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ABSTRACT

Novel two dimensional nanoscale materials like graphene and metal dichalcogenides (MX2) have

attracted the attention of the scientific community, due to their rich physics and wide range of po-

tential applications.

It has been shown that novel graphene based transparent conductors and radiofrequency transistors

are competitive with the existing technologies. Graphene’s properties are influenced sensitively by

adsorbates and substrates. As such not surprisingly, physical properties of graphene are found to

have a large variability, which cannot be controlled at the synthesis level, reducing the utility of

graphene. As a part of my doctorate dissertation, I have developed atomic hydrogen as a novel tech-

nique to count the scatterers responsible for limiting the carrier mobility of graphene field effect

transistors on silicon oxide (SiO2) and identified that charged impurities to be the most dominant

scatterer. This result enables systematic reduction of the detrimental variability in device perfor-

mance of graphene. Such sensitivity to substrates also gives an opportunity for engineering device

properties of graphene using substrate interaction and atomic scale vacancies. Stacking graphene

on hexagonal boron-nitride (h-BN) gives rise to nanoscale periodic potential, which influences its

electronic graphene. Using state-of-the-art atomic-resolution scanning probe microscope, I cor-

related the observed transport properties to the substrate induced extrinsic potentials. Finally in

efforts to exploit graphene’s sensitivity to discover new sensor technologies, I have explored non-

covalent functionalization of graphene using peptides.

Molybdenum disulfide (MoS2) exhibits thickness dependent bandgap. Transistors fabricated from

single layer MoS2 have shown a high on/off ratio. It is expected that ad-atom engineering can

be used to induce on demand a metal-semiconductor transition in MoS2. In this direction, I have

iii



explored controlled/reversible fluorination and hydrogenation of monolayer MoS2 to potentially

derive a full range of integrated circuit technology. The in-depth characterization of the samples is

carried out by Raman/photoluminescence spectroscopy and scanning tunneling microscopy.
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CHAPTER 1: PROPERTIES OF GRAPHENE AND MOLYBDENUM

DISULFIDE

1.1. Synthesis of graphene and molybdenum disulfide (MoS2)

For the work presented in this thesis, I used mesoscopic sheets of graphene and monolayer molyb-

denum disulfide prepared by mechanically exfoliation of bulk material or macroscopic sheets

grown using a chemical vapor deposition (CVD) processes as discussed in detail below.

1.1.1 Mechanical Exfoliation:

In 3-dimensional layered materials like graphite and metal dichalcogenides, the layers are held

together by weak Van der waal forces of interaction. This, in principle, makes it possible to separate

monolayers of these materials by breaking the weakly held bonds, using mechanical or chemical

energy. Novoselov et al. [1] used this technique to isolate graphene from highly-oriented pyrolytic

graphite (HOPG). Ever since then, this method has been widely used to isolate mostly defect free,

high quality graphene. Typically the size of the exfoliated flakes can vary from 1µm− 50µm (* I

once exfoliated a graphene flake of size 200µm by 50µm).

In mechanical exfoliation, graphite is repeatedly cleaved using a residue-free silicone-free adhesive

tape to obtain thinner graphite flakes and then the tape is put down on the target substrate. Then, the

surface of the tape is rubbed gently before the tape is removed to obtain several exfoliated flakes of

thin graphite and monolayers on the substrate. Similarly, bulk molybdenum disulfide (2H-MoS2)

is a layered structure which can be exfoliated by tape to isolate 1H- MoS2 monolayers.
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Figure 1.1: Optical images of exfoliated graphite and molybdenum disulfide on 300nm SiO2 sub-
strate. Arrows label single layer, two- layer, and multilayer flakes of both graphite and MoS2. (a)
Exfoliated flakes of graphite (b) Exfoliated flakes of MoS2.

Figure 1.1 (a) and (b) show optical images of exfoliated layers of graphite and molybdenum disul-

fide, respectively.

1.1.2 Chemical Vapor Deposition (CVD) growth:

1.1.2.1 Graphene:

Large-area synthesis of graphene and other 2D materials is particularly desired for various prac-

tical applications. Li, X., et al., [2] demonstrated that large area graphene can be grown directly

on copper foil by chemical vapor deposition. This growth involves initially annealing 25µm thick

copper foil in a furnace at 1000 ◦C in a low pressure hydrogen atmosphere for 30 mins and then

the graphene growth is initiated by flowing a mixture of methane and hydrogen gas. The foil is
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heated in this gas mixture for about fifteen minutes to obtain continuous monolayer graphene (90%

coverage) and then it is cooled down. The cooling rate plays an important role for the quality of

the grown graphene. Next, this graphene is transferred to a desired substrate by wet etching the

copper foil.

1.1.2.2 Molybdenum disulfide:

Monolayer MoS2 of size up to 120 µm can be obtained by CVD on a desired substrate. After the

substrate is cleaned in piranha solution (H2SO4 : H2O2 = 3 : 1) for about two hours, it is loaded

faced down above the crucible containing MoO3. Another crucible containing sulfur is kept up-

stream from the MoO3 crucible. The furnace is heated to 650 ◦C in a N2 environment for fifteen

minutes to obtain monolayer MoS2 growth on the substrate [3]. CVD MoS2 samples on SiO2 used

for this thesis were synthesized by James Hone’s group at Columbia University.

1.2 Band structure

1.2.1 Graphene:

The graphene lattice is composed of carbon atoms arranged in honeycomb array, with two sub-

lattices A and B as shown in Figure 1.2(a). Each carbon atom has six electrons with electronic

configuration 1s2, 2s2, 2p2. The three valence electrons in 2s, 2px, 2py orbitals hybridize to form

three coplanar sp2 orbital which gives three σ bonds. The remaining valence electron in each

perpendicular 2pz orbital hybridize with neighboring 2pz orbital to form π bonds.
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Figure 1.2: Hexagonal lattice structure of graphene. [4] (a) Lattice of graphene, which can be
considered as two intertwining triangular lattices, with lattice unit vectors a1 and a2. (b) Graphene
Brillouin zone. The valence and conduction touch each other at K and K′ points, known as Dirac
points.

The mechanical properties of graphene are determined by the strength of the σ bonds whereas the

electrons in the π bonds are responsible for its electronic properties.

The single-band tight binding model considering electron hopping between nearest neighbors [5],

gives the energy band as

E±(k) = ±t
√

1 + 4f(k), (1.1)

where f(k)= cos2(kxa/2) + cos(
√

3kxa/2)cos(kya/2), and a = 2.46 Å is the lattice constant.

Figure 1.2(b) depicts the Brillouin zone of the graphene lattice. Neutral graphene (EF = 0) has

two sets of nonequivalent sites K and K′ (known as the Dirac points) of the Brillouin zone, where

the conical shaped valence and conduction bands touch as shown in Figure 1.3. Thus, graphene

is a zero gap semiconductor, or semimetal. Near the Dirac points it has a linear dispersion relation

given as E = h̄vFk, where vF =
√

3at/2h̄ ≈ 106ms−1 is the Fermi velocity.
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Figure 1.3: Band structure of graphene [6], where energy bands of graphene near fermi energy
meet at Dirac points K and K′.

The Hamiltonian close to the Dirac point is given as

H = h̄vF



0 kx − iky 0 0

kx + iky 0 0 0

0 0 0 −kx + iky

0 0 −kx − iky 0


(1.2)
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Figure 1.4: Pseudospin conservation in graphene allows intervalley transitions but forbids in-
travalley scattering.

The eigenstates of the above equation are

 ΨK
A

ΨK
B

 =
1√
2
eik.r

 e
−iθk

2

±e
iθk
2

 (1.3)

and  ΨK′
B

ΨK′
A

 =
1√
2
eik.r

 ±e
−iθk

2

e
iθk
2

 (1.4)

where ± signs correspond to conduction/valence bands and tanθk = ky/kx.

The charge carriers in graphene behave like massless Dirac fermions and possess an extra degree

of freedom called ”pseudospin”, which is coupled to the direction of the momentum of charge
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carriers [4]. The pseduospin allows us to distinguish the contribution from each sub-lattice.

The consequence of the peculiar symmetry at the Fermi level is that the intervalley scattering (scat-

tering of charge carriers between K and K′ cones), requiring pseudospin flipping, is not allowed as

depicted in Figure 1.4. This suppresses the backscattering in graphene, and theoretically predicts

a long mean free path of charge carriers.

1.2.2 Molybdenum disulfide:

Bulk MoS2 is a 3D material, which exists in two stable forms: layered 2H−MoS2 and polytype

3R−MoS2. The layered 3D 2H−MoS2 can be exfoliated to obtain 2D 1H−MoS2. As shown

in Figure 1.5, the structure of monolayer MoS2 is composed of hexagonally arranged Mo atoms

sandwiched between two hexagonal S monatomic layers, such that Mo and S2 occupy alternate

positions in the hexagonal corners to give a honeycomb structure. Each Mo atom has six neigh-

boring S atoms in trigonal prismatic arrangement and each S atom forms a pyramidal center as it

has three neighboring Mo atoms. The unit cell of bulk MoS2 consists of two MoS2 layers which

are displaced such that each Mo atom in one layer is on top of the S atom from the two adjacent

layers.

The electronic configuration of Mo and S atoms is [Kr]4d5, 5s1and[Ne]3s2, 3p4 respectively. The

d states are responsible for the unique electronic properties of MoS2. Density functional theory

(DFT) calculations show that the band structure changes with a decrease in the number of MoS2

layers [8], as depicted in Figure 1.6. This is due to changes in the hydriziation between p states

of S and d states of Mo, as well as quantum confinement. The decrease in the number of MoS2

layers does not change the excitonic transitions at the Γ-point, but the indirect band transition at

the Γ-point changes due to interlayer coupling.
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Figure 1.5: Top view and side view of monolayer MoS2 [7], where sulfur atoms are represented
by yellow and molybdenum atoms by black.

Bulk MoS2 has a fundamental indirect band gap of 1.2 eV at the Γ-point which, for monolayer

MoS2, becomes so large that it changes to a direct band gap material with a band gap of 1.9 eV.
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Figure 1.6: The band structure [8] for different thicknesses of MoS2 layers, using DFT calcula-
tions. The red line denotes the Fermi level and the arrow represent the direct or indirect transition
for any of these systems. It shows the transition from indirect gap in bulk MoS2 to direct gap in
single layer of MoS2.

1.3 Electronic transport properties

1.3.1 Graphene

The charge carriers in graphene exfoliated on a SiO2/Si substrate can be continuously tuned be-

tween holes and electrons by back gate voltage, using Si as the gate electrode.
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Figure 1.7: Ambipolar transport characteristic of the graphene device on SiO2. (a) Conductivity at
large carrier density shows sub-linear behavior with voltage. (b) Shows the definition for minimum
conductivity, plateau width and residual conductivity.

Graphene on SiO2 has been experimentally demonstrated to attain high field effect mobility as

high as 20, 000cm2/Vs at room temperature and has a weak temperature dependence [9]. The con-

ductivity of graphene, in general, can be characterized by Figure 1.7(a). At high charge carrier

concentrations, the conductivity is linear with respect to the carrier density n, whereas at highest

carrier concentrations the conductivity becomes sublinear with gate voltage (carrier concentra-

tion n).At low charge density (near transition between charge carriers from hole to electrons) the

conductivity does not vanish but has some minimum value (known as the universal minimum con-

ductivity, Vmin) with a conductivity plateau. Generally, for clean high quality graphene samples

(i.e. absent of any external doping) the minimum conductivity is experimentally observed near

zero gate voltage is 4e2/h with a smaller plateau. Figure 1.7(b) clearly depicts the minimum con-

ductivity or σmin, and plateau width near the charge neutrality point. In this figure the black dotted

lines intersect above zero conductivity at residual conductivity, σres.

Owing to gate tunable high carrier mobilities, graphene has been demonstrated to have potential

10



application as radio frequency transistors, reaching cutoff high frequency of 155GHz with a gate

length of 40 nm [10]. However due to zero bandgap and lack of a reliable technique to open its elec-

tronic bandgap without degrading its electronic transport properties, the application of graphene

for integrated circuit technologies is presently hampered . This has led to search for alternate thin

2D materials with a bandgap which has larger on/off ratio.

1.3.2 Molybdenum disulfide

Single layer of MoS2 is a semiconductor with a bandgap of 1.9 eV. It is 0.7 nm thick and has no dan-

gling bonds. This makes MoS2 an attractive material for application in next-generation electronics

and opto-electronics [11]. MoS2 sheets on SiO2 , have previously been demonstrated to have room

temperature mobility< 50cm2V−1s−1, with sub-threshold swing> 1V/decade [12][13][14]. Radis-

avljevic et al. [15] reported n-type conduction with mobility of 200cm2V−1s−1, subthreshold swing

74 mV/decade and on/off ratio of 1× 108 at room temperature, for a top gated MoS2 device with

a high dielectric HfO2. Figure 1.8 shows the typical electrical characteristics of a top gated MoS2

device.
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Figure 1.8: Top gated electrical characteristics [15] of MoS2 transistor at room temperature [15].
(a) current (Ids) Vs top gate voltage (Vtg) curve for various voltage bias (Vds). Inset shows Ids Vs
Vtg for -10V,-5V, 0V, 5V and 10V of back gate voltages(Vbg). (b) Ids Vs Vds for different Vtg .

1.4 Optical properties

1.4.1 Graphene:

Graphene is one atom thick but still has a high optical absorbance of 2.3%, which makes it visible

to naked eye. The light absorption in graphene arises from:

1. Intraband optical absorption: In the far-infrared region, the free carrier optical response is given

by the Drude model for conductivity [16] as

σ(ω) =
σ0

1 + iωτ
, (1.5)

Where σ0 is the dc conductivity, ω is the angular frequency of light, and τ is the electron scattering

time. The plasmonic excitations in graphene by light absorption are prohibited due to momentum

mismatch between plasmons and photons. However such plasmonic excitations are experimentally

observable by using periodic grating structures or patterned graphene arrays [17].
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2. Interband optical absorption- From mid-infrared to ultraviolet region, interband (between va-

lence and conduction band) optical transitions occurs and can be modified through electrostatic

gating[16].

Raman spectroscopy is widely used as a non-destructive way to study phonon dispersion in graphene.

It gives information about both its electronic properties and atomic structure [18]. Ordinarily, re-

laxed carriers in zero-gap graphene do not exhibit a photoluminescence (PL) signal. A PL signal

has been observed for pristine graphene under excitation from a femtosecond laser [19] using an

ion gel gated graphene device under near infrared laser excitation [20].

1.4.2 Molybdenum disulfide:

The optical properties of MoS2 vary with the number of layers due to the changes in its electronic

band structure. Mak et al. [21], characterized the optical properties of monolayer and few layer

MoS2 samples using photoluminescence, optical absorption, and photoconductivity spectroscopy

at room temperature. Figure 1.9 shows the normalized PL intensity as a function of energy (eV)

for various thicknesses of MoS2 from six layers to monolayer. This study shows that bulk MoS2

is an indirect band gap material whereas monolayer MoS2 emits light strongly as it changes to a

direct band gap material. Suspended monolayer MoS2 shows an increase in the PL quantum yield

by a factor of 104 as compared to bulk MoS2.
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Figure 1.9: The normalized PL intensity [21] as a function of photon energy in (eV) for 1 to 6
layers of MoS2 layers.

1.5. Impact of extrinsic impurities, adsorbates, and substrates

1.5.1. Graphene:

1.5.1.1 Phonon scattering:

Hwang et al. [22] theoretically investigated the intrinsic room-temperature mobility of graphene in

the absence of other scattering mechanisms such as defects, charge impurities, etc . The resistivity

due to electron scattering by longitudinal acoustic (LA) phonons is given as

ρLA = (
h

e2
)
π2D2

AKBT

2h2ρSν2
Sν

2
F

, (1.6)
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where DA is acoustic deformation potential, νS is 2.1 × 104 m/s is the sound velocity for LA

phonons, νF is the fermi velocity, KB is the Boltzmann constant, and ρS = 7.6 × 10−7 Kg/m2 is

2D mass density of graphene.

Experimentally the resistivity scattering due to LA phonon was demonstrated to be independent of

carrier density (n) [23]. However phonon modes of the underlying substrate also play an important

role in scattering elections in graphene. For example in the case of graphed on SiO2, the polar

optical phonon of the substrate scatter the electrons by exerting long range potential through remote

interfacial phonon (RIP) scattering [24],[25],[26].

1.5.1.2 Charge impurities:

Charge impurities exert long-range potential which scatter the charge carriers (electrons or holes)

in graphene. These random charged impurities are generally either embedded near the surface of

SiO2 substrate (intrinsically trapped ions in SiO2 which are screened by electrons in graphene)

or are at the interface of graphene and the substrate (residual extrinsic charges formed during the

graphene synthesis process etc). These charged impurities create a spatially inhomogeneous poten-

tial distribution in the graphene plane resulting in the formation of electron-hole puddles. Carrier

transport described using the self-consistent random phase approximation (RPA)-Boltzmann for-

malism [27] predicts a strong dependence of the minimum conductivity on the impurity density, as

given below

σ(n) = Ce
n

nimp
+ σres, (1.7)

where e is the electronic charge, C is a constant which is calculated to be C = 5× 1015V−1s−1 for

SiO2 , n is charge carrier density, nimp is the defect density, and σres is the residual conductivity

at n=0. Furthermore, this charged impurity theory is capable of predicting field effect mobility
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(µ = σ/ne) as a function of impurity density [27] as:

µ =
C

nimp

≈ 5× 1015V−1s−1

nimp

(1.8)

The above formalism predicts that minimum conductivity can vary from 20e2/h to 4e2/h depend-

ing on the charged impurity density, which contradicts the earlier experimental study indicating

a universal minimum conductivity [28]. Chen et al. [29] experimentally investigated the impact

of charge impurities on the transport properties of graphene on SiO2. In their study a controlled

amount of charge scatterers are successively introduced to otherwise atomically clean graphene de-

vices. They demonstrated the effect of charged impurities on the high-carrier density conductivity

of the graphene, showing consistency with the theoretical calculations discussed above [27],[30].

Authors implied that the success of the theory in explaining the potassium doping experiments

shows that the theory describes the native scatterers. Yet, experiments performed on graphene on

different substrates and dielectric environments show that Coulomb impurities are not limiting the

mobility in graphene [31].

1.5.1.3 Ripples:

Ripples can result from the intrinsic instability of the graphene crystal or originate during me-

chanical fabrication of graphene, which relies on the van der Waals interaction between the SiO2

substrate and the graphene. Scanning Tunneling Microscope (STM) topography of the graphene

sheet shows that it is not atomically flat on the SiO2 surface but has nanometer-sized ripples [32].

These ripples are caused by the roughness of the thermally grown SiO2 substrate. Theoretical

studies [33] show that ripples induce weak, yet finite scattering. The conductivity is given by

σcorr(n) = Ccorren
2H−1, (1.9)
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where exponent H gives the fractal dimension of the ripples, andCcorr ∝ ( r
z
)2, where r is the radius

and z is the height of the ripples. Ishigami et al. [32], experimentally observed that the height of

the ripples is due to the roughness of SiO2 and 2H ≈ 1, this will give σ(n) constant (contrary to

experimentally observed linear conductivity σ(n)). However, Meyer et al. [34] performed TEM

studies of suspended graphene membranes, obtaining 2H ≈ 2 and a linear relationship between z

and r. Here the ripples exert long-range scattering and result in a linear conductivity with carrier

density. These two contradictory experimental results make the contribution of ripples to scattering

of charge carriers in graphene unclear. Also graphene exfoliated on atomically flat substrates like

mica has fewer ripples [35] but still its mobility is similar to that of graphene on SiO2. There

is sufficient experimental evidence, to suggest that ripples are not a dominant charge scattering

source in graphene on SiO2.

1.5.1.4 Resonant Impurities:

Charge carrier transport in graphene can also be limited by resonant scatterers [36],[37],[38]. These

scatterers can be adsorbed chemical species or atomic vacancies in the graphene crystal [39] which

give rise to resonance states called ”midgap states” near Dirac point. These strong adsorbates

exert short-range scattering potentials, inducing intervalley scattering. Theoretical calculations

performed considering resonant scatterers in graphene give conductivity dependence on the con-

centration of these resonant impurities as

σ ∝ n(ln2(kFR)), (1.10)

where R is the radius of the adsorbate [36],[37],[38]. Chen et al. [40] created vacancies in graphene

using high energy He and Ne ion bombardment and obtained results consistent with scattering by
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midgap states.

1.5.2. Molybdenum disulfide

1.5.2.1 Coulomb scattering at charge impurities:

Like graphene, the mobility of charge carriers in MoS2 at low temperature can be highly influenced

by charge impurities from the host substrate or device environment. The coulomb scattering can

be reduced by placing MoS2 in a high dielectric environment. It has been recently shown that

MoS2 devices capped with high dielectric insulator indeed exhibit larger mobilities as compared to

samples placed on SiO2 [15].

1.5.2.2 Roughness scattering:

In the case of freely standing MoS2, ripples of ∼1nm height are seen which can also potentially

reduce its mobility [41]. So far the role of these ripples on the scattering of charge carriers in MoS2

has not been experimentally investigated.

1.5.2.3 Phonon scattering:

The mobility of charge carriers generally decreases with increasing temperature due to fact that

phonon scattering scales with temperature. Using first principle Kaasbjerg et al. [41] calculated

the temperature dependence of the mobility in single layer MoS2 as µ ∝ T−Υ, where Υ = 1.69

at room temperature. At temperatures below 100 K the acoustic phonons dominate, but at higher

temperature the optical phonons dominate. These calculations show that at room temperature the

optical phonon scatterers limit mobility of MoS2 to 410cm2V−1s−1. In the case of top gated MoS2
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devices, the out-of-plane homopolar modes are quenched, which changes Υ to 1.52 and, hence,

increases mobility at room temperature by ∼ 70cm2V−1s−1.
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CHAPTER 2: EXPERIMENTAL TECHNIQUES

2.1. Transport measurement

2.1.1. Device fabrication

2.1.1.1. Development of the technique for graphene-based devices

2.1.1.1.1. Wafer preparation

The first step involves patterning alignment markers on a clean 3 inch SiO2 (280 nm)/Si wafer by

standard photolithography and then depositing Au (60 nm)/ Cr (5 nm) using thermal evaporator. As

shown in Figure 2.1, these alignment markers have a coordination system which helps to efficiently

map and locate the one atom thick, few micron-sized graphene flakes under the optical microscope

later on. Next, this 3 inch wafer is cut into smaller wafers about 10 mm × 10 mm in size. Before

use, the wafers are cleaned by dipping in piranha solution (H2SO4 : H2O2 = 3:1) for about 30

minutes and finally rinsed in DI water.

2.1.1.1.2. Graphene devices

The graphene is mechanically exfoliated from kish graphite, using a residue-free adhesive tape

onto clean wafers. Exfoliated layers of graphite are identified under an optical microscope and

single layers of graphene are confirmed using Raman spectroscopy, which is discussed in detail in

section 2.2. Next, a graphene flake is etched into a 4-point probe geometry. The etch pattern is

defined using electron beam lithography (e-beam) and then etched with O2 plasma.
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Figure 2.1: Pattern of alignment markers repeated on the 3” wafer using photolithography.

Figure 2.2: An optical micrograph of a graphene device on SiO2 substrate. The Au (80 nm)/ Cr (5
nm) electrodes were defined using e-beam lithography.
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Finally, the contacts are patterned using e-beam lithography and Au (80 nm)/ Cr (5 nm) metal

contacts are thermally evaporated. The device channel length and width are typically 2-3 µm and

5-6 µm respectively. Figure 2.2 shows a typical completed graphene device.

2.1.1.2. Failure modes for graphene device fabrication

2.1.1.2.1. Electrode thickness

My experimental studies required an atomically clean graphene device (which will be discussed in

detail in the next chapter). However, after device fabrication, the graphene surface can be covered

by residual e-beam resist leftover from processing. So, before the transport measurements, the

graphene devices are cleaned down to the atomic scale by annealing in continuously flowing H2/Ar

at 350 ◦C for 3 hours [32]. In order to survive this annealing step, it is critically important that the

electrode metal (Au in this case) is thicker than 50nm.

2.1.1.2.2. Electrode failure

The wafer should be cleaned thoroughly otherwise the Cr sticking layer does not make good con-

tact with the wafer and comes off after hydrogen annealing. The smallest electrodes are generally

more prone to be damaged due to poor adhesion, as shown in Figure 2.3. Great care should be

taken during device fabrication to use clean tools, fresh chemicals, and an evaporator chamber

with a known metal evaporation history, otherwise device contamination can occur.
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Figure 2.3: (a) Shows the optical image of the graphene device before hydrogen annealing. (b)
shows the same graphene device after hydrogen annealing with electrical contacts on one-side
ripped.

2.1.1.2.3. Wire bonding

During wire bonding great precaution should be taken to electrically ground the wire bonder, and

sample holder to avoid accidental static discharging of the device by physical contact. Also force

and power used for bonding should be minimized (just enough to make a bond). The wire bonder

can also pass a huge current and blow up the graphene device. This was observed in a scanning

electron microscopy (SEM) image of a graphene device on SiO2 before and after wire bonding as

shown in Figure 2.4. So, it is absolutely important to service regularly an old wire bonder in order

to avoid such destructive current spikes. This problem has been alleviated upon purchase of a new

wire bonder. The wire bonding parameter for graphene device are given in the table below.

Table 2.1: Graphene device wire bonding parameters

Bond Power Time Force
Post 300 30 ms High

Graphene 240 30 ms Low
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Figure 2.4: Scanning electron microscopy image (SEM) of a blown graphene device, where high
current passed by wire bonding tip has torn the graphene.

2.1.2. Ultra high vacuum (UHV) chamber

2.1.2.1. Design

2.1.2.1.1. Helitran LT-3B open cycle cryostat:

The ultra-high-vacuum chamber compatible open-cycle Heli-tran Liquid Transfer Refrigeration

System (LT-3B) was manufactured by Advanced Research Systems Inc, shown in Figure 2.5(a)

and (b). It is capable of operating in the temperature range of 2 to 300 K. Also, the sample block

is fitted with a heater so that the sample can also be heated in UHV up to 500 K.

The liquid helium is transferred into the cryostat through a transfer line by pressurizing the helium

dewar. This transfer line has a filter which blocks any dirt from clogging the needle valve and is

designed to minimize heat losses.
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Figure 2.5: (a) Heli-tran LT-3B cryostat. (b) The drawing of the Heli-tran with dimensions from
Advanced Research Systems Inc.

A needle valve is at the end of the transfer tube that goes in the cryostat and it directs the liquid flow

into the heat exchanger. The heat exchanger can be regulated by adjusting the threaded interface.

The heat exchanger, as name suggests acts as an interface for the sample holder. Figure 2.6 shows a

simplified design of the cryostat. The sample holder is cooled down by a continuous liquid helium

flow through cryostat and the helium gas exhaust comes out of the exhaust port.
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Figure 2.6: Schematic of the internal structure of the cryostat design in Heli-tran LT-3B.

A radiation shield which is cooled down using exhausted helium from the heat exchanger, min-

imizes the heat loss. Typically, cool down from 300 K to 10 K takes about 40 mins and at low

temperature the helium consumption is about 1.5 liters/hr. UHV and low temperature compatible

manganin wire of 0.005 mm diameter, 290 Ωcm specific resistance is used for electrical wiring of

the helitran. The electrical wires are wrapped around the cryostat such that there is enough thermal

anchoring to further minimize the heat losses as shown in Figure 2.7.

2.1.2.1.2. Hydrogen cracker:

Figure 2.8 a) shows the commercially available atomic hydrogen source EFM H from Omicron

Nanotechnology/Focus GmbH. It consists of mainly three parts: the gas inlet, the cooling unit, and

the tungsten capillary as shown in the schematic of the EMF H in Figure 2.8(b). It is based on

the principle of dissociating hydrogen gas by heating to high temperature. Through a leak valve, a

controlled amount of molecular hydrogen is passed into the tungsten filament, which is heated to

2600 K by electron bombardment, ensuring that almost all of the hydrogen dissociates.
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Figure 2.7: Picture showing LT-3B cryostat with the wiring and a device.

Figure 2.8: (a) Atomic hydrogen source EFM H from Omicron Nanotechnology/Focus GmbH. (b)
The schematic of the atomic hydrogen cracker showing physical dimensions, showing clearly the
cooling water lines, gas inlet, and tungsten capillary [Source: Omicron Nanotechnology].
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Figure 2.9: Schematic of the cooling shroud in the atomic hydrogen cracker. This shroud enables
the system to maintain the low base pressure of 10−10 mbar at the heater filament, which helps to
get a reproducible angular distribution of atomic hydrogen [Source: Omicron Nanotechnology].

Figure 2.9 shows the schematic of the cooling shroud, which enable the hydrogen cracker to main-

tain low base pressure of 10−10 mbar in the capillary heater. The tungsten capillary is carefully

pre-adjusted at a fixed position in the center to get a reproducible angular distribution of atomic

hydrogen, which is dependent on the pressure and temperature of the tungsten capillary. Higher

pressure results in a broad distribution, while low pressure gives a sharper distribution profile. Fig-

ure 2.10 shows the spot profile of the hydrogen cracker as a function of different heating powers.

Higher power corresponds to higher temperature, hence it gives a sharper angular distribution.

Moreover, the hydrogen cracker is equipped with a shutter in direct sight of the hydrogen beam

that allows precise hydrogen dosage as well as protects sample during degassing of the filament.

Faraday cup measurements: During the cracking of hydrogen gas at high temperature, a small

amount of hydrogen ions may also be generated. For my experimental study it is essential to ex-

pose the sample to pure atomic hydrogen (explained in next chapter). I mounted a Faraday cup in

place of the sample holder in order to measure ion current. With the filament heated at 60 Watts,

upon opening the shutter a negatively charged ion current of about 2.3µA was measured.
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Figure 2.10: : The spot profile of the hydrogen cracker as a function of different heating powers.
Higher power gives a sharper angular distribution [Source: Omicron Nanotechnology].

Figure 2.11: : (a) Hydrogen cracker with a ion deflector system and (b) Ion current measurements
using Faraday cup with hydrogen cracker shutter closed, open shutter with no deflector, and open
shutter with deflector. These measurements clearly indicate that there is a small ion current which
can be quenched to almost negligible values by using a deflector.
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The path of these ions can be easily deviated by employing an electric deflector between the hy-

drogen cracker and the sample as shown in the Figure 2.11(a). The ions are deflected by applying

+210V across the parallel stainless steel plates. Figure 2.11(b) shows the comparison of the ion

current with shutter closed, open, and open with the ion deflector in place, as a function of deflect-

ing voltage. It is clearly seen that, using the deflector, the ion current becomes negligible as all the

negatively charged ions are deflected away from the Faraday cup.

2.1.2.1.3 Experimental setup:

The chip carrier with a graphene device is mounted in the pin socket array on the Heli-tran. Figure

2.12 shows the schematic of the experimental setup. The Heli-tran goes upside down into the top of

the chamber that device has direct line of sight to the hydrogen cracker, which is fitted at the bottom

of the chamber. The sample is at a distance of about 11.28” from the hydrogen cracker. A movable

shutter is inserted from the side 1/4” port to cover the radiation shield during outgassing of the

hydrogen cracker. During the measurements, the radiation shield and hydrogen cracker shutters

help to precisely control the hydrogen dosage to the device. A mass spectrometer, Residual Gas

Analyser (RGA) 200 from Stanford Research Systems, is employed to detect any leaks in the UHV

chamber and to check the residual gas content after baking out the chamber. A Valcon Plus 300

combination pump (Star Cell ion pump and Titanium Sublimation Pump combination) from Varian

Vacuum technologies is used for efficient pumping of hydrogen and noble gases.
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Figure 2.12: : Schematic of the UHV experimental setup at liquid helium temperature.

2.1.2.1.4 Electrical measurements:

The transport measurements of the graphene devices were carried out in our ultra-high vacuum

chamber using quasi-DC measurements. Figure 2.13 shows a schematic of the 4-probe device

measurement setup. A Keithley 2400 is used to apply back gate voltage to the Si wafer through

Rg (100 MΩ resistor), which acts a current limiting resistor that protects the graphene in case of a

short-circuit between the graphene and the gate. The back Si gate voltage varies the charge carrier

density in graphene.
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Figure 2.13: : Four probe graphene device measurement setup, using a lock-in amplifier.

A lock-in amplifier is used to generate a reference voltage (∼ 1V) at a reference frequency (sine

wave signal ∼167.16 Hz), which is sent to excite the experiment. The response of the graphene to

this signal is measured by the lock-in amplifier by phase-sensitive detection, which gets rid of all

electrical noise and gives a response only at the reference frequency [42]. The reference voltage

signal is converted to current by the Rs resistor (10 MΩ) which is connected to the source electrode

of the device. The drain electrode is grounded during measurement. The voltage difference is

measured across two other electrodes, i.e., VA − VB, by using the lock-in amplifier. The output

of lock-in amplifier is connected to a DAC (Digital to analog converter) board. All these physical

instruments are interfaced to the computer and controlled by a Labview program. Another Keithley

sourcemeter (2010) is used to apply +210V to the hydrogen ion deflection system during usage of

the hydrogen cracker.
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Figure 2.14: : Conductance as a function of gate voltage for two different graphene devices on
SiO2. (a) Device labeled J3 shows conductance minimum point shifted beyond -60 V after 24hr
device annealing at 480 K in UHV, indicating the sample to be heavily negatively doped. (b)
Another device labeled J35 similarly shows shift in the conductance minimum point after UHV
annealing.

2.1.2.2 Contamination issues:

Typically the electrical transport measurement of an undoped mesoscopic graphene device has

minimum conductivity (σmin) at or near zero gate voltage. The gate voltage at which conductiv-

ity is minimized is called Vmin. This shift in minimum conductivity point to negative (positive)

gate voltage indicates electron (hole) doping of the sample. Figure 2.14(a) shows the measured

conductance of a graphene device labeled J3 after overnight device annealing in UHV at 480 K.

It has the conductance minimum point unusually shifted beyond -60 V gate voltage, which means

that this sample is heavily doped. As shown in Figure 2.14(b), for another device labeled J35, the

transport measurements were done in successive steps: in vacuum, after bake out and after device

annealing at 478 K, again has Vmin negatively shifted after annealing. This unusual large shift

of Vmin beyond -50V clearly points to possible contamination (extrinsic doping) of the graphene

device.
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Figure 2.15: : Transport measurements of three two-probe devices labeled LM, LI and EF before
and after chamber bake out. Before and after bake out, each of these devices exhibit positive
doping, indicating no contamination during bake out and outgassing of the filaments.

The possible contamination source are: device fabrication, hydrogen annealing process, wire

bonding, UHV chamber, helitran contamination, and device heater. I measured three two-probe

graphene devices labeled LM, EF and JK to systematically rule out other possibilities and identify

the source of contamination. Figure 2.15 shows the transport characteristics of these devices mea-

sured in the Heli-tran before and after bakeout of the UHV chamber. Each of these devices exhibits

positive doping of the graphene before and after chamber bake out, indicating no contamination

due to hydrogen annealing, device fabrication, chamber bake out, or outgassing of filaments in

UHV. Next, these devices were measured after annealing in UHV using a button heater (without

the Heli-tran).
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Figure 2.16: : Transport measurement of graphene devices, using button heater (without Heli-tran)
(a) Device EF, (b), Device LM and (c) Device KJ show slight shift in Vmin to negative gate voltage
after device annealing, ruling out hydrogen annealing, and UHV chamber contamination

The transport measurements shown in Figure 2.16(a),(b) and (c), rule out device annealing, and

UHV chamber as a source of contamination, as we observe only slight shift of Vmin to negative

voltage.
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Figure 2.17: : Transport measurements of device labeled EF plugged into the Heli-tran without
heating showed slightly negative doping after chamber bake out, indicating no contamination from
Heli-tran and UHV chamber.

Next, we tested the Heli-tran without heater. For this we plugged these devices in Heli-tran and

carried out transport measurements. Figure 2.17 shows the data obtained, which confirms that

Heli-tran and UHV chamber are not contaminated. Furthermore, when these devices were heated

using the heater Vmin shifted to negative gate voltage as shown in Figure 2.18 (a), (b), and (c),

indicating the heater to be the source of contamination.

On inspecting the heater, the black color contamination was visible as shown in Figure 2.19. It

turned out that Advanced Research Systems (ARS) Inc. used stycast to glue down the heater on

the cryostat.
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Figure 2.18: : (a) EF, (b) KJ and (c) LM: The Transport measurement of each of these devices
shows shift of Vmin to beyond -40 V after 1 hr annealing at 423 K in UHV chamber with the
heater.

Figure 2.19: : (a), (b) Pictures showing heater with black color residue from outgassing of the
stycast, and (c) Picture showing black color contamination on the wire selves used for tying the
wiring on the Helit-ran.

Stycast is NASA certified to cause very small outgassing (TML and CVCM outgassing of 0.27 %

and 0.08 % respectively). However it seems that even this little outgassing was sufficient to neg-

atively dope graphene. Using tungsten wire, I custom made a heater to anneal graphene samples

in UHV and obtained typical electrical transport characteristic of graphene (without any sign of

contamination) is shown in Figure 2.20.
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Figure 2.20: : Ambipolar transport characteristic of a two-probe graphene device after 24 hr an-
nealing at in UHV, with minimum conductivity point within ±10V.

2.1.3 Pin socket array

Pin grid arrays (PGAs) are used commercially for packaging integrated circuits. Their com-

pact geometry, large contact density, and commercial availability have also made them useful

for nanoscale and atomic physics. In these fundamental science applications, it is often neces-

sary to use ultrahigh vacuum (UHV)-compatible PGAs. Nanoscale materials such as graphene,

[43],[44] carbon nanotubes,[45],[46],[47],[48] and nanowires [49] possess extreme sensitivities to

adsorbates because of their high surface to volume ratio. Such sensitivities necessitate experiments

in UHV in which absolute control over adsorbates can be established. UHV transport measure-

ments at temperatures ranging from 10 to 490 K have been carried out to discover the impact of

adsorbates, [29], [50],[51],[52],[53] intentionally created atomic scale defects, [53] and substrate

phonons [54] on graphene and nanotubes. UHV-compatible PGAs are used to package nanoscale
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devices in these experiments. In atomic physics, there is significant interest in fabricating ion traps

on chips with high spatial density [55],[56] for developing atomic clocks and quantum computing

technologies. UHV is desired for increasing trapping times and ensuring the purity of trapped

atoms and molecules in these experiments, [57],[58] and UHV-compatible PGAs are also used

to package these on-chip ion traps. Thus, devices for both nanoscale and atomic physic necessi-

tate UHV-compatible PGAs. Fortunately, these PGAs are readily available and can be purchased

from Kyocera (San Diego, CA), Ametek (Lakewood, NJ), and other manufacturers. Since devices

are extremely sensitive and do not tolerate soldering, PGAs require their complementary socket

arrays (SAs) to establish electronic contacts. Typically, a given instrument has an SA fixed to

the vacuum chamber and PGAs are exchanged to measure different devices. Commercial sock-

ets, shown in Figures 2.21 (a) and (b), can be integrated with non-plastic insulating support to

assemble SAs for the use in UHV as shown in Figures 2.21(c) and as demonstrated in previous

studies.[29],[50],[55],[56]. Yet, these SAs based on commercial sockets should not be considered

to be UHV-compatible. The gold plated housing for these commercial sockets, indicated by the

shaded region in Figure 2.21(b), is composed of brass. Since the plating is thin and composed of a

0.25µm gold layer with a 1.25µm nickel base layer, even small scratches can cause zinc contami-

nation detrimental to UHV as brass contains zinc. All commercial sockets use similar brass-based

housing and, consequently, there are no UHV-compatible sockets available for assembling SAs. To

address this, I designed completely UHV compatible sockets, which maintain reliable electronic

contact down to cryogenic temperatures and survive repeated insertion-retraction cycles. Its design

and construction in discussed in detail below.

Design and Construction of UHV-Compatible sockets and SAs

The cross-sectional mechanical drawing of the UHV compatible socket is shown in Figure 2.22(a).

The socket has two components: (1) a gold-plated beryllium copper (BeCu) spring contact and (2)

a stainless steel tube.
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Figure 2.21: : (a) Photograph of a Samtec SC series socket. (b) Schematic cross section of a
Samtec SC series socket. The orange region denotes the gold-plated BeCu spring contact. The
shaded region represents the gold-plated brass casing for the spring contact. The scale bar is 1/32
in. (c) A socket array for a PGA fabricated from the commercial sockets. The insulating support
is made from MACOR ceramic and sockets are glued using nonconductive epoxy.

A gold-plated BeCu spring contact, as shown in Figure 2.22(b), serves as the contacting electrode

in the design. Spring contacts can be extracted from Samtec SC series sockets [Figure 2.21(a)].

To retrieve a spring contact, vertical cuts are made at the top of the brass housing of a Samtec

socket using a wire cutter. The housing is opened and the spring contact is removed using small

tweezers. Spring contacts are very thin and fragile. In order to ensure their survival under repeated

insertion-retraction cycles, spring contacts are press-fitted into stainless steel tubes with 1/16 in.

outer diameter and 0.010 in. wall thickness as shown in Figure 2.22(c).
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Figure 2.22: : (a) Schematic cross section of the custom socket. The orange region (grey in print)
represents the gold-plated BeCu spring contact. The shaded region is the stainless steel tube. The
green region represents the epoxy layers. The scale bar is 1/32 in. (b) A photograph of an extracted
gold-plated BeCu spring contact. (c) The spring contact press-fitted in a stainless steel tube. (d) A
socket array for a PGA fabricated from the custom sockets

Stainless steel tubes are first cut into appropriate lengths using a diamond saw and deburred with

a small drill bit. Spring contacts and deburred stainless tubes are cleaned using acetone and iso-

propanol to remove any residues before press-fitting. Press-fitted contacts are then epoxied to tubes

as shown in Figure 2.22(a). We apply conductive epoxy, H20E from Epoxy Technology, Inc (Bil-

lerica, MA), along the edge where the contact meets the steel tube. Once the conductive epoxy

layer cures, nonconductive epoxy, H77 from Epoxy Technology, Inc. (Billerica, MA), is applied to

increase the strength of the bond between the spring contact and the tube. These epoxies survive

being baked up to 200 ◦C without bond failure and with less than 1% of weight loss, according

to tests performed by Epoxy Technology. Completed custom sockets are glued into a machinable

ceramic plate [Macor, Corning, Inc. (Corning, NY)] with a pattern matching that of a PGA to

assemble an SA as shown in Figure 2.22(d). Non conducting epoxy is used for gluing the sockets

into the plate. A dummy PGA is used for the bonding procedure to ensure the proper alignment.

Characteristics

The completed custom SA is UHV-compatible, reliable down to low temperatures, and robust
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under insertion-retraction cycles. We have performed transport measurements on a graphene de-

vice to demonstrate. Any adsorbates, which might be introduced by contamination, can affect

the minimum voltage, Vmin, and the field effect mobility [29]. Vmin is the gate voltage at which

the conductivity is minimized and the mobility is proportional to the slope of the gate dependent

conductivity curve. Figure 2.23 shows transport measurements performed on a graphene device.

The device was first introduced into vacuum and baked along with the chamber to establish UHV.

Pressures reaching down to 1.8× 10−10 Torr can be achieved with the custom SA integrated to

our UHV cryostat, which is LT-3B purchased from Advanced Research Systems, Inc.(Macungie,

PA). Before baking, Vmin is located at +2.7 V and after baking, during which the device reaches

380 K, Vmin shifts to -1.7 V. The electron mobility improves and the hole mobility is slightly de-

creased. The observed change in transport property is minimal and can be attributed to changes in

the properties of the substrate as substrate-bound adsorbates are desorbed. If the bakeout process

did introduce contamination, annealing at higher temperatures should worsen the device. Yet, the

transport property remains the same after annealing at 400 K indicating that there are no contam-

inations. As such, we conclude that the custom SA is UHV-compatible. Figure 2.23 also shows

that the custom SA can also maintain reliable electronic contact down to 10 K.

In conclusion we have designed a new socket for PGAs that is UHV compatible and can main-

tain reliable electronic contact down to 10 K. These sockets can be used to fabricate high contact

density SAs, which are useful for nanoscale and atomic physics experiments.
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Figure 2.23: : Representative transport measurement performed on a graphene device, showing
that the new sockets are UHV-compatible and reliable down to 10 K. Gate-dependent conductivity
at room temperature in air, after baking, after annealing at 400 K is shown. In addition, gate
dependent conductivity at 10 K is also plotted.

2.2 Raman and photoluminescence spectroscopy

2.2.1 Physical principle

2.2.1.1 Raman spectroscopy

Raman Spectroscopy technique is based on Raman scattering, in which light is inelastically scat-

tered by an atom or molecule. It probes the vibrational and rotational modes of a molecule. An

incident photon is absorbed and is reemitted by the atom or molecule at a shifted frequency. The

reemitted photon may have a higher (anti-Stokes scattering) or lower (Stokes scattering) frequency

than the incident photon. We usually measure the Stokes peaks as they are typically more intense.

Since each molecule has its unique vibrational modes, this technique is widely used as a way
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to nondestructively characterize a material. It gives information about bond strength, and bond

environment.

2.2.1.2 Photoluminescence spectroscopy (PL)

PL is a nondestructive technique to probe electronic states of a material using an optical excitation.

When incident photons on a material are absorbed, it undergoes photo-excitation transitions from

a lower to a higher electronic states. When the excited state relaxes through a radiative process to

the ground state, photons or light is emitted called PL. The quantum yield of PL intensity is related

to the amount of radiative and non-radiative recombination rates. Thus PL provides information

about electronic states, impurity level, and interface and is vastly used to characterize direct gap

semiconductors as discussed in detail below for MoS2.

2.2.2 Implementation

2.2.2.1 Graphene:

Raman spectroscopy has been successfully used to study doping [59], functionalization [60], strain

[61], and edge effects [62] in graphene. Moreover, Raman spectroscopy is the simplest way to

identify single layer graphene. Figure 2.24(a) shows the typical Raman spectrum of graphene and

graphite. It mainly consists of three peaks: D peak at 1360cm−1, G peak at ∼ 1560 cm−1, and

2D peak at ∼ 2700cm−1. The G peak is due to a high frequency E2g phonon at the Brillion zone

center. The D peak is activated by defects and, therefore, it is used to estimate number of defects

in the sample [63]. The 2D peak is a second order of the D peak, which is used to characterize

number of layers of graphite.
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Figure 2.24: : (a) Raman Spectroscopy of graphene (top graph)and graphite (bottom graph) (b)
Comparison of 2D peak in graphene (top graph) and graphite (bottom graph). Graphene 2D peak
exhibits single Lorentz peak fit with FWHM ∼ 27cm−1 and graphite has multiple Lorentz peak
fits .

As shown in figure 2.24(b), graphene has a sharp 2D peak at 2675cm−1 with single Lorentz fit

and FWHM ∼ 27cm−1, whereas graphite has the 2D peaks centered at 2700cm−1 with multiple

peaks Lorentz fits. The shift (blue) in the G and 2D peak indicates doping (hole) of the neutral

graphene sample. Moreover, the mono and bi-layer graphenes do not exhibit a photoluminescence

signal due to the negligible band gap under normal conditions. However a PL signal is observable

in graphene under two possible circumstances as discussed earlier in Chapter 1 section 1.4.1.
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Figure 2.25: : ( a) Raman spectroscopy of single layer MoS2, showing the in plane (E′2g) vibration
mode at 385cm−1 and the out of plane vibration mode (A1g) at 405cm−1. (b) Photoluminescence
spectrum of single layer MoS2, which exhibits a sharp peak at 1.85 eV corresponding to a direct
gap in the band structure.

2.2.2.2 Molybedenum disulfide (MoS2):

As shown in Figure 2.25(a) the Raman spectrum of single-layer of MoS2 consist of two peaks: a

in plane (E
′
2g) and an out of plane vibration mode (A1g) at 385cm−1 and 405cm−1, respectively

[64]. These two modes are used to identify the number of layers in MoS2, as the frequency of

(E
′
2g) decreases and that of the A1g peak increases with the number of layers of MoS2. Moreover,

single layer MoS2 is a direct-band gap material with a high intensity PL signal at 1.8 eV, as shown

in Figure 2.25(b). Thus, the modification of the electronic structure [65] and doping [66] of MoS2

can be probed by photoluminescence spectroscopy.
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2.3 Scanning tunneling and atomic force microscopy

2.3.1 Principles of STM/AFM

Scanning Tunneling Microscopy (STM): Ever since the development of this technique in 1982 by

Binning and Rohrer, it has been an important tool to explore new phenomenon and widen the

understanding of the nano-scale physics. It makes it possible to obtain atomic resolution images of

surfaces, carry out atomic manipulation, and provides information about local electronic density of

states. It is based on the principle that when a bias voltage is applied to a sharp tip and is brought

very close (few Å) to a surface in vacuum, a tunneling current starts flowing from tip to sample

(should be conductive). The tunneling current is an exponential function of the separation between

the tip and the sample, given as

I(z) ∝ e[−2(2mφ/h̄)z], (2.1)

where z is the distance between the tip apex and the sample, φ is the averaged work function

between the tip and the sample, m is the mass of the electron, h̄ is the Planck constant, and e the

electron charge. So, if the separation increases, the current substantially decreases and vice versa.

Figure 2.26 shows the schematic of a scanning tunneling microscope. The tip is mounted on a

scanner, which is capable of x, y and z motion. In the constant current mode, as the tip scans over

the sample it moves up and down in order to keep a constant separation between the tip and the

sample. Thus, the tip movement gives the topography of the sample.
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Figure 2.26: : Schematic of Scanning Tunneling microscope (STM).

Non-contact Atomic force microscopy (NC-AFM): A sensor with a tuning fork (Q plus) relies on

the long range forces (Fz) between the tip and surface in non-contact atomic force microscopy

(NC-AFM) to obtain atomic resolution images of both conductive and non-conductive samples. In

the frequency-modulation (FM) mode of the AFM, the tuning fork is vibrated at fixed amplitude,

Adrive, at a fixed frequency, fdrive, which is close to the natural frequency, f0, of the tuning fork. On

approaching close to the surface the, the inelastic and elastic interactions cause the amplitude and

the frequency to change relative to the driving signal. This relative change in the frequency signal

of the cantilever is used as a feedback signal and gives atomic resolution of the surface.

2.3.2 Implementation

2.3.2.1 STM tip preparation and characterization-

The STM tip is prepared from a tungsten wire of diameter 0.38 mm using electro-chemical method.
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Figure 2.27: : Picture showing tip etching kit from Omicron Nanotechnology to prepare sharp tips
(small apex radius) using the differential cut-off procedure. Source [Omicron Nanotechnology].

I used the tip etching Kit from Omicron Nanotechnology to prepare the tips using the differential

cut-off procedure as described below. The quality of the etched tip greatly varies with the tip

material and etching parameters.

The tungsten wire is cut with a sharp wire cutter to a length of at least 2 mm longer than the final

length needed. A ring shaped cathode is made using a stainless steel wire of diameter 1 mm. The

tungsten wire, serving as the anode is then lowered into the center of the cathode ring in such way

that it is dipped about 2 mm into a beaker filled with a buffer NaOH solution (5.0 N), as shown in

the Figure 2.27. Depending on the wire length inserted into the solution the initial current is set

50-70 mA and that the etching voltage (10 V) stops when the current drops below 20 mA.
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Figure 2.28: : Schematic showing tip shape during tip etching process.

I use sensitivity of 6 which is essential to allow etching voltage to respond appropriately to the tip

etching (neither too slow nor too fast). As soon as the etching process ends, the tungsten piece

below the cathode ring drops and a sharp piece is obtained as shown in Figure 2.28. The voltage

must be turned off when the tungsten piece is dropped to obtain a sharp tip. The tip is next dipped

in de-ionized water about 10 times to avoid formation of NaOH crystallites. The tip shape is

routinely characterized under microscope. This method can be consistently used to obtain sharp

tips. With time, the concentration of NaOH solution needs to be increased to avoid formation of a

second meniscus due to decrease in solution level. The tips get oxidized in air, which hampers the

tunneling current.
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Figure 2.29: : Tip Preparation tool from Omicron Nanotechnology. Source [Omicron Nanotech-
nology]

I have used two methods to clean the oxide from the tip: in-situ vacuum annealing at 1000 ◦C

and HF etching. Figure 2.29 shows the tip preparation tool from Omicron Nanotechnology, that I

mostly used to remove oxide from STM tips in UHV. It has an advantage that it gives reliably sharp

tips with stable tunneling current. In this method, the tip is heated to high temperature by electron

bombardment from a thoriated tungsten filament. First, the filament current is increased to 1.9 A

and biased to 1 KV. Then the tip is brought close (∼1 mm) to the filament until an emission current

of 1.67 mA is obtained. The tip is heated at these parameters for 6 sec to completely remove the

oxide. Heating for more time makes the tip blunt due to melting. Once the oxide is removed the

tip is ready to use for atomic scale imaging. However this method cannot be used to remove the

oxide layer from the Q plus sensor with tuning fork for NC- AFM.
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In this case the oxide can be easily removed by dipping the NC-AFM/STM tip (only the tip and

not the cantilever prongs) in a buffer HF solution. Next, the tip is dipped into de-ionized water

and immediately pumped in the STM after inspection under optical microscope. Tips should be

etched in the buffer solution for 5 sec. Etching for less than 5 secs resulted in partial oxide removal,

whereas etching for more than 5 sec made the tip blunt (large apex radius). This method routinely

gives good NC-AFM tips, which helped me to obtain atomic resolution of various surfaces.

This buffer etching technique is not suitable to remove oxide from STM tips, as it does not yield

stable a tunneling current, and hence making these tips non-ideal for probing local density of states

of the scanning material by scanning tunneling spectroscopy.

2.3.2.2 Device fabrication requirements for STM experiments

2.3.2.2.1 Special provisions for locating samples:

A conducting sample is required in order to perform STM. Exfoliated graphene flakes are usually

20 × 20µm2 in size. Thus approaching the STM tip onto graphene devices can be very chal-

lenging, without crashing the tip into insulating gate dielectric. Although our custom designed

STM/AFM from Omicron Nanotechnology has a long focus optical microscope, which improves

the device visibility inside the cryostat. However still some device fabrication design modifications

are necessary to be able to find and safely approach graphene with the STM tip. For this reason the

electrical contacts to graphene are usually made 15-20 µm wide as shown in the Figure 2.30(a).

The tip is first approached on one of the 300 µm × 300 µm contact pads and then it is pulled back

about 20-30 steps from the surface. Next, the tip is moved along this particular electrode towards

graphene to find the Au/graphene interface. Alternately, for small sized graphene flakes (5 µm× 5

µm), a one probe device can also be made by completely surrounding graphene as shown in Figure
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Figure 2.30: : (a)Four probe Au(50 nm)/Cr(5 nm) metal contact on graphene on SiO2 for STM
studies. (b) A one probe metal contact where graphene is surrounded by the contact.

2.30(b). Standard ebeam lithography is employed to pattern the contacts. The Au (50 nm)/Cr (5

nm) metal contacts are evaporated using thermal evaporator. Figure 2.31 shows the optical image

of the STM tip approached on graphene device on SiO2, obtained with the Omicron long focus

microscope.

2.3.2.2.2 Device sample plate:

The STM has a special provision to carry out in-situ transport measurements in the low temperature

cryostat. The sample plate has four contacts. The design of the contacts make it difficult to wire

bond, so four Au contacts were made by the shadow mask method on the insulating sapphire and

glued down on the sample plate as shown in the Figure 2.32.
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Figure 2.31: : The optical picture of the STM tip a few Å away from the grapheme device on SiO2

substrate.
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Figure 2.32: : Schematic showing the STM sample plate with modifications for the 4-point contact
device measurements.
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CHAPTER 3: IMPACT OF CALCIUM ON TRANSPORT PROPERTY

OF GRAPHENE

Graphene, a single layer of graphite, possesses unusual electronic properties characterized by rel-

ativistic Dirac physics and extraordinary field effect mobility. As such, graphene is highly useful

for both fundamental science and applications [28],[43],[67]. Various extrinsic scatterers can sen-

sitively influence the utility of graphene by obscuring the intrinsic property and affecting the per-

formance of graphene-based electronics. As such, understanding the impact of extrinsic scatterers

is essential for graphene science and technology. The impact of long-range Coulomb scatterers

is most well investigated among various types of scatterers. There are two previous theory re-

sults, which define the current understanding on Coulomb scatterers. Gate-dependent conductivity

for various areal densities of Coulomb scatterers has been calculated using the Boltzmann kinetic

theory with random phase approximation (RPA) [27]. In addition, electron-hole asymmetry in

scattering strength, unique to the Dirac physics, has been predicted for charged scatterers [68].

The previous measurements of the transport property as a function of the density of potassium ad-

sorbates [29] showed apparently striking agreement to the theory. Potassium rendered conductivity

linearly dependent on the carrier density and induced electron-hole asymmetry. Yet, sufficient dis-

crepancies existed between the theoretical and experimental results. Quantitative differences were

seen in the impact of doping by potassium and in the electron-hole asymmetry, while the behavior

of the minimum conductivity was completely unexplained by the theory. These discrepancies can

signal the failure in the existing theory, or they can be due to properties specific to potassium ad-

sorbates such as density-dependent charge transfer and spatial ordering.

We have measured the impact of calcium adsorbates on the transport property of graphene. Our

results parallel the previous results on potassium adsorbates. Quantitative disagreements with the
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existing theory are seen for the effect of doping and the electron-hole asymmetry, while the theory

fails completely to describe the minimum conductivity. Minor discrepancies make it impossible to

confirm or deny the validity of the theoretical calculations although they suggest that the theory at

least underestimates static screening by graphene. Failure to explain the minimum conductivity is

most likely due to the inability of the Boltzmann theory to describe the transport property when the

Fermi wavelength is exceedingly large. Our results indicate that new experimental capabilities to

minimize the contribution from the disordered substrate and to measure the number of impurities

simultaneously with conductivity measurements are essential for confirming the existing theory on

the impact of charged impurities on graphene.

The graphene device was fabricated from mechanically exfoliated graphene on 280 nm thermal

silicon oxide on highly doped silicon using electron beam lithography. The graphene sheet was

etched into the Hall bar geometry using oxygen plasma after contacts were metallized [69]. The

device was annealed in Ar/H2[32] to remove the resist residues prior to transport measurements

performed in an ultra-high vacuum (UHV) chamber, enabling a direct interaction between calcium

adsorbates and the graphene sheet. Transport measurements were performed at 20 K in UHV at

increasing coverage of calcium, which was evaporated from a homemade evaporator using calcium

granules as the source material.

Figure 3.1(a) shows a representative gate dependent conductivity of the graphene device at 20 K

with definitions of the parameters discussed in this paper. The minimum voltage, Vmin, is defined

as the gate voltage at which the minimum conductivity, σmin, is observed. We call this location the

minimum point. Red dotted lines describe the gate dependence of conductivity away from Vmin.

These lines intersect above zero conductivity at the residual conductivity, σres. The plateau width

is the gate voltage range where conductivity deviates from the linear behavior and the width is

determined by intersecting a line through the minimum conductivity and the dotted lines.
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Figure 3.1: (a) Gate dependent conductivity of the graphene device used for the experiment.The
figure shows the definition for the plateau width (Vmin), minimum conductivity (σmin) and residual
conductivity (σres ). Dotted red lines are used to determine the plateau width and residual resistivity.
(b) Gate dependent conductivity of the graphene device at increasing levels of calcium adsorbates.

Gate-dependent conductivity, σ(Vg), is well-described as (1/neµ+ 1/σc)
−1 in the limit of high n,

where n is the number of carriers, e is the charge of an electron, µ is field effect mobility and σc is

a constant conductivity as observed previously [29],[70],[71]. The first term has been attributed to

the scattering induced by the long-range Coulomb impurities with mobility inversely proportional

to the number of impurities. σc has been suspected to be due to short-range impurities or white

noise impurities [70]. Field-effect mobility is assumed to be gate independent in this paper and

determined by fitting a linear line to the dependence of n/σ(Vg) and finding its intercept at n = 0.

Figure 3.1(b) shows measured conductivity at increasing coverage of calcium. The impact of

calcium on graphene is qualitatively similar to that of potassium. Upon increasing the coverage,

we observe that Vmin shifts to more negative values, mobility is significantly reduced, conductivity

is rendered linearly dependent on gate voltage, minimum conductivity varies non-monotonically,

and plateau width is increased. In the following discussion, each feature will be quantitatively

compared to the theoretical calculations.
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Figure 3.2: Inverse electron and hole mobility as a function of the calcium dosage time.

The dependence of electron and hole mobility on the observed shift of Vmin, VShift, is as shown

in Figure 3.2. Constant evaporation rate was achieved by maintaining the same power on the

calcium evaporator. In this case, the accumulated exposure time is proportional to the number

of adsorbates assuming a constant sticking coefficient. The figure shows that there is a linear

relationship between the number of adsorbates on the surface and inverse mobility as observed

previously [29] and in consistency with the Boltzmann-RPA calculation [27]. Figure 3.3(a) shows

the dependence of V shift on inverse electron and hole mobility. The observed behavior is well

described by a power law. The exponents are found to be 1.51 for holes and 1.37 for electrons.

The Boltzmann-RPA theory calculation finds the exponents to be 1.2-1.3 [27] and finds the power

law behavior to be the hallmark of nontrivial, weak screening by graphene. Yet, this agreement of

the experimental and theoretical exponents is only partially relevant.
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Figure 3.3: Vshift as a function of inverse electron and hole mobility. A power law behavior is
observed for both electron and hole mobility. (b) Vmin as a function of inverse electron and hole
mobility. Solid lines are calculated values for charged impurities located 0.3 nm and 1 nm away
from graphene. (c) Theoretical curves have been offset in the x-axis by 1.4 Vsec/m2.

The theory considered only one type of charged impurities and Vmin was assumed to be equal to

VShift. A direct comparison of the theoretical curve to our results shows an offset as shown in

Figure 3.3(b), which is likely due to the extra charge transfer from the substrate-bound charged

impurities, not considered by the theory. Shifting the theoretical curves, we find that the results are

close to the theoretical curve generated using an unrealistic adsorbate-graphene distance of 1 nm

as shown in Figure 3.3(c). The distance is approximately 3 Å for both potassium and calcium as

measured and calculated previously [72],[73]. Such underestimation of VShift at a given scatterer

concentration indicates that graphene screens calcium more effectively than expected from the

Boltzmann-RPA theory calculation. Increased screening is most likely due to extra carrier density

induced by the substrate-bound impurities and removal of the substrate impurities should allow

more complete testing of the theory.

Electron-hole asymmetry in mobility is expected to depend on the static dielectric constants of

graphene and the substrate as well as the charge transferred per adsorbate [68]. µe/µh remains to

be approximately 0.9 from before dosing to increasing coverage of calcium adsorbates as shown in

Figure 3.4(a), indicating that both the substrate-bound Coulomb impurities and calcium adsorbates

induce the same asymmetry.
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Figure 3.4: (a) µe/µh at increasing coverage. (b) Theoretical µe/µh at different Z for adsorbates.
Green and brown dots indicate the experimental values for calcium and potassium. Values of
charge transfer for potassium and calcium are as calculated previously [73].

Figure 3.4(b) shows the comparison of the observed asymmetry to the theoretical expectation for

µe/µh. The theoretical ratio is generated using κsubstrate = 2.45 and κgrapheneRPA = 2.41, which

are dielectric constants due to the substrate and the graphene lattice on SiO2 substrates [74]. As

shown, decreased asymmetry for calcium compared to potassium is as expected by the theory as

calcium has been calculated to transfer less charge than potassium [73]. The observed smaller

ratios for both calcium and potassium can be due to underestimation of either charge transfer from

adsorbates or screening by graphene. Direct simultaneous determination of both the adsorbate den-

sity and transport property should enable the elucidation of the nature of the observed asymmetry.

The impact of calcium adsorbates on σmin is poorly described by the previous theoretical calcula-

tions. σmin fluctuates little near 4.5e2/h at increasing coverage as shown in Figure 3.5(a), while

the Boltzmann-RPA theory calculation predicts a monotonic, decreasing behavior with respect to

the coverage. This nearly constant behavior seen for calcium and non-monotonic behavior seen

for potassium [29] indicate the failure of the theory to describe the transport property of graphene

at the minimum point.
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Figure 3.5: Comparison of observed data and theory of (a) minimum and residual conductivity
and (b) plateau widths.

In addition, the observation of near constant σres near 2.5e2/h, which is similar to the previous

results on potassium adsorbates, is also in complete disagreement with the theory. The Boltzmann

approximation is expected to be inaccurate when the Fermi wavelength approaches infinity at the

Dirac point. Yet, the Boltzmann-RPA theory has been expected to be accurate at the minimum

point because the inhomogeneity introduced by the substrate-bound impurities ensures the Fermi

wavelength to be finite except at the few points where the Fermi level crosses the Dirac point. The

observed σmin and σres demonstrate that these crossing points are sufficient to make the Boltzmann-

RPA theory inadequate in describing the minimum point.

Unlike σmin and σres, the plateau widths show qualitative agreement to the Boltzmann-RPA theory.

The heoretical result remains closer to our experimental results away from the minimum point.

The observed widths are smaller than the theoretical values in contradiction with the Boltzmann-

RPA theory as the charged scatterers bound on the substrates should be contributing to widen the

plateau. Such discrepancy can be due to the experimental inaccuracy in determining the plateau.

Minimizing the contribution from the substrate impurities should enable better experiments.
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In conclusion, we have measured the impact of calcium adsorbates on the transport property of

graphene to determine if the discrepancies seen in the previous measurements using potassium

adsorbates are systematic to all charged impurities or specific to the interaction between potassium

and graphene. We find that similar behavior is manifested by graphene under the influence of

calcium. Our results indicate that the Boltzmann-RPA theory has not been properly confirmed

by experiment and is inadequate at the minimum point. Further tests on the previous theoretical

calculations must minimize the influence of the substrate as have been achieved by hexagonal

boron nitride [75] and count the density of charged scatterers while measuring their impact on the

transport property.
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CHAPTER 4: UNCOVERING THE DOMINANT SCATTERER IN

GRAPHENE ON SILICON OXIDE.

4.1. Impact of atomic hydrogen adsorbates on graphene on SiO2.

Freely suspended graphene sheets display high-field-effect mobility, reaching 2×105 cm2/Vs [76],

[77]. High mobilities allows for a wider utilization of graphene sheets in testing relativistic quan-

tum mechanics, exploring two dimensional physics, and creating new electronic, optoelectronic,

and spintronic device technologies [4],[43], [67]. Yet, suspended graphene sheets are fragile and

impractical for most experiments and applications. Substrate-bound graphene sheets are easier

to handle but possess low-carrier mobilities, which can even vary by an order of magnitude from

sample to sample. Poor and unpredictable transport properties reduce the utility of substrate-bound

graphene sheets for both fundamental and applied sciences. Therefore, understanding the impact

of substrates is crucial for graphene science and technology.

Charged impurities, [27], [30] ripples,[33] and resonant scatterers [37],[36],[38], [39] have been

considered for modeling the transport property of graphene field-effect transistors (FETs). Previ-

ous experimental studies have explored the impact of charged impurities [29] and resonant scatter-

ers [40],[78],[79],[80] by using adsorbed impurities or creating vacancies on graphene sheets. Yet,

these studies revealed only the impact of adsorbates or vacancies and did not shed information on

the nature of the native scatterers already present in the samples. Furthermore, experiments using

different dielectric environments have provided contradictory results on the role and importance

of charged impurities[31],[71]. Thus, there are no conclusive experimental results revealing the

nature of the native scatterers that limit the transport properties of graphene on SiO2.
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We have measured the impact of low-energy atomic hydrogen on the transport properties of graphene

as a function of coverage and the initial field-effect mobility. Our transport measurements and

Raman spectroscopy measurements show that hydrogen exerts a short-range scattering potential

which introduces intervalley scattering. Hydrogen transfers a small but finite amount of charge,

as indicated by the gate-dependent transport measurements. The resistivity added by hydrogen

remains proportional to the number of adsorbed hydrogen and, therefore, adheres to Matthiessen’s

rule even at the highest coverage. This shows that adsorbed hydrogen remains rather dilute and

does not interfere with other pre-existing scattering mechanisms. The added resistivity at high-

carrier densities varies approximately as nδ , where n is the carrier density and δ ≈ -1.5. Impor-

tantly, the saturation coverage of atomic hydrogen is found to be proportional to the inverse initial

mobility and, therefore, to the number of pre-existing scattering sites. Finally, our results show that

the reactivity to atomic hydrogen is a characteristic manifestation of the most dominant scatterer

in graphene sheets on SiO2.

The graphene FETs in our measurements are prepared using the conventional method [81]. Trans-

port properties are measured using the four-probe method citedevicedim. The initial, prehydro-

genation mobility ranged from 1900 to 8300 cm2/Vs for different graphene devices. Each device

is hydrogenated at constant temperature between 11- 20 K [82]. We use a commercial atomic hy-

drogen cracker, EFM H from Omicron GmBH, which utilizes a tungsten capillary heated to 2500

K by an electron beam. The cracker also generates high-energy ions which are steered away from

graphene using an electric deflector. The dosage rate of atomic hydrogen [83] is maintained con-

stant throughout the measurements using a variable leak valve. The total dosage or accumulated

areal dose density can be very different from the actual hydrogen coverage depending on the stick-

ing coefficient. Transport properties are measured at increasing dosages.

Figure 4.1 shows the impact of atomic hydrogen adsorption on the conductivity of graphene sheets.
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Figure 4.1: (a), (b) Impact of atomic hydrogen on the transport properties of graphene sheets
(samples A and B) for increasing areal dosage density. Sample A was measured at 12 K and
B at 20K, respectively. The areal densities, the number of impinging hydrogen (which may
not be necessarily adsorbed on graphene), are (a) purple: clean (zero), black: 1×1015/cm2,
red: 1.6×1015/cm2,green: 4×1015/cm2, blue: 5.4×1015/cm2, and (b) black: clean (zero), red:
1.4×1014/cm2, blue: 2.8×1014/cm2, brown: 5.6×1014/cm2, and silver: 8.5×1014/cm2.

The changes induced by hydrogen adsorption saturate above a certain dosage. These changes are:

(i) a shift in the gate voltage at which the conductivity is minimal (Vmin), (ii) an increase in the in-

tensity of the D peak in the Raman spectra, (iii) a monotonic decrease in the conductivity minimum,

and (iv)an additional gate-dependent resistivity which varies as | Vg − Vmin |δ, where δ ≈-1.5 at

large | Vg − Vmin |. The gate dependence of the conductivity becomes superlinear at high-dosage

levels as a result of this exponent. Below, we discuss each change in more detail.

A finite charge is donated to graphene by the adsorbed hydrogen, as indicated by the shift of Vmin

upon hydrogenation. The observed sign of the charge transfer from atomic hydrogen to carbon is

consistent with a previous experiment [84] and theoretical calculations [85],[86] [25,26] but differ-

ent from hydrogenation studies using atomic hydrogen derived from a hydrogen plasma.[79],[80]

It is not possible to determine the amount of charge transferred per adsorbed hydrogen directly

from our experiment, as the sticking coefficient of hydrogen on graphene is unknown.
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Figure 4.2: (a) Raman spectra acquired for sample A before and after hydrogenation. The ob-
served intensity has been normalized to the peak height of the G-band. (b) Minimum conductivity
as a function of increasing dosage in sample A.

Previous experiments [79],[80],[84] do not agree on the amount of charge transfer from hydrogen.

Theoretical studies show 0.076 to 0.161e (Ref.26) or 0.16 to 0.25e (Ref.25) donated per hydrogen

(e denotes the electron charge), depending on the degree of allowed lattice relaxation [86] or the

position of hydrogen.[85] Below, these calculated values are used to estimate the saturation cover-

age of hydrogen.

Raman spectroscopy and the impact of atomic hydrogen on the minimum conductivity reveal that

atomic hydrogen introduces intervalley scattering and, therefore, exerts a short-range scattering

potential. [87] [27] Figure 4.2(a) shows Raman spectra acquired at room temperature in air both

before hydrogen dosing and after achieving saturation at low temperature. The intensity of the D

peak in the Raman spectrum is larger upon adsorbing hydrogen. The relative intensity of the D peak

to the G peak, ID/IG, which can be used to estimate the adsorbed hydrogen density,[88],[89],[90]

is 0.0034 ± 0.0021 and 0.0182 ± 0.0056 before and after hydrogen adsorption, respectively.[31]

The small values observed for this D-G ratio even at saturation are likely due to the small desorp-
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tion barrier for hydrogen, as discussed below. Figure 4.2(b) shows that the minimum conductivity

decreases monotonically as a function of hydrogen dosage. The minimum conductivity at satura-

tion ranges from 0.52 to 5.1e2/h for different devices. Since long-range scatterers have been found

to vary the minimum conductivity non-monotonically and not below 4e2/h, [27],[29] our transport

measurements are also consistent with hydrogen exerting a short-range scattering potential.

Figure 4.3(a) shows the added resistivity due to atomic hydrogen at different dosage levels as a

function of Vg − Vmin. The impact of atomic hydrogen is nearly electron-hole symmetric and the

added resistivity varies approximately as | Vg − Vmin |−1.5 at large | Vg − Vmin | for all samples,

as shown in Figure 4.3(b). The resistivity exponent differs from the -1 value expected for Coulomb

impurities and the electron-hole symmetry is consistent with a resonant scatterer positioned very

close to the Fermi level (i.e., a midgap resonant state). [91] The observed exponent also agrees

with calculated exponents for resonant scatterers with a finite on-site amplitude [92] as well as

for Gaussian-correlated scatterers. [22], [93] As shown in Figure 4.3(c), we find that the curves

of added resistivity versus gate voltage for successive dosage levels collapse on top of each other

when divided by the induced shift in Vmin, Vshift, indicating that the added resistivity at different

dosage levels is proportional to Vshift. Therefore, the number of adsorbed hydrogen atoms is di-

rectly proportional to Vshift. For long-range scatterers such as potassium adsorbates, [29] Vshift

does not vary linearly with the number of adsorbates. Such nonlinearity has been attributed to

incomplete screening of the potential imposed by potassium on graphene.[27][6] Therefore, we

conclude that the excess charge of adsorbed atomic hydrogen is effectively screened by graphene.

All samples we have measured show a similar behavior (for instance, see Figure 4.3(d) for sam-

ple B). Deviations from the observed normalization by Vshift are found only at low-dosages and

can be attributed to uncertainty in determining Vmin at low-dosage. The observed normalization

also shows that the scattering cross-section of hydrogen does not vary appreciably even at higher

dosage levels and that hydrogen does not modify other scattering mechanisms.
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Figure 4.3: (a) Resistivity added by hydrogen as a function of Vg − Vmin at different areal dosage
density. (b) Gate dependence of the added resistivity as a function of Vg − Vmin at the areal dosage
density of 5.4× 1015 H/cm2. The green line indicates the slope for an exponent of -1.5. (c) Added
resistivity as a function of Vg − Vmin at different areal dosage normalized to Vg − Vmin. [(a)-(c)
for sample A] & (d) Same as in (c) but for sample B.

Therefore, the added resistivity by hydrogen follows Matthiessen’s rule, Rtotal = Radsorbates+Rsubstrate

+Rgraphene, where Radsorbates and Rsubstrate are due to scattering by adsorbates and the substrate,

respectively, and Rgraphene is the intrinsic resistance of the graphene sheet.

Figure 4.4 (a) shows Vshift , which is proportional to the number of adsorbed hydrogen, as a

function of the accumulated hydrogen dosage. The behavior is well described by a saturating

exponential function, with a saturation voltage denoted Vsat.
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Figure 4.4: (a) Vshift as a function of the increasing areal dosage density for sample A. (b) Initial
maximum electron and hole mobility as a function of the saturation voltage shift, Vsat, for different
samples.

A wide range of Vsat is observed for different samples, from 7.34 to 43.4 V. The maximum shift of

43.4 V implies that the observed maximum coverage of hydrogen is 0.012 assuming the predicted

charge transfer [86] of 0.076e per adsorbed hydrogen. We find no correlation between experi-

mental temperatures and saturation voltages. Figure 4.4(b) shows that the saturation coverage for

different samples is inversely proportional to their initial maximum electron and hole field-effect

mobility. [94] Since the inverse mobility is proportional to the number of scatterers, our data

show that the number of native scatterers is proportional to the number of possible adsorption sites

for hydrogen. By extrapolation to the limit where these sites are absent, we obtain a mobility

of (1.5± 0.3)× 104cm2 /V s, as determined by a linear fit. This extrapolated mobility value is

still an order-of-magnitude lower than the field-effect mobility measured for suspended graphene

sheets, [76],[77] showing that there are still other, less important, scatterers reducing the mobility

of graphene on SiO2. Interestingly, the extrapolated value is similar to the maximum mobility

observed on SiO2 in previous studies [95],[9] suggesting that the reactivity to hydrogen is the sig-

nature of the most dominant type of native scatterers for all graphene devices on SiO2.
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Figure 4.5: Vshift at increasing temperature for sample C after reaching saturation coverage by
atomic hydrogen at 11 K. Data acquired at a warming rate of 0.45 to 6 K/min. Red point indicates
Vshift when the warmed hydrogenated device is cooled down again from 300 K.

Vshift induced by the adsorbed hydrogen is reduced as the temperature is raised, as shown in Figure

4.5. The value of Vshiftremains constant when warmed samples are again cooled, indicating that

the observed reduction in Vshift is due to the desorption of hydrogen. This temperature dependence

indicates that the desorption energy of adsorbed hydrogen on graphene is much smaller than the

previously reported values of approximately 1eV on graphite. [96] A small desorption energy ex-

plains the small D peak observed in the Raman spectra of the hydrogen-dosed samples acquired at

room temperature and suggests that atomic hydrogen is not forming a fully relaxed covalent bond

to carbon. Furthermore, we also know that the maximum thermal energy of impinging atomic hy-
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drogen barely exceeds the barrier of 0.21 eV calculated for the attachment of atomic hydrogen to

planer graphite. [97]Therefore, atomic hydrogen is binding only to unusual, chemically-activated

sites, which do not relax to a full sp3 configuration upon adsorbing hydrogen.

It is possible that the reactivity of graphene sheets is enhanced by adding curvature or changing the

Fermi level. Wrinkles [98],[99] and ripples [33] can perturb the sp2 bonds, generating chemically-

activated sites for hydrogen. Charge puddles [27] may also increase the reactivity of graphene

sheets. However, the data presented in this section cannot determine the sites with affinity to

atomic hydrogen in graphene on SiO2.

In conclusion, we used atomic hydrogen to probe the nature of native scatterers in graphene. Hy-

drogen exerts short-range scattering potential in graphene, as indicated by Raman spectroscopy

and the impact on the minimum conductivity. Charge is transferred from hydrogen to carbon and

the Coulomb potential created by the induced charge on hydrogen is effectively screened by car-

riers in graphene. The adherence of the added resistivity to Matthiessen’s rule also shows that: (i)

adsorbates do not influence the resistivity caused by other factors (such as lattice defects, phonons,

etc.) and (ii) the number of adsorbed hydrogen, nH , is proportional to Vshift . Finally, the num-

ber of hydrogen adsorption sites is found to correspond to the number of native scatterers; in the

absence of these scatterers, the carrier mobility of graphene sheets will reach 1.5× 104cm2 /V s.

The scatterers uncovered in this study dominate the transport properties of graphene-based FETs

on SiO2 and the affinity to atomic hydrogen is the hallmark of these scatterers. Our results provide

an important insight into the nature of the scatterers which limit mobility of graphene sheets on

substrates.
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4.2. Counting the dominant scatterer in graphene on SiO2

In the last section 4.1 we discovered that atomic hydrogen counts the number of native scatterers

in graphene on SiO2, in terms of Vsat. To quantitatively find the number of native scatterers one

needs to calculate the charge transferred from the adsorbed hydrogen to graphene. This can be

accomplished by doing temperature desorption study of hydrogenated graphene samples as I will

describe in his chapter. We correlate the number of scatterers to field effect mobility of graphene

devices on SiO2, which is the most commonly used substrate for graphene science and technology,

and find that the scattering strength of the dominant scatterer responsible for the observed variabil-

ity is consistent with charged impurities.

Charged [27] and resonant impurities [100],[36],[38], [39],[92] are both suspected to be the origin

for the variability. These impurities exert radically different scattering potentials: charged im-

purities exert Coulomb scattering potential and resonant impurities apply atomic scale scattering

potential. Scattering strengths of these impurities are known: charged impurities near graphene

are observed to affect the mobility as 1/µFE = (2× 10−16)nchargedVsec/cm2 [29] and resonant

impurities as 1/µFE= 1× 10−15nresonantVsec/cm2 [40]. The scattering strength of the dominant

scatterer has never been measured, rendering quantitative determination of the origin of the vari-

ability impossible. Qualitative evidences have not been conclusive. The typical density of charged

impurities of 50× 1010/cm2 on SiO2 is consistent with the maximum observed mobility on the

substrate using the above formula. Yet, the typical density does not explain the variability. Fur-

thermore despite isolation of graphene from SiO2 substrates by inserting hexagonal boron nitride

[101] and suspending graphene [77] drastically increases the maximum mobility, large variabil-

ity remains even in such devices. Finally, gate-dependent resistivity of graphene can be fitted to

theoretical expectations [27],[38],[39],[102],[103] by choosing correct impurity density, potential,

and locations, but such analysis remains speculative because these adjustable parameters cannot
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be independently confirmed.

Graphene field effect transistors (FETs) are fabricated from mechanically exfoliated graphene on

SiO2 using conventional e-beam lithography [104]. Devices are cleaned down to atomic scale in

Ar/H2 at 350 ◦C for 3 hours [32] and annealed in ultra-high vacuum at above 400 K for approxi-

mately 12 hours to remove any impurities adsorbed from air before each experiment. Devices are

exposed to atomic hydrogen generated using hydrogen cracker (as described in last section) at tem-

peratures ranging from 8 to 15 K. Hydrogen is introduced by means of a leak valve and a constant

hydrogen flux of approximately 3.7 ×1012H/cm2/sec is maintained. After the effect due to hydro-

gen is saturated, desorption is measured as a function of temperature. After each measurement,

devices are dehydrogenated at above 400 K for longer than 12 hours to recover hydrogen-free

graphene.

Figure 4.6(a) shows an example of the impact of atomic hydrogen on the transport properties of

graphene with the initial mobility of 13400 cm2/V sec. As discussed in last section 4.1, upon dos-

ing with atomic hydrogen, the gate voltage Vshift at which the conductivity is minimized (Vmin)

shifts to more negative values. The amount of voltage shift to Vmin induced by hydrogen, v, is

proportional to the number of atomic hydrogen adsorbed on the surface. Furthermore, adsorbed

hydrogen atoms behave as isolated scattering sites and, therefore, are not clustered. The effect of

atomic hydrogen is observed to saturate and Vsaturation, Vshift at the saturation limit, was found

to be proportional to the initial inverse carrier mobility indicating that the dominant scatterer has

enhanced affinity towards hydrogen. Finally, atomic hydrogen is weakly bound to graphene and

is readily desorbed as shown in Figure 4.6(b). Vshift decreases and eventually approaches zero as

devices are annealed at 400 K.
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Figure 4.6: (a) Conductivity as a function of gate voltage for a representative device. Black curve
shows the transport in undoped clean graphene sample. (b) The temperature dependent measure-
ments of hydrogenated graphene. As the temperature is increased from 10 K to 400 K the dehy-
drogenation of graphene is evident from the decrease in Vshift.

In this paper, we determine charge transfer from atomic hydrogen to the scattering sites to correlate

the mobility to the number of the dominant scatterer to find the scattering strength of the scatterer

and identify the cause for the variability.

The interaction strength between hydrogen and graphene is expected to be proportional to charge

transfer per hydrogen and can be measured by observing desorption characteristics. Figure 4.7(a)

shows the temperature dependence of Vshift as the representative graphene device shown in Figure

4.6(a) is warmed from 15 to 300 K. Hydrogen desorbs from graphene nearly continuously in this

temperature range, indicating a large range of desorption energies from 40 to 1000 meV assuming

1st order desorption. The observation of a range of desorption energies is unexpected since atomic

hydrogen physisorbs with desorption energy of 31.6 meV [105] or chemisorbs with 1.4 and 1.8 eV

[106], [107] on graphite. Figure 4.7(b) shows desorption characteristics of hydrogen from another

device with the initial mobility of 6000 cm2/V sec.
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Figure 4.7: (a), (b) Vshift as a function of temperature for two different graphene devices. The
heating rate of 4.2 to 1.0 K/min was used for both these samples.

Similar desorption behavior is observed, but there are some differences. We perform desorption

measurements on four devices with mobility ranging from 5100 to 13400 cm2/V sec in order to

understand the differences in desorption characteristics. Multiple measure-anneal cycles are car-

ried out on each device in order to understand the impact of annealing.

These experiments reveal that only hydrogen with a particular range of desorption energies ”counts”

the dominant scatterer. Figure 4.8(a) shows that the Vshift in temperature range of 150-200 K is

proportional to the inverse initial mobility. Outside of this temperature range, the amount of Vshift

induced is not correlated to the initial mobility as shown in Figure 4.8 (b-c). As such, we con-

clude that only hydrogen, desorbing between 150 and 200 K, count the dominant scatterer. The

same scatterers are also responsible for the variations in device performance observed after ther-

mal annealing as all data fall on the same slope. A linear fit shows that 1/µ = (6.67 ±1.07) ×

10−5Vshift(150−200K) + (1.09± 0.24)× 10−4Vsec/cm2. The maximum value for mobility with

Vshift(150−200K) at zero corresponds well to the maximum observed mobility of graphene on silicon

oxide, consistent with these hydrogen atoms counting the dominant scatterer on SiO2.
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Figure 4.8: Vshift in specific temperature ranges as a function of inverse initial mobility of all the
measured graphene samples showing (a) Vshiftin temperature range 150-200K, (b) Vshiftbelow 150
K and (c) Vshift above 200 K.

Furthermore, the intercept also indicates that other scattering mechanisms are responsible to re-

duce the maximum mobility down to ∼ 10, 000cm2/V sec on SiO2 from higher mobility seen on

hexagonal boron nitride or in suspended devices.
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Finding charge donated per hydrogen, desorbing between 150 and 200 K, is necessary to deter-

mine the relationship between the mobility and the number of scattering sites and, therefore, the

scattering strength of the dominant scatterer. For 1st order desorption,

Edesorption = kTmax[ln(fTTax/β)− 3.64], (4.1)

where k is the Boltzmann constant, Tmax is the temperature of maximum desorption rate in K,

f is the attempt frequency in Hz, and β is the heating rate in K/sec [108]. While the attempt

frequency is difficult to determine directly, it is often assumed that f = kT/h, where T is the sur-

face temperature and h is the Planck’s constant. Using Tmax ranging from 150 to 200 K, we

find the desorption energy ranging from 440 to 600 meV for hydrogen counting scattering sites.

In order to calculate charge donated by these special hydrogen atoms, the total energy calcula-

tions are carried out within the density functional theory (DFT), using the grid-based real-space

method with the projected augmented wave (PAW) method implemented in GPAW code [calcula-

tions done by Talat Rahman’s group in UCF]. Wave functions, electron densities, and potentials

are represented on grids in real space with the grid spacing of about 0.15 Å. For simulating atomic

hydrogen absorption on a clean graphene sheet, we use a supercell consisting of a (2×2) or (3×3)

graphene sheet, hydrogen atoms that yields an H-(24×2) or H-(3×3) adsorbate on graphene, and

vacuum slab of approximately 20Å. The Brillouin zone in both case are sampled by a (7×7×1)

or (5×5×1) Monkhorst-Pack grid2, respectively. Our calculation shows that hydrogen adsorbs on

graphene with desorption energies of 40 meV or 0.73 eV with charge transfer of 0.004 and 0.06

electrons per hydrogen. Since the higher desorption energy found in our calculation is similar to

the counting hydrogen we use charge transfer of 0.06 electrons per hydrogen to analyze our ex-

perimental data. This value, the data presented in Figure 4.8(a), and the gate capacitance yield

1/µ = (5.2± 0.84)× 10−17n + (1.09± 0.24)× 10−4Vsec/cm2, where n is the number of adsorp-

tion sites, which is the number of the dominant scatterer since adsorbed hydrogen is known not to

78



cluster. The observed scattering strength is nearly 20 times smaller than expected for the resonant

scatterers and 4 times smaller than expected for charged impurities. Therefore, our data strongly

favors charged impurities as the dominant scatterer responsible for the variability in mobility of

graphene on SiO2.

In conclusion, we used atomic hydrogen to count the impurity density in graphene on SiO2. Atomic

hydrogen desorbs with various characteristic energy on increasing the sample temperatures. We

find that the amount of adsorbed hydrogen with desorption energy ranging from 440 to 600 meV

is correlated to the number of scatterers. The relationship between the number of scatterers and

the initial field effect mobility shows that charged impurities are responsible for the variability

observed in the performance of graphene-based field effect transistors on SiO2.
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CHAPTER 5: STM/AFM IMAGING OF GRAPHENE.

5.1 Graphene on different substrates.

When graphene is exfoliated or transferred on any substrate, the graphene-substrate adhesion in-

teractions determine its morphology. The electronic properties of graphene are expected to be al-

tered by the substrate corrugations [109],[33]. Moreover substrate phonons with large momentum,

which can induce intervalley scattering, are suspected to induce large carrier scattering in graphene

at room temperature. Previous temperature dependent resistivity measurements agree with theo-

retical consideration of the contribution from substrate phonons. Inelastic tunneling spectroscopy

of graphene should be able to directly observe such contribution from substrates [110]. However,

so far no direct evidence has been seen in the tunneling spectroscopy due to similar energies for

phonons in SiO2 and graphene. We expected to observe substrate phonon scattering effects by per-

forming scanning tunneling spectroscopy on graphene exfoliated/transferred on various substrates.

STM/AFM was employed to probe graphene morphology at atomic scale on three different sub-

strates: SiO2, hexagon boron nitride (h-BN) and sapphire. Figure 5.1 shows the schematic of the

graphene device with Au contact on substrate, where the sample is grounded and the STM tip is

biased.
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Figure 5.1: Schematic of scanning tunneling microscopy graphene device setup.

5.1.1 Graphene on SiO2.

Figure 5.2 (a) shows 100 nm × 100 nm scanning tunneling microscopy image of CVD graphene

transferred on SiO2 substrate As reported in earlier studies, we observe that graphene morphology

has 1nm high ripples due to partial conformation of graphene to SiO2surface [32],[111],[112].

The atomic resolution image of the graphene hexagonal lattice is shown in Figure 5.2(b). The

SiO2 surface has charge traps and is highly corrugated. These charge traps not only scatter charge

carriers in graphene as well as electronically breaks it down into electron and hole puddles at low

charge carrier density [113].
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Figure 5.2: (a) 100 nm × 100 nm STM image of graphene on SiO2 and (b) Atomic resolution of
the same graphene sample.

These charge fluctuations make it difficult to study physics near the Dirac point.

5.1.2. Graphene on hexagonal Boron nitride (h-BN)

Lui et al. [35], reported high resolution atomic force microscopy of graphene on mica, with height

variations less than 25 pm. However at ambient conditions, defects in mica act as nucleation

sites and result in formation of epitaxial water adlayer on its surface.[114] Meanwhile hexagonal

boron nitride emerged as another flat and inert substrate with relatively less charge puddles [75].

Moreover since the dielectric properties of h-BN are similar to SiO2, so it is also suitable for

use as gate dielectric. The electronic transport measurements of graphene on hBN have been

demonstrated to exhibit high mobility of 100,000 cm2/V sec [101].
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Figure 5.3: (a) Schematic of graphene on h-BN with emergence of Morié pattern and (b) Optical
image of Bernal-stacked bilayer graphene device on h-BN (area highlighted by red dots) and SiO2

(area highlighted by yellow dots).

Additionally h-BN has a hexongal lattice structure similar to that of graphene, with lattice constant

only 1.8% longer. Due to this when graphene is placed on h-BN as shown in schematic in Fig-

ure 5.3(a), the coupling between them results in distinct periodic modulations referred to as morie

pattern [115],[116], [117]. The length of these modulations depends on the mismatch between the

two lattices. Figure 5.3(b) shows optical image of Bernal-stacked bilayer graphene device on h-BN

and SiO2. We used room temperature high resolution non-contact AFM to image the morié pattern

generated by bilayer graphene on h-BN. Figure 5.4 shows the triangular morié pattern with wave-

length 15.5± 0.9 nm. This is comparable to the morié wavelength∼ 14 nm expected for graphene

on h-BN [115],[116], [117], suggesting near zero angle mismatch between bilayer graphene and

h-BN. Furthermore our collaborators carried out the transport measurements of this device in the

presence of externally applied high magnetic fields. Since the periodic potential created by this

morié pattern is of the order of the magnetic field, the 2D electrons exhibit a self-similar recursive

energy spectrum known as Hofstadter’s butterfly [101]. This is the first experimental realization of

Hofstadter’s butterfly energy spectrum after its theoretical prediction forty years ago. Thus morié

supperlattices arising in graphene on h-BN can give rise to very rich physics.
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Figure 5.4: Left figure shows a non-contact AFM image of multi-terminal Hall bar device of
bilayer graphene on h-BN. Right shows high resolution image in a magnified region. The moiré
pattern is evident as a triangular lattice (upper inset shows a further magnified region). FFT of the
scan area(lower inset) confirms a triangular lattice symmetry with period 15.5 ± 0.9 nm. Imaging
was performed at room temperature using Vbias =0.2 V and f =20 Hz.

5.1.3. Graphene on sapphire

Figure 5.5(a) shows the AFM topography image of sapphire substrate, taken at ambient conditions.

The sapphire surface is reconstructed by annealing in air at 1000 ◦C for 2hrs (15), resulting in

atomically flat terraces as shown in Figure 5.5(b). The step height and width of these terraces is

about 0.27 ± 0.03 nm and 60 ± 10 nm respectively. As seen in Figure 5.5(c) after reconstruction

the sapphire surface also has few bigger terraces.
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Figure 5.5: (a) AFM image of sapphire before and (b) after reconstruction of its surface, and (c)
AFM image showing varying size terraces on the sapphire surface.

Before mechanical exfoliation of graphene on sapphire, it is cleaned by dipping in piranha solution

(H2SO4 : H2O2= 3:1) for 10 min, is followed by an ultra-sonic treatment in water for 5 minutes.

The acidic treatment of the substrate leaves OH group on the surface, making the substrate hy-

drophilic. This results in a water layer adsorption on its surface. After device fabrication the

graphene surface was cleaned down to atomic scale using H2/Ar annealing.

Figure 5.6(a) shows the 500 nm × 500 nm STM image of graphene on sapphire taken at 4 K.

Graphene conforms to the terraces on the sapphire surface and exhibits unique bright (high) and

dark (low) features everywhere on its topography as seen in Figure 5.6(b). Figure 5.6(c) shows 30

nm × 30 nm scan of graphene on a big terrace of sapphire. On further decreasing the scan area

to investigate these bright and dark features, we obtain atomic resolution in Figures 5.6 (d), 5.6(e)

and 5.6(f). This suggests that graphene itself is atomically clean and these bright and dark features

are arising from below the graphene surface.
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Figure 5.6: (a) STM topography of graphene on sapphire, (b) 77.9 nm× 77.9 nm scan of graphene,
showing bright and dark region, (c) zoom in of these dark/bright spots, (d), (e)and (f) Topography
of graphene on sapphire showing atomic resolution of the graphene on sapphire in different scan
areas. These images confirms that graphene is atomically clean and these dark/bright spots are
coming from interface between graphene and sapphire.

Figure 5.7(a) and 5.7(b) shows the three-dimensional topography of the graphene, conforming

to the step edge of the sapphire terrace. The dotted lines represent the edge of the terraces in

Figure 5.7(a). Previously AFM study of graphene on sapphire surface, has observed water layer

adsorbed on the sapphire surface after acidic treatment [118]. We believe that these bright features

correspond to protrusions in the graphene morphology due to underlying water layer.
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Figure 5.7: (a) and (b) The three dimensional rendering of graphene morphology on sapphire
substrate. The graphene is clearly following the underlying substrate for different height steps.

5.2 Artifically created disorder in graphene

Graphene itself is non-magnetic, however artificially created atomic vacancies can be a source of

magnetism [119]. These defects greatly influence its electronic, mechanical and magnetic proper-

ties. Using STM studies, it has been demonstrated that a single carbon vacancy in graphite gives

rise to a sharp resonance near Fermi level associated with formation of local magnetic moment

[120].
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Chen et al reported electronic transport measurement of graphene with artificially created Ar+

vacancies. Their data exhibit that the local moment associated with defects is strongly coupled to

the conduction electrons in graphene and give rise to gate tunable Kondo effect [121]. However

one expects Kondo effect to be strongly suppressed in graphene due to its low density of states. The

fact that during the experiment, Ar+ irradiated graphene sample was exposed to air make observed

Kondo effect due to vacancy ambiguous. The STM/STS studies of artificially created vacancy in

graphene in controlled environment can be really helpful in understanding if reaction of vacancies

with magnetic impurities on exposure to air lead to observed kondo effect in graphene.

For carrying out these studies we first choose to study Ar+ defects on highly ordered pyrolytic

graphite (HOPG) crystal in UHV at 5 K. Figure 5.8(a) shows every adatom of freshly cleaved

atomically clean HOPG. Carbon vacancies are created by in-situ bombardment of the surface with

140 eV Ar+ ion for 10 sec. This energy is above the threshold energy (100 eV) for creation of

carbon vacancy by Ar+ ion. The defects are visible as protrusions (bright spots) on the 40 nm ×

40 nm topography of HOPG after ion bombardment as shown in Figure 5.8(b). Each protrusion on

the graphite is a manifestation of the ion impact [122]. The defect density on graphite was found

to be 7 × 1012 /cm2.

Figure 5.9(a) shows a small area-scan with multiple carbon vacancy on the surface of the graphite.

The 3D view of the same defect clearly shows reconstruction on the surface of the graphite due to

change of local electronic density of states caused by the defect as shown in Figure 5.9(b).

The STM images of a defect acquired at constant current and different bias voltage are shown in

Figure 5.10 (a), and (b). Figure 5.11(a), (b), and (c) similarly shows STM topography of another

defect on the graphite surface at different bias voltages. In these images at a particular bias voltage,

the tunneling current is due to the contribution of electronic states between the Fermi level of the

tip and the sample.
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Figure 5.8: (a) STM image of atomically clean HOPG surface and (b) STM morphology of HOPG
after Ar+ ion bombardment. The missing carbon appear as protrusion or bright spot in this image.

Figure 5.9: (a) and (b) Zoom in STM image of a defect on the HOPG surface and 3D rendering
of this defect showing reconstruction on the surface of the HOPG
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Figure 5.10: : (a) and (b) STM image of same defect on HOPG taken at a constant current and
different voltages.

Figure 5.11: : (a),(b) and (c) STM image of another defect on HOPG taken at a constant current
and different voltages. The images show

√
3×
√

3 reconstruction on the HOPG surface due to this
defect.
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Figure 5.12: : 5 nm × 5 nm area scan, showing a atomically clean CVD graphene on SiO2.

After reproducibly creating and successfully imaging defects on graphite, we changed the sample

to CVD graphene. Figure 5.12 shows STM topography of atomically clean graphene on SiO2

before irradiation with Ar+ ions. Figure 5.13 (a), (b) and (c) show carbon vacancy on the graphene

surface after bombardment with 140eV Ar+ ion for 10sec. These defects again appear as high

protrusion on the graphene surface.
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Figure 5.13: : (a), (b) and (c) STM morphology of graphene surface after exposure to Ar+ ions.
Clearly the defects are visible as protrusion or bright spots.

Higher resolution imaging of one such defect at a constant current and different bias voltages is

shown in Figure 5.14 (a), (b), (c), (d), (e), and (f). These images clearly show that for positive tip

bias the occupied and for negative bias unoccupied states contribute to the tunneling current.
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Figure 5.14: : (a), (b), (c), (d), (e) and (f) STM image of same defect, taken at constant current
and different voltage. These images clearly show that for positive tip bias the occupied and for
negative bias unoccupied states contribute to the tunneling current.

We successful created atomic scale defects on the surface of the graphene and graphite. Defect

structures on the graphene surface were found to vary significantly. Local densities of states probed

using STS did not show any signatures of enhanced densities of states near the charge neutrality

point.
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CHAPTER 6: FUNCTIONALIZATION OF MOLYBDENUM

DISULFIDE.

So far researchers have seen that the optically direct bandgap in the single-layer MoS2 can be

modified to optically indirect band gap by using uniaxial tensile mechanical strain in the range of

0-2.2% [1].An alternate way to modify the bandgap can be by functionalizing MoS2. DFT calcula-

tions show that atomic hydrogen/fluorination dosage can render MoS2metallic [123]. This means

that we can use functionalized MoS2 to derive full range of 2D integrated circuit technology.

In order to study the impact of ad-atoms on electronic properties of MoS2 we carried out hydro-

genation (section 6.2)and fluorination (section 6.3) of single- layer MoS2 on SiO2. Theoretical

calculations show ad-atoms can induce ferromagnetism as well as metal-semiconductor transition.

6.1 Comparison of monolayer CVD MoS2 and bulk MoS2- defects

Figure 6.1(a), and (b) show the STM topography of different areas on freshly cleaved naturally

occurring type1 (small crystal) bulk MoS2 purchased from SPI. The image clearly shows that the

MoS2 surface is riddled with defects on its surface. These intrinsic defects can be both S and Mo

vacancy. Another freshly cleaved type2 (large crystal) MoS2 also showed similar vacancies on

its surface as shown in Figure 6.2(a) and (b). The atomic scale imaging clearly shows that the

naturally occurring bulk MoS2, used (commercially purchased) for exfoliating single layer can be

highly defected.These defects vary in size as some of them are < 1nm and some are even 2nm or

bigger.We believe that these defects are responsible for lower intensity of PL peak at 1.8 eV and

limited mobility for exfoliated single layer MoS2 based FETs.
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Figure 6.1: (a) and (b) 10 nm × 10 nm area scan of two different locations on freshly cleaved
type1 (small crystal) bulk MoS2.

Figure 6.2: (a) STM topography of 25 nm × 25 nm area of freshly cleaved type 2 (large crystal)
bulk MoS2 and (b) Another STM scan showing defects in 10nm × 10 nm area on the same crystal
at a different spot.
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Figure 6.3: (a) STM topography of 25 nm2 area of CVD single layer MoS2 on SiO2 and (b) Zoom
in 5 nm × 5 nm scan showing hexagonal lattice of MoS2. These images clearly show that CVD
grown single layer MoS2 also has few defects and adsorbates on its surface.

The Figure 6.3(a) and (b) shows the STM image of single layer CVD MoS2 on SiO2 substrate.

Mostly the surface is atomically clean with few adsorbates on its surface. Also there seems to be

far less number of atomic vacancies on the surface of CVD grown MoS2 as compared to the bulk

crystal.This may explain the higher intensity of the PL signal for CVD grown single layer MoS2.

The comparison of the PL spectrum of exfoliated and CVD grown single layer MoS2 is shown in

Figure 6.4(a) and (b).
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Figure 6.4: (a) High intensity photoluminescence peak at 1.83 eV for single layer CVD MoS2 on
SiO2, and (b) The exfoliated MoS2 on SiO2 exhibit low intensity photoluminescence peak at 1.85
eV corresponding to direct band gap transition at K′ .

6.2 Hydrogenation of single layer MoS2

This study is carried out on CVD grown high quality single layer MoS2 sample, shown in the Figure

6.5. The hydrogen plasma, generated in a 13.56 MHz capacitive coupled reactive ion chamber is

used to hydrogenate the sample. It is operated at power density of 0.04 W/cm2 (or power 5watt)

and chamber pressure of 50 mTorr so that the MoS2 is exposed to the low energy plasma.

Generated plasma is dominantly consisting of H+
3 ions whose densities are an order magnitude

greater than H+ and H+
2 ions. The reactive ion chamber used in this study doesn’t have a provision

to measure the absolute energy of the ions and the possible modifications to the chamber for such

energy measurements were not recommended by the manufacturing company.

97



Figure 6.5: The optical image of single layer MoS2 on SiO2 substrate.The triangle shaped MoS2

used in the experiment is marked by a red square box.

According to ref[124] (operating at similar plasma generation parameter as my experiment) the

plasma ion energy can be estimated to be ≤15 eV. However, on estimating using ref [125] and

ref[126] it can be about 55 eV (note in ref [125] they are using rf of 60 MHz and in ref [126] they

have not given energy). Further the sample is exposed to hydrogen plasma for 1sec to minimize the

damage may be caused due to these ions. For E ≤ mc2, the maximum energy transferred by these

hydrogen ions in collision to the sample can be estimated by using the simplified binary collision

equation

Tmax = E
4Mm

(M +m)2
, (6.1)

Where E and m is the energy and mass of the bombarding hydrogen ions, and M is the mass of the

Mo or S atom in MoS2. The hydrogen ion of energy 15 eV (50 eV) will transfer approximately

maximum of 2 eV (5 eV) energy to MoS2 lattice.
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Figure 6.6: (a) PL mapping of the MoS2 triangle before hydrogenation and (b) after hydrogena-
tion. It is clear that PL intensity is decreased after hydrogenation treatment.

Figure 6.7: (a) PL spectrum of MoS2 before hydrogenation has a peak at 1.83 eV. (b) PL spectrum
of MoS2 after hydrogenation has peaks at 1.83 eV and 1.78 eV.

These estimations indicate that hydrogen ion may not have energy needed to knock out sulfur atom

and make vacancy in our sample [127].

The mapping of 15 µ m × 15 µm pristine CVD MoS2 sample indicates spatial variation in PL

intensity [128] as seen in Figure 6.6(a). The sample, particularly along the edges of the triangle

has low PL intensity.
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Figure 6.8: (a) Comparison of normalized PL signal of untreated, hydrogenated, and dehydro-
genated MoS2. (b) Localized dehydrogenation of MoS2 with laser annealing

After hydrogenation, mapping of the same MoS2 triangle shows quenching of PL signal in Figure

6.6(b). Interestingly, the PL signal is quenched non-uniformly as evident in at the center of the

triangle. This may be related to the CVD MoS2 growth mechanism but is not fully understood yet.

The comparison of the single PL spectrum before and after hydrogenation is shown in Figure 6.7(a)

and Figure 6.7(b). After hydrogenation a side peak appears at 1.78 eV. Such a peak at 1.78 eV has

previously been reported due to defect induced bound exciton in MoS2 [129]. In order to study the

interaction of hydrogen with MoS2 I used local laser heating to selectively desorb the hydrogen.

This peak starts to disappear on laser heating at power density of 1.59 mW/µm2 with scan time of

30 sec as shown in Figure 6.8(a) and Figure 6.8(b). Although the side peak disappear 90 % with

successive laser heating, the PL intensity doesn’t recover fully. This can be due to two possible

reasons: (1) No hydrogen is bonding to MoS2 surface and the 1.78 eV is due to defects created

by hydrogen plasma. The laser annealing in air can be healing these defects, which is observed as

the decrease of this side peak. Also, the desorption of adsorbates like water, hydrocarbons, etc. on

laser annealing can result in partial recovery of PL signal.
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Figure 6.9: Raman mapping of MoS2 before hydrogenation (left) and after hydrogenation (right)

However, I would like to add that only slight changes in the Raman peaks after hydrogenation

clearly indicate that these defects are not disrupting the lattice of MoS2 (discussed below) and that

there only few defects being created by plasma (2) There is no damage due to low energy plasma.

Hydrogen is binding to the surface which is seen as the side peak at 1.78 eV and laser annealing is

desorbing hydrogen.

Upon hydrogenation, the Raman peaks do not disappear, further indicating that the basic lattice

structure of molybdenum disulfide remains robust under hydrogenation as shown in Raman map-

ping of the same area in Figure 6.9. For the peak E′2g (at 383 cm−1 ) and A1g (at 404 cm-−1 ) the

phonon frequency decreases by 1cm-−1 .This shift is very small and indicates almost no doping

effect due to hydrogenation and very gentle hydrogenation of the sample. The FWHM (full width

half maximum) of peaks at E′2g and A1g increases after hydrogenation from 3.19 cm−1 to 4.25 cm−1

and from 4.24 cm−1 to 5.38 cm−1 respectively as shown in Figure 6.10 and Figure 6.11. Further

it is not possible to confirm hydrogen binding to MoS2 from Raman spectroscopy as S-H peak is

masked by peak corresponding to photoluminescence peak of MoS2.
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Figure 6.10: : FWHM of peak E
′
2g at 383 cm−1 before hydrogenation (left) and after hydrogenation

(right).

Figure 6.11: : FWHM of peak A
′
1g at 404 cm−1 before hydrogenation (left) and after hydrogenation

(right).

In conclusion the observed side peak at 1.78 eV can be due to combination of both hydrogen bind-

ing to MoS2 and few defects formed during exposure to hydrogen plasma or either of these. The

present study using PL and Raman spectroscopy is insufficient to conclude if hydrogen is bind-

ing and causing any modifications in electronic properties of MoS2. Furthermore the exposure

to air after hydrogenation of the sample and optical measurements in ambient conditions, make it
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even more difficult to conclude about the experimental observation. Transport measurements along

with scanning tunneling imaging/spectroscopy before and after in-situ hydrogenation can help to

understand modification of electronic properties of MoS2 upon hydrogenation. Currently studies

are being carried out to in-situ hydrogenate the MoS2 devices in UHV STM using low energy hy-

drogen generated using hydrogen cracker.

6.3 Fluorination in monolayer MoS2

The bulk MoS2 was fluorinated using CF4 plasma in the reactive ion etcher. The plasma was

generated using parameters: RF power-5 Watt, chamber pressure 100 mTorr, CF4 flow- 5 sccm

and sample exposure time- 1 sec.

We employed x ray photoelectron spectroscopy (XPS) study to understand binding of fluorine

to the surface of bulk MoS2 (purchased from SPI). We used Mg K α light of photon energy,

hυ=1235.6 eV as X-ray source and MAC-2 electron spectrometer. The naturally occurring bulk

MoS2 has some carbon impurities and all the spectra were energy calibrated by assigning maximum

in C1s spectrum to 284.5 eV. Figure 6.12 clearly shows that spectra exhibits a small F 1s binding

energy peak at 690 eV after fluorination. However at this point it is not clear if this is due to

bonding of fluorine to carbon impurities or the sulfur atom in MoS2.

We then annealed the fluorinated sample in UHV in steps for 30 mins each at 100 ◦C, 200 ◦C and

250 ◦C to investigate defluorination of MoS2 as shown in Figure 6.13. On heating at 100 ◦C the

peak shifts to 689 eV and becomes smaller in intensity. Further heating at 200 ◦C doesn’t further

change the peak.
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Figure 6.12: : F 1s X -ray Photoelectron Spectra of untreated (black) and fluorinated (red) bulk
MoS2.

At 250 ◦C the F 1s peak disappears and we obtain same spectrum as for the untreated MoS2 sam-

ple. This tells us that fluorine is completely desorbed by annealing at 250 ◦C.
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Figure 6.13: : F 1s XPS spectra of fluorinated bulk MoS2 after annealing the sample in UHV for
30 mins at 100C ◦C (black), 200 ◦C (red), and 250 ◦C (blue). On comparison with the spectra of
untreated bulk (green) MoS2 it becomes clear that fluorine desorbs after annealing at 250 ◦C

Furthermore the Mo 3d and S 2p peaks show shifting to lower binding energy of about (0.5 ±

0.1) eV on fluorination as shown in Figure 6.14. This can be explained as a lowering of the Fermi

level of MoS2 toward the valence band maximum by∼ 0.5 eV (i.e. p-doping) [130] The annealing

increases the binding energy but it is not recovered all the way back to initial value. This can be

due to removal of other absorbed species, in addition to fluorine from the surface.
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Figure 6.14: : (a)The comparison of XPS spectra of Mo 3d of untreated and fluorinated bulk MoS2

(b) S 2p spectra comparison of untreated and fluorinated bulk MoS2. Both these spectra shows that
on fluorination the sample is p-doped.

The XPS studies clearly indicate that we are causing dilute fluorination of bulk MoS2 sample using

low energy CF4 plasma and UHV annealing at 250 ◦C completely desorbs the fluorine from the

surface.

Fluorination of monolayer MoS2: We studied the fluorination of monolayer MoS2 on SiO2 sub-

strate by carrying out STM studies and PL studies at room temperature. Figure 6.15 shows the

MoS2 device, made by evaporating Al contacts using TEM grid (hole width 90µm and distance to

next hole is 35µm) as a shadow mask. The CF4 plasma generated at same parameters as in the case

of the bulk sample was used for fluorinating MoS2 sample. Figure 6.16(a) shows the 50 µm by

50 µm topography of single layer CVD MoS2 on SiO2. We observe that like graphene single layer

MoS2 is also not atomically flat on SiO2 substrate. It has ripples which are about (700 ± 200) pm

high, which is expected due to surface roughness of SiO2 substrate [32]. The hexagonal lattice of

MoS2 can be clearly seen in 7 nm × 7 nm area scan in Figure 6.15(b).
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Figure 6.15: : Bright field optical picture of CVD single layer MoS2 device on SiO2 substrate.

Figure 6.16: : (a) STM topography image of single layer MoS2 on SiO2.(b) 7nm × 7nm image
showing atomic resolution, few defect sites and adsorbate on the surface of MoS2 on SiO2.
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Figure 6.17: : (a) Topography of MoS2 on SiO2 after dilute fluorination. (b) 2nm × 2nm area scan
reveals that the surface has no longer atomic resolution but appears as high profusion, indicating
strain in the sample due to fluorination.

This image also shows an adsorbate on the surface as high bright spot along with few defects on

the surface. These defects can be due to S or Mo vacancy. Several different area scan of MoS2

device showed that sample was mostly clean down to atomic scale with very few dirty spots.

After fluorination, the 50 µm by 50µm topography image shows that MoS2 surface has becomes

rougher as evident in Figure 6.17(a). The roughness analysis shows that now the height corrugation

is (1.5 ± 0.2) nm. Figure 6.17(b) moreover reveals that atomic resolution is lost on the sample,

which is consistent with strain due to fluorine binding on the surface, making it difficult for STM

tip to follow the surface morphology.

Next the sample was annealed in UHV at 260 ◦C for 30mins. Figure 6.18(a) shows that after

annealing the surface topography looks similar to before fluorination, with ripple height ∼ (700±

200) pm.
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Figure 6.18: : (a) STM morphology of the bulk MoS2 after annealing in UHV at 260 ◦C. for
30mins and (b) 5nm × 5nm image of MoS2. The image exhibits atomic resolution signifying that
annealing has desorbed fluorine from the surface.

On scanning 5 nm× 5 nm area we obtained atomic resolution on the surface as shown in Figure

6.18(b). The topography again shows defects on the surface. Since such defects were observed

before fluorination too and the scanned area in Figure 6.16(b), Figure 6.17(b) and Figure 6.18(b)

are not the same spot, so it is not possible to know if these defects were already present or formed

during fluorination. However the STM studies clearly indicate that fluorine is binding to the sur-

face of the monolayer MoS2, which can be desorbed by annealing in UHV at 250 ◦C.

Furthermore PL spectroscopy was also carried out in ambient conditions before, after fluorination

and after defluorination on same MoS2 device as shown in Figure 6.19. MoS2 has a PL peak at 1.85

eV. On fluorination the peak is quenched (39%) but after heating the PL peak intensity increases

as fluorine is removed. The peak also shifts to 1.83 eV, which can be due to desorption of water

and hydrocarbons from the MoS2 surface on heating.
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Figure 6.19: : PL spectra of single layer MoS2 device used in STM studies, taken at three different
stages: untreated, after fluorination, and after vacuum annealing at 260 ◦C.

Thus, using XPS study of fluorinated bulk MoS2 we have demonstrated that fluorine is binding

to the surface of MoS2. The STM studies of fluorinated monolayer MoS2 is consistent with XPS

studies on bulk MoS2, showing fluorine is binding to the single layer MoS2. Further electronic

transport and scanning tunneling spectroscopy (STS) studies are necessary to understand the mod-

ification of electronic properties of MoS2 on fluorination.
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CHAPTER 7: BIOFUNCTIONALIZATION OF GRAPHENE.

7.1 Structure of Peptide on graphene and graphite

Graphene sheet, an individual layer of graphite, is a semimetal with unusual physical properties.[43],[67]

Graphene possesses no dangling bonds except at the edges, and their well-ordered chemical struc-

ture renders chemical interactions with the surrounding environment more predictable. In addition,

transport properties of graphene are characterized by extraordinary field effect mobility even at

room temperature.[131] High field effect mobility renders graphene sheets to be highly sensitive

to their environment, making them ideal for sensing applications.

Graphene based field effect transistors show a sensitive, yet nonselective, response to various

analytes,[132] and it is now widely accepted that selectivity, necessary for any sensors, must be im-

parted by functionalization. Since high sensitivity relies on high mobility, functionalization must

leave the transport property of graphene unaffected. Noncovalent functionalization is ideal as it

does not generate atomic-scale defects, which are extremely disruptive.[37],[38],[36],[39]

One of many promising noncovalent functionalization methods seeks to mimic and exploit the

molecular recognition property of peptides found in biology [133] to impart selectivity for a wide

variety of analytes. Resolving peptide structures is fundamentally important to this biomimetic ap-

proach because properties of peptides are sensitively influenced by their structures. Although the

binding of peptides has been visualized using atomic force microscopy (AFM) on nanotubes [134]

and graphene,[135],[136] AFM cannot be used to resolve the peptide structure. Previous studies

have utilized molecular dynamics (MD) simulations [137],[138] to infer the structure of bound

peptides,[134],[135],[136] but additional experimental studies are needed to confirm the validity
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of these calculations.

We have performed AFM, Raman, and Fourier transform infrared (FTIR) spectroscopy to study the

structure of peptides bound to graphene and graphite. This integrated strategy enabled gathering

of the fingerprint signatures of the peptide, which contains information on its secondary structure.

Our experimental results confirm the behavior of the peptide calculated in MD simulations. There-

fore, the results demonstrate that MD simulations can be relevant for predicting the behavior of

peptide-functional groups on graphene and identifying proper functional groups or various ana-

lytes.

Graphene sheets were produced using the mechanical exfoliation method, [28] and the layer thick-

nesses were confirmed using Raman spectroscopy.[139] Grade II HOPG used for this study was

purchased from Structure Probe, Inc. The dodecamer peptide, GAMHLPWHMGTL, was synthe-

sized by Peptide 2.0 Inc. (Chantilly, VA) at a purity of 99.39%, verified by high performance

liquid chromatography. The peptide was previously identified to bind to HOPG using phage

display.[135]This graphene/graphite binding peptide (GBP) was then dissolved in an aqueous

buffer (100 mM Tris-HCl, pH 7.5) at a concentration of 200 µg/mL. Graphene sheets and HOPG

were immersed in the GBP solution for 10 min at room temperature, washed with deionized wa-

ter, and blown dry with N2 gas prior to analysis. A Digital Instruments 5000 AFM, operating

in ambient environment, was used for imaging. Raman spectra were acquired using a Renishaw

Raman spectrometer with a 532 nm laser (5% laser power, exposure time of 50 s, and 4 accumu-

lations). FTIR and attenuated total reflectance (ATR)-FTIR measurements were acquired using a

Vector 22 Fourier transform infrared spectrometer (Bruker Optics, Billerica, MA), equipped with a

liquid nitrogen-cooled Hg-Cd-Te detector. FTIR of the lyophilized peptide powder was measured

by pressing the powder between two CaF2 windows, using the spectrum of the CaF2 window as

reference.
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FTIR of the peptide in a D2O-based buffer (150 mM NaCl, 40 mM HEPES, pH 7.2) was mea-

sured using a 25 µm spacer between the windows, using a buffer solution as reference. ATR-FTIR

spectra were measured by mechanically contacting HOPG with a 1 mm thick germanium internal

reflection plate (Spectral Systems, Irvington, NY) at 20 ± 1 ◦C. Each spectrum was the average of

1000 scans, at 2cm−1 nominal resolution. The reference spectra were measured using a bare ger-

manium plate. Atmospheric humidity was monitored by collecting spectra at various times, using

the bare CaF2 window or the germanium plate, and were used for clearing the sample spectra of

signals generated by residual humidity.

The FTIR spectrum of the GBP in the powder form displays a relatively broad amide I band

with a peak in the 1660− 1650cm−1 region as well as an amide II band around 1530cm−1 , as

shown in Figure 7.1(a). The peak position of the dry peptide indicates an α-helical secondary

structure.[140],[141],[142],[143] When dissolved in a D2O-based buffer, the GBP exhibits a dom-

inant amide I peak at 1673cm−1 accompanied by a smaller peak at 1648cm−1 , as shown in Figure

7.1(b). The amide II band disappears because of amide NH-to-ND conversion. Higher amide I fre-

quencies in D2O can be generated by various secondary structures, such as αII -helix, 310 -helix,

reverse turns, or antiparallel β -sheet.[140],[141],[142],[143] The latter can be excluded because

the antiparallel β -sheet structure generates a strong component around 1635 cm−1 and a weaker

component around 1685cm−1.[141] While the FTIR data do not allow distinction between αII -

helix, 310 -helix, or turn structures, the observed amide I spectra strongly suggest that at least a part

of the secondary structure of the peptide changes from α-helix to another helical or turn structure

upon exposure to an aqueous medium.

Incubation of graphene with the peptide results in formation of a meshlike layer as shown in Figure

7.2. This mesh layer is found on all imaged areas showing that the adsorbed layer uniformly coats

graphene.
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Figure 7.1: (a) Infrared spectrum of GBP in powder form, showing both amide I and amide II
bands. (b) Infrared spectrum of GBP in D2O, showing the amide I band. Red and blue curves
are obtained by fitting two Lorentzian functions to the experimental data. The peaks are located at
1673 and 1648 cm−1. The green curve is the result of sum of these functions.

Figure 7.2: AFM topographic image of graphene (a) before and (b) after incubation with the
peptide. (c) Topographic AFM image of HOPG incubated with the peptide.

Silicon oxide surface appears unaffected by incubation, indicating that the adsorption only oc-

curs specifically on graphene. The height difference to the substrate, measured by using height

histograms, increases from 0.46± 0.33 to 1.45± 0.54 nm upon incubation, suggesting that the ad-

sorbed layer is 0.99 ± 0.63 nm thick. This thickness is similar to that observed when a dodecamer

peptide was adsorbed onto carbon nanotubes.[134] Graphene and graphite possess same surface
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chemical structures, and the interactions of these surfaces with peptides are expected to be similar.

The AFM image of HOPG incubated with the GBP is shown in Figure 7.2(c). A similar meshlike

layer appears on the HOPG surface upon incubation. Furthermore, the thickness of the adsorbed

layer on HOPG is measured to be 1.10 ± 0.45 nm,[144] indistinguishable from the thickness of

the peptide layer on graphene. As such, these AFM images show that the identical adsorbed layer

is formed on graphene and HOPG, as expected. The adsorbed layer on HOPG is used to obtain

enhanced optical spectra below.

Figure 7.3(a) compares Raman spectra of graphene before and after incubation with the peptide.

Bare graphene exhibits a strong Raman signal around 1580 cm−1 due to its G band.[139] Incuba-

tion with the peptide produces increased signals at both 1700- 1600 and 1570- 1520 cm−1 regions,

consistent with the amide I and amide II modes of the peptide. The peak near 1350 cm−1, cor-

responding to the D-band, does not increase in intensity as shown in Figure 7.3(b). The ID/IG

ratio is proportional to the defect density, [88] and as such, the spectra show that absorption of the

peptide does not damage the graphene lattice, consistent with the expected noncovalent interaction

between graphene and the peptide.

ATR-FTIR spectroscopy was used to increase the signal-to noise ratio to further analyze the nature

of the adsorbed layer. Spectra display absorption bands peaking near 1670 and 1550-1540 cm−1

for the adsorbed peptide layer, as shown in Figure 7.4. The peak at 1580 cm−1 is due to the G band

in graphite.[139] The spectral locations of 1670 and 1550-1540 cm−1 bands due to the adsorbed

layer are consistent with the amide I and II bands and represent the first spectroscopic evidence

that the adsorbed layer is indeed the GBP. The enhanced signal also reveals more details of the

nature of the adsorbed peptide. The amide I band is blue-shifted to around 1670 cm−1 , compared

to 1660-1650 cm−1 for the peptide in the powder form shown in Figure 7.1(a). Normally, the α

-helical amide I mode of peptides in aqueous media is around 1655-1650 cm−1.[140],[145],[146].
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Figure 7.3: Raman spectroscopy of graphene before and after incubation with the peptide (a)
between 1750 and 1525 cm−1 and (b) 3200 and 1100 cm−1. Intensities are normalized with respect
to the intensity of the G band.

Figure 7.4: ATR-FTIR spectra of HOPG before and after incubation with the peptide.
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The amide I band of the 310-helical structure is typically at 1665 cm−1,[141],[147] and the ad-

sorbed layer may be conformed to a 310 -helix structure. In addition, since the main contribution

to the amide I mode comes from the peptide backbone C=O stretching vibration, higher amide

I wavenumber (frequency) may also indicate stronger C=O bonds, which corresponds to weaker

intra- or intermolecular hydrogen bonding. Blue-shifted amide I bands observed for αII -helical

structures in proteins and model polypeptides have also been attributed to weakened helical hydro-

gen bonding.[148],[149],[150],[151],[152] Therefore, the increased amide I wavenumber of the

adsorbed peptide indicates that the peptide- graphite/graphene interaction induces the GBP to con-

form to a 310- or αII -helix structure.

To understand the observed structural changes of the GBP at the atomic level, we utilized the MD

simulation approach using the AMBER ff 99SB force field.[153] The five most probable initial

structures of the GBP were predicted using I-TASSER software.[154](32) Five structures were

first refined by performing MD simulations in vacuum. After 200 ns simulations, the radius of gy-

ration of structures converged. The conformation of the native GBP at the lowest potential energy

exhibits a highly ordered α -helix structure by forming i + 4→ i hydrogen bonding betweenH4-

H8 and L5- M9 pairs as shown in Figure 7.5(a). This predicted helical structure is in agreement

with our FTIR data on the GBP powder. Placing the peptide in the center of a water box with 1.2

nm TIP3P water layer in each direction, five independent molecular dynamics simulations were

performed for 90 ns (40 and 50 ns in ntv and npt configuration, respectively) using various initial

velocity. In contrast to the ordered helical structure in powder form, strong hydrophilicity of the

histidine residues destabilizes the α -helical structure and transforms the GBP to a distorted α -

helical structure as shown in Figure 7.5(b). The distorted GBP resembles 310 -helix by forming i +

3→ i hydrogen bonding between H4-W7 and L5- H8 pairs as shown. Such transformation in the

aqueous environment is consistent with our FTIR spectra.
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Figure 7.5: Molecular dynamics based structure of GAM peptide (a) in vacuum, (b) in water, and
(c) on a 5 nm × 5 nm graphene sheet. For clarity, only part of the graphene sheet is displayed.

When molecular dynamics simulations were performed on five different systems consisting of the

peptide and 5 Å ∼ 5 nm graphene sheet terminated with hydrogen at its edges as described previ-

ously, [136] the results converged after 40 ns and the GBP was observed to conform to graphene

surface as shown in Figure 7.5(c) with an interaction energy of -106 ± 5 kcal/mol. The indole and

imidazole side chains of tryptophan and histidine residues appear to parallel to the graphene sheet,

distorting the helical structure and weakening the hydrogen bonding. Such calculated behavior

is also consistent with our ATR-FTIR measurement of the adsorbed GBP on HOPG. Finally, to

elucidate the binding mechanism, the representative structure as shown in Figure 7.5(c) was mu-

tated and minimized. Tryptophan, histidine-4, or histidine-8 was substituted with alanine. The

minimized interaction energies for the wild peptide, tryptophan to alanine, histidine-4 to alanine,

and histidine-8 to alanine are - 126 ± 0.2, - 112 ± 0.2, - 115 ± 0.4, and - 123 ± 0.1 kcal/mol,

respectively. These interaction energies imply that tryptophan is needed for efficient binding to

graphene.

In conclusion, our vibrational spectroscopy and atomic force microscopy data show that the GBP,

identified earlier using phage display,[135] binds noncovalently to graphene and HOPG. Direct

118



transmission FTIR spectra indicate that the peptide forms secondary structures both in powder

form and in an aqueous medium. The dominant structure in the powder form is α -helix, which

undergoes a transition to a distorted helical structure in aqueous solution. AFM images indicate

that identical adsorbed layers are formed upon incubation on graphene and HOPG. Raman spectra

show that incubation does not cause any chemical perturbation to graphene, implying that the pep-

tide functionalizes graphene noncovalently as expected. The ATR-FTIR spectra of the adsorbed

layer on HOPG indicate that the GBP is in a helical conformation, which is different from α -helix,

due to its interaction with the surface. Our result thus provides new insights into how the peptide

interacts with the graphene surface and serves as an important experimental confirmation of MD

simulations, which are essential in designing peptide- graphene sensors with high sensitivity and

selectivity. Finally, the result also shows that our approach can be useful for further studies of a

wide variety of graphene-binding peptides.

7.2 Functionalizing molybdenum disulfide (MoS2) with peptide

In last section I have demonstrated functionalization of graphene with peptide for production of

highly selective and sensitive sensors. However the absence of intrinsic band gap and poor on-off

ratio (∼10-100), hinders the realization of graphene based sensors for practical applications. This

has accelerated efforts to either open band gap in graphene [155],[156] or explore other 2D mate-

rial like metal dichalcogenides, MX2 like MoS2, WS2, etc. [157],[158]

Single layer molybdenum disulfide-based FETs have been reported to have mobility of 200 cm2

/ Vsec and on/off ratio of 108 [37] with a band gap of 1.8eV.[157] This makes it more appealing

for electronics applications as compared to graphene. Like graphene, MoS2 is also intrinsically

sensitive to its environment and must be chemically-functionalized to impart it with the analyte

selectivity required for all sensors. Peptides, which possess specific affinity to the desired analyte,
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are one of the more promising candidates for functionalizing MoS2. Hence here I have investigated

peptide binding on MoS2 using Raman spectroscopy, photoluminescence spectroscopy and atomic

force microscopy at room temperature.

Single layer MoS2 samples used in this study were obtained from the mechanical exfoliation

of bulk MoS2, purchased from SPI Supplies. The typical size of the exfoliated samples was 5

µm× 3µm. We have also used large area monolayer MoS2 on sapphire prepared by dip coating

method, where substrate is dipped in a solution containing Mo solution and then subjected to sul-

furization [159]. For peptide incubation, we choose the dodecamer peptide, GAMHLPWHMGTL

to study its binding on MoS2. Peptide solution in deionized water was prepared at concentration

of 200 µg/mL. MoS2 samples were immersed in peptide solution for 10 mins, then washed with

deionized water and gently blown dry with N2 gas. The Raman and photoluminescence data was

collected using Renishaw Raman spectrometer with 532 nm laser (spot size diameter ∼ 1µm) at

power density 0.032 mW/ µm2.

Figure 7.6 (a), (b) shows the atomic force microscopy topographic image of exfoliated single layer

MoS2 on SiO2 before and after incubation with peptide. Clearly after peptide incubation, the MoS2

surface is covered by meshlike layer, whereas the MoS2 remains unchanged. The thickness of this

layer is about 1.10± 0.25 nm, consistent with observed thickness and structure of peptide adsorbed

on the graphene/ graphite surface. The surface chemistry of bulk MoS2 and single layer MoS2 is

same so as expected similar meshlike layer was obtained upon peptide incubation on bulk MoS2.

The topographic atomic force microscopy image of peptide on bulk MoS2 is shown in Figure

7.6(c). Additionally, we also incubated deionized water on the MoS2. Atomic force microscopy

topographic images at different spots did not show any meshlike layer. This clearly points out that

like graphene, peptide is preferentially binding to MoS2 surface.
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Figure 7.6: AFM topographic image of single layer MoS2. (a) before and (b) after incubation with
peptide. (c) AFM topographic image of bulk MoS2 after incubation with peptide.

Figure 7.7: The photoluminescence signal for single layer MoS2 with and without peptide. The
data was acquired at exposure time 10sec and 4 accumulations.

Figure 7.7 compares the photoluminescence signal (PL) of single layer MoS2 before and after

peptide incubation. The single layer MoS2 has a PL peak at 1.86 eV arising from exciton peak,

which corresponds to direct band gap transition at K point in the Brillouin zone. Peptide adsorption

on MoS2 leads to about 80 % quenching of the PL intensity. The Raman data acquired after peptide

incubation on bulk and exfoliated MoS2 does not show any amide I and amide II peak at 700-1600

and 1570-1520 cm−1 regions corresponding to peptide as shown in Figure 7.8.
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Figure 7.8: Raman spectroscopy of MoS2 before and after incubation with the peptide between
18000 and 1500 cm−1.

Since the Fourier transform infrared (FTIR) Spectroscopy is complementary to Raman spectroscopy,

so we carried out FTIR measurements on bulk MoS2 and dip coated monolayer MoS2 before and

after peptide incubation. Strangely again no amide peak was obtained for adsorbed peptide layer.

Although AFM topographic images clearly indicates peptide binding to MoS2 surface, the optical

spectroscopy does not reveal the structure of the peptide binding to the MoS2.
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APPENDIX A: PROCEDURES FOR UHV LIQUID HELIUM CRYOSTAT

CHAMBER
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A.1 Pump down

a. Close the venting valve (1.33” metal seal valve, Do not over tighten).

b. Open the turbo pump valve.

c. Turn on the mechanical pump.

d. Turn on the turbo pump cooling fan (USB cable).

e. Turn on the turbo pump.

f. Mount the RGA controller on the chamber.

g. Wait until the system pressure is below 1× 10−5 torr.

h. Turn on the filament, but don’t turn on the electron multiplier.

i. Perform leak check.

j. Make sure that helium gas is off after leak checking.

A.2 Bake out

a. Turn off the RGA and remove it from the chamber.

b. Remove any cooling water lines.

c. Remove the rubber band from the shutter magnetic coupling.

d. Chamber has been wrapped with the heater tape: make sure that it is still properly wrapped still.

(you might have to redo the wrapping on the helitran flange.)

e. Then cover the chamber with aluminum foil (especially carefully wrap the windows and ceramic

around RGA pins).

f. Plug the heating tapes and increase the voltage up to 32 V in steps of 10 V, after every 10 mins.

g. Wait 10 minutes to make sure that nothing is burning severely.

Optional: Bakeout of ion pump (only if ion pump has been vented)
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h. Open the ion pump gate valve.

i. Turn off the ion pump.

j. Plug in the cable labeled ”ion pump bakeout cable” straight into the wall.

k. Set TSP filament current to 30 A for the duration of the bakeout.

A.3 Chamber cool down after bake out

a. System pressure should be down to near 1× 10−7 torr.

b. Open the ion pump valve.

c. Close Turbo pump valve and then stop it.

d. Turn off the turbo pump cooling fan.

e. Also turn off the mechanical pump.

f. Turn off the heating.

g. Uncover the foil from the RGA pin area.

h. Restart the Temp controller if it shows an ”alarm”.

i. Set the temperature at 490K and start the heater (if necessary, graphene devices might blow up

so know what you are doing here.)

j. Turn off Variac

k. Before the chamber cools: Degas all filaments.
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A.4 Degassing Filaments

A.4.1 Residual Gas Analyzer (RGA)

a) Wait until the RGA feed through is cold.

b) Put the RGA controller on the chamber.

c) Turn on its filament and electron multiplier.

d) Analog scan: the presence of any O2 indicates a leak.

A.4.2 Ion Gauge

When the system has completely cooled down, the system pressure should reach below 1× 10−9

torr. If the system pressure remains high and if there is any oxygen partial pressure detected, check

for leak. First place you should check is the vent valve and move onto the most recent flange that

you have tightened.

A.4.3 Outgassing the hydrogen Cracker

a. Make sure that the sample shutter is closed.

b. For degassing the shroud apply voltage of about of 700 V and slowly increase the emission

current to 10 mA so that the power is 7 W.

c. Wait until the temperature is 200 degrees.

d. Turn off the emission current and voltage completely.

e. Start flowing compressed air through the cooling shroud.

f. Wait until the temperature is below 70 degrees and turn on the water flow.

g. Increase the filament current until the emission current is 50mA and voltage is 1000 V, so that
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the power is 50 W.

h. When hydrogen filament has out gassed sufficiently pass a little bit of hydrogen (so as to prevent

the backscattering).

i. Then let it cool.

A.5 Venting

a. Turn off the ion gauge filament.

b. Turn off all other filaments esp. check the hydrogen cracker; make sure that is completely off.

Filament current should be 0 and the system should be on standby.

c. Close the ion pump valve (keep the ion pump on though).

d. Close the turbo pump valve and turn off the turbo pump and mechanical pump if it is on.

e. Open the vent valve.

A.6 Transport Probe cool down

a. Order enough helium gas and *liquid for the experiment. Contact Air Gas by Wednesday morn-

ing for Friday delivery. 10 liters of LHe is usually enough to just cool to 4K. [Make sure to order a

standard 60 liter dewar (shorter) in order to reach the bottom of the dewar.] *Note: Since the liquid

helium recovery system is now installed in the department, there is no need to commercially order

liquid helium.

b. Make sure that the O-ring (orange viton o-ring) at the top of the helitran is still in place, if not

fix.

c. First check the Helium volume left in the storage dewar. 10 liters are enough for cooling down

to 4 K.
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d. Before you remove the transfer tube from the wall, slide down the storage dewar adaptor all the

way to the bottom of the transfer tube on the storage dewar side.

e. Situate the step ladder in the right place for you to insert the transfer tube in the storage dewar.

f. Depressurize the storage dewar and carefully insert the transfer tube in the dewar.

g. Before you insert the transfer tube into the liquid section, pressurize the storage dewar. Pres-

surize the dewar to 5 psi. Feel the helitran end of the transfer tube and make sure that some gas is

coming out.

h. Insert the transfer tube all the way into the storage dewar slowly. You may have to depressrize

as helium starts to boil off. Maintain the pressure at around 5 psi until 4 K is reached.

i. Insert the transfer tube (the Helitran side) and tighten the adjustment nut 4 turns from the pen

mark.

j. Connect the exhaust port to the flow meter. Open the flow meter valve completely. The flow

meter should read more than 2 if not try to pressurize the storage dewar or you need to unblock the

clog which have formed in the transfer tube.

k. Connect the exhaust port heater to a variac and set voltage to 36 volts.

l. After 30 minutes, liquid helium will start to transfer; at this point reduce the flow meter setting

to 6 to prevent cooling too fast.

m. After 4 K has been reached, reduce the dewar pressure to 2.5 psi and open the valve to the 2.5

psi relieving port on the dewar adaptor.

n. Adjust the adjustment nut to minimize the tip flow as written in the instruction manual.

o. Stabilize the temperature before measurement.
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APPENDIX B: PROCEDURE FOR THE GENERATION OF HYDROGEN

PLASMA USING SAMCO REACTIVE ION ETCHER (RIE)

129



B.1 Turn on procedure

a. Turn on the pumps.

b. Check the N2 gas bottle pressure (P ∼ 5 psi).

c. Make sure that the valve is open (% 100) on MKS pressure controller.

d. Turn on RIE; first the breaker on the back, and then press ON button on front panel.

e. Press the START button on RIE.

B.2 Oxygen Pump Out and Leak Test

Pump out oxygen from system and oxygen lines and perform system leakage check before con-

necting hydrogen.

a. Make sure timer on RIE is set on 1hour or more.

b. Disconnect the oxygen line (quick connection) and cap with the white hose.Make sure Argon

and CF4 is closed.

c. Wait till pressure is less than 20 mTorr.

d. Open GV2 Valve to pump out Oxygen.

e. Ensure Oxygen valve V1 is closed and open the Oxygen valve V2 only.

f. Fully adjust mass flow controller pot all the way clockwise i.e. all the way open.

g. Allow the system to pump till below 20 mtorr.

h. Open the Oxygen valve V1 to pump air into the system (to make sure there is no oxygen in the

small hose left to the Oxygen valve V1).

i. Wait for a minute or so.

j. Close the Oxygen valve V1.

k. Watch mass flow controller to make sure that once the lines are pumped out of Oxygen the mass
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flow meter should continue to read zero if there is no Oxygen leakage in lines. Once it is certain

that lines are not leaking then next step is to make sure SAMCO is not leaking.

l. For this, turn off the mass flow controller pot by turning it anticlockwise and close the vacuum

valve at the rear of SAMCO. Watch for system leaks (this step is to check any leak in the system)

Pressure shouldn’t increase substantially.

m. If no leakage, then proceed further.

n. Reopen the vacuum valve at rear of SAMCO.

B.3 Vent the system

a. Turn off GV2.

b. When pressure is less than 20 mTorr, press ”close” on MKS controller.

c. Wait until 0 % is shown on the position of butterfly valve.

d. Press ”RESET” on RIE. When alarm sounds press ”RESET” again.

e. Open the chamber and load your sample.

B.4 Pump down SAMCO again

a. Make sure timer on RIE is set on 1hour or more.

b. Open RIE vacuum valves; press Open on MKS pressure controller.

c. Wait till pressure is less than 20 mTorr.
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B.5 Hydrogen plasma

a. Turn on and flow the N2 gas into the pump at 5 liters/min. (N2 cylinder connected to the exhaust

of the pump in the utility corridor).

b. Open the H2 cylinder and flow H2(∼ 5psi).

c. Connect the H2 hose to the Oxygen valve V1.

d. Turn on GV2.

e. Open Oxygen valves V1 and V2.

f. Turn on mass flow controller pot clockwise to read 30 sccm and wait for 5mins to purge the

remaining segment of line of O2.

g. After 5mins turn down the mass flow controller pot to read the required flow of H2 (for e.g. 5

sccm)

h. When required pressure is achieved and stable, press ”RF ON” for desired time and check the

plasma in the view port on RIE to make sure plasma is generated.

i. After done using plasma close Oxygen valve V1 and open butterfly valve 100 % and turn the

mass flow controller pot to read 30 sccm and wait mass flow controller pot to read zero (i.e. till H2

is removed)

j. Then close mass flow controller pot and turn off Oxygen valve 2 and then GV2.

k. Turn off H2 gas from the cylinder and disconnect the line and let it be open to air

l. Turn off (close the cylinder) N2 purge gas going to pump.

B.6 Sample unloading

a. When pressure is less than 20 m Torr, press ”close” on MKS controller.

b. Wait until 0% is shown on the position of butterfly valve.
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c. Press ”RESET” on RIE. When alarm sounds press ”RESET”again.

d. Take out your sample and pump down the chamber again (STEP D)

B.7 Removal of remaining hydrogen and shut down procedure.

a. After disconnecting the H2 line, open the mass flow controller pot all the way open, so that air

goes in and open GV2 and Oxygen valves V1 & V2. Wait for 3-5 mins.

b. Turn off oxygen valve V1 and connect Oxygen hose.

c. Open oxygen valve V1 for 2-3 mins to bleed Oxygen through system.

d. Close oxygen valve V1; close the mass flow controller pot; close V2 and then turn off GV2.

e. Wait for pressure to go below 20 mTorr.

f. Hit Close on MKS controller.

g. Turn off SAMCO, controller and pumps.
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