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ABSTRACT 

With heightened security concerns across the globe and the increasing need to monitor, 

preserve and protect infrastructure and public spaces to ensure proper operation, quality 

assurance and safety, numerous video cameras have been deployed. Accordingly, they also need 

to be monitored effectively and efficiently. However, relying on human operators to constantly 

monitor all the video streams is not scalable or cost effective. Humans can become subjective, 

fatigued, even exhibit bias and it is difficult to maintain high levels of vigilance when capturing, 

searching and recognizing events that occur infrequently or in isolation. 

These limitations are addressed in the Live Video Database Management System 

(LVDBMS), a framework for managing and processing live motion imagery data. It enables rapid 

development of video surveillance software much like traditional database applications are 

developed today. Such developed video stream processing applications and ad hoc queries are 

able to “reuse” advanced image processing techniques that have been developed. This results in 

lower software development and maintenance costs. Furthermore, the LVDBMS can be 

intensively tested to ensure consistent quality across all associated video database applications. 

Its intrinsic privacy framework facilitates a formalized approach to the specification and 

enforcement of verifiable privacy policies. This is an important step towards enabling a general 

privacy certification for video surveillance systems by leveraging a standardized privacy 

specification language. 

With the potential to impact many important fields ranging from security and assembly 

line monitoring to wildlife studies and the environment, the broader impact of this work is clear. 

The privacy framework protects the general public from abusive use of surveillance technology; 
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success in addressing the “trust” issue will enable many new surveillance-related applications. 

Although this research focuses on video surveillance, the proposed framework has the potential 

to support many video-based analytical applications. 
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CHAPTER 1: INTRODUCTION 

Motivations 

Many factors contribute to the proliferation of camera networks, including decreased 

hardware costs and heightened concerns regarding security and safety. In order to be positioned 

to quickly react to events observed in these live video streams, they must be actively monitored. 

However, due to the volume and velocity of live data produced by the multitude of cameras, it is 

difficult, if not impossible, to review all the video streams without some degree of automation. 

When considering such a solution for such an environment, two factors are of primary 

importance, (1) the application of intelligent algorithms to sift through the multitudes of video 

streams to discern which scenes are of potential interest, and (2) usability; the ease of use, 

efficiency and satisfaction with which operators, in a variety of roles, can interact with and use 

the system in order to meet objectives. 

Video streams consume significant network bandwidth, and network capacity bottlenecks 

need to be mitigated. Therefore, applicable algorithms (and their implementation) must be 

distributed in nature in order to scale with the number of video streams and not overload portions 

of the network. 

With the combination of technological advances such as better algorithms that can 

recognize actions occurring in a scene, face recognition and tracking, inexpensive and abundant 

data storage, and expanding areas of surveillance coverage, mean that more of our lives will be 

observed, analyzed and digitally preserved. Consequently, privacy is important. Camera network 

implementers must ensure that socially accepted standards (which can vary from culture to 

culture) are upheld, and that data captured for one purpose (such as ensuring security or safety) is 
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not later used for another. A viable solution that is socially acceptable must consider various 

privacy aspects, and have facilities to define and implement privacy policies so that people can 

be confident that their stored appearance will be utilized consistently and ethically; both when 

the data is captured and in the future. 

Overview of Dissertation 

This dissertation is primarily organized into six major content areas. Firstly, a review of 

multimedia database systems and enabling concepts are presented. Secondly, the LVDBMS, a 

Live Video Computing (LVC) prototype database is introduced along with its data model and 

query language. Thirdly, an approach to modeling objects and tracking them across video 

streams is presented. A technique based upon bipartite graph matching is presented. Fourthly, a 

context-aware privacy preserving framework is presented, which protects the privacy of 

individuals observed in video streams. Fifthly, a run-time query optimizer and query execution 

environment is presented. Efficient query processing is a key element to effective resource 

utilization. Sixthly, the LVDBMS prototype is presented, including both implementation and 

performance details. In the remainder of this manuscript the terms stream, video stream and 

camera are used interchangeably.  
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CHAPTER 2: MULTIMEDIA DATABASES AND LIVE VIDEO 

COMPUTING 

This chapter discuses fundamental components that comprise Multimedia Database 

Systems (MMDBS). Later sections build upon this foundation, extending it to the LVC platform. 

The LVC platform combines hardware, networking infrastructure and a software framework into 

a solution which allows operators to interact with numerous live video feeds in real time. 

 

 

 

Figure 1. A typical database architecture (left) vs. a multimedia database (right). 
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Introduction 

Advances in imaging sensors, networking, processing, data storage and algorithms all 

contribute to ever increasing quantities of multimedia information. This encompasses audio and 

video, recorded and live, as well as still imagery and text. Multimedia information processing 

includes the generation, representation, storage and retrieval, processing, communication and 

presentation of multimedia content, as well as that of related metadata (Nwosu, Thuraisingham, 

& Berra, 1996). In order to manage these massive quantities of data, MMDBS have been created. 

A Database Management System (DBMS) is software that allows users to store and use data in 

an abstract way, without having to consider how the data is physically stored and managed on a 

storage volume (Ullman, 1981). MMDBS are DBMS that facilitate the storage and retrieval of 

multimedia data, to include the transmission, indexing, querying and manipulation of said data. 

Figure 1 compares a traditional DBMS with a MMDBS. A typical DBMS 

implementation, Figure 1 (left), supports business applications by persisting application state, 

resolving queries, and facilitating transactions to mitigate concurrency errors. Figure 1 (right) 

illustrates a MMDBS, which can utilize a traditional DBMS to manage metadata and indices, but 

also encompasses additional technologies and services not typically present in DBMSs which 

include: video on demand, document management and imaging, spatial data, specialized query 

languages, face recognition and relevance feedback, to name a few. Because multimedia content, 

and video in particular, can be quite large and its communication bandwidth intensive, MMDBS 

are often paired with specialized communication frameworks, such as the HeRO protocol 

discussed in (Tantaoui, Hua, & Do, 2004), in order to provide content delivery to a multitude of 

concurrent users without overwhelming the physical communication medium. 
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Fundamental Concepts and Components of Multimedia Database Systems 

Early database systems were designed solely to efficiently manage the storage, retrieval 

and querying of alphanumeric data (Date, 1977). Advances in microprocessors, storage device 

capacity and imaging sensors led to vast quantities of pictorial data such as medical images, 

satellite imagery, and topographical maps, to name a few. With this data arose the problem of 

how to manage it in an efficient and structured way. Early approaches were based upon metadata 

that was generated manually by adding textual annotations to digital content (Blaser, 1979; N. 

Chang & Fu, 1980; N. S. Chang & Fu, 1980; S. K. Chang & Kunil, 1981; S. K. Chang, Yan, 

Dimitroff, & Arndt, 1988). As computer technology advanced, so did the content: pictures and 

discrete objects were replaced by video: sequences of still images temporarily correlated with 

audio. Also changing was the acquisition of metadata. It could be generated as the content was 

created (recording date and time stamps), generated automatically during the editing phase 

(pertaining to compositional information as the content is spliced together), or added post-

production (bibliographic information, etc). A different post-production method is based upon 

extracting representative features automatically, called feature extraction. This approach is 

applicable to both the visual and audio components of video. 

A MMDBS must be architected with the flexible to support a variety of applications. One 

such application is Video on Demand (VOD). In VOD, users can browse a large selection of 

videos (for example, in a hotel setting these could be entertaining movies, in a corporate setting 

they could be training videos). The collection of videos are typically stored on and distributed 

from a centralized server. Browsing and search is conducted based upon the metadata associated 

with the videos, and the videos are consumed as a single unit. That is, the user will watch the 
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content from start to finish, though they may pause or fast forward or perform other similar 

linear operations (Barbieri, Mekenkamp, Ceccarelli, & Nesvadba, 2001). 

In addition to VOD, interactive video is another application of MMDBS, serving video 

scenes in a non-linear fashion. Examples of such a service include educational videos, where a 

sequence of short clips pertaining to a particular topic may be combined, reordered, and viewed 

together as one video clip. Other applications include stock-shot (Turner, 1990) and browsing, 

indexing and searching video archives (Dimitrova et al., 2002). 

MMDBS frameworks typical consist of three primary components, or phases (Z. Zhang 

& Zhang, 2008). The first entails representing the raw multimedia data as a point in an abstract, 

n-dimensional space termed a feature space, where n is the number of features that describes the 

data item. The process of representing the data as a point in the feature space is called feature 

extraction. Similar items should be grouped together (e.g., see Figure 2), thus, the quality of the 

feature selection and extraction methods affect the grouping and compactness of the data points. 

The compactness of the data in the feature space can have ramifications pertaining to the 

effectiveness of retrieval (e.g., k-nearest neighbor (k-NN) and classification (e.g., the application 

of support vector machines). 

The second component of the framework is knowledge representation. A feature 

represents a measurable property of the multimedia data item (e.g., the number of red pixels in 

an image), and are typically represented as numeric data, though they can be a string or also a 

graph representation. Numeric features are usually chosen, as they can be operated upon 

mathematically. Discriminative features should be chosen, and the effectiveness by which the 

multimedia data may be represented by the selected features will have a significant impact on the 

performance of the MMDBS. 
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Figure 2. Multimedia data (images) represented as points in a 2-dimensional feature space. 
 

 

Figure 3. An object (yellow car) whose pixels are segmented from the image background. 
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The third framework component performs some type of analysis or retrieval on the 

multimedia data that is represented in the feature space, for example, categorization (applying 

class labels or keywords), retrieval (k-NN), data mining, etc. 

Multimedia Data Representation – Data and Information 

In its raw form multimedia data is suitable for human consumption (e.g., to watch a 

movie or listen to music), to be archived for historical or legal purposes, etc. This data consists of 

images (e.g., JPEG or BMP format), audio (MP3, WAV, etc.), video (MPEG2), etc. Multimedia 

content that is stored in a similar format is referred to as data, because it is not retained in a 

format that is optimized for processing by an implementation of an algorithm (e.g., k-NN 

similarity search, data mining). For example, consider the car shown in Figure 3. The initial 

image is in JPEG format and amenable to human consumption (a person can observe the image 

and recognize it as depicting a vehicle; more specifically a yellow sports car). However, from the 

perspective of a machine, it is a sequence of bits. Multimedia data can be processed and have 

information extracted from it. The image itself is data, and the data that has been extracted 

through some process and can be associated with some higher-level concept is termed 

information (for example, the label “car”). Consider again the automobiles shown in Figure 2; 

the images themselves are considered data, and feature vectors can be considered information. 

The information contained in the feature vectors represents specific aspects of the images and is 

suitable for further automated processing. A feature vector can also be considered to represent a 

point in a multi-dimensional Euclidean space which is called the feature space. 

In this work image frames are denoted by a capital F. For example, the first frame of a 

video is denoted 𝐹𝐹1, and the ith as 𝐹𝐹𝑖𝑖. Images are composed of pixels, which may be referenced 

within the image by their 2D coordinates (x,y), for example, the pixel 𝒙𝒙 = (𝑥𝑥,𝑦𝑦) ∈ ℛ2 or, 
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 𝒙𝒙 = �
𝒙𝒙
𝒚𝒚� ( 1 ) 

 

Images themselves (the terms image and frame are used interchangeably in this work) are 

represented as a matrix of pixel values. For simplicity we confine pixels to be represented as 8-

bit integers, which range from 0 to 255, and signify the intensity of the (color) channel. 

Additionally, we work with two types of images; color images and grayscale images. Color 

images are represented as a 3-dimensional matrix, where the first two dimensions are the width 

and height, and the third dimension is the color component; for the RGB color space, indices in 

the third dimension correspond to the R, G and B color planes. Grayscale images (also known as 

black and white) are represented as a 2-dimensional matrix of pixel values, where a value of 0 

corresponds to black and 255 is white. Often color images are converted to grayscale because the 

2D matrices are simpler to work with and manipulate, and for many tasks (such as finding the 

difference between frames) the results, when performing the tasks on grayscale as opposed to 

color, is acceptable. A simple formula for converting from the RGB color space to the grayscale 

color space is as follows: 

 𝑮𝑮 = 𝟎𝟎.𝟑𝟑𝟎𝟎𝟑𝟑𝑹𝑹 + 𝟎𝟎.𝟓𝟓𝟓𝟓𝟑𝟑𝑮𝑮 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟑𝟑𝑩𝑩 ( 2 ) 
 

Where G is the corresponding grayscale image. We note that there are many different weightings 

that may be utilized in the conversion and additionally, there are many different color spaces in 

addition to RGB which have different properties. The suitability of which color space to use 

varies with the application. For additional details pertaining to image representations and color 

space, the reader is referred to a computer vision text, for example, the work of (Szeliski, 2010). 
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Digital Sampling and Reconstruction 

In order to be communicated digitally and processed by a computer, analog signals must 

first be digitized. Digital sampling is the process of converting a continuous signal (e.g. in terms 

of space or time) into a sequence of discrete numeric values. More specifically, there are two 

processes associated with digital sampling: sampling and reconstruction. In the sampling process 

a continuous signal is converted into a sequence of measurements by periodically measuring the 

value of the continuous signal. This period P is called the sampling interval and can be measured 

in terms of time or space (depending upon what it is that is being sampled). The measurements 

themselves are referred to as samples, and the reciprocal of the period 1/P is the sampling 

frequency. When the sampling period is measured in terms of seconds, then the sampling 

frequency is referred to as hertz. 

The transformation of a series of discrete samples into a continuous signal is called 

reconstruction. The portions of the continuous signal that are not represented in the discrete 

samplings may be reconstructed through the process of interpolation. For further details 

pertaining to sampling theorems the reader is referred to (Jerri, 1977). 

Data Representation and Features 

Data can be classified as structured or unstructured. Structured data is organized in 

accordance with a data model (Hoberman, 2005). Some examples of structured data include 

tabular data stored in a relational database or in an XML file. Data in this class is identifiable (by 

both humans and computers) due to its structure. Unstructured data is not inherently organized 

by an identifiable structure. Examples of unstructured data include audio (e.g. MP3 files), images 

and video. 
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Unstructured data can be categorized by its inherent dimensionality. The simplest type of 

unstructured data consists of alphabet characters, and the more complex is video. Table 1 

provides a list of different types of unstructured data. The data listed as “Continuous” in the state 

column consists of data that is related temporally, and one or more of these classifications (or 

types) of data may be combined and still be considered multimedia (Grimes & Potel, 1991).  

Table 1: Modalities of unstructured data by dimensionality 
Data 
dimensionality Example of data State 

0 Characters, text Discrete 
1 Audio, output from sensor Continuous 
2 Image, graphics Discrete 
3 Video, animations Continuous 

 

As previously stated, features represent a measurable property of a type of data that can 

be observed. Typically more than one feature is extracted to represent an item of multimedia 

data, and taken together these features form a vector which can correspond to a point in a 

multidimensional Euclidean feature space. The process of identifying and calculating features 

from multimedia data is called feature extraction. 

There are different types of features; and some features are applicable only to certain 

modalities of data. Three types of features are described here: geometric, statistical and meta. 

Geometric features apply to specific objects that have been identified within a unit of multimedia 

data (such as a frame of video). Before objects can have features calculated for them, a previous 

processing step must have been executed to identify the objects contained in the data item. An 

example of a geometric feature is a moment. In image processing, a moment is a weighted 

average of the intensities of the pixels that represent the appearance of an object. Features that 

can be derived from the moment include area (the number of pixels that contribute to the object’s 

representation) and also the centroid (or, the coordinates of the center of the object) (Hu, 1962). 
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Another simple geometric feature is the shape number (Bribiesca & Guzman, 1980). The shape 

number represents the contour of a shape, and is a sequence of that describe the directions of line 

segments that one would encounter when tracing the shape of an object, having started from 

some particular boundary point. For details about shape and image processing the reader is 

referred to a computer vision text, for example (Nixon & Aguado, 2012). 

A statistical feature is another type of feature that can describe an image. Statistical 

features are generally applied to the image as a whole. A histogram is an example of a statistical 

feature that can represent a property of an image, for example, the intensities of the pixel values 

that represent the appearance of the image. Consider, for example, a grayscale image, which is a 

two-dimensional image whose pixels represent shades of gray with intensities ranging from 255 

(white) to 0 (black). A histogram representing a particular grayscale image could have 256 bins, 

one for each possible pixel intensity, and the value of each bin would be the number of pixels 

contained in the image with that particular value. To make the histogram more compact, the bins 

can be generalized to represent non-overlapping ranges of pixel values. Other features that could 

fit into the statistical category are edges (e.g. the number of pixels that represent edges in the 

image, as outputted by some edge detection algorithm (Harris & Stephens, 1988)), and 

interesting points within the image (Lowe, 1999).  

Meta features are another class of features that can describe data. Meta features apply to 

the data as a whole. For example, for an audio recording of music a meta feature could be the 

name of the artist who recorded the work. For an image, a meta feature could be the focal length 

of the lens used to capture the image, or the model of camera. For video, frame rate, aspect ratio, 

language, producer, etc. are all examples of meta features. 
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As indicated in Table 1, the term multimedia encompasses a number of different 

modalities of data. In the remainder of this work the modalities of data that are of primary 

consideration primarily are video, and the images (i.e. frames) extracted from the video. It is 

important to also that note that the data (and metadata) generation techniques considered in this 

work are those that are primarily automated. For example, some algorithms for image 

segmentation require a human to provide “seed” parameters, but we would still consider such a 

technique to be automated; as opposed to a technique in which a human observes some data and 

performs some manual transformation such as determining relevant labels to associate with said 

data. This includes user correction (such as correcting a metadata value that is incorrect) or 

applying (i.e. associating) context with an object (e.g. marking whether or not a video sequence 

contains a representation of a particular person), other than for purposes such as determining a 

ground truth baseline. 

Feature Extraction 

A significant amount of data is required to represent (or store) images and videos. It is 

common to implement an algorithm that takes image (or video) data as input and performs some 

service, such as finding similar items in a larger collection. In order for such an algorithm to 

execute this kind of a search, the entire collection of data would need to be loaded into the 

primary memory of the computer and operated upon by the CPU. For example if the search were 

conducted over video data that had an audio track multiplexed with the video data (all within the 

same file), then the audio data may need to be read in order to extract the video contents of the 

file. Furthermore, if the search was for a particular object observed within the video, then many 

parts of the video itself would need to be processed (e.g. all the video frames). Therefore a 
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significant quantity of irrelevant data must be loaded and processed, even though much of it is 

not needed. 

A solution is to reduce the quantity of data that must be processed, such that only data 

that is likely to be relevant to the objective function is loaded and processed, and data that is 

likely to be irrelevant does not consume processing resources. A relevant data reduction 

technique that can do this is called feature extraction. Feature extraction is a process that reduces 

the dimensionality of a more “verbose” data format (such as an image or video) by performing 

some sort of transformation algorithm to arrive at a more concise representation that still 

describes the original item (or some aspect of the original item) with some sufficient 

(representative) level of accuracy. That is, feature extraction is a technique to reduce the quantity 

of data (or, the dimensionality) required to represent some target item. Oftentimes the particular 

features that are extracted are associated with some application (or domain) specific application. 

By applying domain specific knowledge to the feature extraction process, features that are more 

relevant (or expressive with respect to a particular algorithm or class of algorithms) may be 

selected. 

An additional reason for reducing the amount of data that must be processed is that some 

machine learning and data mining algorithms are less effective when the data input is of a high 

dimension. For example, the accuracy of such algorithms may degrade as the dimensionality of 

the data increases. This can be the result of what is commonly referred to as the curse of 

dimensionality (R. E. Bellman, 1986). The curse of dimensionality refers to artifacts that can 

occur when analyzing data in a high-dimensional space that would not occur in a lower 

dimensional space. For example data points represented in a higher-dimension that is intrinsic to 

the data will appear sparse, and similar items will lie farther apart, potentially reducing the 
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accuracy of techniques whose effectiveness is affected by the closeness of data in the feature 

space, such as nearest neighbor retrieval. 

In addition to feature extraction, other common techniques for data dimensionality 

reduction include principal component analysis (PCA) (Jackson, 1991; Jolliffe, 2005) and factor 

analysis (FA) (Mardia, Kent, & Bibby, 1980) to name a few. The reader is referred to the work 

of Fodor for a survey of additional and related dimensionality reduction techniques (Fodor, 

2002).  

Background Subtraction 

Background subtraction is the process of identifying objects (or portions thereof) of 

interest in an image, from the rest of the image. The output from the background segmentation 

process is a mask image of binary values that indicates which pixels (in the corresponding 

image) represent the foreground object (or said another way, the pixels which are detected to not 

represent the scene background). For example given a view of a parking lot, a security officer 

might be interested in monitoring which vehicles have recently left or arrived. As an image is 

composed of a series of pixels, the task of background subtraction is that of determining which 

pixels are meaningful; that is, determining which pixels are part of an object of interest and 

which are not. As an example, consider the animal shown in the left image of Figure 4 (left). 

Figure 4 (right) shows an enlarged view of the animal’s foot; the non-black pixels contribute to 

the animal’s appearance, and the black pixels contribute to the scene background. In this section 

we consider the task of background subtraction where the camera is fixed.  
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In order to determine which pixels contribute to the appearance of object of interest and 

which do not, a model of the scene must be constructed; or learned. Note that in this usage the 

term background is ill-defined as its meaning can vary depending upon the context and 

application. However, in this case we consider the background to be pixels whose brightness 

changes slowly, or with some periodic motion (such as a tree swaying in the wind). (For 

example, the brightness of an outdoor scene will slowly change as the sun changes position in 

the sky.) 

Frame differencing is the simplest case of background subtraction, in which the 

foreground pixels of a scene can be determined by taking two images (and converting them to 

grey scale images to simplify handling the separate color channels) and subtracting (or, finding 

the absolute difference) between the pixels in the images. Pixels that are beyond some threshold 

can be considered to be part of an object of interest (e.g. something that moved and caused the 

pixels to change illumination values). 

 
 |𝑭𝑭𝒊𝒊+𝟏𝟏 − 𝑭𝑭𝒊𝒊| > 𝒕𝒕 ( 3 ) 
 

   

Figure 4. Complete image (left), and magnified view of extracted foreground pixels (right). 
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Frame differencing can be improved upon by computing the average pixel value from the last n 

frames, and slowly updating the background model over time to account for slow changes to the 

illumination of the scene. To account for this, an adaptive background model can be maintained 

by calculating the running average of the background B over time: 

 𝑩𝑩𝒊𝒊+𝟏𝟏 = 𝜶𝜶𝑭𝑭𝒊𝒊 + (𝟏𝟏 − 𝜶𝜶)𝑩𝑩𝒊𝒊 ( 4 ) 
 

Where Bi the current background model, Fi the current frame of video and α is the learning rate 

(for example, α=0.05) (Cucchiara, Grana, Piccardi, & Prati, 2003; Lo & Velastin, 2001). 

The background models just discussed model each pixel independently from its 

neighbors and base the color model on each pixel’s recent history, such as the weighted average 

of the previous n frames. These don’t take into account complex scenes with moving objects, 

like branches moving in the wind, moving water or clouds passing overhead. Background 

subtraction methods that improves upon these base the value of background pixels on a probably 

distribution function (PDF) that follows a Gaussian distribution (Wren, Azarbayejani, Darrell, & 

Pentland, 1997), or a Mixture of Gaussians (MOG) (Stauffer & Grimson, 1999). The downside 

of MOG is that it does not adapt well to fast-changing backgrounds like waves, or to cases where 

more than a few Gaussians might be required. The Codebook (K. Kim, Chalidabhongse, 

Harwood, & Davis, 2005) background segmentation model takes into consideration periodic 

background variations over a long period of time. In order to conserve the amount of memory 

required to implement the algorithm, a codebook is constructed by associating with each pixel 

one or more codewords which can be thought of as clusters of colors at each pixel (e.g. each 

pixel may be associated with one or more codewords), and the clusters may not necessarily 

correspond to a Gaussian distribution or any other parametric distribution. That is, Codebook 
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still encodes the background representation on a pixel-by-pixel basis. Classification of a pixel as 

background or foreground is done by comparing a pixel’s value to the corresponding codewords; 

if its color distribution is sufficiently close to one of the codewords and its brightness is within a 

range of the corresponding codeword, the pixel is considered to be part of the background, else it 

is classified as a foreground pixel. For additional information pertaining to background 

subtraction methods the reader is referred to the works of (Piccardi, 2004) and (Cheung & 

Kamath, 2004). 

It should also be noted that the pixels in the foreground mask might not always represent 

the object completely; that is, there may be some error due to noise. For example, as can be 

observed in Figure 5, in some situations the pixels that represent the appearance of the object can 

match the color of the background. In such cases the object might appear as two objects (as can 

be observed in Figure 5 in the object labeled “5”), or as a cluster of “loosely connected” points. 

This type of error can be mitigated by introducing a post-processing step to reduce noise in the 

binary foreground mask image, or also group together nearby disconnected components that 

could correspond to the same object (Parks & Fels, 2008). 

 

Figure 5. A traffic scene (left), and the corresponding foreground mask (right). 
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The typical steps of a background subtraction algorithm are illustrated in Figure 6. As 

indicated in Figure 6, major steps include a preprocessing step (such as smoothing the image to 

reduce noise from the image capture process), utilizing the background model to detect the 

foreground, performing post-processing (such as running a connected component algorithm or 

ignoring pixels indicated in the mask that are not connected to a larger grouping of pixels), and 

finally updating the background model in preparation for processing the next frame of input. 

Segmentation of Image Regions 

Image segmentation refers to the process of grouping the pixels that compose an image 

into multiple salient regions. The pixels that are grouped together in a particular region are 

related; for example they form a part of an object or correspond to a surface, have a similar 

appearance, etc. While image segmentation is an ill-posed problem, it is a widely researched 

topic in computer vision. Researchers have taken a number of approaches to solve this problem 

and there are many algorithms available. The Watershed algorithm (Beucher & Lantuejoul, 

1979) is a popular image segmentation algorithm, which was first introduced in 1979 and now 

has many variants. Other segmentation methods are based on snakes (Kass, Witkin, & 

Terzopoulos, 1988) and active contours (Xu, Yezzi Jr, & Prince, 2000). More recent approaches 

aim for some type of global optimization, for example consistency within a region or 

dissimilarity between regions (Cremers, Rousson, & Deriche, 2007). 

Figure 7 shows an example of image segmentation; the pixels representing the athletes 

are grouped into a number of different regions. In this example the authors follow a graph-based 

approach to image segmentation (Felzenszwalb & Huttenlocher, 2004). Figure 8 provides 

another image segmentation example, again based upon a graph cut technique. In this example 

the user provided seeds (i.e. hints) to the image segmentation algorithm. For additional details 
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pertaining to image segmentation algorithms and their applications, the reader is referred to (Fu 

& Mui, 1981; Pal & Pal, 1993; B. Peng, Zhang, & Zhang, 2013). 

 

 

Figure 6. Typical processing steps implemented in a background subtraction algorithm. 
 

 

Figure 7. Image segmentation example, based upon graph-based representation 
(Felzenszwalb & Huttenlocher, 2004) © 2004 Kluwer Academic Publishers.  
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Figure 8. Another graph cut segmentation image segmentation example (Boykov & Funka-
Lea, 2006) © 2006 Springer Science + Business Media, LLC. 

Tracking Objects within a Single Camera 

The problem of object tracking can be defined as the task of following an object as it 

moves about within the view of a camera. Though it can be defined simply, object tracking in 

general is a difficult problem due to noise in the images and due to the capture device, the loss of 

information as a 3D world is projected into a 2D image, illumination changes in the scene, real-

time processing requirements, selecting objects to track, etc. Sometimes simplifying constraints 

can be imposed onto the problem to make it more tractable; these include assuming smooth 

object motion and velocity, prior knowledge about the shape or size of the objects to be tracked, 

and assumptions pertaining to physical constraints (e.g. assuming an object will not move 

through a wall or fence). The objects to be tracked must first be segmented from the background. 

Once objects are identified, they can change shape and appearance as they move (for example, if 

the lighting in the scene is not uniform; the shape of people changes as their legs and arms move 
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about as they walk). Objects in the foreground can obscure the view if the objects, for example 

the pole of a street light or a car driving by. The tracks of the objects themselves can change 

abruptly, or the camera can move, or the size of the object can appear change as its proximity to 

the lens of the camera changes, to name just a few of the scenarios that may be encountered. To 

help simplify the problem, many of the tracking algorithms make the assumption that the track of 

an observed object takes will not change sharply or that their brightness will remain constant. 

The suitability of which tracking algorithm to use depends on many factors including the 

selection image features, motion, shape and appearance, to name a few. Features used for 

tracking include color, edge (object boundaries), optical flow (e.g. motion) and texture. 

Object tracking is important for a number of applications such as surveillance, human 

computer interaction, medical imaging and intelligent transportation systems (e.g. traffic control) 

to name a few. Many of these algorithms have sufficiently good performance to be usable for 

real-time object tracking, for example (Berclaz, Fleuret, Turetken, & Fua, 2011) reports to have 

O(KN log N) performance, and (Pirsiavash, Ramanan, & Fowlkes, 2011) reports approximately 

O(NK) performance when tuned. For a comprehensive review of object tracking algorithms the 

reader is referred to the work of (Yilmaz, Javed, & Shah, 2006). 

Distributed Object Tracking with Multiple Cameras 

Tracking objects with a distributed camera system is a difficult task. Many distributed 

tracking algorithms assume a scenario with a centralized computer. However, with sensor 

networks that scale to contain hundreds of cameras, the centralized approach is not tractable due 

to the CPU, memory and network capacity requirements required to route video data to a single 

sink and to then concurrently process the video streams. 
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Two sub-problems encountered with distributed tracking relate to configuration 

parameters and topology estimation. The cameras on the network (and corresponding processing 

nodes) should be able to come to a consensus pertaining to how objects should be represented 

and configuration of global network parameters (i.e. calibration), without requiring a centralized 

node to make the decision. Pertaining to topology, there are two problem scenarios; overlapping 

and non-overlapping fields of view, which are illustrated in Figure 9. In the overlapping scenario 

two neighboring cameras will observe the same scene because some portion of their views 

overlap. In this case the cameras’ topology can be represented by a graph, in which two cameras 

are neighbors (they have an undirected edge connecting them) if their observed scenes overlap. 

The cameras can estimate their parameters (e.g. their spatial relationships) by observing the same 

objects at the same time. In the non-overlapping case there are a number of works that attempt to 

estimate the topology of the network. For example, in (Zou, Bhanu, Song, & Roy-Chowdhury, 

2007) the topology of the camera network is estimated by tracking people using face recognition. 

In (Javed, Rasheed, Shafique, & Shah, 2003) the topology of the camera network is estimated 

with a training phase. Objects are tracked based upon their appearances and spatio-temporal 

movement, for example by making the assumption that objects will continue on a fixed trajectory 

and that structural constraints such as walls are fixed or that object movement is confined to 

roads or tracks. Or alternatively, Rekleitis et al. proposed a method to calibrate a camera network 

by utilizing a robot that moves a calibration pattern (Figure 10) through the fields of views of the 

cameras (Rekleitis & Dudek, 2005; Rekleitis, Meger, & Dudek, 2006). For a more 

comprehensive review of distributed computer vision algorithms, which includes a review of 

distributed calibration and tracking algorithms, the reader is referred to (Radke, 2010). 

23 

 



 

Figure 9. Cameras with overlapping (left) and non-overlapping (right) fields of view. 
 

 

Figure 10. Camera network calibration utilizing a robot with a pattern (Rekleitis et al., 
2006). © 2006 Elsevier B.V. 

Supervised and Unsupervised Learning 

Machine learning refers to a class of algorithms that analyze data, adapt and learn from it. 

The data can come from a database or a sensor such as a camera. The data is typically associated 

with labels; or classifications. It is generally done in two phases, where the first phase is a 

training phase that identifies known properties from the training data. In the training phase an 

initial dataset is analyzed to extract relationships (and corresponding probability distributions) 
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imbedded within the data. In the second phase the learned relationship information is utilized to 

classify (i.e. label) new data. Often a complete knowledge of the hidden variables and 

distributions cannot be learned from the training data, and thus assumptions (or simplifications) 

must be made when classifying unknown data. This section provides brief reviews of supervised 

and unsupervised learning algorithms. 

The goal of supervised machine learning is to create a classifier that can associate an 

output classification with some input data. This is done by first examining training data, often in 

the form {(data vector1, output label1), …, (data vectorn, output labeln)} during the training 

phase, and applying a function that maps the input data to the output labels. There are a number 

of algorithms that fall into the category of supervised learning; some popular ones are the naïve 

Bayes classifier (Rish, 2001), the k-nearest neighbor algorithm (Weinberger, Blitzer, & Saul, 

2006) and support vector machines (Cortes & Vapnik, 1995). 

Unsupervised learning differs from supervised in that the training data is unlabeled. The 

task is to uncover the structural relationships among the data. Unsupervised learning algorithms 

are applicable to scenarios where it is difficult or not cost effective to label the input data (for 

example, in the case of speech recognition) or when the features (that classification will be based 

upon) are unknown beforehand. Common unsupervised learning techniques include clustering 

algorithms and dimensionality reduction techniques (Duda, Hart, & Stork, 1995).  
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Clustering 

Clustering often deals with unlabeled data, and as such, it falls under the category of 

unsupervised learning (as opposed to supervised learning, which entails the association of items 

with labels). More succinctly, clustering is the assignment of objects into groupings based upon 

some measure of similarity. It is a collection of techniques that are applicable to the large mass 

of unstructured data such as video, image, and text from webpages, for example, where a 

predefined model that relates the data does not exist (or can change depending upon the context 

from which the data is accessed). Clustering may be used to uncover the underlying structure 

inherent in seemingly unstructured data, for classification (e.g. grouping based upon a similarity 

measure), and for data summarizing (e.g. hierarchical browsing to allow for the efficient search 

of image databases) (J. Y. Chen, Bouman, & Dalton, 2000; A. K. Jain, 2010). 

The basic task of clustering is, given n objects, find k groupings, such that the objects that 

are grouped together are more similar (based upon some measure of similarity) than objects that 

are associated with one of the other groupings. The groupings (or clusters) themselves can be 

described based upon the compactness of the data, its shape, overlap with neighboring clusters, 

etc. When implementing a clustering algorithm for a particular application, the choice of 

algorithm and parameters needs to be guided based upon some decisions such as; how to 

normalize the data, which similarity measure to use, and how to incorporate any domain 

 

Figure 11. Essential clustering steps; information flow. 
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knowledge into the clustering process. Figure 11 depicts some typical steps that must be 

undertaken in a clustering process (A. K. Jain & Dubes, 1988). Given data to cluster (which does 

not necessarily need to be finite in size; as would be encountered when processing stream-

oriented data from sensors), features from the data representation must be identified. The 

features must then be extracted, and measured for similarity by applying a distance function such 

as the Euclidean distance (Anderberg, 1973). Based upon the resulting clusters the process can 

be repeated with updated parameters or data, in order to optimize some aspect of the resulting 

clusters. For example, if a cluster is too large the corresponding data may need to be grouped 

into smaller clusters, or if two clusters are too close together with a large number of overlapping 

data points in the feature space, the clusters may need to be merged. The clustering process can 

end when improvements to the clustering are below a threshold (based upon some criterion 

function) or when some maximum number of iterations are reached. The reader is referred to 

(Kanungo et al., 2002) and its associated references for in-depth discussion and analysis of 

clustering algorithm stopping criteria; for example convergence based upon local vs. global 

optimization, etc.  

A Brief Review of Multiple-Instance Learning 

This section offers a brief review of multiple-instance learning (MIL). Objects observed 

in video streams are modeled using a multifaceted object model and concepts borrowed from 

MIL are at the heart of the object tracking technique that is used to facilitate the recognition of 

objects across video streams in the LVDBMS. 

Traditional supervised learning (e.g. (Settles, 2010)) is traditionally conducted in two 

phases; where first a training phase builds an analytical model based upon training data, and 

second a classification phase leverages the model to provide insight pertaining to previously-
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unseen data; i.e. the classification of new data. In the training phase machine learning algorithms 

are presented with evidence in the format {<object, result>}. As an example, consider the 

Expectation-Maximization (EM) algorithm (Dietterich, Lathrop, & Lozano-Perez, 1997; Maron 

& Lozano-Perez, 1998) and Bayes classifier (Rish, 2001). Objects are typically represented by a 

feature vector, so the mapping provided to the classifier consists of a mapping from a feature 

vector to a class label which is to be associated with objects having some similarity to the feature 

vector. In traditional learning problem scenarios objects are represented by a single feature 

vector; for example an image might have a feature vector composed of 150 components. 

However, complex situations are encountered in practice such that the learning algorithm has 

incomplete knowledge about an object (i.e. the training samples). For example, Diettrich 

provides an example of a locksmith, who is given a set of key rings, where each key ring 

contains multiple keys. It is the job of the locksmith to determine which key opens a particular 

door, in a set of doors. However, the locksmith is not given direct access to open the door with 

the keys (that is, the locksmith cannot implement an algorithm to sequentially attempt to open 

each lock with each key in order to determine the key to lock mapping). Thus the locksmith must 

infer the mapping from the evidence (the set of key rings). Thus, the locksmith does not have full 

knowledge of the training data and the relationship between the evidence and the classification is 

indeterministic. There are many other domains where similar indeterministic relationships exists; 

for example in text-based search and image processing and retrieval. A renowned searching 

example involves a query for the term “nut”, where nut could refer to a shell around an edible 

kernel; a round threaded object that is fastened to the end of a bolt to hold the bolt securely in 

place; a person who is not sane, an Egyptian goddess, or a mechanical device used for climbing 

mountains, among other possible definitions. 
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In MIL training data is provided in the form of bags of instances, where a bag is similar 

to a set but can contain duplicate items (X. Chen, Zhang, Chen, & Chen, 2005; Cheng, Hua, & 

Yu, 2010). A bag is labeled positively if it contains at least one instance of a particular concept 

and negatively if it does not contain any instances of the concept. For example, consider an 

image that is segmented into regions, and each region is then represented by a feature vector. The 

image in its entirety can be represented by a bag of feature vectors, where each feature vector in 

the bag represents (i.e.is representative of) one of the segmented regions (Maron & Ratan, 1998). 

Now, consider the case where a user is querying a dataset of pictures for images of automobiles. 

A bag is labeled “automobile” if it contains at least one instance of an automobile (more 

precisely, it contains a feature vector corresponding to a region that depicts an automobile in the 

image). If the image does not contain any instances of automobiles, it is a negative example of 

the concept “automobile”. 

Correspondingly in MIL, training data consisting of positive and negative examples are 

provided to the learner as bags of instances. A bag is labeled as positive if it contains an instance 

corresponding to a particular concept, and negative otherwise. A learning algorithm “learns” 

concepts (i.e. builds a statistical model thereof) by applying a learning algorithm. The task is to 

then classify an unknown object by applying a distance function. In the example of images, it is 

possible (and likely) that different images will be segmented into a different number of regions 

and thus, their corresponding bags will have differing cardinalities. There are different methods 

to compare bags with different cardinalities, for example, a normalization method (or factor) can 

be applied (Gartner, Flach, Kowalczyk, & Smola, 2002). For an in-depth discussion of MIL 

algorithms and concepts the reader is referred to the work of (Ray & Craven, 2005). 
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Shot Boundary Detection and Representative Image Selection 

Automated shot boundary detection is an essential component of video content analysis; 

it is the temporal segmentation of a video into a continuous scene. Although such a partitioning 

could be done manually, given the vast quantities of video that is collected, analyzed and stored 

today, manual shot boundary identification is not feasible to be done as a manual process. A 

video can be thought of as a series of scenes. Scenes consist of a logical grouping of one or more 

shots, where each shot is a contiguous sequence of frames captured by a camera; Figure 12 

provides a visual representation of the hierarchical relationship between a video, scenes, shots 

and frames. Shot boundary detection is useful for a number of applications that pertain to 

organizing or categorizing shots (and their corresponding videos) for later retrieval and indexing 

and other offline analysis. 

Shots are concatenated together with a transition separating them, where the transition 

can be abrupt or gradual. An abrupt transition (also termed “cut” or “hard cut”) is a very quick 

changeover from one shot to the next. For example, a transition that is done in two consecutive 

frames. A gradual transition blends the shots together with a more gradual spatial or chromatic 

effects such as a wipe, fade or dissolve, to name just a few of the many different types of 

transition effects. 
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Figure 12. Hierarchical structure of a video depicting scenes, shots and frames. 

Detecting cuts is a difficult problem for computers. A human can interpret the situation 

depicted in the video and understand semantically what it is being observed. So when a transition 

occurs (say, a bolt of lightning striking in an outdoor scene) the human can easily make a 

determination if what was observed was a cut. From the perspective of a computer, what is 

observed is temporally correlated data from consecutive frames of video. A simple way 

determining a cut is to compare consecutive frames pixel by pixel (that is, the intensity of the 

pixels) and if the change is beyond some threshold, to mark the frame as a cut. The below 

equation computes the difference in pixel intensity values for a frame F at index i and pixels at 

coordinates x and y within the frame, for some threshold t: 

 𝑫𝑫𝒊𝒊 = �𝟏𝟏 𝒊𝒊𝒊𝒊 |𝑭𝑭𝒊𝒊(𝒙𝒙,𝒚𝒚) − 𝑭𝑭𝒊𝒊+𝟏𝟏(𝒙𝒙,𝒚𝒚)| > 𝒕𝒕 
𝟎𝟎 𝒐𝒐𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒐𝒐                                   

 ( 5 ) 
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This equation counts the number of pixels that have changed between two frames and can 

be used as a metric to determine a cut. Given an image that is of dimension M by N, and thus 

contains M*N pixels, this can be rewritten as follows: 

 
∑ 𝑫𝑫𝒊𝒊(𝒎𝒎,𝒏𝒏)𝑴𝑴,𝑵𝑵
𝒎𝒎,𝒏𝒏=𝟏𝟏

𝑴𝑴∗𝑵𝑵
∗ 𝟏𝟏𝟎𝟎𝟎𝟎 > 𝒕𝒕 ( 6 ) 

 

This equation computes a ratio of pixel changes beyond an intensity and applies a 

threshold. The shortcoming to this method is camera movement; a pixel in one particular 

position, say position (40,50) in one frame, is compared with a pixel in the same position in the 

next frame. The problem is if the camera is moving, that adjustment is not taken into 

consideration. This is the problem taken on by (H. J. Zhang, Kankanhalli, & Smoliar, 1993). 

They pair a histogram comparison technique with motion gradient detection to improve upon the 

simplistic threshold technique. Other techniques utilize histograms, motion vectors, block 

matching algorithms and the discrete cosine transformation (Boreczky & Rowe, 1996). Others 

compute the difference in color histograms, look at the ratios of edges that are detected in the 

frames, the contrast and standard deviations of pixel intensities to detect hard cuts, fades and 

dissolves (Feng, Fang, Liu, & Fang, 2005; Ford, Robson, Temple, & Gerlach, 2000; Lee, Yang, 

& Lee, 2001; Lienhart, 1999; X. Liu & Chen, 2002; D. Zhang, Qi, & Zhang, 2001; Zheng, Yuan, 

Wang, Lin, & Zhang, 2005). A technique developed by (Oh, Hua, & Liang, 2000) computes the 

difference in the background of a scene to determine a scene cut, while handling camera motion. 

The benefit of their technique is that it is less sensitive to predefined threshold values. Other 

techniques claim that changes to illumination and the motion of the camera (or objects observed 

in the scene) are contributors to the poor performance of shot detection transitions. In order to 

mitigate this they utilize clustering and support vector machines and independent component 
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analysis to produce more accurate shot boundary detections (Camara-Chavez, Precioso, Cord, 

Phillip-Foliguet, & De A Araujo, 2007; J. Zhou & Zhang, 2005; Y. H. Zhou, Cao, Zhang, & 

Zhang, 2005, p. -). 

Multimedia Data Representation for Indexing 

Collections of multimedia information can grow to very large sizes, consuming many 

gigabytes of storage space. In order to utilize multimedia content it must be retrieved; whether 

the retrieval is to find a movie based upon its title, or one is looking for images, clips of audio or 

video segments showing a particular subject or class of objects. As an example consider a table 

of records in a traditional relational database. Each record in the table can be considered as a 

point in a multidimensional space (Samet, 1990, 2006). Consider a record for an employee-

department relation with the following fields: {employee_id, department_id, manager_id, 

start_date, end_date}. In this case, records in this table correspond with points in a 5-

dimensional space, where three of the dimensions refer to, say, integers (employee_id, 

department_id and manager_id) and the other two dimensions are of type date-time (i.e. 

start_date, end_date). The DBMS manages this collection of these records and stores them in a 

file on some persistent media. In order to facilitate efficient retrieval of records in this database, 

indexes can be created. The index itself is simply another table (or, correspondingly, a file 

created and maintained by the DBMS). For example, an index over the field employee_id could 

contain only employee_id’s and the location of associated records in the corresponding 

employee-department file. By utilizing the index file in order to resolve queries, less data would 

need to be loaded and processed, since the index file contains primarily employee_id data (and 

not other data fields such as manager_id). To further enable efficient retrieval, an ordering can 

be imposed upon the records, either in the primary data file or in the index. However, to 
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accommodate future record operations to the primary data table (e.g. delete, insert, update) it is 

often more efficient to impose the ordering only on the data in the index files. For numeric fields, 

the ordering can be based upon numeric value. For character fields, the order can be based upon 

corresponding ASCII or UNICODE numeric values, or based upon lexicographic order. For 

other types of data, such as color, the ordering could be based upon the corresponding 

hexadecimal value (e.g. red is “ff0000”) or the color’s wavelength. 

Samet (Samet, 2006) identifies five key questions that should be considered when 

deciding how to represent a dataset: (1) What is the type of the data; continuous, discrete? (2) 

The operations that will be performed; e.g. a log file might only have data appended to its end. 

(3) How should the ordering of the data be applied; should the data in the primary file be 

ordered, or only the index files? Which attributes should be included in the ordering? (4) Will 

more data be added or removed? Will additional attributes be added in the future? And, (5) is the 

quantity data sufficiently small such that all of it will fit into the primary memory of the 

computer hosting the database, or will disk-resident data access algorithms need to be utilized. 

There are many different ways data can be represented, and considering questions such as these 

can guide the process of designing an implementation. 

When considering multimedia for browsing and searching, an index is also required. 

Some fundamental question are pertaining to multimedia data are what, which and how. At what 

granularity should the item be indexed; as a whole or by frame or a clip of frames? Which refers 

to which items should be indexed; should all pixels shown in each frame of video be represented 

somewhere in an index, or should only moving objects be stored? Should the time index an 

object appears or disappears be recorded? How to index an item pertains to selecting and 

extracting features to be indexed. Data indexing, and more specifically multimedia data indexing 
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is a multifaceted and difficult problem, and as such, there is a significant quantity of research and 

correspondingly, solutions and indexing algorithms and data structures. Some works that 

addresses the issues of multimedia indexing holistically are (Bolle, Yeo, & Yeung, 1998; 

Brunelli, Mich, & Modena, 1999; Snoek & Worring, 2005; Y. Wang, Liu, & Huang, 2000). 

To illustrate this, consider the information that can be extracted from a video: the visual 

component (the visual content represented by pixels in the frames), the auditory information (i.e. 

audio tracks) and text (text that can be extracted; and metadata pertaining to the video itself such 

as genre, actors, etc). A multitude of semantic properties of the video can be extracted from the 

metadata pertaining to its content: the type of video (e.g. education, training, entertainment), the 

time period the video covers; major actors who appear, and so forth (Boggs, 1996; R. Jain & 

Hampapur, 1994). To index content that is depicted visually in the video, pattern recognition 

approaches can be employed; for example, template matching (e.g. Bayes classifier, decision 

trees, Hidden Markov Models, face and people detection (Belhumeur, Hespanha, & Kriegman, 

1996), etc). The reader is referred to (A. K. Jain, Duin, & Mao, 2000) for a comprehensive 

review of pattern recognition techniques. To index videos, they can be decomposed into a series 

of semantic shots, and each shot can be individually indexed (Ide, Yamamoto, & Tanaka, 1999; 

Nagasaka & Tanaka, 1992). Pertaining to audio data, a number of different techniques can be 

employed, for example sounds can be analyzed to detect musical instruments or talking (Foote, 

1997; Wold, Blum, Keislar, & Wheaten, 1996). 

Multimedia Indexing Storage and Retrieval 

To index multimedia content, first it is decomposed and segmented and features which 

correspond to points in a multidimensional space are extracted. The next step is to efficiently 

store and retrieve those points and correspondingly, the associated multimedia content. Some of 
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the questions raised in the previous section are also relevant to how data will be represented for 

storage and retrieval. A key question pertains to by what facet of the data the index space should 

be organized. Consider a 32-bit integer as an example; it has a large (but finite) range of values, 

ranging from 0 to 232-1 possible values. However, the number of items in the collection (say they 

are organized about a single integral dimension) may be significantly less than the number of 

unique values a 32-bit integer can represent. To translate this example into one that is 

representative of storage structures, the comparison is similar to the distinction between tree-

based and trie-based (De La Briandais, 1959) search methods (a trie is an ordered data structure 

with branching where the nodes represent prefixes and decedents of each node have the parent 

node as a common prefix. The data that corresponds to one of these structures can be stored on 

persistent media (e.g. a hard drive, etc). Storage of data on a disk implies that it is organized; 

logically the data is organized into buckets and physically the buckets are oriented in pages. 

Pages (and correspondingly, the buckets containing data points) are stored in files. The 

simplest way to store a set of points in a file is as an unordered sequential list. The downside is 

that in order to do an equality search on the file for a particular attribute value, the entire file 

must be processed. Thus, if there are N records stored in the file and each file has d attributes, the 

processing will be of order O(Nd). With this simple organization as a starting point, there are 

numerous structures (and corresponding algorithms) that facilitate indexed storage and retrieval, 

one example is the Grid File (Nievergelt, Hinterberger, & Sevcik, 1984). 

Another straight-forward technique to organize data in a file is to utilize a hash function. 

The concept behind a hash function is to utilize a mathematical function to distribute items (i.e. 

key/value pairs) into buckets which are stored on persistent media in a file (or files, depending 

upon the implementation). Given a key, the hash function can suggest which bucket to store the 
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value into. In the case that the bucket is at capacity, there are various algorithms that determine 

how to manage the overflow (collision resolution, load factor, etc.) (Aho, Hopcroft, & Ullman, 

1983; Cormen, Leiserson, Rivest, & Stein, 2001; Pieprzyk & Sadeghiyan, 2001). 

When choosing an index structure it is important to consider the type of data that will be 

stored; for example, strings or numbers, point data, lines (or line equations), rectangles, regions, 

surfaces, volumes, etc., and the types of queries that will be performed; point queries, range 

queries, window queries, etc. For point data one can utilize index structures like the Binary 

Search Trees (Bentley, 1975), B-Tree (Scheuermann & Ouksel, 1982) or B+-Tree, etc). When 

indexing data in multiple dimensions, one can use a 2-dimensional version of the binary search 

tree called a Point Quadtree (Finkel & Bentley, 1974). To detect the line segments (i.e. intervals) 

that contain a point one can use a unit-segment tree (Bentley, 1977; Finkel & Bentley, 1974). To 

detect line segments that overlap one can use an interval tree (Chazelle & Edelsbrunner, 1992). 

 The R-Tree (Guttman, 1984; Manolopoulos, Nanopoulos, Papadopoulos, & Theodoridis, 

2005) is a multidimensional tree structure for indexing spatial objects such as coordinates (i.e. 

points) and polygons. Some index structures such as B-trees, are not well suited for indexing 

spatial data due to issues related to ordering multidimensional data. Objects that are close 

together are grouped within a minimum bounding rectangle at the next higher level in the tree. 

Thus the granularity of the objects represented increases as one gets lower in the tree. When 

querying an R-Tree one needs to check if the query region intersects any rectangles at the current 

level, and if so, then the corresponding rectangles at the next lower level are recursively queried. 

By resolving queries in this manor, only a minority of the rectangles need to be queried due to 

how the space is partitioned. Figure 13 illustrates a 2-dimensional R-Tree composed of three 
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levels. The root level encompasses the entire terrain; and the first level consists of three 

rectangles namely, “A”, “B” and “C”. 

The tree structures discussed thus far are referred to as space-partitioning structures; they 

are hierarchical data structures that decompose the space into disjoint partitions. (A notable 

variant of the R-Tree is the R*-Tree (Beckmann, Kriegel, Schneider, & Seeger, 1990), which is 

an optimized variant of the R-Tree and performs well under both point and spatial queries with 

only slightly higher overhead.) A downside is that if they become unbalanced then their 

implementation suffers in terms of I/O. The SP-GiST index is a space-partitioning index that is 

designed to be I/O efficient, even in the case where the tree structure is unbalanced (W. G. Aref 

& Ilyas, 2001). 

 

Figure 13. Example of an R-Tree spatial index. 
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The aforementioned structures are amenable to storing lower-dimensional data structures, 

applicable to problem domains such as geographical information systems (GIS), intelligent 

transportation systems (ITS), computational geometry, computer vision, video game 

programming, etc. However, many applications work with high-dimensional feature vectors (e.g. 

multimedia databases where the objects are represented by feature vectors). A common class of 

queries posed over this high-dimensional space is similarity queries; given an example of one 

object, find similar objects (or, objects exhibiting the same property). Similarity queries can be 

formulated as point queries (e.g. finding other objects with the same feature, such as a particular 

color or size), range queries, nearest-neighbor queries, and spatial join queries, to name a few 

examples. It should be noted that when dealing with data that is represented in higher-

dimensional spaces, one encounters the curse of dimensionality (R. Bellman & Kalaba, 1959), 

which in essence states that as the dimensionality of the data grows, more of it must be examined 

when resolving point queries. In (K. Beyer, Goldstein, Ramakrishnan, & Shaft, 1999) the 

nearest-neighbor problem is analyzed in the context of the dimensionality of the data. Their 

findings are that as the dimensionality of a space approaches infinity that the distance from a 

point to its nearest neighbor, and the distance from that point to its farthest neighbor, converge to 

some distances that are within an epsilon of each other. 

When working with high-dimensional data, one method of data management is to reduce 

the dimensionality and utilize one of the hierarchical data structures discussed previously, such 

as an R-Tree (Guttman, 1984) or R*-Tree. Alternatively, there exist indices that are not based 

upon the dimensions (i.e. features) of the objects, but on the distances between them (the 

interobject distances), e.g. SparseMap (Hristescu & Farach-Colton, 1999), FastMap and 

MetricMap (J. T. L. Wang et al., 1999). Some types of data cannot be represented by bounding 
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boxes, for example, the representation of a plane or surface. In this case, these types of objects 

can be decomposed into a smaller volume, for example, a cube, and the corresponding cubes 

indexed (or for query purposes, a cube can be queried and then determined which object(s) it 

corresponds to). The R+-Tree index structure can accommodate these types of items, but the 

downside is that one object can be represented by multiple blocks and can thus potentially lead to 

duplicated results being reported. To accommodate this, algorithms have been developed that 

take into account duplicate objects in the search space, for example (W. G. Aref & Samet, 1994; 

W. Aref & Samet, 1992; Samet, 1995). 

When performing searches over highly-dimensional spaces, once the objects are 

represented in an index structure, the next step is to select a search algorithm that will efficiently 

resolve queries. Most of the structures discussed thus far are hierarchical in nature and the data 

they contain is grouped together (say, in minimum bounding rectangles) based upon some type 

of clustering. A few representative algorithms that utilize such data structures to resolve nearest 

neighbor queries are (Baeza-Yates, Cunto, Manber, & Wu, 1994; Bern, 1993; Bozkaya & 

Ozsoyoglu, 1999; Eastman & Zemankova, 1982; Graham, 1972; Kamgar-Parsi & Kanal, 1985; 

Yianilos, 1993). Since these algorithms generally entail some type of tree traversal (e.g., 

bounded depth-first search), they can be improved upon if conditions or rules pertaining to 

branch pruning can be employed (Fukunaga & Narendra, 1975; Skopal, 2004, p. -; Uhlmann, 

1991; Weber, Schek, & Blott, 1998).  

Finally, another method is to reduce the number of features that must be managed in the 

index (Hinneburgy, Aggarwalz, & Keimy, 2000). This can be done by analyzing the data and 

utilizing techniques such as Singular Value Decomposition and Principal Component Analysis 

(to name a few). In addition to the aforestated algorithms and structures, there are many more. 
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For example, (Gionis, Indyk, & Motwani, 1999; Indyk & Motwani, 1998) presents a similarity-

search technique for high-dimensional data that utilizes a hashing technique, and other 

approaches entail mapping the data points into a different representation space, called an 

embedded space (Linial, London, & Rabinovich, 1995) (one of the reasons to implement such a 

mapping is that the embedding can improve the precision and recall of searches).  

The Semantic Gap 

In the realm of video indexing and retrieval the semantic gap refers to the difference in 

representations when an activity (or object or observation) is represented as data in a computer 

system. More specifically, it is the lack of a strong correspondence between the low-level 

representation and the high-level interpretation that would be perceived by a person (Snoek & 

Smeulders, 2010). The semantic gap, and more specifically the detection (discovery, uncovering, 

etc.) of semantic information in multimedia is and has been a highly researched area of computer 

science (Lew, Sebe, Djeraba, & Jain, 2006; Smeulders, Worring, Santini, Gupta, & Jain, 2000). 

Even with all the research and significant progress that has been made, there is still significant 

work that is yet to be done. That is, the current state of the art is not where we would like for it to 

be in terms of the quality of concept detection that has been achieved (Yang & Hauptmann, 

2008). Yang and Hauptmann elaborate that mainstream approaches suffer from learning 

problems pertaining to classifiers that do not perform well outside of the data on which they were 

trained (that is, they generalize poorly to domains other than the ones on which they were 

trained). One of the challenges is simply the scope of the problem; the number of concepts that 

exist are unlimited (Snoek, Worring, Van Gemert, Geusebroek, & Smeulders, 2006). 

To state the problem in an alternate fashion, the semantic gap is the disparity between the 

information that can be extracted from the representation of an item, and the interpretation of 
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said data, and for humans, the interpretation can be context dependent. For example; the 

determination of similarity can depend upon domain knowledge, or it could be defined as the 

difference between the color of pixels in two images (Hatano, 1996). Another factor pertains to 

how people perceive and interpret similarity (Rosin, 1997; Siddiqi & Kimia, 1995; Treisman, 

Cavanagh, Fischer, Ramachandran, & von der Heydt, 1990). As Treisman points out, humans are 

particularly adept at recognizing objects, for example, to recognize the form of a white snowman 

in the presence of a background of snow. Another issue pertains to the representation (or lack 

thereof) of spatial relationships in images (for example one visual artifact is parallel lines 

meeting at the horizon) (S. K. Chang & Hsu, 1992; Lau & King, 1997; Schneiderman & Kanade, 

1998; Smith, Self, & Cheeseman, 1990; Tagare, Vos, Jaffe, & Duncan, 1995). In general, human 

perception can be affected by their knowledge; that is, in terms of their cultural, geometric, 

categorical, perceptual, physical and literal understanding of an object and its context, and 

current computer algorithms encounter limitations when dealing with broad concept categories 

and the modeling of image semantics (Mojsilovic & Rogowitz, 2001; X. S. Zhou & Huang, 

2000). From a computer science (that is, from a computational and algorithmic) perspective, one 

avenue to bridge this gap is being addressed in the field of content-based image retrieval (CBIR). 

Content-based Image Retrieval 

In literature there are many ways in which CBIR described. In particular, it is the 

application of computer vision techniques to extract information from an image in an automated 

fashion for the purposes of retrieval. Also referred to as query by image content (QBIC) (Flickner 

et al., 1995), it pertains to the retrieval of images based upon what they visually depict; not by 

metadata or human-ascribed annotations, whose assignment can vary from person to person, 

culture to culture, reflect personal biases, etc. In CBIR systems, image data is represented by 

42 

 



features corresponding to its visual appearance; color, texture, shape, edges, etc. Early work in 

CBIR was done with pictorial databases (Blaser, 1979, 1979; N. Chang & Fu, 1980; N. S. Chang 

& Fu, 1980). 

Present day CBIR systems facilitate retrieval by accommodating a variety of query 

methods, to include query by example, sketching an image by hand, random browsing, text 

search (i.e., keyword, speech/voice recognition) and hierarchical navigation by category (S. F. 

Chang, Eleftheriadis, & McClintock, 1998). Objects in CBIR systems are represented by features 

associated with their content. As such, feature extraction is an important step inherent to CBIR 

systems. Features (color, shape, texture, edges, regions, etc.) are extracted and stored in a 

multidimensional index (feature vectors can range from very few to hundreds of dimensions). 

Figure 14 provides an example of a system architecture for generic CBIR systems. A user 

submits an image as a query through a user interface. The query image is parsed and its 

representative features are extracted. The features from the query image are mapped to a 

multidimensional query point in the index, and similar images are returned back to the user as 

the query result. 

There are presently many research and commercial CBIR systems; a few representative 

examples include QBIC (Flickner et al., 1995), Virage (Bach et al., 1996), Photobook (Pentland, 

Picard, & Sclaroff, 1996) and MARS (Huang, Mehrotra, & Ramchandran, 1997; Mehrotra, Rui, 

Ortega-Binderberger, & Huang, 1997; Rui, Huang, & Chang, 1999; Rui, Huang, & Mehrotra, 

1997) to name a few. Additionally there are many good surveys on CBIR techniques and systems 

(Y. Liu, Zhang, Lu, & Ma, 2007; Rui et al., 1999; Zhao & Grosky, 2002). 
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Although originally applied to images, content based video retrieval (CBVR) is another 

active area of research due to the commoditization of compute and storage capacity (Durkee, 

2010). CBVR is semantically similar to CBIR except its domain is that of video, rather than 

images. Videos are segmented into shots, which may be represented by key frames (Sato, 

Kanade, Hughes, Smith, & Satoh, 1999), features are extracted and indexed. At that point 

retrieval is similar to the workflow presented in Figure 14 for CBIR (Geetha & Narayanan, 

2008). Of course, video adds the potential to fuse additional data modalities not available in 

traditional CBIR into the indexing and retrieval process, such as correlation with audio tracks 

(Foote, 1999; Z. Liu & Huang, 2000; Makhoul et al., 2000). 

 

Figure 14. Representative architecture of a typical CBIR system. 
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Research Video Database Management Systems 

A variety of video database management systems have been introduced over the years, 

spanning from research prototypes such as BilVideo (Catarci, Donderler, Saykol, Ulusoy, & 

Gudukbay, 2003), VideoText (Jiang, Montesi, & Elmagarmid, 1997) and the Advanced Video 

Information System (AVIS) (Adali, Candan, Chen, Erol, & Subrahmanian, 1996), to name a few 

(Flickner et al., 1995; Guting et al., 2000). For example, the AVIS system segments video frames 

into a tree structure in order to represent the relationships between objects. However this system 

does not provide support for queries that resolve spatial relationships. In addition, many of these 

systems utilize offline processing to analyze video data to perform pertinent steps like feature 

extraction. Very few works, for example (Velipasalar, Brown, & Hampapur, 2010), address the 

real-time processing aspects of multimedia databases and surveillance applications. For a 

database system to be applicable to the domain of LVC it must support real-time online visual 

analysis of streaming video data, meaning that feature extraction and any other analysis must be 

done online and within a reasonably bounded time period. Relevant algorithms and data 

structures must also be amenable to the nature of working with continuous data streams; meaning 

that it is not acceptable for a software platform to perform processing for some period of time 

and then stop when the memory capacity of the host system has been exceeded. Thus, LVC 

databases have performance (i.e. efficiency) characteristics that must be adhered to in order to 

facilitate the pre-processing steps necessary for real-time continuous query evaluation. The video 

database system presented by Velipasalar provides real-time query functionality of high-level 

events spanning single and multiple cameras, but is lacking in terms of a high-level declarative 

query language; events are defined in a procedural fashion. Similarly, the KNIGHT system 

(Javed & Shah, 2008) utilizes a maximum likelihood (ML) (Akaike, 1973) framework to track 

45 

 



objects across cameras, but it also does not support a high-level declarative language for 

expressing events of interest. 

Introduction to Live Video Computing and Big Data 

This section introduces basic tenants of LVC and shows that the “big data” label is 

applicable, due to the nature of streaming video and the real-time processing requirements. 

Basic Premises of Live Video Computing 

LVC is the theoretical framework upon which the LVDBMS prototype system is based. 

Traditional video stream processing applications (e.g. depicted in Figure 15) are designed 

specifically to solve a particular problem, and may be designed to work with a specific set of 

cameras or camera hardware. The result of this style of application development are applications 

that are not capable of operating with each other in a reciprocal fashion to share information and 

provide additional value and value-add opportunities. For example, in a hospital environment a 

patient monitoring system would not be able to interact with the hospital video surveillance 

system, and likewise, the hospital surveillance system may not be able to utilize cameras that are 

utilized by the patient monitoring system. The result is that additional hardware would have to be 

purchased in order for the surveillance system to have some capabilities in patient areas where 

the monitoring application is deployed. If data from applications developed in this style needs to 

be combined for auditing, reporting or other purposes, additional software (middleware) must be 

purchased and interfaced with these applications. 

However the downside is that this middleware must be installed and configured on a 

case-by-case bases, and “adapters” for each application must be configured or developed to 

provide application-specific interfaces to the middleware. The middleware must then perform an 
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extract, transform and load (ETL) process to transform data received from the application-

specific adapters into a common data format that is amenable to further processing. The result is 

additional middleware software that must be purchased and maintained and also staff resources 

to install, configure, maintain and upgrade, as appropriate Figure 16. 

Note that libraries such as OpenCV (Bradski, 2000) and Intel Performance Primitives 

(IPP) (Taylor, 2007) are commonly used by programmers when  developing these types of 

applications, to provide basic data-handing functionality. The OpenCV library provides a 

comprehensive assortment of image processing and data management routines and data 

structures, the IPP library provides functions and associated data structures that are specifically 

tuned to take advantage of features provided by modern multicore processors such as parallel 

data processing instructions. However these common libraries provide low-level functionality 

that programmers use as conveniences; and do not generally provide out-of-the-box high-level 

application functionality. (For example, OpenCV routines could be used to read in frames from a 

camera, and other routines would need to be called in the proper order with the proper 

parameters and settings in order to interpret imagery depicted in the frames.)  
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Figure 15. Siloed approach to camera/stream processing application development. 
 

 

Figure 16. Applications built as information silos utilizing middleware and application-
specific data adapters. 
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Figure 17. LVC approach showing common image processor and query interface. 

The LVC approach leverages a common video processing software infrastructure to 

provide a common programmable interface to clients and a shareable pool of camera resources; 

illustrated in Figure 17. The goal is to create an ecosystem for collaboration and information 

sharing to allow users to draw new insights that are not possible with siloed information 

frameworks. This approach facilitates rapid application development by allowing application 

architects and software developers to focus their time and resources on the business problem, 

rather than having to devote time and resources to develop core stream processing functionality 

for each application. This approach is similar to how business application software leverages a 

common database platform; the application designers and programmers focus their efforts on the 

business problem and rely on the programmatic interface and SQL to persist business data and 

retrieve data for reporting purposes. 
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Figure 18. LVC stream data model contrasted with relational record and disk data model. 

Traditional DBMSs orient data in tables, such that each table contains records (or tuples 

in the relational vernacular). Each record in a table has a common attribute structure, illustrated 

in the right side of Figure 18. LVC is stream-oriented; operating over video streams. That is, the 

video streams are queried their content conceptually similar to how files residing disk drives are 

also queried for the content they hold. A comparison of concepts between traditional database 

computing and LVC is presented in Table 2, extending what is presented in Figure 18 with 

additional comparisons of similar concepts that exist between these two platforms. Live Video 

Query Language (LVQL) is the query language of the LVC prototype implementation. It can 

specify events in terms of spatio-temporal observations and correlations of objects in video 

streams.  
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Table 2: Comparison of LVC and traditional DBMS concepts 
 LVC DBMS 
Storage Camera Hard Drive 
Relation Video stream Record 
Data unit Video frame Tuple 
Data granularity Object Attribute 
Query language LVQL SQL 

 

Live Video Computing is Big Data 

The term big data is used to describe large quantities of data that exhibits complex 

relationships (White, 2012). For example, sensors on an airplane measure numerous different 

physical properties, and the promptness with which actionable results can be derived from them 

is imperative. Other examples include measurements pertaining to particle collisions in physics 

(Dimopoulos & Landsberg, 2001). Due to the massive storage and computation requirements 

inherent to working with large and complex data sets, traditional software solutions such as 

relational databases and desktop computer statistical packages such as SPSS (Norusis, 1990) are 

not well suited to be applied to big data problems. 

 

Figure 19. LVC exhibits the three popular attributes of big data; variety, velocity and 
volume. 
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In a Gartner report (M. Beyer, 2011), Beyer identifies three distinguishing properties for 

describing big data; they are namely volume, velocity and variety. LVC also exhibits these same 

attributes (Figure 19). LVC is concerned with providing real-time responses to clients (velocity) 

based upon the present situation that is observed. Video streams are treated as an unending 

sequence of frames of imagery (volume) and the cameras can be placed to monitor a wide variety 

of situations ranging from war scenarios to Mars exploration to airport surveillance (variety; i.e. 

the imagery data is diverse and not structured). 

A number of data processing algorithms have been applied to extract information and 

understanding from big data, including spatial analysis, sentiment analysis, neural networks, 

cluster analysis, supervised and unsupervised learning, etc. LVC utilizes a distributed computing 

approach that includes database and real-time stream processing concepts. Whereas traditional 

data mining frameworks and algorithms operated on large static data sets, LVC leverages real-

time data streams to allow end users (i.e. not programmers in an Information Technology 

department) to leverage real-time data for decision making and notifications. 

Summary 

In order to achieve a solution that can leverage video streams to gain information and 

insight in an automated fashion, a number of components from a number of different fields of 

computer science, mathematics and statistics must be combined and made to operate in harmony. 

This chapter provides a brief review of a number of areas that are fundamental to engaging in 

computing over live video streams and processing the temporally oriented sequences of images 

they contain. 
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Early multimedia database systems leveraged manually entered metadata annotations in 

order to serve mixed media files to users and client applications, for purposes such as education, 

finding representative content for television news stories, managing personal music collections, 

etc. As computer processing and storage capacity advanced, more information and knowledge 

could be mined from the bits and bytes that represent the raw multimedia data. This lead to 

algorithms to segment images into logically similar sub-regions, algorithms to represent portions 

of media as feature vectors for indexing and similarity computations, methods to find the salient 

objects depicted in video streams, and to track the identified objects as they move about the 

scene. This chapter also includes a review of more “high-level” techniques, such as data 

clustering, shot boundary detection, indices for efficient comparison of high-dimensional 

features, and the semantic gap. 

Finally, the concept of LVC and sharable data and infrastructure is introduced, and the 

application of the term “big data”; the concept of leveraging massive quantities of both stored 

and real-time information to provide for real-time decision-making based upon said data.  
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CHAPTER 3: INTRODUCTION TO THE LVDBMS 

LVC refers to theoretical aspects of the live video computing framework. The LVDBMS 

is an implementation of the LVC framework with objectives that include algorithm and data 

structure development. It is intended to be scalable and adaptable to manage a plethora of video 

streams while providing real-time query responses. As surveillance scenarios can be 

uninteresting and monotonous to watch, maintaining a high level of vigilance for long periods of 

time, waiting for an event that occurs infrequently is fatiguing. Operators can biased, become 

distracted, may be required by law to take periodic rest breaks, etc. Additionally, due to the 

lowering costs of camera hardware, the pervasiveness of network infrastructure (both wired and 

wireless) and the growing needs for maintaining security (for safety purposes, theft prevention, 

etc.) the number of video streams that must be monitored is increasing. The human factor 

limitations and the vast quantity, variety and velocity of videos that need to be monitored 

contribute to the fact that many camera networks are relegated to be used primarily for data 

archiving and post-crime investigations. As a result, in some instances of camera network 

deployments, police are no more likely to catch criminals in places where numerous cameras are 

deployed, compared to areas where only a few cameras are deployed. 

This work presents efforts pertaining to contributions to LVC and more specifically 

development efforts pertaining to the LVDBMS. Note that a portion of this content, including the 

results presented here, have previously been published by the author in conference proceedings 

and in journals, for example, (Aved, Hua, & Gurappa, 2011; Aved & Hua, 2012; R. Peng, Aved, 

& Hua, 2010). Select highlights of the LVDBMS include: 

• A data model characterizing different classes of objects. 
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• The LVQL query language which can specify events of interest. LVQL queries are posed 

to the LVDBMS as continuous queries and may be associated with an action (such as 

“notify the operator”) when an event is detected. 

• A privacy specification language (PSL) for specifying privacy policies. Privacy policies 

apply to objects observed in video streams and specify when their appearance should be 

redacted from output streams. 

• A 4-tier architecture of loosely connected layers that implement web services 

communication interfaces amenable to rapid application development and porting to 

other environments such as a public or private cloud. 

• A framework to match objects observed in multiple video streams. The essence of this 

framework models objects as bipartite graphs. Objects are recognized by applying a 

distance function and threshold to the graph. 

• Runtime query optimization to reduce and potentially eliminate duplicate computation of 

intermediate query results. 

• An LVDBMS prototype implementing said functionality presented with corresponding 

performance results; both qualitative (tracking precision and recall) and quantitative 

(index maintenance overhead, etc). 

The remainder of this chapter provides details of select functionality and the LVDBMS 

environment. Later sections expand upon specific functional areas such as query optimization 

and privacy filter specification and implementation.  
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LVDBMS Architecture 

The components of the LVDBMS are logically grouped into four tiers, as illustrated in 

Figure 20. Each tier defines one or more web service interfaces to facilitate communication 

between the tiers. The four tiers include: 

• The camera layer, which encompasses cameras and their corresponding adapters. Camera 

adapters are conceptually similar to device drivers in computer systems, allowing for 

disparate camera device hardware to connect with a standard LVDBMS interface. 

• The spatial processing layer, which processes the metadata and video streams from the 

camera adapters, passing results to the stream processing layer. A host in this layer 

communicates with multiple camera adapters, but a camera adapter communicates with 

only a single spatial processing layer host. 

• The stream processing layer receives subquery evaluation streams from spatial 

processing layer hosts and computes final query results for delivery to clients. As this 

interfaces with end users and applications (i.e. the client layer), it contains logic for 

managing authentication, connections and session state with LVDBMS clients. 

• The client layer encompasses LVDBMS end users and client applications. Clients 

authenticate and interact with the LVDBMS by browsing the catalog of cameras, 

submitting queries and receiving query results. Representative images of the LVDBMS 

graphical user interface (GUI) are depicted in Figure 22. Queries are specified in the area 

“Query Description” and buttons “Query 1”, “Query 2”, etc. recall pre-written queries. 

The “Send Query” button submits a query for evaluation. 
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Figure 20. Logical 4-tier architecture of the LVDBMS prototype and major components of 
the framework encapsulated in each tier. 

 

Figure 21. LVDBMS prototype, illustrating query, subqueries and results. 
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Figure 22. Example images of the LVDBMS; the appearances of some objects have been 
redacted. 
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The LVDBMS illustration depicted in Figure 20 is refined in Figure 21, which illustrates 

how a query flows down through the LVDBMS architecture, and then how data and query results 

flow back up through the layers and back to the client. An initial query is posed by an end user or 

client application to the LVDBMS. This initial query is submitted to the stream processing layer 

host to which the client is connected. The stream processing layer host maintains metadata 

pertaining to available spatial processing layer hosts (also referred to as camera servers, as they 

interface with cameras via their adapters and perform processing) and their associated cameras. 

With this information the stream processing layer host translates a query into one or more 

subqueries. Each subquery corresponds to a particular camera server host, where it will be sent 

for evaluation. Camera adapters process imagery from camera sensors and translate it into a 

stream of images and corresponding metadata, which is sent to its respective camera server. 

Metadata associated with each video frame from the camera adapter includes information 

pertaining to the frame itself (i.e. timestamp, sequence number, etc.) and to objects observed 

within the frame and segmented out by the camera adapter (i.e. object identifier, a bounding box 

identifying the location of the object within the frame, etc). Subqueries evaluate LVQL 

expressions over video streams (specifically, over the intersection of video streams specified by 

the query and video streams managed by a particular camera server to which the subquery was 

sent) and stream subquery evaluation results back to the respective stream processing layer host. 

The stream processing layer host receives one or more intermediate results for each evaluation 

time step and computes a final query result (for the particular point in time), which is then 

delivered back to the end user or client application. 
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LVDBMS Data Model 

LVC, and correspondingly the LVDBMS, is concerned with computation over video 

streams. As such, the event and data models revolve around objects that are observable by 

imaging sensors and depicted in temporally oriented frames in the video streams that emanate 

from these sensors. Therefore, it follows that an event (i.e. a simple event) is defined to be 

occurrence of an action that may be observed by one (or more) cameras and represented in frame 

data in corresponding data streams. We note that in this work, the terms video stream and camera 

stream are used interchangeably, as are enabling hardware device terms such as camera and 

imaging sensor. 

From the perspective of an LVDBMS client, events may be specified in LVQL by using a 

combination of spatial and temporal components, or operators. Thus, a user can leverage LVQL 

to specify a complex event in terms of simple events that are related temporally. For example, a 

simple event could be a person (or more generally some object) appearing in a scene or moving 

in front of a desk (where the term scene refers to some portion of the real world that is observed 

by a camera and rendered into a sequence of frames in a video stream). A complex event relates 

simple events with temporal operators. For example, a complex event could be defined as a 

person first appearing in a scene and then, within some threshold of time, moving in front of a 

desk. (Since the LVQL presented in this work is 2-dimensional, there is no distinction between 

touching and in-front-of, as that type of scene information is not captured by the cameras.) 

A spatiotemporal query is formulated in LVQL. This query specification defines which 

video streams will be monitored for the occurrence of an event. That is, if the query specifies that 

a particular video stream will be monitored for the appearance of an object, if an object 

subsequently appears in a different video stream, there will be no impact upon the query result. 
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An object is a fundamental component of an event specification. As indicated in Table 3, there 

are two basic types of objects that are recognized: dynamic objects are detected automatically by 

the image processing software, and static objects are indicated by users of the system. The third 

classes of objects are cross-camera dynamic objects. These are dynamic objects that were first 

recognized in one video stream and subsequently recognized in a second stream. The inclusion 

of this object class simplifies the expression of queries that define events correlating objects that 

appear in multiple video streams. Note that in each respective stream these objects also qualify as 

dynamic objects. 

Table 3: Comparison classes of LVC objects 
Object class Description 

Static 
Objects of this class are defined by the user and do not move 
within the scene. For example, a static object may be defined 
(drawn) over a window or door for subsequent use in a query. 

Dynamic 

Salient objects that are detected automatically within a video 
stream. A model of the scene background is maintained and as an 
object passes through the scene, its appearance is distinguished 
from the background. If its size is beyond a threshold it is 
segmented, assigned a unique identifier and tracked. 

Cross-camera 
dynamic 

Static objects detected in one video stream and subsequently 
matched to an object in a second video stream are classified as 
cross-camera dynamic objects. 

 

Another view of the data flow in the LVDBMS is presented in Figure 23. Starting from 

the left, two cameras observe the same scene from different vantage points. Two frames are 

depicted at a particular point in time, from the two cameras. Within the scene two objects are 

observed, assigned identifiers (unique to the video stream) and tracked within their respective 

video streams. Within each stream these objects are dynamic objects. However, a query may be 

defined specifying an event that involves both cameras; for example, the event may be that an 

object appears in both the first camera stream and then the second stream. In that case, these two 

objects are also considered to be cross-camera dynamic objects. 
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Continuing with the example in Figure 23, the scene is segmented and objects are tracked 

by each camera’s respective camera adapter (not shown) and sent to the camera server, which 

resides in the spatial processing layer. The camera server uses the metadata received from the 

camera adapter to process the spatial operators and send the stream of results to the stream 

processing server residing in the stream processing layer. (Note that the pound sign in the 

operand to the Appear() operator corresponds to an object of type cross-camera dynamic; if it 

simply had a dynamic operator (denoted by an asterisk) the query would not correlate objects 

across camera stream.) The final query result is streamed to the user from the stream processing 

layer host. When a user requests to monitor the imagery from a video stream, the images come 

from the camera server. This allows the user to observe the same images in sequence with query 

evaluation results and eliminates a potential capacity bottleneck if multiple users view images 

 

Figure 23. Depiction of the data flow in the LVDBMS, from frames to query result. 
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from the same camera simultaneously. Also, by serving the pictures from an LVDBMS host 

(rather than the camera hardware directly), authorization information pertaining to the user’s 

session may be consulted in order to determine if the user should have direct viewing access to 

the raw imagery of the scene. 

Introduction to the LVQL Query Language 

LVQL is the query language of the LVDBMS. Analysts and programmers may leverage 

this query language in to develop applications that interact with video streams. As such, the 

programmers and application designers need only know the details of the query language, and do 

not need to spend time developing stream processing algorithms or low-level details of the 

LVDBMS. LVQL permits for the specification of an event and a corresponding action to be 

defined over a video stream (or a set of video streams). It is a declarative language, meaning that 

the user defines a logical event specification and not the particular flow of control or algorithms 

that will be executed to determine the query result. An LVQL expression specifies a spatio-

temporal event, and an action that is to be triggered when the event is recognized. The basic form 

of a query (specifically, an ActionEvent) is as follows: 

 ACTION UserSpecifiedAction 

 ON EVENT EventSpecification 

Which signifies that an action UserSpecifiedAction corresponds with EventSpecification and will 

be executed the first time a query evaluation result of true is returned. EventSpecification is an 

event specification that is generated by a context free grammar which consists of a set of rules, or 

productions, which can be utilized to express (describe) an event. A simplified set of LVQL 

63 

 



productions is presented in Figure 24; items shown in light blue represent tokens recognized by 

the language. 

As shown in Figure 24, an LVQL statement consists of either an ActionEvent or a View 

Definition Language (VDL) production. In the case of an ActionEvent, which specifies a query, 

the event definition must contain a spatial operator (e.g. Appear, North, Meet, etc.) The VDL is 

used to define privacy filters and views over video streams, and is discussed in detail later in this 

work. 

Declaring an event in LVQL entails expressing the event in terms of spatial, temporal and 

Boolean operators. The simplest event that can be expressed is the appearance of an object in a 

video stream by using the Appear() operator. The Appear() operator accepts two arguments (i.e. 

operands), the first operand specifies the video stream, object class (and possibly filter criteria) 

that the operator will be applied to, and the second is a threshold. (All spatial operators accept a 

threshold argument.) The threshold for the Appear() operator specifies the minimum size of an 

object that will satisfy the appearance condition, in terms of the area of the minimum bounding 

rectangle (MBR) that contains the object. For example, Appear(s1.*, 200) will return true each 

time it is evaluated if a dynamic object with an MBR of area greater than or equal to 200 is 

observed in the current video frame. In the case of a spatial operator such as North(), three 

arguments are accepted; the first two correspond to objects in the video stream, and the third is 

again a threshold. North() returns true if the object specified by the first operand is above the 

object specified by the second operand, in a stream. The third argument, the threshold, specifies 

the amount of separation between these objects (i.e. the distance between the bottom of the upper 

object’s MBR and the top of the lower object’s MBR). For example a value of 10 pixels means 
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the upper object must be at least 10 pixels above the lower object. Note that this threshold can be 

negative, allowing MBRs to overlap. 

 

  

Lvql := ActionEvent | VDL 
ActionEvent := [action UserSpecifiedAction] on EventSpecification 
EventSpecification := NotSpTmplEvent ( BooleanOperator NotSpTmplEvent ) 
NotSpTmplEvent := [not] SpatialTemporalEvent 
SpatialTemporalEvent := CompositSpatialEvent | CompositTemporalEvent 
CompositSpatialEvent := appear | north | northwest | inside | meet | ... 
CompositTemporalEvent := before | meets 
BooleanOperator := and | or | not BooleanOperator 
VDL := VCmdType view ViewIdentifier over VStreamIdent [ set VPrivFilter ] 
VCmdType := create | update | delete 
VTargetStmt := target eq ( querytargets |  nonquerytargets |  
 previouslymasked | none ) 
VTmpScpStmt :=  temporalscope eq ( querynonactive |  queryactive |   
 permanent | none ) 
VObjScpStmt := objectscope eq ( static | dynamic | crosscameradynamic 
 | none ) 
VStreamIdent := ( Cameraidentifier | ViewIdentifier ) 
Cameraidentifier := camIdent 
ViewIdentifier := viewIdent 
 
Figure 24. A simplification of the LVQL grammar, including privacy view definition 
language (VDL) productions. 
 

 

Figure 25. Illustration depicting dynamic and static objects. 
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 Spatial, temporal (and Boolean) operators can be combined by using Boolean operators. 

For example, to identify objects that are between 200 and 300 pixels of area in a stream, one 

could formulate the expression And(Appear(s1.*, 200), Not(Appear(s1.*, 300))). Note that 

operands effectively act as data filters. For example, three types of objects can be associated with 

video streams; dynamic, static and cross-camera dynamic. Specifying an operator and providing 

it with an operand argument of one of these types will return only objects of that respective type 

to the operator. For example, given a video stream with a static object defined in it, say, s1.12 

(where s1 corresponds to stream number 1 and static object number 12), the operator 

Appear(s1.12, 50) will only return true if the static object 12 is greater than 50 pixels in area and 

will ignore any dynamic and cross-camera dynamic objects that might be detected in the stream. 

Summary 

This chapter presents an introduction to the LVDBMS. While LVC refers to the 

theoretical computation model over live video streams, the LVDBMS is the corresponding 

prototype testbed implementation. By providing a computing infrastructure that is accessible to 

users and client applications via a web services interface by utilizing a declarative computer 

language, software architects and programmers can focus on solving the business problem they 

are posed with, and not having to focus on low-level details of stream processing. Thus one goal 

of the LVDBMS is to provide a platform to facilitate rapid application development. 

The components LVDBMS can logically be grouped into four tiers, the lowest consisting 

of physical hardware. Next is the spatial processing layer, then the stream processing layer and 

finally the client layer. Queries originate in the client layer and are pushed down to the stream 

processing layer and then to the spatial processing layer. Data originates in the camera layer and 
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flows upwards. As it moves upwards it is transformed; from a stream of imagery in the lower 

layer to streams of subquery evaluations to a stream of Boolean query evaluations. Thus, the 

LVDBMS can scale to process more video streams by the addition of additional processing 

nodes in the stream and spatial processing layers. 

This chapter also introduces LVQL, the query language of the LVDBMS. Spatio-

temporal events can be specified in LVQL, and when the LVDBMS observes a specified event in 

video streams corresponding to the query definition, an action (such as notify operator or save 

video) can be executed. 

 

 

 

  

 

Figure 26. Illustration of an object moving about a scene and corresponding instances, in a 
feature space. 
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CHAPTER 4: AN INFORMATICS-BASED APROACH TO OBJECT 

TRACKING 

The subject matter of this chapter is the object modeling and recognition technique that 

matches objects observed in multiple video streams. This correlation of objects across multiple 

video streams facilitates the expressiveness the LVQL. This chapter discusses the techniques 

used to model an object and the distance function that realizes the object recognition. 

Introduction 

The multi-camera object tracking implementation in the LVDBMS is based upon 

concepts gleamed from MIL. This tracking implementation differs from the MIL introduction in 

a previous chapter due to the fact that objects are not explicitly labeled negatively; each object 

corresponds to a bag of instances which are all positive examples. Additionally, each bag 

represents a distinct object (as opposed to a bag representing some larger entity like a scene 

which can contain many distinct concepts and corresponding feature vector representations). 

Thus, each bag represents a salient object that has been segmented from a video stream, and the 

instances correspond to the appearances of said object in distinct frames. The object is tracked 

from frame to frame, and as the object’s appearance changes shape (i.e. a human’s legs and arms 

would move while they walk), the instances in the bag represent different poses and possibly 

vantage points of the same object (for example, as the object moves about the scene they may 

appear larger or smaller, the illumination may change, etc). Thus these changing appearances 

will be represented in the bag. Note that samples do not necessarily need to be taken from 

consecutive frames of video; for example if an object is not moving very fast then its appearance 

from one frame to the next will not change significantly. See Figure 26 for an example of an 
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object moving about a scene and changing structure and pose as she moves about. Each 

appearance is modeled by a feature vector and the series of feature vectors corresponding to the 

observations are collected in an associated bag. 

In the LVDBMS implementation the number of instances a bag may contain is bounded 

and instances are added and removed in a first in first out order. Thus, the comparison between 

two objects is based upon the minimum of the number of observations and the maximum 

capacity of a bag (i.e., min(number_of_observations, bag_capacity)), and two bags do not need 

to contain the same number of observations in order for them to be compared (that is, for the 

application of a distance function). As new observations of the object are recorded, the bag is 

updated to include the new instances. If the inclusion of new instances exceeds the bag’s 

capacity the oldest instances are removed. This behavior is acceptable because real-time 

surveillance queries are generally concerned with events that have happened very recently. In 

order to query for long-term historical events, a different model of data storage and retrieval 

would need to be utilized, as the observations of the objects may exceed the capacity of the 

primary memory of the computers hosting the application. 

Previous Multi-Camera Object Tracking Work 

Tracking objects across multiple uncelebrated cameras that have non-overlapping fields 

of view (Figure 9 right) is a difficult problem; as objects move about the terrain where the 

cameras are deployed the object appear to have one size when it is observed by one particular 

camera, and a different size or appearance when observed by a second camera due to its having a 

different spatial relationships between itself and the cameras. Furthermore, some length of time 

may pass between initial and subsequent observations. A number of multi-camera research 
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models require calibrations pertaining to the spatial relationship between the cameras, and 

assume either non-overlapping fields of view, or that objects in motion will maintain a consistent 

path between observations (Bowden, Gilbert, & KaewTraKulPong, 2006; Du & Piater, 2007; 

Hemayed, 2003; Hu, 1962; Javed et al., 2003; Song & Roy-Chowdhury, 2007; Tieu, Dalley, & 

Grimson, 2005; Yilmaz et al., 2006). Factoring in the fixed speed and track of an object as a part 

of the feature vector that describes an object can contribute to the precision of the system’s 

tracking ability, assuming that the speed and track constraint is realized; e.g. (Hu, 1962; Javed et 

al., 2003). Thus, these assumptions (and correspondingly, systems) perform best when the object 

movement is non-random; i.e. when the systems are deployed within a building and the objects 

are constrained by corridors or walls, or when they are applied to a network such as the railroad 

system or road network (i.e. Figure 27 left). Also, these systems assume that the camera 

locations are fixed, and if they were to be moved or repositioned, the calibration phase would 

need to be executed again. The object tracking technique described in this chapter can 

accommodate unconstrained object motion, illustrated in Figure 27 (right). 

 

Figure 27. (left) An object moves about in a straight path, and (right) an object moves 
along a random path. 
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Cross-Camera Object Tracking in the LVDBMS 

Salient objects observed in scenes by a camera are first tracked within the stream by an 

existing single-camera tracking technique, for example the technique presented in (Hampapur et 

al., 2005) which tracks an object based upon its appearance in a scene. We refer to the class of 

trackers that track objects within a single video stream as frame-to-frame trackers. The 

LVDBMS cross-camera tracker relies on frame-to-frame trackers to track objects within each 

respective video stream. Moving salient objects are identified and tracked within each camera 

stream. Each identified object is assigned an identifier that is unique to the stream in which it is 

observed. As the object moves, its appearance is captured in each frame of video. Each capture 

of an object’s appearance is processed and a representative feature vector is computed based 

upon its appearance. These cumulative feature vectors for each object are stored in a bag that 

corresponds with the object’s identifier (i.e., the bag has an identifier of the format <stream_id, 

object_id> which is unique to each LVDBMS implementation for each object). Note that 

depending upon the circumstances it may not be necessary to capture feature vectors from each 

consecutive frame in which an object is observed; for example if an object’s appearance does not 

change greatly between frames it may be acceptable (in terms of matching precision and recall) 

to capture every 2nd, 5th, etc. observation. As video streams are considered to communicate an 

infinite number of frames of video, the bag containing the observations (instances) of an object’s 

appearance have a maximum number of instances they can contain. The most recently observed 

instances are maintained in first in first out order within a sliding window (e.g. see Figure 28). 
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Figure 28. Illustration of feature vectors calculated based upon an object’s appearance in 
every nth frame. 

Initially as objects are observed within their respective streams, and objects are not 

correlated with objects appearing in other streams, there is a one-to-one mapping between 

objects and bags; that is, each bag refers to a particular object in a stream. In order to determine 

if an object in one stream is the same object that is observed in a second stream, the two bags 

corresponding to the two objects are compared by applying a distance function to compute the 

similarity of the bags. If two bags are similar (within some threshold) then the bags that 

correspond to the two objects are merged (that is, the most recent instances the bags contain are 

merged; adhering to the sliding observation window threshold). The merged bag is then updated 

with observations from the object from both video streams. This provides the mapping from an 

object in one video stream to an object in a second video stream. Note that in the case of multiple 

video streams, it is possible that an object is observed in and matched to objects appearing in 

more than two streams, in which case the bag would provide a mapping among each object in 

each respective stream in which it is observed. 
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LVDBMS Cross-Camera Tracking Implementation 

This section explains implementation details of the cross-camera tracking logic 

implemented in the LVDBMS. The LVDBMS prototype implements specific algorithms for 

tracking objects across video streams; that is, specific routines that compare the unmatched bags 

of objects between pairs of streams. As this object matching inherently requires some CPU and 

primary memory resources when running, it is only executed when a query exists that searches 

for an event that spans video streams (specifically, the query contains a cross-camera tracking 

operand). 

In order to reduce false matches, once an object is matched from a stream s1 to a second 

stream s2, that object is no longer considered for any additional {s1, s2} matches (and 

symmetrically, {s2, s1}). Also, the object matches are considered only among the streams 

specified by the query. For example, if four cameras (and thus streams) are registered with an 

LVDBMS implementation and a query specifies an event that spans two of the streams, the 

matching logic processes only those two specific streams for potential object matches. Note that 

even though the matching is a binary relationship (and the distance function is a binary function), 

three streams may be related by applying two spatial operators with two cross-camera operands, 

for example the first operand could specify the matching {s1, s2} and the second the matching 

{s2, s3}, and thus an object could be matched among (and a bag correlated with) three streams, 

{s1, s2, s3}. 

To facilitate the cross-camera tracking and retrieval of object matching correlations by 

queries, a number of metadata structures are maintained; major components are illustrated in 

Figure 29, which are implemented in spatial processing layer hosts. The “Streams” structure 

maintains the current video streams associated with the host, and a mapping to the current (most 
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recently received) frame from each stream. Streams are indexed by a number that is unique to 

each stream. The “Frames” structure maintains a window of recent frames for each stream, items 

it contains are indexed by the pair {stream_id, frame_id} where frame_id increases 

monotonically with each frame received. Each object identified in a video stream is assigned a 

numeric identifier (again, increased monotonically) that is unique to each stream. The “Frame 

Object Index” provides a mapping from {stream_id, frame_id} pairs to the dynamic objects that 

are observed (i.e. tracked) in each frame; this is a one-to-none relationship if no dynamic objects 

are observed within a frame, and a one-to-many relationship if multiple objects are observed in a 

particular frame. The “Objects” structure maintains a mapping from objects, {stream_id, 

object_id}, to their corresponding bag. In the case where objects in distinct streams are 

associated with the same real-world object (that is, the objects are matched to each other across 

the streams), their respective bags are merged and this structure is updated such that both stream-

object identifiers point to the merged bag, Figure 30. 
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Figure 29. Metadata structures implemented in the LVDBMS to facilitate cross-camera 
tracking and queries. 

 

Figure 30. Object metadata structure showing two objects, 1.12 and 0.37, which have been 
merged. 
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Each instance (we use feature vector and instance interchangeably) contained in a bag 

can be interpreted as a data point in a multidimensional feature space (where the dimensionality 

of the feature space is the number of components in the feature vector). In the LVDBMS, bags 

have a maximum capacity. At the onset, when an object first appears in a video stream, its bag 

will contain a single instance. As the object is observed in subsequent frames additional instance 

are added to the bag.  

A distance function is applied to a pairing of bags to determine their similarity; if the 

distance between the bags (i.e. a smaller distance means they share more similarity) is below a 

threshold then the bags (corresponding to objects observed in different video streams) are 

considered to represent the same physical object, and the bags are merged. Each bag (i.e. its 

centroid) can be mapped to a point in a feature space, and the assumption is that bags 

corresponding to similar objects (based upon their modeled appearances) are located closely in 

this feature space (i.e. cluster analysis). The pairing of bags that will be matched can be modeled 

as a bipartite graph (Zha, He, Ding, Simon, & Gu, 2001). Note that as the bags initially contain 

only one instance and an object may appear in one stream before it appears in another, bags with 

differing number of instances may be compared. The actual comparison is dependent upon the 

particular distance function that the system is configured to apply, however, there is a system-

defined minimum threshold such that if a bag contains fewer instances than this “lower 

watermark” it will not be considered for matching. The idea being that if a bag contains too few 

instances, the instances it contains may not be sufficiently representative of the object for cross-

camera matching purposes. 

More formally, the stream matching problem can be formulated as follows. Given the 

appearance of an object Oa in stream α, the problem is to determine if some object Ob appearing 
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in some stream β correspond to the same physical entity. The corresponding query is 

approximately formulated as when some object Oa appearing in α correlates with an object Ob in 

stream β, execute the specified action. Thus, the search space for the object matching can be 

constrained to objects observed in streams α and β, and at issue is how to measure the similarity 

between Oa and Ob. 

Let A and B represent point sets to Oa and Ob, respectively, such that },...,,{ 21 kxxxA 
=  

and }',...,','{ '21 kxxxB 
=  where aOx∈ , bOx ∈' , || aOk = , ||' bOk =  and k is not necessarily 

equal to k’. Let G be a bipartite graph ),( EVG =  where BAV ∪= and V consists of the vertices 

in G and E the edges. There are a number of distance functions that can be applied to G, for 

example, one may measure the distance between the two farthest points (the point in A and the 

point in B that results in a maximal Euclidean distance), the distance between the two closest 

points; the distance from the centroid of each point set, etc. The normalized distance between the 

two point sets may be defined as follows: 

 
V

e
OODist Ee

ba

∑
∈=),(  ( 7 ) 

 

Such that the sum of lengths of edges in E, is the minimum possible when considering all 

mappings from A to B. Objects are matched from α to β (without loss of generality) by 

comparing each unmatched object in α to each unmatched object in β that exist (i.e. may be 

observed) in the current frames of each respective stream. Therefore, if all objects in both 

streams were to be unmatched at some particular time, the number of comparisons taking place 

would be at most 2)( βα + , where α  and β  are the number of dynamic objects in the latest 
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frame of each respective stream. The Hungarian algorithm (Kuhn, 1955; Mills-Tettey, Stentz, & 

Dias, 2007; Munkres, 1957) may be used to determine the edges in E to which the distance 

function is applied. Note that in the circumstances that k ≠ k', 0 vectors may be injected, or the 

farthest instances in the set with larger cardinality may be ignored, etc. 

Another distance metric is the closest point distance, which is based upon the Hausdorff 

(Huttenlocher, Klanderman, & Rucklidge, 1993) distance; it finds the Euclidean distance 

between two points in two point sets that are the closest to each other: 

 baBADist
BbAa

−=
∈∈

minmin),(  ( 8 ) 

 

such that A and B are point sets and ⋅  represents the Euclidean distance. 

Performance Evaluation 

To evaluate the performance of the cross-camera tracking, videos from the CAVIAR (R. 

Fisher, 2011) project are utilized. The CAVIAR collection of videos show a number of different 

scenarios observing humans (leaving an object, walking, fighting, etc.) from multiple vantage 

points. These scenes shown from two perspectives are used in this study to measure the cross-

camera tracking functionality and gauge the merits of the bag comparison technique when an 

object is observed from different angles. The results presented indicate that the bag comparison 

is robust to these differences in angles, and also the slight differences in scene lighting observed 

in these videos. Note also that the timing of occurrences of objects in these videos are not 

temporally aligned, which also would simulate an object being observed by one camera and then 

later observed by a second. In addition to the CAVIAR videos (Figure 31), some scenes were 

created to test specific scenarios; these additional scenes have a first camera positioned in a room 
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and a second camera located in a hallway. These scenes have different backgrounds but the same 

objects moving about in them, being observed from different angels, e.g. see Figure 32. Note 

also that the illumination is different between the two scenes. 

 

 

Figure 31. Sample frames from CAVIAR dataset; walk3 (left) and OneShopOneWait2Cor 
(right). 

  

Figure 32. Sample video frames from two cameras, one in a room and the second outside 
the room (hallway sequence). 
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This video sequence was recorded with only a few people as to avoid segmentation and 

tracking errors that occur when numerous people are observed in crowds. The cross-camera 

technique presented here is designed to track single objects; when people appear in crowds errors 

related to segmentation and object extraction occur, for example due to obstruction. 

Evaluation Scenario Setup 

Although the LVDBMS is designed and optimized for live video streams, evaluations are 

conducted with prerecorded videos in order to permit experiments to be repeated with 

deterministic input so system parameters may be adjusted or debugged. In the LVDBMS data 

flow hierarchy, a sequence of video frames comes from an image sensor and is transmitted to the 

associated camera adapter, where background modeling, object segmentation and tracking 

routines are executed. An OpenCV function is utilized to grab each frame of video in the initial 

processing stage. Whether that video frame is initially written to a memory location by a 

hardware camera driver or by a video decoding codec, is indistinguishable to the OpenCV frame 

grabbing function return value and is indistinguishable to LVDBMS layers above the camera 

adapter. Thus the use of pre-recorded video sequences does not add to or detract from the 

performance of the various algorithms implemented and results presented. 

For the experiments presented here, the minimum object size is specified to be greater 

than 200 pixels, in order to not consider artifacts due to background subtraction errors or slight 

camera movements, for example. A feature vector of 21 dimensions is used; this includes 18 

components coming from a histogram representing the object in the RBG color space and three 

components based upon Hu moments (Hu, 1962). These moments are popular because they are 

straight-forward to compute and are invariant to rotation, scale and translation. (Of course, a 

downside to using features that are invariant to rotation, scale and translation is that they can no 
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longer distinguish objects based upon those factors, for example, they cannot distinguish if one 

object is larger than another, etc.) 

Evaluation Based Upon Relative Quality 

The goal is to improve the quality of data, in this case the quality of the query evaluation 

results that entail cross-camera object matching. In order to improve this process, it must be 

measured in order to establish a baseline measurement and so that improvements can be 

quantified. Surveillance systems can be optimized for different performance criteria than 

general-purpose multimedia retrieval applications, and to support this distinction we present the 

Relative Quality (RQ) metric. More specifically, this distinction pertains to the treatment and 

priority of false positives (FP) and false negatives (FN). In traditional multimedia retrieval 

applications, a false positive can be ignored by a human user retrieving content and an FN may 

mean the user needs to conduct additional search iterations or refine query keywords. Often the 

FN and FP rates are tunable, for example, one might increase one at the cost of reducing the 

other, etc. However, in a security scenario, an FN may mean that an event of interest has 

occurred and the system did not perform the requisite action. Also, given the importance of not 

wanting to miss the occurrence of an event, a higher FP rate may be acceptable. Thus, the RQ 

metric introduced in this section is parameterized to distinguish between the FP and FN by 

tuning two parameters, α and β. This metric can be used when adjusting system parameters to 

gauge their effect in terms of meeting a predefined threshold in terms of recognition accuracy, 

computation overhead (i.e. configuring different feature vector lengths and components), etc. 

The performance results presented in this section are presented based upon the common 

understanding and usage of FN, FP, true positive (TP) and true negative (TN). If an object is 

queried and it exists in the data store and is returned by the query, TP is incremented, else FP is 
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incremented. Likewise, if the object does not exist in the data store and is returned, FN is 

incremented, else TN is incremented. Thus, RQ, precision and recall can be related in terms of 

these components as follows: 

 Relative Quality = 
TPFNFP

TP
+⋅+⋅ βα

 ( 9 ) 

 Precision = 
FPTP

TP
+

 ( 10 ) 

 Recall = 
FNTP

TP
+

 ( 11 ) 

 

Such that 0≤α≤1≤β and when α=β=1, RQ is Accuracy, i.e. TP/(FP+FN+TP). For a 

discussion of the Accuracy metric the reader is referred to the discussion in (C. W. Fisher, 

Lauria, & Matheus, 2009). 

Performance of Cross-Camera Tracking 

This section presents cross-camera tracking results in terms of precision and recall. The 

first set of results, Table 4, are based upon input from the CAVIAR video OneShopOneWait2cor 

and correspond to plots shown in Figure 33. Note that data shown in Table 4 is sampled at 10-

second intervals. In this image sequence people are entering and leaving the field of view 

observed by the camera and the peaks in the plots correspond with people entering the scene. In 

Figure 33 the results are plotted, first fixing α and changing β, and then fixing β and changing α. 

This illustrates α and β can be adjusted to shift (skew) the results in terms of FN and FP so that 

system parameters can be adjusted in order to achieve target error rates. 
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Table 4. CAVIAR video OneShopOneWait2cor 
TP FP FN Precision Recall 
223 38 0 0.85 1 
285 73 0 0.79 1 
391 108 0 0.78 1 
492 146 0 0.77 1 
588 191 0 0.75 1 
706 230 0 0.75 1 
759 265 0 0.74 1 
844 314 0 0.72 1 

 

Next, performance results are presented for a second CAVIAR video, Walkers. Which 

depicts people walking about a scene that is observed by two cameras. Select system parameters 

for this evaluation scenario are presented in Table 5, and evaluations with both the normalized 

distance and the closest point distance are presented in Table 6 and Table 7. In this video 

sequence between one and five people may be observed in the field of view and results are 

presented at ten-second intervals. Note that the timestamp, running precision and recall columns 

are cumulative. The number of bags column depicts the total number of bags in the index, 

corresponding to both videos. Index maintenance provides wall-clock time, in milliseconds, of 

the time required to maintain and update the index metadata structures as new observations are 

encountered and propagated throughout the index (note that this time also includes lock 

contention waiting time; index updates and query evaluations are performed using different 

threads and data structures must be locked in order to not encounter concurrency-related errors). 

In these experiments the query evaluation period (time between query evaluations) is one second, 

and the index maintenance time is well below this threshold. Results are plotted in Figure 34 and 

corresponding values illustrated in Table 6 and Table 7. This evaluation was executed for 159 

seconds. When two bags are compared, the number of data points used in the comparison is 

equal to the cardinality of the smaller bag (i.e. k = k’). 
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Table 5. System parameters for Walkers evaluations 
Parameter Description Value 
Number of histogram bins Feature vector dimensionality 18 
Dynamic object queue length Number of image frames retained in 

FIFO database. I.e. maximum length of 
q_img_bitmap. 

200 

Cluster manager bag 
capacity 

Maximum number of instances a bag can 
contain. 

25 

Inclusion distance threshold Two bags are considered for merging if 
the sum of their standard deviations for 
all dimensions, multiplied by this value, 
is less than what is returned by the bag 
distance function. 

1.5 

Minimum bag comparison 
size 

The minimum cardinality of a bag for it 
to be considered for object matching. 
Bags with fewer instances are ignored. 

10 

 

Table 6. Walkers–closest point distance 
Time 
stamp 

Index 
maint. 

Num 
bags 

TP FP TN FN Running 
precision 

Running 
recall 

1 86.0049 4 0 0 0 1 0.0000 0.0000 
11 9.0005 6 3 1 0 1 0.7500 0.7500 
21 1.0001 11 8 1 0 1 0.8889 0.8889 
31 2.0001 21 10 3 0 1 0.7692 0.9090 
41 1.0001 26 16 5 0 1 0.7619 0.9411 
51 26.0015 32 23 8 0 1 0.7419 0.9583 
61 55.0032 32 32 8 0 1 0.8000 0.9696 
71 34.0019 40 34 10 0 1 0.7727 0.9714 
81 134.0077 44 40 11 0 1 0.7843 0.9756 
91 1.0000 61 47 17 0 1 0.7343 0.9791 
101 496.0284 77 73 28 0 1 0.7227 0.9864 
111 283.0162 97 88 37 0 1 0.7040 0.9887 

 

Table 7. Walkers–normalized distance 
Time 
stamp 

Index 
maint. 

Num 
bags 

TP FP TN FN Running 
precision 

Running 
recall 

1 62.0035 4 0 0 0 1 0 0 
11 8.0005 6 3 1 0 1 0.7500 0.7500 
21 2.0001 16 3 1 0 1 0.7500 0.7500 
31 5.0003 24 5 5 0 1 0.5000 0.8333 
41 3.0001 25 9 5 0 1 0.6428 0.9000 
51 5.0002 32 11 8 0 1 0.5789 0.9166 
61 32.0019 32 23 9 0 1 0.7185 0.9583 
71 1.0001 39 26 12 0 1 0.6842 0.9629 
81 6.0003 44 28 13 0 1 0.6829 0.9655 
91 27.0015 60 37 19 0 1 0.6607 0.9736 
101 10.0006 71 48 27 0 1 0.6400 0.9795 
111 7.0004 79 68 42 0 1 0.6181 0.9855 
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(a) 

 

(b) 

 

(c) 

 
Figure 33. Relative Quality for OneShopOneWait2cor; (a) varying β with fixed α=0.5, (b) an 
enlarged view of a portion of (a), and (c) varying α with fixed β=1.2. 
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Figure 34. Normalized distance (ND) and closest point distance (CPD) plotted over time. 

The third set of results comes from the videos illustrated in Figure 32 (hallway sequence). 

In this scenario a camera is positioned within a room and a second camera outside; objects 

appear in either one video stream or the second; the cameras do not have overlapping fields of 

views. Additionally the illumination of the scene is slightly different with the lighting inside the 

room brighter than in the hallway (as can be observed from the representative images in the 

figure). Objects in this video sequence appear large compared to the relative size of the frames 

(field of view) and thus representative feature vectors can be calculated. Evaluation results in 

terms of the relative quality metric (the best-performing metric that was evaluated) are presented 

in Figure 35 and correspondingly, Table 8. 
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Figure 35. Tracking results for hallway sequence videos; where α=1 and various β. 
 

Table 8. Normalized distance for hallway sequence videos 
Time 
stamp 

Index 
maint 

Num 
clusters 

TP FP TN FN Running 
precision 

Running 
recall 

1 150.0086 2 0 0 0 0 0 0 
11 9.0005 8 8 0 0 0 1.0000 1.0000 
21 13.0008 10 23 0 0 8 1.0000 0.7419 
31 0 16 28 0 0 8 1.0000 0.7777 
41 0 22 35 0 0 8 1.0000 0.8139 
51 0 24 37 0 0 8 1.0000 0.8222 
61 0 24 37 0 0 8 1.0000 0.8222 
71 6.0003 24 40 0 0 12 1.0000 0.7692 
81 0 28 43 0 0 13 1.0000 0.7678 
91 0 28 43 0 0 13 1.0000 0.7678 
101 0 30 43 0 0 13 1.0000 0.7678 

 

Inclusion Distance Threshold 

By leveraging bags and distance functions, the process of matching an object from one 

video stream to a second is transformed to a clustering and retrieval problem in a 

multidimensional feature space. The matching between two bags is essentially a 1-neareast 

neighbor (1NN) query where the bag in the first video is the query point (or, without loss of 
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generality the second video). Even in a sparse space with distant clusters, a 1NN query would 

return a match, even though the objects are not particularly similar. In order to prevent against 

these types of FP a distance threshold is applied, called the InclusionDistanceThreshold (IDT), 

which effectively creates a bounding hyper-sphere around the query point. Expanding the IDT 

can result in more TP at the potential cost of additional FPs. 

Conclusions and Comments 

The quality of cross-camera tracking is dependent upon a number of factors, beginning 

with the effectiveness of the background subtraction technique that identifies the pixels in the 

video frames that correspond with salient objects, and the frame-to-frame tracker to continuously 

track an object and extract corresponding observations and thus feature vectors. Also important 

is the number of pixels in a scene that provide information pertaining to the appearance of an 

object; more pixels result in more representative feature vectors being calculated. One of the 

downsides of the CAVIAR video is the relatively low resolution of 384 pixels by 288 pixels. 

Thus, only a few pixels contribute to the representation of objects depicted in scenes, unless they 

are particularly close to the camera. 

Table 8 provides a column showing the index maintenance overhead incurred, in terms of 

wall-clock time. Much of this overhead is due to memory allocation; the LVDBMS is 

implemented in C# and the .NET runtime manages memory and garbage collection. Some small 

programming optimizations are made (such as setting variables to null as quickly as possible in 

the code) but essentially the memory performance and management is left to the runtime. 

The best performance observed is based upon the distance function that minimizing the 

distances between the closest points between two point sets. Additionally, not all instances in a 

bag need to be compared; as an object moves about a scene, a subset of the observations from the 
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first camera may be more similar to observations by the second camera (e.g. if the subject first 

walks towards the camera and then turns around and walks a different direction, at least two 

sides of the subject will be captures). The best matching performance is thus obtained when the 

number of points, k, compared is less than the cardinality of the two respective bags; e.g., in 

some of the experiments presented the maximum bag size (cardinality) is 50 and k=10. Figure 36 

provides an illustration of this concept, showing two image sequences with bag capacities fixed 

to four and k=3. 

 Summary 

Cross-camera matching capabilities are a useful component of a query language. This 

chapter presented cross-camera matching that is based upon distance functions applied to 

bipartite graphs. The scenario presented does not require prior calibration or overlapping fields 

of view, decreasing the overhead required to set up a camera network for surveillance, and 

facilitating possible future extensions of the network to include mobile devices. By leveraging 

accumulated appearances of observations of objects and matching upon the most similar subsets 

of these sequences, the cross-camera matching is robust to momentary observations that reflect 

periods of dissimilarity between the objects and is on par with results reported in computer 

vision literature pertaining to distributed computer vision camera tracking algorithms.  
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Figure 36. Illustration of instances corresponding to two image sequences with bags of 
cardinality 4 and k=3. 
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CHAPTER 5: MANAGING LIVE VIDEO DATA WITH PRIVACY 

PROTECTION 

There is an extensive body of work pertaining to video surveillance that focuses on image 

processing, however, there are only a few that focus on system usability, and specifically 

privacy. The work presented in this chapter discusses privacy extensions to the LVDBMS that 

enable the development of privacy-aware surveillance and monitoring applications. These 

extensions are privacy filters, which can be applied at a granular level to redact the appearance of 

objects in video streams to implement privacy policies. This framework facilitates the 

dissemination of privacy-aware video streams in real time. The goal of this framework is to 

facilitate privacy policies that are verifiable and is an important step towards the future 

certification of surveillance software in terms of privacy awareness and adherence to privacy 

standards.  

Introduction 

Networks of connected cameras are expanding and widely researched; decreased 

hardware prices and the expansion of communication networks contribute to their popularity, in 

addition for increased safety and security concerns. However, research of their effectiveness has 

mixed results. This can be attributed in part to the fact that such a critical component to their 

effectiveness are the human operators who monitor the videos for occasional events, who can 

become fatigued, distracted, biased, etc. Therefore, much of the utility of such deployments is 

relegated to post-incident analysis. 

To mitigate the human element of operator fatigue, and to increase the effectiveness of 

large camera networks, concepts from computer vision may be applied to increase the usability 
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of the raw video streams. The LVDBMS is an example of a software system that is designed to 

automate the monitoring of live video streams, permitting events of interest to be specified and to 

notify operators when the events are observed. However, as cameras become deployed 

pervasively and as the intelligence and capabilities of monitoring software increases, privacy 

concerns are becoming paramount. Increased monitoring by government agencies and corporate 

employers raises concerns that the captured imagery will be used consistently with the purposes 

for which it was initially captures. For example, video is archived and recorded, but future 

regulation and law changes could permit the captured video to be used for unintended purposes 

and compromise the privacy of the people observed. 

Furthermore, deploying a large camera network requires significant investments in both 

time and money. Thus it is desirable that camera infrastructure could be used for multiple 

purposes to maximize the return on investment and help justify deployment costs. For example, a 

camera network could be shared by police who want to monitor for crimes and collect evidence 

for investigations, and also by business managers and employees to ensure that customers have a 

good experience, minimal wait times; that facilities are used efficiently, etc. Thus, it is desirable 

that these resources are sharable among disparate entities that may be governed by different 

procedures and regulations. However, this shared usage makes the intended usage of captured 

imagery ambiguous, leading to uncertainty and privacy concerns. In order to alleviate these 

concerns and promote system usability, three things a general purpose software system for video 

monitoring and processing can adhere to are as follows: 

1. To facilitate usability, ad hoc queries must be supported. Events of interest across 

domains (or in particular, even a single user) differ; for example, an event of interest to a 

fire department could be different than event of interest to a police department. 
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2. To cope with changing business needs and regulations, it is desirable to have the 

capability to rapidly develop and deploy customized applications with different purposes, 

for example, to generate usage statistics by monitoring traffic flow along a road or 

provide a monitoring service to let business clients know when a conference room is 

available. 

3. As people are concerned with privacy, it is desirable that such applications implement 

and adhere to standards to protect the privacy of the individuals observed. 

To satisfy the first two requirements outlined above, the LVDBMS can be leveraged, as it 

provides a general-purpose platform for video stream applications and the capability to monitor 

and query a large number of video streams. Users can specify ad hoc queries in terms of spatial 

and temporal event specifications and be notified when the event is detected. 

 

Figure 37. Example illustrating the LVDBMS deployed in a traffic management center. 
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To tackle the third issue, in this chapter a privacy framework is presented. Part of this 

framework is a privacy specification language that has been integrated into LVQL. It permits for 

privacy policies to be specified, and then granularly enforced by the LVDBMS. For example, a 

video camera can provide real-time monitoring of a scene, and an employee can be given access 

to observe a redacted video stream that shows objects moving but hides their identifying 

information. In the case that a pre-defined event is encountered, the system can save an 

unredacted clip of video for later offline analysis. The goal is to allow for general trends to be 

recognized and observed while maintaining an appropriate level of privacy for the individuals 

observed. As another example, consider a traffic camera that monitors a section of highway. 

Department of Transportation (DOT) employees use such cameras to monitor and ensure the 

efficiency and availability of transportation networks; Figure 37. Often, television news stations 

are also given access to view and broadcast live video feeds. However, the intended use by the 

news stations is different than that of the DOT employees, as they generally want to provide to 

their viewers a general concept of traffic flow. If an accident were to occur on a highway, it 

would be undesirable to show related identifying information such as the license plate of an 

automobile involved. To address this situation a privacy filter could be defined that would apply 

to objects that exceed a certain size (e.g. if the accident were to occur close to the camera). 

Background 

As camera networks increase in expansiveness and smarter algorithms are developed to 

monitor them, more of people’s lives will be observed and recorded. Combine this with 

increasing quantities of storage at decreasing prices, and what is recorded will be able to be 

stored and saved for longer periods of time, if not indefinitely. The outcome is the potential for 
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more of our lives to be monitored, recorded, stored and analyzed. Thus, there will be a growing 

need for the privacy-conscious treatment of video content. Such software needs to be 

configurable, as socially acceptable norms differ from culture to culture and the software that 

monitors and processes observed content likewise needs to be adaptable to the local cultural 

norms (Caloyannides, 2003; Danielson, 2002). 

Currently, a number of privacy-aware systems have been developed. Basically these 

systems detect movement and redact the detected objects. In (Senior et al., 2005) the appearances 

of objects are redacted and replaced with colored blobs, where the color signifies some event like 

the object having crossed a virtual trip wire defined in the system. In (Dufaux & Ebrahimi, 2008) 

an MPEG-4 encoder is developed that encodes the visual appearance of the object to be redacted 

in the stream itself, and a paired decoder can decode the redacted appearance as appropriate. 

However, these systems do not provide sufficient functionality to determine if an object should 

have its appearance removed from the video stream or not. 

Another class of privacy preservation is termed privacy-preserving data publishing 

(PPDP). A number of entities make large quantities of anonymized data available for public 

consumption. This type of data is intended to allow for the identification of global trends, for 

example the spread of disease, city capacity planning, and building classifiers for machine 

learning applications. If such data were to be released in its raw form, for example patient 

medical records, privacy laws could be violated and people could be embarrassed, etc. Thus, 

algorithms (and systems) relevant to the field of PPDP seek to preserve privacy, for example, by 

modifying the data so that it is not identifiable (e.g., translating a person’s age from a specific 

number like 51, to a range like 50-59), by monitoring queries to ensure that privacy isn’t 

violated, and otherwise perturbing the raw data into a form that can be publically disseminated. 
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Most PPDP algorithms focus on databases containing statistical data that is oriented in 

tabular form. Privacy may be applied to such data by restricting how the data is queried (e.g. the 

number of queries submitted by a particular user or the amount of overlap in data queried), by 

modifying the raw data (e.g. reporting categorical data or averaging data by zip code) and 

perturbing the output (e.g. modifying the data by applying some type of random error such that 

the parameters of the error distribution are known, so that the error can be removed at a global 

scale) (Adam & Worthmann, 1989; Fung, Wang, Chen, & Yu, 2010). These methods preserve 

privacy by making the data less granular or by inducing error. Thus, there is a tradeoff between 

precision and privacy, such that the more the reported values differ from the original data, the 

more securely privacy is preserved (but potentially more skewed aggregated results). 

Privacy preservation and perturbation can also be applied to streaming video. In an ideal 

situation, no identifying information will be leaked (Caloyannides, 2003). Unfortunately, privacy 

cannot be guaranteed in the presence of auxiliary information (i.e. when information can be 

retrieved from multiple data sources, such as both the National Institute of Health and local 

hospital websites) (Dwork, 2008). For example, information can be leaked via ancillary channels 

such as the time combined with camera location; for example, someone observed entering an 

office at 8am and leaving every day at 5pm (Saini, Atrey, Mehrotra, Emmanuel, & Kankanhalli, 

2010). Developing robustness to these ancillary avenues of violating the preservation of privacy 

is beyond the scope of the privacy preserving framework presented in this chapter. The objective 

of this work is to make the appearance of an object appearing in a video stream unrecognizable if 

it is associated with a privacy filter. We note, however, that arbitrary stationary objects can have 

their appearances blocked by having a user specify a static object on top of them, and then define 

a privacy filter that applies to static objects, for example. 
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The privacy preserving framework presented in this chapter is designed to be flexible 

such that it can be selectively applied to different objects, based upon current queries active in 

the system, the class of the object or other available contextual data that can be leveraged. The 

appearances of the objects are redacted by drawing on top of them filled bounding boxes; other 

privacy preserving techniques that are applicable to video are not encountered (such as creating 

“fake” objects, speeding up or slowing the video temporally).  

Privacy Filter Framework Objectives 

Nowadays people tend to accept that they are being recorded while they are in public 

spaces, for example by security monitoring systems and observed by security personnel to 

identify potentially harmful or dangerous situations. However, people would feel violated if they 

were observed and recorded for one particular purpose only to find out that later their 

information was used for a different purpose. For example had the individual known the later 

usage of their information, they may have chosen to not visit a particular place or use an alternate 

mode of transportation, etc. 

As the capability to process and store raw video is increasing, the potential to correlate 

people and actions observed in videos with other data sources in order to gain more in-depth 

information is increasing. As a progressive move towards a solution to this predicament, we 

introduce privacy filters. Privacy filters can be applied to specific objects observed in a video, or 

to all objects. Their application can be hierarchical and tied to a user’s level of access. For 

example, the identity of shoppers in a mall can be redacted such that security guards can observe 

people going into and out of stores or traffic flow, but a user with a higher level of access could 

view the unredacted video stream for quality assurance purposes or to save as evidence for a later 
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investigation. Thus, the privacy filters presented in this chapter are intended to redact the 

appearances of individual objects, while maximizing the usefulness and utility of the video 

stream as a whole. Note that privacy filters apply only to the redacted appearance of an object in 

the output video stream; privacy filters do not affect the applicability of an object to satisfying 

the condition of a query. 

Scope and Assumptions of Privacy Preservation and the LVDBMS 

This section identifies the assumptions and intended scope of applicability of privacy 

filters as they pertain to LVC and specifically the LVDBMS implementation. The privacy 

framework revolves around privacy filters. A privacy filter facilitates a particular privacy policy; 

a privacy policy specifies the circumstances under which the identity (and correspondingly, 

appearance) of an object, must be redacted from being outputted by the privacy-preserving 

framework. The intended goal is that the appearance of objects “passing through” a privacy filter 

will be modified such that their appearance is no longer identifiable based upon the color values 

of the pixels that contribute to the appearance of the object, as observed by the imaging device 

(i.e. camera). Thus, a privacy policy defines the circumstances under which an object’s 

appearance will be redacted. This criteria can be granular (i.e. applicable to a specific object), 

broad (applicable to all objects or the entire video stream) or somewhere in-between (by 

associating a privacy filter with a query which itself is defined in terms of spatial and temporal 

criteria). Therefore, the primary scope of privacy filters are salient objects observed in video 

streams, not the scene background per se or other information that may be leaked, such as the 

location of the camera, location of obscured objects, the time of data (e.g. which can be 

approximated based upon knowing the location of the camera and observing shadows). Also note 

that privacy filters are applied to the output video stream when it is externalized from the 

98 

 



LVDBMS system; it does not apply to internal metadata structures (which are not made available 

to users or communicated outside of the LVDBMS framework). 

Additionally, the physical security of cameras or processing nodes, or the security of the 

transmittal of video information between cameras and processing nodes, or communication 

between processing nodes, is not considered as a part of the privacy implementation in this 

framework. We do not consider the security of the host operating systems that host LVDBMS 

software, etc. Security measures such as encryption and the physical security of assets can be 

ensured either through processes external to the LVDBMS, or in future versions of the 

LVDBMS. Additionally, privacy attacks directed at the system such as specially crafted queries 

designed to leak privacy information, or users who masquerade as other users, are not considered 

as well. Although certain security measures are implemented, such as privacy-preserving views 

and a requirement of users to supply a valid username and password combination in order to 

connect to the LVDBMS and view video streams, we do not specifically provide safeguards to 

protect against the circumvention of these safeguards by a malicious user or groups of malicious 

users. 

Overview of Privacy Framework 

Privacy filters are designed to be maximally flexible in order to provide for a solid and 

flexible framework that is capable of implementing a multitude different privacy policies. 

Privacy filters can be applied hierarchically at different levels with the LVDBMS tiers. Also, 

multiple privacy filters can be applied to a particular video stream at the same time, as illustrated 

in Figure 38. 
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Figure 38. Comparison of cascading relational database views (left) vs. cascading privacy 
filters (right). 
 

 

Figure 39. Video stream illustrating a privacy filter with a Gaussian blurred MBR. 
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Privacy filters can have different levels of granularity, for example, a privacy filter could 

apply to all objects in a video stream, or to only a particular class of objects. When privacy filters 

are combined, the most stringent granularity of privacy will be applied as a result of the 

combined filter. A similar concept exists in relational databases; a user may be granted access to 

a particular view of the data, and that view could be defined atop other views (i.e. Figure 38 left). 

Privacy filters can be associated with cameras, queries, user groups and views. A privacy filter 

associated with a camera will apply to all consumers of the video stream produced by the 

camera. A privacy filter at this level will have a broad impact as it will propagate to all 

consumers of the respective video stream. At the query level, privacy filters apply to all objects 

that contribute to the query condition being evaluated to true. As such, it effects only the 

consumers of the output of the query. Privacy filters applied at this level have a moderate impact. 

Privacy filters applied to user groups impact only users associated with the group. Privacy filters 

defined at this level have a small scope of impact. Privacy filters also may be applied to views. A 

view is defined as an alias to a video stream but provided the added capability of being able to be 

associated with privacy filters. Users can subsequently be given access to observe a stream via a 

view and thus implicitly associated with any privacy filters that have been defined with the view. 

(Note that such a privacy filter applies only to the stream that is associated with the view; if a 

user combines a view with a different stream in a query, the privacy filter will not be applied to 

that second stream.) Privacy filters at this level have a moderate impact, as they are applied to all 

consumers of the view. 

Figure 39 provides a representative example of how a video stream with objects 

associated with privacy filters might look when rendered to a user’s GUI. In this case the privacy 

filter is rendered with as a Gaussian blur operator (Szeliski, 2010). Applying a blur operator to 
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objects obscures their appearance and is not greatly detracting from the quality of the video. 

Other options are to use the average pixel value inside the MBR, or to simply set the MBR 

contents to a solid color such as black. 

Defining Privacy Filters with the Privacy Specification Language 

A privacy filter is the instantiation of a privacy policy; it is defined by the 3-tuple {target, 

temporal_scope, object_scope} where target, temporal_scope and object_scope are defined in 

Table 9, Table 10 and Table 11. If an LVDBMS entity (e.g. a user, video stream or view) that is 

associated with a privacy filter interacts with a second LVDBMS entity, the privacy filter will 

apply to the output of their interaction. For example, if a user is associated with a privacy filter 

and then views a video stream, the privacy filter associated with that user will apply to the video 

stream when it is being viewed by that user. (However, if a second user views the same stream 

and is not associated with any privacy filters, the privacy filter from the first user will not apply 

to the second user or the stream from the second user’s perspective.) Similarly, if a user is 

associated with a privacy filter and that user creates a query, the query will also be associated 

with that privacy filter.  

If an object that is observed in a video stream is associated with a privacy filter, the 

object’s appearance may be redacted when the stream is output from the LVDBMS. That is, a 

privacy filter that is associated with a stream applies to objects observed in that stream in 

accordance with the 3-tuple of values it is defined by. The target attribute of a privacy filter 

pertains to objects that are the target of queries (an object is a target of a query if it contributes to 

the query being evaluated to true). The possible values for this attribute are given in Table 9. As 

an example, if a privacy filter has a target attribute value of query targets, then the privacy filter 

will apply to all objects observed in the stream which contribute to a query (defined over the 
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stream) condition being evaluated to true. Thus, given a privacy filter defined as {Query targets, 

None, None}, and a query condition Appear(c1.*, 250), then all objects observed in the stream 

greater than 250 pixels in area will be associated with the privacy filter. Objects having area less 

than 250 pixels will not be associated with the filter. Figure 40 provides an illustrative example 

with the Contains() operator; any dynamic objects appearing within rectangle s1 satisfy the 

query condition. Possible values of the temporal scope attribute are given in Table 10. The 

temporal scope pertains the period a privacy filter is active in the time domain; a value of 

permanent means it is always active. The other potential values allow the life of a privacy filter 

to be correlated with the presence (or absence) of a query. The object scope (Table 11) specifies 

classes of objects a privacy filter is associated with. For example, a privacy filer can be defined 

to be associated with all dynamic objects, or all static objects in a video stream. If a privacy filter 

has an attribute with the value none, that attribute will not be considered when determining 

which objects in a video stream the privacy filter will be applied to. 

 

  

 

Figure 40. Query targets: object D121 satisfies the query condition, D102 does not. 
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Table 9. Privacy filter attribute target 
Value Description Priority 

None No privacy; attribute 
ignored 1 

Query targets Targets of active queries 
are obscured 2 

Non-query 
targets 

Objects that are not 
targets of active queries 
are masked. An active 
query may obscure their 
identity 

2 

Previously 
masked 

Specifies that objects 
that were previously 
masked will continue to 
be masked 

2 

All 
All object identities are 
masked, regardless of 
query status 

3 

 

Table 10. Privacy filter attribute temporal scope 
Value Description Priority 

None No privacy; attribute 
ignored 1 

Query non-
active 

Privacy settings apply 
only when a query is not 
active 

2 

Query active 

Privacy settings apply 
only when a privacy-
enabled query is active (in 
the case of privacy 
applied to a camera, for 
example) 

2 

Permanent 
Privacy settings apply for 
the lifetime of the object 
or camera or query 

3 

 

Table 11. Privacy filter attribute object scope 
Value Description Priority 

None No privacy; attribute 
ignored 1 

Cross-camera 
dynamic 

Objects that are first 
detected in another 
camera 

2 

Dynamic 
Dynamic 
(automatically 
detected) objects 

2 

All All classes of 
objects qualify 3 
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Privacy filters are specified with the PSL extension of LVQL. The PSL allows privacy 

filters to be defined and associated with cameras, queries, user groups and views. Note that any 

objects of these types can be associated with zero or more privacy filters at any particular time. 

The association of additional privacy filters to an object increases the level of privacy associated 

with that object; that is, privacy filters behave only in an additive fashion and one cannot add an 

additional privacy filter to an object to reduce its level of privacy. If two users are accessing a 

video stream and one user is associated with a privacy filter (e.g. via a group membership), the 

privacy filter will not apply to the second user. Thus, the first user might view a video stream and 

the identities of the objects will be hidden only to the first user and not to the second. If the first 

user issues any queries, their privacy filters will also be associated with the queries. 

PSL allows one to create, modify and delete privacy filters and associate or disassociate 

them with various objects that reside in the LVDBMS. The syntax of specifying a privacy filter 

is given in Figure 41. By leveraging the same interface to specify privacy filters as LVQL uses to 

specify queries, privacy filters can be scripted alongside queries. From an implementation 

perspective, the same facilities that parse and process LVQL commands are leveraged to 

implement the PSL extension. 

{CREATE | UPDATE | DELETE} FILTER filter_identifier 
 [TARGET = {QUERYTARGETS | NONQUERYTARGETS | PREVIOUSLYMASKED}]  
 [TEMPORALSCOPE = {QUERYNONACTIVE | QUERYACTIVE | PERMANENT}]  
 [OBJECTSCOPE = {STATIC | DYNAMIC | CROSSCAMERADYNAMIC}] 
{CREATE | UPDATE | DELETE} VIEW view_identifier OVER stream_identifier 
 [WITH filter_identifier] 
{ASSOCIATE | DISASSOCIATE} GROUP group_identifier WITH  
 {FILTER | VIEW} filter_identifier 
{CREATE | DELETE} USERGROUP group_identifier 
{ASSOCIATE | DISASSOCIATE} USER user_identifier WITH group_identifier 
 
Figure 41. The PSL extension of LVQL; colored text illustrates user-supplied values. 
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Combinations of Privacy Filters 

Multiple privacy filters can be applied to an object, either explicitly (directly via the PSL) 

or implicitly (such as when a user who is associated with a privacy filter views a video stream). 

When multiple privacy filters are applicable to an object they are combined into a single 

effective privacy filter to determine which objects they will be associated with. Each attribute 

type of the privacy filter 3-tuple will be compared independently. Each attribute value is 

associated with a priority value. When privacy filters are combined, if two filters have the same 

value for an attribute (e.g. they both have the value query active for the temporal scope) then the 

resultant privacy filer will have the same value. If they have values that have different priorities, 

the value associated with the higher priority will be retained. In the case of differing attribute 

values but the values have the same priority, then the attribute will assume the value associated 

with the next-higher priority. For example, if two privacy filters are combined, one has object 

scope value cross-camera dynamic and the other dynamic, the resulting attribute will be all. 

Formal Specification of the Privacy Filter Model 

A privacy filter can be described in terms of access and sanitation functions. Given a set 

of streams 𝕊𝕊 and a set of active queries ℚ posed over said streams, we can define a stream 𝒮𝒮 ∈ 𝕊𝕊 

as a sequence of frames, 𝒮𝒮 = {fi, fi+1, … , fi+k−1}, such that |𝑘𝑘 − 𝑖𝑖| is a sufficient quantity (i.e. 

sliding window) of frames to resolve any query q ∈ ℚ, and fi ∈ 𝒮𝒮 corresponds to the current 

frame of video in stream 𝒮𝒮. 

A frame fk can be obtained from 𝒮𝒮 by calling an access function: 

 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝐤𝐤) → 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 ( 12 ) 
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As a stream that is associated with a privacy filter is transmitted from the LVDBMS, it is 

sanitized with a sanitizer function: 

 𝐒𝐒𝐟𝐟𝐒𝐒(𝓢𝓢, 𝐟𝐟) → 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝟏𝟏) ⨁ 𝐙𝐙(𝐟𝐟) ( 13 ) 
 

The ⨁ operator perturbs the pixel values in the frame in accordance to the bitmap mask Z which 

indicates which pixels need to be obscured by privacy filter f. If a stream is associated with 

multiple privacy filters (i.e. the stream is associated with a view and is being accessed through 

the view) then the privacy filters can be combined with the * operator and the sanitation function 

becomes: 

 𝐒𝐒𝐟𝐟𝐒𝐒(𝓢𝓢, 𝐟𝐟) → 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝟏𝟏) ⨁ 𝐙𝐙(𝐟𝐟 ∗ 𝐟𝐟′) ( 14 ) 
 

Such that f′ is a second privacy filter. Z behaves deterministically with respect to its input. Note 

that some sanitation functions can choose whether or not to respond to a query based upon the 

query history, or perturb the image with additive noise according to a statistical distribution with 

known parameters. 

Performance Evaluation 

To evaluate privacy filter effectiveness three sets of videos were utilized. The first set of 

videos was created in an academic building on the University of Central Florida campus; video 

sequences with two cameras positioned inside rooms and a third camera positioned in a hallway 

outside of the rooms. This is a challenging object matching scenario because the two rooms have 

slightly different levels of ambient lighting, and the objects appear to be different sizes due to 

their proximity to the camera. The hallway has windows along one side providing lighting from 

outside which causes its illumination to differ from the room scenes. A total of five people are 
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depicted in this video set, with at most three appearing in a scene at any one time. The second set 

is from the CAVIAR video library (R. Fisher, 2011). The videos pairs selected for experiments 

observe the same scene from two different angles; a front view and a side view. This is a 

challenging video sequence, due to its low resolution a minimal number of pixels contribute to 

the appearance an objects, making it difficult to distinguish between different the different 

objects. The third video sequence depicts automobile traffic driving along a road during the 

daytime. Appearing in this video are automobiles and a few pedestrians (walking or riding a 

bicycle). In these sequences automobiles drive down lanes in a road and are observed from an 

overhead view looking downwards. The automobiles are rigid and do not change shape as they 

move, although they do cast shadows on the road which change as the angle with the sun 

changes due to vehicle motion (and in some sequences road curvature). In the scenarios 

presented here, prerecorded videos were utilized to allow the experiments to be repeated with 

different system parameters. In these experiments, objects having an area of less than 200 pixels 

are ignored (unless explicitly stated otherwise). Two computers were used to host LVDBMS 

software; stream and spatial processing layers were hosted on a computer running the Windows 

7 Ultimate operating system with 3GHz Pentium IV CPU and 3GB RAM. The camera adapter 

and client GUI components were hosted on a 2.54 GHz Core-2 Due CPU with 4GB RAM, again 

running the Windows 7 Ultimate operating system. Both hosts are connected via a gigabit 

Ethernet switch.  
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Figure 42. Privacy filter examples from the first (left) and third (right) video series. 
 

Privacy Filter Effectiveness  

The principal concept of a privacy filter is to redact the appearance of an object it applies 

to from the output video stream; for example see Figure 42. In the LVDBMS prototype five 

privacy filter rendering methods are implemented; average pixel value of bounding box, blur, 

solid black, outline and none; where outline shows the object’s MBR and is used for debugging 

purposes and none does not redact an object’s appearance from the output stream. 

The two scenes illustrated in Figure 42 show frames from scenes with privacy filters 

associated with objects. In this case the query contains an Appear() operator. In the case of the 

frame shown on the left, a person is walking. One can observe four FP regions being redacted 

due to the door opening and closing, which can be attributed to background modeling errors. As 

can be observed from the figure, a blur privacy filter rendering method is used in this example. 

Applying a blur operator removes personal identifying information from the video while 

allowing an operator to observe the behavior, and the blurred object is not as visually distracting 

as, say, the solid black rendering method with creates significantly more visual contrast between 

the object and its background. Other methods for removing the appearance of an object are 

described in literature, such as increasing the size of the obstructing bounding box (to mask the 
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size of the object), creating “ghost” boxes (to mask the occurrence of a real object) or simply to 

substitute the background pixels in the place of the object (also to hide the appearance of the 

object). However, adding “ghost” objects or hiding the fact than an object is observed in the 

video stream would decrease the utility of the video from a surveillance perspective and are not 

further investigated in this work. 

Object Tracking Effectiveness  

Cross-camera tracking results are presented in this section, which gauge the effectiveness 

of queries to resolve to the correct result when the specified event is defined over two video 

streams. As privacy filters may be associated with such queries, privacy filter performance can 

be determined by the performance of the queries they are associated with. 

The first set of results presented are based upon the first video sequence described earlier; 

the scenario with two cameras in two rooms and a third camera in a hallway. Results are 

presented in terms of the Accuracy metric, whose equation is given as: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑻𝑻𝑻𝑻
𝑭𝑭𝑻𝑻+𝑭𝑭𝑵𝑵+𝑻𝑻𝑻𝑻

 ( 15 ) 
 

Two plots of the object recognition performance plots are provided in Figure 43 and Figure 44. 

What is plotted is the accuracy of an object recognized in one video stream being matched to the 

correct object in a second video stream and the correct bags subsequently combined. In order to 

maximize the number of object matching evaluations, the matching logic is executed for each 

frame of video, and if an object match is recorded, it is disregarded and objects are re-matched in 

each subsequent video frame (i.e. object matches are not recorded across frames). As can be 

observed from the plots, initially the bags corresponding to the objects have fewer instances and 

matches are based upon matching fewer observations. The normalized distance function utilized 
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to gauge the similarity of the two point sets. Therefore, object matching is performed as follows; 

objects are matched from their appearance in one video to their appearance in a second. An 

object’s bag in one video is utilized as a query point to retrieve its 1NN; if another feature point 

corresponding to a bag in the second video is within the IDT, it is considered for a match. If the 

proper matching object form the other video is returned, TP is incremented, else it is an FP. (In 

the case of an FP either the matching point does not exist in the index and an incorrect object 

was returned, or the matching object does exist in the index but a different object lying closer to 

the query point was returned.) If no object lies within the IDT and there is no corresponding 

object in the index, TN is incremented else FN is incremented (FN meaning that the proper 

object exists in the index and is farther from the query point than the IDT permits for matching 

consideration). 
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Figure 43. Cross-camera query evaluation accuracy for video sequence #44. 
 

 

Figure 44. Cross-camera query evaluation accuracy for video sequence #46. 
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Continuing with the query evaluations, an additional four queries were evaluated over 

CAVIAR videos, two queries are posed over single video streams and two involve cross-camera 

tracking. The queries and results are presented in Table 13. The first two queries presented 

involve only a single camera stream and are not dependent upon the performance of the cross-

camera matching. Their accuracy falls back to the performance of properly segmenting an object 

from the background of the video and then tracking that object within the view of a single 

camera. A separate section of privacy result evaluations is not presented because that result set 

would be equal to what is presented in the accuracy column here. 

In order to arrive at the results presented in Table 13, query accuracy was evaluated 

manually based upon a human observer determining of the requisite event is depicted in the 

video stream and recorded at five second intervals over a two minute evaluation period. For 

example, if the query result, as calculated by the LVDBMS, was correct, then TP would be 

incremented. 

Table 12. Privacy filters corresponding to scenario in Figure 45 
LVDBMS Objects Associated privacy filter 
Camera None 

TMC operator (user 1) None 

News station (user 2) None 

View 1 Target = query targets 

 

In the scenarios presented thus far, each frame is evaluated independently and privacy 

filters are applied. If a background segmentation or query evaluation error were to occur then the 

appearance of an object would not be redacted from the output video stream. Additionally, if two 

objects appear similarly, then they cannot be distinguished without some other type of 

identifying information (such as the detection of an RFID-enabled badge). An alternative 

113 

 



scenario would be to redact the entire video and only show detected objects which are not 

positively associated with privacy filters. 

Holistic Demonstration of a Privacy Filter 

This subsection provides a demonstration of a privacy filter evaluated over a traffic video 

from the third video dataset. The active query in the system checks for the appearance of an 

object via the Appear() operator, and is illustrated in Figure 45. 

In this example a live video feed is originating from a traffic camera c1. A view, v1, has 

been defined over the c1 video stream in the LVDBMS. Associated objects and corresponding 

privacy filters are indicated in Table 12. 

Table 13. Query accuracy evaluation results 
Query 
Name Description Accuracy 

Appear 
True if objects with area greater 
than 100 pixels appears in the 
frame, else false 

100% 

North 
before 
south 

True if there exists an object is 
moving with downward 
motion. Before operator has a 
window size of 20 frames; if 
the object stops or changes 
direction for less than 20 
frames it is still considered true. 

100% 

Appear 
across 
cameras 

A person appears in camera 1 
and then is recognized when 
they appear in a second camera. 

83% 
(TP=20, FN=4) 

Appear, 
then cover 
across 
cameras 

An object appears in camera 1 
then goes through a door 
(outlined by a static object) in 
the second camera. 

91% 
(TP=22, FN=2) 

 

In this scenario a single camera is generating the video stream input into the LVDBMS. 

The traffic management center (TMC) operator can view the unredacted video stream directly; 

Figure 46. However, a live (real-time) news feed created for dissemination to a news station 

passes through a view, v1, defined over the video stream c1. As this view has a privacy filter 
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associated with it (i.e. see Table 12), the privacy filter is applied to the output video stream that 

is disseminated for public consumption (Figure 47). 

 

 

 

 

 

 

Figure 45. Holistic privacy filter example showing a camera, a view with associated privacy 
filter and two video consumers. 
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Figure 46. Imagery as observed by the TMC operator. 

 

Figure 47. Video stream as observed through the view; note the blur effect. 
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Summary 

Networks of connected cameras assume an increasingly important role in ensuring safety 

and are finding applications in many diverse application areas, to include healthcare monitoring, 

viewing of inaccessible areas such as the inside of chemical tanks and the tops of bridges. In this 

chapter a privacy preserving framework was presented. The LVQL language allows for privacy-

preserving views to be defined, and privacy filters to be specified. The combination of a 

declarative query language and a general purpose real-time video stream processing data 

infrastructure provides a framework for rapid privacy-aware video processing application 

development, by affording application developers and designers the ability to focus on their core 

business problems, and not on creating stream processing functions that are ancillary to their 

primary goals. The privacy preserving framework presented in this chapter, and corresponding 

experimental results, indicate that the privacy preserving techniques presented in this chapter can 

effectively be applied to an LVC environment and are amenable to real-time processing. 
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CHAPTER 6: EFFICIENT QUERY PROCESSING 

As the number of cameras deployed and monitored continue to increase, the need for 

economical processing algorithms will also increase. The LVDBMS is a stream processing 

database environment for LVC. Users of the LVDBMS can submit queries describing events, 

and be notified when the queried event is observed. In order for the LVDBMS to be able to 

handle a maximal number of queries given an implementation consisting of fixed infrastructure 

resources (i.e. available CPU, primary memory and network capacity), the speed and efficiency 

with which queries can be evaluated and their results processed is of prime importance. 

In a database system, a component called a query optimizer assumes a pivotal function in 

the construction and execution of queries. The query optimizer receives a query, in an 

intermediate form, and outputs a selected query evaluation plan that is ready for execution by the 

host database platform. In this chapter a query optimizer is presented that is designed to generate 

queries optimized for a dynamic stream processing environment. When generating a query 

execution plan, this query optimizer considers current queries that are executing in the system 

and trailers an execution plan that attempts to take advantage of intermediate computation that is 

already being performed for existing queries with the idea of eliminating redundant computation 

as a way to conserve system resources. Thus, in this section a query optimizer is presented and 

evaluated in the LVDBMS test bed environment. Also presented are query execution 

optimizations designed to benefit from the multicore processors that are prevalent in modern 

computers. 
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Introduction 

Environmental monitoring by video cameras is applicable to a number of domains 

ranging from transportation, security and manufacturing to battle field scenarios. However, with 

current algorithms, there is a wide performance gap between what we would like to have 

automated, and what we actually can automate. Thus, human observers continue to play a vital 

role in the detection of critical events that are observed by video cameras. However, for a human 

to continuously observe video of a scene and maintain high levels of vigilance in spite of 

distractions and fatigue is very difficult, especially if they must watch for long periods of time in  

order to observe an event that happens very infrequently. 

Thus, a number of video monitoring solutions have been created to address the problem 

of event detection, however, most of these are applicable to only a narrow scenario (Velipasalar 

et al., 2010). The approach of building a vertical video processing application to solve a problem 

in one particular domain can result in information silos and inefficient use of resources. 

Furthermore, the deployment of a large scale network of video surveillance hardware is 

expensive and time consuming. It would be desirable if such infrastructure could be shared for 

multiple applications, thus increasing its potential return on investment. Similar to how a general 

purpose relational database may be utilized to develop a variety of business software 

applications, the LVDBMS is a video stream processing platform designed to satisfy real-time 

processing and throughput needs that can be leveraged by developers and architects creating 

stream processing business solutions. The concept of LVC treats networks of video cameras as 

data input devices and leverages the LVQL query language to facilitate rapid stream processing 

application development. 
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The LVDBMS (Aved & Hua, 2012; R. Peng et al., 2010) is a prototype test bed 

implementation of an LVC environment. It improves upon a multitude of existing video and 

multimedia database solutions, e.g. (Ahanger & Little, 1996; Ahmedali & Clark, 2006; Antani, 

Kasturi, & Jain, 2002; Hampapur et al., 2005; Velipasalar et al., 2010). However, many of these 

existing methods utilize offline processing and video storage that is not feasible in a video stream 

processing environment due to the velocity and volume of the incoming data streams. As an 

example, the BilVideo (Catarci et al., 2003) video database solution permits search based upon 

spatial and temporal features, but the necessary feature extraction phase is conducted offline. 

Stream data in the LVDBMS must be processed online and with little delay, as processing 

performance and overhead must be minimized in order to maintain minimal detection delays 

after an event has occurred. 

The LVDBMS is a 4-tier stream processing database environment designed for 

automated event detection, with applications in real-time surveillance with a large number of 

video cameras. Users submit events of interest to be monitored in the form of LVQL queries; 

when the system detects that an event has been observed, an associated action can be executed. 

For example, sending a user notification or recording a portion of a video stream to storage 

media. 

Background 

In non-video-stream processing environments a significant amount of work has been 

performed pertaining to query optimization. For example, some previous works (Finkelstein, 

1982; Hall, 1974) utilize heuristics to find common sub expressions. Other works utilize a pre-

processing step to generate metadata about the queries (Grant & Minker, 1981; W. Kim, 1984). 
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Another work pertaining to multiple-query optimization is (Sellis, 1988), but it also is oriented 

towards queries posed over relational databases. In the domain of distributed stream processing 

and networks of sensors, a multitude of work pertaining to optimizing queries and multiple 

queries over data streams has been done, for example, (Ahmad & Cetintemel, 2004; Babcock, 

Babu, Datar, Motwani, & Widom, 2002; Babu & Widom, 2004; Makhoul et al., 2000; Pietzuch 

et al., 2006). 

LVC databases differ from relational databases and sensor stream processing 

applications. For example, in a surveillance deployment, a “hot stream”, i.e. a video stream that 

is utilized by a multitude of queries due to a strategically positioned camera, may become a focal 

point of system resource contention. In traditional DBMSs, hotpots are addressed by efficient 

and granular data locking techniques, or by caching popular data. Such techniques are not 

applicable to an LVC environment (e.g. caching would not be feasible due to the high velocity 

and variety and rapid processing requirements that pertain to data extracted from video streams). 

Query Processing 

This section introduces query processing in the LVC environment. 

Overview 

In this work LVQL is discussed; the high-level declarative query language of the 

LVDBMS. It is compared with Structured Query Language (SQL), which is a widely-known and 

popular declarative query language. Declarative query languages express the desired query 

results that should be returned; they do not specify the processing control flow or algorithms that 

should be implemented in order to obtain the desired results; the host database system must find 

an efficient plan to process the query. Note that query optimization hints are beyond the scope of 
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this work; e.g. (Bruno, Chaudhuri, & Ramamurthy, 2009), which provide a way for the query 

writer to influence the query optimizer in cases where the query optimizer might make a poor 

choice pertaining to the execution plan it selects. (One of the downsides of query hints is that 

when queries are imbedded in applications and have hints, the hints may be pertinent for a 

particular distribution of the data or a specific version of the host database environment, and over 

time may lead to worse performance.) 

The Query Parser and Translator 

Before a query can be sent to the query optimizer, its syntax must be verified and parsed. 

The LVDBMS query parser ensures that received LVQL queries are syntactically correct, and 

then it generates an algebraic tree version of the query. This algebraic tree is sent to the query 

optimization module, which generates an efficient execution plan and metadata that corresponds 

to the query that is used by the execution engine to schedule the execution of the query. Next, the 

query is scheduled for execution, and results are returned to the user. Queries continue to execute 

until terminated or an error occurs (for example, if a video source goes offline or ceases to exist 

in the system). An overview of the query lifecycle is give in Figure 48. 

LVQL is defined by a set of productions that specify the strings (i.e. queries) that are 

valid under the language definition, and may be referred to as the logical algebra, which defines 

the expressions that are valid in the language and is tied to the data model. When the query 

parser receives a query, it attempts to parse it against this grammar, which is given in Extended 

Backus-Naur form (EBNF). The first step the parser performs is lexical analysis; parsing the 

query into discrete tokens by a scanner looking for pre-defined sequences of characters that 

comprise tokens in the language. The second step is syntactic analysis which entails parsing the 

query. The parsing component checks that the input query string matches a valid query 
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expression in accordance with the LVQL grammar. The output of the query parser is an 

expression tree; an intermediate format of the query. This is then passed off to the query 

optimizer which generates the actual plan that will be executed by the database management 

system to produce the query result; this execution plan is expressed in what is called the physical 

algebra, which is platform-dependent. The physical algebra consists of the specific steps that will 

be undertaken to derive the query result (i.e. data flows) and also the algorithms and associated 

data structures that are implemented at each step. As such, the physical algebra is specific to a 

particular architecture and platform, and even a particular version of the DBMS. The execution 

plan expressed in the physical algebra is also commonly referred to as the query plan, or the 

query execution plan. Figure 49 provides a graphical illustration of the various stages of 

preparing a query for execution along with the LVDBMS components that transform the query 

from one form to the next. Note that the LVDBMS utilizes the Coco/R compiler generator (Aho 

& Ullman, 1972). 

In traditional database management systems the query optimizer first generates a series of 

plans which all produce the same final result, but vary in the specific algorithms and processing 

steps undertaken to achieve that result. Query plan generation and optimization is a difficult and 

computationally intensive procedure, and typical query optimizers use heuristics to guide them in 

the process. A popular heuristic pertains to the utilization of an index (e.g. a hash index) to 

perform record retrieval based upon an identifying data field; if it is estimated that less than 10% 

of the records will qualify for a retrieval based upon data statistics the index will be utilized (and 

thus random disk accesses), else, the entire table will be scanned serially for qualifying values. 
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Figure 48. Query lifecycle; from the inception of a query to results delivered to the issuer. 

The Query Optimizer 

The high-level language LVQL does not specify the logic or specific algorithms and data 

structures that will be required to derive and return a query result; it is the job of the query 

optimizer to determine these and then hand this off for execution. The input to the query 

optimizer is an intermediate tree structure that represents the query, and is the output of the query 

parser module. The output of the query optimizer is one or more subqueries. Each subquery 

corresponds to a spatial layer host where it will be executed. The subquery placement is dictated 

by the video streams associated with the respective spatial processing layer host. 
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Internally to the query optimizer it is generally the case that a series of equivalent 

execution plans are generated. They are equivalent in the sense that they return the same final 

query result, but differ in their internal data flows, data reductions and algorithms implemented 

at the various steps (Chaudhuri, 1998). Cost estimates are applied to these, and a “good” one is 

selected. The various execution plans can have vastly different runtime characteristics and the 

selection of execution plans can have an overarching effect on the overall performance of the 

DBMS. Query plan selection can be done by consulting the statics in the metadata that describes 

the available data to derive estimates pertaining to both the cost of executing a particular 

operation, and a summary of the resultant data that is output by that operation.  

 

Figure 49. Query transformation steps, from inception to execution. 
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The query optimizer for the LVDBMS is designed to work a bit differently than 

traditional query optimizers for relational DBMSs. The statistical summary data that a query 

optimizer uses to select a query plan either isn’t available for a stream-oriented platform, isn’t 

applicable, or would change so frequently that it would be cost-prohibitive to keep current. The 

LVDBMS query optimizer optimizes queries at runtime and only considers “static” metadata that 

pertains to video streams, such as which spatial layer host they are associated with. Given a 

spatial layer host that a query will need to be executed on, the LVDBMS query optimizer takes 

into account the queries that are currently executing on that host in order to derive a good 

execution plan for the new subquery. 

An additional criteria that can be considered by traditional query optimizers is the type of 

query that it received; for example in the case of a batch query, a user will not be receiving the 

results immediately and an execution plan that maximizes the number of batch queries that can 

run concurrently with reasonable performance is a potential optimization criteria. In the case of 

an interactive query, where a user is waiting for the query result, the time to returning an initial 

query result (or portion thereof) may be the optimizing factor. In the case of the LVC we have 

two primary criteria that queries are optimized for: 

• Real-time query results, and  

• Scalability; the number of queries that may be concurrently executed. 

In the LVBMS subqueries on each spatial processing layer host are executed in groups, 

called query groups. An overview of the LVDBMS query optimization process is provided in 

Figure 50: in (1) the query is posed by a user in LVQL. The parser translates it into an internal 

query tree (equation), which is inputted to the query optimizer. (2) The query optimizer considers 

the other subqueries that are currently executing on a particular spatial processing layer node and 
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creates an execution plan that is tailored to the runtime environment (a specific query group) on 

that node. (3) Queries in the group are executed and results returned to the user. 

When the query optimizer considers a specific spatial processing layer node to execute a 

query on, it considers the current queries executing on that node to ensure a subquery can be 

executed and access all of the video streams it needs, to compute its result. Queries are grouped 

and executed together based upon their ability to share computation and input data streams. If 

some sharing is possible among subqueries, they are grouped together and their execution trees 

merged by inserting compression operators (in the case of execution overlap) or caching 

operands (in the case when they share a common data stream). 

LVDBMS Query Optimization 

The LVDBMS query optimization environment consists of two primary components, the 

run-time query optimizer and the query execution engine. The query optimizer is designed to 

consider the currently executing subqueries on a particular node and, if possible, merge a new 

subquery into an existing query group. The execution engine is multithreaded and each query 

group runs within its own processing thread. The subquery merging procedure is designed to 

permit the newly introduced subquery to execute and either share execution results or an input 

data stream with other subqueries. If a new subquery does not share any commonalities with 

currently executing subqueries, a new query group is allocated for it. In order to merge 

subqueries the query optimizer can rewrite the query tree and merge queries by injecting one of 

two new nodes into the tree (which also serve as subquery merge points). The multithreaded 

query execution engine is designed to take advantage of modern CPU’s which have multiple 

cores and large caches.  
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Figure 50. Transformations undergone by a query; from query to subquery to results. 

The subquery merging process involves comparing two tree-like graph structures to 

identify the largest common sub-graph (Jungnickel, 2004). The comparison is between a new 

subquery, which is oriented as a tree, and the subqueries in the query group, which are groups of 

connected trees where each connected subquery has its own distinct root. If the new subquery is 

the same as one of the currently executing subqueries, or the new subquery shares at least one 

common operator, then a new compression operator is allocated and merged into the subquery 

tree (unless there already exists one at that point). The new subquery is merged to point to that 

compression operator, and the existing subquery below the merge point is moved below the new 
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compression operator. Note that in order for this merging to occur, in addition to the common 

nodes being the same operators, they must have identical operands (in terms of both query 

streams referenced and any associated thresholds). If the match is only an operand that specifies 

a particular data stream, then a caching node is allocated, merged into the existing tree, the 

existing operand moved below it, and the new subquery references the caching node in the place 

of its previously existing operand that had corresponded to the video stream. This is illustrated in 

Figure 51. By injecting this caching operand, fetches to data outside of the query group are 

reduced. Data fetches are required in order for the query operators to obtain objects and metadata 

that pertain to current video frames. 

 

Figure 51. Before and after illustrations of a subquery merged into a query group. 
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Once the query optimizer has received a query, its next task is to decompose the query 

into subqueries for execution on spatial layer processing hosts. Subqueries are created based 

upon the video streams available to a spatial processing layer host. Given a subquery and a 

spatial processing layer host upon which it will execute, the next task is to determine if there is 

overlap between the new subquery and any existing query groups. If the subquery graph and 

query group graphs contain a common subgraph the subquery will be merged into the query 

group else a new query group will be allocated containing the subquery. 

Subquery matching into a group is performed by creating a hash that represents each 

possible subtree in the subquery graph, and comparing them to hashes representing each possible 

subgraph corresponding to the query group. Note that the hash structure for the query group can 

cached between uses and maintained along with the subqueries in the group in order to reduce 

the overhead of recreating the hash structure for each new subquery. If the matching subgraph 

contains operators (in addition to stream operands) then a new compression operator is allocated 

and inserted as the merge point, and the query group data structures are updated to track and 

maintain the new compression operator. If the match is only an operand, then a caching operand 

is allocated and inserted into the query group. This process is illustrated in Figure 51 with the 

common LVQL sub-expression being Appear(c1.*, 250). 

LVDBMS Query Execution Environment 

While the query optimizer translates a query from the logical to the physical algebras, the 

execution engine executes the operators that comprise the complex query and enqueue the 

subquery evaluations for transmittal to stream processing layer nodes. (A complex query is a 

query that implements a number of different data processing algorithms.) Subqueries are 

executed periodically, for example once each second. The execution engine is comprised of two 
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components, the execution engine that executes the query groups, and a metadata manager which 

maintains the state of the associated video streams; i.e. the current frame for each stream, the 

objects that are visible in the current frame, etc. The metadata manager also contains locking 

facilities to ensure that the metadata is maintained in a consistent state despite the numerous 

reader and writer threads that keep the metadata up to date. When a subquery is evaluated, the 

first step of execution is for the operand nodes to perform a fetch from the metadata store. Each 

operand corresponds to a video stream, and can contain some filter criteria (for example, to fetch 

only dynamic objects or static objects or a particular object, for example). Thus each operand 

fetches the current frame and object information pertaining to its corresponding stream. It then 

returns that data to the operand’s calling operator. Thus query execution is a data-driven process 

beginning at the base of the execution graph with the operands and ending with the root node of 

the subquery returning its subquery evaluation result. This subquery result is then enqueued for 

transmittal to the corresponding stream processing layer host for further processing; this process 

is illustrated in Figure 52. In the case a query was decomposed into multiple subqueries, the 

subquery results must be combined to produce the final query result. 

Cost Estimation 

 Queries expressed in physical algebra have specific processing algorithms and data 

structures associated with the processing steps. Since the processing algorithms are known, cost 

estimates can be associated with the various algorithms (i.e. operators and operands in the 

physical algebra). The cost estimate for each operator can be estimated based upon the resources 

they require to return an intermediate result at each step of query processing. For the LVDBMS 

these costs are based upon the CPU and primary memory footprint that is required for them to 

evaluate their input. Thus, the various stages of the query can be summed in order to compute a 
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cost estimate for the entire query. By summing the subqueries in a query group, a cost estimate 

can be derived for the query group. 

Table 14. Evaluation costs of various operators and operands 
Operators and operands Evaluation cost 

Operands Caching 2 
Dynamic, Static 5 
Cross-camera 20 

Operators 
 

Appear 5 
And/Or/Not 1 
Before/Meet 10 
North/South 6 
Compression 1 

 

  

 

Figure 52. Example depicting four query groups in the LVDBMS query execution engine. 
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Table 14 presents representative cost estimates for select LVQL operands and operators. 

The Boolean operators execute the simplest algorithms in order to compute their result and thus 

have the lowest cost estimate. Temporal operators accept three arguments; two arguments 

correspond to other operators the temporal operator is being evaluated over, and the third 

operator is a window length specifying a maximum buffer of intermediate evaluation results the 

temporal operator will consider when evaluating its return value. For example, the Before() 

operator maintains two buffers with intermediate evaluation results of each of its operator 

parameters which have a maximum capacity equal to its window length argument. The Appear() 

operator does not need to maintain execution state history between invocations and requires 

some CPU cycles to evaluate the objects pertaining to the video stream that correspond to the 

operand that is specified when it is invoked. The Appear() operator simply iterates through its 

input and determines which of the current objects, if any, have an area that is equal to or greater 

than the value specified in its threshold argument. By measuring the cost of executing a query 

group, and then adding a new subquery, the execution cost that is saved by sharing computation 

between the new subquery and the query group can be measured and quantified. 

Experimental Study 

This section provides results pertaining to the execution efficiencies gained by query 

optimization. For these results a series of pre-recorded traffic videos was utilized; an example 

frame is provided in Figure 53. The particular frame of video depicted in this figure is from the 

video stream with identifier 2, identified as c2 in the queries in Figure 54 and shows a static 

object, 565b46, drawn in the lower right corner of the frame. c2.s565b46 is a static object drawn 

by the user. cn refers to a particular video stream. 
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Figure 53.  Example video frame showing a busy road and a static object (the blue 
rectangle). 
 
Action 'q1' on Before(Appear(c0.*,250), Appear(c1.*,200),200); 
 
Action 'q2' on NOT Before( 
 Appear(c0.*,250), 
 North(c2.s565b46, c2.*,250), 120); 
 
Action 'q3' on Before( 
 West(c2.*, c2.s565b46, 10), 
 North(c2.s565b46, c2.*,250), 120); 
 
Figure 54. Evaluation 1: queries utilized for testing the query optimizer. 
 
Action 'q4' on Before( 
 West(c2.*, c2.s565b46, 10), 
 Before(Appear(c0.*,250),Appear(c1.*,200),200),120); 
 
Action 'q5' on Before( 
 West(c2.*, c2.s565b46, 10), 
 Before( 
  Before(Appear(c0.*,250),Appear(c1.*,200),200), 
  Appear(c1.*,200),200),  
 120);  
 
Action 'q6' on Before( 
 West(c2.*, c2.s565b46, 10), 
 Before( 
  Before(Appear(c0.*,250),Appear(c1.*,200),200), 
  Before(Appear(c3.*,250),Appear(c0.*,400),200), 
  200),  
 120); 
 
Figure 55. Evaluation 2: complex queries for optimization evaluations. 

134 

 



Pre-recorded videos were utilized for this performance study in order in order to allow 

experiments to be re-ran with different system parameters. Two evaluations are provided; each 

evaluation consists of a series of queries being submitted to the LVDBMS. For each evaluation, 

when the initial query is submitted, no other queries exist in the system. A new query group is 

allocated for the first query. Subsequent queries in the evaluation run are then merged into the 

query group, and the performance of this optimization step is reported in the tables provided in 

this section. The first evaluation run utilizes three simple queries, provided in Figure 54. For the 

second evaluation run, more complex queries were selected which have more operands and 

operators and provide a test of the query optimizer with complex query trees; provided in Figure 

55. The tables in this section that provide query costs are given in terms of the query cost 

estimation metric detailed in the previous section. 

The first evaluation run the queries provided in Figure 54 are submitted sequentially to 

the LVDBMS. Internal performance counters are implemented in the LVDBMS prototype to 

allow for query execution statistics to be collected. Fewer operands and operators mean lower 

computational requirements to evaluate queries, and also indicate the quality of the optimization. 

Snapshots of selected counters are presented in Table 15 at five-second intervals. After the first 

query is submitted, subsequent queries are submitted in between execution counter snapshots. 

The first query sent is q1, consisting of a Before() operator and two Appear() operators. As can 

be seen from the first row of the table, the physical algebra contains three operators and two 

operands (the operands corresponding to the two video streams, c0 and c1). In their unoptimized 

forms the second query (q2) contains four operators and two operands, the third (q3) has three 

operators and again two operands, the first operand (c2.*) refers to all dynamic objects in video 

stream c2, and the second referring to a specific static object by its identifier. As the performance 
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statistics are collected at five-second intervals, the 10 data requests observed in the first row of 

the table correspond to the two operands performing five requests each. The next table, Table 16, 

provide the same performance counters, but with the query optimization logic enabled such that 

after the first query is submitted, subsequent queries may be merged into the query group and 

thus duplicate execution is eliminated. The results in this table show that due to the merging, 

facilitated by execution compression operators and caching operands, operator executions and 

data fetches are reduced. Table 17 provides a side-by-side comparison of the two scenarios; 

without and with the query optimization logic. From the cumulative summary results presented 

in this table the cost savings from the query optimization is apparent, as indicated in the last 

column of the table. Results from the second evaluation are presented in Table 18, corresponding 

to the queries indicated in Figure 55. These queries are significantly more complex than the first 

set. However, they also contain subqueries with significant operator and operand overlap and 

thus can achieve potentially large cost savings that the query optimizer can recognize and 

leverage. 

 

Table 15. Evaluation 1, performance counters without optimization 

# Operands # Operators 
# 

Executions 
# Data 

requests 
Evaluation 

cost 
2 3 15 10 35 
5 7 46 32 78 
9 10 93 73 127 

 

Table 16. Evaluation 1, performance counters with optimization 

# Operands # Operators 
# 

Executions 
# Data 

requests Evaluation cost 
2 3 15 10 35 
4 7 42 28 69 
6 10 80 56 102 
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Table 17. Evaluation 1, cost efficiencies gained 
 Unoptimized query Optimized query 

Query Cost Cumulative cost Cost Query group cost Optimization saving 
q1 35 35 35 35 N/a 
q2 43 78 34 69 9 
q3 49 127 33 102 25 

 

Table 18. Evaluation 2, cost efficiencies gained 

Query Cost Cum. cost Query group cost Opt. saving Operands Operators 
Compression 

Operators 
q3 67 67 67  4 5 0 
q4 92 159 125 33 7 10 1 
q5 117 276 208 91 11 17 2 

 

Summary 

The translation of query algebra from the logical to the physical, and selection of the final 

query evaluation plan are critical steps in a database management system. These important steps 

are generally performed by the query optimizer. The execution plan specifies the data flow and 

steps the database management system will undertake to evaluate the query. The selection of 

poor query evaluation plans will result in poor system performance. Query optimizers in 

traditional relational databases consider a number of statistics pertaining to the data and table 

structures that the queries it optimizes are posed over. However, in an LVC environment much 

of this information is either not available or cannot be leveraged in a stream processing 

environment. 

This chapter presents a query optimizer and associated execution environment that is 

designed for the LVC environment. It performs query optimization at runtime, taking a new 

query and finding any possible overlap with the existing queries in the system and rewriting the 

new query in order to minimize duplicate subexpressions and optimize the utilization of the 

query execution engine. Results presented in this chapter show that the query optimization 
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methods that were designed for the LVC environment and implemented in the LVDBMS 

prototype reduce query execution overhead by merging the physical algebra query trees. To 

facilitate the performance evaluation and the impact of the query optimization, a query cost 

metric was derived and used to present optimization performance results.  

 

 

Figure 56. The lower three LVDBMS tiers, showing major components. 
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CHAPTER 7: LVDBMS PROTOTYPE 

Introduction 

The LVDBMS prototype is the testbed for implementing LVC concepts and gauging the 

feasibility and performance of selected algorithms, data structures and processes. The C# 

programming language and .NET runtime environment were selected for implementing the 

LVDBMS, along with the EMGU.NET (http://www.emgu.com) and OPENCV (Bradski & 

Kaehler, 2008) libraries. Early versions of the LVDBMS prototype utilized the high-performance 

Intel IPP library (http://software.intel.com/en-us/intel-ipp) and Intel compiler to take advantage 

of hardware single-instruction multiple data instructions available in certain CPUs. 

Prototype System Architecture 

The LVDBMS is architected as a 4-tier distributed application, illustrated in Figure 20. In 

order to meet demands for increased capacity, it is designed to scale by adding additional 

processing nodes in the various layers. Each software layer utilizes a web services 

communication interface to facilitate communication between the tiers. The four LVDBMS 

application tiers are (1) the camera layer, (2) spatial processing layer, (3) stream processing layer 

and (4) client layer. The lower three tiers, along with major components, are illustrated in Figure 

56. 

Camera Layer 

The camera layer is comprised of the image capture device and a software application 

referred to as an adapter. The image capture device or camera records a scene. In order to 

increase the flexibility of the LVDBMS with regards to the types of camera hardware it can 

interface with, no processing capabilities are assumed of the camera other than to record video 
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and transmit it to an adapter that can be coded to interface with that particular camera hardware. 

(Note that some cameras have compute facilities capable of running image processing algorithms 

such as background detection and object tracking.) The camera adapter runs on a host computer 

and can be connected to the camera via a physical communication medium that both the camera 

and host support, such as USB, a wireline network, coaxial cable, etc. A screen capture of the 

camera adapter GUI is provided in Figure 57. 

The camera adapter receives the raw imagery from the camera and adds metadata 

pertaining to the frames and objects observed. By raw imagery it is mean a temporally ordered 

series of frames of video that is simply data; a two-dimensional matrix of pixel values 

corresponding to what was sensed by the imaging device. The camera adapter implements 

algorithms to model the scene background. As salient objects move across the background, a 

segmentation algorithm attempts to determine which pixels belong to the scene background and 

which pixels do not. Pixels that are not recorded as part of the background are grouped together 

into a blob. Blobs are assigned an identifier that is unique to each instance of a camera adapter 

(and thus, unique to each video stream) A tracking algorithm, referred to in this work as a frame-

to-frame tracking algorithm. The frame-to-frame tracker maintains correspondences between 

objects, as they move, from one frame to the next. By maintaining these correspondences, the 

image analysis module can compute a feature vector corresponding to the visual appearance of 

each object in each frame of video. The output of the image analysis module is metadata 

describing each frame, e.g. a monotonically increasing frame number, timestamp when the frame 

was received, the number of objects in the frame and their identifiers, privacy filters associated 

with the camera, etc. 
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Figure 57. Camera adapter, simulating a video stream from a pre-recorded video. 

The communication handler establishes and maintains communication between the 

camera adapter and the spatial processing layer. On startup it registers the camera with the spatial 

processing layer host, including a description of the camera and its location. It contains queues 

for buffering and sending imagery and metadata to the spatial processing layer host. It also 

receives commands and camera-level privacy filters. 

Spatial Processing Layer 

Spatial processing layer hosts receive imagery and metadata from camera adapters and 

maintain mappings associating video streams with camera adapters, indices of frames and 
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corresponding objects, a security matrix pertaining to which users and user groups can access 

cameras. 

The communication handler manages communication sessions between camera adapters 

and spatial processing layer hosts, between spatial processing layer hosts and stream processing 

layer hosts and between itself and clients to serve imagery to clients viewing video streams 

directly. The privacy manager stores privacy filters for streams and views associated with the 

respective spatial processing layer host. These privacy filters are applied to imagery served to 

clients. The spatial query engine executes subqueries within query groups with execution pool as 

described previously. A screen capture from the GUI of a spatial processing layer service is 

given in Figure 58. From the output shown in the figure, a camera adapter registration was 

received and later timed out after the heartbeat service could not communicate with it for one 

minute. 

 

Figure 58. The camera server service, which runs in the spatial processing layer. 
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Stream Processing Layer 

Stream processing layer hosts receive subquery results that were evaluated on spatial 

processing layer hosts and compute the final query result each evaluation cycle. The query 

executive maintains metadata pertaining to the available spatial processing layer hosts and which 

video streams they are associated with; the last time communication was received from each 

host, etc. The client session maintains communication sessions with clients, including a periodic 

“heartbeat.” If communication with a client is lost for a period of time, any queries associated 

with that client can be aborted. The client session manager also maintains a list of user-level 

privacy filters associated with specific users. A screen capture showing the GUI of the spatial 

processing layer service is provided in Figure 59. 

 

Figure 59. The query processing service, which runs in the stream processing layer. 
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Figure 60. The LVDBMS user client, showing a connection to a camera server and three 
video streams and two views. 

Client Layer 

The LVDBMS client provides the interface between human operators and the LVDBMS 

query processing layers. Users can browse available cameras, define views and privacy filters 

and submit queries to stream processing layer hosts. It also receives query results and provides 

them to the user, including notifications that are configured as a part of a query. Users who are 

members of the administrators group can view all active queries in the LVDBMS as well as 

perform other administrative functions such as privacy filter, user and user group management. 
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The screen capture of the LVDBMS provided in Figure 60 shows a client GUI connected to one 

camera server (the LVDBMS service that runs in the spatial processing layer) which has three 

video streams available for viewing or querying. One can observe a view, v11, defined over 

stream 0, which is also associated with a privacy filter. A second view, v12, is defined over v11 

and the LVQL for defining this view is shown in the query window. 

Experimental Study 

This section presents additional performance results pertaining to various aspects of the 

LVDBMS prototype. In order for objects to be identified across video streams, a number of 

internal data structures must be maintained, and algorithms developed to maintain them. 

Additionally, the some components of the LVDBMS prototype is structured as a series of 

pipeline stages, such that each stage implements some specific processing steps in the overall 

data flow. Most pipeline stages are driven by their own processing threads, thus, concurrency 

control mechanisms and thread-safe data operations are required in order to ensure proper system 

state is maintained. In many cases concurrency control reduces certain aspects of the system to a 

serial ordering (e.g. two threads cannot write to the same memory location at the same time and 

produce a deterministic result). Thus, waiting for and acquiring locks consumes some small 

portion of the computational overhead incurred in maintaining system state. These system-

oriented results that did not properly fit into an earlier section is what are detailed in this section. 

Query Processing Performance 

 Results presented in this section pertain to evaluating individual subqueries (i.e. not 

subqueries oriented in query groups). As only subqueries are evaluated, this time does not 

include communication overhead to combine subquery results in the stream processing tier. 
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The continuous queries (i.e. subqueries) in the LVDBMS are evaluated periodically. The 

intervals in which they are evaluated is referred to as the resolution of the query. The amount of 

time required to evaluate each subquery should be less than its resolution, else the subquery 

evaluations will be missed due to its evaluation time running over into the next evaluation time 

slot. To test the subquery evaluation performance of the execution engine and related metadata 

structures, an evaluation scenario comprised of executing five subquery simultaneously for a 

period of 120 seconds over ten randomly selected videos was performed. The test was repeated 

for ten different videos, with a query resolution of one second. The time taken for the evaluation 

procedure to conclude is recorded at one-second intervals. These evaluation times are plotted for 

each video in Figure 61. Additional details pertaining to the evaluation times is presented in 

Table 19. In order to simplify the information presented in the table, it has been normalized 

relative to a single video by dividing the values by five. The evaluation times are significantly 

less than the query resolution, and in most cases the standard deviation is larger than the average 

execution time. We feel this behavior is due to processes having to wait to acquire various read 

and write locks, and for .NET runtime memory allocations. Evaluating a subquery entails first 

checking that the subquery is runnable. (For example, if an exception occurs during the 

evaluation of a subquery it will be aborted. Such an exception could occur if a video stream was 

to go offline.) Next, the query root node is signaled to evaluate, resulting in a recursive query 

tree traversal down to the operands. The operands execute their data fetches (which incurs read 

locks on the metadata structures to obtain frame and object information). The recursive tree 

traversal continues, with evaluation results returned from the leaves of the tree back up to the 

final computation in the root node. Each subquery is evaluated in such fashion and the root 
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node’s evaluation result is enqueued for transmittal to the stream processing layer host. Note that 

the query execution engine does not halt for the results to be transmitted via the network. 

Summary 

This section provided an overview of the LVDBMS prototype implementation of an LVC 

database. Its development began approximately three years ago as a C++ application in 

Microsoft Visual Studio 2008 utilizing OpenCV and the Intel Performance Primitives library. 

The decision was made to port the application to C# in order to leverage the Language 

Integrated Query (LINQ) features for performing various SQL-like functions on internal data 

types such as arrays. Due to the real-time performance requirements, in-memory data structures 

such as arrays, hash tables and lists are used, as opposed to utilizing a relational database that 

would involve transactions and writing data to hard disk. With the port to C#, the OpenCV 

wrapper EMGU CV was utilized for low-level computer vision algorithms and related data 

structures. The current version of the LVDBMS is developed in C# version 4.5 and Visual 

Studio 2012; Figure 62. 

In this chapter the LVDBMS is described, and performance results for query evaluations 

were provided. Overall the LVDBMS successfully functions as a test bed for implementing and 

testing LVC algorithms in order to advance the state of the art in stream processing 

environments. 
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Table 19. Average query evaluation in milliseconds of CPU time, by video 

Movie 
Performance 

Min Max Standard 
Deviation Average 

SR436_M2U00040 (3) 0.40 5.60 0.73 0.78 
OneShopOneWait1front (2) 0.40 30.81 6.26 4.58 
ShopAssistant2cor (2) 0.40 21.24 2.72 2.49 
TwoEnterShop1cor (2) 1.60 12.00 1.68 2.42 
TwoEnterShop1front (2) 3.40 26.60 3.05 5.97 
TwoEnterShop3cor (2) 0.40 7.00 0.90 0.87 
TwoLeaveShop1cor (2) 1.40 15.60 2.75 3.47 
TwoLeaveShop2cor (2) 0.40 14.00 1.86 1.38 
Walk2 (2) 0.40 1.80 0.40 0.72 
WalkByShop1cor (2) 0.40 3.00 0.49 0.73 

 
 

 

Figure 61. Evaluation costs for a selection of queries in milliseconds; plotted at one-second 
intervals. 
 

 

148 

 



 

Figure 62. Screen capture of Visual Studio 2012 IDE depicting a dependency graph of 
LVDBMS assemblies. 
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CHAPTER 8: CONCLUSIONS 

Summary of Contributions 

Due to increasing needs to monitor areas for purposes such as proactive maintenance, 

security and quality assurance, there are increasingly more live video streams that need to be 

monitored. This manuscript presents work pertaining to LVC and presents the LVDBMS and its 

capabilities. The LVDBMS allows for the monitoring and detection of complex events which can 

be observed by cameras. LVQL, a declarative high-level query language facilitates the 

specification of complex events to be defined and monitored. Users can leverage LVQL for ad 

hoc monitoring tasks and application developers can leverage it for stream processing application 

development, similar to how traditional business applications utilize relational database systems 

for data processing and storage. 

As cameras and imaging sensors continue to be installed, more and more of our lives can 

be captured, analyzed and correlated by computer systems. A privacy framework is presented 

which implements privacy policies that can be applied in real time to live video streams. This 

facilitates the real-time dissemination of privacy-aware video content. Efficient query processing 

techniques, web-service communication and a scalable 4-tier application architecture provide for 

a solution that can scale accommodate large camera networks. Experimental results show that the 

LVDBMS can effectively recognizes events observed in video streams, implement privacy 

policies and efficiently processing queries. 

In conclusions, major contributions feature a prototype LVC implementation including: 

• LVQL, a high-level query language for specifying events and interacting with the 

LVDBMS, 
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• A privacy-aware infrastructure permitting for the specification of privacy policies and 

their implementation in a real-time stream processing environment, and 

• Efficient query processing and execution techniques to maximize compute memory 

resource usage. 

Future Work 

There are a number of directions in which work pertaining to the LVDBMS can continue. 

It is hoped that advances published in this manuscript show the feasibility of LVC and excite 

future researchers to study real time stream processing platforms and continue to advance the 

state of the art. Figure 63 provides a visual overview of the LVDBMS software architecture. 

Annotations in dotted rectangles highlight LVDBMS components and indicate potential future 

areas of work. A summary of possible future extensions are as follows: 

• LVC as a Service: The reformulation of the stream and spatial layers into a collection of 

loosely-connected components that are amenable to being hosted in a cloud computing 

environment. By re-architecting these upper layers, capacity can be added where needed 

in order to cope with demands and to mitigate the impact of intermittent hardware 

failures. Protocols for managing and processing units of work will need to be developed. 

• Efficient Query Processing: Efficient utilization of computational resources can be 

facilitated by improved algorithms and data structures designed to more efficiently 

process requests and detect events. Such work could entail additional algebraic 

transformations of queries, and parallel query algorithms for highly parallel compute 

hardware such as GPUs. 
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• Privacy-Preserving Realm: Additional work can always be done to ensure privacy. The 

current prototype can leak privacy information in the presence of tracking or object 

segmentation errors. Additional privacy advancements could extend the PSL to better 

leverage events and context observed in video streams. 

• Federation: Protocols for establishing relationships between disparate implementations 

to permit further sharing of resources. Trust-based relationships can be defined to specify 

priority in the presence of resource contention or the specification of privacy policies. 

  

 

Figure 63. Illustration of potential future works pertaining to LVC and the LVDBMS. 
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