studies

12

(Collins, Petty, Vernon-Bido, & Sherfey, 2015). A commonality in all reviewed literature is the

ground-up approach (e.g., Masad & Kazil, 2015, Macal & North, 2007), which starts with simplest

agent and extends it according to problem description.

AB-SD Hybrid Models

Availability of data and improvements in computational power has increased the use of

simulation in various fields in academia and government industry. This trend is also observed in

hybrid simulation platforms, especially in the area of manufacturing (e.g., Jahangirian, Eldabi,

Naseer, Stergioulas, & Young, 2010). System dynamics (SD) and discrete event simulation (DES)

combinations consists the majority of the published research. However, agent based modeling

and simulation (ABMS) and SD combinations are found less researched and understood (Swinerd

& McNaught, 2012) even though each separately are considered to be among the most important

methods (Lättilä, Hilletofth, & Lin, 2010). Scholl (2001) points out this gap in literature, and

discusses potential benefits of their combinations to the common applied research fields.

In addition to techniques used in hybrid modeling, one can also find commonalities in individual

AB and SD modeling methods. For example, Coyle (2001b) describes a method for SD modeling

which starts by identifying system actors and their possible states. Later, he continues by

identifying rules and conditions for state transitions. However, the basic notion in their approach

can be categorized as to be completely opposite of one another. Where ABM uses ground-up

13

approach SD is modeled using top-down notion (Macal & North, 2007). Among the first to be

published in the domain, Phelan (1999) identifies three core differences between the two

modeling techniques as their agenda, technique basis and epistemology. However, more

differences have been argued by researchers in later years (Pourdehnad, Maani, & Sedehi, 2002

and Figueredo & Aickelin, 2011). Conceptual models are commonly used for identifying scope,

interactions and behavioral dependencies of systems in literature (e.g., Gilli, Mustapha, Frayret,

Lahrichi, & Karimi, 2014 and Größler, Stotz, & Schieritz, 2003). Furthermore, Unified Modeling

Language (UML) is often used to represent agent states in studies from computer science fields

(e.g., Borshchev & Filippov, 2004). Existing literature include studies that are in its early design

phases (Gilli et al., 2014) or providing result from exploratory applications (e.g., Akkermans,

2001).

Model Based Systems Engineering (MBSE) Approach

Model-based design has been identified as an approach that can aid in issues arising from human-

system interaction (Sage and Rouse, 2009). There is not a standardized methodology for MBSE

approach (Ramos, Ferreira, & Barcelo, 2012); however, the majority of the well-known MBSE

approaches utilize the Vee-Model (Figure 1) (Sellgren, Törngren, Malvius, & Biehl, 2009) and

extend it according to their domain. Harmony SE is one these approaches (Hoffmann, 2014)

where, prior to modeling, behavior is decomposed and modeled individually according to

requirements and later after architectural design phase, are allocated to the responsible parts of

14

the system. Potential benefits from adapting MBSE is pointed out by a questionnaire conducted

by Pastrana (2014) where later, a roadmap is suggested for designing conceptual models of

distributed and hybrid simulation systems.

Figure 1 Vee- Model (INCOSE, 2011)

Systems Modeling Language (SysML)

The holistic approach required in modeling complex systems are supported by four key modeling

facets, called pillars including nine diagrams, that consist of requirements, behavior, structure

and parametric relationships (Ramos et al. 2012). Figure 2 captures the representation of

diagrams published by Object Management Group (OMG) included in each pillar (Hause, 2006).

Although Package and Use-Case diagrams are not included in this representation they are also

considered a part of structure and behavior pillars, respectively.

15

Figure 2 Four Pillars of Model Based Systems Engineering (OMG, 2007)

Modeling and Simulation with SysML

Recent capabilities introduced by IBM’s Rational Rhapsody provides a platform for modeling

continues dynamics using SysML. According to Euler’s method (Huntsville, 2014) one can solve a

differential equation by approximating its solution at a discrete sub-division, referred to as steps,

of a continuous time interval. This can be expressed as:

16

𝑓(𝑃) =
𝑑𝑃

𝑑𝑡
≈

∆𝑃

∆𝑡
= 𝑓(𝑃𝑛)

Furthermore, this approximation is used to approximate the change, and hence, predict the

future value of continuous function P from its initial or current value. The discrete equation is

expressed as:

𝑃𝑛+1 = 𝑃𝑛 + ∆𝑡𝑓(𝑃𝑛),

where n is the computation count and t is the time step. Johnson et al. (2007) propose a

methodology using Modelica internal behavior equations to create relationships among

components where they represented algebraic equations with conditional logic, which add

capability to add stakeholder requirements to system behavior (Johnson et al., 2011). McGinnis

and Ustun (2009) demonstrate method for linking SysML with a simple discrete simulation model

using Arena where they create a simulation from its conceptual model.

Among reviewed literature, the three most common diagrams used to capture behavior are,

Parametric Diagrams (ParD) (T. Johnson, Paredis, & Burkhart, 2011 and T. A. Johnson, Jobe,

Paredis, & Burkhart, 2007), Sequence Diagrams (SeqD) (David, Idasiak, & Kratz, 2010) and

Statechart Diagrams (STM) (Silhavy, Silhavy, & Prokopova, 2011). In studies using ParD, equations

are added as parametric constraint blocks with a composition relation to the owner block. This is

consistent to composition relation between the agents and their behavior suggested by Bersini

(2012). Furthermore, when used, SeqD and STM are added to the owning block. The main

17

commonality among these studies is that the behaviors are created after the structure analysis

phase.

Majority of the proposed designs in literature-focusing on architectural design for different types

of simulation- revealed two distinct perspectives: proposing a design of the actual system and of

the conceptual model for the actual system’s simulation model. Studies from the first group, such

as the block definition diagram (BDD) suggested by Johnson et al. (2011), decompose the system

according to the actual components of the system. This is also common to studies suggesting a

multi–level approach for modeling hybrid models (Basole & Bodner, 2015). The decomposition

approach in studies belonging to the second group is based on the components of the model,

which is similar to approach used in software development. For example, Swinerd & McNaught

(2012) propose three design structures for SD-ABM models, which are decomposed according to

SD and ABM parts of the system. There are few studies that captured both perspectives such as

the mapping of domain and analysis meta-models proposed by Huang, Ramamurthy, & Mcginnis

(2007). Additional to SysML, studies using Unified Modeling Language (UML) (such as Bersini,

2012), are also reviewed to capture alternative proposals for developing a universal ontology.

Existing research on single type models showed SysML being used either to support conceptual

model development, similar to UML (Silhavy et al., 2011), or as foundation for models that could

be exported to other simulation software such as Modelica (Johnson, Jobe, Paredis, & Burkhart,

2007) or Arena (Mcginnis & Ustun, 2009).

18

Even though there is an increasing interest in literature, where SysML is used to support modeling

efforts, a gap exists in the domain, which adapts MBSE methodologies for modeling and

simulating systems within SysML. Furthermore, an approach which implicitly drives an agent-

based and system dynamics hybrid model of a system has not been provided. The few studies

published on agent-based and system dynamics hybrid modeling and simulation domain use

SysML to design the architectural components of a system’s model.

19

CHAPTER THREE: METHODOLOGY

Commonly used agent-based (AB) and system dynamics (SD) modeling techniques and

alternative workflow suggestions are summarized in Chapter 2. Even though each separately is

considered to be effective methods (Lättilä et al., 2010), there is very little research on agent-

based and system dynamics (AB-SD) combinations. Furthermore, majority of the work focuses

on model conceptualization and formulation and does not provide an approach that can

consistently be used all throughout the modeling and simulation workflow.

Computing power advancements paired with large amount of data collected over the years

significantly increase AB-SD modeling and simulation capabilities. However, these advancements

also increase the intricacy and the scale of modeled environments and introduce three core

challenges. First, high complexity is difficult to be included using the ground-up approach.

Second, the involvement of stakeholders-from various fields and backgrounds-introduces

additional needs and expectations, each facing unavoidable changes due to shifts in

environmental conditions. Finally, the need to maintain the coherency and efficiency of validated

models through structural or behavioral change requests that arise from emerging variables,

constraints or states. This research proposes an approach for modeling and maintaining AB-SD

hybrid models of systems using Systems Modeling Language (SysML).

20

This section describes the methodology in four main phases. As shown in Figure 3, it starts with

requirements analysis and is followed by behavioral and structural design. Finally, it explains the

methods for validation and verification.

Figure 3 High-Level Methodology Process

A generic package diagram is created to capture this relation between the behavior and the

responsible part of the environment in Figure 4. The two packages, Pkg Structure and Behavior

Analysis, represent the high-level folders in the SysML project tree. An Agent block captured

under Pkg Structure Analysis is used to represent the physical entity which is a part of the

environment with a specific behavior that is defined under Pkg Behavior Analysis.

21

Figure 4 Behavior to Structure

For simplicity, only high-level, potential components were used where both behavior blocks were

allocated to a single part of the model. However, since the level of behavioral complexity and the

associated structure is unique to each environment under study, a component may be

responsible for more than one behavior. With the same token, more than one component may

be involved in executing one behavior. This is further discussed in Structure Analysis section of

this chapter.

Through the remainder of this dissertation the word agent is used to describe all environment

members which or who are simulated using agent-based simulation technique. Furthermore, the

word actor is used as a specific role to describe persons or systems who are external to system

under development (Ramos et al., 2012). Finally, the word location is used to describe the area

where agents and/or actors exist.

22

Requirements Analysis

Grouping similar requirements is a common approach both in academia and private industry

(Friedenthal, Moore, & Steiner, 2009). Method uses five main groups for capturing the identified

capabilities and conditions expected from the model. The first two of five can be classified as

system-driven. These two groups include behavioral and structural requirements of the system.

The third and fourth groups can be classified as program-driven. Third group consists of

translation rules that are used for building the designed model in the selected simulation

environment or language. If the modeler is using the same two software consistently and neither

has gone through any significant updates, no change in the specifications is expected and

therefore can be imported for all new model designs. The fourth group captures model validation

and verification test specifications and includes a list of the variables and their expected values

that will be used within statistical tests. The final group can be classified as customer-driven. It is

used to list the variables, values of which must be collected for output analysis.

Different methodologies used in requirements analysis and management are not covered within

the scope of this dissertation. Further reading on the topic can be found in most SysML and MBSE

books (e.g. Weilkiens, 2006 and Friedenthal et al., 2009).

23

Define Behavior

The developed process flow for behavior analysis can be grouped in seven phases as captured in

Figure 5. Phase 1 starts with Use Case Diagram (UCD) design, and is followed by the next phase

where each behavioral requirement is linked to associated use case(s). In the third phase,

activities, involved per each use case, are mapped using the Activity Diagram (ActD). Then, the

interaction between environment components and between actors and environment

components are generated using Sequence Diagram (SeqD). Ports and interfaces are created in

the fifth phase in order to establish the connection for message exchange between all members.

In the sixth phase, initial Statechart Diagrams (STMs) are created and finally the model is

compiled for behavior verification. The following sub-sections of behavior analysis follow the

order of phases captured in Figure 5.

Figure 5 Behavior Analysis

24

Create Use Case Diagrams (UCD)

UCD is used to identify environment boundaries, scope, and model behavior and any internal and

external interactions defined within the project scope. A flow chart is developed for creating the

UCD. First the modeler identifies actors, their relation with the system and the types of their

behavior, referred to as functions. Later, similar actions are repeated to identify the emphasis,

and impact of location conditions and events if any are included within the environment

boundaries.

The process starts by adding all members of environment, which are involved in, have impact on

or simply observe outcomes. These can include stakeholders, external systems, agents and even

locations other than the one considered within the focus. Later, by iterating a series of decisions,

the modeler identifies the actors’ relations to the modeled system and their time or SD driven

behaviors. Agents who are identified as a part of the environment are not added to UCD as actors.

However, their behaviors are added as functions within the system boundary box. Later in section

Structure Analysis, these are added as a part of the environment and designed behaviors are

allocated to each responsible party.

Location of agents may play an important role in the design depending on the type of

environment scenario. For example, studies focusing on influenza outbreak (eg. Lukens et al.,

2014) often derive contact rate from the distance between agents. In such cases, location of each

agent is considered as a factor impacting experiment results and therefore may be included in

25

UCD. After completing the process for an actor, modeler goes back to beginning and repeats the

decisions with the new actor selected. UCD is completed once all the actors, functions and their

associations are linked. The activity flow capturing this description is represented in Figure 6.

There is not a specific order suggested for actor selection. However, leaving the actors who are

the focus of interest, to the last is recommended. This may help modelers to clarify environment

boundaries and some of the assumptions prior to decisions requiring more details.

Link Requirements to UCD’s

The specific relation type between identified requirements and the model elements can be added

manually or using a matrix view. In this phase, a generic relation “trace” can be used to map the

use cases to the corresponding requirements. UCD can be used for visual verification to confirm

that all required behaviors have been captured. Furthermore, it can be used as a map to add

“satisfy” relation to the corresponding behavior block created from identified use cases. Multiple

matrix views focusing on specific behavior or part can be created to simplify table contents when

modeling complex systems.

26

Figure 6 Use Case Diagram Development Process

27

Create Activity Diagrams (ActD)

The activity diagram is used to capture the sequence of actions that needs to be executed in

order to satisfy the goal defined by a use case (Weilkiens, 2006). The path of sequence execution

is represented using control or object flows depending on the type of information necessary for

executing an activity. If a system consists of activities common to more than one use case, they

can be designed either explicitly as an operation or in groups as behaviors. Furthermore, an

activity can be an action state or a message. Although multiple actions can be represented as

embedded code within a single activity, it is not recommended. This method would not simplify

the modeling of system behavior complexity, therefore would eliminate the benefits that can be

achieved using MBSE approach.

Developed flow (Figure 7) starts by adding the actions of the selected use case and placing them

in the diagram in a sequential order. A decision, fork and join nodes are later added if necessary

to represent conditional reactions of the system. In the third step, the variables, which will be

used either at the decision nodes or within actions, are added to the associated behavior block.

Common variables must be added only once and to the responsible behavior block. For example,

simulation time variable would only be added to the update time behavior block. Later during

structural design these common variables will be allocated to all parts of the system. A star is

added to this step to indicate that it is optional. The modeler can also use the sequence diagrams

to identify variables and add them to the associated behavior block. Remaining steps focus on

capturing internal and external message exchange.

28

Figure 7 Activity Diagram Development Process

First actions belonging to actors, who or which are external to the system scope and trigger a

behavior sequence, are added as messages. From system’s perspective, these are incoming

messages from an external source, therefore are represented using an inwards direction at the

actor pin. These steps are not performed if there are any actions that are waiting for an action to

29

be completed by a different behavior block within the system. The waited actions are captured

only at the ActD of the behavior block responsible of performing the action. Therefore, when

modeling systems with complex behavior, activity diagrams must be created simultaneously.

Instead of waiting to complete one ActD, when identified, the required action can be added as a

message to the ActD of the responsible behavior block. Last group of steps focuses on identifying

and adding such actions as messages. Process flow of the described method is captured in Figure

7.

Required ActDs such as “update_time” or “update_dynamics” can be used to start the modeling

in this phase. If this is the first time this methodology is being used, modeler would create them

manually and save the project. If not, a previously saved project with only the two use cases and

their behavior blocks, can be imported using the “Add to model” menu option in Rhapsody (IBM,

2014).

The ActD for “update_time” behavior consists of one action, “increment_clock”. Furthermore, it

is responsible of starting the overall system execution and updating the internal clock. As a result

it consists of two message actions and one action with embedded code that will increment the

clock (Figure 8). A variable named “Tnow” is added to the block representing the time of the

simulation in days.

30

Figure 8 Update Time Activity Diagram

The second ActD created or imported satisfies the “update_dynamics” use case behavior. This is

the behavior that is used to model the system dynamics parts of the model. Hence, it consists of

an action named “update_dynamics” that will be executed after receiving the new time message

“send_update”. This has the code embedded for updating variables identified as stock and

dynamic. The second action has the code for updating rates per time increment measure t (e.g.

weeks, days) after receiving the corresponding messages from those behavior blocks.

Generate Sequence Diagrams (SeqD)

Harmony Profile allows automated generation of sequence diagrams (SeqD) from created ActDs,

including operations such as:

 Generate operations from action names

 Create events

31

 Create interface

 Add corresponding operation and event realizations (Hoffmann, 2014).

One or more SeqDs can be created for a behavior block. However, to maintain modularity at least

one SeqD per behavior block should be created. If Harmony profile is not used for SeqD

generations, each listed operation has to be completed manually. Later in the SeqD operations

and events should be assigned to message and event tools, simultaneously, as realizations. Only

the messages exchanged between the system and actors are shown in initial SeqDs since these

are created from the black-box activity diagrams. Internal messages are added to the SeqD after

the actions are allocated to the responsible system parts during architectural design phase.

Depending on the level of detail required, the behavior and conditional rules can be planned

using SeqD. Although this is not required, it would lay the grounds for mapping the rules for state-

based behavior and support designing efforts. Rhapsody diagram tools can be used to add

conditions and logic for operation sequence. All types of operator based interactions added to

SeqD are only added as a visual guidance and are not included in the compiled simulation

execution file (IBM, 2014).

Create Ports and Interfaces

Similar to SeqD generation, ports and interfaces can be created automatically using the Harmony

toolkit. This option will move all external events to corresponding interfaces and add receptions

32

to the receiving party. Finally, it will add parts of the behavior block and interacting actors to

capture their communication using an Internal Block Diagram (IBD). Each behavior block created

up until this phase will have its own IBD. The main purpose is to identify the specific behavior

block, where the overall system is required to interact with an actor in the environment

surrounding itself.

Define States

In behavioral design phase decomposed blocks are treated individually. Therefore one state

diagram is created for each behavior block. The states and transition conditions are added

according to the logic identified in SeqDs. The modeler can embed the code for operations during

any state after SeqD design. However, all remaining code should be embedded during state

definition. In order to maintain modularity, elements from the Rhapsody toolbar should be used

rather than embedding complex conditions or loops within one operation.

“UC_update_time” is designed to be used for representing the internal clock of the system. As a

result, it is set to be incremented once per day continuously. However, for simulations that are

time bounded, an end state can be added using a conditional trigger for the final transition. As

captured in Figure 9, only one of the operations defined in Figure 8 Update Time is used at this

step. Any internal messages such as “sim_start” or “send_update” are added after the system is

decomposed to its parts during structure analysis phase.

33

Figure 9 Update Time State Diagram

After establishing system clock, the simulation time units for continuous variables are modeled

according to user preference. The graphical representation for the population net flow can be

shown as in Figure 10.

Figure 10 Population Count Over Time

Then the equation for a population at time t using 1 week increments can be expressed as:

In system dynamics, birth and death rates of a population are assumed to be proportional to the

population (Cellier, 1991). This relation is captured using a feedback from the population to

corresponding rates as shown in Figure 11.

 population(𝑡+1) = population(𝑡) + 𝑏𝑖𝑟𝑡ℎ_𝑟𝑎𝑡𝑒𝑡 − 𝑑𝑒𝑎𝑡𝑒_𝑟𝑎𝑡𝑒𝑡 (3.1)

34

Figure 11 Population Count with Feedback

Therefore, the population equation, where BR and DR represent the birth and death rate

proportions at time t, is used as:

And therefore:

Even though in Eq. (3.3) the two rate proportions are represented as dynamic variables, they can

also be assumed as constant over time for the focused population type when there is a lack of

contradicting evidence.

On the other hand, AB-SD hybrid modeling technique can be used to derive these rates from the

simulated agent behavior, allowing the modeler to eliminate the proportion estimations and any

associated errors. As a result, Eq. (3.1) must be used in operations when modeling stock variables

population(𝑡+1)

= population(𝑡) + (BR(𝑡) × population(𝑡)) − (DR(𝑡) × population(𝑡))

(3.2)

 population(𝑡+1) = population(𝑡) + ((BR(𝑡) − DR(𝑡)) × population(𝑡)) (3.3)

35

that depend on agent behavior, such as “update_population()”. In order to maintain validity after

this elimination, the modeler is required to provide more detailed information about the

population at time 0 compared to SD modeling.

Behavior Verification

Similar to previous phases, the verification of decomposed behavior is done individually. First,

developed model is compiled using simulated time in MSVC environment with C++ language and

any possible issues are fixed. Later the program is executed and the individual behavior of each

block is observed using simulated statecharts and sequence diagrams (IBM, 2014). As the final

step, properties of all variables are checked for any errors.

Overall, the purpose of behavior analysis can be summarized as following:

 Identify system requirements

 Identify system scope and boundaries

 Identify the modularized actions and reactions of the system to the external triggers

 Identify its interaction with the surrounding environment and conditions

 Derive resulting behavior from findings gathered above for verification

36

Define Structure

The process flow for structure analysis is grouped in three phases that are system decomposition,

behavior allocation and verification and validation as captured in Figure 12. Behavior allocation

is further completed in four sub-phases where names have been kept the same on purpose to

point out the shared diagrams between the two analyses.

Figure 12 Structure Analysis

Create Block Definition Diagrams

In literature review, the two approaches used in system decomposition for system modeling were

discussed. During initial research efforts the selected system was decomposed according to its

conceptual model parts. (Soyler Akbas, Mykoniatis, Angelopoulou, & Karwowski, 2014). Hence,

the training system was decomposed as Agent-Based Model and System Dynamics Model (Figure

13). However as SD and ABM parts were further decomposed; behavior allocation and

37

maintenance became more complex. Furthermore, overall model design became too customized

for providing quick changes to significant behavioral adaptations and for the capability to export

specific behavior to be used in other systems.

Figure 13 Initial Block Definition Diagram of a Training System

Main focus of the modeling effort must be used to identify the best approach for system

decomposition. If the goal is to study the behavior of a system itself, using a SD-ABM simulation

technique rather than conceptualizing its model, the system must be decomposed according to

its physical components. The main goal of this research is proposing a methodology for modeling

system behavior over a time period. Therefore, this work discusses and showcases systems that

are decomposed into its physical components. Three high level simple system structures are

created to guide component identification. They are grouped according to the differences in main

focus and information exchange between its components (Table 1).

38

Table 1 System Decomposition Types

Decomposition Type Information Type Explanation

One Way
Agents to Location

 Main system focus is the location

 Common location shared by all agents

 Changes in environment do not impact
agent behavior

 Changes in agent behavior impact the
location

One Way
Location to Agents

 Main system focus is agents

 Unique location per agent

 Changes in location impact agent
behavior

 Changes in agent behavior do not impact
their location

Two Way
Agents to Location
&
Location to Agents

 System focus is both

 Common location shared by all agents

 Changes in environment impact agent
behavior

 Changes in agent behavior impact their
environment

39

The “Agent” is used to represent unique objects, people, locations, which can be grouped under

one goal. Similarly, “Location” represents a physical or conceptual location common or unique to

agents. Both can include SD models. With the same token, both or sub-parts of both can be

modeled as agents in AB models. This is further explained in the following section under each

category.

Decomposition Type I

This type consists of models focusing on locational factors changing due to agent behavior

independent of the location. Both location and agent can represent more than one unique part

of the system. However, this layout assumes no interaction between individuals existing in

different locations. The method provides the use of this structure only if there is a possible scope

change in the future to include agents within the focus or they share conditions that impact both

of their behavior in the environment over time. If not, Agents must be represented as actors

under UCD, as externals only impacting the system. The farmers’ impact on ecological carbon

and nitrogen stock model introduced by Gaube et al., 2009 is an example of this type. In this

study one can see the impact of farmers’ work on the flows however the impact of nitrogen and

carbon on an individual farmer is negligibly small and therefore not included.

40

Decomposition Type II

Type II can be used when the system focus is completely opposite to described in Type I. Hence,

must be used when simulating systems where the change in an agent is driven by the changes in

its location or locations. This design assumes each location is unique to an agent therefore, the

system focus does not include location based interactions between agents. Simple supply-chain

models can be given as examples of this type. Manufacturers’ decision making process at a micro

level driven from the status of the raw material in their area of service can be modeled using this

structure.

Decomposition Type III

In systems that require two way dependencies between its agent(s) and location(s) the model

must be structured with parallel hierarchy using type III. This structure can allow actors to share

the existing location conditions or resources and locations to drive their change based on

individual and combined behavior simultaneously. Most of the population studies can be given

as examples in this group such as the model proposed by Chaim, 2008. Using this structure,

location dependent agents with unique SD or AB behaviors can be modeled at a micro level where

their impact on the population can be modeled at a macro level under location.

41

Complex Decompositions

A combination out of the three proposed decomposition types can be used when modeling

complex systems. Systems should be studied according to interdependencies among its

components and the project scope to find the most suitable combination. For example a supply

chain system including buyers, product manufacturers and raw material manufactures shared by

all high level manufacturers can be decomposed using two Type II and one Type I decomposition

structures as shown in Figure 14. However, if the original scope does not include the impact of

factory locations they can be eliminated from the design.

Figure 14 Complex Supply Chain System Decomposition

This methodology can be useful for long term projects as they can be more open to project scope

changes. Such a system model which originally consists of a single type, can be later extended to

include micro details.

42

Allocate Behavior

Modeler can merge behavior designed in the previous section with the main system block after

the system is decomposed to its components. This action will copy all operations and attributes

into the main system block with a trace relation added, linking it back to the original behavior

block. Later, the behavior is allocated to each responsible component using the graphs previously

created or duplicated. This is further explained in the following sections. Similar to behavior

analysis, the modeler can choose to complete the remaining phases either manually or by using

Harmony profile tools.

Create White-Box Activity Diagrams (ActD)

In this phase, first, previously created ActDs are duplicated and renamed as White-box ActDs.

Later, a swim lane is added for each system part and operations are placed-by moving- under the

responsible block.

Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces

After each behavior is allocated to the responsible part of the system Harmony profile can be

used for generating the SeqDs and for creating the ports and event interfaces. This is executed

43

by following the steps discussed under each corresponding topic of behavior analysis. Differently,

in this phase, if any of the operations are modified this action’s impact on the verified behavior

cannot be analyzed. Therefore, necessary changes must be applied on the responsible behavior

block and all behavior must be re-merged and allocated.

Define States

In this step, a state chart is created for each part of the system. Later, previously modeled states

of the behavior blocks are duplicated and placed within each, creating integrated state charts.

Organization of states in these integrated statecharts is modeler’s choice. However, “and-states”

for parallel behaviors should be used rather than complete integrations. This way, if conditions

in one behavior change, the states for that behavior could easily be identified and modified

without requiring any changes in the other sections.

Verify and Validate System

Verification of the overall model is done visually, in three steps using simulated SeqD and

statecharts. First, events and message sequences are checked to verify the communication

between the different parts of the system. Second step focuses on state transitions. In this step,

time and rate based and probabilistic triggers are observed that belong to either a single part of

44

the system or to randomly selected objects of parts whose multiplicities are more than one. In

the final step of verification, function executions are checked by observing the change in variable

values over time.

Output variables identified for validation during requirements analysis phase are used to conduct

statistical output analysis. A hypothesis test, such as difference of means, is used to calculate the

significance of difference between the model output and collected data from the real system.

45

CHAPTER FOUR: METHODOLOGY VERIFICATION

Two challenges were faced when the methodology was applied using IBM’s Rational Rhapsody.

This section describes these issues and proposes solutions for overcoming these limitations. It

starts with probabilistic behavior under Variability and later continues with time synchronization.

Variability

Rhapsody is not designed as a simulation tool and default C++ package does not come with a

predefined math library functions. Therefore a random number following a specific distribution

cannot be generated, except for uniform distribution. To eliminate this limitation a

“generate_variate” behavior is created for systems which consists of behaviors with defined

distributions. This behavior block includes calculations adapted from random variate generation

techniques as functions.

For example, the associated variables and operations allocated to a “rate” block and the

pseudocode of the algorithm for creating duration based state change that is exponentially

distributed with a rate 0.1 per day are presented in Figure 15 and Algorithm 1, respectively.

46

Figure 15 Rate Block Values and Operations

Algorithm 1 Generate Timeout

1: Date: Day count at timeout

2: Ln[100]: Array storing -ln(i/100) where int i ~ U(0,100)

3: U: Generated integer ~ U(0,100)

4: Uni: Value at Ln[U]

5: While on transition between states

6: if next state has distributed transition then

7: Generate uniform variable U

8: Set Uni Ln[U]

9: Calculate exponential variate Date with rate 0.1

10: end if

47

Exponential distribution has a CDF that can be invertible. As a result, variates in this example are

generated using inverse transformation technique that can be recalculated for different rate

values. Additional to inverse transformation technique, functions included within this behavior

block also includes convolution and composition methods to support different distribution types.

Two population models, one in AnyLogic and the other in Rhapsody, are created for validation

analysis with 50 agents and used to check for evidence of a statistical difference between the

two software outputs. Table 8 in the Appendix captures the cumulative arrival transition

frequencies recorded per software. These values are also plotted against days (Figure 16).

Figure 16 Cumulative Frequency of Arrival Transitions

48

In cases of correlated outputs, such as this, mean of differences recorded for t = 0, 1…, 50 can be

used for testing statistical difference. Where Xt and Yt represent the outputs recorded on day, t,

from AnyLogic and Rhapsody, respectively, the test criteria are as follows:

 𝐻0: 𝐷𝑡 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐷𝑡 = 𝑋𝑡 − 𝑌𝑡

 𝐻𝑎: 𝐷𝑡 ≠ 0

�̅� =
1

50
∑ 𝐷𝑡

50

𝑡=1

≅ −0.27451

𝑆𝐷 = √
1

(50 ∗ 49)
∑(D𝑡 − �̅�)2

50

𝑡=1

≅ 1.3723

Tcalculation ≅ −0.200

 T0.025,49 ≅ 1.96

Since 𝑇𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 falls within ±1.96 there is not significant evidence supporting a statistical

difference between the two outputs from AnyLogic and Rhapsody.

49

Time Synchronization

Rhapsody provides two configurations for simulating time (IBM, 2014). The modeler can either

use real-time to trigger time-based events or simulated time option, which updates the time,

based on event completion using a virtual clock. In models where only one behavior block

includes time-triggered events, operations or states, these two preset configurations are very

useful in simplifying the implementation process. However, in models where more than one

behavior block have time-dependent simultaneous actions, either of the two default

configurations result in verification issues during model execution due to asynchronous behavior.

Figure 17 captures the sequence of events in a simple movie theater scenario which was created

to demonstrate this issue. The system in the scenario is composed of one part, Movie Theater

that interacts with Guests actors. Furthermore, it is responsible of providing an environment

where guests could use to watch a movie. As a result, one behavior block representing the

watch_movie use case was created to capture this behavior. The scenario has three message

exchanges between the guests and the movie theater. First, the movie theater gets a notification

of arrival. When all the guests arrive, it sends “movie_start” message and starts the 120-min

timer. A timer is also started at Guests, when they receive the message, which counts up until

their exit time that is randomly distributed between 118 to 122 min. At the end of their exit time,

they leave feedback by sending a message back to movie theater block.

50

Figure 17 Movie Theater Sequence Diagram

Individual states of the movie theater, on the left, and guest agent, on the right, executing this

behavior are captured in Figure 18. Number, one through four are used indicate the conditions,

event triggers, and operations and their description are given as follows:

 Movie Theater

1. In “WaitFor_arrival” state the theater counts the “arrive” messages guests send.

After each message, the theater checks if the room capacity “count” has been

reached and exits the state.

2. When the room is full, sends the “movie_start” message to each guest.

51

3. “ShowMovie” state stays active for 120 minutes. This behavior is assigned using a

time trigger function “tm(duration)”. During this state it starts collecting the

feedback from guests who are leaving before the movie ends.

4. Waits until feedback is collected from all guests

 Guest Actor

1. Each guest notifies the theater when they arrive.

2. They wait for all guests to arrive.

3. They leave the movie theater randomly between 118 to 122 minutes after the

movie starts.

4. They give a feedback with a score between 1 and 10 before exiting.

52

Figure 18 Movie Theater and Guest Agent Behavior

Figure 19 shows the expected sequence of events and states of guest actor and the movie

theater. Verification of the model includes checking the correctness of the event sequence

indicated by the rectangle box. The correct behavior is guests with “leaveTime” less than 120

minutes sending their feedback before and the remaining sending it after the movie is over. The

scenario was executed 31 times representing a day with 11 shows using a 30 guest capacity.

However, due to generated random numbers being the same, no difference was observed

between 31 iterations.

53

Figure 19 Expected Output

54

Three groups of tests were conducted to eliminate design technique as the potential cause for

errors. First, to confirm independency between show times for other tests, the significance of

correlation between observed error counts (y) and show times (x) were tested. A hypothesis test

was designed as follows:

𝐻0 = 𝜌 = 0 𝑎𝑛𝑑 𝐻𝑎 = 𝜌 ≠ 0

𝑤ℎ𝑒𝑟𝑒 ∝= 0.05, 𝑡9,0.975 = ± 2.262

Correlation coefficient of the sample, r, was calculated using the following formula (UA, 2015):

𝑟 =̃− 0.31105

Confidence limits for 𝑟9,0.975 was calculated using the following formula (UA, 2015):

𝑟9,0.975 =̃ (−0.7786 , 0.5786)

 𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

1

√∑ (𝑥𝑖 − �̅�)2𝑛
1 √∑ (𝑦𝑖 − �̅�)2𝑛

1

 (4.1)

 𝑟𝑛−2,0.975 =
−1 ± 𝑡𝑛−2,0.975(√𝑛 − 2)

𝑛 − 1
 (4.2)

55

Where n is the sample size, calculated 𝑟 is found within the confidence limits suggesting not

enough evidence supporting a correlation between observed errors and show times. Later, the

correlation between successive error counts is tested using first order autocorrelation

coefficient. The correlation Eq. (4.1) is modified to test for observations with lag 1 for

𝑥𝑖 = Error Count𝑖 and 𝑥𝑖+1 = Error Count𝑖+1 (UA, 2015) as follows:

𝑟1 =
∑ (𝑥𝑖 − �̅�𝑖)(𝑥𝑖+1 − �̅�𝑖+1)𝑛−1

1

√∑ (𝑥𝑖 − �̅�𝑖)2𝑛−1
1 √∑ (𝑥𝑖 − �̅�𝑖+1)2𝑛

2

=̃− 0.08139

Similarly, confidence limits are calculated by adjusting Eq. (4.2) to test r at different levels of k,

time lag, as follows (UA, 2015):

𝑟𝑛−𝑘−1,0.975 =
−1 ± 𝑡𝑛−𝑘−1,0.975(√𝑛 − 𝑘 − 1)

𝑛 − 𝑘
= (−0.7786 , 0.5786)

The two calculations are repeated for different values of k and the results are plotted as shown

in Figure 20. Additional to confidence limits, the r values are also compared with simple

approximation limits, ±2/√𝑛. All r values for lags 1 to 7 are found within the confidence limits

suggesting not enough evidence to recognize an autocorrelation between occurrences.

56

Figure 20 Error Count Correlogram

Grouping observed errors according to the guest “leaveTime” shows that all errors occurred

when the leaveTime is equal the movie duration, 120 seconds. Eight out of eleven shows has

guests with wrong behavior and the highest guest count is observed during Show 8. A final test

is conducted testing significance of correlation between counts of guests with leaveTime at 120

versus observed errors, which are captured in Table 2.

Magnitude of r and confidence limits are found -0.008, (-0.7786, 0.5786), using (1) and (2)

respectively. Tests results indicate not enough evidence of correlation between the two

outcomes. Since all three tests have failed to reject 𝜌 = 0 there is not enough evidence

suggesting a design methodology error. Furthermore, with 95% confidence this is rather due to

Rhapsody’s back-end event execution ordering logic.

57

Table 2 Experiment Results

Show Id
y = Guest Count with
wrong behavior

x = Guest Count with
leaveTime at 120 minutes

Show 1 6 Guests 8 Guests

Show 2 4 Guests 11 Guests

Show 3 4 Guests 8 Guests

Show 4 0 Guests 6 Guests

Show 5 0 Guests 11 Guests

Show 6 2 Guests 4 Guests

Show 7 1 Guest 12 Guests

Show 8 7 Guests 8 Guests

Show 9 0 Guests 8 Guests

Show 10 2 Guests 4 Guests

Show 11 2 Guests 9 Guests

Maintaining correct sequence and synchronization between various behavior blocks, where

more than one time based conditions, require adding extra messages or triggered operations

within the modeled behavior. As a result, modifying derived behavior-in order to maintain its

validity only for an issue within Rhapsody applications-can jeopardize efforts to capture the true

representation of the actual system. Furthermore, they are required for all systems sharing the

same behavioral patterns and not just the one example provided in this section. Therefore a

generic solution is proposed rather than a quick work around adjusted to only one particular

case. This solution also aligns with the purpose of this study for creating re-usable behavioral

models.

58

Proposed Solution

Rather than cluttering the correct representation of the system with extra operations or events,

in order to maintain synchronization when modeling SD-ABM systems, method provides an

explicit behavior named “update_time” as demonstrated for movie theater system UCD captured

in Figure 21.

Figure 21 Update Time Use Case

A behavior is created which consists of an operation, “increment_clock” and a message

“send_update” as captured in Figure 22. Although this behavior can be added with the remaining

behavior at the initial UCD design phase, it can also be added to completed models. In such cases,

the same design flow is used, and the behavior allocated to the location part of the main system.

During final STM update the behavior is added as a parallel state to existing states of location

block and for all remaining parts and members of the environment it is added as an owner state

named “Active”.

59

Figure 22 Update Time Activity Diagram

For example, movie theater system has two members with time triggered behavior, the guests

and the room. The room is responsible of updating the local time and updating the guests by

sending a message as previously captured in Figure 22. As a result, the time trigger function

“tm()” is only used once by the room to increment local clock in the system. As captured in Figure

23, this behavior is added as parallel states to the existing states of the room. On the other hand,

in the guest STM the Active owner class is added to track any messages send from room and

update the guest clock according to local time (see Figure 24). Finally, all the remaining tm()

operations are changed to condition based triggers using local time “tnow” variable.

60

Figure 23 Room State Diagram

Additional to fixing synchronization issues, separation of this behavior can support modeling

efforts with two main areas. First, if designed models are to be exported to a different simulation

software, system behavior can be separated and exported explicitly. Furthermore, update time

can also be exported explicitly to be used in modeling other systems. Rhapsody specific behavior

such as “update_time” or “generate_variate” can be allocated to a unique system component or

grouped under Location.

61

Figure 24 Guest State Diagram

Active

Reactions

send_update/setTnow(params->tnow);

WatchingMovie

Reactions

leaveTime=gen_uniform(118,122);

leaving(gen_uniform(1,10)) to proom

[tnow==leaveTime]/
FILE * pFile;
 pFile = fopen
("results.txt","a+");
 fprintf(pFile,
"Iteration %d %d\n",
it,leaveTime);
fclose (pFile);
printf("%d
%d\n",tnow,leaveTi
me)

WaitingMovie

movie_start

arrival to proom

[it>10]

62

CHAPTER FIVE: POPULATION DYNAMICS CASE STUDY

This sections uses a hypothetical case study to demonstrate the approach for developing and

simulating an AB-SD hybrid model of a selected system using SysML. Wild life has been a

commonly studied area in AB modeling (Akbas et al., 2015). Therefore, a hypothetical example is

created to demonstrate the methodology focusing on the status of giraffe population in Africa

over time. Five facts (GCF, 2014) and two assumptions about giraffes are selected to describe

specific procedures under different conditions.

 Leopard, lion, and hyena are among their predators.

 60, 8 and 3% of calves are killed during their first, second and third year, respectively.

 Females mature at age 4 and gestation and nursing lasts for 57 to 65 and 4 to 52 weeks,

respectively.

 Males start propagating after 7 years old.

 Average life span is 25 years.

 Assumed ratios for bull to cow and adults to calves are 1 to 1 and 10 to 1, respectively.

Requirements Analysis

According to the 5 requirement groups identified in Methodology chapter, all except first and

last conditions listed above are grouped under behavioral requirements and the remaining two

63

are grouped under structural. On the other hand, the output of interest -status of population-

would be added to the output requirements. A screenshot from Rhapsody® model tree capturing

these requirements and their groups are shown in Figure 25.

Figure 25 Giraffe Population Scenario Requirements

Define Behavior

The behavior of the giraffe population observation system is modeled in seven steps. It starts

with Use Case Diagram (UCD) design and demonstrates the process flows within the developed

approach.

64

Create Use Case Diagrams (UCD)

The first step in the process flow is adding all actors identified by the stakeholders to the UCD.

As a result, all agents identified in requirements analysis, such as Leopard and Giraffe are added

as actors to UCD, as can be seen in Figure 26.

Figure 26 Use Case Diagram - Action 1

Once all are added, the possibility for grouping any actors is investigated. Given the scope of the

scenario, the stakeholder’s interest in leopards, lions and hyenas do not go further than their

total hunting success. Therefore, even though they were originally listed separately, these three

actors can be grouped under the role “Predators” and represented as one actor. The resulting

logic flow and UCD are captured in Figure 27 and Figure 28Error! Reference source not found.,

respectively.

65

Figure 27 Use Case Diagram Actor Definition

Figure 28 Use Case Diagram - Action 2

The modeler now can start with function identification per each actor. In this system, the actor

identified as the Stakeholders is a type of giraffe conservation society and has two main duties.

First, they are responsible of providing scientific findings on giraffe population and second, act as

the observers who are interested in the outcomes of the model. Provided information include

initial conditions within the environment that have an impact on system behavior, such as initial

population count and male to female ratio. This behavior is represented using

“set_initial_conditions” use case and an association link is added from the stakeholder actor. At

any time during UCD design, modeler can add a list of these variables as a requirement under the

66

output requirements group if not added during requirements analysis phase. Figure 29 highlights

the path taken back to Pick Actor action after analyzing Stakeholders actor.

Figure 29 Use Case Diagram Stakeholder Definition

The second actor, Predators, interacts with the environment by killing the giraffes. However, this

behavior is explained from giraffes’ perspective using probability of death. Therefore their impact

is not a part of the main focus in the environment. For this scenario, both situations for the final

decision can be true. If the stakeholders suggest a possibility for model extension in the future

focusing on any predator behavior, the modeler would keep this actor and take the path shown

in Figure 30Error! Reference source not found.. On the other hand, if an extension towards this

67

direction is not within stakeholder interests, this actor can be deleted. It is important to note

that, this should only be considered if no interaction exists between the selected actor and any

member of the environment.

Figure 30 Use Case Diagram Predator Definition

The final actor Giraffe is a part of the main environment scope, therefore is not included as an

external member in the UCD. Later in architectural design this will be added as a part of the

system structure. Provided assumptions suggest two functions, “reproduce“ and “die” and no

information is given about the effect of their location information nor is included within

environment interests. Reproduce is defined as a duration triggered function and die is defined

as a success rate changing over time. Since the time is used by more than one a use case named

“update_time” is added to keep the behavior synchronized. This is further explained in Time

68

Synchronization section of chapter Methodology Verification. Finally, to capture the change in

population count over time, “update_dynamics” use case is added.

After identifying all actors and use cases, each actor is connected with the corresponding use

cases via the “Association” link to represent the relations. The resulting UCD and corresponding

decision path is captured in Figure 31 and Figure 32, respectively.

Figure 31 Finalized Use Case Diagram

69

Figure 32 Giraffe Action Flow

70

Link Requirements to UCD’s

A trace relation between identified requirements and the model elements such as “die” use case

are added to demonstrate the matrix view as shown in Figure 33. After adding the relations,

individually entered requirements can be brought to the UCD to verify that all has been captured

and linked with the appropriate relation type to the associated use case as shown in Figure 34.

Figure 33 Requirements Matrix View

71

Figure 34 Finalized Use Case Diagram

72

Create Activity Diagrams (ActD)

The ActD for system specific use cases includes the actions belonging to “reproduce” and “die”

behaviors as captured in Figure 35 and Figure 36 simultaneously. According to system

description, pregnancy lasts between 57 to 65 weeks after propagation. To capture this duration

“pregnancy_duration” and “pregnancy_status” variables are added to the reproduce behavior

block.

Figure 35 Reproduce Activity Diagram

There are four conditions that result in the death of a giraffe. Three of them are their chance of

survival after a predator attack. If they survive all, they will die at the end of their natural life

span. To capture this behavior, four variables, “age”, “survival_chance”, “survival_duration” and

“life_span” are added. If the modeler is using Rhapsody with the Harmony Profile, embedded

code for each action can be added during state definition phase.

73

Figure 36 Die Activity Diagram

The ActDs for remaining behavior blocks, such as update_time and update_dynamics, are not

created nor modified for this example. After UCD design, previously modeled behavior of those

blocks are imported to be reused for modeling the giraffe observation system.

Generate Sequence Diagrams (SeqD)

Depending on the level of detail required, the behavior and conditional rules can be planned

using SeqD. Although this is not required, it would lay the grounds for mapping the rules for state-

based behavior and support designing efforts. For example, the default SeqD generated for “die”

ActD using Harmony profile would include RNDsurvival() operation as captured in Figure 37. Note

that the “die” message- originally included in the black-box ActD- is an internal message and is

not included in the initial SeqD.

According to system definition, the chance of survival increases as calves grow older. The ones

who survive first year get a new value for the survival_chance and this loop continues until they

die because off old age. Since the embedded code used in RNDsurvival() operation does not

74

change, to avoid clutter in the model, attack success can be created as the operation parameter

as shown in Figure 37.

Figure 37 Sequence Diagram of Die Behavior

Figure 38 captures the modified SeqD for the die ActD. First, die behavior block is responsible of

identifying the survival_chance for a newborn calve with a 60% attack_success value. At age 52

weeks, RNDsurvival(8) is executed to calculate their chance of survival during second year. The

same logic is applied throughout their lives with decreasing attack_success rates. During any age,

if the outcome of their survival chance is 0, they die at the end of their survival_duration value.

Following the same procedure the SeqD for reproduce behavior block is created. There are four

conditions the system must satisfy before executing the propagate() operation. After female

calves reach the end of fourth year, if they are not pregnant and there are adult males in the

system, they initiate propagation. Following the pregnancy duration, they give birth. This

sequence repeats until they reach the end of their life spans.

75

Figure 38 Modified Sequence Diagram of Die Behavior

76

Pregnancy_duration and pregnancy_status variables were already identified and added during

ActD design phase. Additional to these, four more variables gender, age, life_span and

adult_male_count were identified using the interaction operators. Age and life_span variables

and their condition iteration were already added to the overall system when they were added to

the die behavior block. Hence, this loop operation was not included in the final SeqD. Remaining

two variables were added to the reproduce behavior block (Figure 39).

Figure 39 Modified Sequence Diagram of Reproduce Behavior

The SeqDs for update_dynamics and update_time behavior blocks are explained in the Time

Synchronization section of Methodology Verification chapter.

77

Create Ports and Interfaces

System’s reaction to any predator was not included in the system focus identified during the UCD

design. As a result, the associated behavior blocks do not require a message exchange (Figure

40). Therefore, generated IBDs only include the parts of behavior blocks without any connection

to an actor.

Figure 40 Die Behavior Internal Block Diagram of Actual Scenario

This would be different if further information was available on predators, such as their attack

frequencies or impact of attack success on time between attacks. Such interaction would initially

be captured in the die behavior block ActD as a message action and later be added to the SeqD.

Additional to the block part (sender), the resulting IBD would have included the predator actor

(receiver) as can be seen in Figure 41.

78

Figure 41 Alternative Scenario Internal Block Diagram

Define States

Statecharts belonging to the giraffe population observation system, update_dynamics,

set_initial_conditions, die and reproduce are shown in Figure 42, Figure 43, Figure 44 and Figure

45, respectively.

In the sample giraffe population system the rates and stock variables are set to update once per

week (tm(7)) as captured in Figure 42,.

79

Figure 42 Update Dynamics State Diagram

According to the requirements identified during the first part of the proposed process flow, the

giraffe population requires two unique operations for setting the initial conditions for actors,

which are define_gender() and define_initial_age() as can be seen in Figure 43. For the purpose

of this study ages of the alive giraffes at time 0 were assumed uniformly distributed between

new born and 22 years. Similarly the gender was assigned randomly following U(0,1), keeping the

1 to 1 bull to cow ratio.

Figure 43 Set Initial Conditions State Diagram

80

Die behavior is designed to have two states as alive or dead. According to requirements, while

alive, the actors can die due to an attack or old age. The change in survival probability per age

group was explained in detail in the previous section. Three conditions were added triggering a

transition to dead state in order to capture the corresponding sequence and logic (Figure 44). For

example, if they survived the attacks for a year, their survival chances are recalculated. With the

same token, if they survived the attacks encountered during their lifetime, they finally die after

reaching their lifespan.

Figure 44 Die State Diagram

Finally, reproduce behavior is designed to have three states. First the female waits until reaching

maturity. After pregnancy they stay in the nursing state for the duration they were assigned.

However, a control condition was added for the triggers leaving waiting_age and nursing states,

checking the availability of mature enough adult males in the system (Figure 45).

81

Figure 45 Reproduce State Diagram

It is important to note the impact of the requirements analysis step in the process flow. For

example, the current design assumes none of the cows are pregnant or nursing at time 0. STM

design would have been different in cases where further information on pregnant to nursing

ratios among cows are provided and is an interest to the stakeholders.

Behavior Verification

Simulated SeqDs and statecharts are used to verify independently modeled behavior. A

screenshot from the simulated reproduce behavior output can be seen in Figure 46. Following

the age requirement fulfillment, the cow executes propagate() operation and transitions to

pregnancy state. After waiting till the end of pregnancy, behavior transitions into nursing state,

confirming the designed behavior. An end state is only included in the set_initial_conditions

82

behavior, therefore all remaining behaviors loop between different states according to existing

conditions. As the final step, properties of all variables are checked for any errors.

Figure 46 Simulated Sequence Diagram for Reproduce Behavior

Overall, the purpose of behavior analysis can be summarized as following:

 Identify system requirements

 Identify system scope and boundaries

 Identify the modularized actions and reactions of the system to the external triggers

 Identify its interaction with the surrounding environment and conditions

 Derive resulting behavior from findings gathered above for verification

83

Define Structure

Structure modeling starts with decomposing the system according to its physical components

using Block Definition Diagrams. Later previously modeled independent behavior is merged and

distributed to the responsible part of the system.

Create Block Definition Diagrams

Giraffe population observation system is decomposed using Type III decomposition structure due

to the two way dependency between the giraffes and their location. Initially eighty giraffes are

created sharing one location, Africa, as can be seen in Figure 47.

Figure 47 Block Definition Diagram

84

Allocate Behavior

After system decomposition independent behavior blocks are merged under the main system

block “Giraffe_Population_Observation”. Later using white-box ActDs each activity is allocated

to the responsible system component.

Create White-Box Activity Diagrams (ActD)

First, previously created ActDs are duplicated and renamed as White-box ActDs. Later, a swim

lane is added for each system part, such as Giraffe, and operations are placed-by moving- under

the responsible block. For example, one operation RNDSurvival() is identified and an event

message “die” under the die behavior (Figure 48 (a)). Since chance of survival after an attack is

unique to each giraffe, the owner of the operation is itself. In the previous section, provided

methodology for modeling rate attributes was described, such as death_rate being derived from

the population behavior. As a result the message event “die” is placed to the receiver component,

location, leaving an activity under Giraffe (Figure 48 (b)).

85

Figure 48 (a) Black-Box and (b) White-Box Activity Diagram Views

These steps are repeated for the all remaining ActDs, update_time, set_initial_conditions,

update_dynamics and reproduce, as can be seen Error! Reference source not found.Figure 49,

Figure 50, Figure 51 and Figure 52, respectively.

Figure 49 White-Box Activity Diagram of Update Time Behavior

86

Figure 50 White-Box Activity Diagram of Set Initial Conditions

Figure 51 White-Box Activity Diagram of Update Dynamics Behavior

Figure 52 White-Box Activity Diagram of Reproduce Behavior

87

Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces

After each behavior is allocated to the responsible part of the system Harmony profile is used for

generating the SeqDs and for creating the ports and event interfaces.

Define States

Location part of the system is responsible of executing two behaviors. After starting the

simulation it transitions to an “Active” state where it performs Update_time and

update_dynamics behaviors, which are integrated as and-states. Update_dynamics is responsible

of updating the population variable and the weekly rates on the seventh day every week (Figure

53).

Figure 53 Location State Diagram

88

The behaviors of giraffes are activated when the simulation clock starts running at the location.

The initially deployed giraffes, who are assumed to be already in the environment, are assigned

a random gender, age and survival_chance (based on the initial age group) to represent a

uniformly distributed population. Furthermore, gender of a calf born after time 0 is randomly

selected based on the cow to bull proportions within the population. This logic is designed to

satisfy the ratio requirement identified in problem description.

Contradictory to using “and-states”, such-as in Figure 53, the reproduce behavior was added as

a subset to being alive (see Figure 54). Later, alive state was further divided into two “and-states”

and the top portion was used to show the gender of a giraffe after maturity to demonstrate

simulated view when in parallel states.

Verify and Validate System

Three tests are conducted to validate the behavior designed for Giraffe Population Observation

System. First the model is verified using the simulated SeqD and statecharts. Later, results from

30 simulation iterations are collected using an initial population size of 140 giraffes for the second

and third tests. Three values at any given time t in days for population count, births and deaths

per week, are collected and their averages are plotted in Figure 55Error! Reference source not

found.. Two expected behaviors are tested as follows:

89

Figure 54 Giraffe State Diagram

90

 Correct representation of agent (giraffe) behavior was captured- When creating initial

population, none of the female giraffes are pregnant. Therefore, the output is checked

for any births occurring before the minimum pregnancy duration, 57 weeks. As can be

seen from the plotted output, no births can be observed up until the minimum required

pregnancy duration indicated with an orange arrow.

 Correct representation of population dynamics was captured- The synchronization

between birth/death rates and population count are checked to confirm correctness of

the SD calculations. For example, during the time indicated within the grey box, three

giraffes die on different weeks of the sixth year. Overall population count also decreases

by three by the end of year six as a result of the change in death rates on matching weeks.

91

Figure 55 Giraffe Population Behavior

92

CHAPTER SIX: TRAINING MANAGEMENT CASE STUDY

In this section the application of the developed approach is demonstrated using a real-life case

study focusing on a training management project which was planned and executed when a large-

scale company had decided to adapt a new software technology in 2009. The project required

1255 employees’ attendance from different divisions and backgrounds. This new technology was

the same as to what engineers had already been using; however, the processes were changed.

When they were used to working on locally saved files, and sharing these documents mostly using

emails, employees were asked to do all using this new technology. In addition to the extra work

created by the efforts spent on a new technology, each employee was asked to attend an eight-

hour (full-day) training. At the end of four fiscal years (FY), in 2012, only 1007 employees out of

1255 were trained where the total training capacity was over 2300 seats (Figure 56).

Furthermore, by 2011, more than 29% of trained were returning for a second training. Obtained

data included versions of a Microsoft Excel sheet saved at different times over the project

duration, created for attendance tracking. The purpose of the modeling effort focusses on

supporting project management team by simulating the training bubble to be used for training

scheduling.

93

Figure 56 Total Training Attendance

Training Management as Complex Adaptive Systems

Two characteristics that are most commonly observed in complex systems are emergence of a

pattern and continual appearance of new entity kinds (Levin, 2002) or large number of interacting

entities (Morel and Ramajujam, 1999). Emergence was explained as being dynamic behavior of

balanced negative and positive feedback rather than being the absence of tension (Newell, 2008).

Because of the variety in forms of complexity, one cannot conclude that all complex systems are

adaptive (Levin, 2002). Furthermore, complexity in systems cannot be explained by chaos (Bak,

1996, p. 31), meaning systems with simple dynamics can be very complex thus they do not have

to be chaotic to be accepted complex (Morel and Ramanujam, 1999).

94

The existence of complexity in learning systems, a phrase introduced by Davis and Simmt (2003)

describing collective classroom components, is advocated by also other researchers (Burns and

Knox, 2011, Davis and Sumara, 2006). Newell (2008), following Davis, Simmt and Sumara’s

published arguments on how individual learner and teacher dynamics interacts and emerges as

learning, evaluates the potential benefits and challenges of accepting this theory.

Unlike immediate training climate, studies on organizations as systems has a longer history, and

today, they are accepted as “dynamic systems of adaptation and evolution that contain multiple

parts which interact with one another and the environment” (Morel and Ramanujam, 1999).

Furthermore, their nested structure continuously interacts with other macro and micro, systems

and sub-systems, respectively (Folke & Folke, 1992). New systems may arise from emerging

dynamics as part of the system, due to change processes occurring with an organization (Dooley

and Van de Ven, 1999). Bot (2012) has listed the most common properties of complex systems in

a study where he looked into the complexity of learning a third language. Training management

was evaluated with respect to each property listed by Bot, and the findings were captured in

Table 3. Explanations and case examples were supported with findings from literature. The

findings support the theory of training management emerged as complex adaptive-derived from

its evolution through a life-cycle iterations-system that interacts with other complex adaptive

systems such as technology and economy.

95

Table 3 Complex System Properties, Adapted from Bot, 2012

Complex System Properties Training Management System Properties

Complex systems are sets of interacting variables.
Training management interacts with organization
system (macro) and knowledge transfer variables
(micro).

In many complex systems, the outcome of development
over time cannot be predicted … because the variables
that interact keep changing over time.

Although there are techniques to support training
planning often times changes in duration, cost,
training performance occur.

Dynamic systems are always part of another system,
going from sub-molecular particles to the universe.

Training management system is part of knowledge
transfer system.

As they develop over time, dynamic subsystems appear
to settle in specific states, which are preferred but
unpredictable, so-called ‘attractor states.’

Employees within an organization create a unique
knowledge share structure creating a culture which
emerges individual and organization’s learning state.
Weick (1979)

Systems develop through iterations of simple procedures
that are applied over and over again, with the output of
the preceding iteration as the input of the next.

Training is applied in organizations in iterations, the
lessons learned from each experience (outputs) feeds
the following management strategy as inputs.
(Armstrong, 2003)

The development of a dynamic system appears to be
highly dependent on its beginning state. Minor
differences at the beginning can have dramatic
consequences in the long run. …

If started without well planning the effects of each
variable and their interactions, training efforts will fail
costing the investments and time of the stakeholders.

In dynamic systems, changes in one variable have an
impact on all other variables that are part of the system:
systems are fully interconnected.

In training management, change in one variable for
instance organization’s climate or available resources
will trigger a change in the whole system will affect
outcomes.

In natural systems, development is dependent on
resources: … all natural systems will tend to entropy
when no additional energy is added to the system.

Training management rely on the resource availability,
depletion of any resource will trigger system’s state to
change to ‘steady-state’.

Systems develop through interaction with their
environment and through internal self-reorganization.

Training has emerged from interaction of systems such
as learning, organization and technology. Through
time its internal interactions derived management
variables (Dooley and Van de Ven, 1999)

Because systems are constantly in flow, they will show
variation, which makes them sensitive to specific input at
a given point in time and some other input at another
point in time.

Due to continuous change in it is variables such as
humans and technology same management
approaches will result in varying outputs.

96

Model Development

Structural and behavioral characteristics of the systems, such as input analysis, are identified first,

through requirements analysis. Later identified behavior is individually modeled under behavior

analysis. After verification, the behavior is integrated and allocated to parts of the system in

structure analysis. Finally, the model is verified and validated and the findings are discussed.

Requirements Analysis

The majority of the work completed in this phase consists of input analysis. Each of the original

training status report snapshots included training dates of ranging from 3,000 to 10,000

employees, which also consisted of contradicting or duplicate information. First, using the latest

report, a skeleton list including the generated id’s of employees located in US, who had either

attended training or was required to attend in the future is generated. Later all ID’s in each

snapshot that were not included in this list are deleted. Each duplicate id is deleted after

confirming all attendance data are successfully copied in to the remaining. Due to the length of

the project, some sessions had been renamed over the years, and to avoid double-counting, a

total of 13,173 data points are checked individually for potential duplicate attendance

information. Using the data population increase, training attendance, attendance probability and

training schedule are studied as further explained respectively in the following sections.

97

Population Increase

A change in the population count was observed according to the snapshots taken randomly

during the four year project timeline. During project kick-off in October 2009, the initial number

of employees, who would be invited for trainings, was 476. This number almost tripled by the

end of fiscal year (FY) 2012. Although there were new hires, the majority of this increase was

driven by the changes in project scope. As time progressed employees from additional

departments were also included. The dates of the snapshots and corresponding count of

employees included in each report is shown in Table 4.

Table 4 Population Increase per Snapshot

Snapshot Date Invited Trainee Count Cumulative Time in Between (Days)

10/1/2009 476 0

7/26/2010 784 571

8/27/2010 785 603

10/14/2010 865 651

3/2/2011 948 790

7/1/2011 1,000 911

10/18/2011 1,058 1,020

11/2/2011 1,089 1,035

4/9/2012 1,136 1,194

8/1/2012 1,192 1,308

9/25/2012 1,255 1,363

A scatter plot of total employee count per date can be seen in Figure 57. According to the R-

square value, more than 99% of the change in invitation count can be expressed in terms of days

98

passed. In other words, there is not enough evidence to reject that any future total invitation

count could be predicted by the days passed.

Figure 57 Total Employee Count per Snapshot

As a result, the constant rate, 0.5661 per day, from the fitted equation can be expressed in SD

as can be seen in Figure 58.

Figure 58 SD Representation of Population Increase

99

Training Attendance

The first focus in the attendance analysis is the behavior of employees who had attended a

training more than once over the years. However, out of 1255, only eight employees had

attended training three times and none had attended more than that. Due to the limit of this

data and its ratio to the total sample size, the dates from their third attendance is not included

in the study. The date of the first training and the time, in days, until the second training are

mapped and checked for any outliers.

A scatter plot is created to test dependency between the first training date and the time until the

second, Delay, as captured in Figure 59. The total sample size is 124 with a mean and standard

deviation at 436 and 230 days, respectively. The R-Square value, 0.133, of the fitted equation is

not significant enough to reject dependency.

Figure 59 Delay vs Initial Training Date

100

However, considering the high mean and standard deviation in delay, only a part of the data from

FYs 2011 and 2012 could have been recorded. In other words, since the study has ended at the

end of FY 2012, if any had attended their first training during that year any delay larger than 360

days would not be recorded. Furthermore, this limit for FY 2011 would be 720 days. As a result,

as the initial training date increased, this limit had to decrease. To confirm this theory, the

dependency between the two using the data from FY 2009 and 2010 is tested. The highest R-

square value is observed using linear regression, at 0.0049, as captured in Figure 60. According

to updated test statistics, dependency between the observed delay and the initial training date

is rejected. As a result, the data collected from the first two FYs only is used for the remaining

analysis under training attendance section.

Figure 60 FY 2009 and 2010 Delay vs Initial Training Date

Next, the autocorrelations, r, for lag values, j, from 1 to 80 are calculated using equation (4.1). r

values for all lags including 1, which is 0.008 lower than the limit, are within the confidence

101

intervals calculated at 0.05 significance, using equation (4.1). A snapshot of the plot is shown in

Figure 61.

Figure 61 FY '09 and '10 Autocorrelation Plot

After completion of the independence tests, the data is ranked and imported into Arena’s Input

Analyzer software to find the best fit. Figure 62 captures a histogram of data with the fitted

distribution line and the best fit p-values are captured in Table 5.

Figure 62 Delay Data Fit

102

Table 5 Attendance Distribution Fit Test Results

Data Group Sample Size Distribution Chi-Square P-Value KS P-Value

FY ’09 – ‘10 22 TRIA(113, 284, 1130) 0.227 >0.15

Out of 1152 employees who attended training over the four-year project duration, 145 of them

had attended a second training. As a result, identified delay distribution is distributed randomly

only to 12.6% of the total trained.

Attendance Probability

The attendance probabilities is the second focus of the attendance studies. Different from the

first focus explained in the previous section, where the behavior was distributed over the

employees, the attendance counts are studied per training base. There are a total of 144 trainings

offered over the four-year project, where, the attendance count mean and standard deviations

are at 7.87 and 4.19, respectively. Following the same steps, a scatter plot of relation is created

as can be seen in Figure 63. The highest R-square value, 0.0038, is achieved using a linear fit.

There is significant evidence to reject dependency between attendance counts recorded and

training dates.

Later a scatter plot is created to check for any autocorrelation for different lags, j, changing from

1 to 142 (Figure 64). Only one r value is observed slightly out of the confidence limits at lag 36.

103

Probability of getting an r value within the confidence limits is therefore 0.993. At 0.05

significance, this suggests enough evidence to reject any autocorrelation.

Figure 63 Attendance Count per Training

Figure 64 Attendance Count Autocorrelation Plot

104

After completion of the independence tests, the data is ranked and imported into Arena’s Input

Analyzer software to find the best fit. Figure 65 captures a histogram of data with the fitted

distribution line and the best fit p-values are captured in Table 6.

Figure 65 Attendance Count Data Fit

Table 6 Attendance Count Distribution Fit Test Results

Data Group Sample Size Distribution Chi-Square P-Value SE

FY ’09 – ‘12 144 UNIF(0.999 ,16) >75 0.0081

During model validation and verification the average of total attendance collected at the end of

FY 12, from 31 iterations, does not reveal significant evidence to reject the validity of the model.

The t test result is -1.1529, between (+/-) 2.3556 t value at 0.05/2 significance. However, when

the results are plotted comparing iteration average with the actual data, an unexpected behavior

is observed. Figure 66 captures the resulting plot. While the simulated data followed a relatively

linear increase in cumulative attendance the actual data showed an increasing increase.

105

Figure 66 Initial Simulation Output

Due to the scattered behavior observed at the tail of the its autocorrelation plot, initially, a serial

correlation following a specific pattern, similar to a seasonal correlation, was not expected.

However, when each FY year is separately analyzed multiple correlation coefficients over the

confidence interval are observed for FY 09 and 10. The values are even higher when the two were

combined. On the other hand, FY 11 and 12, when studied separately and combined, shows no

significant correlation. The two correlograms are shown in Figure 67, on the left and right

respectively.

106

Figure 67 Updated Training Attendance Autocorrelation Plots

FY 09 and 10 are tested for its significance in fitting a time dependent equation, due to failing

independency requirement of data fitting. Highest R-square value, 0.3029 is achieved using an

exponential relation between the time of training and attendance counts per training. Although

R-square value does not find enough evidence to reject the data is a good fit, it is also not enough

to confirm a good fit (The Pennsylvania State University, 2015). The first issue is that R-squared

value displayed is calculated using continuous prediction values. The fitted equation can be used

if the model is SD based only. Since the case model is AB-SD with continuous interaction, a

decimal value would be rounded to the nearest integer, which might result in a lower R-squared.

Hence, the sum of squares (SSR) and total sum of squares are calculated for the rounded values

of predicted attendance (Table 11 in Appendix E).

The new R-squared value calculated from the rounded predictions is found by dividing the sum

of SSR by SSTO. The new fitted equation is y = 1.8206e0.0029x with R-squared at 0.681. Attendance,

rounded predicted attendance and the initial trend line is shown in Figure 68.

107

Figure 68 Actual vs Predicted Data

The remaining part of the data collected during FY 11 and 12 are later, combined and re-fitted to

find the best distribution. With 0.0155 and 0.454 square error and Chi-square p-values,

respectively, Uniform (0.999, 16) fit is again found the best fit.

Training Schedule

The project team had never picked a random date for a training, rather, most of the trainings

were scheduled during the months without vacations or per request or according to a strategic

decision. As a result, an input analysis is not conducted for the training schedule. Dates in

between each training are calculated and used as is within the model. A full list of training dates

and attendance counts can be found in APPENDIX C: TRAINING SCHEDULE.

108

Define Behavior

The first step in behavior definition is UCD creation. Following the proposed decision flow,

employee agent is removed as an actor, since they are a part of the system scope. Later, their

behavior, “attend_training” is added as a UC. Similarly, the company is also removed as an actor

and its specific behavior “train” is added as a UC. Once all system specific behavior was captured,

pre-modelled common behaviors such as “update_time”, “update_dynamics” and

“set_initial_conditions are imported. The resulting UCD is shown in Figure 69.

Figure 69 Training Management System Usecase Diagram

After identifying the UCs, their relations to requirements are established. Once all functional

requirements are traced back, their black box ActD are designed. First behavior is

“attend_training” whose behavior is based on three conditions. First, class availability is checked

and does not continue with registration unless a seat is available. Second, a decision whether to

show-up to a registered class is made. Finally, re-taking training decision is made. If no-show or

re-take decisions are made, the behavior goes back to the beginning and waits for a seat

availability. This flow is captured in the black-box diagram as shown in Figure 70. The second

109

behavior “train” is responsible of sending invitations and calculating how many employees show-

up at a training (Figure 71).

Figure 70 Attend Training Black-box Activity Diagram

Figure 71 Train Black-box Activity Diagram

The final black-box, set_initial_conditions, is responsible of assigning an employee id to agents

and importing training schedule that is previously identified in the requirements analysis (Figure

72). The remaining two behaviors update_time and update_dynamics use imported ActD that

are previously captured in the Methodology section.

110

Figure 72 Set Initial Conditions Black-box Activity Diagram

Any interaction or communication with an external agent, actor, is not identified during UCD

design phase. As a result, generated SeqD only lists identified activities within each behavior

block. With the same token, IBDs only shows the behavior itself without any connection between

them and an actor. In this case study, all variables and operations are added during STM design

phase. Algorithms and corresponding attributes used in each operation are as follows:

Algorithm 2 Check Class Availability

1: seat_id: seat number per training

2: class_capacity: 16

3: if seat_id < class_capacity then

4: Return 1

5: else

6: Return 0

7: end if

Algorithm3 Register Session

1: registration_list[16]: array storing employee ids who have registered per training

111

2: i: registration_list array number

3: Set registration_list[i]= employee_id

4: i ++

Algorithm 4 Check Re-take

1: U1: Generated random number from U(1,100)

2: a: Lower end of triangular distribution, 113

3: b: Higher end of triangular distribution, 1130

4: c: Mean of triangular distribution, 284

5: retake_probability: identified value for retake percentage, 20.6

6: delay: waiting time till second attendance

7: total_retakers: retake_probability % of trained

8: if total_retakers <= retake_probability * trained then

9: Set retake_decision=1

10: Generate U1

11: If U1 < ((c-a)/b-a))) then

12: Set delay= b – sqrt((b-a) * (c-a) * (U2/100)) + 0.5

13: else

14: Set delay= b – sqrt ((b-a) * (b-c) * (1- (U2/100))) + 0.5

15: end if

16: end if

112

Algorithm 5 Calculate No-Show

1: attendance_count: Generated random number from U(1,16)

2: total_attendance: Cumulative value of attendance_count

3: date: simulation time

4: b: Higher end of triangular distribution, 1130

5: c: Mean of triangular distribution, 284

6: retake_probability: identified value for retake percentage, 20.6

7: delay: waiting time till second attendance

8: Generate U1

9: if time <= 730 then

10: Set attendance_count= 1.8206 * exp (0.0029 * date)

11: else

12: Generate attendance_count

13: end if

14: Set total_attendance= total_attendance + attendance_count

Algorithms 2, 3 and 4 are placed in corresponding operations of attend_training behavior. Later

each operation are added as a transition response or rule to STM diagram design. For example,

behavior would not change to “Registered_for_training” unless the class had seats available and

the behavior would proceed after registering for the upcoming session. The STM captured in

Figure 73 shows these operations and three states of attend_training behavior. The SD part of

the simulation includs two stock variables training_bubble and trained. When an employee

moves to the “Trained” state they increase the “training_rate” by 1. Similarly, if they decide to

113

re-take training after waiting for assigned delay duration, they move to “Waiting_training” state,

increasing “return_rate” by 1. Two operations, “get_trained” and “decide_retake”, are

responsible of these actions, respectively.

Figure 73 Attend Training State Diagram

The “train” behavior STM is designed to have two states (Figure 74). When the day, tnow,

matches the date on the imported training schedule, it transitions to “In_training” state. After

waiting 1 day in training, it goes back to waiting state until the next training day. Remaining

algorithm, “Calculate No-Show”, is executed before the training starts on the same day.

114

Figure 74 Train State Diagram

Indirectly, a two way dynamic interaction between the AB and SD models is established by

implementing these behaviors. First, AB to SD dependency is created by checking the ratio of re-

takers to Trained stock variable in the population under check_retake operation. Second, two

operations decide_retake and get_trained are responsible of updating the two of the rates in SD,

return_rate and training_rate, respectively, creating SD to AB dependency. Final SD model is

achieved when the STM for update_dynamics is finalized resulting in a relation, which is shown

in Figure 75. Each behavior block is verified prior to moving to next phase following the visual

verification techniques discussed in Methodology section.

Figure 75 SD Representation of Training Management System

115

Define Structure

During UCD analysis, two agents, employee and company are identified as parts of the system.

Their relation is identified as Decomposition Type III due to the two way dependency between

them. As a result the BDD of training management system is designed with two parts, which are

also connected to one another (Figure 76).

Figure 76 Training Management System Block Definition Diagram

After structure identification, all behavior blocks are merged with the main system block,

Training_Management_System. Following the steps proposed under methodology, behavior is

allocated to responsible system part. The resulting IBD of the system parts are captured in

Appendix E, Figure 86. Finally, behavior states are distributed and integrated using and-states in

part STMs.

116

Employee STM

Each employee is assigned a unique ID at the simulation start, which is allocated from

set_initial_conditions behavior block. Until simulation end notification, each employee stays in

active state. However, when in Active state, they wait for an invitation from the company in order

to be included in the population. After receiving an invitation they start executing the

attend_training behavior. Finally, at the end of simulation each writes training attendance date(s)

to a text file with their unique employee ids (Figure 77).

Figure 77 Employee State Diagram

117

Company STM

The company is responsible from importing the training schedule at the simulation start which

was allocated from set_initial_conditions behavior block. It remains in Active state until reaching

simulation end time, 1455 days and sends the simulation end event to each employee. When in

Active state, it simultaneously executs three sub-states. First sub-state includes the behavior

from update_time behavior block. At the end of each day, it updates the stock variables and rates

and writes them to a text file with the current day’s number. The second sub-state is responsible

of sending the invitations for the next training to each employee currently in population. The final

sub-state is responsible of running the training operation.

It is important to note the direct relation between input analysis conducted under requirements

analysis section and corresponding behavior allocation. For example, attendance count is studied

using the attendance count data per training and the fit is distributed among the trainings but

not to employees. As a result Calculate No-show operation is allocated to the company and is

used in its STM. The resulting STM is shown in Figure 78.

118

Figure 78 Company State Diagram

119

Verify & Validate

Additional to verification completed under behavior design phase, visual and statistical tests are

conducted on the integrated model. First, randomly 10 employees, out of 1255 created, are

selected. Their and company’s simulated statecharts are watched simultaneously for any

potential logic errors. A screenshot capturing this process is shown in Figure 79.

Second, simulated sequence diagram is used with 30 random employees, different from the first

10, with the company to verify the behavior sequence. For example, an agent selected with a

small employee ID is expected to register for a training while some other would be waiting for

training. With the same token, due to population size changes, an agent might not be invited at

all. Figure 80 shows an example of the three cases simulated using a SeqD.

120

Figure 79 Simulated Statecharts

121

Figure 80 Simulated Sequence Diagram

After verifying the model built, population, total attendance and total trained averages from 33

iterations are visually compared to the actual data. Due to its deterministic nature population

count is not used for validating the model. It is important to note that, total attendance is studied

as an input, however, as separately for different behaviors distributed among employees and

122

trainings. In other words, total attendance depends on agents’ decision to attend a training the

second time as much as the count of employees who showes-up to the training. As a result, while

the two are considered as inputs, the value of total attendance is an output to that combined

behavior. With the same token, total employees trained depends on total attendance due to

class size limitation and their chance to show-up-both directly and indirectly. Figure 81 captures

the outputs versus actual data plotted over the duration of the project.

Figure 81 Simulation Outputs

123

The validity of the model is statistically tested after completing visual checks. Since the input

suggested a non-stationary system, from FYs 09 and 10 to FYs 11 and 12, over a finite time, two

tests are conducted for the two outputs, at the end of FYs 10 and 12 null and alternative

hypotheses tests are;

𝐻0: �̅�(𝑡)𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑋(𝑡)𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝐻𝑎: �̅�(𝑡)𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ≠ 𝑋(𝑡)𝑑𝑎𝑡𝑎

A table including each replication value at t 730 and 1460 days can be found in APPENDIX D:

SIMULATION OUTPUT. Table 7 captures the actual data collected, average and standard deviation

of the replications, t-test results and t-value at 0.05 significance for 32 degrees of freedom. Each

test value is within the confidence interval. As a result, there is not enough evidence contradicting

the validity of the model and the alternative hypotheses are all rejected.

Table 7 Output Analysis

Total Attendance

FY 10

Total Attendance

FY 12

Total Trained

FY 10

Total Trained

FY 12

Collected Data at t 497 1152 470 1007

Replication Mean 496.879 1147.576 470.636 1005.303

Replication Std. Dev. 3.879 34.710 3.471 33.005

t-test -0.191 -0.732 1.053 -0.295

t-value at 0.025 ± 2.352 ± 2.352 ± 2.352 ± 2.352

124

Results

One of the outputs studied in the simulation is count of employees currently waiting for training,

often referred to as “training bubble” (Enos, 2011). The bubble consists of two groups of

employees. First group, referred to as group 1 in this section, includes employees hired during

the project timeline or added to due training scope changes. This group is studied under

population increase section of input analysis. Total population count with respect to total trained

per snapshot is shown in Figure 82. The bubble values for group 1 are calculated by subtracting

total trained from the total population and is represented with a line.

Figure 82 Training Bubble from Population Increase

Project team would use the values from group 1 to schedule future trainings. As a result, majority

of the group 1 bubble behavior is explained when plotted with the training frequencies (Figure

83, highest bar representing 10 trainings per four weeks). For example, as a result of regressive

trainings offered till the end of FY 11 – until Day 1065- project team was able to drop group 1

125

bubble almost to half. In FY 12, due to group 1 dropping to 250, the training frequency was

dropped to as low as zero. However, during the first quarter of FY 12 there was an unexplained

increase observed in the group 1 bubble. Furthermore, towards the end of FY 12 - although the

training frequencies were increased - group 1 training rate has continuously decreased. This

resulted in a higher group 1 bubble value compared to end of FY 11.

Figure 83 Group 1 Training Bubble

One of the factors affecting unexpected bubble behavior is the re-takers and it was not accounted

for in training planning. 25.67 % of the employees trained in FYs 09 and 10 had re-attended a

training by the end of FY 12. At the end of FY 12, the ratio of re-takers was 12.59 % of the total

training attendance. However due to the large delay between two attendances, averaging at

500.26 days, this ratio may have increased if data had been collected also for FYs 13 and 14.

Simulated bubble values consists both employees from group 1 and re-takers. Validated model

is used to simulate its change till the end of FY 12. The outputs are plotted using the same graph

126

as captured in Figure 84. Two unexpected behaviors that were identified in group 1 bubble counts

are highlighted using two rectangles on the figure. First one is the spike observed in beginning of

FY 12, captured in left rectangle. The same spike is not recorded in the simulated bubble. On the

contrary, a small decrease is observed which corresponded to the training frequencies. Similarly,

increasing training frequency towards the end of FY 12 has actually showed a decrease in the

simulated bubble. This is highlighted using the rectangle on the right. Decrease in simulated

bubble during a population increase suggests that re-takers had the majority in each training

class that was organized for the new hires. Although the training frequency was increased

towards the end of FY 12 it was not enough to compensate for the amount of seats re-takers

were using.

Figure 84 Simulated Training Bubble

127

CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK

This dissertation describes the work on developing a methodology for modeling and simulating

systems with agent-based (AB) and system dynamics (SD) modeling techniques using Systems

Modeling Language (SysML). A methodology is provided, which extends Model-based systems

engineering (MBSE) approach establishes a two way dynamic and continuous communications

within the hybrid platform. Hypothetical and real-world examples are developed on Rational

Rhapsody to demonstrate proposed methodology.

Main challenges in model development can be grouped in four areas. First is the increasing

variation in backgrounds of stakeholders. Every individual or group of individuals adds the know-

how from their perspectives in collaborations. Furthermore, they expect to see how their input-

either previous analysis results or pure data-is integrated into the model and impact the system

outcomes. After input analysis, provided methodology combines findings in two dimensions. First

analysis results are integrated within a behavior. Secondly, they are used for identifying

responsible system components. Resulting system model provides an output of a distributed

behavior composed of integrated inputs. Second challenge is the increasing complexity of

modeled systems. This dissertation provides an approach for managing this complexity and

proposes a technique for identifying and modeling particular behavior and responsibilities of

system parts.

128

The third challenge is more specific to long term projects. It is the need to maintain the coherency

and efficiency of verified and validated models through behavioral and structural change

requests. Proposed approach allows changing, verifying and validating modularized behavior

independently. In other words, an independent behavior block where a change is requested can

be modified, verified and validated and re-allocated to the structural component without

impacting the validity in other behavior blocks.

The final challenge is reusability of modeled behavior. Today, modeling efforts often start from

scratch even if same behavior exists in a previously developed model for a different case by the

same person or group. Provided methodology models behavior and allocates it to a particular

structure. This approach allows modeling the generic behavior rather than the particular case.

Therefore, each behavior block can be separately exported and imported later to be used for a

different case.

Two challenges were faced while working with Rhapsody. First was modeling a behavior, which

follows a probabilistic distribution. An operation implementing random variate generation

technique was added to overcome this limitation. The output from generated variates was

compared to values collected from a simulation software, AnyLogic, and not enough evidence

was found suggesting difference in means. The second challenge was maintaining the simulation

time synchronization between different components of the system. A behavior block was

provided representing a virtual clock that was responsible of updating time within each

component.

129

Additional to its support during model development, provided approach can play an important

role in identifying key factors deriving the system behavior and in providing insight to measures

that can be collected for system evaluation, and analysis. Furthermore, holistic nature of

provided approach allows the proposed methodology to be applicable to different areas of

research. This work demonstrated its application for population dynamics and scheduling

problems. Future applications can include modeling crowd behavior based on geographical

locations. Influenza outbreak modeling can be an example to such application. Furthermore, the

provided method can be extended for hybrid models with alternative configurations. First,

current method’s performance can be evaluated when applied to develop a selected

configuration, such as discrete event simulation and system dynamics combinations. Later, if

necessary, provided steps can be adjusted specifically for each hybrid modeling technique

combinations.

130

APPENDIX A: EXAMPLE MODELS – MOVIE THEATER SEQUENCE DIAGRAM

131

Figure 85 Movie Theater Sequence Diagram

sd [Package] watch_movieBBScenariosPkg [Simulated 30-30 All]

itsUc_watch
movie:Uc
watch_movi

e

WaitFor_a
rrival

ShowMovi
e

GettingFe
edback

OMStartBehaviorEvent()

tm(40) at ROOT.ShowMovie

prtguests[0]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()

OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

the_end()

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(28) at ROOT.WatchingMovie

prtguests[1]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()

OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

prtguests[2]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(24) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(25) at ROOT.WatchingMovie

prtguests[3]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival() OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(10) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

prtguests[4]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival() OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(19) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(23) at ROOT.WatchingMovie

prtguests[5]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival() OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(14) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(18) at ROOT.WatchingMovie

prtguests[6]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival() OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(28) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(16) at ROOT.WatchingMovie

prtguests[7]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival() OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(28) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(28) at ROOT.WatchingMovie

prtguests[8]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(29) at ROOT.WatchingMovie

prtguests[9]:
guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(14) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(14) at ROOT.WatchingMovie

prtguests[10]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(15) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(23) at ROOT.WatchingMovie

prtguests[11]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(15) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(21) at ROOT.WatchingMovie

prtguests[12]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(19) at ROOT.WatchingMovie

prtguests[13]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(23) at ROOT.WatchingMovie

prtguests[14]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(13) at ROOT.WatchingMovie

prtguests[15]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(21) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

prtguests[16]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(25) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(29) at ROOT.WatchingMovie

prtguests[17]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(27) at ROOT.WatchingMovie

prtguests[18]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(14) at ROOT.WatchingMovie

prtguests[19]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(26) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(22) at ROOT.WatchingMovie

prtguests[20]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(21) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(21) at ROOT.WatchingMovie

prtguests[21]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(14) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

prtguests[22]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(27) at ROOT.WatchingMovie

prtguests[23]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(23) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(24) at ROOT.WatchingMovie

prtguests[24]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(22) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(13) at ROOT.WatchingMovie

prtguests[25]
:guests

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(12) at ROOT.WatchingMovie

prtguests[26]
:guests

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(11) at ROOT.WatchingMovie

prtguests[27]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(26) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(19) at ROOT.WatchingMovie

prtguests[28]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(28) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(21) at ROOT.WatchingMovie

prtguests[29]
:guests

WatchingMo
vie

GettingRefr
eshments

WatchingMo
vie

arrival()
OMStartBehaviorEvent()

gen_uniform(min = 10, max = 30)

tm(25) at ROOT.WatchingMovie

tm(5) at ROOT.GettingRefreshments

gen_uniform(min = 10, max = 30)

tm(17) at ROOT.WatchingMovie

132

APPENDIX B: EXPONENTIAL VARIATE DATE

133

Table 8 Generated Date Frequency

Days

AnyLogic Rhapsody

Days

AnyLogic Rhapsody

Transitioning Agent Count Transitioning Agent Count

0 0 0 26 46 45

1 5 7 27 48 46

2 8 10 28 48 47

3 11 14 29 48 47

4 16 20 30 48 48

5 21 22 31 48 48

6 25 24 32 48 49

7 28 25 33 48 49

8 31 29 34 48 49

9 33 30 35 48 49

10 34 34 36 49 49

11 35 34 37 49 49

12 36 36 38 49 49

13 36 38 39 49 50

14 37 39 40 49 50

15 38 40 41 49 50

16 41 41 42 49 50

17 41 42 43 49 50

18 42 42 44 49 50

19 44 42 45 49 50

20 44 45 46 49 50

21 45 45 47 49 50

22 45 45 48 50 50

23 45 45 49 50 50

24 46 45 50 50 50

25 46 45

134

APPENDIX C: TRAINING SCHEDULE

135

Table 9 Training Dates and Attendance Counts

Training

Date

of

Employees

Training

Date

of

Employees

Training

Date

of

Employees

Training

Date

of

Employees

1/1/2009 16 5/3/2010 16 5/2/2011 3 2/27/2012 3

3/3/2009 3 5/5/2010 16 5/9/2011 11 3/5/2012 16

5/12/2009 5 6/14/2010 13 5/20/2011 5 3/12/2012 16

6/30/2009 13 6/16/2010 13 5/31/2011 8 3/19/2012 9

7/7/2009 1 6/21/2010 13 6/6/2011 4 3/20/2012 9

7/8/2009 5 6/23/2010 15 6/8/2011 11 3/21/2012 10

7/10/2009 7 6/28/2010 10 6/9/2011 6 3/27/2012 11

7/16/2009 5 7/19/2010 10 6/11/2011 2 4/9/2012 9

7/22/2009 2 7/21/2010 11 6/13/2011 6 4/16/2012 11

7/23/2009 5 7/26/2010 9 6/14/2011 5 4/30/2012 7

7/30/2009 7 8/23/2010 8 6/16/2011 11 6/4/2012 10

8/5/2009 3 8/25/2010 11 6/22/2011 1 6/5/2012 12

8/6/2009 4 9/8/2010 11 6/25/2011 6 6/18/2012 12

8/12/2009 6 9/13/2010 11 6/27/2011 1 6/25/2012 3

11/4/2009 1 9/23/2010 13 6/28/2011 4 6/29/2012 7

11/23/2009 7 9/27/2010 12 7/1/2011 1 7/16/2012 3

12/1/2009 3 9/30/2010 11 7/11/2011 14 7/19/2012 1

12/3/2009 3 10/4/2010 14 7/13/2011 2 7/30/2012 9

12/14/2009 8 10/6/2010 11 7/18/2011 11 8/6/2012 5

12/16/2009 11 10/11/2010 9 7/20/2011 2 8/7/2012 7

1/5/2010 9 10/14/2010 6 7/21/2011 5 8/8/2012 5

1/7/2010 9 10/18/2010 4 8/3/2011 6 8/13/2012 8

1/25/2010 1 11/1/2010 11 8/4/2011 13 8/14/2012 4

2/1/2010 7 11/8/2010 10 8/5/2011 14 8/15/2012 5

2/4/2010 7 11/11/2010 10 8/8/2011 1 8/21/2012 3

2/8/2010 7 12/1/2010 10 8/30/2011 13 9/11/2012 5

2/15/2010 3 12/8/2010 9 9/20/2011 8 9/24/2012 7

3/15/2010 1 1/10/2011 11 10/10/2011 13 2/27/2012 3

3/29/2010 12 1/13/2011 6 10/11/2011 9 3/5/2012 16

3/31/2010 8 1/17/2011 5 10/12/2011 11 3/12/2012 16

4/6/2010 12 2/7/2011 11 10/13/2011 5 3/19/2012 9

4/8/2010 16 2/10/2011 1 10/18/2011 12 3/20/2012 9

4/12/2010 9 2/14/2011 10 11/1/2011 2 3/21/2012 10

4/14/2010 9 2/21/2011 7 11/11/2011 1 3/27/2012 11

4/19/2010 12 2/28/2011 8 12/6/2011 2 4/9/2012 9

4/20/2010 9 3/14/2011 3 12/19/2011 9 4/16/2012 11

4/22/2010 9 3/27/2011 10 1/24/2012 10 4/30/2012 7

4/27/2010 15 4/4/2011 13 2/16/2012 2 6/4/2012 10

4/29/2010 12 4/8/2011 1 2/21/2012 11 6/5/2012 12

136

APPENDIX D: SIMULATION OUTPUT

137

Table 10 Simulation Results per Replication

Total Attendance
FY 10

Total Attendance
FY 12

Total Trained
FY 10

Total Trained
FY 12

Replication 1 503 1142 468 1009

Replication 2 499 1169 469 1031

Replication 3 503 1151 469 1009

Replication 4 498 1106 469 967

Replication 5 502 1168 467 1027

Replication 6 490 1135 468 999

Replication 7 490 1182 468 1037

Replication 8 495 1172 470 1032

Replication 9 500 1130 464 993

Replication 10 503 1198 466 1052

Replication 11 497 1136 468 999

Replication 12 501 1103 468 959

Replication 13 495 1042 470 909

Replication 14 503 1118 470 970

Replication 15 496 1196 466 1051

Replication 16 495 1117 471 971

Replication 17 497 1163 470 1018

Replication 18 496 1153 471 1007

Replication 19 499 1150 470 1009

Replication 20 495 1154 475 1009

Replication 21 493 1195 478 1047

Replication 22 497 1160 478 1012

Replication 23 497 1138 476 993

Replication 24 496 1146 476 999

Replication 25 498 1131 472 989

Replication 26 493 1206 473 1063

Replication 27 493 1082 472 943

Replication 28 493 1181 471 1034

Replication 29 497 1120 475 978

Replication 30 497 1144 468 1000

Replication 31 503 1163 470 1018

Replication 32 491 1175 470 1033

Replication 33 492 1144 475 1008

138

APPENDIX E: TRAINING MANAGEMENT SYSTEM INTERNAL BLOCK DIAGRAM

139

Figure 86 Training Management Internal Block Diagram

140

APPENDIX F: ATTENDANCE COUNT REGRESSION ANALYSIS

141

Table 11 Attendance Regression Analysis

Observation
Predicted
Attendance

Round SSR SSTO Observation
Predicted
Attendance

Round SSR SSTO

1 2.877 3 34.703 34.703 29 9.316 9 0.012 0.794

2 3.546 4 23.921 15.139 30 9.484 9 0.012 9.666

3 4.106 4 23.921 16.885 31 9.541 10 1.230 50.539

4 4.193 4 23.921 62.266 32 9.656 10 1.230 0.012

5 4.205 4 23.921 15.139 33 9.714 10 1.230 0.012

6 4.231 4 23.921 3.576 34 9.860 10 1.230 9.666

7 4.307 4 23.921 15.139 35 9.890 10 1.230 0.012

8 4.385 4 23.921 47.485 36 9.949 10 1.230 0.012

9 4.398 4 23.921 15.139 37 10.099 10 1.230 37.321

10 4.491 4 23.921 3.576 38 10.160 10 1.230 9.666

11 4.573 5 15.139 34.703 39 10.282 10 1.230 50.539

12 4.586 5 15.139 23.921 40 10.343 10 1.230 50.539

13 4.669 5 15.139 8.357 41 11.658 12 9.666 16.885

14 6.003 6 8.357 62.266 42 11.727 12 9.666 16.885

15 6.353 6 8.357 3.576 43 11.904 12 9.666 16.885

16 6.507 7 3.576 34.703 44 11.976 12 9.666 37.321

17 6.546 7 3.576 34.703 45 12.156 12 9.666 1.230

18 6.765 7 3.576 0.794 46 12.944 13 16.885 1.230

19 6.806 7 3.576 4.448 47 13.021 13 16.885 4.448

20 7.225 7 3.576 0.012 48 13.217 13 16.885 0.012

21 7.268 7 3.576 0.012 49 14.372 14 26.103 0.794

22 7.670 8 0.794 62.266 50 14.458 14 26.103 4.448

23 7.833 8 0.794 3.576 51 15.076 15 37.321 4.448

24 7.903 8 0.794 3.576 52 15.303 15 37.321 4.448

25 7.998 8 0.794 3.576 53 15.767 16 50.539 16.885

26 8.167 8 0.794 34.703 54 15.957 16 50.539 9.666

27 8.881 9 0.012 62.266 55 16.101 16 50.539 4.448

28 9.260 9 0.012 9.666

142

LIST OF REFERENCES

Akbas, M. I., Brust, M. R., Ribeiro, C. H. C., & Turgut, D. (2015). A Preferential Attachment Model

for Primate Social Networks. Elsevier Computer Networks Journal, 76(0), 207–226.

Akkermans, H. (2001). Emergent Supply Networks :System Dynamics Simulation of Adaptive

Supply Agents. In Proceedings of the 34th Hawaii International Conference on System

Sciences (Vol. 9, pp. 1–11).

Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System

Dynamics Review, 12(3), 183–210. http://doi.org/10.1002/(SICI)1099-

1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4

Basole, R. C., & Bodner, D. A. (2015). Computational Modeling of Complex Enterprise Systems: A

Multi-Level Approach. In Modeling and Simulation in the Systems Engineering Life Cycle,

Simulation Foundations, Methods and Applications (M. L. Lope, p. 369). Liverpool: Springer-

Verlag. http://doi.org/10.1007/978-1-4471-5634-5_10

Bersini, H. (2012). UML for ABM. Journal of Artificial Societies and Social Simulation, 15(1).

Retrieved from http://jasss.soc.surrey.ac.uk/15/1/9.html

Borshchev, A., & Filippov, A. (2004). From System Dynamics to Agent Based Modeling: Reasons,

Techniques, Tools. In The 22nd International Conference of the System Dynamics Society.

Oxford.

Cellier, F. E. (1991). Population Dynamics Modeling. In Continuous System Modeling (pp. 417–

454). Springer New York. http://doi.org/10.1007/978-1-4757-3922-0_10

Chaim, R. (2008). Pension Funds Governance: Combining SD, Agent Based Modelling and Fuzzy

Logic to Adress Dynamic Asset and Liability Management (ALM) Problem. In Proceedings of

the 26th International Conference of the System Dynamics Society. Retrieved from

http://www.systemdynamics.org/conferences/2008/proceed/proceed.pdf

Collins, A., Petty, M., Vernon-Bido, D., & Sherfey, S. (2015). A Call to Arms: Standards for Agent-

Based Modeling and Simulation. Journal of Artificial Societies & Social Simulation, 18(3), 1.

Retrieved from

http://eds.b.ebscohost.com.ezproxy.net.ucf.edu/abstract?site=eds&scope=site&jrnl=1460

7425&AN=103679390&h=gmGecMSG8jSSoPuiDarsmhaS7KOXSJFaX80r+MEf+TbT36O7PD6

143

WPfTXWvJ/7JrwkBkAYnBzpUkyTKP4JmS2zw==&crl=c&resultLocal=ErrCrlNoResults&result

Ns=Ehost&cr

Coyle, R. G. (2001a). System Dynamics Modeling (2nd ed.). Boca Raton: Chapman and Hall/CRC.

Coyle, R. G. (2001b). System Dynamics Modeling (2nd ed.). Boca Raton: Chapman and Hall/CRC.

David, P., Idasiak, V., & Kratz, F. (2010). Reliability study of complex physical systems using SysML.

Reliability Engineering & System Safety, 95(4), 431–450.

http://doi.org/10.1016/j.ress.2009.11.015

Enos, J. R. (2011). Dynamics of Combat Aviator Training. In Proceedings of the 29th International

Conference of the System Dynamics Society (pp. 1–15).

Figueredo, G. P., & Aickelin, U. (2011). Comparing System Dynamics and Agent-Based Simulation

for Tumour Growth and its Interactions with Effector Cells. In Proceedings of the 2011

Summer Computer Simulation Conference (pp. 52–59). Retrieved from

http://arxiv.org/abs/1108.3235

Friedenthal, S., Moore, A., & Steiner, R. (2009). A practical guide to SysML. Burlington, MA:

Elsevier Inc.

Gaube, V., Kaiser, C., Wildenberg, M., Adensam, H., Fleissner, P., Kobler, J., … Haberl, H. (2009).

Combining agent-based and stock-flow modelling approaches in a participative analysis of

the integrated land system in Reichraming, Austria. Landscape Ecology, 24(9), 1149–1165.

http://doi.org/10.1007/s10980-009-9356-6

GCF. (2014). Giraffe Conservation Foundation. Retrieved May 28, 2015, from

http://www.giraffeconservation.org/

Gilbert, N., & Bankes, S. (2002). Platforms and Methods for Agent-Based Modeling. Proceedings

of the National Academy of Sciences of the United States of America, 99(3), 7197–7198.

http://doi.org/10.1073/pnas.072079499

Gilli, Q., Mustapha, K., Frayret, J., Lahrichi, N., & Karimi, E. (2014). Agent-Based Simulation of

Colorectal Cancer Care Trajectory: Patient Model. Cirrelt, 67(December), 1–40. Retrieved

from https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-67.pdf

Größler, A., Stotz, M., & Schieritz, N. (2003). A Software Interface Between System Dynamics and

Agent-Based Simulations – Linking Vensim ® and RePast ®. In Proceedings of the 21st System

Dynamics Society International Conference. New York.

Haghani, A., Lee, S. Y., & Byun, J. H. (2003). A System Dynamics Approach to Land Use /

Transportation System Performance Modeling. Journal of Advanced Transportation, 37(1),

144

1–41. http://doi.org/10.1002/atr.5670370103

Hause, M. (2006). The SysML Modelling Language. In Proceedings of Fifteenth European Systems

Engineering Conference.

Hoffmann, H.-P. (2014). IBM Rational Harmony Deskbook. Retrieved from

https://www.ibm.com/developerworks/community/groups/service/html/communityview

?communityUuid=dbc39547-3619-4c31-9535-

0b583a4e6190#fullpageWidgetId=W62078615f88f_4809_afad_c27cdc9d7e71&file=2132d

88d-4dde-40b4-8102-254ca4456c82

Homer, J. B., & Hirsch, G. B. (2006). System dynamics modeling for public health: background and

opportunities. American Journal of Public Health, 96(3), 452–8.

http://doi.org/10.2105/AJPH.2005.062059

Huang, E., Ramamurthy, R., & Mcginnis, L. F. (2007). System and simulation modeling using

SySML. In Proceedings of the 2007 Winter Simulation Conference (pp. 796–803).

Huntsville, U. of A. (2014). Euler’s Numerical Method. Retrieved January 1, 2014, from

http://howellkb.uah.edu//DEtext/Part2/Euler_Method.pdf

IBM. (2014). IBM Rational Rhapsody 8.1.1 Documentation. Retrieved from

http://127.0.0.1:50992/help/index.jsp?nav=%2F1

INCOSE. (2011). Vee-Model. INCOSE. Retrieved from

http://www.incose.org/chesapek/mailings/2011/2011_02_Mailing.html

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., & Young, T. (2010). Simulation in

manufacturing and business: A review. European Journal of Operational Research, 203(1),

1–13. http://doi.org/10.1016/j.ejor.2009.06.004

Johnson, T. A., Jobe, J. M., Paredis, C. J. J., & Burkhart, R. (2007). Modeling continuous system

dynamics in sysml. In IMECE 2007 (pp. 1–9). Seattle, Washington, USA.

Johnson, T. A., Paredis, C. J. J., & Burkhart, R. (2011). Integrating models and simulations of

continuous dynamics into SysML. Journal of Computing and Information Science in

Engineering, 12(1), 1–11. http://doi.org/10.1115/1.4005452

Lättilä, L., Hilletofth, P., & Lin, B. (2010). Hybrid simulation models – When, Why, How? Expert

Systems with Applications, 37(12), 7969–7975. http://doi.org/10.1016/j.eswa.2010.04.039

Lukens, S., Depasse, J., Rosenfeld, R., Ghedin, E., Mochan, E., Brown, S. T., … Clermont, G. (2014).

A Large-Scale Immuno-Epidemiological Simulation of Influenza A Epidemics. BMC Public

Health, 14(1019).

145

Macal, C. M., & North, M. J. (2007). Agent-Based Modeling and Simulation: Desktop ABMS. In

Winter Simulation Conference (pp. 95–106). IEEE.

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of

Simulation, 4(3), 151–162. http://doi.org/10.1057/jos.2010.3

Masad, D., & Kazil, J. (2015). Mesa : An Agent-Based Modeling Framework. In 14th PYTHON in

Science Conference (pp. 53–60).

Mcginnis, L., & Ustun, V. (2009). A simple example of SysML-driven simulation. In Proceedings of

the 2009 Winter Simulation Conference (pp. 1703–1710).

OMG. (2007). OMG Systems Modeling Language. Retrieved 08 2012, from

http://www.omgsysml.org/

Pastrana, J. (2014). Model-Based Systems Engineering (MSBE) Approach to Distributed and Hybrid

Simulation Systems. University of Central Florida.

Phelan, S. E. (1999). A note on the correspondence between complexity and system theory.

Systemic Practice and Action Research, 12(3), 237–246.

Pourdehnad, J., Maani, K., & Sedehi, H. (2002). System Dynamics and Intelligent Agent-Based

Simulation : Where is the Synergy ? In 20th International Conference of the System Dynamics

Society. Polermo.

Ramos, A. L., Ferreira, J. V., & Barcelo, J. (2012). Model-based systems engineering : An emerging

approach for modern systems. IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, 42(1), 101–111.

Scholl, H. J. (2001). Agent Based and System Dynamics Modeling: A Call for Cross Study and Joint

Research. Proceedings of the 34th Annual Hawaii International Conference on System

Sciences, 3, 8. http://doi.org/10.1109/HICSS.2001.926296

Sellgren, U., Törngren, M., Malvius, D., & Biehl, M. (2009). Product lifecycle management for

mechatronics integration. In International Conference on Product Lifecycle Management

(pp. 1–11).

Silhavy, R., Silhavy, P., & Prokopova, Z. (2011). Behavioral Modeling in System Engineering. In

Proceedings of the 13th WSEAS International Conference on Automatic Control, Modelling

& Simulation (pp. 100–105).

Soyler Akbas, A., Mykoniatis, K., Angelopoulou, A., & Karwowski, W. (2014). A Model-based

Approach to Modeling a Hybrid Simulation Platform. In Proceedings of the Symposium on

Theory of Modeling & Simulation (pp. 31:1–31:6). Tampa: Society for Computer Simulation

146

International.

Sterman, J. D. (1992). System Dynamics Modeling for Project Management. Cambridge. Retrieved

from http://scripts.mit.edu/~jsterman/docs/Sterman-1992-SystemDynamicsModeling.pdf

Swinerd, C., & McNaught, K. R. (2012). Design classes for hybrid simulations involving agent-

based and system dynamics models. Simulation Modelling Practice and Theory, 25, 118–

133. http://doi.org/10.1016/j.simpat.2011.09.002

The Pennsylvania State University. (2015). The Coefficient of Determination. Retrieved

September 30, 2015, from https://onlinecourses.science.psu.edu/stat501/node/255

Towill, D. R. (1993). System Dynamics-Background, Methodology and Applications. Computing &

Control Engineering Journal, 4(5), 201. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=242110

UA. (2015). Autocorrelation. Retrieved from http://www.ltrr.arizona.edu/~dmeko/notes_3.pdf

Weilkiens, T. (2006). Systems Engineering with SysML/UML. Burlington, MA: Morgan Kaufmann

Publishers.

	Agent-Based and System Dynamics Hybrid Modeling and Simulation Approach Using Systems Modeling Language
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Research Background
	Problem Statement
	Objective
	Contributions
	Document Outline

	CHAPTER TWO: RELATED WORK
	System Dynamics Modeling and Simulation
	Agent Based Modeling and Simulation
	AB-SD Hybrid Models
	Model Based Systems Engineering (MBSE) Approach
	Systems Modeling Language (SysML)

	Modeling and Simulation with SysML

	CHAPTER THREE: METHODOLOGY
	Requirements Analysis
	Define Behavior
	Create Use Case Diagrams (UCD)
	Link Requirements to UCD’s
	Create Activity Diagrams (ActD)
	Generate Sequence Diagrams (SeqD)
	Create Ports and Interfaces
	Define States
	Behavior Verification

	Define Structure
	Create Block Definition Diagrams
	Decomposition Type I
	Decomposition Type II
	Decomposition Type III
	Complex Decompositions

	Allocate Behavior
	Create White-Box Activity Diagrams (ActD)
	Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces
	Define States

	Verify and Validate System

	CHAPTER FOUR: METHODOLOGY VERIFICATION
	Variability
	Time Synchronization
	Proposed Solution

	CHAPTER FIVE: POPULATION DYNAMICS CASE STUDY
	Requirements Analysis
	Define Behavior
	Create Use Case Diagrams (UCD)
	Link Requirements to UCD’s
	Create Activity Diagrams (ActD)
	Generate Sequence Diagrams (SeqD)
	Create Ports and Interfaces
	Define States
	Behavior Verification

	Define Structure
	Create Block Definition Diagrams
	Allocate Behavior
	Create White-Box Activity Diagrams (ActD)
	Generate Sequence Diagrams (SeqD) and Create Ports and Interfaces
	Define States

	Verify and Validate System

	CHAPTER SIX: TRAINING MANAGEMENT CASE STUDY
	Training Management as Complex Adaptive Systems
	Model Development
	Requirements Analysis
	Population Increase
	Training Attendance
	Attendance Probability
	Training Schedule

	Define Behavior
	Define Structure
	Employee STM
	Company STM

	Verify & Validate

	Results

	CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK
	APPENDIX A: EXAMPLE MODELS – MOVIE THEATER SEQUENCE DIAGRAM
	APPENDIX B: EXPONENTIAL VARIATE DATE
	APPENDIX C: TRAINING SCHEDULE
	APPENDIX D: SIMULATION OUTPUT
	APPENDIX E: TRAINING MANAGEMENT SYSTEM INTERNAL BLOCK DIAGRAM
	APPENDIX F: ATTENDANCE COUNT REGRESSION ANALYSIS
	LIST OF REFERENCES

