
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2013

Scene Understanding For Real Time Processing Of Queries Over Scene Understanding For Real Time Processing Of Queries Over

Big Data Streaming Video Big Data Streaming Video

Alexander Aved
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Aved, Alexander, "Scene Understanding For Real Time Processing Of Queries Over Big Data Streaming
Video" (2013). Electronic Theses and Dissertations, 2004-2019. 2511.
https://stars.library.ucf.edu/etd/2511

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2511?utm_source=stars.library.ucf.edu%2Fetd%2F2511&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SCENE UNDERSTANDING FOR REAL TIME PROCESSING OF QUERIES
OVER BIG DATA STREAMING VIDEO

by

ALEXANDER J. AVED
B.A., Anderson University, 1999
M.S., Ball State University, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2013

Major Professor: Kien A. Hua

© 2013 Alexander J. Aved

ii

ABSTRACT

With heightened security concerns across the globe and the increasing need to monitor,

preserve and protect infrastructure and public spaces to ensure proper operation, quality

assurance and safety, numerous video cameras have been deployed. Accordingly, they also need

to be monitored effectively and efficiently. However, relying on human operators to constantly

monitor all the video streams is not scalable or cost effective. Humans can become subjective,

fatigued, even exhibit bias and it is difficult to maintain high levels of vigilance when capturing,

searching and recognizing events that occur infrequently or in isolation.

These limitations are addressed in the Live Video Database Management System

(LVDBMS), a framework for managing and processing live motion imagery data. It enables rapid

development of video surveillance software much like traditional database applications are

developed today. Such developed video stream processing applications and ad hoc queries are

able to “reuse” advanced image processing techniques that have been developed. This results in

lower software development and maintenance costs. Furthermore, the LVDBMS can be

intensively tested to ensure consistent quality across all associated video database applications.

Its intrinsic privacy framework facilitates a formalized approach to the specification and

enforcement of verifiable privacy policies. This is an important step towards enabling a general

privacy certification for video surveillance systems by leveraging a standardized privacy

specification language.

With the potential to impact many important fields ranging from security and assembly

line monitoring to wildlife studies and the environment, the broader impact of this work is clear.

The privacy framework protects the general public from abusive use of surveillance technology;

iii

success in addressing the “trust” issue will enable many new surveillance-related applications.

Although this research focuses on video surveillance, the proposed framework has the potential

to support many video-based analytical applications.

iv

ACKNOWLEDGMENTS

I am grateful to my advisor, Dr. Kien A. Hua, for his dedication, commitment and

encouragement. He always found time to discuss ideas, research plans and provide helpful

advice. Furthermore I would like to thank my committee members; Dr. Foroosh, Dr. Ni and Dr.

Zou.

I think my wife Jessica for her support over the years and allowing me to pursue my

dreams and research endeavors, as well as my family and friends, and colleagues in the Data

Systems Lab and the Office of Research & Commercialization, for their unwavering support.

I am grateful to the University of Central Florida for providing the resources and facilities

for me to conduct my research, and for the helpful CECS and EECS faculty and staff who have

provided invaluable help and advice throughout my years as a student.

v

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

CHAPTER 1: INTRODUCTION ... 1

Motivations.. 1

Overview of Dissertation .. 2

CHAPTER 2: MULTIMEDIA DATABASES AND LIVE VIDEO COMPUTING 3

Introduction ... 4

Fundamental Concepts and Components of Multimedia Database Systems 5

Multimedia Data Representation – Data and Information ... 8

Digital Sampling and Reconstruction .. 10

Data Representation and Features ... 10

Feature Extraction .. 13

Background Subtraction .. 15

Segmentation of Image Regions .. 19

Tracking Objects within a Single Camera ... 21

Distributed Object Tracking with Multiple Cameras .. 22

Supervised and Unsupervised Learning .. 24

Clustering... 26

vi

A Brief Review of Multiple-Instance Learning ... 27

Shot Boundary Detection and Representative Image Selection .. 30

Multimedia Data Representation for Indexing .. 33

Multimedia Indexing Storage and Retrieval .. 35

The Semantic Gap ... 41

Content-based Image Retrieval ... 42

Research Video Database Management Systems.. 45

Introduction to Live Video Computing and Big Data ... 46

Basic Premises of Live Video Computing .. 46

Live Video Computing is Big Data ... 51

Summary ... 52

CHAPTER 3: INTRODUCTION TO THE LVDBMS .. 54

LVDBMS Architecture ... 56

LVDBMS Data Model .. 60

Introduction to the LVQL Query Language .. 63

Summary ... 66

CHAPTER 4: AN INFORMATICS-BASED APROACH TO OBJECT TRACKING 68

Introduction ... 68

Previous Multi-Camera Object Tracking Work .. 69

vii

Cross-Camera Object Tracking in the LVDBMS ... 71

LVDBMS Cross-Camera Tracking Implementation... 73

Performance Evaluation .. 78

Evaluation Scenario Setup ... 80

Evaluation Based Upon Relative Quality .. 81

Performance of Cross-Camera Tracking ... 82

Inclusion Distance Threshold .. 87

Conclusions and Comments .. 88

Summary ... 89

CHAPTER 5: MANAGING LIVE VIDEO DATA WITH PRIVACY PROTECTION 91

Introduction ... 91

Background ... 94

Privacy Filter Framework Objectives ... 97

Scope and Assumptions of Privacy Preservation and the LVDBMS 98

Overview of Privacy Framework .. 99

Defining Privacy Filters with the Privacy Specification Language 102

Combinations of Privacy Filters .. 106

Formal Specification of the Privacy Filter Model ... 106

Performance Evaluation .. 107

viii

Privacy Filter Effectiveness ... 109

Object Tracking Effectiveness... 110

Holistic Demonstration of a Privacy Filter .. 114

Summary ... 117

CHAPTER 6: EFFICIENT QUERY PROCESSING ... 118

Introduction ... 119

Background ... 120

Query Processing... 121

Overview ... 121

The Query Parser and Translator ... 122

The Query Optimizer ... 124

LVDBMS Query Optimization ... 127

LVDBMS Query Execution Environment .. 130

Cost Estimation.. 131

Experimental Study ... 133

Summary ... 137

CHAPTER 7: LVDBMS PROTOTYPE .. 139

Introduction ... 139

Prototype System Architecture.. 139

ix

Camera Layer .. 139

Spatial Processing Layer ... 141

Stream Processing Layer ... 143

Client Layer ... 144

Experimental Study ... 145

Query Processing Performance ... 145

Summary ... 147

CHAPTER 8: CONCLUSIONS ... 150

Summary of Contributions .. 150

Future Work .. 151

LIST OF REFERENCES .. 153

x

LIST OF FIGURES

Figure 1. A typical database architecture (left) vs. a multimedia database (right). 3

Figure 2. Multimedia data (images) represented as points in a 2-dimensional feature space. 7

Figure 3. An object (yellow car) whose pixels are segmented from the image background. 7

Figure 4. Complete image (left), and magnified view of extracted foreground pixels (right). 16

Figure 5. A traffic scene (left), and the corresponding foreground mask (right).......................... 18

Figure 6. Typical processing steps implemented in a background subtraction algorithm. 20

Figure 7. Image segmentation example, based upon graph-based representation (Felzenszwalb &

Huttenlocher, 2004) © 2004 Kluwer Academic Publishers. .. 20

Figure 8. Another graph cut segmentation image segmentation example (Boykov & Funka-Lea,

2006) © 2006 Springer Science + Business Media, LLC. .. 21

Figure 9. Cameras with overlapping (left) and non-overlapping (right) fields of view. 24

Figure 10. Camera network calibration utilizing a robot with a pattern (Rekleitis et al., 2006). ©

2006 Elsevier B.V. .. 24

Figure 11. Essential clustering steps; information flow.. 26

Figure 12. Hierarchical structure of a video depicting scenes, shots and frames. 31

Figure 13. Example of an R-Tree spatial index. ... 38

Figure 14. Representative architecture of a typical CBIR system. ... 44

Figure 15. Siloed approach to camera/stream processing application development. 48

Figure 16. Applications built as information silos utilizing middleware and application-specific

data adapters.. 48

Figure 17. LVC approach showing common image processor and query interface. 49

xi

Figure 18. LVC stream data model contrasted with relational record and disk data model. 50

Figure 19. LVC exhibits the three popular attributes of big data; variety, velocity and volume. 51

Figure 20. Logical 4-tier architecture of the LVDBMS prototype and major components of the

framework encapsulated in each tier. .. 57

Figure 21. LVDBMS prototype, illustrating query, subqueries and results. 57

Figure 22. Example images of the LVDBMS; the appearances of some objects have been

redacted. .. 58

Figure 23. Depiction of the data flow in the LVDBMS, from frames to query result. 62

Figure 24. A simplification of the LVQL grammar, including privacy view definition language

(VDL) productions. ... 65

Figure 25. Illustration depicting dynamic and static objects. ... 65

Figure 26. Illustration of an object moving about a scene and corresponding instances, in a

feature space.. 67

Figure 27. (left) An object moves about in a straight path, and (right) an object moves along a

random path. ... 70

Figure 28. Illustration of feature vectors calculated based upon an object’s appearance in every

nth frame. ... 72

Figure 29. Metadata structures implemented in the LVDBMS to facilitate cross-camera tracking

and queries. ... 75

Figure 30. Object metadata structure showing two objects, 1.12 and 0.37, which have been

merged... 75

Figure 31. Sample frames from CAVIAR dataset; walk3 (left) and OneShopOneWait2Cor

(right). ... 79

xii

Figure 32. Sample video frames from two cameras, one in a room and the second outside the

room (hallway sequence). ... 79

Figure 33. Relative Quality for OneShopOneWait2cor; (a) varying β with fixed α=0.5, (b) an

enlarged view of a portion of (a), and (c) varying α with fixed β=1.2. .. 85

Figure 34. Normalized distance (ND) and closest point distance (CPD) plotted over time. 86

Figure 35. Tracking results for hallway sequence videos; where α=1 and various β. 87

Figure 36. Illustration of instances corresponding to two image sequences with bags of

cardinality 4 and k=3. .. 90

Figure 37. Example illustrating the LVDBMS deployed in a traffic management center. 93

Figure 38. Comparison of cascading relational database views (left) vs. cascading privacy filters

(right). ... 100

Figure 39. Video stream illustrating a privacy filter with a Gaussian blurred MBR. 100

Figure 40. Query targets: object D121 satisfies the query condition, D102 does not. 103

Figure 41. The PSL extension of LVQL; colored text illustrates user-supplied values. 105

Figure 42. Privacy filter examples from the first (left) and third (right) video series. 109

Figure 43. Cross-camera query evaluation accuracy for video sequence #44. 112

Figure 44. Cross-camera query evaluation accuracy for video sequence #46. 112

Figure 45. Holistic privacy filter example showing a camera, a view with associated privacy

filter and two video consumers. .. 115

Figure 46. Imagery as observed by the TMC operator. .. 116

Figure 47. Video stream as observed through the view; note the blur effect. 116

Figure 48. Query lifecycle; from the inception of a query to results delivered to the issuer. 124

Figure 49. Query transformation steps, from inception to execution. .. 125

xiii

Figure 50. Transformations undergone by a query; from query to subquery to results. 128

Figure 51. Before and after illustrations of a subquery merged into a query group. 129

Figure 52. Example depicting four query groups in the LVDBMS query execution engine. 132

Figure 53. Example video frame showing a busy road and a static object (the blue rectangle). 134

Figure 54. Evaluation 1: queries utilized for testing the query optimizer. 134

Figure 55. Evaluation 2: complex queries for optimization evaluations. 134

Figure 56. The lower three LVDBMS tiers, showing major components. 138

Figure 57. Camera adapter, simulating a video stream from a pre-recorded video. 141

Figure 58. The camera server service, which runs in the spatial processing layer. 142

Figure 59. The query processing service, which runs in the stream processing layer. 143

Figure 60. The LVDBMS user client, showing a connection to a camera server and three video

streams and two views. ... 144

Figure 61. Evaluation costs for a selection of queries in milliseconds; plotted at one-second

intervals. .. 148

Figure 62. Screen capture of Visual Studio 2012 IDE depicting a dependency graph of LVDBMS

assemblies. .. 149

Figure 63. Illustration of potential future works pertaining to LVC and the LVDBMS. 152

xiv

LIST OF TABLES

Table 1: Modalities of unstructured data by dimensionality .. 11

Table 2: Comparison of LVC and traditional DBMS concepts .. 51

Table 3: Comparison classes of LVC objects ... 61

Table 4. CAVIAR video OneShopOneWait2cor .. 83

Table 5. System parameters for Walkers evaluations ... 84

Table 6. Walkers–closest point distance ... 84

Table 7. Walkers–normalized distance ... 84

Table 8. Normalized distance for hallway sequence videos ... 87

Table 9. Privacy filter attribute target ... 104

Table 10. Privacy filter attribute temporal scope.. 104

Table 11. Privacy filter attribute object scope .. 104

Table 12. Privacy filters corresponding to scenario in Figure 45 ... 113

Table 13. Query accuracy evaluation results .. 114

Table 14. Evaluation costs of various operators and operands ... 132

Table 15. Evaluation 1, performance counters without optimization ... 136

Table 16. Evaluation 1, performance counters with optimization .. 136

Table 17. Evaluation 1, cost efficiencies gained ... 137

Table 18. Evaluation 2, cost efficiencies gained ... 137

Table 19. Average query evaluation in milliseconds of CPU time, by video 148

xv

CHAPTER 1: INTRODUCTION

Motivations

Many factors contribute to the proliferation of camera networks, including decreased

hardware costs and heightened concerns regarding security and safety. In order to be positioned

to quickly react to events observed in these live video streams, they must be actively monitored.

However, due to the volume and velocity of live data produced by the multitude of cameras, it is

difficult, if not impossible, to review all the video streams without some degree of automation.

When considering such a solution for such an environment, two factors are of primary

importance, (1) the application of intelligent algorithms to sift through the multitudes of video

streams to discern which scenes are of potential interest, and (2) usability; the ease of use,

efficiency and satisfaction with which operators, in a variety of roles, can interact with and use

the system in order to meet objectives.

Video streams consume significant network bandwidth, and network capacity bottlenecks

need to be mitigated. Therefore, applicable algorithms (and their implementation) must be

distributed in nature in order to scale with the number of video streams and not overload portions

of the network.

With the combination of technological advances such as better algorithms that can

recognize actions occurring in a scene, face recognition and tracking, inexpensive and abundant

data storage, and expanding areas of surveillance coverage, mean that more of our lives will be

observed, analyzed and digitally preserved. Consequently, privacy is important. Camera network

implementers must ensure that socially accepted standards (which can vary from culture to

culture) are upheld, and that data captured for one purpose (such as ensuring security or safety) is
1

not later used for another. A viable solution that is socially acceptable must consider various

privacy aspects, and have facilities to define and implement privacy policies so that people can

be confident that their stored appearance will be utilized consistently and ethically; both when

the data is captured and in the future.

Overview of Dissertation

This dissertation is primarily organized into six major content areas. Firstly, a review of

multimedia database systems and enabling concepts are presented. Secondly, the LVDBMS, a

Live Video Computing (LVC) prototype database is introduced along with its data model and

query language. Thirdly, an approach to modeling objects and tracking them across video

streams is presented. A technique based upon bipartite graph matching is presented. Fourthly, a

context-aware privacy preserving framework is presented, which protects the privacy of

individuals observed in video streams. Fifthly, a run-time query optimizer and query execution

environment is presented. Efficient query processing is a key element to effective resource

utilization. Sixthly, the LVDBMS prototype is presented, including both implementation and

performance details. In the remainder of this manuscript the terms stream, video stream and

camera are used interchangeably.

2

CHAPTER 2: MULTIMEDIA DATABASES AND LIVE VIDEO

COMPUTING

This chapter discuses fundamental components that comprise Multimedia Database

Systems (MMDBS). Later sections build upon this foundation, extending it to the LVC platform.

The LVC platform combines hardware, networking infrastructure and a software framework into

a solution which allows operators to interact with numerous live video feeds in real time.

Figure 1. A typical database architecture (left) vs. a multimedia database (right).

3

Introduction

Advances in imaging sensors, networking, processing, data storage and algorithms all

contribute to ever increasing quantities of multimedia information. This encompasses audio and

video, recorded and live, as well as still imagery and text. Multimedia information processing

includes the generation, representation, storage and retrieval, processing, communication and

presentation of multimedia content, as well as that of related metadata (Nwosu, Thuraisingham,

& Berra, 1996). In order to manage these massive quantities of data, MMDBS have been created.

A Database Management System (DBMS) is software that allows users to store and use data in

an abstract way, without having to consider how the data is physically stored and managed on a

storage volume (Ullman, 1981). MMDBS are DBMS that facilitate the storage and retrieval of

multimedia data, to include the transmission, indexing, querying and manipulation of said data.

Figure 1 compares a traditional DBMS with a MMDBS. A typical DBMS

implementation, Figure 1 (left), supports business applications by persisting application state,

resolving queries, and facilitating transactions to mitigate concurrency errors. Figure 1 (right)

illustrates a MMDBS, which can utilize a traditional DBMS to manage metadata and indices, but

also encompasses additional technologies and services not typically present in DBMSs which

include: video on demand, document management and imaging, spatial data, specialized query

languages, face recognition and relevance feedback, to name a few. Because multimedia content,

and video in particular, can be quite large and its communication bandwidth intensive, MMDBS

are often paired with specialized communication frameworks, such as the HeRO protocol

discussed in (Tantaoui, Hua, & Do, 2004), in order to provide content delivery to a multitude of

concurrent users without overwhelming the physical communication medium.

4

Fundamental Concepts and Components of Multimedia Database Systems

Early database systems were designed solely to efficiently manage the storage, retrieval

and querying of alphanumeric data (Date, 1977). Advances in microprocessors, storage device

capacity and imaging sensors led to vast quantities of pictorial data such as medical images,

satellite imagery, and topographical maps, to name a few. With this data arose the problem of

how to manage it in an efficient and structured way. Early approaches were based upon metadata

that was generated manually by adding textual annotations to digital content (Blaser, 1979; N.

Chang & Fu, 1980; N. S. Chang & Fu, 1980; S. K. Chang & Kunil, 1981; S. K. Chang, Yan,

Dimitroff, & Arndt, 1988). As computer technology advanced, so did the content: pictures and

discrete objects were replaced by video: sequences of still images temporarily correlated with

audio. Also changing was the acquisition of metadata. It could be generated as the content was

created (recording date and time stamps), generated automatically during the editing phase

(pertaining to compositional information as the content is spliced together), or added post-

production (bibliographic information, etc). A different post-production method is based upon

extracting representative features automatically, called feature extraction. This approach is

applicable to both the visual and audio components of video.

A MMDBS must be architected with the flexible to support a variety of applications. One

such application is Video on Demand (VOD). In VOD, users can browse a large selection of

videos (for example, in a hotel setting these could be entertaining movies, in a corporate setting

they could be training videos). The collection of videos are typically stored on and distributed

from a centralized server. Browsing and search is conducted based upon the metadata associated

with the videos, and the videos are consumed as a single unit. That is, the user will watch the

5

content from start to finish, though they may pause or fast forward or perform other similar

linear operations (Barbieri, Mekenkamp, Ceccarelli, & Nesvadba, 2001).

In addition to VOD, interactive video is another application of MMDBS, serving video

scenes in a non-linear fashion. Examples of such a service include educational videos, where a

sequence of short clips pertaining to a particular topic may be combined, reordered, and viewed

together as one video clip. Other applications include stock-shot (Turner, 1990) and browsing,

indexing and searching video archives (Dimitrova et al., 2002).

MMDBS frameworks typical consist of three primary components, or phases (Z. Zhang

& Zhang, 2008). The first entails representing the raw multimedia data as a point in an abstract,

n-dimensional space termed a feature space, where n is the number of features that describes the

data item. The process of representing the data as a point in the feature space is called feature

extraction. Similar items should be grouped together (e.g., see Figure 2), thus, the quality of the

feature selection and extraction methods affect the grouping and compactness of the data points.

The compactness of the data in the feature space can have ramifications pertaining to the

effectiveness of retrieval (e.g., k-nearest neighbor (k-NN) and classification (e.g., the application

of support vector machines).

The second component of the framework is knowledge representation. A feature

represents a measurable property of the multimedia data item (e.g., the number of red pixels in

an image), and are typically represented as numeric data, though they can be a string or also a

graph representation. Numeric features are usually chosen, as they can be operated upon

mathematically. Discriminative features should be chosen, and the effectiveness by which the

multimedia data may be represented by the selected features will have a significant impact on the

performance of the MMDBS.

6

Figure 2. Multimedia data (images) represented as points in a 2-dimensional feature space.

Figure 3. An object (yellow car) whose pixels are segmented from the image background.

7

The third framework component performs some type of analysis or retrieval on the

multimedia data that is represented in the feature space, for example, categorization (applying

class labels or keywords), retrieval (k-NN), data mining, etc.

Multimedia Data Representation – Data and Information

In its raw form multimedia data is suitable for human consumption (e.g., to watch a

movie or listen to music), to be archived for historical or legal purposes, etc. This data consists of

images (e.g., JPEG or BMP format), audio (MP3, WAV, etc.), video (MPEG2), etc. Multimedia

content that is stored in a similar format is referred to as data, because it is not retained in a

format that is optimized for processing by an implementation of an algorithm (e.g., k-NN

similarity search, data mining). For example, consider the car shown in Figure 3. The initial

image is in JPEG format and amenable to human consumption (a person can observe the image

and recognize it as depicting a vehicle; more specifically a yellow sports car). However, from the

perspective of a machine, it is a sequence of bits. Multimedia data can be processed and have

information extracted from it. The image itself is data, and the data that has been extracted

through some process and can be associated with some higher-level concept is termed

information (for example, the label “car”). Consider again the automobiles shown in Figure 2;

the images themselves are considered data, and feature vectors can be considered information.

The information contained in the feature vectors represents specific aspects of the images and is

suitable for further automated processing. A feature vector can also be considered to represent a

point in a multi-dimensional Euclidean space which is called the feature space.

In this work image frames are denoted by a capital F. For example, the first frame of a

video is denoted 𝐹𝐹1, and the ith as 𝐹𝐹𝑖𝑖. Images are composed of pixels, which may be referenced

within the image by their 2D coordinates (x,y), for example, the pixel 𝒙𝒙 = (𝑥𝑥,𝑦𝑦) ∈ ℛ2 or,

8

 𝒙𝒙 = �
𝒙𝒙
𝒚𝒚� (1)

Images themselves (the terms image and frame are used interchangeably in this work) are

represented as a matrix of pixel values. For simplicity we confine pixels to be represented as 8-

bit integers, which range from 0 to 255, and signify the intensity of the (color) channel.

Additionally, we work with two types of images; color images and grayscale images. Color

images are represented as a 3-dimensional matrix, where the first two dimensions are the width

and height, and the third dimension is the color component; for the RGB color space, indices in

the third dimension correspond to the R, G and B color planes. Grayscale images (also known as

black and white) are represented as a 2-dimensional matrix of pixel values, where a value of 0

corresponds to black and 255 is white. Often color images are converted to grayscale because the

2D matrices are simpler to work with and manipulate, and for many tasks (such as finding the

difference between frames) the results, when performing the tasks on grayscale as opposed to

color, is acceptable. A simple formula for converting from the RGB color space to the grayscale

color space is as follows:

 𝑮𝑮 = 𝟎𝟎.𝟑𝟑𝟎𝟎𝟑𝟑𝑹𝑹 + 𝟎𝟎.𝟓𝟓𝟓𝟓𝟑𝟑𝑮𝑮 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟑𝟑𝑩𝑩 (2)

Where G is the corresponding grayscale image. We note that there are many different weightings

that may be utilized in the conversion and additionally, there are many different color spaces in

addition to RGB which have different properties. The suitability of which color space to use

varies with the application. For additional details pertaining to image representations and color

space, the reader is referred to a computer vision text, for example, the work of (Szeliski, 2010).

9

Digital Sampling and Reconstruction

In order to be communicated digitally and processed by a computer, analog signals must

first be digitized. Digital sampling is the process of converting a continuous signal (e.g. in terms

of space or time) into a sequence of discrete numeric values. More specifically, there are two

processes associated with digital sampling: sampling and reconstruction. In the sampling process

a continuous signal is converted into a sequence of measurements by periodically measuring the

value of the continuous signal. This period P is called the sampling interval and can be measured

in terms of time or space (depending upon what it is that is being sampled). The measurements

themselves are referred to as samples, and the reciprocal of the period 1/P is the sampling

frequency. When the sampling period is measured in terms of seconds, then the sampling

frequency is referred to as hertz.

The transformation of a series of discrete samples into a continuous signal is called

reconstruction. The portions of the continuous signal that are not represented in the discrete

samplings may be reconstructed through the process of interpolation. For further details

pertaining to sampling theorems the reader is referred to (Jerri, 1977).

Data Representation and Features

Data can be classified as structured or unstructured. Structured data is organized in

accordance with a data model (Hoberman, 2005). Some examples of structured data include

tabular data stored in a relational database or in an XML file. Data in this class is identifiable (by

both humans and computers) due to its structure. Unstructured data is not inherently organized

by an identifiable structure. Examples of unstructured data include audio (e.g. MP3 files), images

and video.

10

Unstructured data can be categorized by its inherent dimensionality. The simplest type of

unstructured data consists of alphabet characters, and the more complex is video. Table 1

provides a list of different types of unstructured data. The data listed as “Continuous” in the state

column consists of data that is related temporally, and one or more of these classifications (or

types) of data may be combined and still be considered multimedia (Grimes & Potel, 1991).

Table 1: Modalities of unstructured data by dimensionality
Data
dimensionality Example of data State

0 Characters, text Discrete
1 Audio, output from sensor Continuous
2 Image, graphics Discrete
3 Video, animations Continuous

As previously stated, features represent a measurable property of a type of data that can

be observed. Typically more than one feature is extracted to represent an item of multimedia

data, and taken together these features form a vector which can correspond to a point in a

multidimensional Euclidean feature space. The process of identifying and calculating features

from multimedia data is called feature extraction.

There are different types of features; and some features are applicable only to certain

modalities of data. Three types of features are described here: geometric, statistical and meta.

Geometric features apply to specific objects that have been identified within a unit of multimedia

data (such as a frame of video). Before objects can have features calculated for them, a previous

processing step must have been executed to identify the objects contained in the data item. An

example of a geometric feature is a moment. In image processing, a moment is a weighted

average of the intensities of the pixels that represent the appearance of an object. Features that

can be derived from the moment include area (the number of pixels that contribute to the object’s

representation) and also the centroid (or, the coordinates of the center of the object) (Hu, 1962).

11

Another simple geometric feature is the shape number (Bribiesca & Guzman, 1980). The shape

number represents the contour of a shape, and is a sequence of that describe the directions of line

segments that one would encounter when tracing the shape of an object, having started from

some particular boundary point. For details about shape and image processing the reader is

referred to a computer vision text, for example (Nixon & Aguado, 2012).

A statistical feature is another type of feature that can describe an image. Statistical

features are generally applied to the image as a whole. A histogram is an example of a statistical

feature that can represent a property of an image, for example, the intensities of the pixel values

that represent the appearance of the image. Consider, for example, a grayscale image, which is a

two-dimensional image whose pixels represent shades of gray with intensities ranging from 255

(white) to 0 (black). A histogram representing a particular grayscale image could have 256 bins,

one for each possible pixel intensity, and the value of each bin would be the number of pixels

contained in the image with that particular value. To make the histogram more compact, the bins

can be generalized to represent non-overlapping ranges of pixel values. Other features that could

fit into the statistical category are edges (e.g. the number of pixels that represent edges in the

image, as outputted by some edge detection algorithm (Harris & Stephens, 1988)), and

interesting points within the image (Lowe, 1999).

Meta features are another class of features that can describe data. Meta features apply to

the data as a whole. For example, for an audio recording of music a meta feature could be the

name of the artist who recorded the work. For an image, a meta feature could be the focal length

of the lens used to capture the image, or the model of camera. For video, frame rate, aspect ratio,

language, producer, etc. are all examples of meta features.

12

As indicated in Table 1, the term multimedia encompasses a number of different

modalities of data. In the remainder of this work the modalities of data that are of primary

consideration primarily are video, and the images (i.e. frames) extracted from the video. It is

important to also that note that the data (and metadata) generation techniques considered in this

work are those that are primarily automated. For example, some algorithms for image

segmentation require a human to provide “seed” parameters, but we would still consider such a

technique to be automated; as opposed to a technique in which a human observes some data and

performs some manual transformation such as determining relevant labels to associate with said

data. This includes user correction (such as correcting a metadata value that is incorrect) or

applying (i.e. associating) context with an object (e.g. marking whether or not a video sequence

contains a representation of a particular person), other than for purposes such as determining a

ground truth baseline.

Feature Extraction

A significant amount of data is required to represent (or store) images and videos. It is

common to implement an algorithm that takes image (or video) data as input and performs some

service, such as finding similar items in a larger collection. In order for such an algorithm to

execute this kind of a search, the entire collection of data would need to be loaded into the

primary memory of the computer and operated upon by the CPU. For example if the search were

conducted over video data that had an audio track multiplexed with the video data (all within the

same file), then the audio data may need to be read in order to extract the video contents of the

file. Furthermore, if the search was for a particular object observed within the video, then many

parts of the video itself would need to be processed (e.g. all the video frames). Therefore a

13

significant quantity of irrelevant data must be loaded and processed, even though much of it is

not needed.

A solution is to reduce the quantity of data that must be processed, such that only data

that is likely to be relevant to the objective function is loaded and processed, and data that is

likely to be irrelevant does not consume processing resources. A relevant data reduction

technique that can do this is called feature extraction. Feature extraction is a process that reduces

the dimensionality of a more “verbose” data format (such as an image or video) by performing

some sort of transformation algorithm to arrive at a more concise representation that still

describes the original item (or some aspect of the original item) with some sufficient

(representative) level of accuracy. That is, feature extraction is a technique to reduce the quantity

of data (or, the dimensionality) required to represent some target item. Oftentimes the particular

features that are extracted are associated with some application (or domain) specific application.

By applying domain specific knowledge to the feature extraction process, features that are more

relevant (or expressive with respect to a particular algorithm or class of algorithms) may be

selected.

An additional reason for reducing the amount of data that must be processed is that some

machine learning and data mining algorithms are less effective when the data input is of a high

dimension. For example, the accuracy of such algorithms may degrade as the dimensionality of

the data increases. This can be the result of what is commonly referred to as the curse of

dimensionality (R. E. Bellman, 1986). The curse of dimensionality refers to artifacts that can

occur when analyzing data in a high-dimensional space that would not occur in a lower

dimensional space. For example data points represented in a higher-dimension that is intrinsic to

the data will appear sparse, and similar items will lie farther apart, potentially reducing the

14

accuracy of techniques whose effectiveness is affected by the closeness of data in the feature

space, such as nearest neighbor retrieval.

In addition to feature extraction, other common techniques for data dimensionality

reduction include principal component analysis (PCA) (Jackson, 1991; Jolliffe, 2005) and factor

analysis (FA) (Mardia, Kent, & Bibby, 1980) to name a few. The reader is referred to the work

of Fodor for a survey of additional and related dimensionality reduction techniques (Fodor,

2002).

Background Subtraction

Background subtraction is the process of identifying objects (or portions thereof) of

interest in an image, from the rest of the image. The output from the background segmentation

process is a mask image of binary values that indicates which pixels (in the corresponding

image) represent the foreground object (or said another way, the pixels which are detected to not

represent the scene background). For example given a view of a parking lot, a security officer

might be interested in monitoring which vehicles have recently left or arrived. As an image is

composed of a series of pixels, the task of background subtraction is that of determining which

pixels are meaningful; that is, determining which pixels are part of an object of interest and

which are not. As an example, consider the animal shown in the left image of Figure 4 (left).

Figure 4 (right) shows an enlarged view of the animal’s foot; the non-black pixels contribute to

the animal’s appearance, and the black pixels contribute to the scene background. In this section

we consider the task of background subtraction where the camera is fixed.

15

In order to determine which pixels contribute to the appearance of object of interest and

which do not, a model of the scene must be constructed; or learned. Note that in this usage the

term background is ill-defined as its meaning can vary depending upon the context and

application. However, in this case we consider the background to be pixels whose brightness

changes slowly, or with some periodic motion (such as a tree swaying in the wind). (For

example, the brightness of an outdoor scene will slowly change as the sun changes position in

the sky.)

Frame differencing is the simplest case of background subtraction, in which the

foreground pixels of a scene can be determined by taking two images (and converting them to

grey scale images to simplify handling the separate color channels) and subtracting (or, finding

the absolute difference) between the pixels in the images. Pixels that are beyond some threshold

can be considered to be part of an object of interest (e.g. something that moved and caused the

pixels to change illumination values).

 |𝑭𝑭𝒊𝒊+𝟏𝟏 − 𝑭𝑭𝒊𝒊| > 𝒕𝒕 (3)

Figure 4. Complete image (left), and magnified view of extracted foreground pixels (right).

16

Frame differencing can be improved upon by computing the average pixel value from the last n

frames, and slowly updating the background model over time to account for slow changes to the

illumination of the scene. To account for this, an adaptive background model can be maintained

by calculating the running average of the background B over time:

 𝑩𝑩𝒊𝒊+𝟏𝟏 = 𝜶𝜶𝑭𝑭𝒊𝒊 + (𝟏𝟏 − 𝜶𝜶)𝑩𝑩𝒊𝒊 (4)

Where Bi the current background model, Fi the current frame of video and α is the learning rate

(for example, α=0.05) (Cucchiara, Grana, Piccardi, & Prati, 2003; Lo & Velastin, 2001).

The background models just discussed model each pixel independently from its

neighbors and base the color model on each pixel’s recent history, such as the weighted average

of the previous n frames. These don’t take into account complex scenes with moving objects,

like branches moving in the wind, moving water or clouds passing overhead. Background

subtraction methods that improves upon these base the value of background pixels on a probably

distribution function (PDF) that follows a Gaussian distribution (Wren, Azarbayejani, Darrell, &

Pentland, 1997), or a Mixture of Gaussians (MOG) (Stauffer & Grimson, 1999). The downside

of MOG is that it does not adapt well to fast-changing backgrounds like waves, or to cases where

more than a few Gaussians might be required. The Codebook (K. Kim, Chalidabhongse,

Harwood, & Davis, 2005) background segmentation model takes into consideration periodic

background variations over a long period of time. In order to conserve the amount of memory

required to implement the algorithm, a codebook is constructed by associating with each pixel

one or more codewords which can be thought of as clusters of colors at each pixel (e.g. each

pixel may be associated with one or more codewords), and the clusters may not necessarily

correspond to a Gaussian distribution or any other parametric distribution. That is, Codebook

17

still encodes the background representation on a pixel-by-pixel basis. Classification of a pixel as

background or foreground is done by comparing a pixel’s value to the corresponding codewords;

if its color distribution is sufficiently close to one of the codewords and its brightness is within a

range of the corresponding codeword, the pixel is considered to be part of the background, else it

is classified as a foreground pixel. For additional information pertaining to background

subtraction methods the reader is referred to the works of (Piccardi, 2004) and (Cheung &

Kamath, 2004).

It should also be noted that the pixels in the foreground mask might not always represent

the object completely; that is, there may be some error due to noise. For example, as can be

observed in Figure 5, in some situations the pixels that represent the appearance of the object can

match the color of the background. In such cases the object might appear as two objects (as can

be observed in Figure 5 in the object labeled “5”), or as a cluster of “loosely connected” points.

This type of error can be mitigated by introducing a post-processing step to reduce noise in the

binary foreground mask image, or also group together nearby disconnected components that

could correspond to the same object (Parks & Fels, 2008).

Figure 5. A traffic scene (left), and the corresponding foreground mask (right).

18

The typical steps of a background subtraction algorithm are illustrated in Figure 6. As

indicated in Figure 6, major steps include a preprocessing step (such as smoothing the image to

reduce noise from the image capture process), utilizing the background model to detect the

foreground, performing post-processing (such as running a connected component algorithm or

ignoring pixels indicated in the mask that are not connected to a larger grouping of pixels), and

finally updating the background model in preparation for processing the next frame of input.

Segmentation of Image Regions

Image segmentation refers to the process of grouping the pixels that compose an image

into multiple salient regions. The pixels that are grouped together in a particular region are

related; for example they form a part of an object or correspond to a surface, have a similar

appearance, etc. While image segmentation is an ill-posed problem, it is a widely researched

topic in computer vision. Researchers have taken a number of approaches to solve this problem

and there are many algorithms available. The Watershed algorithm (Beucher & Lantuejoul,

1979) is a popular image segmentation algorithm, which was first introduced in 1979 and now

has many variants. Other segmentation methods are based on snakes (Kass, Witkin, &

Terzopoulos, 1988) and active contours (Xu, Yezzi Jr, & Prince, 2000). More recent approaches

aim for some type of global optimization, for example consistency within a region or

dissimilarity between regions (Cremers, Rousson, & Deriche, 2007).

Figure 7 shows an example of image segmentation; the pixels representing the athletes

are grouped into a number of different regions. In this example the authors follow a graph-based

approach to image segmentation (Felzenszwalb & Huttenlocher, 2004). Figure 8 provides

another image segmentation example, again based upon a graph cut technique. In this example

the user provided seeds (i.e. hints) to the image segmentation algorithm. For additional details

19

pertaining to image segmentation algorithms and their applications, the reader is referred to (Fu

& Mui, 1981; Pal & Pal, 1993; B. Peng, Zhang, & Zhang, 2013).

Figure 6. Typical processing steps implemented in a background subtraction algorithm.

Figure 7. Image segmentation example, based upon graph-based representation
(Felzenszwalb & Huttenlocher, 2004) © 2004 Kluwer Academic Publishers.

20

Figure 8. Another graph cut segmentation image segmentation example (Boykov & Funka-
Lea, 2006) © 2006 Springer Science + Business Media, LLC.

Tracking Objects within a Single Camera

The problem of object tracking can be defined as the task of following an object as it

moves about within the view of a camera. Though it can be defined simply, object tracking in

general is a difficult problem due to noise in the images and due to the capture device, the loss of

information as a 3D world is projected into a 2D image, illumination changes in the scene, real-

time processing requirements, selecting objects to track, etc. Sometimes simplifying constraints

can be imposed onto the problem to make it more tractable; these include assuming smooth

object motion and velocity, prior knowledge about the shape or size of the objects to be tracked,

and assumptions pertaining to physical constraints (e.g. assuming an object will not move

through a wall or fence). The objects to be tracked must first be segmented from the background.

Once objects are identified, they can change shape and appearance as they move (for example, if

the lighting in the scene is not uniform; the shape of people changes as their legs and arms move

21

about as they walk). Objects in the foreground can obscure the view if the objects, for example

the pole of a street light or a car driving by. The tracks of the objects themselves can change

abruptly, or the camera can move, or the size of the object can appear change as its proximity to

the lens of the camera changes, to name just a few of the scenarios that may be encountered. To

help simplify the problem, many of the tracking algorithms make the assumption that the track of

an observed object takes will not change sharply or that their brightness will remain constant.

The suitability of which tracking algorithm to use depends on many factors including the

selection image features, motion, shape and appearance, to name a few. Features used for

tracking include color, edge (object boundaries), optical flow (e.g. motion) and texture.

Object tracking is important for a number of applications such as surveillance, human

computer interaction, medical imaging and intelligent transportation systems (e.g. traffic control)

to name a few. Many of these algorithms have sufficiently good performance to be usable for

real-time object tracking, for example (Berclaz, Fleuret, Turetken, & Fua, 2011) reports to have

O(KN log N) performance, and (Pirsiavash, Ramanan, & Fowlkes, 2011) reports approximately

O(NK) performance when tuned. For a comprehensive review of object tracking algorithms the

reader is referred to the work of (Yilmaz, Javed, & Shah, 2006).

Distributed Object Tracking with Multiple Cameras

Tracking objects with a distributed camera system is a difficult task. Many distributed

tracking algorithms assume a scenario with a centralized computer. However, with sensor

networks that scale to contain hundreds of cameras, the centralized approach is not tractable due

to the CPU, memory and network capacity requirements required to route video data to a single

sink and to then concurrently process the video streams.

22

Two sub-problems encountered with distributed tracking relate to configuration

parameters and topology estimation. The cameras on the network (and corresponding processing

nodes) should be able to come to a consensus pertaining to how objects should be represented

and configuration of global network parameters (i.e. calibration), without requiring a centralized

node to make the decision. Pertaining to topology, there are two problem scenarios; overlapping

and non-overlapping fields of view, which are illustrated in Figure 9. In the overlapping scenario

two neighboring cameras will observe the same scene because some portion of their views

overlap. In this case the cameras’ topology can be represented by a graph, in which two cameras

are neighbors (they have an undirected edge connecting them) if their observed scenes overlap.

The cameras can estimate their parameters (e.g. their spatial relationships) by observing the same

objects at the same time. In the non-overlapping case there are a number of works that attempt to

estimate the topology of the network. For example, in (Zou, Bhanu, Song, & Roy-Chowdhury,

2007) the topology of the camera network is estimated by tracking people using face recognition.

In (Javed, Rasheed, Shafique, & Shah, 2003) the topology of the camera network is estimated

with a training phase. Objects are tracked based upon their appearances and spatio-temporal

movement, for example by making the assumption that objects will continue on a fixed trajectory

and that structural constraints such as walls are fixed or that object movement is confined to

roads or tracks. Or alternatively, Rekleitis et al. proposed a method to calibrate a camera network

by utilizing a robot that moves a calibration pattern (Figure 10) through the fields of views of the

cameras (Rekleitis & Dudek, 2005; Rekleitis, Meger, & Dudek, 2006). For a more

comprehensive review of distributed computer vision algorithms, which includes a review of

distributed calibration and tracking algorithms, the reader is referred to (Radke, 2010).

23

Figure 9. Cameras with overlapping (left) and non-overlapping (right) fields of view.

Figure 10. Camera network calibration utilizing a robot with a pattern (Rekleitis et al.,
2006). © 2006 Elsevier B.V.

Supervised and Unsupervised Learning

Machine learning refers to a class of algorithms that analyze data, adapt and learn from it.

The data can come from a database or a sensor such as a camera. The data is typically associated

with labels; or classifications. It is generally done in two phases, where the first phase is a

training phase that identifies known properties from the training data. In the training phase an

initial dataset is analyzed to extract relationships (and corresponding probability distributions)

24

imbedded within the data. In the second phase the learned relationship information is utilized to

classify (i.e. label) new data. Often a complete knowledge of the hidden variables and

distributions cannot be learned from the training data, and thus assumptions (or simplifications)

must be made when classifying unknown data. This section provides brief reviews of supervised

and unsupervised learning algorithms.

The goal of supervised machine learning is to create a classifier that can associate an

output classification with some input data. This is done by first examining training data, often in

the form {(data vector1, output label1), …, (data vectorn, output labeln)} during the training

phase, and applying a function that maps the input data to the output labels. There are a number

of algorithms that fall into the category of supervised learning; some popular ones are the naïve

Bayes classifier (Rish, 2001), the k-nearest neighbor algorithm (Weinberger, Blitzer, & Saul,

2006) and support vector machines (Cortes & Vapnik, 1995).

Unsupervised learning differs from supervised in that the training data is unlabeled. The

task is to uncover the structural relationships among the data. Unsupervised learning algorithms

are applicable to scenarios where it is difficult or not cost effective to label the input data (for

example, in the case of speech recognition) or when the features (that classification will be based

upon) are unknown beforehand. Common unsupervised learning techniques include clustering

algorithms and dimensionality reduction techniques (Duda, Hart, & Stork, 1995).

25

Clustering

Clustering often deals with unlabeled data, and as such, it falls under the category of

unsupervised learning (as opposed to supervised learning, which entails the association of items

with labels). More succinctly, clustering is the assignment of objects into groupings based upon

some measure of similarity. It is a collection of techniques that are applicable to the large mass

of unstructured data such as video, image, and text from webpages, for example, where a

predefined model that relates the data does not exist (or can change depending upon the context

from which the data is accessed). Clustering may be used to uncover the underlying structure

inherent in seemingly unstructured data, for classification (e.g. grouping based upon a similarity

measure), and for data summarizing (e.g. hierarchical browsing to allow for the efficient search

of image databases) (J. Y. Chen, Bouman, & Dalton, 2000; A. K. Jain, 2010).

The basic task of clustering is, given n objects, find k groupings, such that the objects that

are grouped together are more similar (based upon some measure of similarity) than objects that

are associated with one of the other groupings. The groupings (or clusters) themselves can be

described based upon the compactness of the data, its shape, overlap with neighboring clusters,

etc. When implementing a clustering algorithm for a particular application, the choice of

algorithm and parameters needs to be guided based upon some decisions such as; how to

normalize the data, which similarity measure to use, and how to incorporate any domain

Figure 11. Essential clustering steps; information flow.

26

knowledge into the clustering process. Figure 11 depicts some typical steps that must be

undertaken in a clustering process (A. K. Jain & Dubes, 1988). Given data to cluster (which does

not necessarily need to be finite in size; as would be encountered when processing stream-

oriented data from sensors), features from the data representation must be identified. The

features must then be extracted, and measured for similarity by applying a distance function such

as the Euclidean distance (Anderberg, 1973). Based upon the resulting clusters the process can

be repeated with updated parameters or data, in order to optimize some aspect of the resulting

clusters. For example, if a cluster is too large the corresponding data may need to be grouped

into smaller clusters, or if two clusters are too close together with a large number of overlapping

data points in the feature space, the clusters may need to be merged. The clustering process can

end when improvements to the clustering are below a threshold (based upon some criterion

function) or when some maximum number of iterations are reached. The reader is referred to

(Kanungo et al., 2002) and its associated references for in-depth discussion and analysis of

clustering algorithm stopping criteria; for example convergence based upon local vs. global

optimization, etc.

A Brief Review of Multiple-Instance Learning

This section offers a brief review of multiple-instance learning (MIL). Objects observed

in video streams are modeled using a multifaceted object model and concepts borrowed from

MIL are at the heart of the object tracking technique that is used to facilitate the recognition of

objects across video streams in the LVDBMS.

Traditional supervised learning (e.g. (Settles, 2010)) is traditionally conducted in two

phases; where first a training phase builds an analytical model based upon training data, and

second a classification phase leverages the model to provide insight pertaining to previously-

27

unseen data; i.e. the classification of new data. In the training phase machine learning algorithms

are presented with evidence in the format {<object, result>}. As an example, consider the

Expectation-Maximization (EM) algorithm (Dietterich, Lathrop, & Lozano-Perez, 1997; Maron

& Lozano-Perez, 1998) and Bayes classifier (Rish, 2001). Objects are typically represented by a

feature vector, so the mapping provided to the classifier consists of a mapping from a feature

vector to a class label which is to be associated with objects having some similarity to the feature

vector. In traditional learning problem scenarios objects are represented by a single feature

vector; for example an image might have a feature vector composed of 150 components.

However, complex situations are encountered in practice such that the learning algorithm has

incomplete knowledge about an object (i.e. the training samples). For example, Diettrich

provides an example of a locksmith, who is given a set of key rings, where each key ring

contains multiple keys. It is the job of the locksmith to determine which key opens a particular

door, in a set of doors. However, the locksmith is not given direct access to open the door with

the keys (that is, the locksmith cannot implement an algorithm to sequentially attempt to open

each lock with each key in order to determine the key to lock mapping). Thus the locksmith must

infer the mapping from the evidence (the set of key rings). Thus, the locksmith does not have full

knowledge of the training data and the relationship between the evidence and the classification is

indeterministic. There are many other domains where similar indeterministic relationships exists;

for example in text-based search and image processing and retrieval. A renowned searching

example involves a query for the term “nut”, where nut could refer to a shell around an edible

kernel; a round threaded object that is fastened to the end of a bolt to hold the bolt securely in

place; a person who is not sane, an Egyptian goddess, or a mechanical device used for climbing

mountains, among other possible definitions.

28

In MIL training data is provided in the form of bags of instances, where a bag is similar

to a set but can contain duplicate items (X. Chen, Zhang, Chen, & Chen, 2005; Cheng, Hua, &

Yu, 2010). A bag is labeled positively if it contains at least one instance of a particular concept

and negatively if it does not contain any instances of the concept. For example, consider an

image that is segmented into regions, and each region is then represented by a feature vector. The

image in its entirety can be represented by a bag of feature vectors, where each feature vector in

the bag represents (i.e.is representative of) one of the segmented regions (Maron & Ratan, 1998).

Now, consider the case where a user is querying a dataset of pictures for images of automobiles.

A bag is labeled “automobile” if it contains at least one instance of an automobile (more

precisely, it contains a feature vector corresponding to a region that depicts an automobile in the

image). If the image does not contain any instances of automobiles, it is a negative example of

the concept “automobile”.

Correspondingly in MIL, training data consisting of positive and negative examples are

provided to the learner as bags of instances. A bag is labeled as positive if it contains an instance

corresponding to a particular concept, and negative otherwise. A learning algorithm “learns”

concepts (i.e. builds a statistical model thereof) by applying a learning algorithm. The task is to

then classify an unknown object by applying a distance function. In the example of images, it is

possible (and likely) that different images will be segmented into a different number of regions

and thus, their corresponding bags will have differing cardinalities. There are different methods

to compare bags with different cardinalities, for example, a normalization method (or factor) can

be applied (Gartner, Flach, Kowalczyk, & Smola, 2002). For an in-depth discussion of MIL

algorithms and concepts the reader is referred to the work of (Ray & Craven, 2005).

29

Shot Boundary Detection and Representative Image Selection

Automated shot boundary detection is an essential component of video content analysis;

it is the temporal segmentation of a video into a continuous scene. Although such a partitioning

could be done manually, given the vast quantities of video that is collected, analyzed and stored

today, manual shot boundary identification is not feasible to be done as a manual process. A

video can be thought of as a series of scenes. Scenes consist of a logical grouping of one or more

shots, where each shot is a contiguous sequence of frames captured by a camera; Figure 12

provides a visual representation of the hierarchical relationship between a video, scenes, shots

and frames. Shot boundary detection is useful for a number of applications that pertain to

organizing or categorizing shots (and their corresponding videos) for later retrieval and indexing

and other offline analysis.

Shots are concatenated together with a transition separating them, where the transition

can be abrupt or gradual. An abrupt transition (also termed “cut” or “hard cut”) is a very quick

changeover from one shot to the next. For example, a transition that is done in two consecutive

frames. A gradual transition blends the shots together with a more gradual spatial or chromatic

effects such as a wipe, fade or dissolve, to name just a few of the many different types of

transition effects.

30

Figure 12. Hierarchical structure of a video depicting scenes, shots and frames.

Detecting cuts is a difficult problem for computers. A human can interpret the situation

depicted in the video and understand semantically what it is being observed. So when a transition

occurs (say, a bolt of lightning striking in an outdoor scene) the human can easily make a

determination if what was observed was a cut. From the perspective of a computer, what is

observed is temporally correlated data from consecutive frames of video. A simple way

determining a cut is to compare consecutive frames pixel by pixel (that is, the intensity of the

pixels) and if the change is beyond some threshold, to mark the frame as a cut. The below

equation computes the difference in pixel intensity values for a frame F at index i and pixels at

coordinates x and y within the frame, for some threshold t:

 𝑫𝑫𝒊𝒊 = �𝟏𝟏 𝒊𝒊𝒊𝒊 |𝑭𝑭𝒊𝒊(𝒙𝒙,𝒚𝒚) − 𝑭𝑭𝒊𝒊+𝟏𝟏(𝒙𝒙,𝒚𝒚)| > 𝒕𝒕
𝟎𝟎 𝒐𝒐𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒐𝒐

 (5)

31

This equation counts the number of pixels that have changed between two frames and can

be used as a metric to determine a cut. Given an image that is of dimension M by N, and thus

contains M*N pixels, this can be rewritten as follows:

∑ 𝑫𝑫𝒊𝒊(𝒎𝒎,𝒏𝒏)𝑴𝑴,𝑵𝑵
𝒎𝒎,𝒏𝒏=𝟏𝟏

𝑴𝑴∗𝑵𝑵
∗ 𝟏𝟏𝟎𝟎𝟎𝟎 > 𝒕𝒕 (6)

This equation computes a ratio of pixel changes beyond an intensity and applies a

threshold. The shortcoming to this method is camera movement; a pixel in one particular

position, say position (40,50) in one frame, is compared with a pixel in the same position in the

next frame. The problem is if the camera is moving, that adjustment is not taken into

consideration. This is the problem taken on by (H. J. Zhang, Kankanhalli, & Smoliar, 1993).

They pair a histogram comparison technique with motion gradient detection to improve upon the

simplistic threshold technique. Other techniques utilize histograms, motion vectors, block

matching algorithms and the discrete cosine transformation (Boreczky & Rowe, 1996). Others

compute the difference in color histograms, look at the ratios of edges that are detected in the

frames, the contrast and standard deviations of pixel intensities to detect hard cuts, fades and

dissolves (Feng, Fang, Liu, & Fang, 2005; Ford, Robson, Temple, & Gerlach, 2000; Lee, Yang,

& Lee, 2001; Lienhart, 1999; X. Liu & Chen, 2002; D. Zhang, Qi, & Zhang, 2001; Zheng, Yuan,

Wang, Lin, & Zhang, 2005). A technique developed by (Oh, Hua, & Liang, 2000) computes the

difference in the background of a scene to determine a scene cut, while handling camera motion.

The benefit of their technique is that it is less sensitive to predefined threshold values. Other

techniques claim that changes to illumination and the motion of the camera (or objects observed

in the scene) are contributors to the poor performance of shot detection transitions. In order to

mitigate this they utilize clustering and support vector machines and independent component

32

analysis to produce more accurate shot boundary detections (Camara-Chavez, Precioso, Cord,

Phillip-Foliguet, & De A Araujo, 2007; J. Zhou & Zhang, 2005; Y. H. Zhou, Cao, Zhang, &

Zhang, 2005, p. -).

Multimedia Data Representation for Indexing

Collections of multimedia information can grow to very large sizes, consuming many

gigabytes of storage space. In order to utilize multimedia content it must be retrieved; whether

the retrieval is to find a movie based upon its title, or one is looking for images, clips of audio or

video segments showing a particular subject or class of objects. As an example consider a table

of records in a traditional relational database. Each record in the table can be considered as a

point in a multidimensional space (Samet, 1990, 2006). Consider a record for an employee-

department relation with the following fields: {employee_id, department_id, manager_id,

start_date, end_date}. In this case, records in this table correspond with points in a 5-

dimensional space, where three of the dimensions refer to, say, integers (employee_id,

department_id and manager_id) and the other two dimensions are of type date-time (i.e.

start_date, end_date). The DBMS manages this collection of these records and stores them in a

file on some persistent media. In order to facilitate efficient retrieval of records in this database,

indexes can be created. The index itself is simply another table (or, correspondingly, a file

created and maintained by the DBMS). For example, an index over the field employee_id could

contain only employee_id’s and the location of associated records in the corresponding

employee-department file. By utilizing the index file in order to resolve queries, less data would

need to be loaded and processed, since the index file contains primarily employee_id data (and

not other data fields such as manager_id). To further enable efficient retrieval, an ordering can

be imposed upon the records, either in the primary data file or in the index. However, to

33

accommodate future record operations to the primary data table (e.g. delete, insert, update) it is

often more efficient to impose the ordering only on the data in the index files. For numeric fields,

the ordering can be based upon numeric value. For character fields, the order can be based upon

corresponding ASCII or UNICODE numeric values, or based upon lexicographic order. For

other types of data, such as color, the ordering could be based upon the corresponding

hexadecimal value (e.g. red is “ff0000”) or the color’s wavelength.

Samet (Samet, 2006) identifies five key questions that should be considered when

deciding how to represent a dataset: (1) What is the type of the data; continuous, discrete? (2)

The operations that will be performed; e.g. a log file might only have data appended to its end.

(3) How should the ordering of the data be applied; should the data in the primary file be

ordered, or only the index files? Which attributes should be included in the ordering? (4) Will

more data be added or removed? Will additional attributes be added in the future? And, (5) is the

quantity data sufficiently small such that all of it will fit into the primary memory of the

computer hosting the database, or will disk-resident data access algorithms need to be utilized.

There are many different ways data can be represented, and considering questions such as these

can guide the process of designing an implementation.

When considering multimedia for browsing and searching, an index is also required.

Some fundamental question are pertaining to multimedia data are what, which and how. At what

granularity should the item be indexed; as a whole or by frame or a clip of frames? Which refers

to which items should be indexed; should all pixels shown in each frame of video be represented

somewhere in an index, or should only moving objects be stored? Should the time index an

object appears or disappears be recorded? How to index an item pertains to selecting and

extracting features to be indexed. Data indexing, and more specifically multimedia data indexing

34

is a multifaceted and difficult problem, and as such, there is a significant quantity of research and

correspondingly, solutions and indexing algorithms and data structures. Some works that

addresses the issues of multimedia indexing holistically are (Bolle, Yeo, & Yeung, 1998;

Brunelli, Mich, & Modena, 1999; Snoek & Worring, 2005; Y. Wang, Liu, & Huang, 2000).

To illustrate this, consider the information that can be extracted from a video: the visual

component (the visual content represented by pixels in the frames), the auditory information (i.e.

audio tracks) and text (text that can be extracted; and metadata pertaining to the video itself such

as genre, actors, etc). A multitude of semantic properties of the video can be extracted from the

metadata pertaining to its content: the type of video (e.g. education, training, entertainment), the

time period the video covers; major actors who appear, and so forth (Boggs, 1996; R. Jain &

Hampapur, 1994). To index content that is depicted visually in the video, pattern recognition

approaches can be employed; for example, template matching (e.g. Bayes classifier, decision

trees, Hidden Markov Models, face and people detection (Belhumeur, Hespanha, & Kriegman,

1996), etc). The reader is referred to (A. K. Jain, Duin, & Mao, 2000) for a comprehensive

review of pattern recognition techniques. To index videos, they can be decomposed into a series

of semantic shots, and each shot can be individually indexed (Ide, Yamamoto, & Tanaka, 1999;

Nagasaka & Tanaka, 1992). Pertaining to audio data, a number of different techniques can be

employed, for example sounds can be analyzed to detect musical instruments or talking (Foote,

1997; Wold, Blum, Keislar, & Wheaten, 1996).

Multimedia Indexing Storage and Retrieval

To index multimedia content, first it is decomposed and segmented and features which

correspond to points in a multidimensional space are extracted. The next step is to efficiently

store and retrieve those points and correspondingly, the associated multimedia content. Some of

35

the questions raised in the previous section are also relevant to how data will be represented for

storage and retrieval. A key question pertains to by what facet of the data the index space should

be organized. Consider a 32-bit integer as an example; it has a large (but finite) range of values,

ranging from 0 to 232-1 possible values. However, the number of items in the collection (say they

are organized about a single integral dimension) may be significantly less than the number of

unique values a 32-bit integer can represent. To translate this example into one that is

representative of storage structures, the comparison is similar to the distinction between tree-

based and trie-based (De La Briandais, 1959) search methods (a trie is an ordered data structure

with branching where the nodes represent prefixes and decedents of each node have the parent

node as a common prefix. The data that corresponds to one of these structures can be stored on

persistent media (e.g. a hard drive, etc). Storage of data on a disk implies that it is organized;

logically the data is organized into buckets and physically the buckets are oriented in pages.

Pages (and correspondingly, the buckets containing data points) are stored in files. The

simplest way to store a set of points in a file is as an unordered sequential list. The downside is

that in order to do an equality search on the file for a particular attribute value, the entire file

must be processed. Thus, if there are N records stored in the file and each file has d attributes, the

processing will be of order O(Nd). With this simple organization as a starting point, there are

numerous structures (and corresponding algorithms) that facilitate indexed storage and retrieval,

one example is the Grid File (Nievergelt, Hinterberger, & Sevcik, 1984).

Another straight-forward technique to organize data in a file is to utilize a hash function.

The concept behind a hash function is to utilize a mathematical function to distribute items (i.e.

key/value pairs) into buckets which are stored on persistent media in a file (or files, depending

upon the implementation). Given a key, the hash function can suggest which bucket to store the

36

value into. In the case that the bucket is at capacity, there are various algorithms that determine

how to manage the overflow (collision resolution, load factor, etc.) (Aho, Hopcroft, & Ullman,

1983; Cormen, Leiserson, Rivest, & Stein, 2001; Pieprzyk & Sadeghiyan, 2001).

When choosing an index structure it is important to consider the type of data that will be

stored; for example, strings or numbers, point data, lines (or line equations), rectangles, regions,

surfaces, volumes, etc., and the types of queries that will be performed; point queries, range

queries, window queries, etc. For point data one can utilize index structures like the Binary

Search Trees (Bentley, 1975), B-Tree (Scheuermann & Ouksel, 1982) or B+-Tree, etc). When

indexing data in multiple dimensions, one can use a 2-dimensional version of the binary search

tree called a Point Quadtree (Finkel & Bentley, 1974). To detect the line segments (i.e. intervals)

that contain a point one can use a unit-segment tree (Bentley, 1977; Finkel & Bentley, 1974). To

detect line segments that overlap one can use an interval tree (Chazelle & Edelsbrunner, 1992).

 The R-Tree (Guttman, 1984; Manolopoulos, Nanopoulos, Papadopoulos, & Theodoridis,

2005) is a multidimensional tree structure for indexing spatial objects such as coordinates (i.e.

points) and polygons. Some index structures such as B-trees, are not well suited for indexing

spatial data due to issues related to ordering multidimensional data. Objects that are close

together are grouped within a minimum bounding rectangle at the next higher level in the tree.

Thus the granularity of the objects represented increases as one gets lower in the tree. When

querying an R-Tree one needs to check if the query region intersects any rectangles at the current

level, and if so, then the corresponding rectangles at the next lower level are recursively queried.

By resolving queries in this manor, only a minority of the rectangles need to be queried due to

how the space is partitioned. Figure 13 illustrates a 2-dimensional R-Tree composed of three

37

levels. The root level encompasses the entire terrain; and the first level consists of three

rectangles namely, “A”, “B” and “C”.

The tree structures discussed thus far are referred to as space-partitioning structures; they

are hierarchical data structures that decompose the space into disjoint partitions. (A notable

variant of the R-Tree is the R*-Tree (Beckmann, Kriegel, Schneider, & Seeger, 1990), which is

an optimized variant of the R-Tree and performs well under both point and spatial queries with

only slightly higher overhead.) A downside is that if they become unbalanced then their

implementation suffers in terms of I/O. The SP-GiST index is a space-partitioning index that is

designed to be I/O efficient, even in the case where the tree structure is unbalanced (W. G. Aref

& Ilyas, 2001).

Figure 13. Example of an R-Tree spatial index.

38

The aforementioned structures are amenable to storing lower-dimensional data structures,

applicable to problem domains such as geographical information systems (GIS), intelligent

transportation systems (ITS), computational geometry, computer vision, video game

programming, etc. However, many applications work with high-dimensional feature vectors (e.g.

multimedia databases where the objects are represented by feature vectors). A common class of

queries posed over this high-dimensional space is similarity queries; given an example of one

object, find similar objects (or, objects exhibiting the same property). Similarity queries can be

formulated as point queries (e.g. finding other objects with the same feature, such as a particular

color or size), range queries, nearest-neighbor queries, and spatial join queries, to name a few

examples. It should be noted that when dealing with data that is represented in higher-

dimensional spaces, one encounters the curse of dimensionality (R. Bellman & Kalaba, 1959),

which in essence states that as the dimensionality of the data grows, more of it must be examined

when resolving point queries. In (K. Beyer, Goldstein, Ramakrishnan, & Shaft, 1999) the

nearest-neighbor problem is analyzed in the context of the dimensionality of the data. Their

findings are that as the dimensionality of a space approaches infinity that the distance from a

point to its nearest neighbor, and the distance from that point to its farthest neighbor, converge to

some distances that are within an epsilon of each other.

When working with high-dimensional data, one method of data management is to reduce

the dimensionality and utilize one of the hierarchical data structures discussed previously, such

as an R-Tree (Guttman, 1984) or R*-Tree. Alternatively, there exist indices that are not based

upon the dimensions (i.e. features) of the objects, but on the distances between them (the

interobject distances), e.g. SparseMap (Hristescu & Farach-Colton, 1999), FastMap and

MetricMap (J. T. L. Wang et al., 1999). Some types of data cannot be represented by bounding

39

boxes, for example, the representation of a plane or surface. In this case, these types of objects

can be decomposed into a smaller volume, for example, a cube, and the corresponding cubes

indexed (or for query purposes, a cube can be queried and then determined which object(s) it

corresponds to). The R+-Tree index structure can accommodate these types of items, but the

downside is that one object can be represented by multiple blocks and can thus potentially lead to

duplicated results being reported. To accommodate this, algorithms have been developed that

take into account duplicate objects in the search space, for example (W. G. Aref & Samet, 1994;

W. Aref & Samet, 1992; Samet, 1995).

When performing searches over highly-dimensional spaces, once the objects are

represented in an index structure, the next step is to select a search algorithm that will efficiently

resolve queries. Most of the structures discussed thus far are hierarchical in nature and the data

they contain is grouped together (say, in minimum bounding rectangles) based upon some type

of clustering. A few representative algorithms that utilize such data structures to resolve nearest

neighbor queries are (Baeza-Yates, Cunto, Manber, & Wu, 1994; Bern, 1993; Bozkaya &

Ozsoyoglu, 1999; Eastman & Zemankova, 1982; Graham, 1972; Kamgar-Parsi & Kanal, 1985;

Yianilos, 1993). Since these algorithms generally entail some type of tree traversal (e.g.,

bounded depth-first search), they can be improved upon if conditions or rules pertaining to

branch pruning can be employed (Fukunaga & Narendra, 1975; Skopal, 2004, p. -; Uhlmann,

1991; Weber, Schek, & Blott, 1998).

Finally, another method is to reduce the number of features that must be managed in the

index (Hinneburgy, Aggarwalz, & Keimy, 2000). This can be done by analyzing the data and

utilizing techniques such as Singular Value Decomposition and Principal Component Analysis

(to name a few). In addition to the aforestated algorithms and structures, there are many more.

40

For example, (Gionis, Indyk, & Motwani, 1999; Indyk & Motwani, 1998) presents a similarity-

search technique for high-dimensional data that utilizes a hashing technique, and other

approaches entail mapping the data points into a different representation space, called an

embedded space (Linial, London, & Rabinovich, 1995) (one of the reasons to implement such a

mapping is that the embedding can improve the precision and recall of searches).

The Semantic Gap

In the realm of video indexing and retrieval the semantic gap refers to the difference in

representations when an activity (or object or observation) is represented as data in a computer

system. More specifically, it is the lack of a strong correspondence between the low-level

representation and the high-level interpretation that would be perceived by a person (Snoek &

Smeulders, 2010). The semantic gap, and more specifically the detection (discovery, uncovering,

etc.) of semantic information in multimedia is and has been a highly researched area of computer

science (Lew, Sebe, Djeraba, & Jain, 2006; Smeulders, Worring, Santini, Gupta, & Jain, 2000).

Even with all the research and significant progress that has been made, there is still significant

work that is yet to be done. That is, the current state of the art is not where we would like for it to

be in terms of the quality of concept detection that has been achieved (Yang & Hauptmann,

2008). Yang and Hauptmann elaborate that mainstream approaches suffer from learning

problems pertaining to classifiers that do not perform well outside of the data on which they were

trained (that is, they generalize poorly to domains other than the ones on which they were

trained). One of the challenges is simply the scope of the problem; the number of concepts that

exist are unlimited (Snoek, Worring, Van Gemert, Geusebroek, & Smeulders, 2006).

To state the problem in an alternate fashion, the semantic gap is the disparity between the

information that can be extracted from the representation of an item, and the interpretation of

41

said data, and for humans, the interpretation can be context dependent. For example; the

determination of similarity can depend upon domain knowledge, or it could be defined as the

difference between the color of pixels in two images (Hatano, 1996). Another factor pertains to

how people perceive and interpret similarity (Rosin, 1997; Siddiqi & Kimia, 1995; Treisman,

Cavanagh, Fischer, Ramachandran, & von der Heydt, 1990). As Treisman points out, humans are

particularly adept at recognizing objects, for example, to recognize the form of a white snowman

in the presence of a background of snow. Another issue pertains to the representation (or lack

thereof) of spatial relationships in images (for example one visual artifact is parallel lines

meeting at the horizon) (S. K. Chang & Hsu, 1992; Lau & King, 1997; Schneiderman & Kanade,

1998; Smith, Self, & Cheeseman, 1990; Tagare, Vos, Jaffe, & Duncan, 1995). In general, human

perception can be affected by their knowledge; that is, in terms of their cultural, geometric,

categorical, perceptual, physical and literal understanding of an object and its context, and

current computer algorithms encounter limitations when dealing with broad concept categories

and the modeling of image semantics (Mojsilovic & Rogowitz, 2001; X. S. Zhou & Huang,

2000). From a computer science (that is, from a computational and algorithmic) perspective, one

avenue to bridge this gap is being addressed in the field of content-based image retrieval (CBIR).

Content-based Image Retrieval

In literature there are many ways in which CBIR described. In particular, it is the

application of computer vision techniques to extract information from an image in an automated

fashion for the purposes of retrieval. Also referred to as query by image content (QBIC) (Flickner

et al., 1995), it pertains to the retrieval of images based upon what they visually depict; not by

metadata or human-ascribed annotations, whose assignment can vary from person to person,

culture to culture, reflect personal biases, etc. In CBIR systems, image data is represented by

42

features corresponding to its visual appearance; color, texture, shape, edges, etc. Early work in

CBIR was done with pictorial databases (Blaser, 1979, 1979; N. Chang & Fu, 1980; N. S. Chang

& Fu, 1980).

Present day CBIR systems facilitate retrieval by accommodating a variety of query

methods, to include query by example, sketching an image by hand, random browsing, text

search (i.e., keyword, speech/voice recognition) and hierarchical navigation by category (S. F.

Chang, Eleftheriadis, & McClintock, 1998). Objects in CBIR systems are represented by features

associated with their content. As such, feature extraction is an important step inherent to CBIR

systems. Features (color, shape, texture, edges, regions, etc.) are extracted and stored in a

multidimensional index (feature vectors can range from very few to hundreds of dimensions).

Figure 14 provides an example of a system architecture for generic CBIR systems. A user

submits an image as a query through a user interface. The query image is parsed and its

representative features are extracted. The features from the query image are mapped to a

multidimensional query point in the index, and similar images are returned back to the user as

the query result.

There are presently many research and commercial CBIR systems; a few representative

examples include QBIC (Flickner et al., 1995), Virage (Bach et al., 1996), Photobook (Pentland,

Picard, & Sclaroff, 1996) and MARS (Huang, Mehrotra, & Ramchandran, 1997; Mehrotra, Rui,

Ortega-Binderberger, & Huang, 1997; Rui, Huang, & Chang, 1999; Rui, Huang, & Mehrotra,

1997) to name a few. Additionally there are many good surveys on CBIR techniques and systems

(Y. Liu, Zhang, Lu, & Ma, 2007; Rui et al., 1999; Zhao & Grosky, 2002).

43

Although originally applied to images, content based video retrieval (CBVR) is another

active area of research due to the commoditization of compute and storage capacity (Durkee,

2010). CBVR is semantically similar to CBIR except its domain is that of video, rather than

images. Videos are segmented into shots, which may be represented by key frames (Sato,

Kanade, Hughes, Smith, & Satoh, 1999), features are extracted and indexed. At that point

retrieval is similar to the workflow presented in Figure 14 for CBIR (Geetha & Narayanan,

2008). Of course, video adds the potential to fuse additional data modalities not available in

traditional CBIR into the indexing and retrieval process, such as correlation with audio tracks

(Foote, 1999; Z. Liu & Huang, 2000; Makhoul et al., 2000).

Figure 14. Representative architecture of a typical CBIR system.

44

Research Video Database Management Systems

A variety of video database management systems have been introduced over the years,

spanning from research prototypes such as BilVideo (Catarci, Donderler, Saykol, Ulusoy, &

Gudukbay, 2003), VideoText (Jiang, Montesi, & Elmagarmid, 1997) and the Advanced Video

Information System (AVIS) (Adali, Candan, Chen, Erol, & Subrahmanian, 1996), to name a few

(Flickner et al., 1995; Guting et al., 2000). For example, the AVIS system segments video frames

into a tree structure in order to represent the relationships between objects. However this system

does not provide support for queries that resolve spatial relationships. In addition, many of these

systems utilize offline processing to analyze video data to perform pertinent steps like feature

extraction. Very few works, for example (Velipasalar, Brown, & Hampapur, 2010), address the

real-time processing aspects of multimedia databases and surveillance applications. For a

database system to be applicable to the domain of LVC it must support real-time online visual

analysis of streaming video data, meaning that feature extraction and any other analysis must be

done online and within a reasonably bounded time period. Relevant algorithms and data

structures must also be amenable to the nature of working with continuous data streams; meaning

that it is not acceptable for a software platform to perform processing for some period of time

and then stop when the memory capacity of the host system has been exceeded. Thus, LVC

databases have performance (i.e. efficiency) characteristics that must be adhered to in order to

facilitate the pre-processing steps necessary for real-time continuous query evaluation. The video

database system presented by Velipasalar provides real-time query functionality of high-level

events spanning single and multiple cameras, but is lacking in terms of a high-level declarative

query language; events are defined in a procedural fashion. Similarly, the KNIGHT system

(Javed & Shah, 2008) utilizes a maximum likelihood (ML) (Akaike, 1973) framework to track

45

objects across cameras, but it also does not support a high-level declarative language for

expressing events of interest.

Introduction to Live Video Computing and Big Data

This section introduces basic tenants of LVC and shows that the “big data” label is

applicable, due to the nature of streaming video and the real-time processing requirements.

Basic Premises of Live Video Computing

LVC is the theoretical framework upon which the LVDBMS prototype system is based.

Traditional video stream processing applications (e.g. depicted in Figure 15) are designed

specifically to solve a particular problem, and may be designed to work with a specific set of

cameras or camera hardware. The result of this style of application development are applications

that are not capable of operating with each other in a reciprocal fashion to share information and

provide additional value and value-add opportunities. For example, in a hospital environment a

patient monitoring system would not be able to interact with the hospital video surveillance

system, and likewise, the hospital surveillance system may not be able to utilize cameras that are

utilized by the patient monitoring system. The result is that additional hardware would have to be

purchased in order for the surveillance system to have some capabilities in patient areas where

the monitoring application is deployed. If data from applications developed in this style needs to

be combined for auditing, reporting or other purposes, additional software (middleware) must be

purchased and interfaced with these applications.

However the downside is that this middleware must be installed and configured on a

case-by-case bases, and “adapters” for each application must be configured or developed to

provide application-specific interfaces to the middleware. The middleware must then perform an

46

extract, transform and load (ETL) process to transform data received from the application-

specific adapters into a common data format that is amenable to further processing. The result is

additional middleware software that must be purchased and maintained and also staff resources

to install, configure, maintain and upgrade, as appropriate Figure 16.

Note that libraries such as OpenCV (Bradski, 2000) and Intel Performance Primitives

(IPP) (Taylor, 2007) are commonly used by programmers when developing these types of

applications, to provide basic data-handing functionality. The OpenCV library provides a

comprehensive assortment of image processing and data management routines and data

structures, the IPP library provides functions and associated data structures that are specifically

tuned to take advantage of features provided by modern multicore processors such as parallel

data processing instructions. However these common libraries provide low-level functionality

that programmers use as conveniences; and do not generally provide out-of-the-box high-level

application functionality. (For example, OpenCV routines could be used to read in frames from a

camera, and other routines would need to be called in the proper order with the proper

parameters and settings in order to interpret imagery depicted in the frames.)

47

Figure 15. Siloed approach to camera/stream processing application development.

Figure 16. Applications built as information silos utilizing middleware and application-
specific data adapters.

48

Figure 17. LVC approach showing common image processor and query interface.

The LVC approach leverages a common video processing software infrastructure to

provide a common programmable interface to clients and a shareable pool of camera resources;

illustrated in Figure 17. The goal is to create an ecosystem for collaboration and information

sharing to allow users to draw new insights that are not possible with siloed information

frameworks. This approach facilitates rapid application development by allowing application

architects and software developers to focus their time and resources on the business problem,

rather than having to devote time and resources to develop core stream processing functionality

for each application. This approach is similar to how business application software leverages a

common database platform; the application designers and programmers focus their efforts on the

business problem and rely on the programmatic interface and SQL to persist business data and

retrieve data for reporting purposes.

49

Figure 18. LVC stream data model contrasted with relational record and disk data model.

Traditional DBMSs orient data in tables, such that each table contains records (or tuples

in the relational vernacular). Each record in a table has a common attribute structure, illustrated

in the right side of Figure 18. LVC is stream-oriented; operating over video streams. That is, the

video streams are queried their content conceptually similar to how files residing disk drives are

also queried for the content they hold. A comparison of concepts between traditional database

computing and LVC is presented in Table 2, extending what is presented in Figure 18 with

additional comparisons of similar concepts that exist between these two platforms. Live Video

Query Language (LVQL) is the query language of the LVC prototype implementation. It can

specify events in terms of spatio-temporal observations and correlations of objects in video

streams.

50

Table 2: Comparison of LVC and traditional DBMS concepts
 LVC DBMS
Storage Camera Hard Drive
Relation Video stream Record
Data unit Video frame Tuple
Data granularity Object Attribute
Query language LVQL SQL

Live Video Computing is Big Data

The term big data is used to describe large quantities of data that exhibits complex

relationships (White, 2012). For example, sensors on an airplane measure numerous different

physical properties, and the promptness with which actionable results can be derived from them

is imperative. Other examples include measurements pertaining to particle collisions in physics

(Dimopoulos & Landsberg, 2001). Due to the massive storage and computation requirements

inherent to working with large and complex data sets, traditional software solutions such as

relational databases and desktop computer statistical packages such as SPSS (Norusis, 1990) are

not well suited to be applied to big data problems.

Figure 19. LVC exhibits the three popular attributes of big data; variety, velocity and
volume.

51

In a Gartner report (M. Beyer, 2011), Beyer identifies three distinguishing properties for

describing big data; they are namely volume, velocity and variety. LVC also exhibits these same

attributes (Figure 19). LVC is concerned with providing real-time responses to clients (velocity)

based upon the present situation that is observed. Video streams are treated as an unending

sequence of frames of imagery (volume) and the cameras can be placed to monitor a wide variety

of situations ranging from war scenarios to Mars exploration to airport surveillance (variety; i.e.

the imagery data is diverse and not structured).

A number of data processing algorithms have been applied to extract information and

understanding from big data, including spatial analysis, sentiment analysis, neural networks,

cluster analysis, supervised and unsupervised learning, etc. LVC utilizes a distributed computing

approach that includes database and real-time stream processing concepts. Whereas traditional

data mining frameworks and algorithms operated on large static data sets, LVC leverages real-

time data streams to allow end users (i.e. not programmers in an Information Technology

department) to leverage real-time data for decision making and notifications.

Summary

In order to achieve a solution that can leverage video streams to gain information and

insight in an automated fashion, a number of components from a number of different fields of

computer science, mathematics and statistics must be combined and made to operate in harmony.

This chapter provides a brief review of a number of areas that are fundamental to engaging in

computing over live video streams and processing the temporally oriented sequences of images

they contain.

52

Early multimedia database systems leveraged manually entered metadata annotations in

order to serve mixed media files to users and client applications, for purposes such as education,

finding representative content for television news stories, managing personal music collections,

etc. As computer processing and storage capacity advanced, more information and knowledge

could be mined from the bits and bytes that represent the raw multimedia data. This lead to

algorithms to segment images into logically similar sub-regions, algorithms to represent portions

of media as feature vectors for indexing and similarity computations, methods to find the salient

objects depicted in video streams, and to track the identified objects as they move about the

scene. This chapter also includes a review of more “high-level” techniques, such as data

clustering, shot boundary detection, indices for efficient comparison of high-dimensional

features, and the semantic gap.

Finally, the concept of LVC and sharable data and infrastructure is introduced, and the

application of the term “big data”; the concept of leveraging massive quantities of both stored

and real-time information to provide for real-time decision-making based upon said data.

53

CHAPTER 3: INTRODUCTION TO THE LVDBMS

LVC refers to theoretical aspects of the live video computing framework. The LVDBMS

is an implementation of the LVC framework with objectives that include algorithm and data

structure development. It is intended to be scalable and adaptable to manage a plethora of video

streams while providing real-time query responses. As surveillance scenarios can be

uninteresting and monotonous to watch, maintaining a high level of vigilance for long periods of

time, waiting for an event that occurs infrequently is fatiguing. Operators can biased, become

distracted, may be required by law to take periodic rest breaks, etc. Additionally, due to the

lowering costs of camera hardware, the pervasiveness of network infrastructure (both wired and

wireless) and the growing needs for maintaining security (for safety purposes, theft prevention,

etc.) the number of video streams that must be monitored is increasing. The human factor

limitations and the vast quantity, variety and velocity of videos that need to be monitored

contribute to the fact that many camera networks are relegated to be used primarily for data

archiving and post-crime investigations. As a result, in some instances of camera network

deployments, police are no more likely to catch criminals in places where numerous cameras are

deployed, compared to areas where only a few cameras are deployed.

This work presents efforts pertaining to contributions to LVC and more specifically

development efforts pertaining to the LVDBMS. Note that a portion of this content, including the

results presented here, have previously been published by the author in conference proceedings

and in journals, for example, (Aved, Hua, & Gurappa, 2011; Aved & Hua, 2012; R. Peng, Aved,

& Hua, 2010). Select highlights of the LVDBMS include:

• A data model characterizing different classes of objects.

54

• The LVQL query language which can specify events of interest. LVQL queries are posed

to the LVDBMS as continuous queries and may be associated with an action (such as

“notify the operator”) when an event is detected.

• A privacy specification language (PSL) for specifying privacy policies. Privacy policies

apply to objects observed in video streams and specify when their appearance should be

redacted from output streams.

• A 4-tier architecture of loosely connected layers that implement web services

communication interfaces amenable to rapid application development and porting to

other environments such as a public or private cloud.

• A framework to match objects observed in multiple video streams. The essence of this

framework models objects as bipartite graphs. Objects are recognized by applying a

distance function and threshold to the graph.

• Runtime query optimization to reduce and potentially eliminate duplicate computation of

intermediate query results.

• An LVDBMS prototype implementing said functionality presented with corresponding

performance results; both qualitative (tracking precision and recall) and quantitative

(index maintenance overhead, etc).

The remainder of this chapter provides details of select functionality and the LVDBMS

environment. Later sections expand upon specific functional areas such as query optimization

and privacy filter specification and implementation.

55

LVDBMS Architecture

The components of the LVDBMS are logically grouped into four tiers, as illustrated in

Figure 20. Each tier defines one or more web service interfaces to facilitate communication

between the tiers. The four tiers include:

• The camera layer, which encompasses cameras and their corresponding adapters. Camera

adapters are conceptually similar to device drivers in computer systems, allowing for

disparate camera device hardware to connect with a standard LVDBMS interface.

• The spatial processing layer, which processes the metadata and video streams from the

camera adapters, passing results to the stream processing layer. A host in this layer

communicates with multiple camera adapters, but a camera adapter communicates with

only a single spatial processing layer host.

• The stream processing layer receives subquery evaluation streams from spatial

processing layer hosts and computes final query results for delivery to clients. As this

interfaces with end users and applications (i.e. the client layer), it contains logic for

managing authentication, connections and session state with LVDBMS clients.

• The client layer encompasses LVDBMS end users and client applications. Clients

authenticate and interact with the LVDBMS by browsing the catalog of cameras,

submitting queries and receiving query results. Representative images of the LVDBMS

graphical user interface (GUI) are depicted in Figure 22. Queries are specified in the area

“Query Description” and buttons “Query 1”, “Query 2”, etc. recall pre-written queries.

The “Send Query” button submits a query for evaluation.

56

Figure 20. Logical 4-tier architecture of the LVDBMS prototype and major components of
the framework encapsulated in each tier.

Figure 21. LVDBMS prototype, illustrating query, subqueries and results.

57

Figure 22. Example images of the LVDBMS; the appearances of some objects have been
redacted.

58

The LVDBMS illustration depicted in Figure 20 is refined in Figure 21, which illustrates

how a query flows down through the LVDBMS architecture, and then how data and query results

flow back up through the layers and back to the client. An initial query is posed by an end user or

client application to the LVDBMS. This initial query is submitted to the stream processing layer

host to which the client is connected. The stream processing layer host maintains metadata

pertaining to available spatial processing layer hosts (also referred to as camera servers, as they

interface with cameras via their adapters and perform processing) and their associated cameras.

With this information the stream processing layer host translates a query into one or more

subqueries. Each subquery corresponds to a particular camera server host, where it will be sent

for evaluation. Camera adapters process imagery from camera sensors and translate it into a

stream of images and corresponding metadata, which is sent to its respective camera server.

Metadata associated with each video frame from the camera adapter includes information

pertaining to the frame itself (i.e. timestamp, sequence number, etc.) and to objects observed

within the frame and segmented out by the camera adapter (i.e. object identifier, a bounding box

identifying the location of the object within the frame, etc). Subqueries evaluate LVQL

expressions over video streams (specifically, over the intersection of video streams specified by

the query and video streams managed by a particular camera server to which the subquery was

sent) and stream subquery evaluation results back to the respective stream processing layer host.

The stream processing layer host receives one or more intermediate results for each evaluation

time step and computes a final query result (for the particular point in time), which is then

delivered back to the end user or client application.

59

LVDBMS Data Model

LVC, and correspondingly the LVDBMS, is concerned with computation over video

streams. As such, the event and data models revolve around objects that are observable by

imaging sensors and depicted in temporally oriented frames in the video streams that emanate

from these sensors. Therefore, it follows that an event (i.e. a simple event) is defined to be

occurrence of an action that may be observed by one (or more) cameras and represented in frame

data in corresponding data streams. We note that in this work, the terms video stream and camera

stream are used interchangeably, as are enabling hardware device terms such as camera and

imaging sensor.

From the perspective of an LVDBMS client, events may be specified in LVQL by using a

combination of spatial and temporal components, or operators. Thus, a user can leverage LVQL

to specify a complex event in terms of simple events that are related temporally. For example, a

simple event could be a person (or more generally some object) appearing in a scene or moving

in front of a desk (where the term scene refers to some portion of the real world that is observed

by a camera and rendered into a sequence of frames in a video stream). A complex event relates

simple events with temporal operators. For example, a complex event could be defined as a

person first appearing in a scene and then, within some threshold of time, moving in front of a

desk. (Since the LVQL presented in this work is 2-dimensional, there is no distinction between

touching and in-front-of, as that type of scene information is not captured by the cameras.)

A spatiotemporal query is formulated in LVQL. This query specification defines which

video streams will be monitored for the occurrence of an event. That is, if the query specifies that

a particular video stream will be monitored for the appearance of an object, if an object

subsequently appears in a different video stream, there will be no impact upon the query result.

60

An object is a fundamental component of an event specification. As indicated in Table 3, there

are two basic types of objects that are recognized: dynamic objects are detected automatically by

the image processing software, and static objects are indicated by users of the system. The third

classes of objects are cross-camera dynamic objects. These are dynamic objects that were first

recognized in one video stream and subsequently recognized in a second stream. The inclusion

of this object class simplifies the expression of queries that define events correlating objects that

appear in multiple video streams. Note that in each respective stream these objects also qualify as

dynamic objects.

Table 3: Comparison classes of LVC objects
Object class Description

Static
Objects of this class are defined by the user and do not move
within the scene. For example, a static object may be defined
(drawn) over a window or door for subsequent use in a query.

Dynamic

Salient objects that are detected automatically within a video
stream. A model of the scene background is maintained and as an
object passes through the scene, its appearance is distinguished
from the background. If its size is beyond a threshold it is
segmented, assigned a unique identifier and tracked.

Cross-camera
dynamic

Static objects detected in one video stream and subsequently
matched to an object in a second video stream are classified as
cross-camera dynamic objects.

Another view of the data flow in the LVDBMS is presented in Figure 23. Starting from

the left, two cameras observe the same scene from different vantage points. Two frames are

depicted at a particular point in time, from the two cameras. Within the scene two objects are

observed, assigned identifiers (unique to the video stream) and tracked within their respective

video streams. Within each stream these objects are dynamic objects. However, a query may be

defined specifying an event that involves both cameras; for example, the event may be that an

object appears in both the first camera stream and then the second stream. In that case, these two

objects are also considered to be cross-camera dynamic objects.

61

Continuing with the example in Figure 23, the scene is segmented and objects are tracked

by each camera’s respective camera adapter (not shown) and sent to the camera server, which

resides in the spatial processing layer. The camera server uses the metadata received from the

camera adapter to process the spatial operators and send the stream of results to the stream

processing server residing in the stream processing layer. (Note that the pound sign in the

operand to the Appear() operator corresponds to an object of type cross-camera dynamic; if it

simply had a dynamic operator (denoted by an asterisk) the query would not correlate objects

across camera stream.) The final query result is streamed to the user from the stream processing

layer host. When a user requests to monitor the imagery from a video stream, the images come

from the camera server. This allows the user to observe the same images in sequence with query

evaluation results and eliminates a potential capacity bottleneck if multiple users view images

Figure 23. Depiction of the data flow in the LVDBMS, from frames to query result.

62

from the same camera simultaneously. Also, by serving the pictures from an LVDBMS host

(rather than the camera hardware directly), authorization information pertaining to the user’s

session may be consulted in order to determine if the user should have direct viewing access to

the raw imagery of the scene.

Introduction to the LVQL Query Language

LVQL is the query language of the LVDBMS. Analysts and programmers may leverage

this query language in to develop applications that interact with video streams. As such, the

programmers and application designers need only know the details of the query language, and do

not need to spend time developing stream processing algorithms or low-level details of the

LVDBMS. LVQL permits for the specification of an event and a corresponding action to be

defined over a video stream (or a set of video streams). It is a declarative language, meaning that

the user defines a logical event specification and not the particular flow of control or algorithms

that will be executed to determine the query result. An LVQL expression specifies a spatio-

temporal event, and an action that is to be triggered when the event is recognized. The basic form

of a query (specifically, an ActionEvent) is as follows:

 ACTION UserSpecifiedAction

 ON EVENT EventSpecification

Which signifies that an action UserSpecifiedAction corresponds with EventSpecification and will

be executed the first time a query evaluation result of true is returned. EventSpecification is an

event specification that is generated by a context free grammar which consists of a set of rules, or

productions, which can be utilized to express (describe) an event. A simplified set of LVQL

63

productions is presented in Figure 24; items shown in light blue represent tokens recognized by

the language.

As shown in Figure 24, an LVQL statement consists of either an ActionEvent or a View

Definition Language (VDL) production. In the case of an ActionEvent, which specifies a query,

the event definition must contain a spatial operator (e.g. Appear, North, Meet, etc.) The VDL is

used to define privacy filters and views over video streams, and is discussed in detail later in this

work.

Declaring an event in LVQL entails expressing the event in terms of spatial, temporal and

Boolean operators. The simplest event that can be expressed is the appearance of an object in a

video stream by using the Appear() operator. The Appear() operator accepts two arguments (i.e.

operands), the first operand specifies the video stream, object class (and possibly filter criteria)

that the operator will be applied to, and the second is a threshold. (All spatial operators accept a

threshold argument.) The threshold for the Appear() operator specifies the minimum size of an

object that will satisfy the appearance condition, in terms of the area of the minimum bounding

rectangle (MBR) that contains the object. For example, Appear(s1.*, 200) will return true each

time it is evaluated if a dynamic object with an MBR of area greater than or equal to 200 is

observed in the current video frame. In the case of a spatial operator such as North(), three

arguments are accepted; the first two correspond to objects in the video stream, and the third is

again a threshold. North() returns true if the object specified by the first operand is above the

object specified by the second operand, in a stream. The third argument, the threshold, specifies

the amount of separation between these objects (i.e. the distance between the bottom of the upper

object’s MBR and the top of the lower object’s MBR). For example a value of 10 pixels means

64

the upper object must be at least 10 pixels above the lower object. Note that this threshold can be

negative, allowing MBRs to overlap.

Lvql := ActionEvent | VDL
ActionEvent := [action UserSpecifiedAction] on EventSpecification
EventSpecification := NotSpTmplEvent (BooleanOperator NotSpTmplEvent)
NotSpTmplEvent := [not] SpatialTemporalEvent
SpatialTemporalEvent := CompositSpatialEvent | CompositTemporalEvent
CompositSpatialEvent := appear | north | northwest | inside | meet | ...
CompositTemporalEvent := before | meets
BooleanOperator := and | or | not BooleanOperator
VDL := VCmdType view ViewIdentifier over VStreamIdent [set VPrivFilter]
VCmdType := create | update | delete
VTargetStmt := target eq (querytargets | nonquerytargets |
 previouslymasked | none)
VTmpScpStmt := temporalscope eq (querynonactive | queryactive |
 permanent | none)
VObjScpStmt := objectscope eq (static | dynamic | crosscameradynamic
 | none)
VStreamIdent := (Cameraidentifier | ViewIdentifier)
Cameraidentifier := camIdent
ViewIdentifier := viewIdent

Figure 24. A simplification of the LVQL grammar, including privacy view definition
language (VDL) productions.

Figure 25. Illustration depicting dynamic and static objects.

65

 Spatial, temporal (and Boolean) operators can be combined by using Boolean operators.

For example, to identify objects that are between 200 and 300 pixels of area in a stream, one

could formulate the expression And(Appear(s1.*, 200), Not(Appear(s1.*, 300))). Note that

operands effectively act as data filters. For example, three types of objects can be associated with

video streams; dynamic, static and cross-camera dynamic. Specifying an operator and providing

it with an operand argument of one of these types will return only objects of that respective type

to the operator. For example, given a video stream with a static object defined in it, say, s1.12

(where s1 corresponds to stream number 1 and static object number 12), the operator

Appear(s1.12, 50) will only return true if the static object 12 is greater than 50 pixels in area and

will ignore any dynamic and cross-camera dynamic objects that might be detected in the stream.

Summary

This chapter presents an introduction to the LVDBMS. While LVC refers to the

theoretical computation model over live video streams, the LVDBMS is the corresponding

prototype testbed implementation. By providing a computing infrastructure that is accessible to

users and client applications via a web services interface by utilizing a declarative computer

language, software architects and programmers can focus on solving the business problem they

are posed with, and not having to focus on low-level details of stream processing. Thus one goal

of the LVDBMS is to provide a platform to facilitate rapid application development.

The components LVDBMS can logically be grouped into four tiers, the lowest consisting

of physical hardware. Next is the spatial processing layer, then the stream processing layer and

finally the client layer. Queries originate in the client layer and are pushed down to the stream

processing layer and then to the spatial processing layer. Data originates in the camera layer and

66

flows upwards. As it moves upwards it is transformed; from a stream of imagery in the lower

layer to streams of subquery evaluations to a stream of Boolean query evaluations. Thus, the

LVDBMS can scale to process more video streams by the addition of additional processing

nodes in the stream and spatial processing layers.

This chapter also introduces LVQL, the query language of the LVDBMS. Spatio-

temporal events can be specified in LVQL, and when the LVDBMS observes a specified event in

video streams corresponding to the query definition, an action (such as notify operator or save

video) can be executed.

Figure 26. Illustration of an object moving about a scene and corresponding instances, in a
feature space.

67

CHAPTER 4: AN INFORMATICS-BASED APROACH TO OBJECT

TRACKING

The subject matter of this chapter is the object modeling and recognition technique that

matches objects observed in multiple video streams. This correlation of objects across multiple

video streams facilitates the expressiveness the LVQL. This chapter discusses the techniques

used to model an object and the distance function that realizes the object recognition.

Introduction

The multi-camera object tracking implementation in the LVDBMS is based upon

concepts gleamed from MIL. This tracking implementation differs from the MIL introduction in

a previous chapter due to the fact that objects are not explicitly labeled negatively; each object

corresponds to a bag of instances which are all positive examples. Additionally, each bag

represents a distinct object (as opposed to a bag representing some larger entity like a scene

which can contain many distinct concepts and corresponding feature vector representations).

Thus, each bag represents a salient object that has been segmented from a video stream, and the

instances correspond to the appearances of said object in distinct frames. The object is tracked

from frame to frame, and as the object’s appearance changes shape (i.e. a human’s legs and arms

would move while they walk), the instances in the bag represent different poses and possibly

vantage points of the same object (for example, as the object moves about the scene they may

appear larger or smaller, the illumination may change, etc). Thus these changing appearances

will be represented in the bag. Note that samples do not necessarily need to be taken from

consecutive frames of video; for example if an object is not moving very fast then its appearance

from one frame to the next will not change significantly. See Figure 26 for an example of an

68

object moving about a scene and changing structure and pose as she moves about. Each

appearance is modeled by a feature vector and the series of feature vectors corresponding to the

observations are collected in an associated bag.

In the LVDBMS implementation the number of instances a bag may contain is bounded

and instances are added and removed in a first in first out order. Thus, the comparison between

two objects is based upon the minimum of the number of observations and the maximum

capacity of a bag (i.e., min(number_of_observations, bag_capacity)), and two bags do not need

to contain the same number of observations in order for them to be compared (that is, for the

application of a distance function). As new observations of the object are recorded, the bag is

updated to include the new instances. If the inclusion of new instances exceeds the bag’s

capacity the oldest instances are removed. This behavior is acceptable because real-time

surveillance queries are generally concerned with events that have happened very recently. In

order to query for long-term historical events, a different model of data storage and retrieval

would need to be utilized, as the observations of the objects may exceed the capacity of the

primary memory of the computers hosting the application.

Previous Multi-Camera Object Tracking Work

Tracking objects across multiple uncelebrated cameras that have non-overlapping fields

of view (Figure 9 right) is a difficult problem; as objects move about the terrain where the

cameras are deployed the object appear to have one size when it is observed by one particular

camera, and a different size or appearance when observed by a second camera due to its having a

different spatial relationships between itself and the cameras. Furthermore, some length of time

may pass between initial and subsequent observations. A number of multi-camera research

69

models require calibrations pertaining to the spatial relationship between the cameras, and

assume either non-overlapping fields of view, or that objects in motion will maintain a consistent

path between observations (Bowden, Gilbert, & KaewTraKulPong, 2006; Du & Piater, 2007;

Hemayed, 2003; Hu, 1962; Javed et al., 2003; Song & Roy-Chowdhury, 2007; Tieu, Dalley, &

Grimson, 2005; Yilmaz et al., 2006). Factoring in the fixed speed and track of an object as a part

of the feature vector that describes an object can contribute to the precision of the system’s

tracking ability, assuming that the speed and track constraint is realized; e.g. (Hu, 1962; Javed et

al., 2003). Thus, these assumptions (and correspondingly, systems) perform best when the object

movement is non-random; i.e. when the systems are deployed within a building and the objects

are constrained by corridors or walls, or when they are applied to a network such as the railroad

system or road network (i.e. Figure 27 left). Also, these systems assume that the camera

locations are fixed, and if they were to be moved or repositioned, the calibration phase would

need to be executed again. The object tracking technique described in this chapter can

accommodate unconstrained object motion, illustrated in Figure 27 (right).

Figure 27. (left) An object moves about in a straight path, and (right) an object moves
along a random path.

70

Cross-Camera Object Tracking in the LVDBMS

Salient objects observed in scenes by a camera are first tracked within the stream by an

existing single-camera tracking technique, for example the technique presented in (Hampapur et

al., 2005) which tracks an object based upon its appearance in a scene. We refer to the class of

trackers that track objects within a single video stream as frame-to-frame trackers. The

LVDBMS cross-camera tracker relies on frame-to-frame trackers to track objects within each

respective video stream. Moving salient objects are identified and tracked within each camera

stream. Each identified object is assigned an identifier that is unique to the stream in which it is

observed. As the object moves, its appearance is captured in each frame of video. Each capture

of an object’s appearance is processed and a representative feature vector is computed based

upon its appearance. These cumulative feature vectors for each object are stored in a bag that

corresponds with the object’s identifier (i.e., the bag has an identifier of the format <stream_id,

object_id> which is unique to each LVDBMS implementation for each object). Note that

depending upon the circumstances it may not be necessary to capture feature vectors from each

consecutive frame in which an object is observed; for example if an object’s appearance does not

change greatly between frames it may be acceptable (in terms of matching precision and recall)

to capture every 2nd, 5th, etc. observation. As video streams are considered to communicate an

infinite number of frames of video, the bag containing the observations (instances) of an object’s

appearance have a maximum number of instances they can contain. The most recently observed

instances are maintained in first in first out order within a sliding window (e.g. see Figure 28).

71

Figure 28. Illustration of feature vectors calculated based upon an object’s appearance in
every nth frame.

Initially as objects are observed within their respective streams, and objects are not

correlated with objects appearing in other streams, there is a one-to-one mapping between

objects and bags; that is, each bag refers to a particular object in a stream. In order to determine

if an object in one stream is the same object that is observed in a second stream, the two bags

corresponding to the two objects are compared by applying a distance function to compute the

similarity of the bags. If two bags are similar (within some threshold) then the bags that

correspond to the two objects are merged (that is, the most recent instances the bags contain are

merged; adhering to the sliding observation window threshold). The merged bag is then updated

with observations from the object from both video streams. This provides the mapping from an

object in one video stream to an object in a second video stream. Note that in the case of multiple

video streams, it is possible that an object is observed in and matched to objects appearing in

more than two streams, in which case the bag would provide a mapping among each object in

each respective stream in which it is observed.

72

LVDBMS Cross-Camera Tracking Implementation

This section explains implementation details of the cross-camera tracking logic

implemented in the LVDBMS. The LVDBMS prototype implements specific algorithms for

tracking objects across video streams; that is, specific routines that compare the unmatched bags

of objects between pairs of streams. As this object matching inherently requires some CPU and

primary memory resources when running, it is only executed when a query exists that searches

for an event that spans video streams (specifically, the query contains a cross-camera tracking

operand).

In order to reduce false matches, once an object is matched from a stream s1 to a second

stream s2, that object is no longer considered for any additional {s1, s2} matches (and

symmetrically, {s2, s1}). Also, the object matches are considered only among the streams

specified by the query. For example, if four cameras (and thus streams) are registered with an

LVDBMS implementation and a query specifies an event that spans two of the streams, the

matching logic processes only those two specific streams for potential object matches. Note that

even though the matching is a binary relationship (and the distance function is a binary function),

three streams may be related by applying two spatial operators with two cross-camera operands,

for example the first operand could specify the matching {s1, s2} and the second the matching

{s2, s3}, and thus an object could be matched among (and a bag correlated with) three streams,

{s1, s2, s3}.

To facilitate the cross-camera tracking and retrieval of object matching correlations by

queries, a number of metadata structures are maintained; major components are illustrated in

Figure 29, which are implemented in spatial processing layer hosts. The “Streams” structure

maintains the current video streams associated with the host, and a mapping to the current (most

73

recently received) frame from each stream. Streams are indexed by a number that is unique to

each stream. The “Frames” structure maintains a window of recent frames for each stream, items

it contains are indexed by the pair {stream_id, frame_id} where frame_id increases

monotonically with each frame received. Each object identified in a video stream is assigned a

numeric identifier (again, increased monotonically) that is unique to each stream. The “Frame

Object Index” provides a mapping from {stream_id, frame_id} pairs to the dynamic objects that

are observed (i.e. tracked) in each frame; this is a one-to-none relationship if no dynamic objects

are observed within a frame, and a one-to-many relationship if multiple objects are observed in a

particular frame. The “Objects” structure maintains a mapping from objects, {stream_id,

object_id}, to their corresponding bag. In the case where objects in distinct streams are

associated with the same real-world object (that is, the objects are matched to each other across

the streams), their respective bags are merged and this structure is updated such that both stream-

object identifiers point to the merged bag, Figure 30.

74

Figure 29. Metadata structures implemented in the LVDBMS to facilitate cross-camera
tracking and queries.

Figure 30. Object metadata structure showing two objects, 1.12 and 0.37, which have been
merged.

75

Each instance (we use feature vector and instance interchangeably) contained in a bag

can be interpreted as a data point in a multidimensional feature space (where the dimensionality

of the feature space is the number of components in the feature vector). In the LVDBMS, bags

have a maximum capacity. At the onset, when an object first appears in a video stream, its bag

will contain a single instance. As the object is observed in subsequent frames additional instance

are added to the bag.

A distance function is applied to a pairing of bags to determine their similarity; if the

distance between the bags (i.e. a smaller distance means they share more similarity) is below a

threshold then the bags (corresponding to objects observed in different video streams) are

considered to represent the same physical object, and the bags are merged. Each bag (i.e. its

centroid) can be mapped to a point in a feature space, and the assumption is that bags

corresponding to similar objects (based upon their modeled appearances) are located closely in

this feature space (i.e. cluster analysis). The pairing of bags that will be matched can be modeled

as a bipartite graph (Zha, He, Ding, Simon, & Gu, 2001). Note that as the bags initially contain

only one instance and an object may appear in one stream before it appears in another, bags with

differing number of instances may be compared. The actual comparison is dependent upon the

particular distance function that the system is configured to apply, however, there is a system-

defined minimum threshold such that if a bag contains fewer instances than this “lower

watermark” it will not be considered for matching. The idea being that if a bag contains too few

instances, the instances it contains may not be sufficiently representative of the object for cross-

camera matching purposes.

More formally, the stream matching problem can be formulated as follows. Given the

appearance of an object Oa in stream α, the problem is to determine if some object Ob appearing

76

in some stream β correspond to the same physical entity. The corresponding query is

approximately formulated as when some object Oa appearing in α correlates with an object Ob in

stream β, execute the specified action. Thus, the search space for the object matching can be

constrained to objects observed in streams α and β, and at issue is how to measure the similarity

between Oa and Ob.

Let A and B represent point sets to Oa and Ob, respectively, such that },...,,{ 21 kxxxA
=

and }',...,','{ '21 kxxxB
= where aOx∈ , bOx ∈' , || aOk = , ||' bOk = and k is not necessarily

equal to k’. Let G be a bipartite graph),(EVG = where BAV ∪= and V consists of the vertices

in G and E the edges. There are a number of distance functions that can be applied to G, for

example, one may measure the distance between the two farthest points (the point in A and the

point in B that results in a maximal Euclidean distance), the distance between the two closest

points; the distance from the centroid of each point set, etc. The normalized distance between the

two point sets may be defined as follows:

V

e
OODist Ee

ba

∑
∈=),((7)

Such that the sum of lengths of edges in E, is the minimum possible when considering all

mappings from A to B. Objects are matched from α to β (without loss of generality) by

comparing each unmatched object in α to each unmatched object in β that exist (i.e. may be

observed) in the current frames of each respective stream. Therefore, if all objects in both

streams were to be unmatched at some particular time, the number of comparisons taking place

would be at most 2)(βα + , where α and β are the number of dynamic objects in the latest

77

frame of each respective stream. The Hungarian algorithm (Kuhn, 1955; Mills-Tettey, Stentz, &

Dias, 2007; Munkres, 1957) may be used to determine the edges in E to which the distance

function is applied. Note that in the circumstances that k ≠ k', 0 vectors may be injected, or the

farthest instances in the set with larger cardinality may be ignored, etc.

Another distance metric is the closest point distance, which is based upon the Hausdorff

(Huttenlocher, Klanderman, & Rucklidge, 1993) distance; it finds the Euclidean distance

between two points in two point sets that are the closest to each other:

 baBADist
BbAa

−=
∈∈

minmin),((8)

such that A and B are point sets and ⋅ represents the Euclidean distance.

Performance Evaluation

To evaluate the performance of the cross-camera tracking, videos from the CAVIAR (R.

Fisher, 2011) project are utilized. The CAVIAR collection of videos show a number of different

scenarios observing humans (leaving an object, walking, fighting, etc.) from multiple vantage

points. These scenes shown from two perspectives are used in this study to measure the cross-

camera tracking functionality and gauge the merits of the bag comparison technique when an

object is observed from different angles. The results presented indicate that the bag comparison

is robust to these differences in angles, and also the slight differences in scene lighting observed

in these videos. Note also that the timing of occurrences of objects in these videos are not

temporally aligned, which also would simulate an object being observed by one camera and then

later observed by a second. In addition to the CAVIAR videos (Figure 31), some scenes were

created to test specific scenarios; these additional scenes have a first camera positioned in a room

78

and a second camera located in a hallway. These scenes have different backgrounds but the same

objects moving about in them, being observed from different angels, e.g. see Figure 32. Note

also that the illumination is different between the two scenes.

Figure 31. Sample frames from CAVIAR dataset; walk3 (left) and OneShopOneWait2Cor
(right).

Figure 32. Sample video frames from two cameras, one in a room and the second outside
the room (hallway sequence).

79

This video sequence was recorded with only a few people as to avoid segmentation and

tracking errors that occur when numerous people are observed in crowds. The cross-camera

technique presented here is designed to track single objects; when people appear in crowds errors

related to segmentation and object extraction occur, for example due to obstruction.

Evaluation Scenario Setup

Although the LVDBMS is designed and optimized for live video streams, evaluations are

conducted with prerecorded videos in order to permit experiments to be repeated with

deterministic input so system parameters may be adjusted or debugged. In the LVDBMS data

flow hierarchy, a sequence of video frames comes from an image sensor and is transmitted to the

associated camera adapter, where background modeling, object segmentation and tracking

routines are executed. An OpenCV function is utilized to grab each frame of video in the initial

processing stage. Whether that video frame is initially written to a memory location by a

hardware camera driver or by a video decoding codec, is indistinguishable to the OpenCV frame

grabbing function return value and is indistinguishable to LVDBMS layers above the camera

adapter. Thus the use of pre-recorded video sequences does not add to or detract from the

performance of the various algorithms implemented and results presented.

For the experiments presented here, the minimum object size is specified to be greater

than 200 pixels, in order to not consider artifacts due to background subtraction errors or slight

camera movements, for example. A feature vector of 21 dimensions is used; this includes 18

components coming from a histogram representing the object in the RBG color space and three

components based upon Hu moments (Hu, 1962). These moments are popular because they are

straight-forward to compute and are invariant to rotation, scale and translation. (Of course, a

downside to using features that are invariant to rotation, scale and translation is that they can no

80

longer distinguish objects based upon those factors, for example, they cannot distinguish if one

object is larger than another, etc.)

Evaluation Based Upon Relative Quality

The goal is to improve the quality of data, in this case the quality of the query evaluation

results that entail cross-camera object matching. In order to improve this process, it must be

measured in order to establish a baseline measurement and so that improvements can be

quantified. Surveillance systems can be optimized for different performance criteria than

general-purpose multimedia retrieval applications, and to support this distinction we present the

Relative Quality (RQ) metric. More specifically, this distinction pertains to the treatment and

priority of false positives (FP) and false negatives (FN). In traditional multimedia retrieval

applications, a false positive can be ignored by a human user retrieving content and an FN may

mean the user needs to conduct additional search iterations or refine query keywords. Often the

FN and FP rates are tunable, for example, one might increase one at the cost of reducing the

other, etc. However, in a security scenario, an FN may mean that an event of interest has

occurred and the system did not perform the requisite action. Also, given the importance of not

wanting to miss the occurrence of an event, a higher FP rate may be acceptable. Thus, the RQ

metric introduced in this section is parameterized to distinguish between the FP and FN by

tuning two parameters, α and β. This metric can be used when adjusting system parameters to

gauge their effect in terms of meeting a predefined threshold in terms of recognition accuracy,

computation overhead (i.e. configuring different feature vector lengths and components), etc.

The performance results presented in this section are presented based upon the common

understanding and usage of FN, FP, true positive (TP) and true negative (TN). If an object is

queried and it exists in the data store and is returned by the query, TP is incremented, else FP is

81

incremented. Likewise, if the object does not exist in the data store and is returned, FN is

incremented, else TN is incremented. Thus, RQ, precision and recall can be related in terms of

these components as follows:

 Relative Quality =
TPFNFP

TP
+⋅+⋅ βα

 (9)

 Precision =
FPTP

TP
+

 (10)

 Recall =
FNTP

TP
+

 (11)

Such that 0≤α≤1≤β and when α=β=1, RQ is Accuracy, i.e. TP/(FP+FN+TP). For a

discussion of the Accuracy metric the reader is referred to the discussion in (C. W. Fisher,

Lauria, & Matheus, 2009).

Performance of Cross-Camera Tracking

This section presents cross-camera tracking results in terms of precision and recall. The

first set of results, Table 4, are based upon input from the CAVIAR video OneShopOneWait2cor

and correspond to plots shown in Figure 33. Note that data shown in Table 4 is sampled at 10-

second intervals. In this image sequence people are entering and leaving the field of view

observed by the camera and the peaks in the plots correspond with people entering the scene. In

Figure 33 the results are plotted, first fixing α and changing β, and then fixing β and changing α.

This illustrates α and β can be adjusted to shift (skew) the results in terms of FN and FP so that

system parameters can be adjusted in order to achieve target error rates.

82

Table 4. CAVIAR video OneShopOneWait2cor
TP FP FN Precision Recall
223 38 0 0.85 1
285 73 0 0.79 1
391 108 0 0.78 1
492 146 0 0.77 1
588 191 0 0.75 1
706 230 0 0.75 1
759 265 0 0.74 1
844 314 0 0.72 1

Next, performance results are presented for a second CAVIAR video, Walkers. Which

depicts people walking about a scene that is observed by two cameras. Select system parameters

for this evaluation scenario are presented in Table 5, and evaluations with both the normalized

distance and the closest point distance are presented in Table 6 and Table 7. In this video

sequence between one and five people may be observed in the field of view and results are

presented at ten-second intervals. Note that the timestamp, running precision and recall columns

are cumulative. The number of bags column depicts the total number of bags in the index,

corresponding to both videos. Index maintenance provides wall-clock time, in milliseconds, of

the time required to maintain and update the index metadata structures as new observations are

encountered and propagated throughout the index (note that this time also includes lock

contention waiting time; index updates and query evaluations are performed using different

threads and data structures must be locked in order to not encounter concurrency-related errors).

In these experiments the query evaluation period (time between query evaluations) is one second,

and the index maintenance time is well below this threshold. Results are plotted in Figure 34 and

corresponding values illustrated in Table 6 and Table 7. This evaluation was executed for 159

seconds. When two bags are compared, the number of data points used in the comparison is

equal to the cardinality of the smaller bag (i.e. k = k’).

83

Table 5. System parameters for Walkers evaluations
Parameter Description Value
Number of histogram bins Feature vector dimensionality 18
Dynamic object queue length Number of image frames retained in

FIFO database. I.e. maximum length of
q_img_bitmap.

200

Cluster manager bag
capacity

Maximum number of instances a bag can
contain.

25

Inclusion distance threshold Two bags are considered for merging if
the sum of their standard deviations for
all dimensions, multiplied by this value,
is less than what is returned by the bag
distance function.

1.5

Minimum bag comparison
size

The minimum cardinality of a bag for it
to be considered for object matching.
Bags with fewer instances are ignored.

10

Table 6. Walkers–closest point distance
Time
stamp

Index
maint.

Num
bags

TP FP TN FN Running
precision

Running
recall

1 86.0049 4 0 0 0 1 0.0000 0.0000
11 9.0005 6 3 1 0 1 0.7500 0.7500
21 1.0001 11 8 1 0 1 0.8889 0.8889
31 2.0001 21 10 3 0 1 0.7692 0.9090
41 1.0001 26 16 5 0 1 0.7619 0.9411
51 26.0015 32 23 8 0 1 0.7419 0.9583
61 55.0032 32 32 8 0 1 0.8000 0.9696
71 34.0019 40 34 10 0 1 0.7727 0.9714
81 134.0077 44 40 11 0 1 0.7843 0.9756
91 1.0000 61 47 17 0 1 0.7343 0.9791
101 496.0284 77 73 28 0 1 0.7227 0.9864
111 283.0162 97 88 37 0 1 0.7040 0.9887

Table 7. Walkers–normalized distance
Time
stamp

Index
maint.

Num
bags

TP FP TN FN Running
precision

Running
recall

1 62.0035 4 0 0 0 1 0 0
11 8.0005 6 3 1 0 1 0.7500 0.7500
21 2.0001 16 3 1 0 1 0.7500 0.7500
31 5.0003 24 5 5 0 1 0.5000 0.8333
41 3.0001 25 9 5 0 1 0.6428 0.9000
51 5.0002 32 11 8 0 1 0.5789 0.9166
61 32.0019 32 23 9 0 1 0.7185 0.9583
71 1.0001 39 26 12 0 1 0.6842 0.9629
81 6.0003 44 28 13 0 1 0.6829 0.9655
91 27.0015 60 37 19 0 1 0.6607 0.9736
101 10.0006 71 48 27 0 1 0.6400 0.9795
111 7.0004 79 68 42 0 1 0.6181 0.9855

84

(a)

(b)

(c)

Figure 33. Relative Quality for OneShopOneWait2cor; (a) varying β with fixed α=0.5, (b) an
enlarged view of a portion of (a), and (c) varying α with fixed β=1.2.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17 19 21 23

Re
la

tiv
e

Q
ua

lit
y

Video Run Time in Seconds

β=1

β=1.1

β=1.2

β=1.3

β=1.4

α=β=1

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

1 2 3 4 5 6 7 8 9 10 11 12

Re
la

tiv
e

Q
ua

lit
y

Video Run Time in Seconds

β=1

β=1.1

β=1.2

β=1.3

β=1.4

α=β=1

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23

Re
la

tiv
e

Q
ua

lit
y

Video Run Time in Seconds

α=0.3
α=0.4
α=0.5
α=0.6
α=0.7
α=β=1

85

Figure 34. Normalized distance (ND) and closest point distance (CPD) plotted over time.

The third set of results comes from the videos illustrated in Figure 32 (hallway sequence).

In this scenario a camera is positioned within a room and a second camera outside; objects

appear in either one video stream or the second; the cameras do not have overlapping fields of

views. Additionally the illumination of the scene is slightly different with the lighting inside the

room brighter than in the hallway (as can be observed from the representative images in the

figure). Objects in this video sequence appear large compared to the relative size of the frames

(field of view) and thus representative feature vectors can be calculated. Evaluation results in

terms of the relative quality metric (the best-performing metric that was evaluated) are presented

in Figure 35 and correspondingly, Table 8.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 26 51 76 101 126 151

Ac
cu

ra
cy

Video Run Time in Seconds

ND

CPD

86

Figure 35. Tracking results for hallway sequence videos; where α=1 and various β.

Table 8. Normalized distance for hallway sequence videos
Time
stamp

Index
maint

Num
clusters

TP FP TN FN Running
precision

Running
recall

1 150.0086 2 0 0 0 0 0 0
11 9.0005 8 8 0 0 0 1.0000 1.0000
21 13.0008 10 23 0 0 8 1.0000 0.7419
31 0 16 28 0 0 8 1.0000 0.7777
41 0 22 35 0 0 8 1.0000 0.8139
51 0 24 37 0 0 8 1.0000 0.8222
61 0 24 37 0 0 8 1.0000 0.8222
71 6.0003 24 40 0 0 12 1.0000 0.7692
81 0 28 43 0 0 13 1.0000 0.7678
91 0 28 43 0 0 13 1.0000 0.7678
101 0 30 43 0 0 13 1.0000 0.7678

Inclusion Distance Threshold

By leveraging bags and distance functions, the process of matching an object from one

video stream to a second is transformed to a clustering and retrieval problem in a

multidimensional feature space. The matching between two bags is essentially a 1-neareast

neighbor (1NN) query where the bag in the first video is the query point (or, without loss of

0.7

0.75

0.8

0.85

0.9

0.95

1

1 26 51 76 101

Re
la

tiv
e

Q
ua

lit
y

Video Run Time in Seconds

β=0.3

β=0.5

β=0.7

β=0.9

α=β=1

87

generality the second video). Even in a sparse space with distant clusters, a 1NN query would

return a match, even though the objects are not particularly similar. In order to prevent against

these types of FP a distance threshold is applied, called the InclusionDistanceThreshold (IDT),

which effectively creates a bounding hyper-sphere around the query point. Expanding the IDT

can result in more TP at the potential cost of additional FPs.

Conclusions and Comments

The quality of cross-camera tracking is dependent upon a number of factors, beginning

with the effectiveness of the background subtraction technique that identifies the pixels in the

video frames that correspond with salient objects, and the frame-to-frame tracker to continuously

track an object and extract corresponding observations and thus feature vectors. Also important

is the number of pixels in a scene that provide information pertaining to the appearance of an

object; more pixels result in more representative feature vectors being calculated. One of the

downsides of the CAVIAR video is the relatively low resolution of 384 pixels by 288 pixels.

Thus, only a few pixels contribute to the representation of objects depicted in scenes, unless they

are particularly close to the camera.

Table 8 provides a column showing the index maintenance overhead incurred, in terms of

wall-clock time. Much of this overhead is due to memory allocation; the LVDBMS is

implemented in C# and the .NET runtime manages memory and garbage collection. Some small

programming optimizations are made (such as setting variables to null as quickly as possible in

the code) but essentially the memory performance and management is left to the runtime.

The best performance observed is based upon the distance function that minimizing the

distances between the closest points between two point sets. Additionally, not all instances in a

bag need to be compared; as an object moves about a scene, a subset of the observations from the

88

first camera may be more similar to observations by the second camera (e.g. if the subject first

walks towards the camera and then turns around and walks a different direction, at least two

sides of the subject will be captures). The best matching performance is thus obtained when the

number of points, k, compared is less than the cardinality of the two respective bags; e.g., in

some of the experiments presented the maximum bag size (cardinality) is 50 and k=10. Figure 36

provides an illustration of this concept, showing two image sequences with bag capacities fixed

to four and k=3.

 Summary

Cross-camera matching capabilities are a useful component of a query language. This

chapter presented cross-camera matching that is based upon distance functions applied to

bipartite graphs. The scenario presented does not require prior calibration or overlapping fields

of view, decreasing the overhead required to set up a camera network for surveillance, and

facilitating possible future extensions of the network to include mobile devices. By leveraging

accumulated appearances of observations of objects and matching upon the most similar subsets

of these sequences, the cross-camera matching is robust to momentary observations that reflect

periods of dissimilarity between the objects and is on par with results reported in computer

vision literature pertaining to distributed computer vision camera tracking algorithms.

89

Figure 36. Illustration of instances corresponding to two image sequences with bags of
cardinality 4 and k=3.

90

CHAPTER 5: MANAGING LIVE VIDEO DATA WITH PRIVACY

PROTECTION

There is an extensive body of work pertaining to video surveillance that focuses on image

processing, however, there are only a few that focus on system usability, and specifically

privacy. The work presented in this chapter discusses privacy extensions to the LVDBMS that

enable the development of privacy-aware surveillance and monitoring applications. These

extensions are privacy filters, which can be applied at a granular level to redact the appearance of

objects in video streams to implement privacy policies. This framework facilitates the

dissemination of privacy-aware video streams in real time. The goal of this framework is to

facilitate privacy policies that are verifiable and is an important step towards the future

certification of surveillance software in terms of privacy awareness and adherence to privacy

standards.

Introduction

Networks of connected cameras are expanding and widely researched; decreased

hardware prices and the expansion of communication networks contribute to their popularity, in

addition for increased safety and security concerns. However, research of their effectiveness has

mixed results. This can be attributed in part to the fact that such a critical component to their

effectiveness are the human operators who monitor the videos for occasional events, who can

become fatigued, distracted, biased, etc. Therefore, much of the utility of such deployments is

relegated to post-incident analysis.

To mitigate the human element of operator fatigue, and to increase the effectiveness of

large camera networks, concepts from computer vision may be applied to increase the usability

91

of the raw video streams. The LVDBMS is an example of a software system that is designed to

automate the monitoring of live video streams, permitting events of interest to be specified and to

notify operators when the events are observed. However, as cameras become deployed

pervasively and as the intelligence and capabilities of monitoring software increases, privacy

concerns are becoming paramount. Increased monitoring by government agencies and corporate

employers raises concerns that the captured imagery will be used consistently with the purposes

for which it was initially captures. For example, video is archived and recorded, but future

regulation and law changes could permit the captured video to be used for unintended purposes

and compromise the privacy of the people observed.

Furthermore, deploying a large camera network requires significant investments in both

time and money. Thus it is desirable that camera infrastructure could be used for multiple

purposes to maximize the return on investment and help justify deployment costs. For example, a

camera network could be shared by police who want to monitor for crimes and collect evidence

for investigations, and also by business managers and employees to ensure that customers have a

good experience, minimal wait times; that facilities are used efficiently, etc. Thus, it is desirable

that these resources are sharable among disparate entities that may be governed by different

procedures and regulations. However, this shared usage makes the intended usage of captured

imagery ambiguous, leading to uncertainty and privacy concerns. In order to alleviate these

concerns and promote system usability, three things a general purpose software system for video

monitoring and processing can adhere to are as follows:

1. To facilitate usability, ad hoc queries must be supported. Events of interest across

domains (or in particular, even a single user) differ; for example, an event of interest to a

fire department could be different than event of interest to a police department.

92

2. To cope with changing business needs and regulations, it is desirable to have the

capability to rapidly develop and deploy customized applications with different purposes,

for example, to generate usage statistics by monitoring traffic flow along a road or

provide a monitoring service to let business clients know when a conference room is

available.

3. As people are concerned with privacy, it is desirable that such applications implement

and adhere to standards to protect the privacy of the individuals observed.

To satisfy the first two requirements outlined above, the LVDBMS can be leveraged, as it

provides a general-purpose platform for video stream applications and the capability to monitor

and query a large number of video streams. Users can specify ad hoc queries in terms of spatial

and temporal event specifications and be notified when the event is detected.

Figure 37. Example illustrating the LVDBMS deployed in a traffic management center.

93

To tackle the third issue, in this chapter a privacy framework is presented. Part of this

framework is a privacy specification language that has been integrated into LVQL. It permits for

privacy policies to be specified, and then granularly enforced by the LVDBMS. For example, a

video camera can provide real-time monitoring of a scene, and an employee can be given access

to observe a redacted video stream that shows objects moving but hides their identifying

information. In the case that a pre-defined event is encountered, the system can save an

unredacted clip of video for later offline analysis. The goal is to allow for general trends to be

recognized and observed while maintaining an appropriate level of privacy for the individuals

observed. As another example, consider a traffic camera that monitors a section of highway.

Department of Transportation (DOT) employees use such cameras to monitor and ensure the

efficiency and availability of transportation networks; Figure 37. Often, television news stations

are also given access to view and broadcast live video feeds. However, the intended use by the

news stations is different than that of the DOT employees, as they generally want to provide to

their viewers a general concept of traffic flow. If an accident were to occur on a highway, it

would be undesirable to show related identifying information such as the license plate of an

automobile involved. To address this situation a privacy filter could be defined that would apply

to objects that exceed a certain size (e.g. if the accident were to occur close to the camera).

Background

As camera networks increase in expansiveness and smarter algorithms are developed to

monitor them, more of people’s lives will be observed and recorded. Combine this with

increasing quantities of storage at decreasing prices, and what is recorded will be able to be

stored and saved for longer periods of time, if not indefinitely. The outcome is the potential for

94

more of our lives to be monitored, recorded, stored and analyzed. Thus, there will be a growing

need for the privacy-conscious treatment of video content. Such software needs to be

configurable, as socially acceptable norms differ from culture to culture and the software that

monitors and processes observed content likewise needs to be adaptable to the local cultural

norms (Caloyannides, 2003; Danielson, 2002).

Currently, a number of privacy-aware systems have been developed. Basically these

systems detect movement and redact the detected objects. In (Senior et al., 2005) the appearances

of objects are redacted and replaced with colored blobs, where the color signifies some event like

the object having crossed a virtual trip wire defined in the system. In (Dufaux & Ebrahimi, 2008)

an MPEG-4 encoder is developed that encodes the visual appearance of the object to be redacted

in the stream itself, and a paired decoder can decode the redacted appearance as appropriate.

However, these systems do not provide sufficient functionality to determine if an object should

have its appearance removed from the video stream or not.

Another class of privacy preservation is termed privacy-preserving data publishing

(PPDP). A number of entities make large quantities of anonymized data available for public

consumption. This type of data is intended to allow for the identification of global trends, for

example the spread of disease, city capacity planning, and building classifiers for machine

learning applications. If such data were to be released in its raw form, for example patient

medical records, privacy laws could be violated and people could be embarrassed, etc. Thus,

algorithms (and systems) relevant to the field of PPDP seek to preserve privacy, for example, by

modifying the data so that it is not identifiable (e.g., translating a person’s age from a specific

number like 51, to a range like 50-59), by monitoring queries to ensure that privacy isn’t

violated, and otherwise perturbing the raw data into a form that can be publically disseminated.

95

Most PPDP algorithms focus on databases containing statistical data that is oriented in

tabular form. Privacy may be applied to such data by restricting how the data is queried (e.g. the

number of queries submitted by a particular user or the amount of overlap in data queried), by

modifying the raw data (e.g. reporting categorical data or averaging data by zip code) and

perturbing the output (e.g. modifying the data by applying some type of random error such that

the parameters of the error distribution are known, so that the error can be removed at a global

scale) (Adam & Worthmann, 1989; Fung, Wang, Chen, & Yu, 2010). These methods preserve

privacy by making the data less granular or by inducing error. Thus, there is a tradeoff between

precision and privacy, such that the more the reported values differ from the original data, the

more securely privacy is preserved (but potentially more skewed aggregated results).

Privacy preservation and perturbation can also be applied to streaming video. In an ideal

situation, no identifying information will be leaked (Caloyannides, 2003). Unfortunately, privacy

cannot be guaranteed in the presence of auxiliary information (i.e. when information can be

retrieved from multiple data sources, such as both the National Institute of Health and local

hospital websites) (Dwork, 2008). For example, information can be leaked via ancillary channels

such as the time combined with camera location; for example, someone observed entering an

office at 8am and leaving every day at 5pm (Saini, Atrey, Mehrotra, Emmanuel, & Kankanhalli,

2010). Developing robustness to these ancillary avenues of violating the preservation of privacy

is beyond the scope of the privacy preserving framework presented in this chapter. The objective

of this work is to make the appearance of an object appearing in a video stream unrecognizable if

it is associated with a privacy filter. We note, however, that arbitrary stationary objects can have

their appearances blocked by having a user specify a static object on top of them, and then define

a privacy filter that applies to static objects, for example.

96

The privacy preserving framework presented in this chapter is designed to be flexible

such that it can be selectively applied to different objects, based upon current queries active in

the system, the class of the object or other available contextual data that can be leveraged. The

appearances of the objects are redacted by drawing on top of them filled bounding boxes; other

privacy preserving techniques that are applicable to video are not encountered (such as creating

“fake” objects, speeding up or slowing the video temporally).

Privacy Filter Framework Objectives

Nowadays people tend to accept that they are being recorded while they are in public

spaces, for example by security monitoring systems and observed by security personnel to

identify potentially harmful or dangerous situations. However, people would feel violated if they

were observed and recorded for one particular purpose only to find out that later their

information was used for a different purpose. For example had the individual known the later

usage of their information, they may have chosen to not visit a particular place or use an alternate

mode of transportation, etc.

As the capability to process and store raw video is increasing, the potential to correlate

people and actions observed in videos with other data sources in order to gain more in-depth

information is increasing. As a progressive move towards a solution to this predicament, we

introduce privacy filters. Privacy filters can be applied to specific objects observed in a video, or

to all objects. Their application can be hierarchical and tied to a user’s level of access. For

example, the identity of shoppers in a mall can be redacted such that security guards can observe

people going into and out of stores or traffic flow, but a user with a higher level of access could

view the unredacted video stream for quality assurance purposes or to save as evidence for a later

97

investigation. Thus, the privacy filters presented in this chapter are intended to redact the

appearances of individual objects, while maximizing the usefulness and utility of the video

stream as a whole. Note that privacy filters apply only to the redacted appearance of an object in

the output video stream; privacy filters do not affect the applicability of an object to satisfying

the condition of a query.

Scope and Assumptions of Privacy Preservation and the LVDBMS

This section identifies the assumptions and intended scope of applicability of privacy

filters as they pertain to LVC and specifically the LVDBMS implementation. The privacy

framework revolves around privacy filters. A privacy filter facilitates a particular privacy policy;

a privacy policy specifies the circumstances under which the identity (and correspondingly,

appearance) of an object, must be redacted from being outputted by the privacy-preserving

framework. The intended goal is that the appearance of objects “passing through” a privacy filter

will be modified such that their appearance is no longer identifiable based upon the color values

of the pixels that contribute to the appearance of the object, as observed by the imaging device

(i.e. camera). Thus, a privacy policy defines the circumstances under which an object’s

appearance will be redacted. This criteria can be granular (i.e. applicable to a specific object),

broad (applicable to all objects or the entire video stream) or somewhere in-between (by

associating a privacy filter with a query which itself is defined in terms of spatial and temporal

criteria). Therefore, the primary scope of privacy filters are salient objects observed in video

streams, not the scene background per se or other information that may be leaked, such as the

location of the camera, location of obscured objects, the time of data (e.g. which can be

approximated based upon knowing the location of the camera and observing shadows). Also note

that privacy filters are applied to the output video stream when it is externalized from the

98

LVDBMS system; it does not apply to internal metadata structures (which are not made available

to users or communicated outside of the LVDBMS framework).

Additionally, the physical security of cameras or processing nodes, or the security of the

transmittal of video information between cameras and processing nodes, or communication

between processing nodes, is not considered as a part of the privacy implementation in this

framework. We do not consider the security of the host operating systems that host LVDBMS

software, etc. Security measures such as encryption and the physical security of assets can be

ensured either through processes external to the LVDBMS, or in future versions of the

LVDBMS. Additionally, privacy attacks directed at the system such as specially crafted queries

designed to leak privacy information, or users who masquerade as other users, are not considered

as well. Although certain security measures are implemented, such as privacy-preserving views

and a requirement of users to supply a valid username and password combination in order to

connect to the LVDBMS and view video streams, we do not specifically provide safeguards to

protect against the circumvention of these safeguards by a malicious user or groups of malicious

users.

Overview of Privacy Framework

Privacy filters are designed to be maximally flexible in order to provide for a solid and

flexible framework that is capable of implementing a multitude different privacy policies.

Privacy filters can be applied hierarchically at different levels with the LVDBMS tiers. Also,

multiple privacy filters can be applied to a particular video stream at the same time, as illustrated

in Figure 38.

99

Figure 38. Comparison of cascading relational database views (left) vs. cascading privacy
filters (right).

Figure 39. Video stream illustrating a privacy filter with a Gaussian blurred MBR.

100

Privacy filters can have different levels of granularity, for example, a privacy filter could

apply to all objects in a video stream, or to only a particular class of objects. When privacy filters

are combined, the most stringent granularity of privacy will be applied as a result of the

combined filter. A similar concept exists in relational databases; a user may be granted access to

a particular view of the data, and that view could be defined atop other views (i.e. Figure 38 left).

Privacy filters can be associated with cameras, queries, user groups and views. A privacy filter

associated with a camera will apply to all consumers of the video stream produced by the

camera. A privacy filter at this level will have a broad impact as it will propagate to all

consumers of the respective video stream. At the query level, privacy filters apply to all objects

that contribute to the query condition being evaluated to true. As such, it effects only the

consumers of the output of the query. Privacy filters applied at this level have a moderate impact.

Privacy filters applied to user groups impact only users associated with the group. Privacy filters

defined at this level have a small scope of impact. Privacy filters also may be applied to views. A

view is defined as an alias to a video stream but provided the added capability of being able to be

associated with privacy filters. Users can subsequently be given access to observe a stream via a

view and thus implicitly associated with any privacy filters that have been defined with the view.

(Note that such a privacy filter applies only to the stream that is associated with the view; if a

user combines a view with a different stream in a query, the privacy filter will not be applied to

that second stream.) Privacy filters at this level have a moderate impact, as they are applied to all

consumers of the view.

Figure 39 provides a representative example of how a video stream with objects

associated with privacy filters might look when rendered to a user’s GUI. In this case the privacy

filter is rendered with as a Gaussian blur operator (Szeliski, 2010). Applying a blur operator to

101

objects obscures their appearance and is not greatly detracting from the quality of the video.

Other options are to use the average pixel value inside the MBR, or to simply set the MBR

contents to a solid color such as black.

Defining Privacy Filters with the Privacy Specification Language

A privacy filter is the instantiation of a privacy policy; it is defined by the 3-tuple {target,

temporal_scope, object_scope} where target, temporal_scope and object_scope are defined in

Table 9, Table 10 and Table 11. If an LVDBMS entity (e.g. a user, video stream or view) that is

associated with a privacy filter interacts with a second LVDBMS entity, the privacy filter will

apply to the output of their interaction. For example, if a user is associated with a privacy filter

and then views a video stream, the privacy filter associated with that user will apply to the video

stream when it is being viewed by that user. (However, if a second user views the same stream

and is not associated with any privacy filters, the privacy filter from the first user will not apply

to the second user or the stream from the second user’s perspective.) Similarly, if a user is

associated with a privacy filter and that user creates a query, the query will also be associated

with that privacy filter.

If an object that is observed in a video stream is associated with a privacy filter, the

object’s appearance may be redacted when the stream is output from the LVDBMS. That is, a

privacy filter that is associated with a stream applies to objects observed in that stream in

accordance with the 3-tuple of values it is defined by. The target attribute of a privacy filter

pertains to objects that are the target of queries (an object is a target of a query if it contributes to

the query being evaluated to true). The possible values for this attribute are given in Table 9. As

an example, if a privacy filter has a target attribute value of query targets, then the privacy filter

will apply to all objects observed in the stream which contribute to a query (defined over the

102

stream) condition being evaluated to true. Thus, given a privacy filter defined as {Query targets,

None, None}, and a query condition Appear(c1.*, 250), then all objects observed in the stream

greater than 250 pixels in area will be associated with the privacy filter. Objects having area less

than 250 pixels will not be associated with the filter. Figure 40 provides an illustrative example

with the Contains() operator; any dynamic objects appearing within rectangle s1 satisfy the

query condition. Possible values of the temporal scope attribute are given in Table 10. The

temporal scope pertains the period a privacy filter is active in the time domain; a value of

permanent means it is always active. The other potential values allow the life of a privacy filter

to be correlated with the presence (or absence) of a query. The object scope (Table 11) specifies

classes of objects a privacy filter is associated with. For example, a privacy filer can be defined

to be associated with all dynamic objects, or all static objects in a video stream. If a privacy filter

has an attribute with the value none, that attribute will not be considered when determining

which objects in a video stream the privacy filter will be applied to.

Figure 40. Query targets: object D121 satisfies the query condition, D102 does not.

103

Table 9. Privacy filter attribute target
Value Description Priority

None No privacy; attribute
ignored 1

Query targets Targets of active queries
are obscured 2

Non-query
targets

Objects that are not
targets of active queries
are masked. An active
query may obscure their
identity

2

Previously
masked

Specifies that objects
that were previously
masked will continue to
be masked

2

All
All object identities are
masked, regardless of
query status

3

Table 10. Privacy filter attribute temporal scope
Value Description Priority

None No privacy; attribute
ignored 1

Query non-
active

Privacy settings apply
only when a query is not
active

2

Query active

Privacy settings apply
only when a privacy-
enabled query is active (in
the case of privacy
applied to a camera, for
example)

2

Permanent
Privacy settings apply for
the lifetime of the object
or camera or query

3

Table 11. Privacy filter attribute object scope
Value Description Priority

None No privacy; attribute
ignored 1

Cross-camera
dynamic

Objects that are first
detected in another
camera

2

Dynamic
Dynamic
(automatically
detected) objects

2

All All classes of
objects qualify 3

104

Privacy filters are specified with the PSL extension of LVQL. The PSL allows privacy

filters to be defined and associated with cameras, queries, user groups and views. Note that any

objects of these types can be associated with zero or more privacy filters at any particular time.

The association of additional privacy filters to an object increases the level of privacy associated

with that object; that is, privacy filters behave only in an additive fashion and one cannot add an

additional privacy filter to an object to reduce its level of privacy. If two users are accessing a

video stream and one user is associated with a privacy filter (e.g. via a group membership), the

privacy filter will not apply to the second user. Thus, the first user might view a video stream and

the identities of the objects will be hidden only to the first user and not to the second. If the first

user issues any queries, their privacy filters will also be associated with the queries.

PSL allows one to create, modify and delete privacy filters and associate or disassociate

them with various objects that reside in the LVDBMS. The syntax of specifying a privacy filter

is given in Figure 41. By leveraging the same interface to specify privacy filters as LVQL uses to

specify queries, privacy filters can be scripted alongside queries. From an implementation

perspective, the same facilities that parse and process LVQL commands are leveraged to

implement the PSL extension.

{CREATE | UPDATE | DELETE} FILTER filter_identifier
 [TARGET = {QUERYTARGETS | NONQUERYTARGETS | PREVIOUSLYMASKED}]
 [TEMPORALSCOPE = {QUERYNONACTIVE | QUERYACTIVE | PERMANENT}]
 [OBJECTSCOPE = {STATIC | DYNAMIC | CROSSCAMERADYNAMIC}]
{CREATE | UPDATE | DELETE} VIEW view_identifier OVER stream_identifier
 [WITH filter_identifier]
{ASSOCIATE | DISASSOCIATE} GROUP group_identifier WITH
 {FILTER | VIEW} filter_identifier
{CREATE | DELETE} USERGROUP group_identifier
{ASSOCIATE | DISASSOCIATE} USER user_identifier WITH group_identifier

Figure 41. The PSL extension of LVQL; colored text illustrates user-supplied values.

105

Combinations of Privacy Filters

Multiple privacy filters can be applied to an object, either explicitly (directly via the PSL)

or implicitly (such as when a user who is associated with a privacy filter views a video stream).

When multiple privacy filters are applicable to an object they are combined into a single

effective privacy filter to determine which objects they will be associated with. Each attribute

type of the privacy filter 3-tuple will be compared independently. Each attribute value is

associated with a priority value. When privacy filters are combined, if two filters have the same

value for an attribute (e.g. they both have the value query active for the temporal scope) then the

resultant privacy filer will have the same value. If they have values that have different priorities,

the value associated with the higher priority will be retained. In the case of differing attribute

values but the values have the same priority, then the attribute will assume the value associated

with the next-higher priority. For example, if two privacy filters are combined, one has object

scope value cross-camera dynamic and the other dynamic, the resulting attribute will be all.

Formal Specification of the Privacy Filter Model

A privacy filter can be described in terms of access and sanitation functions. Given a set

of streams 𝕊𝕊 and a set of active queries ℚ posed over said streams, we can define a stream 𝒮𝒮 ∈ 𝕊𝕊

as a sequence of frames, 𝒮𝒮 = {fi, fi+1, … , fi+k−1}, such that |𝑘𝑘 − 𝑖𝑖| is a sufficient quantity (i.e.

sliding window) of frames to resolve any query q ∈ ℚ, and fi ∈ 𝒮𝒮 corresponds to the current

frame of video in stream 𝒮𝒮.

A frame fk can be obtained from 𝒮𝒮 by calling an access function:

 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝐤𝐤) → 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 (12)

106

As a stream that is associated with a privacy filter is transmitted from the LVDBMS, it is

sanitized with a sanitizer function:

 𝐒𝐒𝐟𝐟𝐒𝐒(𝓢𝓢, 𝐟𝐟) → 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝟏𝟏) ⨁ 𝐙𝐙(𝐟𝐟) (13)

The ⨁ operator perturbs the pixel values in the frame in accordance to the bitmap mask Z which

indicates which pixels need to be obscured by privacy filter f. If a stream is associated with

multiple privacy filters (i.e. the stream is associated with a view and is being accessed through

the view) then the privacy filters can be combined with the * operator and the sanitation function

becomes:

 𝐒𝐒𝐟𝐟𝐒𝐒(𝓢𝓢, 𝐟𝐟) → 𝐀𝐀𝐀𝐀𝐀𝐀(𝓢𝓢,𝟏𝟏) ⨁ 𝐙𝐙(𝐟𝐟 ∗ 𝐟𝐟′) (14)

Such that f′ is a second privacy filter. Z behaves deterministically with respect to its input. Note

that some sanitation functions can choose whether or not to respond to a query based upon the

query history, or perturb the image with additive noise according to a statistical distribution with

known parameters.

Performance Evaluation

To evaluate privacy filter effectiveness three sets of videos were utilized. The first set of

videos was created in an academic building on the University of Central Florida campus; video

sequences with two cameras positioned inside rooms and a third camera positioned in a hallway

outside of the rooms. This is a challenging object matching scenario because the two rooms have

slightly different levels of ambient lighting, and the objects appear to be different sizes due to

their proximity to the camera. The hallway has windows along one side providing lighting from

outside which causes its illumination to differ from the room scenes. A total of five people are

107

depicted in this video set, with at most three appearing in a scene at any one time. The second set

is from the CAVIAR video library (R. Fisher, 2011). The videos pairs selected for experiments

observe the same scene from two different angles; a front view and a side view. This is a

challenging video sequence, due to its low resolution a minimal number of pixels contribute to

the appearance an objects, making it difficult to distinguish between different the different

objects. The third video sequence depicts automobile traffic driving along a road during the

daytime. Appearing in this video are automobiles and a few pedestrians (walking or riding a

bicycle). In these sequences automobiles drive down lanes in a road and are observed from an

overhead view looking downwards. The automobiles are rigid and do not change shape as they

move, although they do cast shadows on the road which change as the angle with the sun

changes due to vehicle motion (and in some sequences road curvature). In the scenarios

presented here, prerecorded videos were utilized to allow the experiments to be repeated with

different system parameters. In these experiments, objects having an area of less than 200 pixels

are ignored (unless explicitly stated otherwise). Two computers were used to host LVDBMS

software; stream and spatial processing layers were hosted on a computer running the Windows

7 Ultimate operating system with 3GHz Pentium IV CPU and 3GB RAM. The camera adapter

and client GUI components were hosted on a 2.54 GHz Core-2 Due CPU with 4GB RAM, again

running the Windows 7 Ultimate operating system. Both hosts are connected via a gigabit

Ethernet switch.

108

Figure 42. Privacy filter examples from the first (left) and third (right) video series.

Privacy Filter Effectiveness

The principal concept of a privacy filter is to redact the appearance of an object it applies

to from the output video stream; for example see Figure 42. In the LVDBMS prototype five

privacy filter rendering methods are implemented; average pixel value of bounding box, blur,

solid black, outline and none; where outline shows the object’s MBR and is used for debugging

purposes and none does not redact an object’s appearance from the output stream.

The two scenes illustrated in Figure 42 show frames from scenes with privacy filters

associated with objects. In this case the query contains an Appear() operator. In the case of the

frame shown on the left, a person is walking. One can observe four FP regions being redacted

due to the door opening and closing, which can be attributed to background modeling errors. As

can be observed from the figure, a blur privacy filter rendering method is used in this example.

Applying a blur operator removes personal identifying information from the video while

allowing an operator to observe the behavior, and the blurred object is not as visually distracting

as, say, the solid black rendering method with creates significantly more visual contrast between

the object and its background. Other methods for removing the appearance of an object are

described in literature, such as increasing the size of the obstructing bounding box (to mask the

109

size of the object), creating “ghost” boxes (to mask the occurrence of a real object) or simply to

substitute the background pixels in the place of the object (also to hide the appearance of the

object). However, adding “ghost” objects or hiding the fact than an object is observed in the

video stream would decrease the utility of the video from a surveillance perspective and are not

further investigated in this work.

Object Tracking Effectiveness

Cross-camera tracking results are presented in this section, which gauge the effectiveness

of queries to resolve to the correct result when the specified event is defined over two video

streams. As privacy filters may be associated with such queries, privacy filter performance can

be determined by the performance of the queries they are associated with.

The first set of results presented are based upon the first video sequence described earlier;

the scenario with two cameras in two rooms and a third camera in a hallway. Results are

presented in terms of the Accuracy metric, whose equation is given as:

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑻𝑻𝑻𝑻
𝑭𝑭𝑻𝑻+𝑭𝑭𝑵𝑵+𝑻𝑻𝑻𝑻

 (15)

Two plots of the object recognition performance plots are provided in Figure 43 and Figure 44.

What is plotted is the accuracy of an object recognized in one video stream being matched to the

correct object in a second video stream and the correct bags subsequently combined. In order to

maximize the number of object matching evaluations, the matching logic is executed for each

frame of video, and if an object match is recorded, it is disregarded and objects are re-matched in

each subsequent video frame (i.e. object matches are not recorded across frames). As can be

observed from the plots, initially the bags corresponding to the objects have fewer instances and

matches are based upon matching fewer observations. The normalized distance function utilized

110

to gauge the similarity of the two point sets. Therefore, object matching is performed as follows;

objects are matched from their appearance in one video to their appearance in a second. An

object’s bag in one video is utilized as a query point to retrieve its 1NN; if another feature point

corresponding to a bag in the second video is within the IDT, it is considered for a match. If the

proper matching object form the other video is returned, TP is incremented, else it is an FP. (In

the case of an FP either the matching point does not exist in the index and an incorrect object

was returned, or the matching object does exist in the index but a different object lying closer to

the query point was returned.) If no object lies within the IDT and there is no corresponding

object in the index, TN is incremented else FN is incremented (FN meaning that the proper

object exists in the index and is farther from the query point than the IDT permits for matching

consideration).

111

Figure 43. Cross-camera query evaluation accuracy for video sequence #44.

Figure 44. Cross-camera query evaluation accuracy for video sequence #46.

112

Continuing with the query evaluations, an additional four queries were evaluated over

CAVIAR videos, two queries are posed over single video streams and two involve cross-camera

tracking. The queries and results are presented in Table 13. The first two queries presented

involve only a single camera stream and are not dependent upon the performance of the cross-

camera matching. Their accuracy falls back to the performance of properly segmenting an object

from the background of the video and then tracking that object within the view of a single

camera. A separate section of privacy result evaluations is not presented because that result set

would be equal to what is presented in the accuracy column here.

In order to arrive at the results presented in Table 13, query accuracy was evaluated

manually based upon a human observer determining of the requisite event is depicted in the

video stream and recorded at five second intervals over a two minute evaluation period. For

example, if the query result, as calculated by the LVDBMS, was correct, then TP would be

incremented.

Table 12. Privacy filters corresponding to scenario in Figure 45
LVDBMS Objects Associated privacy filter
Camera None

TMC operator (user 1) None

News station (user 2) None

View 1 Target = query targets

In the scenarios presented thus far, each frame is evaluated independently and privacy

filters are applied. If a background segmentation or query evaluation error were to occur then the

appearance of an object would not be redacted from the output video stream. Additionally, if two

objects appear similarly, then they cannot be distinguished without some other type of

identifying information (such as the detection of an RFID-enabled badge). An alternative

113

scenario would be to redact the entire video and only show detected objects which are not

positively associated with privacy filters.

Holistic Demonstration of a Privacy Filter

This subsection provides a demonstration of a privacy filter evaluated over a traffic video

from the third video dataset. The active query in the system checks for the appearance of an

object via the Appear() operator, and is illustrated in Figure 45.

In this example a live video feed is originating from a traffic camera c1. A view, v1, has

been defined over the c1 video stream in the LVDBMS. Associated objects and corresponding

privacy filters are indicated in Table 12.

Table 13. Query accuracy evaluation results
Query
Name Description Accuracy

Appear
True if objects with area greater
than 100 pixels appears in the
frame, else false

100%

North
before
south

True if there exists an object is
moving with downward
motion. Before operator has a
window size of 20 frames; if
the object stops or changes
direction for less than 20
frames it is still considered true.

100%

Appear
across
cameras

A person appears in camera 1
and then is recognized when
they appear in a second camera.

83%
(TP=20, FN=4)

Appear,
then cover
across
cameras

An object appears in camera 1
then goes through a door
(outlined by a static object) in
the second camera.

91%
(TP=22, FN=2)

In this scenario a single camera is generating the video stream input into the LVDBMS.

The traffic management center (TMC) operator can view the unredacted video stream directly;

Figure 46. However, a live (real-time) news feed created for dissemination to a news station

passes through a view, v1, defined over the video stream c1. As this view has a privacy filter

114

associated with it (i.e. see Table 12), the privacy filter is applied to the output video stream that

is disseminated for public consumption (Figure 47).

Figure 45. Holistic privacy filter example showing a camera, a view with associated privacy
filter and two video consumers.

115

Figure 46. Imagery as observed by the TMC operator.

Figure 47. Video stream as observed through the view; note the blur effect.

116

Summary

Networks of connected cameras assume an increasingly important role in ensuring safety

and are finding applications in many diverse application areas, to include healthcare monitoring,

viewing of inaccessible areas such as the inside of chemical tanks and the tops of bridges. In this

chapter a privacy preserving framework was presented. The LVQL language allows for privacy-

preserving views to be defined, and privacy filters to be specified. The combination of a

declarative query language and a general purpose real-time video stream processing data

infrastructure provides a framework for rapid privacy-aware video processing application

development, by affording application developers and designers the ability to focus on their core

business problems, and not on creating stream processing functions that are ancillary to their

primary goals. The privacy preserving framework presented in this chapter, and corresponding

experimental results, indicate that the privacy preserving techniques presented in this chapter can

effectively be applied to an LVC environment and are amenable to real-time processing.

117

CHAPTER 6: EFFICIENT QUERY PROCESSING

As the number of cameras deployed and monitored continue to increase, the need for

economical processing algorithms will also increase. The LVDBMS is a stream processing

database environment for LVC. Users of the LVDBMS can submit queries describing events,

and be notified when the queried event is observed. In order for the LVDBMS to be able to

handle a maximal number of queries given an implementation consisting of fixed infrastructure

resources (i.e. available CPU, primary memory and network capacity), the speed and efficiency

with which queries can be evaluated and their results processed is of prime importance.

In a database system, a component called a query optimizer assumes a pivotal function in

the construction and execution of queries. The query optimizer receives a query, in an

intermediate form, and outputs a selected query evaluation plan that is ready for execution by the

host database platform. In this chapter a query optimizer is presented that is designed to generate

queries optimized for a dynamic stream processing environment. When generating a query

execution plan, this query optimizer considers current queries that are executing in the system

and trailers an execution plan that attempts to take advantage of intermediate computation that is

already being performed for existing queries with the idea of eliminating redundant computation

as a way to conserve system resources. Thus, in this section a query optimizer is presented and

evaluated in the LVDBMS test bed environment. Also presented are query execution

optimizations designed to benefit from the multicore processors that are prevalent in modern

computers.

118

Introduction

Environmental monitoring by video cameras is applicable to a number of domains

ranging from transportation, security and manufacturing to battle field scenarios. However, with

current algorithms, there is a wide performance gap between what we would like to have

automated, and what we actually can automate. Thus, human observers continue to play a vital

role in the detection of critical events that are observed by video cameras. However, for a human

to continuously observe video of a scene and maintain high levels of vigilance in spite of

distractions and fatigue is very difficult, especially if they must watch for long periods of time in

order to observe an event that happens very infrequently.

Thus, a number of video monitoring solutions have been created to address the problem

of event detection, however, most of these are applicable to only a narrow scenario (Velipasalar

et al., 2010). The approach of building a vertical video processing application to solve a problem

in one particular domain can result in information silos and inefficient use of resources.

Furthermore, the deployment of a large scale network of video surveillance hardware is

expensive and time consuming. It would be desirable if such infrastructure could be shared for

multiple applications, thus increasing its potential return on investment. Similar to how a general

purpose relational database may be utilized to develop a variety of business software

applications, the LVDBMS is a video stream processing platform designed to satisfy real-time

processing and throughput needs that can be leveraged by developers and architects creating

stream processing business solutions. The concept of LVC treats networks of video cameras as

data input devices and leverages the LVQL query language to facilitate rapid stream processing

application development.

119

The LVDBMS (Aved & Hua, 2012; R. Peng et al., 2010) is a prototype test bed

implementation of an LVC environment. It improves upon a multitude of existing video and

multimedia database solutions, e.g. (Ahanger & Little, 1996; Ahmedali & Clark, 2006; Antani,

Kasturi, & Jain, 2002; Hampapur et al., 2005; Velipasalar et al., 2010). However, many of these

existing methods utilize offline processing and video storage that is not feasible in a video stream

processing environment due to the velocity and volume of the incoming data streams. As an

example, the BilVideo (Catarci et al., 2003) video database solution permits search based upon

spatial and temporal features, but the necessary feature extraction phase is conducted offline.

Stream data in the LVDBMS must be processed online and with little delay, as processing

performance and overhead must be minimized in order to maintain minimal detection delays

after an event has occurred.

The LVDBMS is a 4-tier stream processing database environment designed for

automated event detection, with applications in real-time surveillance with a large number of

video cameras. Users submit events of interest to be monitored in the form of LVQL queries;

when the system detects that an event has been observed, an associated action can be executed.

For example, sending a user notification or recording a portion of a video stream to storage

media.

Background

In non-video-stream processing environments a significant amount of work has been

performed pertaining to query optimization. For example, some previous works (Finkelstein,

1982; Hall, 1974) utilize heuristics to find common sub expressions. Other works utilize a pre-

processing step to generate metadata about the queries (Grant & Minker, 1981; W. Kim, 1984).

120

Another work pertaining to multiple-query optimization is (Sellis, 1988), but it also is oriented

towards queries posed over relational databases. In the domain of distributed stream processing

and networks of sensors, a multitude of work pertaining to optimizing queries and multiple

queries over data streams has been done, for example, (Ahmad & Cetintemel, 2004; Babcock,

Babu, Datar, Motwani, & Widom, 2002; Babu & Widom, 2004; Makhoul et al., 2000; Pietzuch

et al., 2006).

LVC databases differ from relational databases and sensor stream processing

applications. For example, in a surveillance deployment, a “hot stream”, i.e. a video stream that

is utilized by a multitude of queries due to a strategically positioned camera, may become a focal

point of system resource contention. In traditional DBMSs, hotpots are addressed by efficient

and granular data locking techniques, or by caching popular data. Such techniques are not

applicable to an LVC environment (e.g. caching would not be feasible due to the high velocity

and variety and rapid processing requirements that pertain to data extracted from video streams).

Query Processing

This section introduces query processing in the LVC environment.

Overview

In this work LVQL is discussed; the high-level declarative query language of the

LVDBMS. It is compared with Structured Query Language (SQL), which is a widely-known and

popular declarative query language. Declarative query languages express the desired query

results that should be returned; they do not specify the processing control flow or algorithms that

should be implemented in order to obtain the desired results; the host database system must find

an efficient plan to process the query. Note that query optimization hints are beyond the scope of

121

this work; e.g. (Bruno, Chaudhuri, & Ramamurthy, 2009), which provide a way for the query

writer to influence the query optimizer in cases where the query optimizer might make a poor

choice pertaining to the execution plan it selects. (One of the downsides of query hints is that

when queries are imbedded in applications and have hints, the hints may be pertinent for a

particular distribution of the data or a specific version of the host database environment, and over

time may lead to worse performance.)

The Query Parser and Translator

Before a query can be sent to the query optimizer, its syntax must be verified and parsed.

The LVDBMS query parser ensures that received LVQL queries are syntactically correct, and

then it generates an algebraic tree version of the query. This algebraic tree is sent to the query

optimization module, which generates an efficient execution plan and metadata that corresponds

to the query that is used by the execution engine to schedule the execution of the query. Next, the

query is scheduled for execution, and results are returned to the user. Queries continue to execute

until terminated or an error occurs (for example, if a video source goes offline or ceases to exist

in the system). An overview of the query lifecycle is give in Figure 48.

LVQL is defined by a set of productions that specify the strings (i.e. queries) that are

valid under the language definition, and may be referred to as the logical algebra, which defines

the expressions that are valid in the language and is tied to the data model. When the query

parser receives a query, it attempts to parse it against this grammar, which is given in Extended

Backus-Naur form (EBNF). The first step the parser performs is lexical analysis; parsing the

query into discrete tokens by a scanner looking for pre-defined sequences of characters that

comprise tokens in the language. The second step is syntactic analysis which entails parsing the

query. The parsing component checks that the input query string matches a valid query

122

expression in accordance with the LVQL grammar. The output of the query parser is an

expression tree; an intermediate format of the query. This is then passed off to the query

optimizer which generates the actual plan that will be executed by the database management

system to produce the query result; this execution plan is expressed in what is called the physical

algebra, which is platform-dependent. The physical algebra consists of the specific steps that will

be undertaken to derive the query result (i.e. data flows) and also the algorithms and associated

data structures that are implemented at each step. As such, the physical algebra is specific to a

particular architecture and platform, and even a particular version of the DBMS. The execution

plan expressed in the physical algebra is also commonly referred to as the query plan, or the

query execution plan. Figure 49 provides a graphical illustration of the various stages of

preparing a query for execution along with the LVDBMS components that transform the query

from one form to the next. Note that the LVDBMS utilizes the Coco/R compiler generator (Aho

& Ullman, 1972).

In traditional database management systems the query optimizer first generates a series of

plans which all produce the same final result, but vary in the specific algorithms and processing

steps undertaken to achieve that result. Query plan generation and optimization is a difficult and

computationally intensive procedure, and typical query optimizers use heuristics to guide them in

the process. A popular heuristic pertains to the utilization of an index (e.g. a hash index) to

perform record retrieval based upon an identifying data field; if it is estimated that less than 10%

of the records will qualify for a retrieval based upon data statistics the index will be utilized (and

thus random disk accesses), else, the entire table will be scanned serially for qualifying values.

123

Figure 48. Query lifecycle; from the inception of a query to results delivered to the issuer.

The Query Optimizer

The high-level language LVQL does not specify the logic or specific algorithms and data

structures that will be required to derive and return a query result; it is the job of the query

optimizer to determine these and then hand this off for execution. The input to the query

optimizer is an intermediate tree structure that represents the query, and is the output of the query

parser module. The output of the query optimizer is one or more subqueries. Each subquery

corresponds to a spatial layer host where it will be executed. The subquery placement is dictated

by the video streams associated with the respective spatial processing layer host.

124

Internally to the query optimizer it is generally the case that a series of equivalent

execution plans are generated. They are equivalent in the sense that they return the same final

query result, but differ in their internal data flows, data reductions and algorithms implemented

at the various steps (Chaudhuri, 1998). Cost estimates are applied to these, and a “good” one is

selected. The various execution plans can have vastly different runtime characteristics and the

selection of execution plans can have an overarching effect on the overall performance of the

DBMS. Query plan selection can be done by consulting the statics in the metadata that describes

the available data to derive estimates pertaining to both the cost of executing a particular

operation, and a summary of the resultant data that is output by that operation.

Figure 49. Query transformation steps, from inception to execution.

125

The query optimizer for the LVDBMS is designed to work a bit differently than

traditional query optimizers for relational DBMSs. The statistical summary data that a query

optimizer uses to select a query plan either isn’t available for a stream-oriented platform, isn’t

applicable, or would change so frequently that it would be cost-prohibitive to keep current. The

LVDBMS query optimizer optimizes queries at runtime and only considers “static” metadata that

pertains to video streams, such as which spatial layer host they are associated with. Given a

spatial layer host that a query will need to be executed on, the LVDBMS query optimizer takes

into account the queries that are currently executing on that host in order to derive a good

execution plan for the new subquery.

An additional criteria that can be considered by traditional query optimizers is the type of

query that it received; for example in the case of a batch query, a user will not be receiving the

results immediately and an execution plan that maximizes the number of batch queries that can

run concurrently with reasonable performance is a potential optimization criteria. In the case of

an interactive query, where a user is waiting for the query result, the time to returning an initial

query result (or portion thereof) may be the optimizing factor. In the case of the LVC we have

two primary criteria that queries are optimized for:

• Real-time query results, and

• Scalability; the number of queries that may be concurrently executed.

In the LVBMS subqueries on each spatial processing layer host are executed in groups,

called query groups. An overview of the LVDBMS query optimization process is provided in

Figure 50: in (1) the query is posed by a user in LVQL. The parser translates it into an internal

query tree (equation), which is inputted to the query optimizer. (2) The query optimizer considers

the other subqueries that are currently executing on a particular spatial processing layer node and

126

creates an execution plan that is tailored to the runtime environment (a specific query group) on

that node. (3) Queries in the group are executed and results returned to the user.

When the query optimizer considers a specific spatial processing layer node to execute a

query on, it considers the current queries executing on that node to ensure a subquery can be

executed and access all of the video streams it needs, to compute its result. Queries are grouped

and executed together based upon their ability to share computation and input data streams. If

some sharing is possible among subqueries, they are grouped together and their execution trees

merged by inserting compression operators (in the case of execution overlap) or caching

operands (in the case when they share a common data stream).

LVDBMS Query Optimization

The LVDBMS query optimization environment consists of two primary components, the

run-time query optimizer and the query execution engine. The query optimizer is designed to

consider the currently executing subqueries on a particular node and, if possible, merge a new

subquery into an existing query group. The execution engine is multithreaded and each query

group runs within its own processing thread. The subquery merging procedure is designed to

permit the newly introduced subquery to execute and either share execution results or an input

data stream with other subqueries. If a new subquery does not share any commonalities with

currently executing subqueries, a new query group is allocated for it. In order to merge

subqueries the query optimizer can rewrite the query tree and merge queries by injecting one of

two new nodes into the tree (which also serve as subquery merge points). The multithreaded

query execution engine is designed to take advantage of modern CPU’s which have multiple

cores and large caches.

127

Figure 50. Transformations undergone by a query; from query to subquery to results.

The subquery merging process involves comparing two tree-like graph structures to

identify the largest common sub-graph (Jungnickel, 2004). The comparison is between a new

subquery, which is oriented as a tree, and the subqueries in the query group, which are groups of

connected trees where each connected subquery has its own distinct root. If the new subquery is

the same as one of the currently executing subqueries, or the new subquery shares at least one

common operator, then a new compression operator is allocated and merged into the subquery

tree (unless there already exists one at that point). The new subquery is merged to point to that

compression operator, and the existing subquery below the merge point is moved below the new

128

compression operator. Note that in order for this merging to occur, in addition to the common

nodes being the same operators, they must have identical operands (in terms of both query

streams referenced and any associated thresholds). If the match is only an operand that specifies

a particular data stream, then a caching node is allocated, merged into the existing tree, the

existing operand moved below it, and the new subquery references the caching node in the place

of its previously existing operand that had corresponded to the video stream. This is illustrated in

Figure 51. By injecting this caching operand, fetches to data outside of the query group are

reduced. Data fetches are required in order for the query operators to obtain objects and metadata

that pertain to current video frames.

Figure 51. Before and after illustrations of a subquery merged into a query group.

129

Once the query optimizer has received a query, its next task is to decompose the query

into subqueries for execution on spatial layer processing hosts. Subqueries are created based

upon the video streams available to a spatial processing layer host. Given a subquery and a

spatial processing layer host upon which it will execute, the next task is to determine if there is

overlap between the new subquery and any existing query groups. If the subquery graph and

query group graphs contain a common subgraph the subquery will be merged into the query

group else a new query group will be allocated containing the subquery.

Subquery matching into a group is performed by creating a hash that represents each

possible subtree in the subquery graph, and comparing them to hashes representing each possible

subgraph corresponding to the query group. Note that the hash structure for the query group can

cached between uses and maintained along with the subqueries in the group in order to reduce

the overhead of recreating the hash structure for each new subquery. If the matching subgraph

contains operators (in addition to stream operands) then a new compression operator is allocated

and inserted as the merge point, and the query group data structures are updated to track and

maintain the new compression operator. If the match is only an operand, then a caching operand

is allocated and inserted into the query group. This process is illustrated in Figure 51 with the

common LVQL sub-expression being Appear(c1.*, 250).

LVDBMS Query Execution Environment

While the query optimizer translates a query from the logical to the physical algebras, the

execution engine executes the operators that comprise the complex query and enqueue the

subquery evaluations for transmittal to stream processing layer nodes. (A complex query is a

query that implements a number of different data processing algorithms.) Subqueries are

executed periodically, for example once each second. The execution engine is comprised of two

130

components, the execution engine that executes the query groups, and a metadata manager which

maintains the state of the associated video streams; i.e. the current frame for each stream, the

objects that are visible in the current frame, etc. The metadata manager also contains locking

facilities to ensure that the metadata is maintained in a consistent state despite the numerous

reader and writer threads that keep the metadata up to date. When a subquery is evaluated, the

first step of execution is for the operand nodes to perform a fetch from the metadata store. Each

operand corresponds to a video stream, and can contain some filter criteria (for example, to fetch

only dynamic objects or static objects or a particular object, for example). Thus each operand

fetches the current frame and object information pertaining to its corresponding stream. It then

returns that data to the operand’s calling operator. Thus query execution is a data-driven process

beginning at the base of the execution graph with the operands and ending with the root node of

the subquery returning its subquery evaluation result. This subquery result is then enqueued for

transmittal to the corresponding stream processing layer host for further processing; this process

is illustrated in Figure 52. In the case a query was decomposed into multiple subqueries, the

subquery results must be combined to produce the final query result.

Cost Estimation

 Queries expressed in physical algebra have specific processing algorithms and data

structures associated with the processing steps. Since the processing algorithms are known, cost

estimates can be associated with the various algorithms (i.e. operators and operands in the

physical algebra). The cost estimate for each operator can be estimated based upon the resources

they require to return an intermediate result at each step of query processing. For the LVDBMS

these costs are based upon the CPU and primary memory footprint that is required for them to

evaluate their input. Thus, the various stages of the query can be summed in order to compute a

131

cost estimate for the entire query. By summing the subqueries in a query group, a cost estimate

can be derived for the query group.

Table 14. Evaluation costs of various operators and operands
Operators and operands Evaluation cost

Operands Caching 2
Dynamic, Static 5
Cross-camera 20

Operators

Appear 5
And/Or/Not 1
Before/Meet 10
North/South 6
Compression 1

Figure 52. Example depicting four query groups in the LVDBMS query execution engine.

132

Table 14 presents representative cost estimates for select LVQL operands and operators.

The Boolean operators execute the simplest algorithms in order to compute their result and thus

have the lowest cost estimate. Temporal operators accept three arguments; two arguments

correspond to other operators the temporal operator is being evaluated over, and the third

operator is a window length specifying a maximum buffer of intermediate evaluation results the

temporal operator will consider when evaluating its return value. For example, the Before()

operator maintains two buffers with intermediate evaluation results of each of its operator

parameters which have a maximum capacity equal to its window length argument. The Appear()

operator does not need to maintain execution state history between invocations and requires

some CPU cycles to evaluate the objects pertaining to the video stream that correspond to the

operand that is specified when it is invoked. The Appear() operator simply iterates through its

input and determines which of the current objects, if any, have an area that is equal to or greater

than the value specified in its threshold argument. By measuring the cost of executing a query

group, and then adding a new subquery, the execution cost that is saved by sharing computation

between the new subquery and the query group can be measured and quantified.

Experimental Study

This section provides results pertaining to the execution efficiencies gained by query

optimization. For these results a series of pre-recorded traffic videos was utilized; an example

frame is provided in Figure 53. The particular frame of video depicted in this figure is from the

video stream with identifier 2, identified as c2 in the queries in Figure 54 and shows a static

object, 565b46, drawn in the lower right corner of the frame. c2.s565b46 is a static object drawn

by the user. cn refers to a particular video stream.

133

Figure 53. Example video frame showing a busy road and a static object (the blue
rectangle).

Action 'q1' on Before(Appear(c0.*,250), Appear(c1.*,200),200);

Action 'q2' on NOT Before(
 Appear(c0.*,250),
 North(c2.s565b46, c2.*,250), 120);

Action 'q3' on Before(
 West(c2.*, c2.s565b46, 10),
 North(c2.s565b46, c2.*,250), 120);

Figure 54. Evaluation 1: queries utilized for testing the query optimizer.

Action 'q4' on Before(
 West(c2.*, c2.s565b46, 10),
 Before(Appear(c0.*,250),Appear(c1.*,200),200),120);

Action 'q5' on Before(
 West(c2.*, c2.s565b46, 10),
 Before(
 Before(Appear(c0.*,250),Appear(c1.*,200),200),
 Appear(c1.*,200),200),
 120);

Action 'q6' on Before(
 West(c2.*, c2.s565b46, 10),
 Before(
 Before(Appear(c0.*,250),Appear(c1.*,200),200),
 Before(Appear(c3.*,250),Appear(c0.*,400),200),
 200),
 120);

Figure 55. Evaluation 2: complex queries for optimization evaluations.

134

Pre-recorded videos were utilized for this performance study in order in order to allow

experiments to be re-ran with different system parameters. Two evaluations are provided; each

evaluation consists of a series of queries being submitted to the LVDBMS. For each evaluation,

when the initial query is submitted, no other queries exist in the system. A new query group is

allocated for the first query. Subsequent queries in the evaluation run are then merged into the

query group, and the performance of this optimization step is reported in the tables provided in

this section. The first evaluation run utilizes three simple queries, provided in Figure 54. For the

second evaluation run, more complex queries were selected which have more operands and

operators and provide a test of the query optimizer with complex query trees; provided in Figure

55. The tables in this section that provide query costs are given in terms of the query cost

estimation metric detailed in the previous section.

The first evaluation run the queries provided in Figure 54 are submitted sequentially to

the LVDBMS. Internal performance counters are implemented in the LVDBMS prototype to

allow for query execution statistics to be collected. Fewer operands and operators mean lower

computational requirements to evaluate queries, and also indicate the quality of the optimization.

Snapshots of selected counters are presented in Table 15 at five-second intervals. After the first

query is submitted, subsequent queries are submitted in between execution counter snapshots.

The first query sent is q1, consisting of a Before() operator and two Appear() operators. As can

be seen from the first row of the table, the physical algebra contains three operators and two

operands (the operands corresponding to the two video streams, c0 and c1). In their unoptimized

forms the second query (q2) contains four operators and two operands, the third (q3) has three

operators and again two operands, the first operand (c2.*) refers to all dynamic objects in video

stream c2, and the second referring to a specific static object by its identifier. As the performance

135

statistics are collected at five-second intervals, the 10 data requests observed in the first row of

the table correspond to the two operands performing five requests each. The next table, Table 16,

provide the same performance counters, but with the query optimization logic enabled such that

after the first query is submitted, subsequent queries may be merged into the query group and

thus duplicate execution is eliminated. The results in this table show that due to the merging,

facilitated by execution compression operators and caching operands, operator executions and

data fetches are reduced. Table 17 provides a side-by-side comparison of the two scenarios;

without and with the query optimization logic. From the cumulative summary results presented

in this table the cost savings from the query optimization is apparent, as indicated in the last

column of the table. Results from the second evaluation are presented in Table 18, corresponding

to the queries indicated in Figure 55. These queries are significantly more complex than the first

set. However, they also contain subqueries with significant operator and operand overlap and

thus can achieve potentially large cost savings that the query optimizer can recognize and

leverage.

Table 15. Evaluation 1, performance counters without optimization

Operands # Operators

Executions
Data

requests
Evaluation

cost
2 3 15 10 35
5 7 46 32 78
9 10 93 73 127

Table 16. Evaluation 1, performance counters with optimization

Operands # Operators

Executions
Data

requests Evaluation cost
2 3 15 10 35
4 7 42 28 69
6 10 80 56 102

136

Table 17. Evaluation 1, cost efficiencies gained
 Unoptimized query Optimized query

Query Cost Cumulative cost Cost Query group cost Optimization saving
q1 35 35 35 35 N/a
q2 43 78 34 69 9
q3 49 127 33 102 25

Table 18. Evaluation 2, cost efficiencies gained

Query Cost Cum. cost Query group cost Opt. saving Operands Operators
Compression

Operators
q3 67 67 67 4 5 0
q4 92 159 125 33 7 10 1
q5 117 276 208 91 11 17 2

Summary

The translation of query algebra from the logical to the physical, and selection of the final

query evaluation plan are critical steps in a database management system. These important steps

are generally performed by the query optimizer. The execution plan specifies the data flow and

steps the database management system will undertake to evaluate the query. The selection of

poor query evaluation plans will result in poor system performance. Query optimizers in

traditional relational databases consider a number of statistics pertaining to the data and table

structures that the queries it optimizes are posed over. However, in an LVC environment much

of this information is either not available or cannot be leveraged in a stream processing

environment.

This chapter presents a query optimizer and associated execution environment that is

designed for the LVC environment. It performs query optimization at runtime, taking a new

query and finding any possible overlap with the existing queries in the system and rewriting the

new query in order to minimize duplicate subexpressions and optimize the utilization of the

query execution engine. Results presented in this chapter show that the query optimization

137

methods that were designed for the LVC environment and implemented in the LVDBMS

prototype reduce query execution overhead by merging the physical algebra query trees. To

facilitate the performance evaluation and the impact of the query optimization, a query cost

metric was derived and used to present optimization performance results.

Figure 56. The lower three LVDBMS tiers, showing major components.

138

CHAPTER 7: LVDBMS PROTOTYPE

Introduction

The LVDBMS prototype is the testbed for implementing LVC concepts and gauging the

feasibility and performance of selected algorithms, data structures and processes. The C#

programming language and .NET runtime environment were selected for implementing the

LVDBMS, along with the EMGU.NET (http://www.emgu.com) and OPENCV (Bradski &

Kaehler, 2008) libraries. Early versions of the LVDBMS prototype utilized the high-performance

Intel IPP library (http://software.intel.com/en-us/intel-ipp) and Intel compiler to take advantage

of hardware single-instruction multiple data instructions available in certain CPUs.

Prototype System Architecture

The LVDBMS is architected as a 4-tier distributed application, illustrated in Figure 20. In

order to meet demands for increased capacity, it is designed to scale by adding additional

processing nodes in the various layers. Each software layer utilizes a web services

communication interface to facilitate communication between the tiers. The four LVDBMS

application tiers are (1) the camera layer, (2) spatial processing layer, (3) stream processing layer

and (4) client layer. The lower three tiers, along with major components, are illustrated in Figure

56.

Camera Layer

The camera layer is comprised of the image capture device and a software application

referred to as an adapter. The image capture device or camera records a scene. In order to

increase the flexibility of the LVDBMS with regards to the types of camera hardware it can

interface with, no processing capabilities are assumed of the camera other than to record video

139

http://www.emgu.com/
http://software.intel.com/en-us/intel-ipp

and transmit it to an adapter that can be coded to interface with that particular camera hardware.

(Note that some cameras have compute facilities capable of running image processing algorithms

such as background detection and object tracking.) The camera adapter runs on a host computer

and can be connected to the camera via a physical communication medium that both the camera

and host support, such as USB, a wireline network, coaxial cable, etc. A screen capture of the

camera adapter GUI is provided in Figure 57.

The camera adapter receives the raw imagery from the camera and adds metadata

pertaining to the frames and objects observed. By raw imagery it is mean a temporally ordered

series of frames of video that is simply data; a two-dimensional matrix of pixel values

corresponding to what was sensed by the imaging device. The camera adapter implements

algorithms to model the scene background. As salient objects move across the background, a

segmentation algorithm attempts to determine which pixels belong to the scene background and

which pixels do not. Pixels that are not recorded as part of the background are grouped together

into a blob. Blobs are assigned an identifier that is unique to each instance of a camera adapter

(and thus, unique to each video stream) A tracking algorithm, referred to in this work as a frame-

to-frame tracking algorithm. The frame-to-frame tracker maintains correspondences between

objects, as they move, from one frame to the next. By maintaining these correspondences, the

image analysis module can compute a feature vector corresponding to the visual appearance of

each object in each frame of video. The output of the image analysis module is metadata

describing each frame, e.g. a monotonically increasing frame number, timestamp when the frame

was received, the number of objects in the frame and their identifiers, privacy filters associated

with the camera, etc.

140

Figure 57. Camera adapter, simulating a video stream from a pre-recorded video.

The communication handler establishes and maintains communication between the

camera adapter and the spatial processing layer. On startup it registers the camera with the spatial

processing layer host, including a description of the camera and its location. It contains queues

for buffering and sending imagery and metadata to the spatial processing layer host. It also

receives commands and camera-level privacy filters.

Spatial Processing Layer

Spatial processing layer hosts receive imagery and metadata from camera adapters and

maintain mappings associating video streams with camera adapters, indices of frames and

141

corresponding objects, a security matrix pertaining to which users and user groups can access

cameras.

The communication handler manages communication sessions between camera adapters

and spatial processing layer hosts, between spatial processing layer hosts and stream processing

layer hosts and between itself and clients to serve imagery to clients viewing video streams

directly. The privacy manager stores privacy filters for streams and views associated with the

respective spatial processing layer host. These privacy filters are applied to imagery served to

clients. The spatial query engine executes subqueries within query groups with execution pool as

described previously. A screen capture from the GUI of a spatial processing layer service is

given in Figure 58. From the output shown in the figure, a camera adapter registration was

received and later timed out after the heartbeat service could not communicate with it for one

minute.

Figure 58. The camera server service, which runs in the spatial processing layer.

142

Stream Processing Layer

Stream processing layer hosts receive subquery results that were evaluated on spatial

processing layer hosts and compute the final query result each evaluation cycle. The query

executive maintains metadata pertaining to the available spatial processing layer hosts and which

video streams they are associated with; the last time communication was received from each

host, etc. The client session maintains communication sessions with clients, including a periodic

“heartbeat.” If communication with a client is lost for a period of time, any queries associated

with that client can be aborted. The client session manager also maintains a list of user-level

privacy filters associated with specific users. A screen capture showing the GUI of the spatial

processing layer service is provided in Figure 59.

Figure 59. The query processing service, which runs in the stream processing layer.

143

Figure 60. The LVDBMS user client, showing a connection to a camera server and three
video streams and two views.

Client Layer

The LVDBMS client provides the interface between human operators and the LVDBMS

query processing layers. Users can browse available cameras, define views and privacy filters

and submit queries to stream processing layer hosts. It also receives query results and provides

them to the user, including notifications that are configured as a part of a query. Users who are

members of the administrators group can view all active queries in the LVDBMS as well as

perform other administrative functions such as privacy filter, user and user group management.

144

The screen capture of the LVDBMS provided in Figure 60 shows a client GUI connected to one

camera server (the LVDBMS service that runs in the spatial processing layer) which has three

video streams available for viewing or querying. One can observe a view, v11, defined over

stream 0, which is also associated with a privacy filter. A second view, v12, is defined over v11

and the LVQL for defining this view is shown in the query window.

Experimental Study

This section presents additional performance results pertaining to various aspects of the

LVDBMS prototype. In order for objects to be identified across video streams, a number of

internal data structures must be maintained, and algorithms developed to maintain them.

Additionally, the some components of the LVDBMS prototype is structured as a series of

pipeline stages, such that each stage implements some specific processing steps in the overall

data flow. Most pipeline stages are driven by their own processing threads, thus, concurrency

control mechanisms and thread-safe data operations are required in order to ensure proper system

state is maintained. In many cases concurrency control reduces certain aspects of the system to a

serial ordering (e.g. two threads cannot write to the same memory location at the same time and

produce a deterministic result). Thus, waiting for and acquiring locks consumes some small

portion of the computational overhead incurred in maintaining system state. These system-

oriented results that did not properly fit into an earlier section is what are detailed in this section.

Query Processing Performance

 Results presented in this section pertain to evaluating individual subqueries (i.e. not

subqueries oriented in query groups). As only subqueries are evaluated, this time does not

include communication overhead to combine subquery results in the stream processing tier.

145

The continuous queries (i.e. subqueries) in the LVDBMS are evaluated periodically. The

intervals in which they are evaluated is referred to as the resolution of the query. The amount of

time required to evaluate each subquery should be less than its resolution, else the subquery

evaluations will be missed due to its evaluation time running over into the next evaluation time

slot. To test the subquery evaluation performance of the execution engine and related metadata

structures, an evaluation scenario comprised of executing five subquery simultaneously for a

period of 120 seconds over ten randomly selected videos was performed. The test was repeated

for ten different videos, with a query resolution of one second. The time taken for the evaluation

procedure to conclude is recorded at one-second intervals. These evaluation times are plotted for

each video in Figure 61. Additional details pertaining to the evaluation times is presented in

Table 19. In order to simplify the information presented in the table, it has been normalized

relative to a single video by dividing the values by five. The evaluation times are significantly

less than the query resolution, and in most cases the standard deviation is larger than the average

execution time. We feel this behavior is due to processes having to wait to acquire various read

and write locks, and for .NET runtime memory allocations. Evaluating a subquery entails first

checking that the subquery is runnable. (For example, if an exception occurs during the

evaluation of a subquery it will be aborted. Such an exception could occur if a video stream was

to go offline.) Next, the query root node is signaled to evaluate, resulting in a recursive query

tree traversal down to the operands. The operands execute their data fetches (which incurs read

locks on the metadata structures to obtain frame and object information). The recursive tree

traversal continues, with evaluation results returned from the leaves of the tree back up to the

final computation in the root node. Each subquery is evaluated in such fashion and the root

146

node’s evaluation result is enqueued for transmittal to the stream processing layer host. Note that

the query execution engine does not halt for the results to be transmitted via the network.

Summary

This section provided an overview of the LVDBMS prototype implementation of an LVC

database. Its development began approximately three years ago as a C++ application in

Microsoft Visual Studio 2008 utilizing OpenCV and the Intel Performance Primitives library.

The decision was made to port the application to C# in order to leverage the Language

Integrated Query (LINQ) features for performing various SQL-like functions on internal data

types such as arrays. Due to the real-time performance requirements, in-memory data structures

such as arrays, hash tables and lists are used, as opposed to utilizing a relational database that

would involve transactions and writing data to hard disk. With the port to C#, the OpenCV

wrapper EMGU CV was utilized for low-level computer vision algorithms and related data

structures. The current version of the LVDBMS is developed in C# version 4.5 and Visual

Studio 2012; Figure 62.

In this chapter the LVDBMS is described, and performance results for query evaluations

were provided. Overall the LVDBMS successfully functions as a test bed for implementing and

testing LVC algorithms in order to advance the state of the art in stream processing

environments.

147

Table 19. Average query evaluation in milliseconds of CPU time, by video

Movie
Performance

Min Max Standard
Deviation Average

SR436_M2U00040 (3) 0.40 5.60 0.73 0.78
OneShopOneWait1front (2) 0.40 30.81 6.26 4.58
ShopAssistant2cor (2) 0.40 21.24 2.72 2.49
TwoEnterShop1cor (2) 1.60 12.00 1.68 2.42
TwoEnterShop1front (2) 3.40 26.60 3.05 5.97
TwoEnterShop3cor (2) 0.40 7.00 0.90 0.87
TwoLeaveShop1cor (2) 1.40 15.60 2.75 3.47
TwoLeaveShop2cor (2) 0.40 14.00 1.86 1.38
Walk2 (2) 0.40 1.80 0.40 0.72
WalkByShop1cor (2) 0.40 3.00 0.49 0.73

Figure 61. Evaluation costs for a selection of queries in milliseconds; plotted at one-second
intervals.

148

Figure 62. Screen capture of Visual Studio 2012 IDE depicting a dependency graph of
LVDBMS assemblies.

149

CHAPTER 8: CONCLUSIONS

Summary of Contributions

Due to increasing needs to monitor areas for purposes such as proactive maintenance,

security and quality assurance, there are increasingly more live video streams that need to be

monitored. This manuscript presents work pertaining to LVC and presents the LVDBMS and its

capabilities. The LVDBMS allows for the monitoring and detection of complex events which can

be observed by cameras. LVQL, a declarative high-level query language facilitates the

specification of complex events to be defined and monitored. Users can leverage LVQL for ad

hoc monitoring tasks and application developers can leverage it for stream processing application

development, similar to how traditional business applications utilize relational database systems

for data processing and storage.

As cameras and imaging sensors continue to be installed, more and more of our lives can

be captured, analyzed and correlated by computer systems. A privacy framework is presented

which implements privacy policies that can be applied in real time to live video streams. This

facilitates the real-time dissemination of privacy-aware video content. Efficient query processing

techniques, web-service communication and a scalable 4-tier application architecture provide for

a solution that can scale accommodate large camera networks. Experimental results show that the

LVDBMS can effectively recognizes events observed in video streams, implement privacy

policies and efficiently processing queries.

In conclusions, major contributions feature a prototype LVC implementation including:

• LVQL, a high-level query language for specifying events and interacting with the

LVDBMS,

150

• A privacy-aware infrastructure permitting for the specification of privacy policies and

their implementation in a real-time stream processing environment, and

• Efficient query processing and execution techniques to maximize compute memory

resource usage.

Future Work

There are a number of directions in which work pertaining to the LVDBMS can continue.

It is hoped that advances published in this manuscript show the feasibility of LVC and excite

future researchers to study real time stream processing platforms and continue to advance the

state of the art. Figure 63 provides a visual overview of the LVDBMS software architecture.

Annotations in dotted rectangles highlight LVDBMS components and indicate potential future

areas of work. A summary of possible future extensions are as follows:

• LVC as a Service: The reformulation of the stream and spatial layers into a collection of

loosely-connected components that are amenable to being hosted in a cloud computing

environment. By re-architecting these upper layers, capacity can be added where needed

in order to cope with demands and to mitigate the impact of intermittent hardware

failures. Protocols for managing and processing units of work will need to be developed.

• Efficient Query Processing: Efficient utilization of computational resources can be

facilitated by improved algorithms and data structures designed to more efficiently

process requests and detect events. Such work could entail additional algebraic

transformations of queries, and parallel query algorithms for highly parallel compute

hardware such as GPUs.

151

• Privacy-Preserving Realm: Additional work can always be done to ensure privacy. The

current prototype can leak privacy information in the presence of tracking or object

segmentation errors. Additional privacy advancements could extend the PSL to better

leverage events and context observed in video streams.

• Federation: Protocols for establishing relationships between disparate implementations

to permit further sharing of resources. Trust-based relationships can be defined to specify

priority in the presence of resource contention or the specification of privacy policies.

Figure 63. Illustration of potential future works pertaining to LVC and the LVDBMS.

152

LIST OF REFERENCES

Adali, S., Candan, K. S., Chen, S. S., Erol, K., & Subrahmanian, V. (1996). The advanced video
information system: data structures and query processing. Multimedia systems, 4(4), 172–
186.

Adam, N. R., & Worthmann, J. C. (1989). Security-control methods for statistical databases: a
comparative study. ACM Computing Surveys (CSUR), 21(4), 515–556.

Ahanger, G., & Little, T. D. C. (1996). A survey of technologies for parsing and indexing digital
video. Journal of visual Communication and image representation, 7(1), 28–43.

Ahmad, Y., & Cetintemel, U. (2004). Network-aware query processing for stream-based
applications (Vol. 30, pp. 456–467). Presented at the Thirtieth international conference
on Very large Databases, VLDB Endowment.

Ahmedali, T., & Clark, J. J. (2006). Collaborative multi-camera surveillance with automated
person detection (pp. 39–39). Presented at the 3rd Canadian Conference on Computer and
Robot Vision, IEEE.

Aho, A. V., Hopcroft, J. E., & Ullman, J. (1983). Data structures and algorithms. Addison-
Wesley Longman Publishing Co., Inc.

Aho, A. V., & Ullman, J. D. (1972). The theory of parsing, translation, and compiling. Prentice-
Hall, Inc.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle
(Vol. 1, pp. 267–281). Presented at the Second International Symposium on Information
Theory, Akademiai Kiado.

Anderberg, M. R. (1973). Cluster analysis for applications. DTIC Document.

Antani, S., Kasturi, R., & Jain, R. (2002). A survey on the use of pattern recognition methods for
abstraction, indexing and retrieval of images and video. Pattern recognition, 35(4), 945–
965.

Aref, W. G., & Ilyas, I. F. (2001). Sp-gist: An extensible database index for supporting space
partitioning trees. Journal of Intelligent Information Systems, 17(2), 215–240.

Aref, W. G., & Samet, H. (1994). Hashing by proximity to process duplicates in spatial databases
(pp. 347–354). Presented at the Proceedings of the third international conference on
Information and knowledge management, ACM.

Aref, W., & Samet, H. (1992). Uniquely reporting spatial objects: yet another operation for
comparing spatial data structures (Vol. 1, pp. 178–189). Presented at the Proceedings of
the Fifth International Symposium on Spatial Data Handling.

153

Aved, A. J., & Hua, K. A. (2012). A general framework for managing and processing live video
data with privacy protection. Multimedia Systems, 18(2), 123–143.

Aved, A. J., Hua, K. A., & Gurappa, V. (2011). An Informatics-Based Approach to Object
Tracking for Distributed Live Video Computing. In Multimedia Communications,
Services and Security (pp. 120–128).

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data
stream systems (pp. 1–16). Presented at the Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM.

Babu, S., & Widom, J. (2004). StreaMon: an adaptive engine for stream query processing (pp.
931–932). Presented at the ACM SIGMOD international conference on Management of
data, ACM.

Bach, J. R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R., … Shu, C. F.
(1996). The Virage image search engine: An open framework for image management (pp.
76–87). Presented at the SPIE Storage and Retrieval for Image and Video Databases IV.

Baeza-Yates, R., Cunto, W., Manber, U., & Wu, S. (1994). Proximity matching using fixed-
queries trees (pp. 198–212). Presented at the Combinatorial Pattern Matching, Springer.

Barbieri, M., Mekenkamp, G., Ceccarelli, M., & Nesvadba, J. (2001). The color browser: a
content driven linear video browsing tool (pp. 627–630). Presented at the IEEE
International Conference on Multimedia and Expo, IEEE.

Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990). The R*-tree: an efficient and
robust access method for points and rectangles (Vol. 19). ACM.

Belhumeur, P., Hespanha, J., & Kriegman, D. (1996). Eigenfaces vs. Fisherfaces: Recognition
using class specific linear projection. European Conference on Computer Vision, 43–58.

Bellman, R. E. (1986). The Bellman Continuum: A Collection of the Works of Richard E.
Bellman. World Scientific Publishing Company Incorporated.

Bellman, R., & Kalaba, R. (1959). On adaptive control processes. IRE Transactions on
Automatic Control, 4(2), 1–9.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517.

Bentley, J. L. (1977). Algorithms for Klee’s rectangle problems. Technical Report, Computer.

Berclaz, J., Fleuret, F., Turetken, E., & Fua, P. (2011). Multiple object tracking using k-shortest
paths optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(9), 1806–1819.

154

Bern, M. (1993). Approximate closest-point queries in high dimensions. Information Processing
Letters, 45(2), 95–99.

Beucher, S., & Lantuejoul, C. (1979). Use of watersheds in contour detection. Presented at the
International workshop on image processing, real-time edge and motion detection.

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor”
meaningful? International Conference on Database Theory, 217–235.

Beyer, M. (2011). Gartner Says Solving’Big Data’Challenge Involves More Than Just Managing
Volumes of Data. Gartner. Retrieved from http://www. gartner. com/it/page. jsp

Blaser, A. (1979). Data base techniques for pictorial applications (Vol. 81). Florence: Springer.

Boggs, J. M. (1996). The art of watching films. ERIC.

Bolle, R. M., Yeo, B. L., & Yeung, M. (1998). Video query: Research directions. IBM Journal of
Research and Development, 42(2), 233–252.

Boreczky, J. S., & Rowe, L. A. (1996). Comparison of video shot boundary detection techniques.
Journal of Electronic Imaging, 5(2), 122–128.

Bowden, R., Gilbert, A., & KaewTraKulPong, P. (2006). Tracking objects across uncalibrated
arbitrary topology camera networks. Intelligent Distributed Video Surveillance Systems,
157–183.

Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient ND image segmentation.
International Journal of Computer Vision, 70(2), 109–131.

Bozkaya, T., & Ozsoyoglu, M. (1999). Indexing large metric spaces for similarity search queries.
ACM Transactions on Database Systems, 24(3), 361–404.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, Incorporated.

Bribiesca, E., & Guzman, A. (1980). How to describe pure form and how to measure differences
in shapes using shape numbers. Pattern Recognition, 12(2), 101–112.

Brunelli, R., Mich, O., & Modena, C. M. (1999). A Survey on the Automatic Indexing of Video
Data. Journal of visual communication and image representation, 10(2), 78–112.

Bruno, N., Chaudhuri, S., & Ramamurthy, R. (2009). Power hints for query optimization (pp.
469–480). Presented at the IEEE 25th International Conference on Data Engineering,
IEEE.

155

Caloyannides, M. A. (2003). Society cannot function without privacy. IEEE Security and
Privacy, 1(3), 84–86.

Camara-Chavez, G., Precioso, F., Cord, M., Phillip-Foliguet, S., & De A Araujo, A. (2007). Shot
boundary detection by a hierarchical supervised approach (pp. 197–200). Presented at the
Systems, Signals and Image Processing, 2007 and 6th EURASIP Conference focused on
Speech and Image Processing, Multimedia Communications and Services. 14th
International Workshop on, IEEE.

Catarci, T., Donderler, M., Saykol, E., Ulusoy, O., & Gudukbay, U. (2003). BilVideo: a video
database management system. Multimedia, IEEE, 10(1), 66–70.

Chang, N., & Fu, K. (1980). A relational database system for images. Pictorial Information
Systems, 288–321.

Chang, N. S., & Fu, K. S. (1980). Query-by-pictorial-example. IEEE Transactions on Software
Engineering, (6), 519–524.

Chang, S. F., Eleftheriadis, A., & McClintock, R. (1998). Next-generation content
representation, creation, and searching for new-media applications in education.
Proceedings of the IEEE, 86(5), 884–904.

Chang, S. K., & Hsu, A. (1992). Image information systems: where do we go from here?
Knowledge and Data Engineering, IEEE Transactions on, 4(5), 431–442.

Chang, S. K., & Kunil, T. (1981). Pictorial data-base systems. Computer, 14(11), 13–21.

Chang, S. K., Yan, C., Dimitroff, D. C., & Arndt, T. (1988). An intelligent image database
system. Software Engineering, IEEE Transactions on, 14(5), 681–688.

Chaudhuri, S. (1998). An overview of query optimization in relational systems (pp. 34–43).
Presented at the Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, ACM.

Chazelle, B., & Edelsbrunner, H. (1992). An optimal algorithm for intersecting line segments in
the plane. Journal of the ACM (JACM), 39(1), 1–54.

Chen, J. Y., Bouman, C. A., & Dalton, J. C. (2000). Hierarchical browsing and search of large
image databases. IEEE Transactions on Image Processing, 9(3), 442–455.

Chen, X., Zhang, C., Chen, S. C., & Chen, M. (2005). A latent semantic indexing based method
for solving multiple instance learning problem in region-based image retrieval (p. 8–pp).
Presented at the Seventh IEEE International Symposium on Multimedia, IEEE.

Cheng, H., Hua, K. A., & Yu, N. (2010). An automatic feature generation approach to multiple
instance learning and its applications to image databases. Multimedia Tools and
Applications, 47(3), 507–524.

156

Cheung, S. C. S., & Kamath, C. (2004). Robust techniques for background subtraction in urban
traffic video (Vol. 5308, pp. 881–892). Presented at the Proceedings of SPIE.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms.
MIT press.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

Cremers, D., Rousson, M., & Deriche, R. (2007). A review of statistical approaches to level set
segmentation: integrating color, texture, motion and shape. International journal of
computer vision, 72(2), 195–215.

Cucchiara, R., Grana, C., Piccardi, M., & Prati, A. (2003). Detecting moving objects, ghosts, and
shadows in video streams. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 25(10), 1337–1342.

Danielson, P. (2002). Video surveillance for the rest of us: Proliferation, privacy, and ethics
education (pp. 162–167). Presented at the International Symposium on Technology and
Society, IEEE.

Date, C. J. (1977). An Introduction to Database Systems (2nd ed.). Addison-Wesley Publishing
Company, Inc.

De La Briandais, R. (1959). File searching using variable length keys (pp. 295–298). Presented
at the Papers presented at the the March 3-5, 1959, western joint computer conference,
ACM.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2), 31–71.

Dimitrova, N., Zhang, H. J., Shahraray, B., Sezan, I., Huang, T., & Zakhor, A. (2002).
Applications of video-content analysis and retrieval. MultiMedia, IEEE, 9(3), 42–55.

Dimopoulos, S., & Landsberg, G. (2001). Black holes at the large hadron collider. Physical
Review Letters, 87(16), 161602.

Du, W., & Piater, J. (2007). Multi-camera people tracking by collaborative particle filters and
principal axis-based integration (pp. 365–374). Presented at the Proceedings of the 8th
Asian conference on Computer vision-Volume Part I, Springer-Verlag.

Duda, R. O., Hart, P. E., & Stork, D. G. (1995). Pattern Classification and Scene Analysis 2nd
ed.

Dufaux, F., & Ebrahimi, T. (2008). Scrambling for privacy protection in video surveillance
systems. IEEE Transactions on Circuits and Systems for Video Technology, 18(8), 1168–
1174.

157

Durkee, D. (2010). Why cloud computing will never be free. Queue, 8(4), 20.

Dwork, C. (2008). Differential privacy: A survey of results. Theory and Applications of Models
of Computation, 1–19.

Eastman, C., & Zemankova, M. (1982). Partially specified nearest neighbor searches using kd
trees. Information Processing Letters, 15(2), 53–56.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2), 167–181.

Feng, H., Fang, W., Liu, S., & Fang, Y. (2005). A new general framework for shot boundary
detection and key-frame extraction (pp. 121–126). Presented at the Proceedings of the 7th
ACM SIGMM international workshop on Multimedia information retrieval, ACM.

Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure for retrieval on composite
keys. Acta informatica, 4(1), 1–9.

Finkelstein, S. (1982). Common expression analysis in database applications (pp. 235–245).
Presented at the Proceedings of the 1982 ACM SIGMOD international conference on
Management of data, ACM.

Fisher, C. W., Lauria, E. J. M., & Matheus, C. C. (2009). An accuracy metric: Percentages,
randomness, and probabilities. Journal of Data and Information Quality (JDIQ), 1(3), 16.

Fisher, R. (2011, November 12). CAVIAR: Context Aware Vision using Image-based Active
Recognition. Retrieved November 12, 2011, from
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., … Petkovic, D. (1995).
Query by image and video content: The QBIC system. Computer, 28(9), 23–32.

Fodor, I. K. (2002). A survey of dimension reduction techniques. Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory, 9, 1–18.

Foote, J. (1997). Content-based retrieval of music and audio (Vol. 3229, pp. 138–147). Presented
at the Proc. SPIE.

Foote, J. (1999). An overview of audio information retrieval. Multimedia Systems, 7(1), 2–10.

Ford, R. M., Robson, C., Temple, D., & Gerlach, M. (2000). Metrics for shot boundary detection
in digital video sequences. Multimedia Systems, 8(1), 37–46.

Fu, K. S., & Mui, J. (1981). A survey on image segmentation. Pattern recognition, 13(1), 3–16.

Fukunaga, K., & Narendra, P. M. (1975). A branch and bound algorithm for computing k-nearest
neighbors. Computers, IEEE Transactions on, 100(7), 750–753.

158

Fung, B., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-preserving data publishing: A survey
of recent developments. ACM Computing Surveys (CSUR), 42(4), 14.

Gartner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (2002). Multi-instance kernels (pp.
179–186). Presented at the Proceedings of the 19th International Conference on Machine
Learning.

Geetha, P., & Narayanan, V. (2008). A Survey of Content-Based Video Retrieval. Journal of
Computer Science, 4(6), 474–486.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing
(pp. 518–529). Presented at the Proceedings of the International Conference on Very
Large Data Bases.

Graham, R. L. (1972). An efficient algorith for determining the convex hull of a finite planar set.
Information processing letters, 1(4), 132–133.

Grant, J., & Minker, J. (1981). Optimization in deductive and conventional relational database
systems. Advances in Data Base Theory, 1, 195–234.

Grimes, J., & Potel, M. (1991). What is multimedia? Computer Graphics and Applications,
IEEE, 11(1), 49–52.

Guting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M., &
Vazirgiannis, M. (2000). A foundation for representing and querying moving objects.
ACM Transactions on Database Systems (TODS), 25(1), 1–42.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching (Vol. 14). ACM.

Hall, P. A. V. (1974). Common Subexpression Identification in General: Algebraic Systems. UK
Scientific Centre, IBM United Kingdom Limited.

Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., … Pankanti, S. (2005). Smart
video surveillance: exploring the concept of multiscale spatiotemporal tracking. Signal
Processing Magazine, IEEE, 22(2), 38–51.

Harris, C., & Stephens, M. (1988). A combined corner and edge detector (Vol. 15, p. 50).
Presented at the Alvey vision conference, Manchester, UK.

Hatano, H. (1996). Image processing and database system in the National Museum of Western
Art; an integrated system for art research. INSPEL, 30, 259–267.

Hemayed, E. E. (2003). A survey of camera self-calibration (pp. 351–357). Presented at the
IEEE Conference on Advanced Video and Signal Based Surveillance, IEEE.

Hinneburgy, A., Aggarwalz, C. C., & Keimy, D. A. (2000). What is the nearest neighbor in high
dimensional spaces? Morgan Kaufmann Publishers Inc.

159

Hoberman, S. (2005). Data modeling made simple: A practical guide for business & information
technology professionals.

Hristescu, G., & Farach-Colton, M. (1999). Cluster-preserving embedding of proteins. Technical
Report 99-50, Computer Science Department, Rutgers University.

Hu, M. K. (1962). Visual pattern recognition by moment invariants. Information Theory, IRE
Transactions on, 8(2), 179–187.

Huang, T., Mehrotra, S., & Ramchandran, K. (1997). Multimedia analysis and retrieval system
(MARS) project.

Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the
Hausdorff distance. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
15(9), 850–863.

Ide, I., Yamamoto, K., & Tanaka, H. (1999). Automatic video indexing based on shot
classification. Advanced Multimedia Content Processing, 87–102.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of
dimensionality (pp. 604–613). Presented at the Proceedings of the thirtieth annual ACM
symposium on Theory of computing, ACM.

Jackson, J. E. (1991). A user’s guide to principal components (Vol. 244). Wiley-Interscience.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8), 651–666.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.

Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(1), 4–37.

Jain, R., & Hampapur, A. (1994). Metadata in video databases. ACM Sigmod Record, 23(4), 27–
33.

Javed, O., Rasheed, Z., Shafique, K., & Shah, M. (2003). Tracking across multiple cameras with
disjoint views.

Javed, O., & Shah, M. (2008). Automated multi-camera surveillance: algorithms and practice
(Vol. 10). Springer.

Jerri, A. J. (1977). The Shannon sampling theorem—Its various extensions and applications: A
tutorial review. Proceedings of the IEEE, 65(11), 1565–1596.

160

Jiang, H., Montesi, D., & Elmagarmid, A. K. (1997). VideoText database systems (pp. 344–351).
Presented at the IEEE International Conference on Multimedia Computing and Systems,
IEEE.

Jolliffe, I. (2005). Principal component analysis. Wiley Online Library.

Jungnickel, D. (2004). Graphs, networks and algorithms (Vol. 5). Springer.

Kamgar-Parsi, B., & Kanal, L. N. (1985). An improved branch and bound algorithm for
computing k-nearest neighbors. Pattern recognition letters, 3(1), 7–12.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002).
An efficient k-means clustering algorithm: Analysis and implementation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 24(7), 881–892.

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International
journal of computer vision, 1(4), 321–331.

Kim, K., Chalidabhongse, T. H., Harwood, D., & Davis, L. (2005). Real-time foreground–
background segmentation using codebook model. Real-time imaging, 11(3), 172–185.

Kim, W. (1984). Global optimization of relational queries: A first step. Query processing in
database systems, 206–216.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1‐2), 83–97.

Lau, T., & King, I. (1997). Montage: An image database for the fashion, textile, and clothing
industry in Hong Kong. Computer Vision—ACCV’98, 410–417.

Lee, M. S., Yang, Y. M., & Lee, S. W. (2001). Automatic video parsing using shot boundary
detection and camera operation analysis. Pattern Recognition, 34(3), 711–719.

Lew, M. S., Sebe, N., Djeraba, C., & Jain, R. (2006). Content-based multimedia information
retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP), 2(1), 1–19.

Lienhart, R. (1999). Comparison of automatic shot boundary detection algorithms (Vol. 3656,
pp. 290–301). Presented at the Proc. SPIE.

Linial, N., London, E., & Rabinovich, Y. (1995). The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2), 215–245.

Liu, X., & Chen, T. (2002). Shot boundary detection using temporal statistics modeling (Vol. 4,
pp. IV–3389). Presented at the IEEE International Conference on Acoustics, Speech, and
Signal Processing, IEEE.

161

Liu, Y., Zhang, D., Lu, G., & Ma, W. Y. (2007). A survey of content-based image retrieval with
high-level semantics. Pattern Recognition, 40(1), 262–282.

Liu, Z., & Huang, Q. (2000). Content-based indexing and retrieval-by-example in audio (Vol. 2,
pp. 877–880). Presented at the IEEE International Conference on Multimedia and Expo,
IEEE.

Lo, B., & Velastin, S. (2001). Automatic congestion detection system for underground platforms
(pp. 158–161). Presented at the International Symposium on Intelligent Multimedia,
Video and Speech Processing, IEEE.

Lowe, D. G. (1999). Object recognition from local scale-invariant features (Vol. 2, pp. 1150–
1157). Presented at the Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, IEEE.

Makhoul, J., Kubala, F., Leek, T., Liu, D., Nguyen, L., Schwartz, R., & Srivastava, A. (2000).
Speech and language technologies for audio indexing and retrieval. Proceedings of the
IEEE, 88(8), 1338–1353.

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., & Theodoridis, Y. (2005). R-trees:
Theory and Applications. Springer.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1980). Multivariate analysis.

Maron, O., & Lozano-Perez, T. (1998). A framework for multiple-instance learning. In Advances
in Neural Information Processing Systems.

Maron, O., & Ratan, A. L. (1998). Multiple-instance learning for natural scene classification
(Vol. 15). Presented at the Proceedings of the Fifteenth International Conference on
Machine Learning.

Mehrotra, S., Rui, Y., Ortega-Binderberger, M., & Huang, T. S. (1997). Supporting content-
based queries over images in MARS (pp. 632–633). Presented at the IEEE International
Conference on Multimedia Computing and Systems, IEEE.

Mills-Tettey, G. A., Stentz, A., & Dias, M. B. (2007). The Dynamic Hungarian Algorithm for the
Assignment Problem with Changing Costs (No. CMU-RI-TR-07-27). Pittsburgh, PA:
Robotics Institute.

Mojsilovic, A., & Rogowitz, B. (2001). Capturing image semantics with low-level descriptors
(Vol. 1, pp. 18–21). Presented at the Image Processing, 2001. Proceedings. 2001
International Conference on, IEEE.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1), 32–38.

162

Nagasaka, A., & Tanaka, Y. (1992). Automatic video indexing and full-video search for object
appearances.

Nievergelt, J., Hinterberger, H., & Sevcik, K. C. (1984). The grid file: An adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems (TODS), 9(1), 38–71.

Nixon, M., & Aguado, A. S. (2012). Feature Extraction & Image Processing for Computer
Vision. Academic Press.

Norusis, M. J. (1990). SPSS advanced statistics user’s guide. SPSS Chicago.

Nwosu, K. C., Thuraisingham, B. M., & Berra, P. B. (1996). Multimedia Database Systems:
design and implementation strategies. Springer.

Oh, J. H., Hua, K. A., & Liang, N. (2000). A content-based scene change detection and
classification technique using background tracking (pp. 254–265). Presented at the SPIE
Conf. on Multimedia Computing and Networking.

Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern
recognition, 26(9), 1277–1294.

Parks, D. H., & Fels, S. S. (2008). Evaluation of background subtraction algorithms with post-
processing (pp. 192–199). Presented at the IEEE Fifth International Conference on
Advanced Video and Signal Based Surveillance, IEEE.

Peng, B., Zhang, L., & Zhang, D. (2013). A Survey of Graph Theoretical Approaches to Image
Segmentation. Pattern Recognition, 46(3), 1020–1038. doi:10.1016/j.patcog.2012.09.015

Peng, R., Aved, A. J., & Hua, K. A. (2010). Real-Time Query Processing on Live Videos in
Networks of Distributed Cameras. International Journal of Interdisciplinary
Telecommunications and Networking (IJITN), 2(1), 27–48.

Pentland, A., Picard, R. W., & Sclaroff, S. (1996). Photobook: Content-based manipulation of
image databases. International Journal of Computer Vision, 18(3), 233–254.

Piccardi, M. (2004). Background subtraction techniques: a review (Vol. 4, pp. 3099–3104).
Presented at the Systems, Man and Cybernetics, 2004 IEEE International Conference on,
IEEE.

Pieprzyk, J., & Sadeghiyan, B. (2001). Design of hashing algorithms. Springer-Verlag New
York, Inc.

Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., & Seltzer, M. (2006).
Network-aware operator placement for stream-processing systems (p. 49). Presented at
the 22nd International Conference on Data Engineering, IEEE.

163

Pirsiavash, H., Ramanan, D., & Fowlkes, C. C. (2011). Globally-optimal greedy algorithms for
tracking a variable number of objects (pp. 1201–1208). Presented at the 2011 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE.

Radke, R. J. (2010). A survey of distributed computer vision algorithms. Handbook of Ambient
Intelligence and Smart Environments, 35–55.

Ray, S., & Craven, M. (2005). Supervised versus multiple instance learning: An empirical
comparison (pp. 697–704). Presented at the Proceedings of the 22nd international
conference on Machine learning, ACM.

Rekleitis, I., & Dudek, G. (2005). Automated calibration of a camera sensor network (pp. 3384–
3389). Presented at the IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE.

Rekleitis, I., Meger, D., & Dudek, G. (2006). Simultaneous planning, localization, and mapping
in a camera sensor network. Robotics and Autonomous Systems, 54(11), 921–932.

Rish, I. (2001). An empirical study of the naive Bayes classifier (Vol. 3, pp. 41–46). Presented at
the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence.

Rosin, P. L. (1997). Edges: saliency measures and automatic thresholding. Machine Vision and
Applications, 9(4), 139–159.

Rui, Y., Huang, T. S., & Chang, S. F. (1999). Image retrieval: Current techniques, promising
directions, and open issues. Journal of visual communication and image representation,
10(1), 39–62.

Rui, Y., Huang, T. S., & Mehrotra, S. (1997). Content-based image retrieval with relevance
feedback in MARS (Vol. 2, pp. 815–818). Presented at the International Conference on
Image Processing, IEEE.

Saini, M., Atrey, P. K., Mehrotra, S., Emmanuel, S., & Kankanhalli, M. (2010). Privacy
modeling for video data publication (pp. 60–65). Presented at the IEEE International
Conference on Multimedia and Expo, IEEE.

Samet, H. (1990). The design and analysis of spatial data structures (Vol. 85). Addison-Wesley
Reading MA.

Samet, H. (1995). Spatial data structures. Modern Database Systems, The Object Model,
Interoperability and Beyond, 361–385.

Samet, H. (2006). Foundations of multidimensional and metric data structures. Morgan
Kaufmann.

164

Sato, T., Kanade, T., Hughes, E. K., Smith, M. A., & Satoh, S. (1999). Video OCR: indexing
digital news libraries by recognition of superimposed captions. Multimedia Systems, 7(5),
385–395.

Scheuermann, P., & Ouksel, M. (1982). Multidimensional B-trees for associative searching in
database systems. Information systems, 7(2), 123–137.

Schneiderman, H., & Kanade, T. (1998). Probabilistic modeling of local appearance and spatial
relationships for object recognition (pp. 45–51). Presented at the Computer Vision and
Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on,
IEEE.

Sellis, T. K. (1988). Multiple-query optimization. ACM Transactions on Database Systems
(TODS), 13(1), 23–52.

Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y. L., Ekin, A., … Lu, M. (2005).
Enabling video privacy through computer vision. Security & Privacy, IEEE, 3(3), 50–57.

Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison.

Siddiqi, K., & Kimia, B. B. (1995). Parts of visual form: Computational aspects. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 17(3), 239–251.

Skopal, T. (2004). Pivoting M-tree: A metric access method for efficient similarity search (pp.
27–37). Presented at the Proceedings of the Annual International Workshop on
Databases, Texts, Specifications and Objects, Citeseer.

Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., & Jain, R. (2000). Content-based
image retrieval at the end of the early years. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22(12), 1349–1380.

Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in
robotics. Autonomous robot vehicles, 1, 167–193.

Snoek, C. G. M., & Smeulders, A. W. M. (2010). Visual-Concept Search Solved? Computer, 76–
78.

Snoek, C. G. M., & Worring, M. (2005). Multimodal video indexing: A review of the state-of-
the-art. Multimedia Tools and Applications, 25(1), 5–35.

Snoek, C. G. M., Worring, M., Van Gemert, J. C., Geusebroek, J. M., & Smeulders, A. W. M.
(2006). The challenge problem for automated detection of 101 semantic concepts in
multimedia (pp. 421–430). Presented at the Proceedings of the 14th annual ACM
international conference on Multimedia, ACM.

Song, B., & Roy-Chowdhury, A. K. (2007). Stochastic adaptive tracking in a camera network.

165

Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models for real-time
tracking (Vol. 2). Presented at the Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society Conference on., IEEE.

Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer-Verlag New York,
Inc.

Tagare, H., Vos, F. M., Jaffe, C. C., & Duncan, J. S. (1995). Arrangement: A spatial relation
between parts for evaluating similarity of tomographic section. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 17(9), 880–893.

Tantaoui, M. A., Hua, K. A., & Do, T. T. (2004). BroadCatch: a periodic broadcast technique for
heterogeneous video-on-demand. Broadcasting, IEEE Transactions on, 50(3), 289–301.

Taylor, S. (2007). Optimizing Applications for Multi-Core Processors, Using the Intel Integrated
Performance Primitives. Intel Press.

Tieu, K., Dalley, G., & Grimson, W. E. L. (2005). Inference of non-overlapping camera network
topology by measuring statistical dependence.

Treisman, A., Cavanagh, P., Fischer, B., Ramachandran, V. S., & Von der Heydt, R. (1990).
Form perception and attention: Striate cortex and beyond.

Turner, J. (1990). Representing and accessing information in the stockshot database at the
National Film Board of Canada. Canadian Journal of Information Science, 15(4), 1–22.

Uhlmann, J. K. (1991). Satisfying general proximity/similarity queries with metric trees.
Information processing letters, 40(4), 175–179.

Ullman, J. D. (1981). Principles of database systems. Computer Software Engineering Series,
Rockville: Computer Science Press, 1981, 1.

Velipasalar, S., Brown, L. M., & Hampapur, A. (2010). Detection of user-defined, semantically
high-level, composite events, and retrieval of event queries. Multimedia Tools and
Applications, 50(1), 249–278.

Wang, J. T. L., Wang, X., Lin, K. I., Shasha, D., Shapiro, B. A., & Zhang, K. (1999). Evaluating
a class of distance-mapping algorithms for data mining and clustering (pp. 307–311).
Presented at the Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM.

Wang, Y., Liu, Z., & Huang, J. C. (2000). Multimedia content analysis-using both audio and
visual clues. Signal Processing Magazine, IEEE, 17(6), 12–36.

Weber, R., Schek, H. J., & Blott, S. (1998). A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces (pp. 194–205). Presented at the
Proceedings of the International Conference on Very Large Data Bases, IEEE.

166

Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2006). Distance metric learning for large margin
nearest neighbor classification. Presented at the In NIPS, Citeseer.

White, T. (2012). Hadoop: The definitive guide. O’Reilly Media.

Wold, E., Blum, T., Keislar, D., & Wheaten, J. (1996). Content-based classification, search, and
retrieval of audio. MultiMedia, IEEE, 3(3), 27–36.

Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. P. (1997). Pfinder: Real-time tracking
of the human body. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
19(7), 780–785.

Xu, C., Yezzi Jr, A., & Prince, J. L. (2000). On the relationship between parametric and
geometric active contours (Vol. 1, pp. 483–489). Presented at the Conference Record of
the Thirty-Fourth Asilomar Signals, Systems and Computers, IEEE.

Yang, J., & Hauptmann, A. G. (2008). (Un) Reliability of video concept detection (pp. 85–94).
Presented at the Proceedings of the 2008 international conference on Content-based
image and video retrieval, ACM.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in general
metric spaces (pp. 311–321). Presented at the Proceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics.

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. Acm Computing Surveys
(CSUR), 38(4), 13.

Zha, H., He, X., Ding, C., Simon, H., & Gu, M. (2001). Bipartite graph partitioning and data
clustering (pp. 25–32). Presented at the Proceedings of the tenth international conference
on Information and knowledge management, ACM.

Zhang, D., Qi, W., & Zhang, H. (2001). A new shot boundary detection algorithm. Advances in
Multimedia Information Processing—PCM 2001, 63–70.

Zhang, H. J., Kankanhalli, A., & Smoliar, S. W. (1993). Automatic partitioning of full-motion
video. Multimedia systems, 1(1), 10–28.

Zhang, Z., & Zhang, R. (2008). Multimedia data mining: a systematic introduction to concepts
and theory. Chapman & Hall/CRC.

Zhao, R., & Grosky, W. I. (2002). Negotiating the semantic gap: from feature maps to semantic
landscapes. Pattern Recognition, 35(3), 593–600.

Zheng, W., Yuan, J., Wang, H., Lin, F., & Zhang, B. (2005). A novel shot boundary detection
framework (Vol. 5960, pp. 596018–1). Presented at the Proc. of SPIE Vol.

167

Zhou, J., & Zhang, X. P. (2005). Video shot boundary detection using independent component
analysis (pp. 541–544). Presented at the Proc. Int. Conf. Acoustics, Speech and Signal
Processing.

Zhou, X. S., & Huang, T. S. (2000). CBIR: from low-level features to high-level semantics (Vol.
3974, p. 426). Presented at the Proceedings of SPIE.

Zhou, Y. H., Cao, Y. D., Zhang, L. F., & Zhang, H. X. (2005). An SVM-based soccer video shot
classification (Vol. 9, pp. 5398–5403). Presented at the Machine Learning and
Cybernetics, 2005. Proceedings of 2005 International Conference on, IEEE.

Zou, X., Bhanu, B., Song, B., & Roy-Chowdhury, A. K. (2007). Determining topology in a
distributed camera network (Vol. 5, pp. V–133). Presented at the IEEE International
Conference on Image Processing, IEEE.

168

	Scene Understanding For Real Time Processing Of Queries Over Big Data Streaming Video
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Motivations
	Overview of Dissertation

	CHAPTER 2: MULTIMEDIA DATABASES AND LIVE VIDEO COMPUTING
	Introduction
	Fundamental Concepts and Components of Multimedia Database Systems
	Multimedia Data Representation – Data and Information
	Digital Sampling and Reconstruction
	Data Representation and Features
	Feature Extraction
	Background Subtraction
	Segmentation of Image Regions
	Tracking Objects within a Single Camera
	Distributed Object Tracking with Multiple Cameras
	Supervised and Unsupervised Learning
	Clustering
	A Brief Review of Multiple-Instance Learning
	Shot Boundary Detection and Representative Image Selection
	Multimedia Data Representation for Indexing
	Multimedia Indexing Storage and Retrieval
	The Semantic Gap
	Content-based Image Retrieval

	Research Video Database Management Systems
	Introduction to Live Video Computing and Big Data
	Basic Premises of Live Video Computing
	Live Video Computing is Big Data

	Summary

	CHAPTER 3: INTRODUCTION TO THE LVDBMS
	LVDBMS Architecture
	LVDBMS Data Model
	Introduction to the LVQL Query Language
	Summary

	CHAPTER 4: AN INFORMATICS-BASED APROACH TO OBJECT TRACKING
	Introduction
	Previous Multi-Camera Object Tracking Work
	Cross-Camera Object Tracking in the LVDBMS
	LVDBMS Cross-Camera Tracking Implementation
	Performance Evaluation
	Evaluation Scenario Setup
	Evaluation Based Upon Relative Quality
	Performance of Cross-Camera Tracking
	Inclusion Distance Threshold
	Conclusions and Comments

	Summary

	CHAPTER 5: MANAGING LIVE VIDEO DATA WITH PRIVACY PROTECTION
	Introduction
	Background
	Privacy Filter Framework Objectives
	Scope and Assumptions of Privacy Preservation and the LVDBMS
	Overview of Privacy Framework
	Defining Privacy Filters with the Privacy Specification Language
	Combinations of Privacy Filters
	Formal Specification of the Privacy Filter Model

	Performance Evaluation
	Privacy Filter Effectiveness
	Object Tracking Effectiveness
	Holistic Demonstration of a Privacy Filter

	Summary

	CHAPTER 6: EFFICIENT QUERY PROCESSING
	Introduction
	Background
	Query Processing
	Overview
	The Query Parser and Translator
	The Query Optimizer
	LVDBMS Query Optimization
	LVDBMS Query Execution Environment
	Cost Estimation

	Experimental Study
	Summary

	CHAPTER 7: LVDBMS PROTOTYPE
	Introduction
	Prototype System Architecture
	Camera Layer
	Spatial Processing Layer
	Stream Processing Layer
	Client Layer

	Experimental Study
	Query Processing Performance

	Summary

	CHAPTER 8: CONCLUSIONS
	Summary of Contributions
	Future Work

	LIST OF REFERENCES

