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ABSTRACT 

This dissertation will investigate electron beam induced current (EBIC) for determining 

semiconductor material and device parameters.  While previous experimental work on PN 

junction delineation using EBIC with the scanning electron microscope has resulted in resolution 

to approximately 10 nm, theoretical study shows the potential use of EBIC for higher resolution 

(nanometer) PN junction and FET channel length delineation using the transmission electron 

microscope.  Theoretical arguments using computer simulations of electron beam generation 

volume, collection probability and EBIC were performed and are presented for the purpose of 

determining EBIC use in a 300 keV transmission electron microscope (TEM) for PN junction 

depth determination.  Measured results indicate that by measuring thin semiconductor samples 

with high surface recombination velocity and by using a narrow, high-energy electron beam in 

the STEM mode of a transmission electron microscope, nanometer resolution may be possible.  

The practical and experimental limits of beam energy and semiconducting material thermal 

damage will be discussed. 
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CHAPTER ONE: INTRODUCTION 

For many years the current induced by an impinging electron beam close to a PN semiconductor 

junction has been used to determine the bulk diffusion length, minority carrier lifetime, surface 

recombination velocity, analyze crystal dislocations, and to locate a PN junction [1]-[43].  The 

electron beam induced current (EBIC) mode of the scanning electron microscope (SEM) is used 

for these measurements with beam energies of 10-40 keV.   

Continued scaling of semiconductor devices has challenged existing measurement techniques for 

channel length and PN junction delineation.  Determination of a PN junction location in 

semiconductor devices to nanometer resolution through EBIC measurement has been 

investigated in previous studies [44], [45].  Spatial resolution to 10 nm from EBIC measurement 

using beveled samples has been reported in the literature [44].  Limiting factors include beam-

sample interaction, carrier re-distribution, sample geometry, minority carrier diffusion length and 

others [45].  

For EBIC measurements the electron beam impinges perpendicularly to the 

semiconductor surface and is moved toward the PN junction while the induced current is 

measured.  Two typical PN junction geometries used are the planar and parallel junctions as 

shown in Fig. 1.  The focus of this research is to investigate silicon PN junction location with a 

TEM and the parallel geometry shown in Fig.1(b).    
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Figure 1.  Two common EBIC specimen geometries. 

The e-beam from the microscope creates an electron-hole pair generation volume within 

the semiconductor sample.  In the absence of surface recombination these carriers will diffuse 

out from the generation volume.  The case of the e-beam impinging on the p-side of a PN 

junction will be discussed as depicted in Figure 2. 
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Figure 2.  Electron and hole carrier mechanism with impinging electron beam, no surface 

recombination. 

Electrons diffusing to the SCR will drift across the SCR to the n-side due to the built-in electric 

field.  These electrons diffuse and are collected at the ohmic contact.  An equivalent number of 

holes recombine with electrons at the ohmic contact on the p-side resulting in EBIC.  An 

2 



equivalent explanation can be made for the e-beam impinging on the n-side.  Both cases result in 

an induced current from the p-side to n-side. 

In the case where significant surface recombination, vs, exists, and the generation volume is close 

to the semiconductor surface with respect to the bulk minority carrier diffusion length, Lb, the 

induced EBIC is reduced.  Figure 3 displays this effect.  Some carriers that may have contributed 

to the measured EBIC recombine at the semiconductor surface and the measured EBIC is lower 

than if no surface recombination existed.  As the generation volume comes closer to the SCR 

edge, the diffusion of carriers to the SCR edge becomes more significant than the diffusion to the 

surface. 
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Figure 3.  Electron and hole carrier mechanism with impinging electron beam, with surface 

recombination. 

The EBIC will increase and then peak when the generation volume is in the SCR.  The sharpness 

of this EBIC profile will increase with increasing vs. 

The carrier generation volume created by the impinging electron beam decreases with 

decreasing beam energy.  Previous work has suggested this approach to increasing resolution 

[30], [43].  Indeed, lowering the electron beam energy will result in increased resolution.  Ideally 
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a generation volume “point source” would be used, but this is physically unrealizable.  

Additionally, the beam energy must be large enough to create a generation volume that produces 

an EBIC above the noise level of the measuring instrumentation.  Thus a measurement, and 

therefore resolution, is limited as beam energy decreases.   

 For a sample with large Lb, the induced current profile, as a function of distance from the 

PN junction is expected to be broad.  This is due to minority carriers reaching the built-in electric 

field in the space charge region and drifting across to the majority carrier region when the beam 

is within a diffusion length of the junction.  Given a sample with high surface recombination 

velocity, vs, carriers within a diffusion length of the surface recombine at the surface rather than 

diffuse to the space charge region when the beam is away from the PN junction.  Once close to 

the PN junction, diffusion to and drift across the SCR becomes comparable to surface 

recombination resulting in increased EBIC.  This EBIC signal should become steeper near and 

peak at the SCR, resulting in an overall narrowing of the profile thus providing increased 

resolution.   

The approach discussed above has been successfully explored in previous work [35].  High 

surface recombination velocity to 20,000 cm/sec for silicon has been produced through various 

sample preparation techniques, such as surface passivation followed by oxide growth, ion beam 

milling, electron bombardment, and surface abrasion [37], [38].  Well-polished 10 Ω-cm p-type 

and 5 Ω-cm n-type silicon have vs ~ 104 cm/sec.  The same sample with abraded (lapped) 

surfaces have vs ~ 107 cm/sec [37].  Surface passivation techniques are used to reduce vs. 

Immersion in HF, iodine/ethanol, iodine and bromine have resulted in vs values of approximately 

0.25, 10, 4, and 20 cm/sec, respectively [46]. 
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 Ion beam milling can be used to sputter off layers of a silicon surface.  The ion milling 

damages the surface to a depth of a few nanometers when a beam angle of 15° is used.  Minority 

carrier lifetimes, τs, due to the damaged surface have been reported to be less than 10-15 sec, 

resulting in high vs [46].   

EBIC measurement on beveled samples with high vs has shown promise [44].  The geometry for 

this approach is shown in Figure 4.  A beveled surface causes a “deformation/reducing” of the 

SCR at the surface.  It is believed the lower part of the SCR is reduced due to the missing ionized 

dopants in the upper side of the SCR. 

 
n+ 

p SCR 

e-beam 

θ 

 

Figure 4.  EBIC specimen prepared in a beveled geometry [35]. 

Also, the bevel angle, θ, was shown to be critical with the best resolution at θ = 0.91°.  A thin 

surface oxidation was performed and the surface was bombarded with a 5 keV, 100nA scanning 

electron beam for 120 min, creating a high and stable vs.  Junction resolution to 10 nm was 

achieved in this work [44]. 

 Work performed by Kittler [44] relies on bevel angle and the deformation of the SCR.  

The research proposed here will study analytically and experimentally the effect on EBIC of thin 

diode samples with high surface recombination velocity.  A preferred specimen structure and 
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geometry are developed.  Also it will be shown that by using a high (300keV) beam energy to 

probe a thin sample with high vs on both surfaces, the diffusion to the surface and subsequent 

recombination can produce a sharpening of the EBIC, however resolution is limited by the 

thermal heating and therefore damage to the semiconducting material at this high beam energy.  

These items are presently not in the literature. 
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CHAPTER TWO: THEORY 

In this research, PN junctions were produced by thermal diffusion of a dopant into a 

uniformly doped silicon substrate.  The resultant dopant profile within a narrow range within the 

metallurgical junction is approximately linear [46].  Using this approximation a 1-D expression 

for the electric field in the SCR is derived and plotted. 

One begins with Poisson’s equation: 

ε
ρ

=•∇ )(xE
ρρ

           (1) 

Considering a uniformly doped p-type semiconductor with donor dopants thermally diffused into 

it, the dopant concentration within the SCR can be approximated as a linear function as shown in 

Figure 5.   

ND(x) - NA 
n p 

x 
-W/2 W/2 

 

Figure 5.  Doping concentration within the SCR. 

In general the charge density inside a semiconductor is given by: 

)( AD NNnpq −+−=ρ          (2) 
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where q = elemental charge (coulomb/second), p = density of holes in the valence band 

(holes/cm3), n = density of electrons in the conduction band (electrons/cm3), ND = density of 

ionized donor dopants (donor dopants/cm3), and NA = density of ionized acceptor dopants 

(acceptor dopants/cm3).  Inside the SCR the density of electrons and holes is negligible 

compared to the density of ionized dopants.  Therefore, for this case where the ionized donor 

dopant concentration is a function of x: 

))(( Ad NxNq −≅ρ           (3) 

Equation (1) becomes: 

dxdExE
xE x

W
∫ ∫

−

==
)(

0
2

)(
ε
ρ          (4) 

The symmetry of the charge density requires that the SCR will be of equal width on either side of 

the metallurgical junction.  By comparing Figure 1 with equation (3) an equation for ρ as a 

function of x can be assumed.  Let , where a (cmqax−=ρ -4) is an experimentally determined 

grading constant.  Equation (4) now becomes: 

∫
−

−=
x

W

xdxqaxE

2
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ε
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The electric field is found to be: 
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where Ks is the relative permittivity of silicon (11.8) and εo is the permittivity of free space, W is 

the SCR width.  

Figure 6 shows a 1-D plot of the electric field for a linearly graded junction with W calculated 

to be 0.7036 µm and maximum electric field strength (at x = 0) to be 6.863 X 103 volt/cm.  The 

grading constant, a = 7.234 X 1019 cm-4, was taken from the impurity concentration profile 

calculated from the process parameters for the diodes fabricated for this research (see Figure 19). 
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Figure 6.  Electric field within a graded PN junction (SCR). 

This shows the parabolic form of the electric field centered about x = 0, the metallurgical 

junction.  Since the EBIC is due to the drift of carriers across the SCR it is expected that the 

EBIC peak will occur when the generation volume is completely within the SCR.  Thus the peak 

of the EBIC profile will coincide with the location of the maximum value of the electric field, 

which is expected to be at the SCR center. 

The collection efficiency for a point generation source as a function of distance, x, from the 

SCR is given by [47]: 
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where xscr is the location of the SCR, z is the depth of the point source, D is the diffusion 

coefficient.  D is a function of Lb given by the expression: 

τ

2
bLD =            (8) 

where τ is the minority carrier lifetime.  In the limit where Lb → ∞ (no recombination in the bulk 

material) and vs → ∞ (all carriers diffusing to the surface recombine at the surface) equation (7) 

becomes [47][1]: 

( )
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


 −
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



−=

z
xxzxP SCRarctan21),(

π
        (9) 

This situation is somewhat applicable for thin solar cell grade silicon with high recombination 

velocity, but is unrealistic for devices for which this research in intended.  Yet, it illustrates the 

effect of high vs on EBIC.  Equation (4) is plotted in Figure 7 for six different values of x – xscr.  

The upper most curve is for x – xscr = 5 nm.  The adjacent curves are for 100 nm, 200 nm, 300 

nm, 400 nm and 500 nm, respectively.  One can see the collection probability is a strong function 

of not only the beam-to-junction distance but also the beam-to-high vs surface. 
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Figure 7.  Collection probability versus source depth, z, for a point source.  x - xscr = 5, 100, 

200, 300, 400, 500 nm, respectively, starting with top most curve. 

The extended generation volume due to an electron beam incident on a silicon surface was 

simulated based on the literature in the field.  The geometry of the electron beam relative to a PN 

junction is shown in Figure 8. 
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Figure 8. EBIC specimen geometry and coordinate system used for simulation. 

In this simulation the material selected was silicon and material parameter values shown in Table 

1 are for silicon.  Beam parameters in Table 1 are typical of STEM systems.  Material thickness 

of  1.1R and 1 µm were used, where R is the electron penetration depth.  

Table 1.  Parameters and values used in simulation. 

Parameter Value 

Electron beam energy, Eb 300 keV 

Density of silicon, ρ 2.33 g/cm3 

Energy required for electron/hole pair generation, Ei 3.75 eV 

Electron beam current, Ib 0.7 nA 

Mean fraction of backscattered energy, f 0.08 

Electron beam diameter, db 0.5 X 10-3 µm 

 

The electron penetration depth in silicon is found by the use of the following expression [48], 

[49]: 
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This equation is claimed to be sufficiently accurate for beam energies between 20 keV and 200 

keV [48].  Using values from Table 1 yields a value of 182 µm for R. As a comparison, R = .02 

µm for 1 keV electrons and R = 4.8 µm for 25 keV.  The simulated distribution of the generated 

carriers is approximated by the function [25]: 

)(),(),( zhzxFGzxg o=          (11) 

where the carrier pair generation rate, Go, is given by: 

( f
qE

IEG
i

bb
o −= 1 )           (12) 

Ei is defined as the energy required to generate an electron-hole pair, 3.75 eV for silicon [24].  

The mean fraction of the backscattered energy (f) is 0.08 [25], and Ib is the beam current, set to 

0.7 nA for the simulations. 

The radially symmetric distribution of generated carriers as a function of depth is [27]: 
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and db is the beam diameter.  This is a Gaussian distribution normalized to give a spreading of 

distribution with depth but no change in total generation.  Thus, the required depth distribution 

function, h(z), is given by [25]: 

32

69.54.1221.66.0)( 
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Equation (15) is valid for 1.1R ≥ z ≥ 0. 

A contour plot of (11) is illustrated in Figure 9 for 0 < z < 1.1R.  This plot shows the shape of 

the volume using values from Table 1.  The outer most contour line corresponds to a “low” 

g(x,z) magnitude with each adjacent contour line corresponding to a one order of magnitude 

increase in g(x,z).  The generation volume ‘mushrooms’ as the depth, z, increases and extends 

laterally (in the x-direction) approximately 450 µm from the beam center.  As can be deduced 

from Figure 9, for a ‘thick’ sample, meaning a z value on the order of R, the EBIC profile will be 

broad since current will be measured even when the beam is far from the junction. 
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Figure 9.  Carrier generation contour plot for 300 keV beam energy, z – axis is normal to 

specimen surface, x – axis is the lateral distance from point of e-beam  injection. 

Next, a contour plot of (11) as illustrated in Figure 10 for 0 µm < z < 1 µm was plotted to 

determine the shape and extent of the generation volume for a silicon sample with a thickness of 

1 µm.  As before, the outer most contour line corresponds to a “low” g(x,z) magnitude with each 

adjacent contour line corresponding to a one order of magnitude increase in g(x,z).  This shows 

the effect of a thin sample on the generation volume.  For a sample 1 µm thick, the generation 

volume extends out to approximately 100 µm from the beam center versus 450 µm for a thick 

sample.  This suggests a much narrower EBIC profile will be measured for a thin sample than for 

a thick sample, thus improving the p-n junction delineation resolution at the expense of total 

current. 
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Figure 10.  Carrier generation contour plot for Eb = 300 keV beam from x = -0.1 to 0.1 µm, z = 0 

to 1 µm. 

The low magnitude, outer contour lines show the most spread with increasing z.  To establish the 

contribution to the EBIC of these low magnitude regions is negligible, the 3-D distribution of the 

generated carriers function [25] was integrated over the g(r,θ,z) = 1/(µm2·s), 1 µm ≥ z ≥ 0 µm 

region to find the total number of carriers, then integrated over decreasing g(r,θ,z) values until 

90% of the total was found.  This occurred for the contour line of 6.7 X 1013 per µm2·s, within 

which the significant portion of the EHP generation volume is contained.  Figure 11 is a contour 

plot of this region for 0 µm <z < 1 µm, -1 µm < x < 1 µm.  

As can be seen from Figure 11, the effective, or significant, generation volume can be considered 

approximately cylindrical, the reasoning behind the delta function representation of the 

generation volume. 
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Figure 11.  Carrier generation contour plot of significant region, as defined in text. 

For thin samples with high energy electron beams, the above discussion indicates the 

generation volume extends through the specimen with little horizontal spreading.  In the limit 

that the spreading is small in comparison to the effective diffusion length, the approximation is 

made that the generation volume is a delta function extending through the specimen but with no 

lateral spread. 

Following the study of generation volume in silicon, the effect of surface recombination 

velocity for thin samples on the total collected current was determined.  Again, a model 

developed in Mathematica was used to determine the beam-induced current as a function of the 

beam-junction distance.  

By the corresponding 2D steady state minority carrier diffusion equation given by Donolato 

[50]: 

),(),(1),(2 zxhzxqzxqD −=−∆
τ

        (16) 
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where q(x,z) is the total excess hole density in x,z space, D and τ  are the minority carrier 

diffusion coefficient and minority carrier lifetime, respectively.  The function h(x,z) is the 

generation term described by a delta function. 

)'(),( xxzxh −= δ           (17) 

A generic solution of equation (16) is [50]: 

∫
∞

=
0

)sin(),(),( dkkxzkazxq          (18) 

giving the following after substitution, 
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where 2/1)(
1
τD

=λ  and the integral representation for the delta function is used, 

∫
∞
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)'sin()sin(2)'( kkxkxxx
π

δ         (20) 

As can be seen from equation (19), the integral can be taken outside the equation yielding a 

differential equation that can be easily solved by Mathematica, with the following boundary 

conditions, 
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where 
D
v

s s= , yields the following solution, 

( )( ) ( )[ ]
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where µ = (k2+λ2)1/2.   Then the current collected shall be, 
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where z is bound by d, the thickness in z.   This in turn gives a total collected current that is a 

function of sample thickness.  Taking the integral over z first, 
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We also can normalize x by diffusion length and create a dimensionless parameter for s 

b
b

sLS
L
xX == ;           (25) 

and to include a finite width, w ,we sum over all corresponding n 

w
nk π

=            (26) 
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This gives us a final equation for calculating normalized collected current as a function of a 

normalized beam-junction distance. 
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Three simulations were plotted for sample thickness of 10Lb, Lb and 0.1Lb.  The simulations 

are plotted over the generation volume distance from the junction, normalized by Lb.  

 

Figure 12.  EBIC signal, I(Xo), versus surface recombination velocity, s, for sample thickness of 

d = 10 Lb. 

 

In Figure 12 we see that for thick samples surface recombination velocity has a small effect on 

the collected current.  Figure 13 is for a sample thickness equal to a single diffusion length, Lb.  

Here the surface recombination velocity starts to play an important role in the collected current.  
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Figure 13.  EBIC signal, I(Xo), versus surface recombination velocity, s, for sample thickness of 

d= 1 Lb. 

 

As can be seen in Figure 13, and more dramatically in Figure 14, small changes in the surface 

recombination velocity induce significant changes in the collected current profile.  This is 

because minority carriers escaping to the surface recombine, thus not contributing to the 

collected current.  This has the effect of decreasing the sensitivity of EBIC measurements to the 

diffusion length and allows for increasing resolution.  Comparing Figures 12, 13 and 14, one sees 

that decreasing the sample thickness increases the contribution of non-zero surface 

recombination velocities. 
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Figure 14.  EBIC signal, I(Xo), versus surface recombination velocity, s, for sample thickness of 

d = 0.1Lb. 
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CHAPTER THREE: EXPERIMENTAL METHODS 

In order to measure EBIC one must collect the EBIC from the sample device, amplify the 

current, convert the current to voltage and send the resultant voltage signal to the electronics of 

the electron microscope for conversion to 2-D contrast images and line scan plots.   

Typical electron microscope specimen holders do not provide the transfer of an electrical 

signal directly from a specimen to an amplifier external to the microscope vacuum chamber.  

Therefore an EBIC holder was fabricated for the purposes of this research by Dr. Wilber 

Bigelow, Professor Emeritus, University of Michigan.  The EBIC holder provided electrical 

connection from a sample to an amplifier while maintaining the required vacuum within the 

microscope vacuum chamber.  A picture of this EBIC holder is shown in Figure 15.  The 

external leads of the holder were fitted with a BNC connector for connection to the amplifier. 

 

Figure 15.  Specimen holder for EBIC measurements which allows electrical contact between 

specimen and microscope electronics.. 
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A Stanford Research Systems Model SR570 Low-Noise Current Preamplifier, Figure 16, was 

used to amplify and convert the EBIC signal to a voltage signal.  EBIC signals are typically in 

the nanoampere range.  Therefore the raw EBIC signal must be amplified then sent to scanning 

microscope electronics for processing.  A Stanford Research Systems SR570 Low-Noise Current 

Preamplifier was used for this purpose.  It amplifies the input current and provides and output 

voltage proportional to the input current.  This output signal is compatible with the expected 

input signal of scanning microscope electronics.  The SR570 has a 1 pA/V sensitivity at its 

lowest sensitivity setting.  The SR570 interfaces the TEM or STEM and was used on internal 

battery power to reduce electromagnetic interference due to ground loops.  Output sample 

images are correlated to EBIC signals.  This allows determination of PN junction location or 

channel length from a defined reference point on the sample.  The output of the SR570 

preamplifier was connected to the bright field detector output of the FEI Tecnai F30 TEM, 

Figure 17. 
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Figure 16.  Stanford Research Systems Model SR570 Low-Noise Current Amplifier. 
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Figure 17.  FEI Tecnai F30 TEM. (Photo courtesy of FEI company). 

A typical EBIC measurement set-up is provided in Figure 18. 
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Figure 18.  Typical EBIC measurement configuration. 

Initial EBIC measurements were performed using diodes made from boron/phosphorus 

doped Si.  Uniformly doped p-type (boron) Si wafers were diffusion-doped with phosphorus to 

achieve a PN junction.  The phosphorus impurity profile was produced by a constant-source 

diffusion pre-deposition then a limited-source diffusion drive-in.  An oxide thickness of 0.3 µm 

was estimated as the SiO2 to mask phosphorus [51].  The process schedule is provided in Table 

2. 
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Table 2.  Process schedule for diode fabrication. 

Process Step Time Temperature Comments 

1.  Predep.  Mask 
Growth 

60 min. 1100° C Wet O2 ambient.  Estimated 0.45 
µm oxide thickness [34] 

    
2. Oxide Etch Mask 20 min. 100° C Spin-on positive PR,  bake 
    
3.  Oxide Etch 11 min.  BOE etch oxide off polished side 

of wafer 
    
4.  Phosphorus 
Predep. 

5 min push 
20 min soak 
5 min pull 

935° C Solid P source, N2 ambient – 5 psi, 
flow = 5 

    
5.  Drive-In 6 min push 

15 min soak 
3 min pull 

1100° C  

    
6.  Oxide Etch   Acetone remove PR/BOE etch 

oxide 
 

Next, ohmic contacts were prepared by applying conductive thick film pastes to each side of the 

wafer.  The pastes used, both made by DuPont ®, were Solamet PV202 (4902A) for the p-side of 

the wafer and Solamet PV143 (4945) for the n-side.  The pastes were furnace co-fired in an 

oxygen environment with an approximate firing profile as provided in Table 3 [52]. 

Table 3.  Process schedule for firing conductive film. 

Process Step Time Temperature Comments 

1.  Fire 75 min. 30° C to 825° C Dry O2 ambient 
    
2. Soak 10 min. 825° C Dry O2 ambient 
    
3.  Cool 90 min. 825° C to 30° C Room air ambient 
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Firing of the pastes results in evaporation of solvents, breakdown and decomposition of vehicle 

polymers, and sintering of inorganic binders and vehicle phase metals [52]. 

A diffusion profile calculation was performed to estimate the distance of the 

metallurgical junction from the wafer surface.   The pre-deposition, assumed to be solid-

solubility limited, drive-in and subsequent firing of thick film paste to form ohmic contacts were 

incorporated into the impurity profile prediction.  The resultant impurity concentration profile 

follows Fick’s second law of diffusion [51]: 

2

2

x
ND

t
N

∂
∂

=
∂
∂            (28) 

where N is the impurity concentration and D is the diffusion coefficient.  For a constant-source 

diffusion of the pre-deposition step, the solution to (28) is: 


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xerfcNtxN o
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),(          (29) 

where No is the impurity carrier concentration at the wafer surface, estimated to be 2.6x1020 cm-3, 

the solid-solubility limit at 935° C [53].  D1 is given by [51]: 





−=

kT
EDD A

o exp1           (30) 

where D0 is 10.5 cm2/sec for phosphorus, EA is 3.69 eV for phosphorus [51], T is the temperature 

(K) and k is Boltzmann’s constant, giving D1 = 4.226 x 10-15 cm2/sec.  From the pre-dep process 

step we see T = 1208 K and t = 1800 sec, resulting in a Dt product = 7.606 x 10-12 cm2.  The 

drive-in and the ohmic contact co-fire steps are incorporated into the determination of the final 
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impurity profile.  Using equation (30) the diffusion coefficient for the drive-in step is found to be 

D2 = 2.992 x 10-13 cm2/sec.  For the co-fire step the temperature in the furnace is time dependent 

for the fire and cool.  Assuming a linear ramp for temperature versus time, T for the fire and cool 

can be written as: 

303177.0)( 33 += ttT           (31) 

And for the cool: 

1098147.0)( 55 +−= ttT          (32) 

These functions for temperature are used in equation (30) then integrated over the time of each 

step to determine the diffusion coefficients.  For the fire, D becomes: 
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Using equation (30) the diffusion coefficient for the soak is found to be D4 = 1.212 x 10-16 

cm2/sec.  For the cool: 
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Since the sum of the Dt products for the drive-in and ohmic contact co-fire steps (4.762 x 10-10 

cm2) is much greater than that for the pre-deposition step, the final impurity concentration profile 

due to the drive-in and ohmic contact steps can be approximated by a Gaussian distribution [51] 

given by: 
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where Dttot is the sum of the Dt products from the drive-in, fire, soak and cool steps Q is the total 

number of impurity atoms per unit area, or dose, in the silicon as a result of the pre-deposition 

[51], given by, 

 

π
112 tDNQ o=           (36) 

Using D2, t2 to designate the drive-in step diffusion coefficient and time, respectively and D3, t3, 

D4, t4 and D5, t5 for the ohmic contact fire, soak and cool steps, respectively we have D2t2 = 

2.693 x 10-10 cm2, D3t3 = 8.739 x 10-11 cm2, D4t4 = 7.273 x 10-14 cm2 and D5t5 = 1.194 x 10-10 cm2  

for a (Dt)tot = 4.762 x 10-10 cm2.  The impurity profiles were predicted using MathCad and is 

presented in Figure 19.  The final profile is provided in Figure 20.  The resistivity ,ρ, of the (100) 

boron-doped wafers were measured using a Magne-Tron Model M-700 Resistivity/Conductivity 

Test System (4-point probe) was found to be 28 Ω-cm.  Using this resistivity value and 

empirical-fit relationship for mobility versus doping concentration given in [53] the boron 

concentration was calculated to be 4.858 x 1014 cm-3.  The metallurgical junction, xj, as defined 

as the location where the phosphorus and boron concentrations are equal, was found, using 

MathCad, to be at 1.426 µm from the wafer surface. 
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Figure 19.  Theoretical impurity concentration profile for fabricated diodes. 
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Figure 20.  Final theoretical dopant profile, Nd(x) - Na. 

The wafer with the ohmic contacts were cut into sections using a South Bay Technology, 

Inc. Model 650 Low Speed Diamond Wheel Saw with a 3 inch circular blade to sizes adequate 

for tripod polishing.  The diode samples were tripod polished to and angle of approximately 1° to 

a geometry shown in Figure 20. 

 

SCR 

P N 

Contacts on each edge 

 

Figure 21.  Typical EBIC specimen geometry used in this study. 
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The diodes were mounted on 3 mm TEM grids using M-Bond 610 Adhesive.  A diode 

sample was then mounted into the TEM EBIC Holder tip using Loctite 408 Instant Adhesive.  

With 40 AWG wire and Tra-Duct BA-2902 conductive silver epoxy, the ground lead of the TEM 

EBIC Holder was attached to the n-side of the diode contact and the positive lead was connected 

to the p-side contact.  The sample/holder was then heated to 100°C  for 90 min. to cure the 

epoxy.  Current versus voltage was measured to ensure the diode had ohmic contacts and had not 

been destroyed during the fabrication process.  A typical I-V curve for the test samples is given 

in Figure 22.  

 

Figure 22.  Typical I-V curve for a EBIC specimen diode. 
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CHAPTER FOUR: RESULTS 

The low-noise current amplifier and TEM settings for the EBIC measurements are provided in 

Table 4 and 5, respectively. 

Table 4.  Low-noise current amplifier settings. 

Setting Value 

Bias Voltage None 

Filter Type None 

Filter Frequency None 

Gain Mode Low Noise 

Invert On 

Input Offset Variable 

Sensitivity Variable 

Table 5.  TEM settings. 

Setting Value 

Probe Nano 

Spot Size 7 

MS Exposure Time Variable 

Emulsion Setting 2 

Extraction Voltage 4300 volts 

Gun Lens 5 

Mode LM STEM or STEM 

C2 Lens Variable 

 

Figure 23 shows the EBIC measurement setup in terms of signal flow.  The diode can be seen 

on the left side.  The EBIC signal (IEBIC) enters the low noise amplifier where a positive or 
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negative offset can be applied to the signal if desired.  The signal can also be inverted (positive 

or negative) if desired.   

 

Counts 
IEBIC 

Offset 
(+ or -) 

- IEBIC + Offset 

- IEBIC 

Microscope 
Electronics Invert 

(ON or OFF) 
n

p 

Sens 

Low Noise Amplifier VOUT = {Invert (- IEBIC + 
Offset)}/Sens 

Invert (- IEBIC + Offset) 

Figure 23.  EBIC measurement signal flow. 

The sensitivity (Sens) is adjusted by the user so that the EBIC signal can be distinguished but 

yet not saturate the microscope electronics.  As the electron beam is rastered across the area of 

interest, the output of the microscope electronics is a two-dimensional contrast image where the 

bright areas refer to relatively larger EBIC current as in Figure 24.  A line scan can be produced 

from the resultant 2-D contrast image as “counts” versus position as in Figure 25.  A line is 

drawn on the contrast image using the line marker tool in the acquisition window of ES Vision.   
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Figure 24.  Two dimensional contrast image on left, EBIC image top right, EBIC line scan 

profile bottom right. 

The counts versus position on the line is exported to Excel.  “Counts” is an arbitrary unit set by 

the image brightness but can be referred to current by sending a known current through the Low 

Noise Amplifier, measuring the output voltage of the Low noise Amp and equating that voltage 

to the “count” value of the Microscope Electronics output.  This was performed several times 

and the EBIC amplitude was found to typically be a few nA. 
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Figure 25.  EBIC line scan from contrast image. 

Below is the result of a typical TEM image and associated EBIC scan of a wedge-shaped 

diode. 
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EBIC signal 
Metal/silicon interface 

Figure 26.  Typical TEM contrast image.  Figure 27.  Typical EBIC image. 

The dark, top left section of Figure 26 is the metal contact to the silicon diode.  Figure 27 shows 

the EBIC signal (light colored) due to the SCR along the metal/silicon interface.  The thinner 

section of the diode is to the lower left and becomes increasingly thicker toward the upper right.  

As expected, the EBIC signal can be seen to increase as the diode becomes thicker as seen by the 

increasing intensity in Figure 27.  Figures 28 and 29 are a scan of the same diode but focused on 

the thin tip. 
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silicon 

metal 

Figure 28.  Contrast image of diode tip.  Figure 29.  EBIC image of diode tip. 

Figure 30 is a plot of the EBIC chosen from an arbitrary thickness (x = 0) within the diode.  

Increasing distance from this point in the diode corresponds to linearly decreasing thickness.  As 

can be seen from the trend line the EBIC follows a cubic reduction with thickness.  A reduction 

in EBIC signal with decreased thickness is expected as there are fewer atoms available for 

electron-hole production, and therefore a lower measured EBIC signal.  However, no 

quantitative analysis of measured EBIC signal versus semiconductor device thickness presently 

exists in the literature. 
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EBIC vs Thickness
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Figure 30.  EBIC signal versus diode thickness. 

The peak EBIC signal value was determined as a function of the distance from the Si/metal 

interface for device thickness was found.  Figure 31 is a typical result.  The x-axis refers to 

thickness, but the actual values are arbitrary.  The y-axis, peak EBIC position, shows true values.  

As can be seen the peak EBIC signal, which relates to the metallurgical junction, is seen to 

appear linearly closer to the metal with decreasing thickness, then remains constant at some 

critical thickness. 
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Figure 31. Graph showing EBIC signal versus specimen thickness. 
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Peak Width vs Line Scan Location from Wedge Tip
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Figure 32.  EBIC peak width (95%) versus line scan position from wedge tip. 

Figure 31 shows the effect of surface passivation and therefore surface recombination velocity 

on PN junction delineation resolution.  The width of the peak EBIC signal is defined as the 

distance between the 95% peak values of both sides of the actual peak.  So, the smaller the width 

the higher the resolution to which the PN junction can be defined.  The unpassivated curve is for 

a diode sample for which no surface preparation has been applied.  This means the surface 

contains unattached surface bonds which creates a high surface recombination velocity.  The 

passivated curve is for the same sample that has had surface bonds passivated with a solution of 

40 mL of ethanol with 8 drops of HF acid.  This has shown to passivate the surface and therefore 

significantly reduce the surface recombination velocity [46].  As can be seen from the graph, at a 
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critical device thickness, the high surface recombination velocity causes a trend of a decreasing 

peak EBIC width and therefore an expected increase in PN junction location resolution. 

The effect of surface damage due to the electron beam beyond that produced by the 

polishing process was observed.  Figure 33 shows the diode contrast image on the left with the 

results of an EBIC image after the electron beam had been impinging along the vertical line (1) 

across the SCR for approximately 30 seconds. 

 

Figure 33.  Contrast image (left) and EBIC image (right). 

Figure 34 shows a magnified view of the EBIC scan of Figure 33.  The image contrast was 

adjusted to show the effect of the damage of the line scan in Figure 35.  As can be seen in Figure 

35, the EBIC profile narrowed at the SCR where the line scan was performed.  This is believed 

to be due to the increased surface recombination velocity caused by the line scan.  After waiting 
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approximately 30 minutes before another scan was performed, a subsequent scan showed the 

damage had vanished and narrowing of the EBIC profile was no longer observed. 

 

Figure 34.  Close-up of damage due to line scan. 
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Figure 35.  Image enhanced to show narrowing of EBIC profile in damaged region along line 

scan. 
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CHAPTER 5:  DISCUSSION and CONCLUSIONS 

This research has theoretically and experimentally explored the idea of increasing PN junction 

delineation by utilizing thin semiconductor devices with high surface recombination velocity.  

This body of work does not exist in the literature.  Also new, the EBIC measurements on wedged 

diode structures with large surface recombination velocity indicate that as the sample thickness 

decreases the resolution of PN junction delineation increases. 

The theoretical and measured metallurgical junction location agree within 5.3% in some cases.  

Figure 36 shows an EBIC scan where the red vertical line represents where on the diode the line 

scan data was taken.  Figure 37 shows the EBIC data from this line scan, amplitude versus 

distance.  The line scan begins at the metal-silicon interface, extends through the SCR and into 

the p-region. 

 

Figure 36.  EBIC image showing line scan location. 
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EBIC versus Distance from Metal/Si Interface
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Figure 37.  Data from line scan of Figure 33. 

The data from this line scan shows the peak EBIC, corresponding to metallurgical junction, 

occurs at 1.35 µm from the metal-silicon interface.  From the theoretical doping profile plots, the 

metallurgical junction is predicted to be 1.426 µm from the metal-silicon interface.  However, as 

seen in Figure 31 the metallurgical junction, as determined by the distance of the peak EBIC 

signal from the metal/Si interface, varies with diode thickness after some critical thickness.  It is 

believed that this results from the limit of the generation function delta function approximation 

used.  As the beam moves through some critical thickness, the generation volume is broad 

enough to exist in the N and P regions as well as the SCR. 

As a goal to realize 1 nm resolution, one must obtain an image with 1 nm per pixel.  For the 

Tecnai TEM system, the largest number of pixels per frame is 2048 X 2048.   
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Figure 38.  Pixel pitch versus magnification. 

Using the TEM analysis software (ES Vision) the pixel pitch versus magnification was 

determined at magnifications of 150X, 600X and 2400X.  Figure 35 shows the graph of these 

three points with a fit equation of .  Using this equation it was found that a 

minimum magnification of 25200X is required to achieve the required pixel pitch.   During this 

research it was observed that at magnification of 7200X the 300 kV e-beam thermally damaged 

the silicon.  Therefore it was determined to perform measurements with 200 kV e-beam 

acceleration voltage.  The TEM must be aligned and calibrated at each acceleration voltage to be 

used.  The alignment process ensures the optical center of the image coincides with the physical 

center of the viewing screen, enables optimum focus, minimizes astigmatism and allows a 

general accurate specimen analysis.  Microscope alignments were attempted at 200 kV 

acceleration voltage but were never adequately achieved.  Unfortunately, the FEI Tecnai F30 

9952.023982 Xy ×=
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TEM system used in this research is optimized for operation at 300 kV.  Therefore STEM 

images and EBIC measurements at 200 kV acceleration voltage were of unacceptable resolution 

to be meaningful to this research. 

The largest element of error with this research is in spatial calibration.  The accuracy of 

measured dimensions is dependent on the accuracy of the spatial calibration of the TEM system.  

To calibrate, a grid pattern of known dimensions, such as in Figure 36, is measured in the STEM 

mode.  Horizontal and vertical lines are drawn along the grid pattern and, based on the grid 

pattern dimensions, the user inputs the line lengths thus calibrating the microscope.  This is a 

somewhat subjective process in that the user must determine where each line begins and ends.   

 

Figure 39.  STEM spatial calibration grid pattern. 

The user must also ensure the grid is located perpendicular to the electron beam. 

 

To successfully further the research performed here the following is recommended: 

1. Beam energies of 200 keV and 100 keV be used to reduce the damage to the 

semiconducting material yet allow measurable EBIC be generated. 
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2. A TEM capable of operation with variable beam energies will allow a more complete 

study of beam energy versus EBIC resolution. 

3. As an unexpected result, it was found that the electron beam energy can actually cause 

damage and increase the surface recombination velocity, which is a desired effect.  It is 

recommended that further study is warranted for use of the electron beam to enhance 

damage of the semiconductor surface and therefore increase the surface recombination 

velocity to achieve higher spatial EBIC resolution. 

4. It would be desirable to quantify the threshold of damage to doped silicon versus beam 

energy and current to optimize the surface recombination velocity effect. 
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Appendix A 

 

 

51 



 

Figure A.1.  Specimen rod tip. 
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Figure A.2.  Carrier and split ring. 
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Figure A.3.  Specimen rod, section A. 
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Figure A.4.  Specimen rod, section B. 
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Figure A.5.  Specimen rod, section C. 
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