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ABSTRACT 
 

Apalachicola Bay in the Florida panhandle is home to a rich variety of salt water and freshwater 

wetlands but unfortunately is also subject to a wide range of hydrologic extreme events. Extreme 

hydrologic events such as hurricanes and droughts continuously threaten the area. The impact of 

hurricane and drought on both fresh and salt water wetlands was investigated over the time 

period from 2000 to 2015 in Apalachicola Bay using spatio-temporal changes in the Landsat 

based NDVI. Results indicate that salt water wetlands were more resilient than fresh water 

wetlands. Results also suggest that in response to hurricanes, the coastal wetlands took almost a 

year to recover while recovery following a drought period was observed after only a month. This 

analysis was successful and provided excellent insights into coastal wetland health. Such long 

term study is heavily dependent on optical sensor that is subject to data loss due to cloud 

coverage. Therefore, a novel method is proposed and demonstrated to recover the information 

contaminated by cloud.  

Cloud contamination is a hindrance to long-term environmental assessment using information 

derived from satellite imagery that retrieve data from visible and infrared spectral ranges. 

Normalized Difference Vegetation Index (NDVI) is a widely used index to monitor vegetation 

and land use change. NDVI can be retrieved from publicly available data repositories of optical 

sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS) and several 

commercial satellites. Landsat has an ongoing high resolution NDVI record starting from 1984. 

Unfortunately, the time series NDVI data suffers from the cloud contamination issue. Though 

simple to complex computational methods for data interpolation have been applied to recover 
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cloudy data, all the techniques are subject to many limitations. In this paper, a novel Optical 

Cloud Pixel Recovery (OCPR) method is proposed to repair cloudy pixels from the time-space-

spectrum continuum with the aid of a machine learning tool, namely random forest (RF) trained 

and tested utilizing multi-parameter hydrologic data. The RF based OCPR model was compared 

with a simple linear regression (LR) based OCPR model to understand the potential of the 

model. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to 

repair cloudy NDVI reflectance for two specific dates. The RF based OCPR method achieves a 

root mean squared error of 0.0475 sr−1 between predicted and observed NDVI reflectance values. 

The LR based OCPR method achieves a root mean squared error of 0.1257 sr−1. Findings 

suggested that the RF based OCPR method is effective to repair cloudy values and provide 

continuous and quantitatively reliable imagery for further analysis in environmental applications.   
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CHAPTER 1: INTRODUCTION 
 

1.1 Application of Vegetation Index in Wetland Stress Analysis 
 

 Advances in remote sensing applications and data analysis systems are bringing cutting 

edge research techniques to real world practice and enabling cost efficient, quantitative 

biophysical analysis more accessible. For example, wetland extent mapping, leaf area index, 

canopy density and closure, etc., are making the assessment of biophysical parameters doable at 

regional scales. These great resources also present new challenges. Staffs responsible for 

environmental monitoring as well as ecosystem modelers are handling large uncertainties in data 

as a result of weather, environment and vegetation. Having comprehensive and up to date 

information is crucial to optimize wetland and forest management throughout the season 

especially before and after extreme natural hazards. In particular, vegetation index maps consist 

of detailed imagery that abstracts a measure of the green vegetation present in their study area. 

Time series analyses of the trend of greenness in vegetation can play a crucial role in identifying 

vegetation/wetland stress and relate the impact of hydrologic events. Long term impacts of 

extreme events on the ecosystem can range from small to massive, depending on the severity and 

duration of the event. A crucial component to time series analyses is establishing baseline 

characteristics of the study area so that changes can be identified.   

 The Apalachicola region in the Florida Panhandle has a very large estuarine ecosystem 

comprised of both salt and freshwater wetlands. The research presented focuses on the resilience 
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of both kinds of wetlands in this area, and uses the region as a tested for machine learning based 

data enhancement technique.   

1.2  Normalized Difference Vegetation Index (NDVI)  
 

 Normalized Difference Vegetation Index (NDVI) derived from Landsat has excellent 

spatial resolution compared to other publicly available satellite imagery. Landsat NDVI has 

many environmental applications including the ability to analyze changes in land use, 

transformation of urban heat islands, and impacts of extreme events. Landsat NDVI carries 

valuable information regarding land surface properties for modeling terrestrial ecosystems on the 

global, continental, and regional scales, since 1984. Such a long time record is unique in the 

satellite remote sensing community. Theoretically, NDVI, calculated from a normalized 

transform of the near-infrared (NIR) and red reflectance ratio, is an index used to characterize the 

reflective and absorptive features of vegetation in the red and NIR portions of the 

electromagnetic spectrum. However, there are almost always disturbances in these time series, 

caused by cloud contamination, atmospheric variability, and bi-directional effects. These 

disturbances greatly affect the monitoring of land cover and terrestrial ecosystems and show up 

as undesirable noise. Although the most often-used NDVI data sets are the post-processed 16-

day Maximum Value Composite (MVC) products, they still include such noise. For this reason, a 

number of methods for reducing noise and constructing high-quality NDVI time series data sets 

for further analysis have been formulated, applied, and evaluated.  
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1.3 Cloud Concerns in Optical Sensor Data  
 

 Predicting missing data is a challenge in any analysis of time series data derived from 

satellite imagery. Landsat NDVI is not without the same problem. Missing data is inevitable due 

to the presence of clouds, especially in warm coastal regions where water evaporation and 

frequent storms combine to produce cloud coverage. Cloud coverage hinders scientific research 

that depends on optical remote sensing imagery. Moreover, observations are often incomplete 

because of sensor failure or outliers causing anomalous data. Therefore, it is very important to 

carry out research on the filtering and gap filling of time series satellite images.  

1.4 Scope of the Study  
 

The current study performed a long-term wetland stress analysis using a 30 year NDVI 

time series. It analyzed the impact of extreme events on the ecosystem that can range from 

massive to small. Before analyzing these event based impacts, significant pre-processing and 

reclassification was done in order to make the data more manageable. Once the data were 

prepared, two research questions were addressed: Which wetlands among SWW, FFW, FEW are 

more resilient to hurricane and drought? How long it take to recover the wetlands after an 

extreme event? Can Landsat pixels obscured by clouds be recovered? In an attempt to compare 

the resiliency of each wetland types, probability density function (PDF) for each wetland was 

developed. Also the recovery time after an event was computed by the time gap to return from an 

anomalous NDVI range to s regular NDVI range. All computation was derived with regard to 

seasonality removed time series. Seasonality was defined in the current study as monthly mean 

data over the whole time series. 
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After observing the limitations imposed on the analysis by cloudy pixels, the study further 

proposed a novel approach using machine learning techniques based on multi-parameter time 

series data to repair missing NDVI reflectance values. The unique and novel method was named 

Optical Cloud Pixel Recovery (OCPR). High spatio-temporal resolution raster based 

temperature, precipitation, and spatial locations along with water levels from a nearby tide gage 

and corresponding month were selected as the feature vector (predictor) components associated 

with NDVI (label). To reconstruct cloud contaminated pixel values from the time-space-

spectrum continuum, the random forest (RF) machine learning tool was utilized. Approximately 

30 years of time series data were collected for the training and testing of the OCPR model. All of 

these variables contained periods of missing data that were filtered out of the training and test 

data. RF is used to model the data distribution which is adapted to handle missing values. The 

RF, along with mean only and linear regression models, was assessed using the root mean square 

error (RMSE) between the simulated and the observed NDVI values in the test data set. The 

result is a deep, functioning model that can be used on Landsat as well as other satellite images 

worldwide, subject to further refinements and testing.  
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CHAPTER 2: RESILIENCE OF COASTAL WETLANDS TO EXTREME 
HYDROLOGIC FLUCTUATION 

 

2.1 Background and Introduction 
 
 Hurricanes and droughts are climatically-instigated pulse events that cause enormous 

ecosystem perturbation. Such pulses occur frequently and the corresponding change in the 

ecosystem can persist for varying lengths of time [Yang et al., 2008]. Ecosystem resilience can 

be understood by investigating the effects of these pulse-induced changes, including their 

persistence through time [Switzer et al., 2006]. The impacts of hurricanes or droughts on coastal 

wetlands can vary depending on the wetland type, i.e.,- freshwater forested wetland (FFW), 

freshwater emergent wetland (FEW)  and saltwater wetland (SWW) ecoystems [Mo et al., 2015]. 

 Hurricanes cause physical damage to wetlands by high velocity winds and flows as well 

as salt water flood submergence [Stanturf et al., 2007]. The effect of even a short duration of 

saltwater storm surge inundation can have devastating effect on FWW [Conner and Ozalpl, 

2002; Stanturf et al., 2007], while SWW are more tolerant of elevated salinity. Depending on 

other hydrological factors such as rainfall [Huang et al., 2015a] and groundwater recharge, the 

salinity levels in the surface water can remain elevated for months following a hurricane [Steyer 

et al., 2007], with freshening not occurring for as long as one year [Chabreck and Palmisano, 

1973]. Although hurricanes bring storm surge and large amounts of rainfall in a relatively short 

time period, droughts are another natural hazard that can last from months to years [Florida 

Climate Center, 2014].   

 Remote sensing can be used to detect and track the wetland dynamics at the regional 

scale. Multiple satellite sensors such as Landsat [Han et al., 2015; Tian et al., 2015], Formosat 
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[Tian et al., 2015], MODIS [Landmann et al., 2013] and AVHRR [Ramsey III et al., 1997] can 

provide data for this application; these data are often processed into vegetation indices. These 

vegetation indices can be obtained from sensor reflectance data in spectral bands that are 

responsive to vegetation characteristics. The most well known is the Normalized Difference 

Vegetation Index (NDVI) and it is frequently used to identify and characterize vegetated areas. It 

has been shown to be highly correlated with parameters associated with plant health and 

productivity such as vegetation density and cover [Wiegand et al., 1974; Ormsby et al., 1987] 

vegetation dynamics  over time [Wellens, 1997]; vegetation classification [Evans and Geerken, 

2006] and many other related aspects [Wang and Tenhunen, 2004; Pettorelli et al., 2011]. For 

example, Ramsey III et al. [1997] analyzed forest damage caused by Hurricane Andrew in 1992, 

using NDVI derived from Advanced Very High Resolution Radiometer (AVHRR) multi-

temporal images. Their main finding was the utility of regionally averaged NDVI change as an 

indicator of damage severity. Wang [2012] also identified severe mangrove forest damage after 

Hurricanes Katrina and Wilma that took two to three years to recover. Numerous other post 

hurricane studies also focused on damage to coastal mangrove forests owing to hurricane winds 

[Middleton, 2009, 2016] and storm surge [Conner and Ozalpl, 2002; Stanturf et al., 2007].  

Apalachicola in the Florida Panhandle is located in a high risk hurricane zone [Passeri et 

al., 2015]. While hurricanes bring storm surge and large amounts of rainfall in a relatively short 

time period, droughts are another natural hazard that can last from months to years [Florida 

Climate Center, 2014]. The lower marshes of the Apalachicola River are primarily composed of 

natural wetlands area with few anthropogenic disturbances. The minimal human influence on 
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wetlands for this region make it an ideal candidate for assessing the impacts of extreme events on 

wetland recovery [Matlock, 2009]. 

While the effects of wind, surge duration and salinity on wetland ecosystem have been 

investigated previously [Ramsey III et al., 1997; Wang, 2012][Ramsey III et al., 1997; Conner 

and Ozalpl, 2002; Wang et al., 2010; Wang, 2012], the differences between effects on FWW and 

SWW remains largely uninvestigated. A very limited number of studies have attempted to 

untangle the relative impacts of  drought on SWW and FWW ecosystems [Ji and Peters, 2003; 

Lloret et al., 2007]. To the above aim, using Appalachicola Bay as the study area, the purpose of 

this paper is to investigate the stress on SWW, FFW and FEW due to hurricanes and droughts 

using an empirical vegetation index 

2.2 Study Area and Extreme Events 
 

2.2.1 Study Area: Apalachicola Bay 

 
 Apalachicola Bay in the Florida Panhandle is located in a high risk hurricane zone and 

has recived significant attention in the past few decades. Apalachicola Bay is home to rich 

natural resources including oyster beds and a vast span of marshes. Apalachicola oysters is 

accounted for 90% of Florida’s oyster production that contributes to the economics of 

Apalachicola Bay [Huang and Jones, 2001] . The lower marshes of the Apalachicola River are 

primarily composed of natural wetlands area with few anthropogenic disturbances. The minimal 

human influence on wetlands for this region make it an ideal candidate for assessing the impacts 

of extreme events on wetland recovery.   
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Figure 2.1. Apalachicola Bay and lower river marshes, derived from C-CAP wetland 
classification (2006), used as the study area. Freshwater Forested Wetland (FFW) 

represents 8.36% of the total study area, Freshwater Emergent Wetland (FEW) represents 
73.77%, whereas Saltwater Wetland (SWW) represents 6.83%. The majority of “other" is 

agriculture and cropland 

 

 The National Oceanic and Atmospheric Administration (NOAA) Coastal Change 

Analysis Program (C-CAP) classified wetlands along the eastern seaboard and Gulf coasts of the 

United States. C-CAP is considered a reliable, integrated digital database that enables researchers 

to track development in coastal regions [Klemas et al., 1993]. This study used the C-CAP 

classification as basis and resampled it to three wetland types - SWW, FFW and FEW. The 

resampling of SWW included all estuarine forested, emergent and scrub wetlands; FFW 

represented freshwater forested wetlands; and FEW included freshwater emergent and scrub 

wetlands [Klemas et al., 1993]. An elevated salinity gradient (> 0.5%) charecterized SWW, 

while low salinity gradient (< 0.5%) charecterized FWW. The red box in Figure 2.1 is the study 

domain for current study.  
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2.2.2 Hurricane and Drought Years   

A number of significant hurricanes impacted the Applachicola Bay from 2000 to 2015. 

The Apalachicola is a micro-tidal estuary with a tide range ~ 1m  [Passeri et al., 2015]. Heavy 

rainfall in 2003 caused flooding in several counties adjacent to the study area that lead to 

declaring local state of emergency. Due to the localized intense rainfall, local rivers swelled to 

reach severe flood stages [The Florida State Emergency Response Team, 2003]. Hurricane 

Frances made its second landfall near St. Marks, FL in August 2004, after crossing the Florida 

peninsula and weakening to a tropical storm; however, storm surge impacts were still significant 

along the Florida Panhandle [National hurricane center, 2004]. Tropical Storm Bonnie and 

Hurricane Ivan also made landfalls in 2004 to the west of Apalachicola Bay with Ivan causing up 

to 3.65 meters of surge along the coast in Apalachicola Bay [Edmiston et al., 2008]. In July 

2005, Hurricane Dennis caused a 2.74 m surge on the barrier islands protecting Apalachicola 

Bay [Beven, 2005]. Tropical Storm Claudette hit the Florida Panhandle in 2009; although the 

intensity of this storm was comparatively less than those in preceding years, Apalachicola Bay 

received significant surge as it was positioned in the northeast quadrant of the storm. The eastern 

half of a hurricane, and the northeast quadrant in particular, contains the most intense winds and 

therefore storm surge due to the wind speed and the hurricane's forward velocity acting in the 

same direction and compounding each other. Hurricane Isaac in 2012 caused 1.0 m of surge in 

Apalacicola Bay. In terms of the other hazard considered in this study, a significant drought 

occurred in the Apalachicola Bay River watershed from May 2011 to June 2012. Lastly and most 

recently, Hurricane Andrea made landfall in Florida’s big bend region in 2013. Storm surge 
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inundation level in Apalachicola Bay during that time was as much as 1.7 m above mean sea 

level (MSL) [Beven, 2005].  

2.3 Data Collection 
 

 The Landsat-derived composite multiband vegetation index imagery (procesed to NDVI) 

were obtained from USGS Earth Resources Observation and Science (EROS) Center Science 

Processing Architecture (ESPA). These images have a ground resolution of 30 m at the mean 

solar zenith angle of each 16-day period [Zhu and Woodcock, 2012] and were collected from 

Landsat 5, 7 and 8 over the time period from 2000 to 2015. Like other multi-spectral satellites, 

Landsat data are contaminated by clouds and cloud shadows. ESPA provides standalone 

“cfmask” layers that account for atmospheric gases, aerosols, and clouds (including thin cirrus 

clouds). Landsat 7 imagery required additional processing for stripe removal due to the 

documented failure of the scan line corrector (SLC) in 2003 [She et al., 2015]. After removing 

images that were unusable due to cloud cover, 134 months of data were available for use out of 

the entire 192 months over the study time period. From the Landsat imagery, the NIR and RED 

spectral bands were used to compute NDVI according to equation 1.  

     𝑵𝑫𝑽𝑰 =  𝑵𝑰𝑹−𝑹𝑬𝑫
𝑵𝑰𝑹+𝑹𝑬𝑫

     (1) 

 

 NDVI values range from 0.0 (i.e. no vegetation) to 1.0 (vigorous, dense green biomass) 

[Lane et al., 2014].   
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2.3.1 Data Pre-processing  

 

 NDVI time-series data have been used in the past to detect long term land-use / land-

cover (LULC) changes [Pirotti et al., 2014]. However, the utility of NDVI to detect vegetation 

stress in wetlands is often limited by poor quality data resulting from atmospheric and other 

effects. Studies typically assume that the NDVI time-series follows annual cycles of growth and 

decline of vegetation, and that clouds or poor atmospheric conditions usually depress observed 

NDVI values [Chen et al., 2004]. Previous research has applied methods to construct NDVI 

time-series by filling gaps and smoothing out noise in the time-series data. Overcoming missing 

or poor quality NDVI data has been primarily accomplished through spatial [Myneni et al., 1998; 

Lim and Kafatos, 2002; Potter et al., 2003] or temporal [Justice et al., 1985; DeFries et al., 

1995; Loveland et al., 2000] averaging / filtering. A particular method that has proven to be 

acceptable for constructing a high-quality NDVI time-series is based on the Savitzky–Golay (S-

G) Filter [Savitzky and Golay, 1964; Chen et al., 2004; Luo et al., 2005]. This study used an 

empirical S-G filter for both interpolating missing data and discounting negative and 

anomalously low NDVI values.    

2.3.2 Data Analysis 

 

 Seasonality describes the phenomenological dynamics of terrestrial ecosystems that 

reflect the response of the atmosphere to inter and intra-annual dynamics of the hydrologic 

regimes and Earth's climate [Myneni et al., 1997; White et al., 1997; Schwartz, 1999]. In other 

words, seasonality of vegetation refers to the regular periodic change that a terrestrial ecosystem 
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experiences. For example, coastal Louisiana wetlands showed distinct seasonality and all 

marshes peaked within one month from late July to mid-August [Mo et al., 2015]. A similar 

phonological cycle was observed in other ecosystems [Chidumayo, 2001; Zhang et al., 2003; Mo 

et al., 2015]. The seasonality of Apalachicola Bay wetlands was filtered out and time-series were 

plotted for the three wetland types. Seasonally adjusted NDVI is represented by NDVIıȷ�  and 

computed using equation 2. 

                                                   𝑁𝐷𝑉𝐼𝐼𝐽 −  𝑁𝐷𝑉𝐼𝐼´ =  𝑁𝐷𝑉𝐼𝐼𝐽 �     (2) 

 Here, NDVIIJ is NDVI in month I of year J; NDVII' is the mean NDVI over the time-

series for month I.  The seasonally adjusted time-series were used to indicate abnormal NDVI 

peaks or drops. 

2.4 Results 

2.4.1 NDVI Variability under Extreme Natural Events 

Flooding associated with storm surge was observed as a result of the major hurricanes 

Dennis, Frances, Claudette and Andrea that made landfalls in the last decade in Apalachicola 

Bay. Figure 2.2 shows NDVI variability during a regular year (a), after Hurricane Frances (b), 

after Hurricane Dennis (c) and during drought (d). While 2002 was a regular year, 2004 and 

2005 had significant storm surge from Hurricane Frances and Dennis and 2012 was classified as 

a drought year  [Hatter, 2015]. The mean annual NDVI values in the study area were found to be 

0.52, 0.49, 0.34 and 0.41 in 2002, 2004, 2005 and 2012, respectively. The aftermath of each 

hurricanes mentioned above was observed for a year from the day it made landfall. Recall that 
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low NDVI values represent wetland with less vigor, a high NDVI represents wetlands with more 

vigor. 2004 and especially 2005 showed the most stress (loss of vigor) for wetlands due to 

repeated hurricane strikes. Drought also impacted the average NDVI range in 2012-2013. Any 

sharp deviation from the average range can indicate the wetland stress. To quantify the wetland 

stress, box plots of yearly NDVI were constructed over the study period.   

 Figure 2.3 shows the box plots of yearly NDVI for each wetland type. As can be seen 

from Figure 2.4 . SWW has lower range of NDVI (median value 0.37) than FFW (median value 

0.56) and FEW (median value 0.51) during the study period. The largest reduction occurred in 

2005 following the 2004-2005 back to back hurricane landfalls. NDVI was found to be the 

lowest during that time and the values were 0.15 for SWW and 0.20 for both FFW and FEW. 

Other significant reductions were observed in 2009 after Hurricane Claudette and in 2013 during 

the drought period. The significant NDVI reduction of FFW can be attributed towards partial to 

total uproot of the wetland to major foliage damage of SWW. 
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Figure 2.2. Yearly averaged NDVI values at the Apalachicola Bay for a regular year (a), 
and for different extreme hydrologic events (b-d). 

 

Figure 2.3. Boxplots of the computed NDVI for the Freshwater Forested Wetland (FFW), 

Freshwater Emergent Wetland (FEW), and Saltwater Wetland (SWW) of the Apalachicola 
Bay. 
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Vertical line (black line) in each box plots indicates median demarcating 50% data either above 

or below the median. Upper and lower quartiles of the box refer to 25% and 75% of the data 

from the median, whereas upper and lower whiskers indicate maximum and minimum values, 

respectively, excluding outliers. + Symbols indicate outliers in the data.   

2.4.2 SWW vs. FWW Resilience to Extreme Natural Events 

  Figure 2.4 shows the comparison between the PDFs of three types of wetlands NDVI for 

SWW, FFW and FEW after the extreme natural events over the study period. As discussed in the 

previous section, SWW had the lowest average NDVI value over the study period. The range of 

the NDVI PDF for SWW was 0.5 compared to 0.70 for FFW and 0.78 for FEW. The narrow 

PDF for SWW indicated more stability over the study period which we interpret as an indicator 

of resilience. Therefore, SWW demonstrated more resilience to hydrologic hazards over the 

study period.  

 Figure 2.5 represents the time-series plot of the three types of wetlands in Apalachicola 

Bay Florida after filtering out the seasonality. Any sharp drop or peak in the time-series (Figure 

2.5) can be attributed towards an extreme event.  With this hypothesis, Figure 2.5 reveals major 

NDVI reductions associated with major hurricane years 2004 and 2005. Hurricane Claudette is 

associated with the second highest NDVI reduction in 2009 since the second highest drop in 

Figure 2.5 is right after 2009, another significant reduction was observed during the 2012-2013 

period when a drought occurred concurrently with Hurricane Andrea.   
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Figure 2.4. Probability density function (PDF) of the NDVI (A), and seasonality removed 
time-series of NDVI (B) For the three different wetland types used in this study. The box 

inset in (A) indicates the mean and the standard deviation of the NDVI. 
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2.4.3 Recovery after Hurricanes and Droughts  

 The ability of a wetland to recover after a hydrologic event depends on both the type of 

event and the type of wetland. SWW showed distinctly different responses compared to FWW 

for both hurricane and drought events. Figure 2.5 shows the differences in seasonally adjusted 

NDVI between FFW and SWW (Figure 2.5-a) and FEW and SWW (Figure 2.5-b) over the 16 

year study period. The period from 2004 to 2006 shows a negative difference indicating that the 

SWW NDVI was greater than that of FWW. In regular years (i.e. with no extreme hydrologic 

event), the FWW have consistently higher NDVI difference than SWW; therefore a positive 

difference is considered normal here. Along that line, a negative difference indicates an anomaly 

(or anomalies) and wetland damage by submergence, flattening or uproot/extraction of the 

wetland vegetation by the hurricanes and their associated storm surge. The situation was 

exacerbated as a result of the repeated hurricanes in 2004 and 2005. Figure 2.5 also indicates that 

after hurricane years, the anomalous negative differences revert back to regular positive 

difference after approximately one year. However, in 2012 the difference remains negative 

during most of the drought (lasting approximately six months, indicated on  Figure 2.5 as a 

yellow shaded region) but reverts to positive towards the end. 
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Figure 2.5. Time-series of seasonality-removed NDVI (shown in Figure 4b) differences 
between FFW and SWW (a), and FEW and SWW (b). 

2.5 Concluding remarks 

Hydrologic disturbances like hurricanes and droughts cause variable levels of damage 

indifferent wetland ecosystems. Exploratory analysis of the NDVI showed that Hurricanes 

Frances, Dennis, Claudette, and Isaac combined with a drought and Tropical Storm Andrea in 

2004, 2005, 2009, 2012 and 2013 caused stresses in Florida’s Big Bend Region wetland. Using 

NDVI derived from Landsat 5, 7 and 8 as a proxy for wetland health, we showed that both 

response and recovery are influenced by the event (flood, hurricane, drought) and wetland (fresh 

or saltwater) types. Hurricanes and their associated saltwater storm surge caused NDVI 

reductions (i.e. stress) lasting a year or more before recovery was indicated in the NDVI trend for 

all wetland types. Recovery after droughts was much shorter, often beginning at the tail end of 

the drought and requiring only a month to recover to baseline levels. Freshwater wetlands were 

observed to be less resilient than saltwater wetlands to these hazards demonstrated by larger 

reductions in NDVI post-event.  These results can be used to guide resource management 
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practices such additional freshwater releases from upstream controls after a surge event to help 

flush and freshen freshwater wetlands. The Apalachicola River is controlled by the Jim 

Woodruff Dam at Lake Seminole near the Florida-Georgia border. Additionally, future research 

to investigate the spatial distribution or zonation of wetlands as a function of the hydrologic 

attributes of hurricanes (storm surge followed by hydrologic flood) would be worthwhile.  
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CHAPTER 3: OPTICAL CLOUD PIXEL RECOVERY VIA MACHINE 
LEARNING 

 

3.1 Introduction 
 

Normalized Difference Vegetation Index (NDVI) conveys valuable information relating 

to vegetation properties on the land surface [Justice et al., 1985; Myneni et al., 1997]. NDVI is a 

vegetation index derived from optical remote sensors and represents the reflective and absorptive 

characteristics of vegetation in the red and near infrared (NIR) bands of the electromagnetic 

spectrum. For this reason, a chronological analysis of NDVI can indicate changes in vegetation 

conditions proportional to the absorption of photo-synthetically active radiation [Sellers, 1985]. 

Such time series analyses of NDVI can detect the impact of natural events or anthropogenic 

disturbances on vegetation and can play an important role in natural resource management 

[Jovanović and Milanović, 2015]. The role of NDVI change detection can provide multi-

dimensional information such as differences in urban land use land cover changes [Chen et al., 

2004], vegetation dynamics, surface elevation and floodplain dynamics [Marchetti et al., 2016]. 

NDVI can be downloaded at no cost from several publicly available optical remote sensors such 

as the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 

Spectro-radiometer (MODIS)-TERRA, MODIS-AQUA or Landsat satellites. Commercial 

satellites such as Satellite Pour l'Observation de la Terre (SPOT) also provides NDVI 

information. Among the publicly available sensors, Landsat has longest data record and is 

applicable for modeling terrestrial ecosystems on the global, continental, and regional scales. 

The main drawback of Landsat, as with any optical satellite sensor, is that the imagery 

can obscured, shadowed, or saturated. The effects of clouds and cloud shadows, atmospheric 
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variability, and bi-directional effects include the outright omission or skewing of readings in the 

image. These issues hamper the monitoring of terrestrial ecosystems and introduce undesirable 

noise [Gutman, 1991; Cihlar et al., 1997]. This is especially significant in change detection 

analyses at climatic time scales.   

In addition to the optical issues mentioned above, sensors can also experience instrument 

failure. For example, the scan line corrector (SLC) of the Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) sensor failed permanently in 2003. Therefore, about 22% of the pixels in an SLC-

off image are not scanned. Several algorithms are available to accurately reconstruct the missing 

values using multi-temporal images of the corresponding pixels as referable information in a 

regression model [Zeng et al., 2013]. 

All of these errors, especially those introduced by the presence of clouds, introduce large 

uncertainties in satellite images during information retrieval, signal processing, data compression 

and procedures causing anomalous results that are often difficult to correct [Melgani, 2006; 

Eckardt et al., 2013]. To mitigate these effects, the commonly used Landsat NDVI data sets are 

multiple-day Maximum Value Composite (MVC) products [Holben, 1986]; however, some noise 

remains in the final imagery products that must be dealt with.  

Data from Landsat, or optical satellites in general, are often discontinuous and faulty in 

warm coastal areas such as Florida’s gulf and west coasts due to heavy near shore 

evapotranspiration [Gutman et al., 2004]. Therefore, it is crucial to mitigate or eliminate faulty 

information and recover missing information in a defensible and repeatable manner to enhance 

NDVI as a viable tool for long term change detection analyses.   
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 A number of methods for reducing noise and building high-quality NDVI time series data 

sets have been proposed, applied, and examined in the last two decades in accordance with data 

availability and research application. However, research into the recovery of missing NDVI 

pixels due to cloud cover is limited. The most common and widely used NDVI cloud pixel 

recovery methods are threshold based methods such as the best index slope extraction algorithm 

(BISE) [Viovy et al., 1992]; Fourier-based fitting methods [Cihlar, 1996; Roerink et al., 2000]; 

and asymmetric function fitting methods such as the asymmetric Gaussian function fitting 

approach [Jonsson  Lars Eklundh, 2002] and the weighted least-squares linear regression 

approach [Swets et al., 1999]. Some simpler approaches were also practiced before the year 2000 

such as substitution and interpolation. Substitution approaches were used to fill in cloudy pixels 

by using information from adjacent cloud-free pixels in the same time period. Otherwise 

information was retrieved for the corresponding pixels from previous time periods with spatial 

relationships [Long et al., 1999; Lin et al., 2014]. In addition to methods applied directly to 

NDVI, data recovery techniques for other types of data are also informative. Several studies have 

used similar techniques to estimate missing rainfall data including inverse distance weighting 

[Simanton and Osborn, 1980], Expectation Maximization Algorithm [Makhuvha et al., 1997];  

and regression [Lynch, 2003].   

 Machine learning has also been applied to this problem. Artificial neural networks 

(ANNs) have been proven to produce reasonable relationships from small datasets while 

remaining relatively robust in the presence of noisy or missing input [Ilunga and Stephenson, 

2005]. In that study, they utilized ANNs to fill in missing hydrological data in South Africa. 

Recently, artificial intelligence and machine learning research has accelerated and new 
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applications are constantly being brought forth. This is mainly the result of their capability to 

capture complex, nonlinear and dynamic relationships in function generalization and regression 

as well as classification of data. Specifically, evolutionary algorithms, including genetic 

programming, feed forward back propagation neural networks, support vector machines, and 

deep learning algorithms are effective at recognizing subtle patterns and thus have be employed 

to characterize the complex relationships between the cloudy and cloud-free pixels in the 

historical time series over spatial and spectral domains [Jerez et al., 2010]. However, frequent 

clustered missing data such as seasonal storm clouds over multiyear time scales make the 

compilation of viable training and test data difficult. To combat this, ancillary predictor variables 

can aid in developing models to capture the complex distribution of the data. Developing these 

ancillary variables for use in change detection analyses requires that they have compatible spatial 

and temporal scales. Therefore, most conventional methods have suffered from lower learning 

capacity which has hampered their applicability and broader impacts.  

 Decision tree based methods such as Random Forests (RF) [Breiman, 2001] are 

recognized for their ability to recover missing values as well as accommodate high dimensional 

data and complex relations among variables. For example, Hapfelmeier and others  in 2014 used 

RF to improve missing value prediction. RF utilizes an efficient training algorithm that generates 

an ensemble of decision trees. Each decision tree in a RF is a set of hierarchically organized 

restrictions or conditions, that are successively applied from a root (parent) node to a leaf (or 

terminal) node to make repeated predictions of the phenomenon represented by training data 

[Breiman, 2001]. In the regression case, the final result is the mean prediction of all of the 

decision trees in the RF. This ensemble prediction tends to provide good generalization 
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performance with efficient learning speed accuracy compared to conventional neural computing 

algorithms such as back propagation, and will be used here to recover NDVI from cloud pixels 

using hydrologic predictor data derived from the time-space-spectrum continuum.  

 While each of the approaches mentioned above has unique advantages and applicability 

to the subject problem, some have already been successfully applied to NDVI time series 

preprocessing. These methods are all based on modeling complex spatial, temporal or spatio-

temporal data for recovering the value of missing pixels. However, it is still difficult to 

systematically reconstruct information under cloudy pixels at regional or larger scales with 

sufficient accuracy in warm coastal areas with frequent storms and broad cloud cover. Due to the 

stochastic nature of clouds, it is difficult to build a consistent relationship to recover the value of 

pixels beneath them. As a start, relationships in the time-space-spectrum domain exist between 

cloud and cloud-free pixels, which are useful as a historic memory of prevailing conditions. The 

addition of ancillary hydrologic data such as rainfall or water level, known to influence the 

vegetation characteristics, can enhance the predictive performance of models capable of 

synthesizing disparate data sources. The combination of time-space-spectrum memory coupled 

with additional relevant variables provides us with the tools to develop a novel approach for 

recovering Landsat NDVI values from beneath cloud cover. To summarize the work done to date 

and illustrate the novelty of the proposed method, Table 3.1 shows previous missing data 

prediction methods along with their advantages and disadvantages.  
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Table 3.1. Description of existing methods to recover missing values from geospatial 

Data type Method Advantages Disadvantages 
NDVI The Best Index Slope 

Extraction (BISE) 

[Zhu et al., 
2012][Viovy et al., 
1992] 

Effective noise 
removal 

Dependence on 
threshold value and 
predefined time 
period; resulting 
profiles insensitive 
to timing of NDVI 
change 

Fourier based fitting 
[Roerink et al., 2000] 

Retain amplitude of 
local maxima and 
minima in time 
series 

Only determines 
overall curve shape, 
rather than 
identifying 
particular cycles; 
needs to rerun over 
the entire time 
series every time 
new data are added 

Savitzy-golay (S-G) 

[Chen et al., 2004] 

Preserves shape, 
timing and 
amplitude of time 
series for a broad 
range of 
phonologies 

Running mean and 
median filters alter 
the timing of local 
maxima and 
minima, even when 
weighted. 

Asymmetric function 
fitting [Zhu et al., 
2012] 

Preserves aesthetic 
value and 
geometric accuracy 

Successive 
relaxation of 
parameters 
depending on fit 
requires trial and 
error 

Missing Data (climate 
and remote sensing) 

Nonlinear filter, ANN 
[Tu, 1996] 

Computationally 
efficient; detects 
complex nonlinear 
relationships; 
multiple training 
algorithms are 
supported 

"black box" nature; 
tendency to over fit 
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Data type Method Advantages Disadvantages 

Multi-temporal 

regression 

Efficient; 
applicable to small 
data sets 

Sensitive to 
outliers; Therefore 
it gives doubtful 
estimates for 
prediction. 

Extreme learning 
machine [Sovilj et al., 
2015] 

Less training time 
compared to BP 
and SVM/SVR; 
outperforms BP in 
many applications 

Can over fit and get 
trapped in local 
minima 

Random Forest 

No expectation of 
linear features; 
handles a wide 
range of training set 
sizes 

Tendency to over fit 
for regression using 
limited, noisy data. 

 

A careful investigation of the literature regarding the links between NDVI and other 

climatic parameters guided the selection of predictor variables. Barbosa and Lakshmi Kumar 

(2016) showed the links between NDVI and rainfall in north eastern Brazil. They explored 

vegetative drought in the region and found rainfall as the dominant causative factor to the event. 

Fu and Burgher (2015) found that the maximum temperature primarily splits NDVI values, 

followed by previous rainfall and then inter-flood dry period and resulting groundwater levels. 

Warmer months required more rain compared to cooler months to attain similar mean NDVI 

values in areas of high NDVI such as riparian zones, likely due to higher local evaporation. Inter-

flood dry periods were found to be important for maintenance of NDVI levels, especially when 

rainfall is limited. Another contributing factor in NDVI dynamics is the groundwater level. 

Shallower groundwater levels tend to enhance NDVI and thereby vegetation greenness primarily 

due to the wetter environment. Wang and other in 2001 examined spatial responses of NDVI to 
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precipitation and temperature during a 9-year period (1989-1997). Among the considered 

climatic factors, precipitation and temperature strongly influence both temporal and spatial 

patterns of NDVI. Hao et al. (2012) explored the linkage of NDVI to temperature and 

precipitation in northern china. The NDVI response for grassland and forest to three climatic 

indices (i.e., yearly precipitation and highest and lowest temperature) was analyzed showing that 

the yearly precipitation and highest temperature were correlated with NDVI.   

  

 However, powerful tools are needed here to explore these complex relationships 

accurately and efficiently. In recent years, artificial intelligence and machine learning techniques 

have been rigorously proven effective for characterizing the complex relationships in 

classification and function generalization applications. Therefore, a novel hybrid information 

recovery method, named Optical Cloud Pixel Recovery, is proposed here by reconstructing the 

value of cloudy pixels through the established multi-parameter time-space-spectrum 

relationships with cloud-free pixels. In current study, OCPR predicted NDVI using a RF model 

trained and tested using a large high resolution spatio-temporal multi-parameter (temperature, 

precipitation, water level and months) data set. Therefore, the objective of this study was to 

develop and optimize the OCPR method and assess its performance in terms of information 

recovery from cloud coverage in remotely sensed Landsat MVC images. A comparison of the 

performance of RF with the linear regression and mean only methods to predict NDVI is also 

included to justify the complexity of the RF model.   
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3.2 Methods and Material 
  
 To restate, the objective of this study is to recover NDVI values from beneath cloudy and 

faulty pixels within Landsat MVC imagery. The method is based on three assumptions: (1) 

NDVI data are a proxy for vegetation vigor, therefore a monthly NDVI time series will follow 

the annual cycle of growth and decline; (2) The “cfmask” product provided with Landsat MVC 

imagery accurately identifies clouds and cloud shadows [Zhu and Woodcock, 2012]; (3) coastal 

NDVI dynamics are related to local hydrologic variables such as rainfall, temperature, and water 

level [Simanton and Osborn, 1980; Makhuvha et al., 1997]. In line with these three assumptions, 

the OCPR method was developed. In the following sections, a brief description of the study area 

is provided, followed by the OCPR method development and assessment. Figure 3.1 presents a 

flowchart that summarizes the methodology. 
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Figure 3.1. Schematic flowchart of the proposed OCPR method  
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3.2.1 Study Area 

 The study area is comprised of a part of Landsat TM scene L4-5 TM, Path 19/Row 39, 

located in Apalachicola Bay, Florida (See Figure 3.2). Apalachicola Bay is renowned for the 

largest oyster fishery in Florida [Huang et al., 2015b]. It is a home to a rich variety of wetland 

plant, animal and microbial species. The Apalachicola lower river region as a whole is a nearly 

uninterrupted series of natural habitats including marshes, swamps, upland vegetation, and flood 

plains. Much of the basin vegetation has the appearance of a mature forest because of rapid 

regrowth. Although some municipalities (Apalachicola and Eastpoint) are situated near or within 

the riverine and tidal flood plains, they are not major urban centers. Therefore, there is very little 

industrialization in the basin. The study area includes both Gulf and Franklin counties.  Wetland 

areas, including both forested and non-forested wetlands, comprise about 42% of the study area 

excluding open water and urban areas.  The non-wetland and non-forested areas are mainly 

covered by agriculture, buildings and invasive vegetation.  
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Figure 3.2. Study Area in Apalachicola Bay, Florida. 

 

3.2.2 Optical Cloud Pixel Recovery 

The proposed method to recover cloud from optical cloud is unique and computes an 

NDVI value for cloudy or faulty pixels is computed through an empirically trained random forest 

model. The base dataset is composed of the relevant spatially distributed hydrologic time series 

data associated with the available body of Landsat MVC NDVI images. The predictor variables 

include mean monthly temperature, cumulative monthly precipitation, mean monthly water level, 

calendar month encoded as a sequential number from 1 to 12, northing and easting (coordinates). 

The objective of the method is to train and test the model using historic data and validate its 
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performance in terms of its ability to accurately recover hypothetical (i.e. synthetic) cloudy 

pixels manually inserted into the validation images.  

3.2.2.1 Random Forest 

Random Forest (RF) is a decision tree based method for classification and regression. It 

is an ensemble of multiple decision trees, or a set of hierarchically ordered conditions that each 

produce individual predictions (i.e. class or regression value) that are aggregated into a single 

prediction by majority vote (classification) or averaging (regression). The conditions are 

sequentially applied to a randomly selected subset of the data from a root (parent) node to a 

terminal (or child) node to make repeated predictions of the phenomenon represented by training 

data [Breiman, 2001]. The child nodes can be thought of, metaphorically, as the leaf of a tree. 

The trees used in developing the RF algorithm are referred to as Classification and Regression 

Trees (CART). The prediction of missing data values is generally achieved through a model 

developed by the algorithm and a set of training data. The model comprises a number of CART 

trees as set by the model developer. Training and testing (and sometimes validation) datasets are 

extracted from the total data corpus to train the model and then test (and validate) the model’s 

prediction capabilities. The predictions for a RF regression model are trained by finding the 

mean of all the predictions of each CART tree that best minimize the error function. Each 

decision tree in a RF utilizes a randomly chosen training subset and then replaced for a number 

of times equal to the number of trees in the ensemble [Breiman, 1996]. The prediction output of 

the RF is based on the average of the prediction of all the regression trees, or the classification 

receiving the highest number of “votes” from the trees. Recursive splitting and multiple 
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classifications or regressions are carried out to run the analysis of the decision trees [Rodriguez-

Galiano et al., 2014]. In other words, the RF algorithm is initiated by dividing the target variable 

or parent node into binary parts, where the child nodes are purer than the parent node. 

Throughout this procedure, the decision tree progresses through all candidate splits to determine 

the optimal split that maximizes the purity of the resulting tree. Residual sum of squares (RSS) 

shown in equation (3) is used as the splitting criteria.   

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦𝐿)2 +  ∑ (𝑦𝑖 − 𝑦𝐿)2 𝑟𝑖𝑔ℎ𝑡  𝑙𝑒𝑓𝑡       (3) 

 
where, ∑left mean y value for left node and ∑right mean y value for right node. 

 
 While classic regression trees are typically pruned (reducing the number of leaves or 

child nodes) according to a specific condition, decision trees in RF grow to maximum purity, 

constrained in most computer implementations by a maximum depth parameter. Each tree may 

share similar or different conditions as set by the model developer. Each tree sees part of the 

training data sets and captures part of the information it contains .The RF algorithm uses the Gini 

impurity index [Breiman et al., 1984] to calculate the information purity of child nodes 

compared to that of their parent node. From the parent node, the data splitting process in each 

internal node of a condition of the tree is repeated until a pre-specified stop condition is reached. 

Each of the child nodes has a simple regression model attached to it, which applies to that node 

only. 

 It has been observed in several studies that the RF algorithm offers characteristics that 

make it appealing for different areas of application. These include built-in feature selection 

capabilities, relatively high levels of accuracy in predictions, and a means for evaluating the 
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influence of each feature to the algorithm [Palmer et al., 2007]. The theoretical background of 

RF regression was discussed in detail  in [Breiman, 2001; Svetnik et al., 2004; Biau et al., 2008]. 

The essential attribute of RF is that it trains each tree individually, using a random sample of the 

data. This randomness helps to make the model more robust than a single decision tree and less 

likely to over fit to the training data. The ensemble of decision trees performs predictions of 

continuous variables by averaging the predictions of all trees. Finally a regression or 

classification is obtained either by using weighted or un-weighted majority voting mechanism. 

Random vectors are often generated in order to grow each tree in this ensemble of decision trees 

[Breiman, 2001]. A popular example of this is bootstrap aggregation, commonly referred to as 

bagging, where a random selection is made from the dataset in the training set without 

replacement [Breiman, 1996; Biau et al., 2008]. 

The RF algorithm also provides an additional level of randomness to the bagging process. 

While nodes of standard trees are split by making use of the best possible split from the full list 

of predictor variables, RF uses a randomly selected subset of these variables; this drastically 

speeds up the tree growing process. However, the procedure in a RF is such that every node 

utilizes the best possible split from the randomly selected subset of predictors at the node to 

perform the node splitting procedure. The best splitter might either be the best overall, or just a 

fairly good splitter, or may not be of any help at all. If the splitter is not very helpful, the 

outcome from the split is two nodes which are essentially the same. One of the major benefits of 

the RF algorithm is that it is very easy to implement because there are only two important control 

variables: predictor sub-setting control for splitting at the nodes and the number of trees in the 

forest. Once sufficient values for these two parameters are determined, the algorithm is not 
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particularly sensitive to them [Liaw and Wiener, 2002]. Figure 3.3 shows a synopsis of an 

ensemble with four trees. 

Critical parameters used to constrain a RF model are number of tree in a forest and 

maximum depth of the trees. Numerous opinions have been put forth for selecting the optimal 

number of the parameters. Previous researches indicated that sometimes, a larger number of trees 

in a forest only increase its computational cost without any significant gain in performance. It is 

also possible that there is a threshold beyond which there is no significant gain, unless a huge 

computational environment is available. As the number of trees grows, it does not always mean 

the performance of the forest is significantly better than previous forests (fewer trees), and 

doubling the number of trees is worthless [Oshiro et al., 2012]. 
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*** M= month; R= rainfall, MT= maximum temperature; WL= water level 

Figure 3.3. a) Typical scheme of a Random forest regression tree structure; b) Detail of 
“Tree 1” 

 

3.2.3 Application of OCPR in Apalachicola Bay  

The schematic flowchart of the OCPR is represented in Figure 3.1. Recall that the OCPR 

includes four crucial steps: 1) image and data acquisition and input (target: NDVI and predictors: 

temperature, precipitation, water level, month) preparation for RF training and testing; 2) cloud 

and faulty value detection from NDVI; 3) training and testing the model as well as determining 

optimum model parameters; and 4) validation. 
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3.2.3.1 Image and Data Acquisition and Input Preparation for Machine Learning 

3.2.3.1.1 Target Variable: NDVI 

 Surface Reflectance NDVI data were acquired between 1984 and 2014 from USGS Earth 

Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) 

archive. Since OCPR works based on the historical time series of NDVI, a sufficient body of 

data is required to characterize the relationship between NDVI and its predictor variables.    

 A threshold of 70% or less cloud cover was used for the acquisition of Landsat MVC 

imagery over the above-referenced time period, resulting in 252 usable scenes out of 384 (Figure 

3.4). Since NDVI is released as a 16 day composite, two images per month are often available. 

Considering that the month is a feature in the predictor variable vector, when two images were 

available for a given month the one with less cloud coverage was selected. Of these, 93% were 

from Landsat-5 as it was the only data source from 1984 to 1998 and continued to acquire data 

until 2013. Landsat-7 data was avoided as it was contaminated by stripes as a result of the scan 

line corrector (SLC) in the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor that failed 

permanently in 2003 [Goward et al., 2006]. The remainder of the data came from Landsat-8. 

 In performing the NDVI OCPR, data availability was considered at the pixel level, as 

per-pixel cloud cover and the swath side lap between two adjacent paths were evaluated. 

Ancillary cloud mask, cloud shadow mask, adjacent cloud mask, snow mask, and water mask 

were available from the USGS earth explorer for the study area and were used for data quality 

assessment (QA). The QA layer, namely “cfmask”, identified water, cloud, cloud shadow, and 

snow [Zhu and Woodcock, 2012] and was included in the ESPA NDVI product used in this 

study. 
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Figure 3.4. Availability and usability of 16-day composite NDVI images over the time series 
(1984-2015), the size of bubbles indicate % of available data in corresponding NDVI images 

 

After NDVI image acquisition, all the images were registered and clipped to the spatial 

extent of the project. Spatial registration, projection and resampling using WGS1984 UTM Zone 

16N was implemented to ensure that each 30 meter pixel location is consistent throughout the 

time series. These two processes (i.e., spatial registration and spatial clipping) were implemented 

using ArcGIS. NDVI was calculated as the ratio of red and NIR bands of a sensor system as 

shown in equation (4):   

𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅−𝑅
𝑁𝐼𝑅+𝑅

       (4) 

3.2.3.1.2 Predictor Variables: Rainfall, Temperature, Water Level and Month 

 The data for the predictor variables rainfall and temperature were collected for the same 

spatio-temporal domain. The PRISM Climate Group collects climate observations from a large 

number of monitoring networks and builds spatial climate datasets to analyze short and long-
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term climate patterns. Time series data for precipitation and temperature were available at a 

spatial resolution of 4 km and the temporal coverage starts from 1981 to the present. This dataset 

was available online free of charge. These data were modeled using climatologically-aided 

interpolation (CAI), which uses the long-term average patterns as first-guess of the spatial 

pattern of climatic conditions for a given month or day. CAI is robust to wide variations in 

station data density, which is necessary when modeling long time series. The data used herein 

were available based on either monthly or daily interpolation. Monthly average values were 

abstracted from daily values by averaging. These data use all station networks and data sources 

collected by the PRISM Climate group. After the precipitation and temperature data collection 

for the time domain was complete, they were registered, projected and clipped to the 

specifications of the NDVI data. Spatial resolution for each precipitation (inches) and 

temperature (Kelvin) pixel was resampled from 4 km to 30 m which did not add any new 

information but simply reallocated the information to correspond to the NDVI data. The 

processed NDVI, temperature (K) and precipitation (inches) images are shown in Figure 3.5.  

Next, water level data over the same temporal domain were collected. Water level data 

are measured by NOAA at coastal gauge stations across the U.S. (see Figure 3.6). One gauge 

station is located in the study area (8728690 Apalachicola, FL). Monthly water level data were 

collected in meters measured from mean sea level (MSL) relative to the NAVD88 orthometric 

datum. The tide gauge data were added to the predictor variable vector and used as a proxy for 

prevailing water levels. If a storm surge event were experienced, the value would be higher and 

according to our current hypothesis and previous work, would lower the NDVI of impacted 

areas, especially freshwater wetlands. 
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Figure 3.5. Sample NDVI (a), Temperature (b), and Precipitation (c) raster data  

 

 

 Figure 3.6. NOAA tide gauge station 8728690 – Apalachicola, FL (red box)  
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Table 3.2. Sample input data for training OCPR model 

NDVI Northing 
(m) 

Easting 
(m) 

Month 
Precipitation 
(mm) 

Temperature ( ̊ 
C)  

Water 
Level (m) 

0.38 720735 3307665 1 252.692 18.425 0.17 

0.46 720765 3307665 1 298.636 21.775 0.17 

0.18 720795 3307665 3 252.692 18.425 0.18 

0.23 720825 3307665 4 321.608 23.45 0.21 

0.45 720855 3307665 4 275.664 20.1 0.21 

0.13 720885 3307665 6 344.58 25.125 0.26 

0.09 720915 3307665 7 275.664 20.1 0.24 

0.45 720945 3307665 8 367.552 26.8 0.2 

0.58 720975 3307665 4 390.524 28.475 0.21 

0.43 721005 3307665 2 298.636 21.775 0.13 

0.26 721035 3307665 3 275.664 20.1 0.18 

 

3.2.3.2 Cloud and Faulty Value Detection from NDVI 

In order to ensure that the labeled data were clean for training/testing of the RF and linear 

regression, pixels were classified as cloudy or cloud-free. After this preprocessing step, 

climatologic maps were generated for each month of each year to calculate the averaged 

percentage of clouds (POCs) over the area of interest. Percentage of cloud cover was calculated 

by averaging the corresponding cloud-free pixel values in each image, pixel-by-pixel. Since the 

data were collected from different sources, each dataset had their own label for anomalous data. 

For instance, NDVI time series gives “NaN” to a void value to a pixel in the climatologic map. 
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Again, “cfmask” layers were processed to make a binary map that reclassifies all quality flag 

pixels as “0.0” and rest of the valid pixels as “1.0”. A raster multiplication was done using the 

binary reclassified time series “cfmask” and the NDVI time series. Appendix A shows an 

example of the procedure and the resultant NDVI after the raster multiplication by the binary 

“cfmask layer”. This function removes the faulty values from the NDVI time series and leaves a 

void pixel in those faulty pixels. Again, temperature and rainfall time series gives “0.0” to a void 

value to a pixel in the climatologic map. For consistency in the input and target data, “0.0” were 

given to all void pixels to all time series. POC of the climatologic map at month, j can be 

calculated as 

POCj = 100 × 𝑁𝑐𝑗
𝑁𝑗

     (5) 

 Where Nc
j is the total number of cloudy pixels and Nj is the total number of pixels (i.e., 

both cloudy and cloud-free pixels) in the climatologic map.  

3.2.3.3 Selection of Input for Training OCPR Model 

It is very important to select reliable inputs for the construction of the OCPR model. The 

final prediction performance is highly dependent on the trained model. Candidate/training pixels 

are those cloud free pixels or information from target and training dataset. Among the dataset, 

NDVI is the target dataset and temperature, rainfall, water level, month, northing, and easting are 

the predictor datasets. As shown in Figure 3.7, target pixels (i.e., cloudy pixels) are shown in red 

color in candidate image and training inputs are all corresponding pixels in all parameters except 
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the target pixel. While NDVI, temperature, rainfall, northing, and easting are pixel based 

information, month and water level had a unique data for each time period (months of each year).  

3.2.3.4 Building the Prediction Model 

The random Forest package that was used in the current study was implemented in 

Python. The scikit-learn (sklearn) [Pedregosa and Varoquaux, 2011]module was used to train 

and run the RF model and the GDAL[GDAL, n.d.] module was used to get the spatial 

information from the geo referenced raster images of all the target and predictor variables. 70% 

of the data corpus was randomly selected, without replacement, as the training data with the 

remaining 30% held out for testing. The parameters that need to be set are the number of trees (k) 

to be generated and the number of predictors randomly sampled at each split. Figure 3.3 (a) and 

Figure 3.3 (b) explained in detail about the number of trees and splitting conditions. For the 

maximum purity of the RF model, the cases of missing parameter for most of the predictor 

variables were removed. Release 0.17.of sklearn has a class “Imputer” that handles simple per-

feature missing value imputation. Arrays containing “NaN”s can be processed by the algorithm 

to have those replaced by the mean, median, mode or selected condition set by developer of the 

corresponding feature. In current study (i) a predictor variable with missing values issued as the 

pseudo-target variable and is fitted with all the other predictor variables without missing values 

and (ii) missing values in the pseudo-target variable are predicted or imputed using the RF-fit. 

After imputation of missing values in a predictor layer, RF training and prediction of the real 

target variable follow.  It was found that the RF can be generalized and implemented with much 
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faster training speed than other training algorithms by using a cloud service (Databricks) which 

is at least 50 times faster than a laptop or desktop workstation. 

3.2.3.5 Validation and Performance Metrics 

The OCPR models were evaluated against a linear regression (LR) model by comparing 

prediction accuracy. For quantitative validation of the model, hypothetical clouds were created 

where the underlying image has little to no cloud actual cover. This provides labeled data for 

validation purposes. The images containing the hypothetical clouds were deliberately excluded 

from the training / testing corpus. A performance matrix was developed for the hypothetical 

cloud pixels using RF based OCPR model and LR based model. Later, a demonstration of the 

method on images with little, moderate and heavy natural cloud cover was presented. These 

cases visually demonstrated the application potential of the new algorithm. The following 

prediction metrics were also used in the hypothetical cloud validation in order to compare the 

original data to model predictions. 

3.2.3.5.1 Root-mean-square error (RMSE) 

The root-mean-square error is defined as follows: 

𝑅𝑀𝑆𝐸 =  �1
𝑚
∑ �𝑇 �  (𝑆𝑡, 𝑡𝑡) − 𝑇 (𝑆𝑡, 𝑡𝑡)�

2𝑚
𝑖=1        (6) 

where 𝑇 �  (𝑆𝑡, 𝑡𝑡) − 𝑇 (𝑆𝑡, 𝑡𝑡) represents the difference between the predicted and observed NDVI 

at space–time points (𝑆𝑡, 𝑡𝑡) and m is the length of the time series of observations for each 

location.  
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3.2.3.5.2 Correlation coefficient (COR) 

 Perhaps the simplest overall measure of performance, the correlation coefficient is 

defined as: 

Coefficient of determination = 𝐶𝑜𝑣 � 𝑇�  ( 𝑆𝑖,𝑡𝑖),𝑇 ( 𝑆𝑖,𝑡𝑖)�
𝑆𝚥�𝑆𝑗

     (7) 

Where Sj and ST indicate the standard deviations of predicted and observed NDVI values, 

respectively. The correlation coefficient measures the linear association between prediction and 

observation. However, it only performs well when data are normally distributed and it is 

sensitive to large values and outliers. 

3.3  Results 
 

3.3.1 Suitability and sensitivity analysis of RF Model  

The best and most stable result was found using six hydrological predictors in the RF 

model. Table 3.3 shows that success-rate of RF model according to number of trees and 

maximum depth of trees. Twelve trees with a maximum depth of 30 was the optimum 

combination in this case as shown by the minimum RMSE and coefficient of determination (R2) 

has been found highest. If we increased the number of trees and maximum depth beyond those 

values, we did not gain much improvement and the computation time significantly increased. 

Therefore, all the hydrologic predictor variables were kept in the RF based OCPR model with the 

selected number and maximum depth of trees.  
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Table 3.3. Sensitivity analysis of RF model using tree number and depth of tree in forest 

Tree number Tree depth RMSE R2 
10 12 0.0802 0.6987 
12 12 0.0802 0.6989 
22 12 0.0802 0.6985 
35 12 0.0800 0.7001 
60 12 0.0798 0.7023 
120 12 0.0798 0.7017 
10 30 0.0461 0.8949 
12 30 0.0475 0.8944 
22 30 0.0468 0.7017 
35 30 0.0470 0.8951 
60 30 0.0473 0.8946 
120 30 0.0473 0.7018 
10 60 0.0473 0.8949 
12 60 0.0472 0.8955 
22 60 0.0473 0.7025 
35 60 0.0474 0.8967 
60 60 0.0474 0.8973 
120 60 0.0474 0.7040 

 

3.3.2 Prediction of Missing Value Using RF/LR based OCPR Model  

Results suggested that the RF based OCPR model using hydrologic parameters 

outperforms the traditional LR based OCPR model especially in terms of prediction accuracy. 

30% of the total data corpus was selected, without replacement, for testing the models.  Figure 

3.9 shows scatter plots of the predicted versus true NDVI for the pixels in testing dataset.  Figure 

3.9 (a) shows the scatter plot of the RF-based OCPR model; Figure 3.9 (b) shows scatter plots of 

the LR model. The RF based model has an R2 value of 0.8944 and an positively sloped linear 

trend while the LR model has a significantly weaker R2 value  of 0.2594 and a much flatter linear 

trend.  The RMSE values shown in Table 3.4 also suggest that the RF based OCPR was able to 
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reconstruct the cloudy pixels quite closely.  Based on this evidence, the RF OCPR outperforms 

LR in terms of prediction accuracy. 

 

 

 Figure 3.7. Scatter plots between the observed and reconstructed pixel values using 
a testing dataset with (a) RF-based OCPR; (b) LR based OCPR 

 

Table 3.4. Comparison among different algorithms  

Method RMSE R2 

RF 0.0475 0.8944 

LR 0.1257 0.2594 
 

The performance of OCPR was also validated by comparing the predicted and observed 

NDVI reflectance data for synthetic or hypothetical clouds manually applied to selected images 

that were held out of the training / test data corpus. An area of naturally cloud-free pixels with 

heterogeneous nature was selected for demonstration as shown in the red solid color of 

highlighted area in Figure 3.10. These pixels were manually labeled as cloudy pixels (i.e., given 

a value of “NaN”). Then, the OCPR method was utilized to reconstruct the values of these 

pixels. 
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Image dates were selected so that the first date was before the study time period, the 

second date was near the middle and the final date was after. The three months were selected in 

three different times of year to capture seasonal variations. The first scenario shown in Figure 

3.10 (a) was conducted for the images collected in April, 1984, the second scenario shown in 

Figure 3.10 (b) was conducted for the image collected in August, 2002 and the third scenario 

shown in Figure 3.10 (c) was conducted for the image collected in February, 2015. All the 

figures showed that the OCPR model is capable of reconstructing missing NDVI values caused 

by cloud contamination with visually plausible results. The predictions did not produce any 

extremely low or high values in the hypothetically clouded pixels.  

 These results suggest that RF has many advantages in fast and accurate learning 

capability when characterizing complex time-space-spectrum relationships in real world studies. 

The proposed RF based OCPR method is capable of recovering missing information with high 

efficacy for operational use. Possible improvements of the prediction accuracy for those extreme 

conditions (i.e., peak and valley) could be made by adding more high resolution dynamic input 

parameters in the model training process that can capture changes at the pixel scale.  

In terms of model training time, LR is significantly faster than RF. Overall, RF shows 

much better prediction accuracy than LR in this real world application based on the patches or 

spatial patterns of NDVI reflectance values. Figure 3.11 further demonstrated the application of 

the RF based OCPR on three selected dates that had little, moderate and heavy cloud cover. The 

demonstration also further showed that the OCPR model is capable of reconstructing all missing 

values caused by cloud contamination with visually plausible results.  
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 Figure 3.8. Application of OCPR model to reconstruct NDVI over hypothetical 
clouds on selected dates (a) April, 1984 (b) August, 2002; (c) February, 2015.  
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 Figure 3.9. Comparisons of NDVI reflectance images under severe cloud cover 
before and after cloud removal with different training algorithms utilized by OCPR. (a) 

Cloudy images on February, 2010. (b) Reconstructed image from RF-based OCPR.  
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3.4 Discussion and Conclusion  
 

 OCPR via machine intelligence through RF is proposed in this paper to address the very 

important cloud repair issue in visible and infrared remote sensing images. This novel method 

takes advantage of the RF machine algorithm to characterize the complicated relationships 

among the NDVI, hydrologic parameters and spatial locations over the time-space spectrum. 

Inclusion of location (encoded as the northing and easting coordinates of the pixels) into the 

feature vector restricts model to reconstruct a value close to that of the neighboring pixels as well 

as a plausible value for that pixel in historical terms . The main limitations of this research 

involve the availability of high resolution feature data. The predictor variables found in the 

feature vector included temperature, precipitation and water level. These variables are currently 

not available with as high resolution as NDVI. This is especially true of water level data 

recorded in very limited locations such as National Oceanic and Atmospheric Administration 

(NOAA) tide gages. However, despite these limitations, the OCPR model works well and should 

enhance future analyses.  The method was quite feasible to perform well even in very 

heterogeneous landscape where other approaches might fail. The experimental results suggest 

that OCPR is capable of reconstructing all missing information over the cloud-contaminated 

region with not only visually plausible but quantitative promising results, even under severe 

cloud cover situations. The basic RF is employed as a machine-learning tool in the OCPR 

method currently, and the final performance of the algorithm, to some extent, is still dependent 

on its training accuracy. Therefore, improvements can be achieved by further optimizing the 

training algorithms and architectures of RF with the newer ideas of treating missing values in 

predictor variables. Focusing on screening and selecting suitable inputs for the OCPR models is 
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critical to the prediction accuracy. It should be noted that the OCPR method is limited by the 

availability of the historical time series to characterize the complex time–spatial–spectral 

relationships between the cloudy and cloud-free pixels over the multiple parameters in a specific 

regoin. Therefore, the final prediction accuracy might be constrained by having fewer inputs for 

building the prediction model at some pixel locations. The idea of spatial information recovery 

via machine learning provides a promising and efficient approach to mitigate and eliminate cloud 

contaminations from the remote sensing images, which face highly heterogeneous land surfaces 

over which traditional methods have not worked well.  

  

3.5 References 
 

Barbosa, H. A., and T. V. Lakshmi Kumar (2016), Influence of rainfall variability on the 

vegetation dynamics over Northeastern Brazil, J. Arid Environ., 124, 377–387. 

Beven, J. (2005), Tropical Cyclone Report Hurricane Dennis 4-13 July 2005, Natl. Weather 

Serv. Natl. Hurric. Center. Trop. Predict. Cent. 

Biau, G., L. Devroye, and G. Lugosi (2008), Consistency of random forests and other averaging 

classifiers, J. Mach. Learn. Res., 9(2008), 2015–2033. 

Breiman, L. (1996), Bagging Predictors, Mach. Learn., 24, 123–140. 

Breiman, L. (2001), Random forests, Mach. Learn., 45(1), 5–32. 

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984), Classification and Regression 

Trees. 

Chabreck, R., and A. Palmisano (1973), The effects of Hurricane Camille on the marshes of the 

59 
 



Mississippi River delta, Ecology, 54(5), 1118–1123, doi:10.2307/1935578. 

Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh (2004), A simple method 

for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay 

filter, Remote Sens. Environ., 91(3-4), 332–344, doi:10.1016/j.rse.2004.03.014. 

Chidumayo, E. N. (2001), Climate and phenology of savanna vegetation in southern Africa, J. 

Veg. Sci., 12(3), 347–354, doi:10.2307/3236848. 

Cihlar, J. (1996), Identification of contaminated pixels in AVHRR composite images for studies 

of land biosphere, Remote Sens. Environ., 56(3), 149–163. 

Cihlar, J., H. Ly, Z. Li, J. Chen, H. Pokrant, and F. Huang (1997), Multitemporal, multichannel 

AVHRR data sets for land biosphere studies - Artifacts and corrections, Remote Sens. 

Environ., 60(1), 35–57. 

Conner, W. H., and M. Ozalpl (2002), Baldcypress Restoration in a Saltwater Damaged Area of 

South Carolina, Ecology, 365–369. 

DeFries, R., M. Hansen, and J. Townshend (1995), Global discrimination of land cover types 

from metrics derived from AVHRR Pathfinder data, Remote Sens. Environ., 54(3), 209–

222. 

Eckardt, R., C. Berger, C. Thiel, and C. Schmullius (2013), Removal of optically thick clouds 

from multi-spectral satellite images using multi-frequency SAR data, Remote Sens., 5, 

2973–3006, doi:10.3390/rs5062973. 

Edmiston, H. L., S. a. Fahrny, M. S. Lamb, L. K. Levi, J. M. Wanat, J. S. Avant, K. Wren, and 

N. C. Selly (2008), Tropical Storm and Hurricane Impacts on a Gulf Coast Estuary: 

Apalachicola Bay, Florida, J. Coast. Res., 10055(10055), 38–49, doi:10.2112/SI55-

60 
 



009.1.are. 

Evans, J. P., and R. Geerken (2006), Classifying rangeland vegetation type and coverage using a 

Fourier component based similarity measure, Remote Sens. Environ., 105(1), 1–8, 

doi:10.1016/j.rse.2006.05.017. 

Florida Climate Center, F. S. U. (2014), Drought, Florida state Univ.  Available from: 

http://climatecenter.fsu.edu/topics/drought (Accessed 7 February 2014) 

Fu, B., and I. Burgher (2015), Riparian vegetation NDVI dynamics and its relationship with 

climate, surface water and groundwater, J. Arid Environ., 113, 59–68. 

GDAL, 201x. (n.d.), GDAL - Geospatial Data Abstraction Library: Version x.x.x, Open Source 

Geospatial Found. 

Goward, S., T. Arvldson, D. Williams, J. Faundeen, J. Irons, and S. Franks (2006), Historical 

record of landsat global coverage : Mission operations, NSLRSDA, and international 

cooperator stations, Photogramm. Eng. Remote Sensing, 72(10), 1155–1169. 

Gutman, G., A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, 

B. L. Turner II, and M. a Cochrane (2004), Land Change Science: Observing, Monitoring, 

and Understanding Trajectories of Change on the Earth’s Surface, Remote Sens. Digit. 

Image Process., 6, 482. 

Gutman, G. G. (1991), Vegetation indices from AVHRR: An update and future prospects, 

Remote Sens. Environ., 35(2-3), 121–136. 

Han, X., X. Chen, and L. Feng (2015), Four decades of winter wetland changes in Poyang Lake 

based on Landsat observations between 1973 and 2013, Remote Sens. Environ., 156, 426–

437, doi:10.1016/j.rse.2014.10.003. 

61 
 



Hao, F., X. Zhang, W. Ouyang, A. K. Skidmore, and A. G. Toxopeus (2012), Vegetation NDVI 

linked to temperature and precipitation in the upper catchments of Yellow River, Environ. 

Model. Assess., 17(4), 389–398, doi:10.1007/s10666-011-9297-8. 

Hapfelmeier, A., T. Hothorn, C. Riediger, and K. Ulm (2014), Estimation of a Predictor’s 

Importance by Random Forests When There Is Missing Data: RISK Prediction in Liver 

Surgery using Laboratory Data, Int. J. Biostat., 10(2), 165–183, doi:10.1515/ijb-2013-0038. 

Hatter, L. (2015), Apalachicola Bay Part 2: Climate Change And Collapse, WFSU.  Available 

from: http://news.wfsu.org/post/apalachicola-bay-part-2-climate-change-and-collapse 

(Accessed 23 December 2015) 

Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal 

AVHRR data, Int. J. Remote Sens., 7(11), 1417–1434. 

Huang, W., and W. K. Jones (2001), Characteristics of long-term freshwater transport in 

Apalachicola Bay, J. Am. Water Resour. Assoc. , 37(3), 605–616. 

Huang, W., S. Hagen, P. Bacopoulos, and D. Wang (2015a), Hydrodynamic modeling and 

analysis of sea-level rise impacts on salinity for oyster growth in Apalachicola Bay, Florida, 

Estuar. Coast. Shelf Sci., 156, 7–18. 

Huang, W., S. Hagen, P. Bacopoulos, and D. Wang (2015b), Hydrodynamic modeling and 

analysis of sea-level rise impacts on salinity for oyster growth in Apalachicola Bay, Florida, 

Estuar. Coast. Shelf Sci., 156, 7–18, doi:10.1016/j.ecss.2014.11.008. 

Ilunga, M., and D. Stephenson (2005), Infilling streamflow data using feed-forward back-

propagation (BP) artificial neural networks: Application of standard BP and pseudo Mac 

Laurin power series BP techniques, Water SA, 31(2), 171–176. 

62 
 



Jerez, J. M., I. Molina, P. J. Garc??a-Laencina, E. Alba, N. Ribelles, M. Mart??n, and L. Franco 

(2010), Missing data imputation using statistical and machine learning methods in a real 

breast cancer problem, Artif. Intell. Med., 50(2), 105–115. 

Ji, L., and A. J. Peters (2003), Assessing vegetation response to drought in the northern Great 

Plains using vegetation and drought indices, Remote Sens. Environ., 87(1), 85–98, 

doi:10.1016/S0034-4257(03)00174-3. 

Jonsson  Lars Eklundh, P. (2002), Seasonality extraction by function-fitting to time-series of 

satellite sensor data, IEEE Trans. Geosci. Remote Sens., 40, 1824–1832, 

doi:10.1109/TGRS.2002.802519. 

Jovanović, M. M., and M. M. Milanović (2015), Normalized Difference Vegetation Index 

(NDVI  as the basis for local forest management. Example of the municipality of Topola, 

Serbia, Polish J. Environ. Stud., 24(2), 529–535. 

Justice, C. O., J. R. G. Townshend, B. N. Holben, and C. J. Tucker (1985), Analysis of the 

phenology of global vegetation using meteorological satellite data, Int. J. Remote Sens., 

6(8), 1271–1318. 

Klemas, V. V, J. E. Dobson, R. L. Ferguson, and K. D. Haddad (1993), A coastal land cover 

classification system for the NOAA Coastwatch Change Analysis Project, J. Coast. Res., 

9(3), 862–872. 

Landmann, T., M. Schramm, C. Huettich, and S. Dech (2013), MODIS-based change vector 

analysis for assessing wetland dynamics in Southern Africa, Remote Sens. Lett., 4(2), 104–

113, doi:10.1080/2150704X.2012.699201. 

Lane, C., H. Liu, B. Autrey, O. Anenkhonov, V. Chepinoga, and Q. Wu (2014), Improved 

63 
 



Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid 

Approach, Remote Sens., 6(12), 12187–12216, doi:10.3390/rs61212187. 

Liaw,  a, and M. Wiener (2002), Classification and Regression by randomForest, R news, 

2(December), 18–22. 

Lim, C., and M. Kafatos (2002), Frequency analysis of natural vegetation distribution using 

NDVI/AVHRR data from 1981 to 2000 for North America: Correlations with SOI, Int. J. 

Remote Sens., 23(17), 3347–3383, doi:10.1080/01431160110110956. 

Lin, C. H., K. H. Lai, Z. Bin Chen, and J. Y. Chen (2014), Patch-based information 

reconstruction of cloud-contaminated multitemporal images, IEEE Trans. Geosci. Remote 

Sens., 52(1), 163–174. 

Lloret, F.,  a. Lobo, H. Estevan, P. Maisongrande, J. Vayreda, and J. Terradas (2007), Woody 

plant richness and NDVI response to drought events in Catalonian (northeastern Spain) 

forests, Ecology, 88(9), 2270–2279, doi:10.1890/06-1195.1. 

Long, D. G., Q. P. Remund, and D. L. Daum (1999), A cloud-removal algorithm for SSM/I data, 

IEEE Trans. Geosci. Remote Sens., 37(1), 54–62. 

Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant 

(2000), Development of a global land cover characteristics database and IGBP DISCover 

from 1 km AVHRR data, Int. J. Remote Sens., 21(6-7), 1303–1330, 

doi:10.1080/014311600210191. 

Luo, J., K. Ying, and J. Bai (2005), Savitzky-Golay smoothing and differentiation filter for even 

number data, Signal Processing, 85(7), 1429–1434, doi:10.1016/j.sigpro.2005.02.002. 

Lynch, S. D. (2003), Development of a RASTER Database of Annual, Monthly and Daily 

64 
 



Rainfall for Southern Africa. 

Makhuvha, T., G. Pegram, R. Sparks, and W. Zucchini (1997), Patching rainfall data using 

regression methods. 1 Best subset selection, EM and pseudo-EM methods: Theory, J. 

Hydrol., 198(1-4), 289–307. 

Marchetti, Z. Y., P. G. Minotti, C. G. Ramonell, F. Schivo, and P. Kandus (2016), NDVI patterns 

as indicator of morphodynamic activity in the middle Paran?? River floodplain, 

Geomorphology, 253, 146–158. 

Matlock, M. (2009), Apalachicola National Estuarine Research Reserve, Florida, Encycl. Earth. 

Melgani, F. (2006), Contextual reconstruction of cloud-contaminated multitemporal 

multispectral images, IEEE Trans. Geosci. Remote Sens., 44, 442–455, 

doi:10.1109/TGRS.2005.861929. 

Middleton, B. A. (2009), Effects of Hurricane Katrina on the forest structure of baldcypress 

swamps of the Gulf Coast, Wetlands, 29(1), 80–87. 

Middleton, B. A. (2016), Differences in impacts of Hurricane Sandy on freshwater swamps on 

the Delmarva Peninsula, Mid-Atlantic Coast, USA, Ecol. Eng., 87, 62–70, 

doi:10.1016/j.ecoleng.2015.11.035. 

Mo, Y., B. Momen, and M. S. Kearney (2015), Quantifying moderate resolution remote sensing 

phenology of Louisiana coastal marshes, Ecol. Modell., 312, 191–199, 

doi:10.1016/j.ecolmodel.2015.05.022. 

Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997), Increased plant 

growth in the northern high latitudes from 1981 to 1991, Nature, 386(6626), 698–702, 

doi:10.1038/386698a0. 

65 
 



Myneni, R. B., C. J. Tucker, G. Asrar, and C. D. Keeling (1998), Interannual variations in 

satellite-sensed vegetation index data from 1981 to 1991, J. Geophys. Res. Atmos., 103(D6), 

6145–6160, doi:10.1029/97JD03603. 

National hurricane center (NHC) (2004), Hurricane Frances Advisory Archive, Natl. Hurric. 

Cent.  Available from: http://www.nhc.noaa.gov/archive/2004/FRANCES.shtml 

Ormsby, J. P., B. J. Choudhury, and M. Owe (1987), Vegetation spatial variability and its effect 

on vegetation indices, Int. J. Remote Sens., 8(9), 1301–1306, 

doi:10.1080/01431168708954775. 

Oshiro, T. M., P. S. Perez, and J. A. Baranauskas (2012), How many trees in a random forest?, in 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), vol. 7376 LNAI, pp. 154–168. 

Palmer, D. S., N. M. O’Boyle, R. C. Glen, and J. B. O. Mitchell (2007), Random forest models 

to predict aqueous solubility., J. Chem. Inf. Model., 47(1), 150–8, doi:10.1021/ci060164k. 

Passeri, D. L., S. C. Hagen, S. C. Medeiros, M. V Bilskie, K. Alizad, and D. Wang (2015), The 

dynamic effects of sea level rise on low-gradient coastal landscapes : A review, Earth’s 

Futur., 3, 1–23. 

Pedregosa, F., and G. Varoquaux (2011), Scikit-learn: Machine learning in Python, … Mach. 

Learn. …, 12, 2825–2830. 

Pettorelli, N., S. Ryan, T. Mueller, N. Bunnefeld, B. Jedrzejewska, M. Lima, and K. Kausrud 

(2011), The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in 

animal ecology, Clim. Res., 46(1), 15–27, doi:10.3354/cr00936. 

Pirotti, F., M. A. Parraga, E. Stuaro, M. Dubbini, A. Masiero, and M. Ramanzin (2014), NDVI 

66 
 



from Landsat 8 Vegetation indices to study movement dynamics of Capra Ibex in mountain 

areas , Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XL(7), 147–153, 

doi:10.5194/isprsarchives-XL-7-147-2014. 

Potter, C., P.-N. Tan, M. Steinbach, S. Klooster, V. Kumar, R. Myneni, and V. Genovese (2003), 

Major disturbance events in terrestrial ecosystems detected using global satellite data sets, 

Glob. Chang. Biol., 9(7), 1005–1021, doi:10.1046/j.1365-2486.2003.00648.x. 

Ramsey III, E. W., D. K. Chappell, and D. G. Baldwin (1997), AVHRR lmagery Used to 

Identify Hurricane Damage in a Forested Wetland of Louisiana, Photogramm. Eng. Remote 

Sens., 63(3), 293–297. 

Rodriguez-Galiano, V. F., M. Chica-Olmo, and M. Chica-Rivas (2014), Predictive modelling of 

gold potential with the integration of multisource information based on random forest: a 

case study on the Rodalquilar area, Southern Spain, Int. J. Geogr. Inf. Sci., 28(7), 1336–

1354, doi:10.1080/13658816.2014.885527. 

Roerink, G. J., M. Menenti, and W. Verhoef (2000), Reconstructing cloudfree NDVI composites 

using Fourier analysis of time series, Int. J. Remote Sens., 21(9), 1911–1917. 

Savitzky, A., and M. J. E. Golay (1964), Smoothing and Differentiation of Data by Simplified 

Least Squares Procedures, Anal. Chem., 36(8), 1627–1639, doi:10.1021/ac60214a047. 

Schwartz, M. D. (1999), Advancing to full bloom: planning phenological research for the 21st 

century, Int. J. Biometeorol., 42, 113–118, doi:10.1007/s004840050093. 

Sellers, P. J. (1985), Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 

6(8), 1335–1372. 

She, X., L. Zhang, Y. Cen, T. Wu, C. Huang, and M. H. Al Baig (2015), Comparison of the 

67 
 



Continuity of Vegetation Indices Derived from Landsat 8 OLI and Landsat 7 ETM+ Data 

among Different Vegetation Types, Remote Sens., 7(10), 13485–13506, 

doi:10.3390/rs71013485. 

Simanton, J. R., and H. B. Osborn (1980), Reciprocal-Distance Estimate of Point Rainfall, J. 

Hydraul. Div., 106(7), 1242–1246. 

Sovilj, D., E. Eirola, Y. Miche, K.-M. Björk, R. Nian, A. Akusok, and A. Lendasse (2015), 

Extreme learning machine for missing data using multiple imputations, Neurocomputing, 

174, 220–231, doi:10.1016/j.neucom.2015.03.108. 

Stanturf, J. a., S. L. Goodrick, and K. W. Outcalt (2007), Disturbance and coastal forests: A 

strategic approach to forest management in hurricane impact zones, For. Ecol. Manage., 

250(1-2), 119–135, doi:10.1016/j.foreco.2007.03.015. 

Steyer, G. D., B. C. Perez, S. Piazza, and G. Suir (2007), Potential Consequences of Saltwater 

Intrusion Associated with Hurricanes Katrina and Rita, Sci. Storms-the USGS response to 

hurricanes 2005 US Geol. Surv. Circ. 1306, 137–146. 

Svetnik, V., A. Liaw, C. Tong, and T. Wang (2004), Application of Breiman’s random forest to 

modeling structure-activity relationships of pharmaceutical molecules, Mult. Classif. Syst., 

334–343. 

Swets, D. L., B. C. Reed, J. D. Rowland, and S. E. Marko (1999), A weighted least-squares 

approach to temporal smoothing of NDVI, in ASPRS Annual Conference, From Image to 

Information, edited by American Society for Photogrammetry and Remote and Sensing., 

Portland, Oregon. 

Switzer, T. S., B. L. Winner, N. M. Dunham, J. a Whittington, and M. Thomas (2006), Influence 

68 
 



of sequential hurricanes on nekton communities in a southeast Florida estuary: short-term 

effects in the context of historical variations in freshwater inflow, Estuaries and coasts, 

29(6A), 1011–1018. 

The Florida State Emergency Response Team (2003), Spring Floods of 2003. 

Tian, B., Y.-X. Zhou, R. M. Thom, H. L. Diefenderfer, and Q. Yuan (2015), Detecting wetland 

changes in Shanghai, China using FORMOSAT and Landsat TM imagery, J. Hydrol., 

529(1), 1–10, doi:10.1016/j.jhydrol.2015.07.007. 

Tu, J. V. (1996), Advantages and disadvantages of using artificial neural networks versus logistic 

regression for predicting medical outcomes, J. Clin. Epidemiol., 49(11), 1225–1231. 

Viovy, N., O. Arino, and  a. S. Belward (1992), The Best Index Slope Extraction ( BISE): A 

method for reducing noise in NDVI time-series, Int. J. Remote Sens., 13(8), 1585–1590. 

Wang, J., K. P. Price, and P. M. Rich (2001), Spatial patterns of NDVI in response to 

precipitation and temperature in the central Great Plains, Int. J. Remote Sens., 22(18), 3827–

3844, doi:10.1080/01431160010007033. 

Wang, Q., and J. D. Tenhunen (2004), Vegetation mapping with multitemporal NDVI in North 

Eastern China Transect (NECT), Int. J. Appl. Earth Obs. Geoinf., 6(1), 17–31, 

doi:10.1016/j.jag.2004.07.002. 

Wang, W., J. J. Qu, X. Hao, Y. Liu, and J. a. Stanturf (2010), Post-hurricane forest damage 

assessment using satellite remote sensing, Agric. For. Meteorol., 150, 122–132, 

doi:10.1016/j.agrformet.2009.09.009. 

Wang, Y. (2012), Detecting Vegetation Recovery Patterns After Hurricanes in South Florida 

Using NDVI Time Series, University of Miami. 

69 
 



Wellens, J. (1997), Rangeland vegetation dynamics and moisture availability in Tunisia: an 

investigation using satellite and meteorological data, J. Biogeogr., 24(6), 845–855, 

doi:10.1046/j.1365-2699.1997.00159.x. 

White, M. a., P. E. Thornton, and S. W. Running (1997), A continental phenology model for 

monitoring vegetation responses to interannual climatic variability, Global Biogeochem. 

Cycles, 11(2), 217, doi:10.1029/97GB00330. 

Wiegand, C. L., H. W. Gausman, J. A. Cueller, A. H. Gerbermann, and A. J. Richardson (1974), 

Vegetation density as deduced from ERTS-1 MSS response. 

Yang, L. H., J. L. Bastow, K. O. Spence, and A. N. Wright (2008), What can we learn from 

resource pulses, Ecology, 89(3), 621–634, doi:10.1890/07-0175.1. 

Zeng, C., H. Shen, and L. Zhang (2013), Recovering missing pixels for Landsat ETM+ SLC-off 

imagery using multi-temporal regression analysis and a regularization method, Remote 

Sens. Environ., 131, 182–194. 

Zhang, X., M. a. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, B. C. Reed, and A. 

Huete (2003), Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 

84(3), 471–475, doi:10.1016/S0034-4257(02)00135-9. 

Zhu, W., Y. Pan, H. He, L. Wang, M. Mou, and J. Liu (2012), A changing-weight filter method 

for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation 

phenology, IEEE Trans. Geosci. Remote Sens., 50(4), 1085–1094. 

Zhu, Z., and C. E. Woodcock (2012), Object-based cloud and cloud shadow detection in Landsat 

imagery, Remote Sens. Environ., 118, 83–94, doi:10.1016/j.rse.2011.10.028. 

 

70 
 



CHAPTER 4: DISCUSSION AND CONCLUSION 

4.1 Introduction 
 
 A long time series NDVI was analyzed to specify the impact of hydrologic event on 

wetland stresses. Such a long term analysis is much credible comparing to single event based 

before-after analysis that bring potential doubt about non-uniformity for all similar events. NDVI 

is highly responsive towards chlorophyll and measure the greenness of plants. The NDVI can 

identify flood stresses in plants since flood stressed plants reflect more blue and less infrared 

radiation. Landsat derived NDVI (30 m spatial resolution) which is a composite of 16 day data. 

An empirical data smoothing and prediction filter was applied over the time series to predict the 

missing monthly mean NDVI reflectance data. Thus an uninterrupted time series NDVI was 

obtained. NDVI is a widely used index to measure density of live green vegetation at global and 

regional scale. Usually the impact of hurricane on ecosystem can range from very massive to 

small. It depends on the hurricane trajectory or the nature of the forest. To deeply understand the 

stresses of different species of wetland, the study area was further classified in fresh and salt 

water wetlands. During 2004 and 2005, two hurricanes hit Apalachicola Bay, hurricane Dennis 

on 2004 and hurricane Katrina on 2005. Salt water wetlands showed less dynamic behavior 

before and after extreme events over the time series than freshwater wetlands. The evidence 

suggested that salt water wetland has high resiliency to natural hazard than freshwater wetlands. 

This research also showed that it took a year for wetlands to recover after a hurricane event, 

while it took very quick, a month to recover after a drought event for all wetland types. Though 

empirical S-G filter was used for prediction of mean NDVI, it takes into account only temporal 

observations within a selected window to predict the missing values. It is to be noted that we 
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used the filter for predict mean NDVI instead of pixel by pixel NDVI prediction. A much un-

investigated and under applied method to predict missing data was incorporation of big and multi 

variable data and use of machine learning technique. Against this backdrop, the current research 

went ahead to fill the research gap.  

 Missing data due to cloud contamination is a big hindrance in earth system analysis when 

processing remote sensing images retrieved from visible or infrared spectral ranges. Numerous 

computational methods for interpolation have been implemented to repair missing data caused by 

cloud and other reasons. All these algorithms are subject to many shortcomings. In order to 

provide reliable estimates for the missing value approximation, a novel and unique Optical Cloud 

Pixel Recovery (OCPR) method was proposed and applied in Apalachicola Bay. Multi parameter 

30 year time series data were utilized to repair missing data in NDVI reflectance in Landsat data 

based on machine learning approach, random forest (RF). The study area is a coastal area and 

similar to other coastal areas, covered by heavy cloud most of the year especially wet seasons.  

OCPR enables to devise the cloud repair in a step by step strategy towards final estimation. The 

proposed methodology has longer running times compared to simple methods, but the overall 

increase in accuracy justifies this trade-off. For the purpose of demonstration, the performance of 

OCPR is evaluated by reconstructing the missing NDVI reflectance of Landsat over the study 

area for two specific dates. For comparison, the traditional artificial neural network (ANN) and 

linear regression (LR) were also implemented to reconstruct the same missing values. 

Experimental results show that the RF outperforms the ANN and LR algorithms by an enhanced 

machine learning capacity with simulated memory effect embedded in Landsat due to linking the 

complex time-space-spectrum continuum between cloud-free and cloudy pixels over a good 
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number of predictor variables. Temperature, precipitation, water level, month, spatial locations 

were selected as predictor variable to define the NDVI. The RF-based OCPR practice presents a 

correlation coefficient of 0.88 with root mean squared error of 0.09 between predicted and 

observed reflectance values. These findings suggest that the OCPR method is effective at 

recovering missing NDVI information and providing visually logical and quantitatively assured 

images for further scientific research about earth surface and landscape changes. 

 Machine learning methods, which have been used in predictive modeling of missing 

NDVI, such as RF, usually require a large training dataset and are debatable for data with 

missing values. However, as shown in this study, the RF algorithm, which is also a machine 

learning method, can be used in data-driven predictive modeling while large dataset is available. 

Nevertheless, this proposition may gain much popularity by further verification by testing RF 

modeling in other areas of homogeneous or more heterogeneous landscape. An advantage of RF 

over artificial neural networks and support vector machines is the linked imputation technique 

for representation of missing values in evidential data. This is an important advantage because 

evidential data with missing values is a common feature of areas with few available dataset. 
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An example of Landsat NDVI de-stripping (a) stripped Landsat NDVI reflectance data; (b) 
De-stripped Landsat NDVI reflectance data using “cfmask” layer provided by 

 

Landsat NDVI Cloud masking (a) raw NDVI reflectance data (b) binary cloud mask layer 
(c) final NDVI reflectance after adjusting cloudy and noisy data using “cfmask” 
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Study area wetland classification 
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Comparison of filtered data using S-G filters using different degree and window size. a) 
Observed NDVI from time series (2000-2015); b) Filtered NDVI with Degree 3, moving 
window size 5; c) Filtered NDVI with Degree 2, moving window size 3; c) Filtered NDVI 

with Degree 5, moving window size 7; d) Filtered NDVI with Degree 3, moving window size 
9. 
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Water level and precipitation data 

Year and Month Water Level (m) Precipitation (inches) 
19831 0.015 4.300 
19841 -0.039 4.730 
19842 -0.030 3.930 
19843 0.028 6.080 
19844 0.067 9.180 
19845 0.058 0.320 
19846 0.073 3.370 
19847 0.131 18.070 
19848 0.104 4.720 
19849 0.122 1.250 
198410 0.147 1.780 
198411 0.037 2.160 
198412 0.015 0.910 
19851 -0.085 5.580 
19852 -0.070 1.780 
19853 -0.049 2.550 
19854 -0.064 0.860 
19855 -0.003 2.720 
19856 -0.006 3.910 
19857 0.037 7.660 
19858 0.177 16.180 
19859 0.147 5.380 
198510 0.226 11.230 
198511 0.134 6.480 
198512 -0.036 4.240 
19861 -0.106 3.820 
19862 -0.009 5.410 
19863 -0.085 2.230 
19864 -0.006 0.260 
19865 0.104 4.360 
19866 0.079 2.010 
19867 0.019 3.340 
19868 0.055 12.040 
19869 0.174 9.290 
198610 0.150 9.190 
198611 0.113 5.180 
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Year and Month Water Level (m) Precipitation (inches) 
198612 0.031 9.680 
19871 -0.024 6.010 
19872 0.009 4.180 
19873 0.150 10.530 
19874 -0.064 0.130 
19875 0.028 1.960 
19876 0.092 4.420 
19877 0.113 3.090 
19878 0.046 5.790 
19879 0.095 5.220 
198710 -0.067 0.150 
198711 0.015 5.590 
198712 -0.021 0.900 
19881 -0.113 2.940 
19882 -0.134 8.450 
19883 -0.085 5.130 
19884 -0.033 3.760 
19885 -0.033 0.890 
19886 0.022 3.600 
19887 0.000 7.950 
19888 0.037 13.300 
19889 0.183 10.440 
198810 0.070 1.770 
198811 0.049 2.950 
198812 -0.082 1.170 
19891 -0.091 1.240 
19892 -0.125 1.950 
19893 -0.042 6.000 
19894 -0.052 0.860 
19895 -0.052 4.240 
19896 0.092 8.880 
19897 0.104 6.990 
19898 0.076 4.170 
19899 0.122 10.430 
198910 0.000 2.630 
198911 0.012 3.900 
198912 -0.116 7.150 
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Year and Month Water Level (m) Precipitation (inches) 
19901 -0.070 2.430 
19902 -0.006 3.940 
19903 0.147 4.160 
19904 0.055 2.230 
19905 0.095 0.510 
19906 0.043 2.820 
19907 0.064 9.340 
19908 0.110 2.320 
19909 0.107 5.200 
199010 0.070 1.960 
199011 0.083 1.580 
199012 -0.039 1.590 
19911 -0.015 20.800 
19912 -0.073 0.700 
19913 0.083 11.390 
19914 0.095 8.320 
19915 0.208 12.140 
19916 0.073 3.110 
19917 0.101 17.400 
19918 0.101 9.400 
19919 0.156 1.810 
199110 0.116 0.980 
199111 -0.009 0.680 
199112 -0.088 1.510 
19921 -0.061 6.300 
19922 0.034 8.940 
19923 -0.018  
19924 -0.018 1.020 
19925 -0.033  
19926 0.104  
19927 0.028 2.270 
19928 0.104 13.710 
19929 0.140 5.840 
199210 0.148 7.620 
199211 0.084 5.970 
199212 0.043 1.560 
19931 0.065 6.790 
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Year and Month Water Level (m) Precipitation (inches) 
19932 0.024 3.920 
19933 -0.007 5.560 
19934 0.054 0.920 
19935 0.073 0.330 
19936 0.032 3.950 
19937 0.007 2.880 
19938 0.050 9.880 
19939 0.127 3.350 
199310 0.149 6.170 
199311 -0.021 4.840 
199312 -0.041 2.750 
19941 -0.128 6.530 
19942 -0.049 2.430 
19943 0.003 5.260 
19944 0.057 1.390 
19945 0.014 1.410 
19946 0.049 12.810 
19947 0.281 12.530 
19948 0.220 15.140 
19949 0.205 9.080 
199410 0.226 8.660 
199411 0.045 0.520 
199412 0.019 1.420 
19951 -0.055 3.390 
19952 -0.105 2.080 
19953 0.061 3.810 
19954 0.060 3.530 
19955 0.088 4.520 
19956 0.047 9.350 
19957 0.075 4.540 
19958 0.214 7.970 
19959 0.208 0.650 
199510 0.202 3.190 
199511 0.013 7.520 
199512 -0.050 2.530 
19961 -0.079 2.780 
19962 -0.052 3.900 
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Year and Month Water Level (m) Precipitation (inches) 
19963 -0.035 10.620 
19964 0.006 4.250 
19965 0.005 0.560 
19966 -0.008 1.990 
19967 0.039 10.490 
19968 0.101 11.240 
19969 0.140 7.140 
199610 0.176 20.520 
199611 0.080 1.110 
199612 -0.019 5.470 
19971 -0.047 5.780 
19972 -0.022 4.830 
19973 0.045 0.700 
19974 -0.003 5.000 
19975 0.016 1.430 
19976 0.062 3.240 
19977 0.072 9.770 
19978 0.084 6.430 
19979 0.134 2.290 
199710 0.110 8.290 
199711 0.000 4.680 
199712 -0.072 7.090 
19981 0.037 6.500 
19982 0.129 9.880 
19983 0.246 8.160 
19984 0.253 1.460 
19985 0.100 0.480 
19986 0.004 0.200 
19987 -0.001 1.560 
19988 0.075 5.990 
19989 0.322 18.010 
199810 0.152 0.200 
199811 0.038 1.200 
199812 -0.026 1.220 
19991 0.001 4.460 
19992 0.034 1.690 
19993 0.023 3.560 
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Year and Month Water Level (m) Precipitation (inches) 
19994 0.030 2.160 
19995 0.080 3.770 
19996 0.064 5.930 
19997 0.071 2.330 
19998 0.121 5.250 
19999 0.197 4.300 
199910 0.115 3.670 
199911 0.026 2.830 
199912 -0.038 2.670 
20001 -0.101 3.010 
20002 -0.080 0.980 
20003 0.019 4.500 
20004 0.028 0.510 
20005 0.044 0.010 
20006 0.068 3.400 
20007 0.098 3.370 
20008 0.099 3.040 
20009 0.155 17.980 
200010 0.086 0.500 
200011 0.095 6.780 
200012 -0.098 1.500 
20011 -0.176 1.880 
20012 -0.152 0.550 
20013 0.004 11.830 
20014 0.013 0.140 
20015 0.019 0.000 
20016 0.016 7.840 
20017 0.075 8.650 
20018 0.128 9.910 
20019 0.120 5.200 
200110 0.087 2.530 
200111 0.088 1.500 
200112 0.007 2.730 
20021 -0.121 8.010 
20022 -0.093 0.820 
20023 -0.042 4.970 
20024 0.034 0.700 
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Year and Month Water Level (m) Precipitation (inches) 
20025 0.043 2.410 
20026 0.093 10.390 
20027 0.057 8.050 
20028 0.124 6.610 
20029 0.265 7.350 
200210 0.185 5.020 
200211 0.007 2.230 
200212 -0.062 3.360 
20031 -0.118 0.160 
20032 -0.046 5.750 
20033 0.108 6.180 
20034 0.070 1.390 
20035 0.101 2.170 
20036 0.138 13.160 
20037 0.165 7.800 
20038 0.190 9.050 
20039 0.223 5.540 
200310 0.181 6.670 
200311 0.126 3.520 
200312 -0.012 2.170 
20041 -0.043 1.450 
20042 -0.036 6.080 
20043 -0.021 0.060 
20044 -0.030 1.280 
20045 0.059 0.400 
20046 0.086 6.080 
20047 0.075 5.510 
20048 0.086 4.940 
20049 0.148 5.180 
200410 0.183 3.920 
200411 0.152 5.060 
200412 -0.060 3.150 
20051 -0.012 1.930 
20052 0.069 5.580 
20053 0.009 8.500 
20054 0.228 9.330 
20055 0.120 4.760 
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Year and Month Water Level (m) Precipitation (inches) 
20056 0.202 5.280 
20057 0.249 3.820 
20058 0.212 6.460 
20059 0.241 1.310 
200510 0.110 1.110 
200511 0.039 4.370 
200512 -0.049 1.960 
20061 -0.046 1.820 
20062 -0.056 4.900 
20063 0.023 0.400 
20064 0.033 1.750 
20065 0.060 3.950 
20066 0.074 4.930 
20067 0.035 2.580 
20068 0.075 3.890 
20069 0.159 6.620 
200610 0.123 2.180 
200611 -0.007 2.300 
200612 -0.065 8.250 
20071 -0.080 4.580 
20072 -0.086 4.110 
20073 -0.053 1.100 
20074 -0.034 1.710 
20075 0.097 0.180 
20076 0.080 0.410 
20077 0.067 3.700 
20078 0.125 2.960 
20079 0.145 9.140 
200710 0.165 5.490 
200711 0.016 2.830 
200712 -0.030 1.010 
20081 -0.087 3.750 
20082 -0.044 2.880 
20083 -0.002 3.460 
20084 0.039 1.620 
20085 0.086 2.920 
20086 0.061 2.420 
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Year and Month Water Level (m) Precipitation (inches) 
20087 0.111 4.490 
20088  11.27 
20089  0.2 
200810 0.154 3.92 
200811 0.055 2.58 
200812 0.009 2.01 
20091 -0.106 1.5 
20092 -0.107 2.98 
20093 0.054 4.03 
20094 0.219 7.4 
20095 0.09 1.86 
20096 0.1 3.62 
20097 0.113 5 
20098 0.175 12.08 
20099 0.296 13.15 
200910 0.218 1.5 
200911 0.18 5.03 
200912 0.173 7.66 
20101 0.043 6.05 
20102 0.067 3.3 
20103 0.028 4.83 
20104 0.033 0.7 
20105 0.127 3 
20106 0.158 5.04 
20107 0.189 9.03 
20108 0.218 5.55 
20109 0.284 2.95 
201010 0.123 1.05 
201011 0.091 3.95 
201012 -0.144 1.6 
20111 -0.129 4.96 
20112 -0.106 3.34 
20113 0.014 4.91 
20114 0.033 0.74 
20115 0.046 0.31 
20116 0.102 1.4 
20117 0.167 10.08 
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Year and Month Water Level (m) Precipitation (inches) 
20118 0.142 3.63 
20119 0.189 7.27 
201110 0.099 7.63 
201111 0.097 1.41 
201112 0.019 1.75 
20121 -0.048 2.72 
20122 -0.014 2.99 
20123 0.06 2.11 
20124 0.091 1.31 
20125 0.15 0.79 
20126 0.287 21.6 
20127 0.197 8.03 
20128 0.262 9.99 
20129 0.228 5.17 
201210 0.151 0.65 
201211 0.139 0.27 
201212 0.063 1.83 
20131 0.002 0.8 
20132 0.043 9.73 
20133 0.055 3.91 
20134 0.092 3.46 
20135 0.101 1.34 
20136 0.148 3.88 
20137 0.241 12.31 
20138 0.219 7.87 
20139 0.257 6.06 
201310 0.235 2.62 
201311 0.127 5.14 
201312 0.056 6.6 
20141 -0.045 5.48 
20142 0.016 6.22 
20143 0.03 7.32 
20144 0.139 6.88 
20145 0.151 1.28 
20146 0.13 3.46 
20147 0.081 4.61 
20148 0.15 3.95 
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Year and Month Water Level (m) Precipitation (inches) 
20149 0.229 5.53 
201410 0.19 4.39 
201411 0.064 5.16 
201412 0.132 3.64 
20151 0.009 4.94 
20152 0.006 4.52 
20153 -0.002 1.41 
20154 0.095 3.7 
20155 0.135 0 
20156 0.112 6.89 
20157 0.123 5.33 
20158 0.209 4.68 
20159 0.225 3.69 
201510 0.314 1.88 
201511 0.247 14.3 
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