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ABSTRACT 
 
 

 Polarimetry is one of the principal means of investigating the interaction of light with matter. 

Theoretical models and experimental techniques are presented in this dissertation for 

polarimetric characterization of random electromagnetic beams and of signatures of random 

media in different scattering regimes and configurations. 

 The degree of polarization rather than the full description of the state of polarization is of 

interest in multiple scattering and free space propagation where the statistical nature and not the 

deterministic component of light bears the relevant information. A new interferometric technique 

for determining the degree of polarization by measuring the intensity fluctuations in a Mach-

Zehnder interferometric setup is developed. For this type of investigations, one also needs a light 

source with a controllable degree of polarization. Therefore, also based on a Mach-Zehnder 

interferometer, we proposed a new method for generating complex random electromagnetic 

beams. As a direct application of the cross-spectral density matrix formalism, it is shown that the 

spectral and the polarimetric characteristics of light can be controlled by adjusting the 

correlations between parallel components of polarization propagating through the two arms of 

the interferometer. 

 When optical beams are superposed in the previous applications it is desirable to understand 

how their coherence and polarimetric characteristics are combined. A generalization of the 

interference laws of Fresnel and Arago is introduced and as a direct application, a new imaging 

polarimeter based on a modified Sagnac interferometer is demonstrated. The system allows full 
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polarimetric description of complex random electromagnetic beams. In applications such as 

active illumination sensing or imaging through turbid media, one can control the orientation of 

the incident state of polarization such that, in a given coordinate system, the intensities are equal 

along orthogonal directions. In this situation, our novel interferometric technique has a 

significant advantage over standard Stokes imaging polarimetry: one needs only one image to 

obtain both the degree of polarization and the retardance, as opposed to at least three required in 

classical Stokes polarimetry.   

 The measurement of the state of polarization is required for analyzing the polarization transfer 

through systems that alter it. Two innovative Mueller matrix measurement techniques are 

developed for characterizing scattering media, either in quasi real-time, or by detection of low 

level signals. As a practical aspect of Mueller polarimetry, a procedure for selecting the input 

Stokes vectors is proposed. 

 The polarimetric signatures of different particulate systems are related to their structural 

properties and to the size distribution, shape, orientation, birefringent or dichroic properties of 

the particles. Various scattering regimes and different geometries are discussed for applications 

relevant to the biomedical field, material science, and remote sensing. The analysis is intended to 

elucidate practical aspects of single and multiple scattering on polydisperse systems that were 

not investigated before. 

 It seems to be generally accepted that depolarization effects can only be associated to multiple 

scattering. It is demonstrated in this dissertation that depolarization can also be regarded as an 

indication of polydispersity in single scattering. 

 In order to quantify the polarizing behavior of partially oriented cylinders, the polarization 

transfer for systems consisting of individual layers of partially aligned fibers with different 
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degrees of alignment and packing fractions is also analyzed in this dissertation. It is 

demonstrated that a certain degree of alignment has the effect of a partial polarizer and that the 

efficiency of this polarizer depends on the degree of alignment and on the packing fraction of the 

system. 

 In specific applications such as long range target identification, it is important to know what 

type of polarization is better preserved during propagation. The experimental results demonstrate 

that for spherical particles smaller than the wavelength of light, linear polarization is better 

preserved than circular polarization when light propagates through turbulent media. For large 

particles, the situation is reversed; circular polarization is better preserved. It is also 

demonstrated here that this is not necessarily true for polyhedral or cylindrical particles, which 

behave differently. 

 Optical activity manifests as either circular birefringence or circular dichroism. In this 

dissertation, a study is presented where both the effect of optical activity and that of multiple 

scattering are considered. This situation is relevant for medical applications and remote sensing 

of biological material. It is demonstrated here that the output state of polarization strongly 

depends on the optical density of the scattering medium, the optical rotatory power and the 

amount of circular dichroism associated to the scattering medium. This study shows that in the 

circular birefringence case, scattering and optical activity work together in depolarizing light, 

while in the dichroic case the two effects compete with each other and the result is a preservation 

of the degree of polarization. 

 To characterize highly diffusive media, a very simple model is developed, in which the 

scattering is analyzed using the Mueller matrix formalism in terms of surface and volume 

contributions. 
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CHAPTER 1

INTRODUCTION

The measurement of light polarization is one of the principal means of investigating the

interaction of light with matter. All scattering processes lead to changes of polarization

properties of light.

A brief, chronological review of the milestones in polarimetry is given here. The inter-

ference laws of Fresnel and Arago,1 derived from experimental observations of interference

with polarized light, were explained by Stokes using the assumption that light vibrations

are transversal to the direction of propagation. Stokes was trying to mathematically de-

scribe unpolarized light, and as a result, he developed the four ”Stokes parameters” (even

before Maxwell formulated his theory) for complete description of the state of polariza-

tion.2 The geometrical representation of pure states of polarization on the ”Poincarè

sphere” was introduced by Poincarè. Jones introduced the ”Jones calculus”3 for represen-

tation and transfer of pure states of polarization. Mueller formulated his calculus4 based

on the work done by Soleillet who pointed out that Stokes vectors transform linearly, and

by Perrin that showed that the linear relations can be put in matrix form. The polariza-

tion matrix, also known as coherence matrix,5 was introduced by Wiener6 and by Wolf7

to completely describe the state of polarization in a close relation to quantum mechanics.

Very recently, the cross-spectral density matrix formalism was developed by Wolf,8 de-

1



riving the polarimetric, spectral and coherence properties from a common mathematical

description of random electromagnetic fields.

The basic concepts and notations of the Jones, Stokes-Mueller, polarization matrix,

and cross-spectral density matrix formalisms used for the description of random electro-

magnetic beams and of polarization transfer are reviewed below. References to these

definitions will be made throughout this dissertation.

1.1. Jones calculus

The Jones vector3 E =

 Ex

Ey

 =

 ex

eye
iδ

 completely describes pure states of

polarization and the total intensity of the beam (I = e2x + e2y) using three parameters

(the field amplitudes ex, ey and the retardance δ). The spatial and the temporal/spectral

characteristics of the light field were left aside here. Only two parameters, the ratio of the

field amplitudes ex/ey and the retardance δ, are needed to graphically represent a pure

state of polarization in the ellipse representation. Non-image forming optical devices,

for which the light beam enters and emerges as plane wave, are represented by a 2x2

transformation matrix T ,

T =

 j1 j2e
iδ2

j3e
iδ3 j4e

iδ4

 (1)

usually known as the Jones matrix.3 The elements of the Jones matrix have deterministic

and complex values, dealing only with transformations of pure states of polarization into

pure states of polarization. By its nature, the Jones calculus cannot describe either

partially polarized light or random, depolarizing media.

2



An important advantage of the Jones formalism is that it deals with field amplitudes

and phases and can be directly applied to interference phenomena. It allows for coherent

addition of fields for analyzing interference of coherent light beams in interferometric

setups. Of course, incoherent addition of intensities is just a particular case here. An

important disadvantage is that it does not make use of measurable quantities, however, all

parameters can be retrieved from measurements of total intensities in various polarimetric

configurations using retarders and polarizers.

1.2. Stokes-Mueller formalism

The state of polarization of light can be completely described by the Stokes vector

S = {I,Q, U, V }T .2 The four Stokes vector components are defined as follows:

I = Ix + Iy = e2x + e2y

Q = Ix − Iy = e2x − e2y

U = I45◦ − I−45◦ = 2exey cos (δ) (2)

V = Il − Ir = 2exey sin (δ) ,

where ex, ey are the electric field amplitudes, δ is the phase difference between orthogonal

electric field components. A polarizer oriented horizontal (x), vertical (y) or at±45◦ would

let to pass through light with intensity Ix/y or I45◦/−45◦ as components of linear polarization

along x, y or ±45◦ directions, while a quarter-wave plate followed by a polarizer oriented

at±45◦ with respect to the slow axis of the waveplate would transmit Il/r as the intensities

of left and right components of circular polarization. It is important to notice that the

3



sum of the intensities of any two orthogonal components gives the total intensity I which

is the first component of the Stokes vector: Ix + Iy = I45◦ + I−45◦ = Il + Ir = I.

Sometimes, it is convenient to normalize the Stokes vector to the total intensity

q =
Q

I
; u =

U

I
; v =

V

I
; S = {1, q, u, v}T , (3)

and to define a degree of polarization P

P =

p
Q2 + U2 + V 2

I
=
p
q2 + u2 + v2 (4)

that measures the fraction of the light which is polarized; P = 1 represents pure state of

polarization, P = 0 corresponds to natural, unpolarized light, while 0 < P < 1 describes

partially polarized light. The Stokes vector cannot be made of any combination of four

numbers; only those combinations of four real numbers that satisfy the so-called ”Stokes

criterion”, 0 6 P 6 1, can be associated to a state of polarization of light.

The state of polarization can be graphically illustrated as an ellipse as well as on the

Poincarè sphere, alternative representations that will also be used here.

The interaction of light (input Stokes vector Sin) with an object (or scattering sys-

tem) could result in a change of the state of polarization. The transfer function that

describes this change is represented by a real 4x4 matrix M, called Mueller matrix. The

output Stokes vector Sout is then given by Sout = MSin.4 If the light passes through a

cascaded system, each part of the system being described by an individual matrix Mi,

then the output state of polarization is simply given by Sout = Mn..M2M1Sin. A phys-

ically meaningful Mueller matrix must allow Sout to satisfy the Stokes criterion for any

Sin, however, the degree of polarization of the output state could be different from the
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degree of polarization of the input state. For instance, a polarizer would increase P, while

multiple scattering in a particulate system will tend to decrease it. For scattering media,

the dependence on wavelength of the incident light, scattering angle, size, shape and ori-

entation of the scatterers, concentration of the sample, and the complex refractive index

of the scatterers relative to the medium are all contained in the Mueller matrix associated

with that medium, and are well described in literature for single scattering regime;9—12

the Mueller matrix contains all the information that can be retrieved optically from a

scattering sample.

The depolarization index13

D =
1

M2
11

4X
i,j=1

M2
ij =

4X
i,j=1

m2
ij, (5)

where mij = Mij/M11 (i,j=1..4) are the normalized Mueller matrix elements, provides

useful information about the global depolarization characteristics of a transfer system;

D = 4 meaning an interaction with no depolarization effects, while D = 1 characterizes a

total depolarizer.

For reference, the Mueller matrices for the standard objects, most commonly used

in polarization investigations: polarizer, quarter-wave and half-wave plate, and variable

retarder are presented below.

The Mueller matrix of a polarizer at an angle θ is14

Mpol(θ) =
1

2



1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) 1
2
sin(4θ) 0

sin(2θ) 1
2
sin(4θ) sin2(2θ) 0

0 0 0 0


. (6)
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A quarter-wave plate at an angle ρ is described by

Mλ/4(ρ) =



1 0 0 0

0 1+cos(4ρ)
2

sin(4ρ)
2

− sin(2ρ)

0 sin(4ρ)
2

1−cos(4ρ)
2

cos(2ρ)

0 sin(2ρ) − cos(2ρ) 0


, (7)

while a retarder with retardance δ is characterized in its coordinate system by

Mw(δ) =



1 0 0 0

0 1 0 0

0 0 cos(δ) sin(δ)

0 0 − sin(δ) cos(δ)


. (8)

The Mueller matrix of a rotator (half wave-plate) is given by

Mλ/2(ρ) =



1 0 0 0

0 cos(4ρ) sin(4ρ) 0

0 sin(4ρ) − cos(4ρ) 0

0 0 0 −1


(9)

where ρ = θ/2 is the orientation of the retarder and θ is the rotation of a linear input.

Jones calculus and Mueller calculus have much in common. Both describe the state of

polarization in a vector form and its transformation in a matrix form. In both calculi there

is a fixed routine in which matrices and vectors are multiplied following the elementary

rules of matrix algebra. There are, however, important differences. The Mueller calculus

can handle problems involving depolarization, while the Jones calculus cannot. The Jones

calculus allows one to preserve information as to absolute phase, while the Mueller calculus
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cannot. The Jones calculus follows the evolution of the electric field amplitudes, while

the Mueller calculus considers combinations of intensities. This way, the Jones calculus is

well suited to combining beams that are coherent, while the Mueller calculus can do that

with great difficulty. The Jones matrix contains no redundancy in the non-depolarizing

case, while in the Mueller matrix only seven elements out of sixteen are independent.

Mueller matrix polarimetry is becoming a more and more important tool in investi-

gating the characteristics of various scattering media. Without attempting to be compre-

hensive, notable areas were Mueller matrix polarimetry has been successfully utilized in

light scattering by small particles are biomedical field,15—22 marine and submarine envi-

ronment,23—25 polymer science,26, 27 remote sensing,28—31 magneto-optics32 spatiotemporal

strain mapping in experimental mechanics.33

1.3. Polarization matrix formalism

The polarization matrix J , also known as the coherence or the covariance matrix,7, 34

is given by

J =

 hE∗xExi hE∗xEyi­
E∗yEx

® ­
E∗yEy

®
 , (10)

where Ei (i = x, y) are statistically fluctuating orthogonal field components as random

variables described by an ensemble, which we shall assume to be stationary, and h...i

denotes ensemble averaging. The polarization matrix completely describes the state of

polarization of a plane wave. The degree of polarization can be expressed in terms of the

unitary invariants (independent of the coordinate system) of the J matrix, namely the
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determinant (det) and trace (Tr) of J in the form

P =

s
1− 4 det J

(TrJ)2
. (11)

TrJ represents in fact the total intensity of the beam.

The intensity of a wave passing through a compensator (which introduces a delay δ)

and a polarizer (oriented at an angle θ with the x-axis) can be expressed in terms of the

incident polarization matrix J as

I(θ, δ) = Jxx cos
2 θ + Jyy sin

2 θ + Jxy sin θ cos θ exp (−iδ) + Jyx sin θ cos θ exp (iδ) . (12)

This can be rearranged as

I(θ, δ) = Jxx cos
2 θ + Jyy sin

2 θ + 2
p
JxxJyy sin θ cos θ |µxy| cos(βxy − δ) (13)

where

µxy = |µxy| exp
¡
iβxy

¢
=

Jxyp
JxxJyy

(14)

represents the complex degree of coherence of the electric vibrations in the x and y direc-

tions. The absolute value |µxy| is a measure of the degree of correlation of the vibrations

and its maximum value is equal to the degree of polarization P of the wave. The Eq. 13

is formally identical with the basic interference law of partially coherent fields.

There is a direct relationship between the polarization matrix and the Stokes vector

in the form

J =
1

2

3X
i=0

Siσi (15)

where σ0 is the unit 2x2 matrix and σi (i = 1..3) are the Pauli spin matrices. All properties

of the polarization matrix can be extended this way to the Stokes vector.
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A deterministic, non-depolarizing, non-imaging optical device described by a Jones

matrix T will affect the polarization matrix according to the transformation

J 0 = TJT † (16)

where T † is the Hermitian adjoint (transpose conjugate) of T . There are, however, linear

optical systems that cannot be described by a single Jones matrix or a transformation

given by Eq. 16. Depolarizing systems can be described by an ensemble of Jones matrices

T (e) assumed to occur with a probability pe.35 The transformation of the polarization

matrix is given in this case by the ensemble averaging

J 0 =
X
e

(peT
(e)JT (e)†) =

­
T (e)JT (e)†

®
e
. (17)

In principle, this procedure permits the description of depolarizing systems using

Jones matrices. However, there is no unique way for constructing the ensemble of Jones

matrices, as compared to the Mueller matrix of a depolarizing system, which is uniquely

determined.

The polarization matrix formalism can easily handle partially polarized waves and

their transfer through linear optical systems, and also deals with measurable quantities,

since the polarization matrix elements appear naturally as intensity coefficients in the

analysis of a simple experiment. However, interference of partially polarized waves cannot

be easily described since the elements of the polarization matrix are already ensemble

averaged.
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1.4. Cross-spectral density matrix

The second-order coherence properties of a random electromagnetic field are charac-

terized by the cross-spectral density matrix8

W (r1, r2, ω) =

 hE∗x(r1, ω)Ex(r2, ω)i hE∗x(r1, ω)Ey(r2, ω)i­
E∗y(r1, ω)Ex(r2, ω)

® ­
E∗y(r1, ω)Ey(r2, ω)

®
 , (18)

where the angular brackets h...i represent ensemble average, and * stands for complex

conjugate. Particularized to one point, the cross-spectral density matrix reduces to the

coherence matrix7 given by the Eq. 10 that completely describes the state of polarization

of light, and the spectral degree of polarization is calculated as

P (r, ω) =

s
1− 4 detW (r, r, ω)

Tr2[W (r, r, ω)]
. (19)

Also in one point, the trace of W represents the spectral density (the spectrum of light)

S(r, ω) = Tr[W (r, r, ω)]. (20)

From the cross-spectral density matrix, the spectral degree of coherence of the electric

field can also be obtained

µ(r1, r2, ω) =
Tr[W (r1, r2, ω)]p

Tr[W (r1, r1, ω)]Tr[W (r2, r2, ω)]
, (21)

and quantifies the ability of light originating from two points of the field at r1 and r2 to

interfere.

The state polarization (in particular the degree of polarization) and the spectral den-

sity cannot be predicted as a result of propagation since they are defined as one point
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quantities. The cross-spectral density matrix W, however, depends on two spatial argu-

ments, and also satisfies two Helmholtz equations of the form

∇2iW (r1, r2, ω) + k2W (r1, r2, ω) = 0, (22)

where ∇2i is the Laplacian operator acting with respect to ri (i = 1, 2). Knowing the

cross-spectral density matrix W in the source plane, one can predict the spectral degree

of coherence µ, the spectral density S, and the spectral degree of polarization P in a new

plane by propagating W first to the new plane and then calculating µ, S, and P in the

new plane.

The formalism used in a certain analysis is generally selected based on the complexity

of the problem. Transfer of pure polarization through non-depolarizing systems is simply

analyzed with the Jones formalism. When depolarization is involved, Stokes-Mueller and

polarization matrix formalisms can be used equivalently. The cross-spectral density matrix

is required if spectral and coherence properties are also of interest, and for prediction of

field properties in propagation. In the subsequent Chapters, the formalism is selected to

appropriately describe each specific case.

1.5. Applications of polarized light scattering

Scattering problems that can be solved without explicit reference to the state of

polarization of the incident and scattered light are not often encountered. On the other

hand, there are many applications of polarized light scattering, and some of the most

important are mentioned below.
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1.5.1. Optical medical diagnostics

In medical applications, polarization-based optical properties of tissues are very im-

portant in noninvasive medical diagnostics. In dermatology, detection of skin cancer36, 37,

as well as discrimination between normal and cancerous tissue (moles), and identification

of Lupus lesions,38, 39 are possible using Mueller matrix imaging polarimetry. Currently,

the only available method to diagnose the suspected cancerous tissue (skin cancer) is

surgical biopsy.36

Real-time measurement of skin stretch and estimation of stresses are required in wound

closure, healing and scar tissue formation,40 as well as in plastic surgery. A noninvasive

investigation method is desired. Currently available methods are direct contact and ul-

trasonic imaging.41 Tissue structure changes under strain are visible as birefringence

variations in polarimetric images.

Birefringence is related to various biological components like collagen fibers, muscle

fibers, keratin, and glucose. Measurement of form birefringence helps in structural char-

acterization of retina and other tissues. Retinal polarization imaging reveals valuable

information about diabetes and other diseases that could lead to blindness; measuring

the blood oxygen saturation in the large vessels of the retina near the optic disc improves

the chances of early detecting diabetic retinopathy.42 The spatial distribution of the com-

plex index of refraction can be determined from diattenuation and retardance images,39

providing a new contrast mechanism for medical imaging.43, 44

In addition to polarimetry,45 significant efforts have been made to develop a nonin-

vasive blood glucose sensor by use of optical approaches, including near-infrared absorp-
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tion spectroscopy, near-infrared scattering measurements, Raman spectroscopy, photoa-

coustics, and OCT.46

1.5.2. Biology

Optical activity measurements have routinely been performed by chemists and biol-

ogists for more that a century, but only on clear solutions. Measurements on optically

active particles are still to be done. Glucose is the major carbohydrate energy source that

is utilized by living organisms. The ability to noninvasively detect glucose concentrations

in biological media provides fascinating possibilities in the field of analytical chemistry

and biosensing in areas like cell culture bioreactors (used in tissue engineering). However,

scattering cannot be neglected for bioparticles like red blood cells membranes, viruses nu-

clei, mitochondria and ribosomes. One cannot dilute such media without destroying their

structural elements.47 Measuring noninvasively optical activity effects in such systems is

very important.

Microbiologists are concerned with rapid and unambiguous identification of different

microorganisms.48 Conventional methods are time consuming and expensive. Several

researchers have found that unique signatures can be gathered for particular microorgan-

isms from polarized scattering measurements.16, 17, 49 There is also an increasing interest

in microbiology in determining how bacteria are able to rapidly adjust their physical pa-

rameters to changing growth conditions. Size distribution for a population of rod-shape

cells can be measured in real-time and in-vivo.21 Routine use of structural investigations

is desired in clinical bacteriology.
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Marine environment contains very diverse types of particles, like marine chlorella

and phytoplankton, with interesting characteristics (core-shell structure, nonspherical,

optically active) that can be retrieved from polarized scattering.25

Honeybee, anthropoids, squid and octopuses have eyes sensitive to polarized light.

They use it either for orientation or for a better visualization of the environment through

polarization difference imaging (cross polarized channels).29

1.5.3. Remote sensing

Here are some of the most important remote sensing applications of Mueller matrix

imaging polarimetry: target identification, discrimination between natural and man-made

targets based on depolarization characteristics,28, 29 shape and orientation determination

of a target,30 detection of biological contamination, target acquisition and mine detection

in infrared.31

Polarization imaging techniques offer the distinct possibility of yielding images with

higher inherent visual contrast than normal techniques.50 The performance of a polar-

ization imager can be improved by using active illumination. Recent research on linear

polarization difference imaging51 demonstrated that ranges 2-3 times greater than in con-

ventional intensity imaging in scattering suspensions could be achieved.

In astronomy and astrophysics a great deal of knowledge can be obtained by analyzing

the radiation scattered by particles in the atmosphere of planets and satellites, planetary

ring systems, interplanetary dust cloud, circumstellar matter and interstellar medium.52
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1.5.4. Industry and research

The shape of particles and their orientation in space are of importance in the man-

ufacture of aerosols, pharmaceuticals, paints and coatings, and to applications in remote

sensing and imaging through obscuring random media.53

Nondestructive, noninvasive and fast light scattering techniques have been used in

quality control for defects identification. This gives excellent results for monodisperse,

homogeneous and dilute suspensions of spheres. However, if the particles become non-

spherical, have a complex size distribution, are composed of different layers or are in

concentrated solutions, the mean size calculated by the commercial particle sizing instru-

ments can be very different from the real mean size. Several scattering geometries can

give the same intensity pattern,54 and, therefore, polarization sensitivity is required to

extract the correct information from the scattering measurements.

Optical rotation and circular dichroism measurements on transparent and weakly

absorbing samples have been employed to provide information on the identity, electronic

structure, stereochemistry, and concentration of constituent chiral molecules. There is

much current interest in chiral systems for which standard transmission methods are

not appropriate, as, for example, chiral thin films, strongly absorbing chiral materials,

inhomogeneous chiral media, and chiral material with surface roughness.55

Flow birefringence occurs when a fluid becomes optically anisotropic in flows with a

velocity gradient, particularly significant in polymer solutions.26 By directly measuring

flow birefringence, polarimetry is a unique experimental tool in studying the static and

dynamic properties of polymers.
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The size distribution of spherical SiO2 particles upon a silicon wafer has been obtained

from Mueller matrix measurements56 with important applications in semiconductor in-

dustry.

Imaging the Mueller matrix has been used for determining the polarization aberration

matrices for strain birefringence of a plastic lens, the point spread matrix of a LCTV, and

characterization of spatial light modulators, polarizing beamsplitters,57 and optoelectronic

devices.58

Investigation of phase and structural transformations for rapidly pulse-heated metallic

materials, thin film characterization and monitoring, and determination of optical prop-

erties of pure liquid metals can be done by measuring the ellipsometric parameters.59, 60

The effect of surface roughness and observation angle on the degree of polarization of

thermal radiation is also of interest for imaging purposes in 10− 11µm band.61

Heterodyne polarimetry can be used for measuring the Faraday rotation for far-

infrared laser radiation transmitted through tokamak plasma, to determine the poloidal

field distribution and subsequently the current density profile that plays a crucial role in

plasma equilibrium and stability.62

Short vs. long-path photons (ballistic vs. diffuse background) emerging from a scat-

tering medium can be discriminated by means of polarization techniques.63 Other tech-

niques that demonstrated similar capabilities with the purpose of improving imaging

quality and depth penetration in turbid media are time-of-flight spectrophotometry,64

time-gated imaging employing delayed-coincidence,65 optical heterodyne66 and second—
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harmonic-generation cross-correlation techniques.67 These imaging systems are expensive

and complex, and are limited by the response time of the detectors.

All these applications have in common the fact that the main goal is the determi-

nation of inhomogeneities of the complex refractive index which is polarization sensitive

in the form of linear or circular birefringence or dichroism. Structural characteristics of

scattering media are subsequently related to physical properties of interest in biomedical

field, remote sensing, industry and research. Noninvasive, sensitive, and fast measure-

ment methods are needed. In the following Chapters, various measurements techniques

for polarimetric characterization of electromagnetic fields and of scattering systems are

developed. These techniques are then used for analyzing inhomogeneous media in differ-

ent scattering regimes and geometries, relevant for applications such as the ones enlisted

above.
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CHAPTER 2

MEASUREMENT TECHNIQUES

New techniques for polarimetric characterization of random electromagnetic beams

and of the transfer of these beams through various systems will be discussed in this

Chapter.

The degree of polarization rather than the full description of the state of polarization

is of interest in multiple scattering and free space propagation where the statistical nature

and not the deterministic component of light bears relevant information. A new interfer-

ometric technique based on the measurement of intensity fluctuations will be presented

for determining polarimetric characteristics of light governed by Gaussian statistics. In

order to investigate such situations one needs a light source with a controllable degree

of polarization. A novel light source with controllable spectral, polarimetric and coher-

ence properties across the beam will be demonstrated here using phase modulators in a

Mach-Zehnder interferometer illuminated with broadband unpolarized light. In particu-

lar, the degree of polarization is controlled by adjusting the correlation between parallel

components of polarization propagating through the two arms of the interferometer.

These interferometric techniques used for tuning and measuring the degree of polariza-

tion require a good understanding of how random electromagnetic beams are superposed.

A closer examination of the interference of such beams will lead us to a second interfer-

ometric measurement technique that actually provides complete description of the state
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of polarization. A generalization of the laws of Fresnel and Arago is first developed for

the interference of electromagnetic beams with any state of coherence and polarization.

As a direct application of this new generalized interference law, an imaging polarimeter

is proposed based on a modified Sagnac interferometer.

The measurement of the state of polarization is needed for analyzing the polarization

transfer through systems that alter it. The choice of the measurement technique depends

on the specific requirements of the experiment such as wavelength, time scale of the

process investigated, precision required, and the cost of the instrumentation. A relatively

inexpensive apparatus with no moving parts is highly desirable. In the second part of

this Chapter, after a review of the current measurement techniques, two methods for

performing Mueller polarimetry based on intensity measurements will be presented. The

first method is fast involving no moving optical components and allowing a compact

design, while the second one provides a high dynamic range in measuring very low power

optical signals typical for multiple scattering. Practical considerations like calibration

and optimization of Mueller polarimeters, as well as decomposition and noise filtering of

Mueller matrices will also be discussed.

2.1. Interferometric techniques for characterization of electromagnetic beams

Complete description of the state of polarization in each spatial point of a random

electromagnetic field is given by the Stokes vector or the coherence matrix, as described

in Chapter 1. The statistical properties are reflected by the degree of polarization in

that point, while the deterministic component of the fluctuating field is described by the
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pure part of the state of polarization. The degree of polarization is directly related to

the correlation of the orthogonal components of the electric field. This correlation can

be obtained interferometrically by analyzing the fluctuations of the total intensity, or by

projecting the orthogonal components along the same direction. Intensity fluctuations are

first analyzed here in an interferometric technique for measuring the degree of polarization.

A light source with a controllable degree of polarization is also demonstrated using an

interferometric technique. Interference phenomena are governed by the interference laws

of Fresnel and Arago. A generalization of these laws is proposed here for any state of

coherence and polarization, followed by a direct application, namely, an interferometric

imaging polarimeter.

2.1.1. Interferometric measurement of the degree of polarization
based on intensity fluctuations

The electric field components, and therefore, the total intensity of a partially polar-

ized random electromagnetic field are generally fluctuating. Mandel and Wolf34 give the

following formula
­
(∆I)2

®
= (1 + P 2) hIi2 /2 for the variance of the intensity fluctuations

for partially polarized light in a coordinate system in which hIxi = hIyi, where the angular

brackets h...i denote the ensemble average, P is the degree of polarization, and hIi is the

average intensity. The formula is obtained assuming Gaussian statistics for the fluctua-

tions of the electric field components Ex and Ey which are partially correlated; the degree

of correlation is related to the degree of polarization P . The contrast of the intensity

fluctuations, calculated as the ratio between the standard deviation σ =
­
(∆I)2

®1/2
and
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the average intensity hIi, can be written as C = [(1 + P 2)/2]
1/2, which gives C = 1/

√
2

for unpolarized light and C = 1 for fully polarized light. This formula shows a simple

relationship between the contrast C of the intensity fluctuations and the degree of po-

larization P of light. The degree of polarization, the intensity and its variance, are all

coordinate system invariant. Experimentally, the degree of polarization can be deter-

mined by simply measuring the contrast using a regular intensity detector which is also

coordinate system invariant. However, if additional information is required about the

polarized component of the light, more measurements are necessary using optical compo-

nents which are polarization sensitive (polarizers, waveplates), and therefore, a coordinate

system has to be specified for the orientation of the optical components and of the state

of polarization. The use of polarizers to select specific polarimetric components is some-

times disadvantageous since a significant amount of light is blocked by the polarizer. A

method is presented here for doing polarimetric measurements without using a polarizer,

where a simple Mach-Zehnder interferometer is used for simultaneous measurement of

the degree of polarization and of the second component of the Stokes vector, based on

only two measurements. In addition to obtaining polarimetric information from contrast

measurement this technique permits increasing the signal-to-noise ratio up to 40% in cer-

tain circumstances. A similar experimental setup was previously68 used for adjusting the

degree of polarization and the spectrum of light based on tuning the correlations between

parallel components of the electric field coming from the two arms of the interferometer.
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The degree of polarization rather than the full description of the state of polarization

is of interest in multiple scattering69 and free space propagation70—72 where the statistical

nature and not the deterministic component of light bears relevant information.

The polarization matrix formulation, as described in Section 1.3 is used here to de-

scribe the new technique.

For a Mach-Zehnder interferometer, the total output field is represented by the en-

semble {E(T )} = {E(1)
x +E

(2)
x }bx+ {E(1)

y +E
(2)
y }by, where bx and by denote the unit vectors

along the x and y directions, 1 and 2 representing the two arms of the interferometer,

as shown in Fig. 2.1. Considering that the field components in the two arms differ only

by a phase factor exp(iϕj) (j = x, y), the total field can be expressed as function of the

initial field components as {E(T )} = {Ex}fxbx + {Ey}fyby, where fj = £1 + exp(iϕj)
¤
/2.

The total output average intensity is then hIi = |fx|2
­|Ex|2

®
+ |fy|2

­|Ey|2
®
.

ExEy

PM x

PM y

BS1

BS2

M1

M2
Ex

(1)
Ey

(1)

Ex
(2)

Ey
(2) Ex

(T)
Ey

(T)

out 1out 2

Figure 2.1. Mach-Zehnder interferometer: BS1 and BS2 - non-polarizing beamsplitters,
M1 and M2 - mirrors, PM x and PM y - phase modulators controlling the phase along x
and y directions, respectively.
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In order to quantify the fluctuations of the output intensity one needs the intensity-

intensity correlation

­
I2
®
=
D¡|fx|2 |Ex|2 + |fy|2 |Ey|2

¢2E
(23)

= |fx|4
­|Ex|4

®
+ |fy|4

­|Ey|4
®
+ 2 |fx|2 |fy|2

­|Ex|2 |Ey|2
®
,

which, for Gaussian statistics, can be written as

­
I2
®
= 2 |fx|4 J2xx + 2 |fy|4 J2yy + 2 |fx|2 |fy|2

¡
JxxJyy + |Jxy|2

¢
. (24)

The variance of the intensity fluctuations is then given by

­
(∆I)2

®
=
­
I2
®− hIi2 (25)

= |fx|4 J2xx + |fy|4 J2yy + 2 |fx|2 |fy|2 |Jxy|2 ,

and therefore, the contrast can be obtained as

C =
σ

hIi =
¡|fx|4 J2xx + |fy|4 J2yy + 2 |fx|2 |fy|2 |Jxy|2¢1/2

|fx|2 Jxx + |fy|2 Jyy
. (26)

We further note that the off-diagonal term of the coherence matrix, Jxy can be ex-

pressed as function of the degree of polarization P from the Eq. 11

|Jxy|2 = J2yy
P 2(r + 1)2 − (r − 1)2

4
, (27)

where r = Jxx/Jyy = Ix/Iy is the ratio of intensities along the two orthogonal polariza-

tions, x and y. Using this expression in formula 26 one can obtain the contrast of the

output light fluctuations as function of the degree of polarization of the input light and

the input intensity ratio r

C (fx, fy, r, P ) =

h
|fx|4 r2 + |fy|4 + |fx|2 |fy|2 P 2(r+1)2−(r−1)2

2

i1/2
|fx|2 r + |fy|2

(28)
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where |fj| varies between 0 and 1; |fj| = 1 means no phase introduced, and |fj| = 0

corresponds to π phase difference between the j components of the electric field through

the two arms of the interferometer.

Since the intensity ratio r is not independent of the degree of polarization P , we need

a more meaningful representation of the contrast as function of the state of polarization

of the input light. The usual decomposition of the Stokes vector S into the fully polarized

and fully unpolarized components73 is used here

S =



I

Q

U

V


=



Ix + Iy

Ix − Iy

U

V


= IP



1

q

u

v


+ I(1− P )



1

0

0

0


. (29)

The intensity ratio r is given by r = Ix/Iy = (I +Q)/(I −Q) = (1+Pq)/(1−Pq), where

q is the normalized second element of the Stokes vector that describes the pure polarized

component of the input light as shown in formula 29. Using this representation of the

intensity ratio r one obtains the contrast C as function of the degree of polarization P ,

the normalized Stokes element q, and the phase factors fj

C (fx, fy, q, P ) =

£|fx|4 (1 + Pq)2 + |fy|4 (1− Pq)2 + 2 |fx|2 |fy|2 P 2(1− q2)
¤1/2

|fx|2 (1 + Pq) + |fy|2 (1− Pq)
. (30)

After simple algebraic manipulations, formula 30 can be simplified to

C (fx, fy, q, P ) =

·
1− B(1− P 2)

(APq + 1)2

¸1/2
(31)

where the parameters A = (|fx|2 − |fy|2)/(|fx|2 + |fy|2) and B = 2 |fx|2 |fy|2 (|fx|2 +

|fy|2)−2 can be adjusted experimentally by tuning the phase factors fx and fy. This
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simple formula directly relates the contrast C of the output intensity fluctuations to the

degree of polarization P and the normalized Stokes element q of the input light. Using

CCD cameras as detectors one can determine P and q in every point of a beam. Several

practical consequences of this relationship are analyzed in the following.

The relationship between the contrast C and the polarimetric characteristics P and

q can be used both ways: one can determine P and q by measuring C, or one can modify

the contrast of the intensity fluctuations by either changing the input state of polarization

or by adjusting the phase factors fx and fy.

Until now, only one output of the Mach-Zehnder interferometer was considered. The

second output is complementary to the first one, and there is an additional π phase

shift between parallel components of the electric field to be overlapped as compared to

the first output. The previous analysis is similar for the second output, the only required

modification being the replacement of the phase factors fj =
£
1 + exp(iϕj)

¤
/2 by 1−fj =£

1− exp(iϕj)
¤
/2. The parameters A and B in the formula 31 can be explicitly written as

function of the phases ϕj introduced along the two orthogonal directions of polarization

A1,2 =
± cos(ϕx)∓ cos(ϕy)

2± cos(ϕx)± cos(ϕy)
(32)

B1,2 =
2 [1± cos(ϕx)]

£
1± cos(ϕy)

¤£
2± cos(ϕx)± cos(ϕy)

¤2 , (33)

where 1 and the top symbol correspond to output 1, while 2 and the bottom symbol

correspond to output 2.
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One can simultaneously measure the contrast of the intensity fluctuations for the two

outputs of the Mach-Zehnder interferometer and solve the following equations

C1,2 =

·
1− B1,2(1− P 2)

(1 +A1,2Pq)2

¸1/2
(34)

for the degree of polarization P and the normalized Stokes element q of the input light to

finally obtain

P =

"
1− 1− C2

1

B1

µ
A2 −A1
A2 −MA1

¶2#1/2
(35)

and

q =
M − 1

A2 −MA1

"
1− 1− C2

1

B1

µ
A2 −A1
A2 −MA1

¶2#−1/2
(36)

where

M =

µ
B2
B1

1− C2
1

1− C2
2

¶1/2
. (37)

Since B1 is always positive and the contrast C is always smaller than 1, the second term in

the formula 35 is also positive. Therefore, the measured value of the degree of polarization

will always be nonnegative and smaller than or equal to unity.

We would like to mention here that for no additional phases, ϕj = 0, and q = 0,

formula 31 reduces to the one given by Mandel and Wolf34 in the particular case of

hIxi = hIyi (q = 0).

Note that in this measurement the entire energy of the input light is used since

measurements are made on both outputs of the interferometer. In contrast, most of

the standard polarimetric techniques that use polarizers waste a considerable amount of

energy. We should also point out that this technique requires only two measurements

for determining the degree of polarization. In Stokes polarimetry four measurements are
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necessary to completely determine the Stokes vector and to calculate subsequently the

degree of polarization.

Fig. 2.2 shows the contrast C of the intensity fluctuations for output 1 of the interfer-

ometer as function of the phase ϕx for different values of q as indicated on each plot. As

seen in Fig. 2.2 the contrast strongly depends on both P and q while changing the phase

ϕx between 0 and π. However, C = 1 for ϕx = π independent of P and q of the input

light, as expected, since the output light is fully polarized (destructive interference for the

x components of the electric field). Note that q is related to the ellipsometric parameters

azimuth (α) and ellipticity (tan(ω)) through this relationship q = cos(2ω) cos(2α).
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Figure 2.2. Contrast of intensity fluctuations for output 1 of the interferometer as function
of the phase ϕx for different values of q as indicated on each plot, and different degrees
of polarization as indicated in the legend.
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By using both outputs it is not necessary to tune the phases along the two arms of the

interferometer. A fixed waveplate placed in one arm of the interferometer and oriented

with its axis parallel to the x-y coordinate system introduces different phases ϕx and ϕy

along the x and y polarizations, sufficiently different such that A1,2 6= 0. However, it is

also possible to use only one output of the interferometer. Instead of A1,2 and B1,2 as

given in the Eqns. 32-33 one can use A1 and B1 for different values of ϕx while keeping

ϕy = 0 and still obtain both P and q. In this case, sequential measurements are required

as opposed to simultaneous measurements when using both outputs.

Another important practical consequence of the relationship between the contrast C

of the intensity fluctuations and the polarimetric characteristics P and q shown in the Eq.

31 is that the contrast can be modified by either changing the input state of polarization

or by adjusting the phase factors fx and fy. Modifying the state of polarization might

not always be possible, while adjusting the phase factors can be easily implemented using

simple phase modulators. For simplicity, let us assume that there is no phase introduced

along y direction and we use only one phase modulator along x axis (f = |fx|) in one arm

of the interferometer; ϕy = 0 gives |fy| = 1.

The signal-to-noise ratio defined as the inverse of the contrast (SNR = 1/C = hIi /σ)

also depends on the input state of polarization and the phase factors. For Gaussian

statistics of the fluctuations of the unpolarized input, SNR decreases from
√
2 to 1 while

changing the phase ϕx from 0 to π. For a partially polarized input, however, SNR can be

increased up to 40% while changing the phase ϕx. SNR or C, rather than the intensity
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fluctuation is the relevant quantity since both the variance and the average intensity are

modified by ϕx.

In Fig. 2.3, the signal-to-noise ratio SNR is show for output 1 of the interferometer

as function of the phase ϕx for q = 1. As seen in Fig. 2.3, SNR can be increased by

changing the phase ϕx between certain values for partially polarized light.

1.0

1.1

1.2

1.3

1.4

1.5

0 1 2 3
ϕx(rad.)

SNR

Figure 2.3. Signal-to-noise ratio for output 1 of the interferometer as function of the phase
ϕx for q = 1, and different degrees of polarization as indicated in the legend of Fig. 2.2.

In conclusion, a technique for determining polarimetric characteristics of light (gov-

erned by Gaussian statistics) by measuring the contrast of the intensity fluctuations in

an interferometric setup was presented. The method allows simultaneous measurement

of the degree of polarization P and of the second normalized Stokes component q based

on only two measurements. By measuring q one can determine the ellipticity, if one has

apriori knowledge of the orientation α, or viceversa, knowing the ellipticity one can get

the orientation. Another advantage is that, since both outputs of the interferometer are

used for measurements, no input light is wasted, as opposed to the use of a polarizer. It
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was also shown that the signal-to-noise ratio can be increased using phase modulation in

certain conditions.

Finally, in this analysis only uniform phase applied across the beam was considered.

Using spatial light modulators it is possible to control the contrast and therefore the

SNR in every point across the beam, a capability which might be of interest for certain

applications involving random electromagnetic beams.

2.1.2 Generation of complex electromagnetic beams

For complete characterization of a random electromagnetic field one has to specify

its spectral, coherence and polarization properties. These field characteristics are related

to each other and they generally change on propagation.70, 74, 75 In certain applications,

optical beams are superposed and it is, therefore, desirable to understand how these

characteristic features combine. The recently developed unified theory of coherence and

polarization of random electromagnetic beams8 provides a theoretical framework for de-

riving the spectral density, the spectral degree of coherence and the spectral degree of

polarization, namely the cross-spectral density matrix. As a direct application of this

theory, it is shown here that, under certain conditions, the spectral and the polarimetric

characteristics are related and can be controlled through field correlations.

Let us consider two optical fields which are stationary, at least in the wide sense.

Within the frame of the second-order coherence theory in the space frequency domain

(see Ref.76), their statistical properties may be characterized by ensembles (denoted by

curly brackets) of realizations, {E(A)(r, ω)} and {E(B)(r, ω)}, where r represents a position
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vector of a typical field point and ω denotes the frequency. The frequency dependence will

be omitted, to simplify the formulas, while the spatial dependence will be shown explicit

only when it is necessary for the sake of clarity.

Let us consider two unpolarized beams which propagate along the z-axis. Since the

light is unpolarized ­
E(C)∗
x E(C)

x

®
=
­
E(C)∗
y E(C)

y

®
(38)

­
E(C)∗
x E(C)

y

®
= 0 (39)

where the asterisk denotes the complex conjugate, the angular brackets denote the en-

semble averages, E(C)
x and E

(C)
y represent the components of the complex electric field

along two mutually orthogonal directions, and the two individual beams are labeled as

A or B. The first condition shows that the average intensity along the two orthogonal

directions is the same, while the second implies that the two orthogonal components of

the electric field are uncorrelated. If the two beams are superposed, the resulting total

field is represented by the ensemble

{E(T )} = {E(A)
x +E(B)

x }bx+ {E(A)
y +E(B)

y }by, (40)

where bx and by denote the unit vectors along the x and y directions.
The second-order coherence properties of the total field are characterized by the cross-

spectral density matrix8

W (T )(r1, r2) =
­
E(T )∗(r1)E(T )(r2)

®
= (41)

=
­
(E(A)(r1) +E

(B)(r1))
∗(E(A)(r2) +E(B)(r2))

®
.
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It follows that

W (T )(r1, r2) =W (A)(r1, r2) +W (B)(r1, r2) +W (A,B)(r1, r2) +W (B,A)(r1, r2) (42)

where W (A) and W (B) are the cross-spectral density matrices of each of the two beams

to be superposed, and W (A,B) and W (B,A) are the mutual cross-spectral density matrices.

This formula represents the superposition law for the cross-spectral density matrices of

electromagnetic beams.

Two important quantities of practical interest are derived from the cross-spectral

density matrix, as described in Section 1.4, namely the spectral density

S(T )(r) = Tr[W (T )(r, r)] (43)

and the spectral degree of polarization

P (T )(r) =

Ã
1− 4Det[W (T )(r, r)]

{Tr[W (T )(r, r)]}2

!1
2

(44)

of the total field at a point r.

Taking r1 = r2 in Eq. 42 and making use of Eq. 43 and of the fact that the mutual

spectral densities S(A,B) and S(B,A) are complex conjugate of each other, it follows that

S(T ) = S(A) + S(B) + 2ReS(A,B) (45)

where Re denotes the real part. This formula is the spectral interference law for the

superposition of random electromagnetic fields.

To analyze the spectral interference represented by the last term on the right-hand side

of Eq. 45, let us denote the cross-correlations of mutually parallel electric field components
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in the two beams as S(A,B)x =
D
E
(A)∗
x E

(B)
x

E
and S

(A,B)
y =

D
E
(A)∗
y E

(B)
y

E
. Formula 45 can

then be expressed in the form

S(T ) = S(A) + S(B) + 2ReS(A,B)x + 2ReS(A,B)y , (46)

while the spectral degree of polarization becomes

P (T ) =
2
¯̄̄
ReS

(A,B)
x − ReS(A,B)y

¯̄̄
S(A) + S(B) + 2ReS

(A,B)
x + 2ReS

(A,B)
y

, (47)

and the state of polarization is given by the polarization matrix (Section 1.3)

J =

 (S(A)+S(B))
2

+ 2ReS
(A,B)
x 0

0 (S(A)+S(B))
2

+ 2ReS
(A,B)
y

 (48)

= 2
¡
ReS(A,B)x −ReS(A,B)y

¢ 1 0

0 0

+ ·(S(A) + S(B))

2
+ 2ReS(A,B)y

¸ 1 0

0 1


which represents incoherent superposition of linearly polarized and unpolarized light. The

polarized component of such superposition is always linear since there is no deterministic

phase introduced between the x and y components of the electric field.

If the real parts of the two field correlations are equal, i.e. if ReS(A,B)x = ReS
(A,B)
y ,

then P (T ) = 0 and the output is unpolarized. However, if the two correlations differ, then

the output is partially polarized. By controlling the value of the field correlations one can

change both the spectral density and the spectral degree of polarization on superposition.

This can be easily implemented using phase modulators in interferometric setups, for

example by using a Mach-Zehnder interferometer, as shown in Fig. 2.1. Since the two

beams derive from a common source, S(A,B)x 6= 0 and S
(A,B)
y 6= 0, in general.

Consider now the situation where each arm of the interferometer contains a phase

modulator that controls only the phase along x axis for beam A and along the y axis for
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the beam B. If these two modulators introduce the phases ψx(ω) and ψy(ω), respectively,

then the field correlations along x and y directions become

S
(A,B)
j =

D
E
(A)∗
j E

(B)
j exp(iψj(ω))

E
. (49)

The two individual beams remain unpolarized and their spectrum is not affected by the

additional phases.

The properties of the phase ψj(ω) will determine the properties of the field correlations

S
(A,B)
j . The output spectrum (the superposition of A and B) given by Eq. 46 and the

total spectral degree of polarization given by Eq. 47 can be controlled by adjusting the

value of the two field correlations S(A,B)j .

Assuming that the first beamsplitter divides the beam into identical replicas, then

E
(A)
x = E

(B)
x = Ex/

√
2, E(A)

y = E
(B)
y = Ey/

√
2, and S(A) = S(B) = 1

2
S0. Since the second

beamsplitter has a 50% intensity transmission (reflection), there is an additional factor

√
2 in the denominator of the fields to be overlapped in Eq. 40. This gives an additional

factor 1
2
for all the correlations encountered in the previous calculations.

If there is no phase change introduced by the phase modulators (ψj(ω) = 0), then

there is complete spectral interference (S(T ) = S0 for one output), and the degree of

polarization is zero. If both phases are equal to π the spectrum and the degree of po-

larization vanish. The two outputs of the interferometer are complementary, maximum

for one output corresponds to minimum for the other output. The calculations for the

second output require subtraction instead of addition of fields in Eq. 40 because of the

additional π phase shift for one of the beams.
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If ψj(ω) are random functions of zero mean, than S
(A,B)
j are zero, and S(T ) = 1

2
S0,

P (T ) = 0. There is no interference of the two fields and the total spectrum is the sum of

the two individual spectra.

If the two phases are ψx(ω) = 0, and ψy(ω) = π, then the output spectral density is

half of the input one, while the degree of polarization reaches its maximum, P (T ) = 1.

This can be easily explained considering that the x components of the individual fields

are identical, and therefore, interfere constructively, while the y components are π phase

shifted interfering destructively. The situation is reversed for the second output of the

interferometer which will be linearly polarized along y direction. It is worth noting that

no power is lost while the two outputs are fully polarized and orthogonal to each other.

To illustrate these results experimentally, a Mach-Zehnder interferometer is used,

as shown in Fig. 2.1, composed of two mirrors (M1 and M2) and two 50/50 broadband

nonpolarizing beamsplitters (BS1 and BS2). The unpolarized light source was a collimated

broadband LED with an initial spectral density as shown by the doted line in Fig. 2.4.

The phase modulators were wide aperture liquid crystal modulators aligned with their

slow axis along x and y direction, respectively. The interferometer was perfectly aligned

to obtain the zero-order white-light fringe, and the central part of the zero-order fringe

was coupled into a multimode optical fiber and was analyzed with an optical spectrum

analyzer. A broadband polarizer was used for measuring the x and y components of the

spectral densities. In the present experiment the spectral resolution was 2nm; the relative

errors in measuring the spectral density and the degree of polarization were 0.81% and

3%, respectively.
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The phase ψ introduced by a liquid crystal modulator depends on both the wavelength

and the applied voltage

ψ(V, λ) =
2π

λ
dG(V )

λ2λ∗2

λ2 − λ∗2
, (50)

where d is the thickness of the liquid crystal slab, λ∗ is the mean electronic transition

wavelength, andG(V ) is a voltage dependent proportionality constant.77 Fig. 2.4 presents

both the measured total spectral density (dots) and the theoretical spectrum (continuous

line) calculated with the formula

S(T ) = S(A) + S(B) + 2
¡
S(A)x S(B)x

¢ 1
2 cos(ψx) + 2

¡
S(A)y S(B)y

¢ 1
2 cos(ψy), (51)

where S(A)j and S
(B)
j are the spectral densities of the individual beams measured using a

polarizer along the j direction (j = x, y). The expression 51 was obtained from Eq. 46 by

explicitly writing the real part of the field correlations.
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Figure 2.4. Measured spectral density (dots) together with the prediction of Eq. 51 for
our experimental situation (continuous line). Also shown by dotted line is the spectral
density of the light source.
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As can be seen in Fig. 2.4, calculations based on formula 51 agree well with the

experimental data over a broad range of wavelengths.

Since there is no deterministic phase introduced between the x and y electric field

components of the superposition, the degree of polarization defined in the Eq. 44 can

simply be determined using a polarizer along orthogonal directions that give maximum

and minimum intensity (spectrum density), respectively, (x and y directions in this case).

The corresponding values of the spectral degree of polarization are shown in Fig.

2.5. The dots represent the measured spectral degree of polarization of the superposition,

obtained from

P (T )
exp =

¯̄̄
S
(T )
x − S

(T )
y

¯̄̄
S
(T )
x + S

(T )
y

, (52)

where S(T )j are the spectral densities of the superposition measured using a polarizer along

j direction (j = x, y).
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Figure 2.5. Measured spectral degree of polarization (dots) together with the prediction
of Eq. 53 for our experimental arrangement (continuous line).
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The continuous line in Fig. 2.5 represents the theoretical spectral degree of polariza-

tion calculated with the formula

P (T ) =

2

¯̄̄̄³
S
(A)
x S

(B)
x

´ 1
2
cos(ψx)−

³
S
(A)
y S

(B)
y

´ 1
2
cos(ψy)

¯̄̄̄
S(T )

, (53)

which is obtained from the Eq. 47. As can be seen, the output is partially polarized,

demonstrating the possibility of generating light with adjustable spectral degree of polar-

ization while only controlling the phase along x direction in one arm of the interferometer.

Since the input light is unpolarized and there is no correlation between the x and

y components of the electric field vector, one can analyze the interferometer as being

made of two independent interferometers (x and y), overlapped, illuminated with quasi-

monochromatic linearly polarized light along x and y direction, respectively. The same

output of both interferometers will have maximum intensity when they are perfectly

aligned. Adjusting the phase along one arm in only one interferometer (x) will decrease

the output intensity toward minimum (by increasing it in the second output of the x

interferometer), while the y interferometer remains unchanged. The Eq. 38 is not satisfied

anymore and the total output of the overlapped interferometers is linearly polarized along

y direction.

It is also mention here that the spectral degree of coherence of the total electric field,

as described in Section 1.4, is

µ
(T )
12 =

D
E
(A)∗
x1 E

(A)
x2

E
+
D
E
(B)∗
x1 E

(B)
x2

E
+
D
E
(A)∗
y1 E

(A)
y2

E
+
D
E
(B)∗
y1 E

(B)
y2

E
+q

S
(T )
1

q
S
(T )
2

(54)

+
D
E
(A)∗
x1 E

(B)
x2

E
+
D
E
(B)∗
x1 E

(A)
x2

E
+
D
E
(A)∗
y1 E

(B)
y2

E
+
D
E
(B)∗
y1 E

(A)
y2

E
q
S
(T )
1

q
S
(T )
2

.
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One can see in the first line of the Eq. 54 that µ(T )12 depends on the coherence properties

of the individual fields to be overlapped, the correlations between parallel components of

the same fields, A or B, in pairs of points. The second line of the Eq. 54 shows that

µ
(T )
12 also depends on the correlations that might exist between parallel components of

the two fields, also in pairs of points. In the experiment described above, the second

set of correlations can be controlled by adjusting the phases in the two arms of the

interferometer, demonstrating the potential of controlling the coherence properties of the

total beam using spatial phase modulators.

In conclusion, it was shown that under certain interferometric conditions the spectral

density and the spectral degree of polarization are related through field correlations. The

results suggested the possibility of producing light with controllable spectral density and

controllable degree of polarization. Using phase modulators in a Mach-Zehnder interfer-

ometer illuminated with broadband unpolarized light, it was demonstrated that partially

polarized light can be generated by controlling field correlations. This novel light source

permits analyzing subtle details of the propagation of partially polarized beams through

turbid media.

2.1.3. Generalization of the interference laws of Fresnel and Arago

The interference laws of Fresnel and Arago relate the ability of two waves to interfere

with their polarimetric characteristics. They were derived almost 200 years ago based on

experimental observations using a double-pinhole Young’s interferometer.1 Their modern

formulation was presented by Hanau,78 Collett79 and Brosseau.11 A theoretical derivation
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of the four laws was given by Collett79 without, however, any reference to the coherence

properties of the field at the pinholes plane, and only for linearly polarized or unpolarized

light source. A generalization of the interference laws for any state of coherence and

polarization of the field is proposed in this Section. Just for clarity, the original four laws

are stated here:

1) Two waves linearly polarized with perpendicular polarization, cannot interfere.

2) Two waves linearly polarized in the same plane, can interfere.

3) Two waves, linearly polarized with perpendicular polarizations, if derived from

perpendicular components of unpolarized light and subsequently brought into the same

plane, cannot interfere.

4) Two waves, linearly polarized with perpendicular polarizations, if derived from the

same linearly polarized light and subsequently brought into the same plane, can interfere.

Let us consider a double-pinhole Young’s interferometer with the pinholes in plane

A, and an observation plane B placed in the focal plane of a lens with the focal length f,

as illustrated in Fig. 2.6. Immediately following the pinholes there are two polarizers P1

and P2 oriented at θ1 and θ2, respectively. A rotator R is placed after the polarizer P1.

The cross-spectral density matrix8 formalism is used here, as presented in Section 1.4,

to characterize the second-order coherence properties of a random electromagnetic field.
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Figure 2.6. Typical Young’s interference setup. P1 and P2 - polarizers, R - rotator.

The electric field at the observation point Q when only the pinhole 1 is open is

E1 (r1, θ1, α, ϕ1, ω) = R (α)P (θ1) exp (iϕ1)

 Ex (r1, ω)

Ey (r1, ω)

 = (55)

= [Ex (r1, ω) cos (θ1) +Ey (r1, ω) sin (θ1)] exp (iϕ1)

 cos (θ1 − α)

sin (θ1 − α)

 ,
while when only the pinhole 2 is open is given by

E2 (r2, θ2, ϕ2, ω) = P (θ2) exp (iϕ2)

 Ex (r2)

Ey (r2)

 = (56)

= [Ex (r2, ω) cos (θ2) +Ey (r2, ω) sin (θ2)] exp (iϕ2)

 cos (θ2)
sin (θ2)

 ,
where ϕ1 and ϕ2 are the geometric phases accumulated by light travelling from the two

pinholes to the observation point Q, and P (θ) and R (α) are the Jones matrices for a

polarized and a rotator,80 respectively.
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The total spectral density at the observation point Q, calculated as

S (Q) = h(E∗1 +E∗2) · (E1 +E2)i , (57)

is then given by

S (Q) = Sc(Q) + 2 cos (θ1 − α− θ2)S
12(Q) (58)

where

Sc(Q) = Sx(r1) cos
2 (θ1) + Sy(r1) sin

2 (θ1)+

+ 2 sin (θ1) cos (θ1)ReWxy(r1, r1)+

+ Sx(r2) cos
2 (θ2) + Sy(r2) sin

2 (θ2)+ (59)

+ 2 sin (θ2) cos (θ2)ReWxy(r2, r2)

is the constant contribution to the spectral density pattern in the plane B and only con-

tains the incoherent addition of the spectral densities at Q corresponding to the pinholes

being open one at a time (Sm (rj) [m = x, y, j = 1, 2] is the spectral density at rj along

directionm of polarization). The termWxy(rj, rj) is the off diagonal term of the coherence

matrix7 and is related to the state of polarization of the field at rj.

The second term in the Eq. 58 represents a superposition of four fringe patterns

S12(Q) = cos (θ1) cos (θ2)Re [Wxx(r1, r2) exp (i∆)] + (60)

+ sin (θ1) sin (θ2)Re [Wyy(r1, r2) exp (i∆)]+

+ cos (θ1) sin (θ2)Re [Wxy(r1, r2) exp (i∆)] +

+ sin (θ1) cos (θ2)Re [Wyx(r1, r2) exp (i∆)] ,
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where Re stands for real part, ∆ = ϕ2 − ϕ1 = 2π(R2 − R1)/λ, and θ1, θ2 and α are the

orientations of the two polarizers and of the rotator, respectively. The first two fringe

patterns correspond to the correlations of parallel electric field components (x-x and y-y)

as generally known in the classical coherence theory. The last two fringe patterns are the

result of correlations of orthogonal electric field components (x-y and y-x) that were made

parallel by the rotator.

The two polarizers select the field components to be overlapped and the rotator mod-

ifies one of them to set the relative orientation of the electric field components finally

overlapped at the observation plane. Formula 58 is a generalization of the interference

laws of Fresnel and Arago for an electromagnetic field of any state of coherence and any

state of polarization in the plane A. It contains all four interference laws for particular

choices of the orientations of the polarizers and rotator, as we will see later.

The mutual complex degree of coherence is introduced here, similar to the classical

theory of scalar coherence

µ12mn =
Wmn (r1, r2)p
Sm (r1)

p
Sn (r2)

=
¯̄
µ12mn

¯̄
exp

¡
iβ12mn

¢
, (61)

where m,n = x, y. In particular, for m = n

µ12xx =
Wxx (r1, r2)p
Sx (r1)

p
Sx (r2)

, µ12yy =
Wyy (r1, r2)p
Sy (r1)

p
Sy (r2)

(62)

are identical to the degree of coherence in scalar theory, except that in vector theory it

might be different for different directions of polarization. These particular expressions

of the mutual complex degree of coherence are related to the overall complex degree

of coherence8 derived from the cross-spectral density matrix (formula 21) through the
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following relation

µ12
q
[Sx (r1) + Sy (r1)] [Sx (r2) + Sy (r2)] = µ12xx

p
Sx (r1)Sx (r2) + µ12yy

q
Sy (r1)Sy (r2).

(63)

For m 6= n and r1 6= r2, µ12mn is a generalization of the complex degree of polarization

coherence81 µjjxy, introduced for r1 = r2 as a measure of the correlation between the

orthogonal components of the electric field in one point.
¯̄
µjjxy
¯̄
is directly related to the

degree of polarization Pj of light at rj (
¯̄
µjjxy
¯̄ ≤ Pj) and βjjxy = δj is the retardance, the

relative phase difference of the orthogonal vibrations at rj. µ12xy quantifies the correlation

between orthogonal components of the electric field at a pair of points and it can be easily

shown that its modulus is smaller than unity.

Using the definition 61 in the Eqns. 59 and 60 one immediately obtains

Sc(Q) = Sx(r1) cos
2 (θ1) + Sy(r1) sin

2 (θ1)+ (64)

+ 2 sin (θ1) cos (θ1)
¯̄
µ11xy
¯̄q

Sx (r1)Sy (r1) cos (δ1)+

+ Sx(r2) cos
2 (θ2) + Sy(r2) sin

2 (θ2)+

+ 2 sin (θ2) cos (θ2)
¯̄
µ22xy
¯̄q

Sx (r2)Sy (r2) cos (δ2)

S12(Q) = cos (θ1) cos (θ2)
¯̄
µ12xx
¯̄p

Sx (r1)Sx (r2) cos
¡
∆+ β12xx

¢
+ (65)

+ sin (θ1) sin (θ2)
¯̄
µ12yy
¯̄q

Sy (r1)Sy (r2) cos
¡
∆+ β12yy

¢
+

+ cos (θ1) sin (θ2)
¯̄
µ12xy
¯̄q

Sx (r1)Sy (r2) cos
¡
∆+ β12xy

¢
+

+ sin (θ1) cos (θ2)
¯̄
µ12yx
¯̄q

Sy (r1)Sx (r2) cos
¡
∆+ β12yx

¢
.

One can see from the formula 64 that for any orientation of the polarizers, other than

0◦ and 90◦, Sc(Q) depends on the state of polarization (Sx(rj), Sy(rj), and δj), as well as
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on the degree of polarization (through
¯̄
µjjxy
¯̄
) at each pinholes. Also, the interference term

S12(Q) is independent on the degree of polarization at the two pinholes. It only depends

on the coherence properties along x and y and on the correlation between orthogonal

components of the electric field at a pair of points defined by µ12xy. It is worth noting that

the four interference patterns described by the formula 65 have the same fringe spacing

but have different shifts given by β12mn. The four interference patterns can be visualized

independently by suitably choosing the orientations of the two polarizers and of the rotator

as we will see in the particular case of the original interference laws.

2.1.3.1. Example 1

Orthogonal components of the electric field are selected if θ1− θ2 = π/2; for example,

θ1 = α = 0, and θ2 = π/2. The rotator R has no role here. In this case, the total

spectral density is Sx (Q) = Sx(r1) + Sy(r2). There is no interference between orthogonal

components of the electric field.

2.1.3.2. Example 2

By fulfilling the condition θ1 − α = θ2 one selects parallel components of the electric

field that interfere in the observation plane B. For clarity, two particular cases are

illustrated here from the Eq. 58 by the same formal equation:

Sm (Q) = Sm(r1) + Sm(r2) + 2
¯̄
µ12mm

¯̄p
Sm (r1)Sm (r2) cos

¡
∆+ β12mm

¢
(66)

a) m = x for θ1 = θ2 = α = 0, and

b) m = y for θ1 = θ2 = π/2, α = 0.
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Parallel components of the electric field can interfere depending on their correlation,

which might be different for different directions of the polarization, and independent on

the degree of polarization at the two pinholes.

2.1.3.3. Example 3

If the orthogonal components of the electric field selected by θ1 − θ2 = π/2 are

subsequently made parallel using the rotator R, choosing for example θ1 = 0, and α =

θ2 = π/2, then the total spectral density is

S (Q) = Sx(r1) + Sy(r2)− 2
¯̄
µ12xy
¯̄q

Sx (r1)Sy (r2) cos
¡
∆+ β12xy

¢
. (67)

Interference fringes are observed if there is statistical similarity between the orthogonal

components of the electric field at the two pinholes. In particular, if the field at the

pinholes plane is derived from a fully polarized light source, there is complete correlation

between the orthogonal components of the electric field. However, if the light source

is unpolarized, there is no correlation between such components and no interference is

observed. A partially polarized light source generates a certain degree of correlation

between orthogonal components of the electric field in the plane A, and, therefore, a

fringe pattern is obtain in the observation plane B with a visibility directly related to the

degree of polarization of light at the source.

In conclusion, following the previous analysis based on the formula 58 we can state

three generalized laws of interference:

1) Orthogonal components of a random electromagnetic field cannot interfere irre-

spective of the coherence and polarization properties of the field.
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2) Parallel components of a random electromagnetic field can interfere depending on

the coherence and polarization properties of the field.

3) Orthogonal components of a random electromagnetic field subsequently brought

into the same plane can interfere depending on the mutual complex degree of coherence

of the field.

2.1.4. Imaging polarimeter based on a modified Sagnac interferometer

Polarimetric imaging systems are widely used in biomedical36—38 and remote sens-

ing28, 29 applications for improving the imaging depth in turbid media or for mapping

the distribution of complex refractive index.39 Various techniques such as continuously

rotating two retarders,82, 83 classical Mueller polarimetry,84, 85 four liquid crystal variable

retarders,86 or four cameras,87, 88 are used for polarimetric characterization of scattering

media. These methods generally require acquisition of a large number of images. There

are, however, applications such as the ones where scattering is dominant, where complete

polarimetric characterization is not required because the relevant information is obtained

from the degree of polarization of light. We introduce here a method in which the degree

of polarization can be recovered from only one image.

Single scattering on a cloud of particles in both forward and backward directions, has

the characteristic that one cannot define a scattering plane. Using this assumption of ro-

tational symmetry and other symmetry considerations, van de Hulst9 concludes that the

Mueller matrix for forward and backward scattering is diagonal with m22 = m33 6= m44.

This happens in certain cases of interest, such as a collection of randomly oriented iden-
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tical particles each of which has a plane of symmetry, or particles and mirror particles in

equal number. Similar considerations apply to multiple scattering in forward and back-

ward direction where the Mueller matrix is also diagonal with m22 = m33 6= m44, and the

diagonal elements decay exponentially with the optical density. In these cases, the ratio

m33/m44 can be related to the size of the spherical scatterers69, 89 and the orientation of

the state of polarization of the initial beam remains unchanged. What changes is only the

ellipticity and the degree of polarization which vary with the particle size distribution in

single scattering regime or with the optical density in multiple scattering. In applications

such as active illumination sensing or imaging through turbid media, one can control the

orientation of the incident state of polarization such that, in a given coordinate system,

the intensities along the orthogonal directions x and y are equal. In this situation, the

measurement technique that is proposed here has a significant advantage over the stan-

dard Stokes polarimetry, namely, it requires only one frame to obtain both the degree of

polarization and the retardance. In Stokes polarimetry, one needs at least three images

(for example: π/4, left, and right polarization components) to determine the Stokes vector

and subsequently to calculate the degree of polarization and the ellipticity.

The proposed technique is based on a modified Sagnac interferometer, where orthogo-

nal polarization components are projected along the same direction by a polarizer. Their

interference depends on their degree of correlation, and is directly related to the degree

of polarization of the analyzed light.

The procedure can easily be understood on the basis of the interference laws of Fresnel

and Arago.1, 11, 78, 79 A generalization of the interference laws for any state of coherence
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and polarization of the field was presented in the previous Section. The original laws 3

and 4 imply a relationship between the polarimetric characteristics of the light and the

ability to interfere of orthogonal components subsequently brought in the same plane.

The modified Sagnac interferometer shown in Fig. 2.7 consists of a polarizing beam-

splitter PBS and two mirrors M. The two counter-propagating beams are orthogonally

polarized, and according to the interference law 1 (Section 2.1.3), they do not interfere at

the output of the interferometer. However, if we use a polarizer with orientation θ with

respect to the beamsplitter’s coordinate system, the two orthogonal polarizations are now

projected along the direction of the polarizer and can interfere if there is any deterministic

phase relationship between them. The two beams are overlapped in the observation plane

situated in the focal plane of a lens L.

P(θ)

PBS
M

M

CCD
L

Figure 2.7. Modified Sagnac interferometer. PBS - polarizing beamsplitter, M - mirrors,
P(θ) - polarizer oriented at θ, L - imaging optics for the CCD camera.
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The electric fields to be overlapped on the CCD are

E1 (θ, ϕ1) = P (θ)P (0)P (0)

 Ex

Ey

 exp (iϕ1) = (68)

= Ex cos (θ) exp (iϕ1)

 cos (θ)
sin (θ)

 ,
and, respectively,

E2 (θ, ϕ2) = P (θ)P (π/2)P (π/2)

 Ex

Ey

 exp (iϕ2) = (69)

= Ey sin (θ) exp (iϕ2)

 cos (θ)
sin (θ)

 .
The phases ϕ1 and ϕ2 are the geometric phases accumulated by light travelling through

the interferometer to the observation plane, and P (θ) is the Jones matrix of a polarizer.80

P (0) and P (π/2) represent the effect of the polarizing beamsplitter on the incident light,

and it is worth mentioning here that in the present configuration the light experiences two

reflections at the beamsplitter along one propagation direction through the interferometer,

and two transmissions along the other direction, seeing, actually, the same polarizer twice

along each path.

The total intensity at an observation point Q on the CCD, calculated as I (Q) =

h(E∗1 +E∗2) · (E1 +E2)i, can be written as

I (Q) = Ic(Q) + Iint(Q) (70)
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where

Ic(Q) = Ix cos
2 (θ) + Iy sin

2 (θ) (71)

Iint(Q) = 2 sin (θ) cos (θ)Re [Jxy exp (i∆)] (72)

and Re stands for real part, ∆ = ϕ2−ϕ1. Ic(Q) represents the incoherent addition of the

intensities corresponding to the orthogonal components of the incident light (Im = Jmm)

overlapped by the polarizer. The second term in the Eq. 70, Iint(Q), represents the

interference of the orthogonal components of the electric field projected along the same

direction by the polarizer.

By normalizing the off-diagonal element Jxy of the coherence matrix to the diagonal

elements81

µxy =
Jxyp
JxxJyy

=
¯̄
µxy
¯̄
exp(iδ) (73)

one obtains, as described in Section 1.3, a measure of the degree of correlation between

Ex and Ey. Using formula 73 one can rewrite the Eq. 72

Iint(Q) = 2 sin (θ) cos (θ)
p
IxIy

¯̄
µxy
¯̄
cos(∆+ δ), (74)

where δ represents the retardance, the relative phase between the two orthogonal electric

field components. For a certain orientation θ of the polarizer,
¯̄
µxy
¯̄
can be determined

as the envelope of the interference fringes, while δ is given by the position of the fringes

with respect to a reference that will be discussed in the following.

The magnitude
¯̄
µxy
¯̄
can be directly related to the degree of polarization starting

from the formula 11

P =

s
1− 4 det (J)

[tr (J)]2
=

s
1− 4

¡
IxIy − |Jxy|2

¢
(Ix + Iy)

2 =

vuut
1−

4IxIy
³
1− ¯̄µxy ¯̄2´

(Ix + Iy)
2 . (75)

51



In fact, one can see from the Eq. 75 that P =
¯̄
µxy
¯̄
if the two intensities Ix and Iy are

equal.

Three particular orientations of the polarizer are required for complete determination

of the state of polarization. For simplicity, 0◦, 45◦, and 90◦ are chosen here. The Eq. 70

simplifies then to I(0) = Ix, I(90) = Iy, and I(45) = (Ix + Iy) /2+
p
IxIy

¯̄
µxy
¯̄
cos(∆+δ).

In an imaging configuration, I(45) provides two parameters in only one shot; the envelope

of the interference fringes gives
¯̄
µxy
¯̄
in every point of the image, while the position of the

fringes with respect to a reference frame determines the retardance δ. The reference frame

for the position of the fringes is given by an initial calibration of the imaging polarimeter

using linearly polarized light for which δ = 0. Four parameters Ix, Iy,
¯̄
µxy
¯̄
, and δ are

therefore obtained for every pixel from only three images denoted as I(0), I(90), and

I(45) allowing for complete determination of the state of polarization in either coherence

matrix or Stokes formalism.

It is worth mentioning here that the fringe spacing is adjustable by translating one

mirror of the interferometer, allowing for a tunable resolution in estimating the position

and the envelope of the fringes, as opposed to the technique described in the Ref.90 where

the resolution is set by the apex of the birefringent prisms. This feature makes our

technique attractive for analyzing scenes with either monotonic or sharp variations of

the state of polarization across the image, the only limitation being the resolution of the

imaging system.

In order to experimentally demonstrate our technique we need to generate a complex

beam with the state of polarization varying across the beam. For this purpose an unpo-
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larized He-Ne laser and a Mach-Zehnder configuration were used as shown in Fig. 2.8.

Two orthogonal polarizers (along x and y directions) are used one in each arm of the

Mach-Zehnder interferometer. Since the initial light is unpolarized, there is no determin-

istic phase relationship between the x and y components of the electric field at the output

of the interferometer, and therefore no interference occurs in the observation plane. The

degree of polarization of the output light can be varied between 0 and 1 by adjusting the

intensity in one arm of the interferometer; for example, P = 0 if Ix = Iy, and P = 1 if

either Ix or Iy are zero.

ExEy

Px

Py

BS

BSM

M

F

R

Figure 2.8. Mach-Zehnder interferometer. BS - non-polarizing beamsplitters, M - mirrors,
Px, Py - horizontal and vertical polarizers, F - neutral density filters, R - retarder.

The degree of polarization can be varied in each point across the beam by using,

for example, a spatial light modulator in between parallel polarizers in one arm of the

interferometer. For simplicity, neutral density filters were used shifted with respect to

each other across the beam to create steps in the intensity pattern. The variation of the

retardance was created by simply inserting a waveplate approximately halfway across the
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beam. An additional rotator is introduced after the generator to avoid the situation where

linearly polarized light enters the analyzer along x or y direction. This is not a degenerate

case since the formula 75 gives P = 1 if either Ix or Iy are zero and our analysis gives the

correct state of polarization; however, no fringes are observed.

The state of polarization across the beam was measured using the modified Sagnac

interferometer followed by a polarizer as described above. The state of polarization was

also measured using a standard Stokes imaging polarimeter, by recording the x, y, 45◦,

and right polarization components with suitably oriented polarizer and quarter wave-plate

in front of the CCD camera. Note here that the Sagnac interferometer was removed from

the optical path.

Fig. 2.9 shows the images obtained with our technique based on the Sagnac inter-

ferometer. First row shows the experimental images Ix, Iy and I45. Also the top right

corner image represents the interference pattern, described by the Eq. 74 for θ = 45◦ and

normalized to
p
IxIy. The magnitude of the fringes, their envelope provides

¯̄
µxy
¯̄
, the

modulus of the degree of polarization coherence, while the position of the fringes gives

the retardance δ. The envelope of the fringes is simply obtained as the magnitude of the

Hilbert transform for each line of the image, then the position of the fringes is derived

by fitting them with a cosine function multiplied with
¯̄
µxy
¯̄
. Therefore, δ and

¯̄
µxy
¯̄
are

determined for each pixel of the image. The interference pattern in the top right corner

image clearly shows a displacement of the fringes at the edge of the retarder and at the

line 100. Above line 100 and to the left of the retarder, the polarized component of light is

linear, and the position of the fringes here provides the reference frame for the retardance.
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Second row in Fig. 2.9 shows the calculated normalized Stokes vector components q, u,

and v and the degree of polarization P.

Ix Iy I45 interf

q u v P

Ix Iy I45

Figure 2.9. Images obtained with the Sagnac interferometer. First row - experimental
images Ix, Iy and I45, and the normalized interference pattern. Second row - calculated
normalized Stokes vector components q, u, and v and the degree of polarization P.

Ix Iy I45 Ir
q u v P

Ix Iy I45
Ir

Figure 2.10. Images obtained with standard Stokes polarimetry. First row - experimental
images Ix, Iy, I45, and Ir. Second row - calculated normalized Stokes vector components
q, u, and v and the degree of polarization P.
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Fig. 2.10 shows the images obtained with standard Stokes polarimetry. The first

row displays the experimental images Ix, Iy, I45, and Ir, and the second row shows the

calculated normalized Stokes vector components q, u, and v and the degree of polarization

P. The images shown in both the Fig. 2.9 and 2.10 are scaled with 90 shades of grey.

White represents 1 for q, u, v, P, and the interference term, and an intensity in arbitrary

units of 675 for Ix, Iy,and I45, in Fig. 2.9, and 500 for Ix, Iy, I45, and Ir in Fig. 2.10. Black

represents -1 for q, u, v, and the interference term, and 0 for all the other images.

In order to compare the results of standard Stokes polarimetry and our technique, the

plots of the total intensity, normalized Stokes vector components q, u, and v, the degree

of polarization P, and the retardance δ (corresponding to the line indicated by the arrows

in Fig. 2.9) are presented in Fig. 2.11. This comparison shows a very good agreement

between the two techniques demonstrating the validity of our method. One can clearly

see the step in retardance introduced by the retarder, that also modifies the Stokes vector

components.

The intensities Ix and Iy are roughly equal on the left of the retarder and in between

lines 60 and 100. One can see that there are no fringes in this area (interference pattern in

Fig. 2.9), and consequently, the degree of polarization is small (Fig. 2.11). The retarder

changes the ratio of the intensities Ix and Iy, and also introduces a phase relationship

between the x and y components of the electric field propagating through the top arm

of the Mach-Zehnder interferometer. Therefore, the degree of polarization is changed, as

indicated in Fig. 2.11. Note that the edges of the filters and of the retarder are clearly

visible in both Figs. 2.9 and 2.10, and also correspond to the jumps in Fig. 2.11.
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Figure 2.11. Comparison between the results of standard Stokes polarimetry (line) and of
our technique (dots). Plots of the total intensity Int, normalized Stokes vector components
q, u, and v, the degree of polarization P, and the retardance δ corresponding to the line
indicated by the arrows in Fig. 2.9.

It is worth mentioning that if there is no phase relationship between the x and y

components of the electric field, the fringe patterns corresponding to q > 0 (Ix>Iy) and

q < 0 (Ix<Iy) are π phase shifted. If the intensities are equal, the two fringe patterns

compensate each other giving no interference and the degree of polarization is zero.

In conclusion, a new measurement technique for imaging polarimetry based on a

modified Sagnac interferometer was presented here. The comparison between the Stokes

components obtained with our technique and standard Stokes polarimetry shows a very

good agreement. This technique can also be regarded as a direct illustration of the

interference laws of Fresnel and Arago. In certain applications where the orientation of

the state of polarization is known and only the degree of polarization and the retardance

fluctuate in time or across the image, one can use our technique to monitor these changes
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in real time. The main advantage over the standard Stokes polarimetry is that only one

image is required to obtain both the degree of polarization and the retardance, as opposed

to at least three images in Stokes polarimetry. The fringe spacing is easily adjustable

allowing for improved resolution in determining the state of polarization when necessary,

as opposed to previously published interferometric techniques.

2.2. Mueller polarimetry

In certain applications, the transfer of the state of polarization through a system

(the Mueller matrix), rather than the state of polarization, is of interest. The Mueller

matrix elements are related to relevant physical characteristics as described in Section 1.5.

Determination of the Mueller matrix requires measurement of the state of polarization

for both the incident and the scattered light. A short review of the state-of-the-art in the

field is given in this Section, followed by the development of new measurement techniques.

Practical aspects of Mueller polarimetry are also discussed.

2.2.1. Classification of measurement techniques

In general, modulation of the state of polarization is required for precise and fast mea-

surement of the Stokes vector or of the Mueller matrix. In the following, a classification

of the experimental techniques is presented from the point of view of modulation of the

state of polarization.
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2.2.1.1. Rotating-element polarimetry

2.2.1.1.1. Sequential measurements

The classical method of measuring the Stokes vector involves six measurements ac-

cording to Eq. 2. Based on the property Ix + Iy = I45◦ + I−45◦ = Il + Ir = I, Collett91

proposed a method involving just four measurements (Ix, Iy, I45◦, Il). Four is practically

the minimum number of measurements required for complete determination of the Stokes

vector. For the purpose of noise reduction, more measurements are sometimes performed,

over-determining the Stokes vector or the Mueller matrix. For circularly polarized in-

put, Ambirajan and Look92 measure the Stokes vector of scattered light by rotating a

retarder at 11 positions. To determine the Mueller matrix, Cariou et al.13 use two pairs

of polarizer/quarter-wave plate. The two polarizers are crossed and stationary, while the

two quarter-wave plates are rotated with step motors in 64 combinations.

Bickel and Bailey93 describe all the combinations of input and output polarizing optics

(open hole, polarizer, quarter-wave plate) required for complete determination of the

Mueller matrix, giving also physical interpretation to matrix elements.

McClain et al.94 use two pairs half-wave/quarter-wave plates, one for the incident

beam, one for the scattered beam. Each of the four retarders has two angular positions,

providing 16 possible combinations. A decomposition technique is used to calculate the

Mueller matrix.

None of these methods uses a modulation of the intensity or retardation, and all of

them require many consecutive measurements for complete determination of the Mueller

matrix.
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2.2.1.1.2. Simultaneous measurements of the Mueller matrix

In 1978, Azzam82 proposed a technique in which all 16 Mueller matrix elements are

retrieved from only one detected signal by performing a discrete Fourier transform. The

polarizing and analyzing optics consist of stationary parallel polarizers and of two synchro-

nously rotating quarter-wave retarders at angular speeds ω and 5ω. Goldstein95 uses this

method in an infrared polarimeter. To simulate the rotation of each retarder, Azzam82, 96

proposes the use of pairs of Faraday cells.

2.2.1.1.3. Sequential generation - simultaneous analysis

The technique of continuously rotating-retarder fixed-analyzer was first introduced by

Sekera.97 Fourier decomposition of the time varying detected signal gives simultaneously

all four Stokes vector components.

The generation part of the incident state of polarization, used by Lewis and Jordan98, 99

for the Mueller matrix measurement, is composed of one fixed polarizer and two adjustable

retarders (half-wave and quarter-wave). Six input states are generated sequentially, and

the scattered light is analyzed using Sekera’s97 technique.

The idea of division of amplitude for simultaneous measurement of all four Stokes pa-

rameters has been introduced by Azzam.100 The division-of-amplitude photopolarimeter

(DOAP) consist of a beamsplitter and two Wollaston prisms followed by four detectors.

Azzam,101 also describes a different version of DOAP that uses four photodetectors with

different spatial orientation. The incident beam is partially reflected and partially ab-

sorbed, by the first three detectors while the fourth detector is totally absorbing. In a
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third version of the DOAP,102 the four detectors receive light multiply reflected in a paral-

lel slab. An important problem in the last two methods is that the four detectors receive

different levels of intensity with negative impact on the signal-to-noise ratio. Incidence

angle is also extremely critical.

Krishnan and Nordine59, 103 describe a method in which the input states of polarization

are sequentially generated involving a fixed polarizer and a quarter-wave plate rotated in

steps of 10◦. The state of polarization of the scattered light is analyzed by a DOAP as

proposed by Azzam.100 Their second paper also describes a polarization state generator

based on two liquid crystal variable retarders that generate a series of linear, elliptical

and circular polarization states to overdetermine the Mueller matrix.

2.2.1.2. Phase-modulation polarimetry

2.2.1.2.1 Consecutive measurements of the Mueller matrix elements

Bille19 presents a technique involving four Pockels cells, four pre-selected input states

being generated sequentially. The reflected light is analyzed in the same pre-selected

states. Sixteen consecutive measurements are performed, allowing determination of the

whole Mueller matrix.

2.2.1.2.2. Simultaneous measurement of specific Mueller matrix elements

A few methods have been published about Mueller matrix measurement using one

or two photoelastic modulators (PEM). What these methods have in common is that

just groups of matrix elements can be determined for each configuration of the setup.

61



Multiple configurations involving rotations of the active elements are required for complete

determination of the Mueller matrix.

Jasperson and Schnatterly104 proposed in 1969 the use of PEM in ellipsometry. Hunt

and Huffman105 used it in 1973 to investigate systems of spherical scatterers. Bell32

improved the method to measure all 16 elements of the matrix in groups of three elements,

given four orientations of the analyzer for each of the two positions of the PEM.

Salzman et al.16 proposed a method in which only fourteen matrix elements can be

determined in two configurations of an apparatus using two PEM’s. Anderson106 and Jel-

lison and Modine107 suggested an apparatus that uses two PEM’s with different resonant

frequencies (50 and 60kHz). To determine the whole Mueller matrix, four configurations of

the apparatus are necessary. Anderson106 suggested lock-in detection which would result

in sequential measurement of eight matrix elements in each configuration, while Jellison

and Modine107 use a spectral analysis method for simultaneous measurement of groups

of eight elements. A similar apparatus has been used by DeVolk et al.17 for biological

particle identification.

2.2.1.2.3. Simultaneous measurement of all Mueller matrix elements

Thompson et al.108 proposed a photopolarimeter involving four Pockels cells with

different orientations, modulated at four different frequencies. The detected signal is

analyzed with sixteen lock-in amplifiers. The method is fast, but its drawback is the

complexity of the electronics.

Compain and Drevillon improved the Mueller matrix measurement methods by mod-

ulating the incident state of polarization. The four Stokes parameters are independently
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modulated by a coupled-phase-modulator109, 110 made of two electro-optic phase modula-

tors with a partial polarizer and phase shifter (PPS) in between. They also propose a

new polarization modulator111 based on a double-pass through one PEM with a PPS in

between the two passes. For measurement of the state of polarization of the scattered

light they suggest the DOAP technique outlined by Azzam.100 However, the measure-

ments are practically done with a manual single-channel polarimeter109 that simulates

the multichannel one.112 They combine the new polarization modulator with the DOAP

into an ellipsometer.113

2.2.1.2.4. Sequential generation - simultaneous analysis

The method presented below can be described as sequential generation - simultaneous

analysis. It allows simultaneous measurement of all four Stokes vector components using

only one PEM in a single-pass configuration. The beam is split in two by a non-polarizing

beamsplitter, analyzed by two polarization channels, and read by two detectors. Four

input states of polarization are sequentially produced by the state of polarization generator

and the Mueller matrix is obtained with simple matrix algebra after measuring the four

output states of polarization.

2.2.2. State of polarization generation

For the generation of the state of polarization, a polarizer P and a combination of

two liquid crystal variable retarders LCVR1 and LCVR2 are used as shown in Fig. 2.12.

LCVR1 is rotated 45◦ with respect to the axis of the polarizer, while LCVR2 has one
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axis (slow or fast) parallel to P. Both variable retarders are controlled from a computer

through a National Instruments data acquisition board (DAQ). The desired retardation is

introduced by each of the two retarders when a specific voltage is applied on the retarder

from the computer.

Laser

P LCVR1 LCVR2

Sin

Figure 2.12. Polarization generation unit; P is a polarizer and LCVR1, LCVR2 are liquid
crystal variable retarders.

Starting from a linearly polarized input in horizontal direction S0 = {1, 1, 0, 0}T (after

the polarizer P), the generated state of polarization Sin can be deduced using the Mueller

matrices M1(δ1) and M2(δ2) associated with the two retarders:

M1(δ1) =



1 0 0 0

0 cos(δ1) 0 − sin(δ1)

0 0 1 0

0 sin(δ1) 0 cos(δ1)


(76)

M2(δ2) =



1 0 0 0

0 1 0 0

0 0 cos(δ2) sin(δ2)

0 0 − sin(δ2) cos(δ2)


. (77)
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Sin(δ1, δ2) is given by:59

Sin(δ1, δ2) =M2(δ2)M1(δ1)S0 =



1

cos(δ1)

sin(δ2) sin(δ1)

cos(δ2) sin(δ1)


. (78)

Any possible state of polarization can be obtained in this way if δ1 varies between 0◦

and 180◦ and δ2 between 0◦ and 360◦. Eq. 78 resembles the transformation from Cartesian

to spherical coordinates, and is the basis for representation of a state of polarization on the

Poincarè sphere in which any point on the sphere of radius 1 (centered in the origin of the

coordinate system (q, u, v)) represents a pure state of polarization. In this representation

Sin(δ1, δ2) covers the whole Poincarè sphere for these variation intervals of δ1 and δ2.

An equivalent generation system, which can also produce any state of polarization

starting from a linear input, has a quarter-wave plate in between the two liquid crystal

variable retarders. In this configuration, the two modulators are parallel, at 45◦ with

respect to the polarizer P, while the quarter-wave plate has the slow axis parallel to

P. LCVR1 and the quarter-wave plate act together as a polarization rotator, the polar

orientation of the generated linearly polarized light being given by half the phase shift

introduced by LCVR1. 0◦ to 90◦ rotation of the polarization direction together with 0◦

to 360◦ phase shift introduced by LCVR2 are enough to cover the whole Poincarè sphere.

Liquid crystal modulators present the advantage of being extremely easy to use and

less expensive than any other light modulator; most important, in comparison with electro-

optic modulators, they are driven by applying small voltages. In our setup, the two
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LCVR’s are directly controlled by a computer through a DAQ. There is no need for

external power supplies, since the LCVR can be easily powered from the DAQ outputs.

The retardance introduced by a LCVR decreases approximately 0.4% per ◦C. How-

ever, due to the very short duration of the measurement, this is not an issue here. The

resolution for controlling the voltage applied to the LCVR is 16 bits, i.e. about 15µV ,

which corresponds to at most 7.5 · 10−3nm in retardance introduced by the LCVR.

2.2.3. Phase-modulation analysis

A new technique for measuring the state of polarization of light is presented in this

Section. The Stokes analyzer employs a single-pass photoelastic modulator (PEM). A

simple Fourier decomposition of the two measured signals allows simultaneous determina-

tion of all Stokes vector components. There are no moving parts involved, which simplifies

the mechanical setup (allowing for a compact design) and the control of the measurement

process. This system used together with the Stokes generator described above, permits

the complete determination of the Mueller matrix. Four input states of polarization are

generated sequentially, and for each of them, all four Stokes vector parameters are si-

multaneously measured. A straightforward matrix algebra is used to calculate all sixteen

Mueller matrix elements given the four generated input states of polarization and the four

measured output states. The entire process (control of the polarization generation unit,

measurement and analysis) is controlled by a computer in LabVIEW through a National

Instruments DAQ. There is no need for lock-in amplifiers, sophisticated electronics and

optics, high-voltage amplifiers and power supplies for electro-optic modulators.
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Let us consider a setup in which the light passes first through a retarder, described

by Eq. 8, followed by a polarizer described by Eq. 6. The detector would be sensitive

only to the total intensity which is the first element of the Stokes vector. Given an

incident Stokes vector Sin = {I0, Q0, U0, V0}T , the output Stokes vector is obtain from:

Sf =Mpol(θ)Mw(δ)Sin for which the total intensity Ifinal is given by:

Ifinal =
1

2
{I0 +Q0 cos(2θ) + sin(2θ)[U0 cos(δ) + V0 sin(δ)]}. (79)

Different retardations δ (or a modulation of the retardance as it will be seen here)

allow U0 and V0 to be determined independent of the polarizers position (different from

0 or π/2). The problem is that the polarizer has to be rotated in two different positions

θ1 and θ2 to allow I0 and Q0 to be determined independently. This is solved using a non-

polarizing beamsplitter, two polarizers at two different orientations and two detectors in

a simple configuration as presented in Fig. 2.13.

PEM P0

P45

D0

D45

BSPL

Sout

Figure 2.13. Polarization analyzer unit; PEM is a photoelastic modulator, BSPL is a
non-polarizing beamsplitter, P0 and P45 are polarizers oriented horizontal, respectively
at 45◦, and D0, D45 are detectors.

The laser beam for which the Stokes vector Sout is to be measured, is first modulated

by the photoelastic modulator PEM that introduces a time dependent retardation of the
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form: δ(t) = δo cos(2πft) between the two orthogonal components of the electric field,

where δo is the maximum retardance and f = 50kHz is a fixed resonant modulation fre-

quency. The non-polarizing beamsplitter BSPL splits the signal in two equal components

that are passed through two polarizers P0 and P45 oriented at 0◦ and 45◦ and analyzed

by two detectors D0 and D45. D0 gives a DC signal (DC0), while D45 gives a time

varying signal which is Fourier analyzed to extract the DC term (DC45) and the first two

harmonics (If , I2f).

The relationship between Sout (four components) and (DC0, DC45, If , I2f) can be

determined by knowing the Mueller matrices of PEM, BSPL, P0 and P45. Assuming that

all optical components are ideal and have the proper orientation, we use Eq. 8 in the form

MPEM(δ(t)) =Mw(δ(t)) for PEM, and the following matrices for P0, and P45:

Mpol(0) =
1

2



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


;Mpol(45) =

1

2



1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0


. (80)

It is assumed here that the non-polarizing beamsplitter is ideal, and does not affect

the state of polarization both in transmission and in reflection. We can obtain the total

intensity on the two detectors by either applying Sfinal =Mpol(θ)MPEM [δ(t)]Sout for the

particular matrices of the two polarizers as given in Eq. 80 and keeping just the first

element of the Stokes vector as total intensity, or, simpler, particularizing Eq. 79 for 0◦

and 45◦. If i0 is the current read by the detector D0, and i45 is the current read by the
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detector D45, they can be related to the Stokes vector parameters through:

i0 =
1

2
(I0 +Q0) (81)

i45(t) =
1

2
{I0 + U0 cos[δ(t)] + V0 sin[δ(t)]}. (82)

For a time dependent retardation of the form δ(t) = δo cos(2πft), a Bessel-Fourier

decomposition for sin[δ(t)] and cos[δ(t)] is generally used:11, 63

sin[δ(t)] = 2
∞X
k=0

J2k+1(δo) sin[(2k + 1)ωt] (83)

cos[δ(t)] = J0(δo) + 2
∞X
k=1

J2k(δo) cos(2kωt). (84)

The two currents i0 and i45 are recorded for a full period. The value of δo is chosen

to be equal to 2.405 such that J0(δo) = 0. By averaging i0 and i45, the DC components

are obtained as DC0 = I0 + Q0, DC45 = I0, and, respectively, by averaging i45 sin(ωt)

and i45 cos(2ωt), the coefficients of the first two harmonics If and I2f (the coefficients of

sin(ωt) and cos(2ωt)) are obtained as If = V0J1(δo) and I2f = U0J2(δo).

Finally, the four components of the Stokes vector are obtained:

I0 = DC45 (85)

Q0 = DC0 −DC45 (86)

U0 =
I2f

J2(δo)
(87)

V0 =
If

J1(δo)
. (88)

The experimental setup includes a National Instruments DAQ for reading the two

currents i0 and i45, and all the numerical analysis was initially performed in LabVIEW.

Measurement of one state of polarization requires simultaneous reading of the two currents
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i0 and i45 over a period of time T = 1/f of about 20µs. Averaging 100 times for noise

reduction gives a time frame of 2ms for reading one state of polarization. The time

required by the LCVR’s to switch between two states of polarization can be made as

small as 10ms. Quasi-real-time measurement of the Mueller matrix is in this way possible

allowing monitoring, for instance, the structural dynamics in a variety of particulate

systems.

To speed up the measurement process, the Fourier analysis can be done directly using

dedicated electronics instead of numerical analysis in the computer. Also, the precision

can be improved by modulating the laser power at 1kHz. Filtering out the two detected

signals at this frequency, instead of reading DC terms, removes the background noise.

The blueprints of the electronics developed for this purpose are presented in Appendix B.

Basically, there are 4 channels consisting of bandpass filters centered at 1kHz (2 channels),

50kHz, and 100kHz and a few amplifying stages. By squaring the output of the bandpass

filter, or multiplying it with the reference frequency, the square of the amplitude is ob-

tained after a low pass filter that selects only the DC term; [A sin(x)]2 = A2

2
[1− cos(2x)].

The outputs of the 4 channels are proportional to the squares of the 4 Fourier components

described above.

Generally, four input states of polarization are required for complete Mueller matrix

measurement. In our setup, which is schematically depicted in Fig. 2.14, four input states

of polarization Sin(δ1, δ2) are generated sequentially (four combinations of δ1 and δ2) and

for each of them, the state of polarization Sout of the light emerging from the sample

is measured. The equation Sout = MSin provides now a system of 16 equations with
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unknowns Mi,j with i, j = 1..4. The Mueller matrix M associated with the investigated

sample is obtained by solving this system.

State of Polarization
Generation Unit

Analyzing
UnitSample

SoutSin

M

Figure 2.14. Schematic setup for Mueller matrix measurement in transmission.

A reliable way to validate and to check the performance of the present method is by

testing standard optical elements such as good quality polarizers and wave plates. The

system was tested by measuring the Mueller matrix of a polarizer, and of a quarter-wave

plate, each of them rotated in steps of 5◦ from 0◦ to 180◦. The results for the polarizer are

presented in Fig. 2.15, and for the quarter-wave plate in Fig. 2.16; the crosses indicate

experimental points while the continuous curve is the theoretical prediction as given in

Eq. 6, and Eq. 7, respectively.

As a measure of the system’s performance, the deviations of the experimental values

from the theoretical predictions were quantified by calculating the standard deviation of

the Mueller matrix elements. The average standard deviations for the Mueller matrix

elements of the polarizer shown in Fig. 2.15, and the quarter-wave plate in Fig. 2.16,

are 1.95% and 2.5%, respectively. These deviations could be attributed to both statistic

and systematic errors. Statistic, random errors due to laser power fluctuations, electrical

noise, and detector dark current fluctuations are minimized by averaging. Systematic

errors could be reduced mainly through improving the calibration process, also described
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in this Chapter. In principle, small errors in the calibration matrixMcoeff in Eq. 99 could

lead to significant errors in the measured Mueller matrix.
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Figure 2.15. Mueller matrix of a polarizer rotated in steps of 5◦ from 0◦ to 180◦.
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Figure 2.16. Mueller matrix of a quarter-wave plate rotated in steps of 5◦ from 0◦ to 180◦.
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The analysis unit described here can be used independently for measuring just the

state of polarization in cases where the Mueller matrix is not required. In combination

with the state of polarization generator, the analyzing unit can be used for measuring,

for example, the Mueller matrix as function of scattering angle, optical density, shape

and orientation of scatterers, or monitoring the structural dynamics of various colloidal

systems. Practically, scattered light at any angle between 0◦ and 180◦ can be measured by

placing the analyzing unit on a rotation table with the axis of rotation passing through the

sample. The measurements can also be made in exact backscattering using an additional

beamsplitter cube to separate the light scattered by the sample, from the incident beam.

In comparison with the transmission measurement, the only difference is that the Mueller

matrix of the beamsplitter has to be known for both transmission and reflection in order

to relate the real Sin and Sout (incident and reflected from the sample), with the known

S
0
in (generated) and the measured S

0
out.

A simplified setup involving no moving parts, that allows simultaneous measurement

of all four Stokes parameters, and real-time Mueller matrix measurement, was presented

here. The method can be described as sequential generation - simultaneous analysis, where

LCVR’s are used to control the incident polarization state, having the advantage of being

directly driven by a computer. The measurement of the state of polarization involves

phase modulation, analysis in two polarization channels, and Fourier decomposition of

the detected signals. An overall accuracy better than 2.5% was demonstrated through

measurements on standard optical elements. The ability to complete a Mueller matrix

measurement in less than 50ms is appealing for monitoring structural dynamics in a
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variety of applications. The setup is designed to specifically investigate the polarization

signature of particulate systems with high volume fractions. A detailed analysis of the

Mueller matrix could reveal comprehensive information about the scattering medium,

such as size, concentration, shape (deviation from sphericity) of the scatterers, optical

activity, global depolarization effects (depolarization index), as well as effects specific to

different types of illumination (linear, circular or elliptical polarization).

2.2.4. Static analysis

This second method involves no time modulation of the retardance for any of the ac-

tive elements in the Stokes generator or analyzer. Fast nodulation would not be suitable

for the type of detectors (photomultiplier - PMT, charge-coupled device - CCD) required

in certain applications. As mentioned before, the measurement technique has to be cho-

sen based on the specifics of the experiment. The detector of choice in light scattering

experiments is, in general, the photomultiplier, being very sensitive to very low power

optical signals. The CCD cameras used in imaging applications are by definition ”slow”

detectors. The method described here uses PMT’s as detectors. The main advantage of

this technique is that it provides a high dynamic range in measuring very faint signals

typical for multiple scattering. The ”data” recorded is a photon count.

The Stokes analyzer acquires sequentially two pairs of data in two polarization chan-

nels for complete determination of the Stokes vector. If combined with the Stokes gener-

ator, as previously described, the system shown in Fig. 2.17 allows full determination of

the Mueller matrix.
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Some of the experimental results obtained with this system will be presented here in

subsequent Chapters. A dual channel Stanford Research counter is used to determine the

photon count. The result is transmitted to a computer through a GPIB interface and

the Mueller matrix is calculated in LabVIEW. The Stokes analyzer rotates around the

sample, allowing measurement of the scattering matrix (Mueller matrix as function of the

scattering angle). The system is completely automatic; the computer controls the Stokes

generator, the counter, the rotation stage, and the data acquisition.

LCVR1 LCVR2

laser
θ0

δ1, α1

P0

δ2, α2

LCVR3

P1, θ1

P2 , θ2

PMT1

PMT2

N-POL
BSPL

λ/4
at ρ

δ3, α3

Figure 2.17. Scattering matrix polarimeter.

In the Stokes analyzer, the light first passes through a variable retarder (LCVR3),

through a quarter-wave plate oriented at ρ with respect to LCVR3, and then through a

non-polarizing beamsplitter. The two polarizers P1 and P2 oriented at θ1 and θ2 analyze

the light emerging from the beamsplitter. It is assumed here that the non-polarizing

beamsplitter is ideal, and does not affect the state of polarization both in transmission

and in reflection.
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Let us consider a setup in which the light passes first through a variable retarder,

described by Eq. 8, followed by a quarter-wave plate oriented at an angle ρ as described

by Eq. 7, and then through a polarizer oriented at θ and described by Eq. 6. The detector

would be sensitive only to the total intensity which is the first element of the Stokes vector.

Given an incident Stokes vector Sin = {I0, Q0, U0, V0}T , the output Stokes vector (for the

light incident on the detector) is obtained from Sf = Mpol(θ)Mλ/4(ρ)Mw(δ)Sin and the

total intensity If is

If(δ, ρ, θ) =
1

2
[I0 +Q0f1(ρ, θ) + U0f2(δ, ρ, θ) + V0f3(δ, ρ, θ)], (89)

where

f1(ρ, θ) = cos[2(θ − ρ)] cos(2ρ) (90)

f2(δ, ρ, θ) = − sin(δ) sin[2(θ − ρ)] + cos[2(θ − ρ)] cos(δ) sin(2ρ)

f3(δ, ρ, θ) = cos(δ) sin[2(θ − ρ)] + cos[2(θ − ρ)] sin(δ) sin(2ρ).

In the two channel configuration, the Eq. 89 is particularized for the two orientations

of the polarizers θ1 and θ2. For each of the two retardations δ1 and δ2, introduced by

the LCVR3, the two detectors acquire simultaneously data as follows: for δ1, detector 1

acquires data I1 = If(δ1, ρ, θ1) and detector 2 acquires data I2 = If(δ1, ρ, θ2), and for δ2,

detector 1 acquires data I3 = If(δ2, ρ, θ1) and detector 2 acquires data I4 = If(δ2, ρ, θ2).
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The Eq. 89 can be written in matrix form

I1

I2

I3

I4


=
1

2
T (δ1, δ2, ρ, θ1, θ2)



I0

Q0

U0

V0


, (91)

where

T (δ1, δ2, ρ, θ1, θ2) =



1 [f1(ρ, θ1)] [f2(δ1, ρ, θ1)] [f3(δ1, ρ, θ1)]

1 [f1(ρ, θ2)] [f2(δ1, ρ, θ2)] [f3(δ1, ρ, θ2)]

1 [f1(ρ, θ1)] [f2(δ2, ρ, θ1)] [f3(δ2, ρ, θ1)]

1 [f1(ρ, θ2)] [f2(δ2, ρ, θ2)] [f3(δ2, ρ, θ2)]


. (92)

The four Stokes vector components I0, Q0, U0, and V0 can be determined by recording

I1, I2, I3, and I4 and inverting the Eq. 91. The optimization problem,97—102 consists in this

configuration in determining the values of δ1, δ2, θ1, θ2, and ρ for which the measurement

would be less affected by errors.

A simpler optical configuration would be without the quarter-wave plate shown in

Fig. 2.17. The final Stokes vector would be given by Sf = Mpol(θ)Mw(δ)Sin and the

matrix T would have a much simpler form

T =



1 [cos(2θ1)] [sin(2θ1) cos(δ1)] [sin(2θ1) sin(δ1)]

1 [cos(2θ2)] [sin(2θ2) cos(δ1)] [sin(2θ2) sin(δ1)]

1 [cos(2θ1)] [sin(2θ1) cos(δ2)] [sin(2θ1) sin(δ2)]

1 [cos(2θ2)] [sin(2θ2) cos(δ2)] [sin(2θ2) sin(δ2)]


. (93)

However, det(T ) ≡ 0, and the Eq. 91 cannot be inverted to determine the Stokes vector.

An additional polarizing element (retarder) is required as described to mix up the four
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Stokes components such that an analyzer (polarizer) would bring them independently up

in the total intensity, the measured quantity. A quarter-wave plate oriented at an angle

ρ does the trick. However, ρ cannot be 0◦ or 90◦ (parallel to LCVR3) because f2 or f3

would be identically zero and det(T ) ≡ 0. ρ cannot be 45◦ as well, since f1 is zero and

det(T ) ≡ 0.

The optimization problem reduces now to maximizing the determinant∆(δ1, δ2, ρ, θ1, θ2)

of the matrix T given by Eq. 92 where the three functions f1, f2, and f3 are given by Eq.

90.

The algebraic expression of the determinant

∆(δ1, δ2, ρ, θ1, θ2) = −8 sin2(δ1 − δ2
2

) cos(θ1 − θ2) · (94)

sin2(θ1 − θ2) sin(θ1 + θ2 − 2ρ) sin(4ρ)

can be separated in two functions of independent variables

F1(δ1, δ2) = sin2(
δ1 − δ2
2

) (95)

F2(ρ, θ1, θ2) = cos(θ1 − θ2) sin
2(θ1 − θ2) sin(θ1 + θ2 − 2ρ) sin(4ρ) (96)

The maximum value of F1, which is 1, is obtained for any combination δ1 = δ2 ± π.

To obtain the maximum value of F2, 0.384876, any combination of θ1 = ±4◦,±5◦,±6◦,

θ2 = θ1 ± 55◦, and ρ = ±22.5◦ ± 45◦ can be used.

There are many solutions for this maximization problem. If we consider the four lines

of the matrix T given by Eq. 92 as representing the vertices of a tetrahedron inscribed in a

sphere of radius 1, the function∆, the determinant of the matrix T , is equal to the volume

of the tetrahedron. The maximum volume corresponds to a regular tetrahedron, for any
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orientation of the tetrahedron inside the sphere. This degree of freedom in the orientation

of the tetrahedron provides for an infinite number of solutions. From a practical point of

view, a step of 0.5◦ in the variation of the 5 variables is reasonable enough, making the

number of solutions to be finite.

Here is an example of a set of retardations and orientations for the polarizing elements

that provide for the maximum value of the function ∆ of 3.079: θ1 = 5◦, θ2 = 130◦,

ρ = 22.5◦, δ1 = 0◦, and δ2 = 180
◦. This completely determines the configuration of the

Stokes analyzer.

2.2.5. Calibration

To account for inherent errors introduced by non-ideal optical elements or misalign-

ment, an experimental calibration has to be performed.

The previous analysis of the two Stokes analyzers assumes that all the active compo-

nents are perfectly aligned in a given coordinate system. Also, as mentioned before, the

beamsplitter cube was assumed to be non-polarizing. However, any real beamsplitter acts,

practically, as both partial polarizer and phase-shifter (retarder), both in transmission and

in reflection. An ideal Mueller matrix for a beamsplitter cube that would describe these

effects is14

MΨ,∆ =



1 − cos(2Ψ) 0 0

− cos(2Ψ) 1 0 0

0 0 cos(∆) sin(2Ψ) sin(∆) sin(2Ψ)

0 0 − sin(∆) sin(2Ψ) cos(∆) sin(2Ψ)


, (97)
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whereΨ and∆ are the standard ellipsometric angles and are different for transmission and

reflection. A more general matrix should be used to take into account any misalignment

(rotation) of the cube.

The splitting ratio of the cube could be different than the ideal 50/50 such that the

optical intensities incident on the detectors could be affected by different attenuation

factors.

To account for all these issues, it is assumed here that each of the four measured

quantities I1, I2, I3, and I4 depends on all four Stokes vector components:

I1

I2

I3

I4


=



a01 a02 a03 a04

b01 b02 b03 b04

c01 c02 c03 c04

d01 d02 d03 d04





I0

Q0

U0

V0


. (98)

Then, the Stokes vector is obtained by calculating the inverse matrix of this system which

we will call Mcoeff :

I0

Q0

U0

V0


=Mcoeff



I1

I2

I3

I4


=



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4





I1

I2

I3

I4


. (99)

For example, rewriting the Equations 85-88 for the ideal case, Mcoeff is given by:
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M ideal
coeff =



0 1 0 0

1 −1 0 0

0 0 0 1/J2(δo)

0 0 1/J1(δo) 0


. (100)

Mcoeff could be experimentally determined for four known input states of polarization

(Stokes vectors). Eq. 99 provides basically a system of 16 equations with unknowns ai,bi,ci

and di (i = 1..4). Mcoeff is obtained solving this system. However, using a number of

inputs larger than 4, a better calibration can be obtained. By rotating two retarders

(quarter-wave and half-wave plate) after a fixed polarizer, a good coverage of the whole

Poincarè sphere can be achieved. The best calibration of the Stokes analyzer is obtained

by fitting all the generated Stokes vectors, not only a limited set of four.

2.2.6. Polar decomposition and noise filtering

Polarimetric characteristics like depolarization, diattenuation and retardance, very

important in optical media characterization, can be obtained from experimental Mueller

matrices by polar decomposition.114 The diattenuation quantizes the difference in trans-

mission, while the retardance describes the phase shift between linear orthogonal po-

larizations. For certain materials that depolarize light isotropically, the Mueller matrix

can be decomposed as a sum of non-depolarizing matrix and a totally depolarizing one
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M =MJ +MD where

MD =



d 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (101)

d is called depolarization coefficient and is calculated as

d =M11 −
r
1

3
[Tr (MTM)−M2

11]. (102)

The non-depolarizing matrix MT can be directly derived from a Jones matrix T

through the following transformation

MT = A
¡
T ⊗ T

¢
A−1, (103)

where

A =



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


, (104)

⊗ denotes the Kronecker product, and T is the complex conjugate of T . The Jones

matrix T , that is obtained solving Eq. 103, can be decomposed by polar decomposition

in a Hermitian matrix TP associated with an elliptical partial polarizer and a unitary

matrix TR associated with a pure elliptical retarder (T = TPTR). The retardance δ and

the diattenuation D can be extracted as follows:

δ = 2arcos


¯̄̄
TrT + detT

|detT |TrTJ
∗
¯̄̄

2
p
Tr (T ∗T ) + 2 |detT |

 , (105)
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where T ∗ is the transpose complex conjugate of T , and

D = P 2
x − P 2y

P 2
x + P 2

y

, (106)

where P 2
x = Tmax and P 2

y = Tmin given by

Tmax,min =
1

2

½
Tr (T ∗T )±

q
[Tr (T ∗T )]2 − 4 |detT |2

¾
. (107)

The random noise associated with experimental Mueller matrices can be filtered out

given that the noise is small with respect to the signal. Using the Pauli matrices a

Hermitian matrix H can be constructed as

H =
1

2

3X
i=0

3X
j=0

Mi,jσi ⊗ σj. (108)

The eigenvalues λk and the eigenvectors wk are calculated for the matrix H. If the largest

eigenvalue λ0 ≈ TrH = 2M1,1 and the other 3 eigenvalues are close to 0, then the noise is

considered to be filtered out by removing λk with k = 1, 2, 3. The matrixHJ is constructed

by HJ = λ0wkw
∗
k. The Eq. 103 can be rearranged as

FT = A−1MTA = T ⊗ T (109)

and FT can be obtained from HT using FT (i,k)(j,l) = HT (i,j)(k,l) where (i, j) = 2i + j. The

Eq. 109 provides now the filtered Mueller matrix MT .

Using the procedure described above, implemented in a Mathematica program, the

overall error of the experimental Mueller matrices was reduced up to 10 times.
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2.2.7. Optimization of Mueller polarimeters

There are still many practical questions to be answered related to the measurement of

the Mueller matrix. Typically, a Mueller matrix polarimeter is composed of a generator of

the state of polarization and an analyzer that measures the output state of polarization,

as described above. For ideal Stokes generators and Stokes analyzers there are no obvious

problems in retrieving the experimental data. However, in practical situations, fluctua-

tions are unavoidable in both the generation and the analysis process resulting in errors

in the measured Mueller matrix. The problem of optimizing the Stokes generator, such

that the influence of these fluctuations in the Mueller matrix measurement is minimized,

is addressed in the following.

In a typical experiment, the input states of polarization S
(i)
in are measured first, then

the corresponding output states S
(i)
out are measured when the sample is present. The

Mueller matrix of the sample is subsequently calculated from

S
(i)
out =MS

(i)
in (110)

assuming that the input Stokes vectors are constant during measurement. In practice this

is obviously not the case because of the laser power variations during the measurement

and of the limited reproducibility (fluctuations) of the generation process. Ideally, an

additional Stokes analyzer should be used to measure simultaneously the input and the

output Stokes vectors such that the Eq. 110 is rigorously applicable. However, this is

not always a practical solution. A different approach is proposed here for minimizing the

effects of the experimental errors on the calculated Mueller matrix elements. The goal is

to answer the question: how should one choose the four input Stokes vectors such that
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fluctuations in these vectors propagate with the smallest effect on the calculated Mueller

matrix?

There are several examples in the literature for optimization procedures intended

to promote noise immunity in Stokes analyzers.102, 115—119 The common strategy is to

minimize various figures of merit such as the inverse of the determinant of the measurement

matrix. In practice, the configuration of the measurement system is chosen to maximize

the determinant of the matrix that relates the Stokes vector to be determined to the four

measured intensities. The optimization discussed here is based on the same mathematical

principle, i.e. maximization of the determinant of the transformation matrix that linearly

relates the measurement vector (four measured quantities) and the vector representing

the four quantities to be calculated. The transformation matrix T is constructed by the

four input Stokes vectors and is the same for the four systems of equations that have to be

solved for complete determination of the Mueller matrix. We emphasize here that, in the

following analysis, an ideal Stokes analyzer is considered, and this discussion addresses

(1) the laser power fluctuation between the measurement of the input states (without the

sample) and the measurement of the output states (with the sample), and (2) fluctuations

in the Stokes vector generation process.

Any Stokes generator is based on a polarizer and at least one retarder. Various com-

binations can be used to generate all possible states of polarization: stationary polarizer

and rotatable half and quarter wave plates, rotatable polarizer and one rotatable wave-

plate, rotatable polarizer and stationary variable retarder, stationary polarizer and two

stationary variable retarders. Common to all these combinations is that two parameters
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are available to adjust the generated state of polarization. Between these parameters and

the general ellipsometric parameters, ellipticity and azimuth, there is a unique relation-

ship. Working with either set of two variables for describing the state of polarization does

not reduce the generality of this analysis. For practical considerations, the combination:

rotatable polarizer with its orientation specified by θ and stationary variable retarder with

the retardance specified by δ, is selected here. For complete measurement of a Mueller

matrix, at least four independent incident states of polarization are required (i = 1− 4):

S
(i)
in =



I
(i)
in

Q
(i)
in

U
(i)
in

V
(i)
in


=



1

cos(2θi)

sin(2θi) cos(δi)

− sin(2θi) sin(δi)


. (111)

In Eq. 111, θ is the orientation of the polarizer given in the coordinate system of the

retarder. After the light interacts with a system that transforms the state of polarization

(polarizer, retarder, scattering or optically active medium, etc.), the outgoing Stokes

vector is given by Eq. 110. To determine all sixteen elements of the Mueller matrix M,

one needs sixteen equations corresponding to four input Stokes vectors S(i)in (i = 1 − 4).

Eq. 110 can be rewritten as follows (S(i)out)j =
P4

k=1 TikMjk,where the transfer matrix T

is defined as:

T =



I
(1)
in Q

(1)
in U

(1)
in V

(1)
in

I
(2)
in Q

(2)
in U

(2)
in V

(2)
in

I
(3)
in Q

(3)
in U

(3)
in V

(3)
in

I
(4)
in Q

(4)
in U

(4)
in V

(4)
in


. (112)

The procedure requires the matrix T to be invertible.
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If the power of the incident beam does not fluctuate significantly from one polarization

state to another, one can safely assume that I(1)in = I
(2)
in = I

(3)
in = I

(4)
in = Iin. Under these

circumstances we can write T = IinTr, where the reduced matrix Tr, involving normalized

Stokes vector components is

Tr =



1 q
(1)
in u

(1)
in v

(1)
in

1 q
(2)
in u

(2)
in v

(2)
in

1 q
(3)
in u

(3)
in v

(3)
in

1 q
(4)
in u

(4)
in v

(4)
in


. (113)

In the following, maximization of the determinant of the transfer matrix, should be

done for the matrix T as given by Eq. 112. However, the intensity of the input states Iin

is just a multiplicative factor for the matrix Tr and maximizing the determinant of the

matrix T implies the maximization of Iin as well. This is an obvious requirement meaning

that the accuracy of a measurement is improved when using signals way above the noise

level. Even if the intensity Iin is explicitly separated from the optimization procedure,

the errors due to the laser power fluctuations still have to be considered as noise in the

first column of the matrix Tr.

An obvious condition for det(Tr) to be non-zero is to not have all q(i)in equal. The same

is true for u(i)in , and v
(i)
in . This is equivalent with requiring that not all four input states

have the same ellipticity, namely the same vin, or the same orientation of the ellipse. For

example, q(i)in = 0 for (i = 1− 4), corresponding to four ellipses with their axes along 45◦

and −45◦, will not fulfill this condition, resulting in det(Tr) = 0. This means that one

fixed polarizer and one variable retarder with fixed orientation that would generate only a

class of ellipses having the same orientation is not sufficient for a complete determination
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of the Mueller matrix. Two variable retarders are required in order to generate four

independent input states of polarization, allowing therefore Tr to be invertible.

Using the generated input state of polarization given by Eq. 111, the general form of

the matrix Tr is

Tr =



1 [cos(2θ1)] [sin(2θ1) cos(δ1)] [− sin(2θ1) sin(δ1)]

1 [cos(2θ2)] [sin(2θ2) cos(δ2)] [− sin(2θ2) sin(δ2)]

1 [cos(2θ3)] [sin(2θ3) cos(δ3)] [− sin(2θ3) sin(δ3)]

1 [cos(2θ4)] [sin(2θ4) cos(δ4)] [− sin(2θ4) sin(δ4)]


. (114)

As mentioned before, det(Tr) = 0 if all q(i)in are equal. The condition θ1 = θ2 = θ3 = θ4

corresponds to a fixed polarizer and only one variable retarder. Also, δ1 = δ2 = δ3 =

δ4 gives det(Tr) = 0, corresponding to a polarization rotator followed by a stationary

constant retarder. These configurations cannot be used for complete determination of the

Mueller matrix.

2.2.7.1. Geometrical representation

The four Stokes vectors that form the matrix Tr can be represented on the Poincarè

sphere10 as the vertices of a tetrahedron as shown in Fig. 2.18. The volume of this

tetrahedron is equal to det(Tr).

Fluctuations of the retardances introduced by the variable retarders bring in a certain

degree of uncertainty in the position of the four input states of polarization on the Poincarè

sphere. Assuming that the fluctuations are small, we can represent these uncertainties

as small surfaces around each of the four points on the sphere as shown in Fig. 2.18.

This results in an uncertainty ∆V of the volume V of the tetrahedron equivalent to an
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uncertainty in det(Tr) which, in turn, controls the errors in calculating the Mueller matrix

elements starting from the Eq. 110. Intuitively, following the visual representation given

in Fig. 2.18, these errors can be minimized if the uncertainty ∆V in the volume is small

compared with the volume V .

3

2

Figure 2.18. The Poincare sphere representing the four input Stokes vectors that construct
the matrix Tr. The four points on the sphere are the vertices of a regular tetrahedron.

Assuming that the uncertainty area around a point on the sphere does not depend on

the location of the point on the sphere, the ratio ∆V/V can be minimized by maximizing

V , having the 4 points on the sphere as far apart as possible. This gives an intuitive

explanation for the requirement to maximize det(Tr) in order to reduce the effect of

noise on the calculated Mueller matrix elements. In practical situations however, the

assumption of equal uncertainty around any point on the Poincarè sphere might not always

be valid. For example, for a liquid crystal variable retarder (LCVR) the dependence of
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the retardance introduced as function of the applied voltage has a negative exponential

shape. The same fluctuation of the voltage brings in a large fluctuation of the retardance

for small voltages, as compared to a much smaller fluctuation of the retardance for large

voltages. For this reason, it is preferably to choose the four input states that maximize

det(Tr), but in the same time correspond to large applied voltages on the LCVR’s to

minimize the fluctuation that generates ∆V .

It is well known that the maximum volume of a tetrahedron inscribed in a sphere

corresponds to a regular tetrahedron. Since any orientation of the tetrahedron maintains

its volume V = det(Tr), the problem of finding the set of input states that maximizes

det(Tr) has an infinite number of solutions. The following is an example of using this

geometrical representation in the maximization process. Selecting one state of polariza-

tion and imposing only one limitation on the second state completely determines the

tetrahedron with maximum volume. The choice of the first state is arbitrary and can be

particularized only by specific constraints on the actual experimental setup. However, the

procedure of determining the four input states is the following: the first state is chosen

(either arbitrarily or imposed by practical considerations), an additional choice is made

for the second state, and then, the other two states are determined such that det(Tr) is

maximized. The additional choice for the second Stokes vector cannot be completely ar-

bitrary; it must allow the geometrical distance between S1 and S2 in the Poincarè sphere

representation to be 4/
√
6, which is the size of a regular tetrahedron inscribed in a sphere

of radius 1.
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Since the orientation of the tetrahedron is not relevant for maximizing its volume, we

can chose S1 on the q axis, as well as S2 in the (q0v) plane. This means θ1 = 0, and

δ2 = 90
◦. δ1 can take any value and for practical considerations we can choose it equal

to δ2. For a regular tetrahedron, if one vertex is on the q axis, the other three have the

same q value. This is equivalent to cos(2θ2) = cos(2θ3) = cos(2θ4), or θ2 = θ3 = θ4,

since θ represents the orientation of a polarizer, and θ and θ + π correspond to the same

orientation of the polarizer. With these simplifications the Eq. 114 becomes

Tr =



1 1 0 0

1 cos(2θ) 0 − sin(2θ)

1 cos(2θ) sin(2θ) cos(δ3) − sin(2θ) sin(δ3)

1 cos(2θ) sin(2θ) cos(δ4) − sin(2θ) sin(δ4)


, (115)

and the determinant of Tr is given by

V = det(Tr) = −2 sin2(θ) sin2(2θ)[cos(δ3)− cos(δ4) + sin(δ3 − δ4)]. (116)

The number of variables in Eq. 114 is reduced from eight to three, with a mini-

mum number of choices, therefore, simplifying the expression of det(Tr) and allowing its

graphical representation. This function is separable in f1(θ) = [sin(θ) sin(2θ)]
2 presented

in Fig. 2.19 a, and f2(δ3, δ4) = cos(δ3) − cos(δ4) + sin(δ3 − δ4) shown in Fig. 2.19 b as

a surface plot for values of δ3 and δ4 between 0 and 2π. The maximum absolute value

of det(Tr) is 3.0789. One can see that f1(θ) has a maximum value of 0.592 for θ = 55◦,

and f2(δ3, δ4) has the maximum value of 2.598 for δ3 = 330◦ and δ4 = 210◦. This is

one of the most intuitive configurations. Any other orientation of the tetrahedron would

maximize det(Tr) as long as the tetrahedron is regular. Table 2.1 shows the four sates
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of polarization given the values of θ and δ as obtained in this example. The four input

states of polarization corresponding to these values of θ and δ are shown in Fig. 2.20 a

in the ellipse representation and in Fig. 2.20 b on the Poincarè sphere.
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Figure 2.19. a) Plot of f1(θ); b) plot of f2 as function of δ3 and δ4.

Table 2.1. The four input states of polarization corresponding to our first example of
optimum input configuration, given the orientation θ of the polarizer and the retardance

δ of the variable retarder in the generation unit.

state # θ(◦) δ(◦) q u v
1 0 90 1 0 0
2 55 90 -0.342 0 -0.940
3 55 330 -0.342 0.814 0.470
4 55 210 -0.342 -0.814 0.470
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Figure 2.20. The four input states of polarization corresponding to our example of the
optimum choice: a) in ellipse representation, and b) on the Poincare sphere.

The surface represented in Fig. 2.19 b has four extrema, two maxima and two minima,

but actually, only two of them are extrema for both variables in the interval 0− 2π for θ

and δ. Switching between δ3 and δ4 will change only the sign of f2 but not the magnitude.

The two pairs (δ3, δ4) given by (210◦, 330◦) and (330◦, 210◦) correspond geometrically

to two orientations of the tetrahedron, one with one vertex in the positive v direction

and two vertices in the negative v direction, and the second one, the other way around.

The condition that S2 is in the (q0v) plane still allows S2 to be placed in two positions

on the Poincarè sphere, with positive or negative v. Due to the periodic nature of the

trigonometric functions in f2, enlarging the interval for θ and δ would just repeat the

surface shown in Fig. 2.19 b. However, the two apparent extrema at (δ3, δ4) given by (0◦,

210◦) and (210◦, 0◦) would not be extrema anymore, the closest extrema being at (−30◦,

210◦) and (210◦, −30◦), which are equivalent to the ones discussed.
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2.2.7.2. Experimental validation

In order to experimentally confirm the validity of the procedure for choosing the four

optimum input states of polarization, the Mueller matrix of a retarder was measured

for different groups of four input states. The retarder, a quarter-wave plate for 532nm,

was rotated 180◦ in steps of 2◦ around the normally incident laser beam. Nine different

groups of four input states of polarization were used for this analysis. To evaluate the

quality of the measured Mueller matrix, the absolute difference between the measured

and the theoretical matrix element was calculated for each matrix element. An average

error was calculated for each matrix element as the average of these absolute differences

for all positions of the tested waveplate, and is shown in Fig. 2.21. This error represents

the area between the theoretical and the experimental curve for each matrix element,

normalized to the number of measurements (90 positions of the waveplate). The average

of the errors for all matrix elements was calculated as a measure of the global goodness

of the experimental Mueller matrix. Since the maximum value of any normalized Mueller

matrix element is 1, this average error is expressed in percent as relative to unity.
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Figure 2.21. Average error of the measured Mueller matrix as function of det(Tr).
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As expected, the average error of the Mueller matrix decreases when increasing the

value of det(Tr), as it is shown in Fig. 2.21. The error increases to infinity (impossibility

of measuring the Mueller matrix) as the determinant decreases to 0. The continuous line

in Fig. 2.21 corresponds to 1/det(Tr); it is a reasonable good fit of the experimental

points, confirming the validity of this procedure.

2.2.7.3. Practical considerations

As mentioned before, for complete determination of the Mueller matrix one needs a

Stokes vector generator composed of one stationary polarizer and two variable retarders,

because only one retarder cannot allow the matrix T to be invertible and the Eq. 110

cannot be solved. In the geometrical representation of Fig. 2.18, this requirement means

that the four points representing the four input polarization states cannot be in one

plane, because the volume of the tetrahedron reduces to zero. One ideal variable retarder

preceded by a fixed polarizer can only generate ellipses with the same orientation that

correspond to a vertical circle on the sphere. It is worth mentioning that, in practice,

a variable retarder could also slightly rotate the ellipse. Different rotations for different

ellipses could be enough to make the matrix T invertible. As seen in Fig. 2.21, given a

certain value of the acceptable error in the experimental Mueller matrix, the four input

states can be chosen such that det(Tr) is quite far from the maximum, optimum value.

This analysis allows the estimation of the expected error in measuring the Mueller ma-

trix given a specific setup. Also, once an acceptable experimental uncertainty is imposed,

one can use this procedure to simplify the experimental setup.
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In certain experiments, various restrictions do not allow all the desired input polar-

ization states to be generated. For example, if LCVR’s are used for generation of input

states but the phenomena investigated have a short time scale, then the liquid crystal

cells have to allow fast switching among the desired retardances. The switching time is

directly related to the phase variation (proportional to the square of the phase variation120

at large voltage). This limits the interval of the retardances that can be introduced by

that cell, as well as the possible value of det(Tr). Fig. 2.22 shows an example of four

input states that give det(Tr) = 0.5, still allowing a decent 2% overall error, but reducing

the span of the retardances that have to be generated. Table 2.2 gives the values of θ,

δ and the normalized Stokes parameters for these four input states of polarization. The

states 2 and 3 differ only through the handiness (sign of v), otherwise having the same

ellipse.

Table 2.2. The values of θ, δ and the normalized Stokes parameters for the four input
states of polarization corresponding to a reduced span of retardances.

state # θ(◦) δ(◦) q u v
1 40 0 0.174 0.985 0
2 40 -46.25 0.174 0.681 0.711
3 40 46.25 0.174 0.681 -0.711
4 85 0 -0.985 0.174 0

Since the largest phase shift requires the longest switching time, it is preferable to

reduce both spans at about the same value. For the optimum choice, θ varies 55◦ (corre-

sponding to 110◦ phase shift on the first LCVR) and δ varies 240◦. For the example given

above, the variation for θ is reduced to 45◦ (90◦ phase shift), and that for δ is reduced to
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92.5◦. This represents a reduction of the initial span with 18.2% and 61.5%, respectively.

As a result the switching time is reduced by a factor of 1.5 - first LCVR and 6.7 - second

LCVR, allowing a significant increase of the speed in measuring the Mueller matrix. Re-

ducing the switching time is of outmost importance in real-time imaging applications, as

well as in biomedical applications that require following fast structural changes.
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Figure 2.22. Choice of four input states with reduced span of introduced retardances: a)
in ellipse representation, and b) on Poincare sphere.

It is also suggested here that only one variable retarder can be used for complete

measurement of the Mueller matrix if both the ellipticity and the orientation of the input

states are varied, as is the case of a real LCVR.

Given a specific setup, the analysis presented here provides an estimation of the ex-

pected error in measuring the Mueller matrix. When a certain value is set to be acceptable

for the experimental uncertainty, this procedure can be used to simplify the experiment.
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CHAPTER 3

POLARIZED LIGHT SCATTERING APPLICATIONS

The measurement techniques introduced previously are used in this Chapter for ana-

lyzing multiple scattering effects in randommedia. The polarimetric signatures of different

particulate systems are related to their structural properties and to the size distribution,

shape, orientation, birefringent or dichroic properties of the particles. Various scattering

regimes and different geometries are discussed for applications relevant to the biomedical

field, material science, and remote sensing.

The importance of polarized light scattering was demonstrated by the numerous ap-

plications reviewed in Section 1.5. Here, the polarimetric properties of random media

are analyzed in terms of various anisotropies of either the global scattering system or the

individual scattering centers.

An extreme case of asymmetric particles is represented by the particles with high

aspect ratio, i.e. infinitely long cylinders. Bohren and Huffman12 give an expression for

the Mueller matrix for single scattering on a normally illuminated infinite cylinder

M =



M11 M12 0 0

M12 M11 0 0

0 0 M33 M34

0 0 −M34 M33


, (117)
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which has the same form as that of a sphere. There are however differences between

scattering on a sphere and on a normally illuminated cylinder, and it is worth noting that

in the forward or the backward direction M12 does not necessarily vanish for a cylinder,

but it is identically zero for a sphere. The consequence is that unpolarized light normally

incident on a cylinder will be partially polarized in forward direction.12 By rotating an

ensemble of partially oriented cylinders that are normally illuminated, we analyze in this

Section how this polarizing effect is also affecting other Mueller matrix elements.

The complex index of refraction of a medium is polarization dependent. The four pos-

sible effects are: linear birefringence, linear dichroism, circular birefringence and circular

dichroism. Based on characteristics related to both the particle and the structure of the

system, van de Hulst9 discusses, in Chapters 5.4 and 19.4, interesting effects derived from

particular cases of optical anisotropy. A few of them are reviewed in the following.

Optical anisotropy can be generated either by shape (form anisotropy) of the particle

of homogeneous material, or by the internal structure of the scatterer. The structural

anisotropy of a system of particles must also be considered. For example, linear birefrin-

gence can be produced by elongated particles of a homogeneous material having some

degree of alignment (structural anisotropy), or by spheres of a substance that is itself

birefringent. For linear dichroism also, the particles do not have to be dichroic them-

selves. If the material is isotropic but absorbing and the elongated particles are partially

oriented, then the system presents an effective linear dichroism. Van de Hulst9 shows that

linear birefringence and dichroism occur only if both the following conditions are fulfilled:

a) the particles are anisotropic due to either their form or their structure, and b) the

99



particles show preferred orientation in space. Random orientation cannot produce linear

birefringence.

In the limit of small optical anisotropies, specific matrix elements are dominated by

particular optical effects; circular dichroism - m41 and m14, circular birefringence - m23

and m32, linear dichroism - m12, m13, m21, m31, or linear birefringence - m24, m34, m42,

m43. When the anisotropies are large, most of the matrix elements are superposition of

different effects.121 Comprehensive target identification procedures and medical investi-

gations based on Mueller matrices must take into account all matrix elements.

The new results that will be presented in the following Sections include: depolariza-

tion effects in single scattering, polarizing effects and form birefringence for ensembles of

partially aligned cylindrical fibers, depolarization in multiple scattering as function of the

size and the shape of the particles, and of the input polarization, depolarization properties

of multiply scattering optically active media, and of optically dense media.

3.1. Scattering matrix of distributions of spheres

The polarimetric properties of ensembles of spheres are analyzed here with the purpose

of retrieving the size distribution.

A considerable number of reports exist in the literature which deal with experiments

and theoretical calculations of light scattering from spherical particles.122 For most of the

practical applications in biology, material science or remote sensing however, monodisperse

ensembles of spherical particles are just idealized representations. On the other hand, in

the case of nonspherical particles, exact calculations for the single scattering problem can
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be performed for a small number of regular geometrical shapes and intensive numerical

calculations are usually implemented to approximate the scattering features for particles

with more complex shapes or for ensembles of such particles.123

Experimental results are presented here for the scattering matrix of ensembles of

spheres. An Atomizer from TSI Inc. was used to generate a spray of water droplets.

Measurements were also performed on solutions of fructose and galactose and the results

are shown in Fig. 3.1. These scattering matrices have all the characteristics for single

scattering on ensembles of spheres as predicted by Mie theory. The block off diagonal

elements m13, m14, m23, m24, m31, m32, m41 and m42 are all zero. m12 and m21 are equal,

as well as m33 and m44. m34 and m43 have the same magnitude and opposite signs. m22

is unity for all scattering angles, indicating spherical particles.
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Figure 3.1. Scattering matrix for water droplets (line), fructose (+), and galactose (o).
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The scattering matrix for a single sphere is described by the Mie theory for any

radius of the sphere.124 In practice, one performs scattering measurements on collections

of scatterers and the common assumption is to consider them independent. This means

that the light scattered from different particles does not interfere, and therefore, the

Stokes vectors from individual particles scattered along a certain direction can be added

(add intensities not fields). Subsequently, the scattering matrix of the ensemble can be

obtained by integrating the individual scattering matrices for spheres of certain radius,

each of them weighted with the probability to have spheres of that specific radius. Starting

from the experimental scattering matrix, the size distribution can be determined quite

accurately.

Scattering angle (degrees)

Figure 3.2. Mie calculation for a log-normal distribution of spheres to fit (continuous line)
the experimental results (circles) in the relevant matrix elements from Fig. 3.1.

Fig. 3.2 shows an example of fitting the experimental results (circles) in the relevant

matrix elements from Fig. 3.1 using Mie calculations for a log-normal distribution of
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spheres (water droplets). The distribution is characterized by an average size of 100nm

and a standard deviation of 400nm. Excellent agreement is shown in the matrix elements

m12, m34 and m33.

It is worth mentioning here that the scattering matrix for a single sphere (or an

ensemble of identical spheres) is a pure, non-depolarizing Mueller matrix. However, if

the ensemble is polydisperse, even in the single scattering regime the scattering matrix

of the ensemble exhibits depolarization effects, as shown in Fig. 3.3; the depolarization

index (formula 5) is smaller that 4 for most of the scattering angles. A given input

state of polarization is transformed along a certain direction in many different states of

polarization by spheres with different radii. Each individual contribution is a pure state,

however, a distribution of pure states is produced on a given direction of observation and

the result is that a certain degree of polarization smaller that unity is actually measured.

This effect has not been previously addressed.
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Figure 3.3. Depolarization index as function of the scattering angle.
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Until now, it seemed to be generally accepted that depolarization effects can only be

associated to multiple scattering. It is obvious from the analysis presented in this Section

that depolarization can also be induced in single scattering on an ensemble of polydisperse

spherical particles.

3.2. Forward scattering on cylindrical fibers

The polarization transfer through systems consisting of individual layers of partially

aligned fibers with different degrees of alignment and packing fractions is analyzed in this

Section. The analysis of this new scattering system permits to describe quantitatively the

polarizing behavior observed for partially oriented cylinders.

In order to infer details of shape anisotropy, one can measure the polarization transfer

function (Mueller matrix) associated with the specific scattering situation. Based on sym-

metries for ensembles of randomly oriented particles, the number of independent Mueller

matrix elements can be reduced, while some of them can be shown to be identically zero.9

However, not all these symmetries hold true for ensembles of nonspherical particles that

have a partial orientation, and some of the off-diagonal elements may vary as function of

the scatterers structure and orientation.

3.2.1. Polarizing effect

The effects of partial orientation at different packing fractions of long cylindrical

objects was investigated experimentally. The scattering media consisted of synthetic
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cotton-like cylindrical fibers with diameter of about 15− 20µm. The index of refraction

of the fibers is about 1.5 and the white appearance indicates negligible absorption. A

microscopic image of the fibers is shown in Fig. 3.4. In compact media, having long

cylinders closely packed together, implies that they are necessarily aligned perpendicular

to the packing direction and a layer description is therefore appropriate. Within such a

layer, the cylinders could be randomly oriented or partially aligned. The packing fraction

of the fibers in a layer is given by the number of fibers within the unit area of the layer.

For the present measurements, a collimated He-Ne laser beam is spatially filtered and

is normally incident on the tested media consisting of layers of fibers. The transversal

cross-section of the beam (the illuminated area on the sample) has a diameter of 3mm.

Using apertures, an angularly narrow forward scattered beam is selected for measuring

the output state of polarization.

20 µm

Figure 3.4. Synthetic cotton-like cylindrical fibers having in average a diameter of 20µm.

As mentioned earlier, a layer description is appropriate for densely packed cylinders.

Systematic investigations on the Mueller matrices corresponding to individual layers of

partially oriented scatterers were performed to get insight into the general depolarization
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behavior of such systems. Based on symmetry arguments, van der Hulst9 showed that the

Mueller matrix for single scattering on a cloud of particles with random orientations is

generally symmetric about the diagonal, at least in magnitude (some elements might have

different sign). However, for systems of particles showing certain degree of alignment, none

of those symmetries hold true, and it is expected that most of the Mueller matrix elements

are independent. Bickel and Stafford15 describe measurements of the Mueller matrix for

biological scatterers (viruses, bacteria) where m34 proved to be uniquely characteristic for

scatterers that could not be distinguished in any other way. Also, measurements on ocean

water performed by Kadyshevich24 show that the scattering matrix is not necessarily

symmetric about the diagonal. The Mueller matrix for single scattering on a normally

illuminated infinite cylinder is symmetric about the diagonal, as given by Eq. 117, but

for an ensemble of partially oriented cylinders some matrix elements are more sensitive

than others to the packing fraction and the degree of alignment, as it will be seen here.

In this study, single layers of cylinders were rotated 360◦, in steps of 10◦, about the

direction of the laser beam that is normal to the layer, while the Mueller matrix was

recorded for each orientation of the structure. Fig. 3.5 illustrates typical single layers

investigated in this experiment. A system of randomly oriented fibers is shown in Fig.

3.5 a, while Fig. 3.5 b and c display systems of partially oriented fibers with different

packing fractions and degrees of alignment. The inset of each picture shows the 2D Fourier

transform of the structure indicating also a preferential orientation of the fibers. Fig.

3.6 summarizes the variation with the angle of rotation of the Mueller matrix elements

corresponding to the structure shown in Fig. 3.5 c.
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a) b)

c)

Figure 3.5. Typical samples with different degree of alignment and packing fractions. The
insets show the corresponding Fourier transforms.

To quantify the relationship between structural anisotropy of the scattering layer and

the corresponding features in the Mueller matrix, a polarizing efficiency is defined as the

amplitude of the sinusoidal variation of the Mueller matrix elements while rotating the

layers. Also, the structure parameter is determined as the ellipticity of the equal strength

ellipse of the 2D Fourier transform (structure factor) of the structure. For randomly

oriented fibers, the Fourier transform has circular symmetry, the structure parameter

being unity. For partially oriented fibers on the other hand, the structure factor increases

as the number of fibers aligned along a certain direction increases. In principle, for a good

diffraction grating, the structure factor tends to infinity, while the polarizing efficiency

has to saturate at 0.5 for matrix elements 23, 33 and 32, and at 1 for matrix elements 13

and 31.
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Figure 3.6. The Mueller matrix corresponding to the structure shown in Fig. 3.5 c, as
function of the angle of rotation.

The polarizing efficiency was measured for six layers with different anisotropy levels

and the results are summarized in Fig. 3.7 in a semilogarithmic scale. Different symbols

indicate the matrix elements, and the dotted lines represent an exponential fit for each

matrix element. One can notice a certain exponential increase of the polarizing efficiency

with the structure parameter. The more fibers aligned (the larger the structure parame-

ter), the better the polarizing efficiency. Also, the larger the number of aligned fibers in

the structure (the smaller the transmission that is inversely proportional to the packing

fraction), the better the polarizing efficiency. The polarizing efficiency depends on both

the degree of alignment and the packing fraction as shown in Fig. 3.7. Note that the

slopes of the exponential dependences are similar for the five matrix elements of interest

but the magnitudes of the polarizing efficiencies are quite different. In the present series
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of experiments, it was apparent that the matrix elements 12, 21 and 22 are most sensitive

to the structural non-uniformities across the investigated area, while the matrix elements

23, 32, 33,13 and 31 are mostly sensitive to the degree of structural anisotropy (structure

parameter) and the packing fraction (transmission). Structural non-uniformities are the

result of local variations of the number density of the fibers. While rotating the sample,

the investigated area might vary slightly at the edge, due to fibers coming in and out of

the illuminated area. This seems to have effect only on the matrix elements 12, 21 and

22, without affecting however the structure parameter and the overall packing fraction.
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Figure 3.7. Dependence of polarization efficiency on a) the structure parameter and b)
overall transmission. Different symbols represent the specific matrix elements as indicated.

It is worth mentioning that the optical anisotropy of the scatterers can manifest

itself as linear or circular birefringence (the real part of the index of refraction) and

linear or circular dichroism (the imaginary part of the index).9 When these effects are

small, they can be identified within specific Mueller matrix elements,121 but when their
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magnitude becomes considerable, each of them will affect groups of matrix elements, and

the identification is more difficult. Van der Hulst9 shows that nonspherical particles with

net orientation should exhibit form (or sometimes called scattering) linear and/or circular

dichroism and/or birefringence. Partial orientation is required in order to observe linear

birefringence or dichroism, since random orientation averages to zero these effects. The

Onuki-Doi theory26 of form birefringence and dichroism, that is appropriate for systems

where dipole scattering is the dominant mechanism, relates the birefringence and the

dichroism to the structure factor. The Onuki-Doi theory has been developed for dilute

systems, where the distance between scattering centers should be much larger than the

size of the particles. This theory cannot be directly applied to our case for fibers with

diameter much larger than the wavelength, where the major contribution to scattering field

arises from interaction with particle boundary (Fraunhofer diffraction).121 The polarizing

effect observed in these experiments is generated by the shape anisotropy of the fibers

in combination with their partial alignment. In the present case, due to a relatively low

degree of alignment, the overall polarizing efficiency is small. This polarizing behavior is

just one example of the effects that result from partial alignment of nonspherical particles

and that can be explained through linear or circular birefringence or dichroism. The form

birefringence effects are described below, as observed in a different experiment.

3.2.2. Form birefringence

When embedded in a flow, cylindrical particles, like alumina fibers shown in Fig. 3.8,

and polyhedral alumina particles acquire necessarily a degree of alignment.
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Figure 3.8. Alumina fibers.

The diameter of the fibers is 3µm, and the aspect ratio has a very broad distribution,

as seen in Fig. 3.8. The suspension of alumina fibers in water was flown through a

rectangular cuvette. The cell, which was mounted on a rotation stage, was rotated normal

to the incident laser beam and the Mueller matrix, shown in Fig. 3.9, was measured in

transmission.
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Figure 3.9. The Mueller matrix of a flowing suspension of alumina fibers as function of
orientation of the cell.
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The retardance values shown in Table 3.1 were obtained using the formalism described

in Section 2.2.6. The diattenuation (formula 106) was negligible.

Table 3.1. Total retardance

material total retardance
alumina fibers (3µm diam.) (1.58± 0.19)◦
alumina powder (3.2µm) (1.13± 0.08)◦
silica spheres (1.5µm diam.) (0.97± 0.31)◦

The residual birefringence of the glass cuvette, measured with only water flowing

through the system, was δ = (0.93 ± 0.22)◦. Subtracting this residual birefringence

from the values shown in Table 3.1, the form birefringence associated to the aligned

particles is obtained as 0.65◦ for alumina fibers, 0.2◦ for polyhedral alumina, and 0.04◦ for

silica spheres. As expected, the form birefringence for fibers is larger than for polyhedral

particles, while for spheres can be neglected, being much smaller than the error.

The birefringent properties resulting from form anisotropy and partial alignment are

related to structural characteristics of the random media in polymer science, biomedical

applications, and remote sensing. The measurement of form birefringence and dichroism

is a promising noninvasive investigation technique in such applications.

3.3. Multiple scattering

The polarimetric characteristics of multiple scattering media depend on the size and

shape of the individual particles, as well as on the optical density and the structure of
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the entire system. In remote sensing and for imaging in turbid media it is important

to know what type of polarization is better preserved in propagation through optically

dense media. In this Section, the polarization transfer in systems consisting of spherical,

polyhedral and cylindrical particles is investigated.

3.3.1. Spheres

A systematic study of the Mueller matrix associated with particulate systems was

performed89 in transmission through media with various optical densities. A rectangular

sample cell was divided in two triangular-base compartments as shown in Fig. 3.10. One

compartment is filled with the scattering sample, while the other one is filled only with

water. Translating the cuvette transversal to the beam, the physical thickness d of the

sample along the laser beam direction can be changed between 80µm and 5mm,modifying

this way the optical density of the sample.

State of Polarization

Generation Unit
Analyzing

Unit

Sample

Sout
S

in

M

water

80µm-5mmd

translation

Figure 3.10. Experimental setup for measuring the Mueller matrix as function of optical
density.
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The polarization transfer was measured in transmission for spherical silica particles.

Measurements were performed on suspensions of silica particles with three different sizes,

0.2µm, 0.5µm, and 1.0µm average diameter, but having the same volume fraction 3%.

The anisotropy factor g as given by Mie theory for silica particles with 0.2µm (sample 1),

0.5µm (sample 2), and 1.0µm (sample 3) diameter is 0.303, 0.8207, and 0.938, respectively.

The corresponding size parameters ka (where k = 2π/λ, λ = 632.8nm, and a is the radius

of the particle) are 1.32, 3.3, and 6.6, respectively.

Fig. 3.11 presents the measured Mueller matrix for the three samples as function

of the optical density defined as the ratio between the physical width of the sample d,

and the transport mean free path l∗ (l∗ is the average distance after which the scattering

direction is randomized).
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All matrix elements shown in Fig. 3.11 are normalized to the first element M11, and

are represented in a linear scale, except for M11that is shown in a semilogarithmic scale.

Other plots will be shown here in terms of the number of scattering events d/l, where l is

the average distance between two scatterers, also called scattering mean free path. The

relation between l and l∗ is l∗ = l/(1− g) where g is the anisotropy factor.

Based on symmetry considerations, van de Hulst9 finds the Mueller matrix for single

scattering on a collection of randomly oriented identical particles each of which has a

plane of symmetry to be of the form:

M =



1 0 0 0

0 m22 0 0

0 0 m22 0

0 0 0 m44


. (118)

For spheres in exact forward scattering m22 = m44 = 1. In multiple scattering however,

this relation is not true anymore, as it can be seen in Fig. 3.11. It it also expected that

light of arbitrary incident polarization impinging on an optically thick, multiple scattering

medium emerges diffusely and totally depolarized. As shown in Fig. 3.11, when increasing

the optical density, the transfer matrix evolves toward that of a total depolarizer which

has all elements equal to zero except forM11. Also, the depolarization process depends on

the size parameter of the scattering particles; owing to a smaller scattering anisotropy for

the particles with the size parameter close to 1, the total depolarization stage is reached at

higher optical density than for larger particles (ka equal to 3.3 or 6.6). The transmission

of unpolarized light (M11) through a sample follows an exponential decay with pathlength
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as given by Lambert-Beer’s law. Two different regimes can be identified in terms of optical

density d/l∗: i) a steep slope for low optical densities, which corresponds to the attenuation

of ballistic photons, and ii) a slower decay for large optical densities, corresponding to the

diffusive regime. As shown in Fig. 3.11 for the element M11, the optical density required

to eliminate the ballistic photons is larger for smaller particles. In the diffusive regime,

the decay rate is similar for the three samples and depends only on the volume fraction

of the scattering medium.

Previous studies investigated the depolarization effects for a specific type of input

state of polarization (linear or circular).69 These results can be easily derived from our

analysis of the Mueller matrix. The first element, M11 describes the transmission of the

unpolarized incident light, m22 andm33 relate the linear components of the scattered light

to the linear components of the incident light, while m44 has only contributions from the

transfer of circular components of the incident light.

The transmission of unpolarized light (M11) through a sample follows an exponential

decay with the pathlength as given by Beer’s law I(d) = Io exp(−αd) = Io exp(−α0d/l∗),

where α is the attenuation coefficient. In a semilogarithmic scale, as shown in Fig. 3.12 a,

the slope α0 is approximately the same for the three samples. The effective coefficient of

attenuation α0 depends only on the volume fraction of the scattering medium. Deviations

from this exponential decay are shown for small number of effective scattering events,

where the thickness of the sample is very small and many ballistic photons pass through.

The decrease in the number of ballistic photons follows also an exponential decay, but

the effect is more pronounced for the smallest particle (0.2µm), where the length of the

116



sample required to eliminate all ballistic photons is larger. Fig. 3.12 b shows the decay

of M11 in d/l scale. One can note that the smaller the particle, the steeper the decay in

this representation.
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Figure 3.12. Matrix element M11 - transmission of unpolarized light. Symbols: X-0.2µm,
+-0.5µm, O-1.0µm.

The dependence of the diagonal elements m22, m33, m44 on the number of scattering

events d/l is plotted in Fig. 3.13. The variation with d/l∗ of the diagonal Mueller matrix

elements m22 (+), m33 (X), m44 (O) is shown in Fig. 3.14 for each individual sample (1 -

0.2µm, 2 - 0.5µm, and 3 - 1.0µm). We note that for samples 2 and 3, m44 is always larger

than the other two elements which are about equal, as apparent in Eq. 118. This is not

the case for sample 1 where all three elements are equal, following the same decay.
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Figure 3.13. Diagonal elements m22, m33, m44. Symbols: X-0.2µm, +-0.5µm, O-1.0µm.
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For an input state of polarization as described by Eq. 3, the output state of polar-

ization can be obtained from Sout = MSin. In the case of a diagonal type matrix, the

re-normalized output Stokes vector is

Sout =

·
1 qm22 um33 vm44

¸T
. (119)
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Figure 3.14. Diagonal elements in semi-logarithmic scale for each sample (a) - 0.2µm, b)
- 0.5µm, and c) - 1.0µm). Symbols: +-m22, X-m33, O-m44.

The degree of polarization of the scattered light can be obtained from Eq. 119 using

Eq. 4 for any input state. The results of this analysis are presented in Fig. 3.15 and 3.16

for linear and circular input, respectively. As can be seen, for samples 2 and 3 the slope

for linear input is always steeper than for circular input, indicating that circularly polar-

ized light is less depolarized than linearly polarized light for the same sample thickness.
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However this behavior is different for small particles in the transition regime (sample 1)

between Mie scattering (samples 2 and 3) and Rayleigh regime (ka <<1).
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Figure 3.15. Degree of polarization of output light, for linear input. a) - d/l∗ scale,
b) - d/l scale. Symbols: X-sample 1, +-sample 2 and O-sample 3.
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Figure 3.16. Degree of polarization of output light, for circular input. a) - d/l∗ scale,
b) - d/l scale. Symbols: X-sample 1, +-sample 2 and O-sample 3.

It is expected that, as soon as the diffusive regime is reached, multiple scattering will

completely depolarize the incident optical wave. The three samples investigated show

similar decays of the depolarization index D (formula 5) as function of d/l∗ (Fig. 3.17
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a). For sample 1 (symbol X) the deviation for small number of effective scattering events

indicates again the contribution of ballistic photons. In d/l scale (Fig. 3.17 b), the

behavior is different. One can conclude that the larger the particle, the larger the number

of scattering events required to depolarize the incident light.
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Figure 3.17. Depolarization index D. Symbols: X - sample 1, + - sample 2, O - sample 3.

Knowing the complete Mueller matrix, the state of polarization of scattered light can

be estimated for any input state of polarization. A detailed analysis can also predict which

type of illumination is better preserved while propagating through the scattering medium.

This is particularly important in applications such as long-range target identification

where one must take into account depolarization effects due to propagation.

3.3.2. Fibers

As discussed before on the basis of symmetry considerations, it can be shown that9 the

Mueller matrix for single scattering on a collection of randomly oriented identical particles,
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each of which has a plane of symmetry, is of the form shown in formula 118. In forward

scattering, for randomly oriented rotationally symmetric particles much larger than the

wavelength, the diagonal elements of the Mueller matrix should be always equal.9, 125, 126

If the off-diagonal elements do not vanish for a collection of elongated particles with

mirror symmetry (cylinders in our case), then certain degree of alignment is implied.12

Also, in the transition regime from single to multiple-scattering, it will be shown here

that the diagonal elements decrease and the Mueller matrix evolves toward that of a

total depolarizer. In order to understand the effect of optical density on the scattering

properties of the system, the polarization transfer through systems consisting of layers of

randomly oriented fibers stacked together was analyzed. To date, there are no published

theoretical results, numerical simulations or experimental investigations addressing the

dependence of the scattering properties on optical density for cylindrical scatterers in

random orientation, ranging from single to multiple scattering regime.

Fig. 3.18 shows the experimental values of the Mueller matrix elements corresponding

to scattering media with an increasing number of normally illuminated layers that have

similar scattering properties. Results are presented for systems of up to 20 layers of

average thickness 60µm; it can be considered that the number of layers is proportional

with the overall optical density of the scattering medium. All the Mueller matrix elements

presented in Fig. 3.18 are normalized to the first elementM11 (and denoted by small letter

m), while the top-left corner shows in logarithmic scale the measured element M11.

As can be seen in Fig. 3.18, all the off-diagonal elements are zero indicating no

particular orientation of the scatterers, as well as no overall birefringence or dichroism. A
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careful analysis of the dependence of the diagonal elements with the optical density shows

that, up to about four layers forward scattered and ballistic photons are dominant and

the degree of polarization is well preserved. As predicted for randomly oriented particles

much larger than the wavelength, in single scattering regime the three diagonal elements

are equal. In multiple scattering regime they decay in about the same manner, as seen in

Fig. 3.18. When multiple scattering starts to act significantly on the balance of energy

transfer, an initially exponential decay sets in and, after about 15 scattering layers, a

diffusive regime evolves where the slope of the decay depends on scattering properties of

individual scattering centers. This effect is clearly visible for the element M11.
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Figure 3.18. Evolution of the Mueller matrix with the number of layers of cylinders
stacked together.
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With the increase of optical density, the Mueller matrix evolves toward that of an

ideal depolarizer which is also shown in Fig. 3.19 which presents the variation of the

depolarization index D (formula 5) with the optical density (directly proportional to the

number of layers).

Forward (single) scattered and ballistic components preserve the input state as seen in

Fig. 3.18 for up to four layers (the Mueller matrix is practically identity). This represents

the single scattering regime distinctively seen for the diagonal elements in Fig. 3.18 and

for the depolarization index in Fig. 3.19. The multiple scattering, on the other hand, is

characterized by very small values of the diagonal elements, a value of the depolarization

index D almost unity, and small values of the degree of polarization of the transmitted

light. This regime is clearly seen in Fig. 3.18 and 3.19 for stacks of 15 to 20 layers.

The transition regime between single and multiple scattering, for stacks between 4 and 15

layers, is characterized by an exponential decay of the diagonal elements of the Mueller

matrix, of the depolarization index D, and of the polarization degree of the scattered

light.

0 5 10 15 20
0

1

2

3

4

D

# of layers

Figure 3.19. Depolarization index D as function of the number of layers.
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In certain applications such as long range target identification, it is important to know

what type of polarization is better preserved during propagation through atmosphere.

Once the Mueller matrix is known for a specific scattering medium, the transmitted light

can be investigated for any input state of polarization. For a normalized input Stokes

vector Sin = {1, q, u, v}T , and the measured Mueller matrix of the type specified by

Eq. 118 and presented in Fig. 3.18, the Stokes vector of the scattered light is given by

Eq. 119. The degree of polarization of the scattered light is then expressed by P =p
q2m2

22 + u2m2
22 + v2m2

44, and can be calculated for linear (PL) or circular(PC) input.
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Figure 3.20. Degree of polarization of the transmitted light corresponding to linear (PL)
and circular (PC) input state of polarization, as function of the number of layers.

Fig. 3.20 depicts the degree of polarization of the transmitted light corresponding to

linear (PL - symbol X) and circular (PC - symbol O) input, respectively. For spherical

particles, in multiple scattering regime, the ratio R = PL/PC relates to the size of

the particle.69, 89 In Fig. 3.21 a the dependence of R on the optical density is shown

for spherical silica particles with diameter of 0.2µm (symbol - filled circle) and 1µm

(symbol - open circle) as compared with polyhedral, alumina particles with an average
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size of 1.2µm (symbol - diamond). For spherical particles, R > 1 corresponds to Rayleigh

scatterers, while R < 1 indicates scatterers with size parameter larger than unity. The

absolute difference between size parameter and unity is proportional with the slope of

R. However, this does not seem to hold for nonspherical particles with either random or

partial orientation. Fig. 3.21 a shows that polyhedral alumina particles with random

orientation behave like smaller spheres than indicated by conventional light scattering

methods (the slope of R is smaller than for silica spheres). As can be seen in Fig. 3.21 b,

R is slightly increasing with the optical density of fibers, behaving somehow unexpected,

similar to the case of scatterers with size parameter close to unity.
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Figure 3.21. Values of the ratio R plotted as function of optical density for a) alumina
particles - 1.2µm (diamond), silica particles - 0.2µm (filled circle), silica particles - 1.0µm
(empty circle), and b) randomly oriented cylindrical fibers.

It is sometimes considered that ensembles of randomly oriented nonspherical particles

are equivalent to distributions of spherical particles and the only outstanding problem is to
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choose the right size distribution;12 the motivation behind this is that random orientation

results in spherical symmetry.

For Rayleigh regime, the scattering can be considered as being due to spheres with

equivalent volume accounting for an equivalent number of re-radiating dipoles. In the case

of scattering from large particles, spheres with equivalent projection area are considered;

this approach is based on Fraunhofer diffraction theory with main contribution from the

edge of large particles. This is especially true for large particles where the scattering

is concentrated mostly in forward direction,121 but the scattering is azimuthally depen-

dent for oriented nonspherical particles, unlike scattering from spheres.12 This type of

equivalence might be valid for a scalar model based on intensity measurement only. In

polarimetry however, this equivalence is not always true, as this analysis suggests. Large

cylindrical fibers, and polyhedral particles do not behave like equivalent spheres, as can

be seen in Fig. 3.21.

3.4. Optical activity

Optical activity manifests as either circular birefringence, or circular dichroism. Cer-

tain materials have the ability of rotating linear polarization (due to the different propaga-

tion speed of the orthogonal circular polarizations), or to attenuate differently orthogonal

circular polarizations. Measurements of optical activity have been performed for a long

time on homogeneous materials. The effect can be magnetically induced, or it can be a

natural, intrinsic property of the material due to its internal structure. The polarimetric
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characteristics of optically homogeneous materials are first presented here, and then a

model for the optical activity effects in multiple scattering media is developed.

3.4.1. Circular birefringence in homogeneous materials

3.4.1.1. Magneto-optical activity

The Mueller matrix of an optical system having a small linear birefringence δo (with

axis orientation ρ) and circular birefringence (CB) δc that is magnetic field B dependent

is given for small values of δc by

M(B) =



1 0 0 0

0 1 −δc(B) − sin(2ρ) sin(δo)

0 δc(B) 1 cos(2ρ) sin(δo)

0 sin(2ρ) sin(δo) − cos(2ρ) sin(δo) 1


. (120)

The material investigated here, a magnetic crystal (Cd1−xMnxTe, x = 0.45, 1.1mm

thick), exhibits Faraday effect. The magnetic field B is applied along the direction of

propagation of the laser beam, being perpendicular to the electric field of light. Fig. 3.22

shows the measured Mueller matrix for the magnetic crystal as function of the applied

magnetic field B. The matrix elements m23 and m32 show circular birefringence δc that

depends on the magnetic field B, while m24, m34, m42, and m43 indicate an intrinsic linear

birefringence (δo = 14.24◦ at an angle ρ = 8.6◦) independent of the magnetic field B. The

CB dependence on the magnetic field B is δc(B) = V BL, where V is the Verdet constant

characteristic to this material and L is the length of the sample. The value of the Verdet

constant obtained here is V = 4000m−1T−1.
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Figure 3.22. The Mueller matrix of a magnetic crystal as function of the magnetic field.

3.4.1.2. Natural optical activity

The Mueller matrices for fructose (shown in Fig. 3.23) and galactose were measured

for testing the natural optical activity exhibited by solutions of sugar in water. The

measurements were made in transmission through a glass cell with adjustable length.

The matrix elements m12, and m21 show a residual polarizing effect due to the cell as

indicated by the ellipsometric parameter Ψ in Eq. 97, while the elements m24, m34, m42,

and m43 show a residual birefringence (4.15◦) of the adjustable width cell, at an angle of

15◦, according to the Eq. 120. These effects do not depend on the length d of the cell.
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Figure 3.23 Mueller matrix for fructose solution as function of length d of the cell.
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Figure 3.24 Matrix element 23; red crosses - fructose, blue circles - galactose.

The elements m23 and m32 are fitted with sin(2θ) and -sin(2θ) respectively, where

the rotation angle θ is directly proportional to the length d of the cell θ = αd, and α

is the rotatory power. Also, the elements m22 and m33 are fitted with cos(2θ), close

to 1 for small values of θ. Fig. 3.24 shows the element m23 for fructose - red crosses,
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and galactose - blue circles. The rotation has opposite signs confirming the two types

of clockwise (dextrorotatory) and anti-clockwise (levorotatory) enantiomers. For these

particular samples, α = 0.012deg./cm for fructose, and α = 0.008deg./cm for galactose.

The effects described here are the building blocks of the model that will be presented

in the following Section describing optical activity in multiple scattering.

3.4.2. Optical activity in scattering media

The purpose of this study is to help us understand the effect of optical activity in

multiple scattering regime and to evaluate the magnitude of this effect that would subse-

quently set the constraints on the experimental measurement. This study is relevant for

medical applications and for remote sensing of biological material.

The geometry under consideration is shown in Fig. 3.25. Only the photons collected

along the same direction as the incident ones are considered here in a slab configuration

in transmission.

d

Figure 3.25. Slab configuration in transmission.
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The incident photons propagate through the scattering medium following various

trajectories which can be considered as tortuous cylinders of active material with a cross-

section of the order of λ2. Along each path of length s, the incident state of polarization

rotates due to circular birefringence (CB) and acquires a certain ellipticity due to circular

dichroism (CD). The rotation and the ellipticity depend on the pathlength s and optical

activity properties of the medium

θ(s) =
2π

λ
(nL − nR) s = αs (121)

δ00(s) =
2π

λ
(n0L − n0R) s = βs (122)

where nL and nR are the refractive indices for the two circular polarizations, and the

prime terms represent the corresponding absorptions. At the output face, the state of po-

larization in each particular point is determined by incoherently adding the Stokes vectors

for all trajectories that end up there, each of them being weighted with its correspond-

ing probability. From the output Stokes vector one can determine the overall rotation,

ellipticity and degree of polarization of the transmitted light.

The model outlined here is applicable to two different cases: (1) non-chiral scatterers

suspended in a chiral medium, and (2) chiral scatterers in a non-chiral medium. In

both cases, the rotation and the ellipticity are proportional to s, but the proportionality

constants α and β in Eqns. 121-122 have to take into account the amount of active

material along each path. For large particles, such as droplets and grains, the phase

function is mostly peaked forward resulting in a large probability of forward scattering.

In this case, the Mueller matrix for non-active particles is generally diagonal, close to

identity matrix. This model allows neglecting the scattering properties of the particles,
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and permits considering only snake-like trajectories without sharp turns. In other words,

individual scattering events determine various propagation channels without affecting the

output polarization.

The probability distribution function is calculated as a solution of the photon diffusion

equation for the slab geometry127

T (OD, l∗, zo, s) = s−
5
2

∞X
i=1,odd

{(i ·OD − zo) exp

"
−3l

∗

4

(i ·OD − zo)
2

s

#
− (123)

− (i ·OD + zo) exp

"
−3l

∗

4

(i ·OD + zo)
2

s

#
},

where l∗ is the transport mean free path, zo is the extrapolation length, s is the pathlength,

and OD = d/l∗ is the slab’s optical density (d is the thickness of the slab).

Fig. 3.26 illustrates the pathlength probability distribution for different optical den-

sities, as indicated in the legend. As can be seen, when the optical density increases, the

probability distribution becomes broader and its maximum value decreases.

l* = 30µmT

s(µm)0 5000 1 104 1.5 104
1 10 7

1 10 6

1 10 5

1 10 4

1 10 3

0.01

OD=5
OD=10
OD=20
OD=30

Figure 3.26. Pathlength distribution for various optical densities.
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As mentioned before, circular birefringence manifests as a rotation of a linear input

with an angle proportional to the length s of the path (see Eq. 121). Using the matrix

M(θ) of a rotator (formula 9), the Stokes vector at the end of a path of length s can be

written as

S(θ) =M(θ)



1

1

0

0


=



1

cos(2θ)

− sin(2θ)

0


. (124)

One can notice that the output for any individual path is still linear, i.e. CB does not

generate ellipticity.

The output Stokes vector S = [1, q, u, 0]T is obtained by integrating all Stokes vectors

(over the probability function for pathlength):

q(α,OD, l∗) =

Z ∞

d

cos(2αs)T (s)ds (125)

u(α,OD, l∗) = −
Z ∞

d

sin(2αs)T (s)ds. (126)

The degree of polarization P is then obtained using Eq. 4, while the rotation is

calculated as θ = 1
2
arctan u

q
.

The Mueller matrix corresponding to this effect is

M(α,OD, l∗) =



1 0 0 0

0 q u 0

0 −u q 0

0 0 0 1


. (127)

One can notice that a circular input is eigenvector for this transformation, and there is

no change of intensity and degree of polarization.
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Fig. 3.27 depicts the Stokes components q and u as function of OD for l∗ = 10, 30, 60,

and 100µm and α = 0.0006rad/µm. One can see that both q and u tend to zero with the

optical density and strongly depend on l∗.
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1

0 10 20
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1

optical density

q u
l*

l*

Figure 3.27. Stokes vector components q and u.

Fig. 3.28 shows the degree of polarization P and the rotation θ as function of OD for

various l∗, and for different values of the CB. One can notice a significant dependence

on l∗, as well as a strong dependence on the rotatory power and the concentration of the

optically active material (both included in the proportionality constant α). The output

light is stronger depolarized as the optical density increases, the slope of the degree of

polarization being proportional to both l∗ and α. Similarly, the rotation θ of the linearly

polarized component increases with OD with a slope proportional to both l∗ and α.
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Figure 3.28. Degree of polarization P and rotation θ as function of OD a) for various l∗,
and b) for different values of the CB (l*=60µm, and α=0.06, 0.006, 0.0006rad/µm).

A similar calculation can be applied to situations involving circular dichroism. Using

the Mueller matrix for CD121

M(δ00) =



1 0 0 tanh(δ00)

0 1
cosh(δ00) 0 0

0 0 1
cosh(δ00) 0

tanh(δ00) 0 0 1


(128)
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the Stokes vector is obtained as

S(δ00) =M(δ00) ·



1

1

0

0


=



1

1
cosh(δ00)

0

tanh(δ00)


. (129)

In this case, a linear input maintains its orientation, but acquires an ellipticity propor-

tional to the length of the path. Integrating the individual Stokes vectors weighted by

the corresponding probability one obtains the output Stokes vector S = [1, q, 0, v]T where

q(β,OD, l∗) =

Z ∞

d

1

cosh(βs)
T (s)ds (130)

v(β,OD, l∗) =

Z ∞

d

tanh(βs)T (s)ds. (131)

The degree of polarization P is obtained again using the Eq. 4. The ellipticity is given

by ϕ = 1
2
arcsin (v).

The Mueller matrix corresponding to this effect is

M(α,OD, l∗) =



1 0 0 v

0 q 0 0

0 0 q 0

v 0 0 1


. (132)

A circular input is again eigenvector for this transformation, however the intensity is now

decreasing, as opposed to the birefringent case.

Fig. 3.29 shows the Stokes components q and v as function of OD for l∗ = 10, 30, 60,

100µm and β = 0.0003rad/µm. One can see that q deceases to zero while v increases to

unity with the optical density, the slope of these variations depending on l∗.
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Figure 3.29. Stokes vector components q and v.

Fig. 3.30 illustrates the degree of polarization P and the ellipticity ϕ as function

of OD for various l∗, and for different values of the CD. In this case as well, one can

notice significant differences with l∗, and a strong dependence on the amount of dichroism

included in the proportionality constant β.

It is worth noting in Fig. 3.30 that the degree of polarization P slightly decreases

and returns to 1 while the ellipticity saturates at 45◦ as OD increases. If one decomposes

the linear input in the two circular components, one component is attenuated stronger

than the other one while propagating through the medium (this is the meaning of circular

dichroism). At some point, the more attenuated component becomes negligible, and what

is left from all trajectories is the circular component less attenuated. P becomes 1 and ϕ

is 45◦, meaning circular light. For what OD does this happen, it depends on both l∗ and

β, as seen in Fig. 3.30.
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Figure 3.30. Degree of polarization P and rotation θ as function of OD a) for various l∗,
and b) for various values of the CD (l∗ = 60µm, and β = 0.003, 0.0003, 0.00003rad/µm).

For unpolarized input, the output is still unpolarized in the CB case

(S(θ) =M(θ)[1, 0, 0, 0]T = [1, 0, 0, 0]T ). For CD however,

S(δ00) =M(δ00)



1

0

0

0


=



1

0

0

tanh(δ00)


= (133)
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= (1− |tanh(δ00)|)



1

0

0

0


+ |tanh(δ00)|



1

0

0

sign(δ00)


.

The output has two components, an unpolarized one and a circularly polarized one as

illustrated by the decomposition in the second line of the Eq. 133. As OD increases

the ratio of these two components changes, and at some point the output becomes fully

polarized as shown in Fig. 3.31. This demonstrates the possibility of obtaining a diffuse

circular polarizer if optical activity effects are present.
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Figure 3.31. Degree of polarization as function of OD for unpolarized input, for l∗ = 60µm,
and β = 0.003, 0.0003, 0.00003rad/µm.

A more realistic model should also include scattering effects at the level of each scat-

terer. These effects depend on the size and the shape of the particle, and if one considers

the type of the matrices discussed in Section 3.3 for forward multiple scattering regime,

the matrix is in general diagonal with the diagonal elements decaying exponentially with

OD. Considering that optical activity and multiple scattering are multiplicative effects,
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one obtains the output Stokes vector for CB and CD respectively as [1, qa, 0, 0]T and

[1, qa, 0, vc]T , where a and c are exponential functions of OD (experimentally obtained

for polyhedral alumina particles of 3.2µm average size for the example illustrated in Fig.

3.32).
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Figure 3.32. P as function of OD for: only scattering (o), only optical activity (X), and
combined effects (continuous line).

Fig. 3.32 shows the degree of polarization P as function of OD for only scattering, only

optical activity, as well as for the combined effects. One can notice that in the CB case,

the two effects work together toward depolarizing the light, and the result is a stronger

depolarization. In the dichroic case however, the two effects compete with each other and

a certain preservation of the degree of polarization is apparent when the optical density

increases.

3.5. Characterization of optically dense media

Light scattering from dense scattering media is of interest for many scientific and

technological applications including characterization of paints and papers,128 rough sur-
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faces,129—131 remote sensing,132—134 as well as various medical noninvasive investigation

techniques.18, 20, 38 There are many theoretical models135, 136 and numerical procedures137—139

used for analyzing the polarized scattering pattern from rough surfaces and multiply-

scattering media, but they are generally computational extensive, time consuming and

the mathematical treatment generally lacks a physical, intuitive description of the scat-

tering phenomena involved. The extensive depolarization and the general symmetries

occurring in dense media significantly reduce the polarized component of the scattered

light, making long calculations of multiply scattered light quite inefficient. A simple and

intuitive model is outlined in this Section for characterization of dense scattering me-

dia. To accomplish this task, scattering effects are separated into the surface and volume

components, and then examined by using the Mueller matrix formalism.

3.5.1. Physical model

In order to analyze the backscattering Mueller matrix, one must first define the main

characteristics of the system. The scattering systems analyzed here are composed of

compacted powders with a certain size distribution. The result of compressing the powder

is an overall flat surface with a certain orientation with respect to the incident beam. The

microscopic surface characteristics are related to the mean size of the particles and the

standard deviation of the distribution, as well as the shape of the particles. Since the

scatterers are closely packed together, the characteristic scattering length for the bulk of

the system is expected to depend only on the size of the particles and not on the density

of particles as in the case of colloidal systems.
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In this model, the scattering contribution can be divided into two main categories

treated independently, surface scattering and volume scattering, assuming incoherent ad-

dition of the light retroreflected by the surface and the bulk. Surface scattering consists

of any scattering that occurs in-plane on the surface; it also accounts for light that may

scatter to adjacent particles on the surface, but does not penetrate into the bulk of the

sample. Volume scattering consists of scattering events occurring within the bulk of the

sample and it comprises both low and high order scattering events; the light is therefore

returned partially depolarized.

3.5.1.1. Surface scattering

The specular reflection on a flat surface with a complex relative refractive index n is

completely described by the following Mueller matrix73

M (θ) =
1

2



r2s + r2p r2s − r2p 0 0

r2s − r2p r2s + r2p 0 0

0 0 2rsrp cos (δ) 2rsrp sin (δ)

0 0 −2rsrp sin (δ) 2rsrp cos (δ)


, (134)

where rs and rp are the complex Fresnel reflection coefficients (rs = |rs| exp(iϕs), rp =

|rp| exp(iϕp)) given by

rs (θ) =
cos (θ)−

p
n2 − sin2 (θ)

cos (θ) +
p
n2 − sin2 (θ) , rp (θ) =

n2 cos (θ)−
p
n2 − sin2 (θ)

n2 cos (θ) +
p
n2 − sin2 (θ) , (135)

and δ = ϕs − ϕp. For dielectric, nonabsorbing materials, rs and rp are real (since n is

real) and δ = 0. Formula 134 simplifies in this case to
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M (θ) =

¡
r2s + r2p

¢
2



1
r2s−r2p
r2s+r

2
p

0 0

r2s−r2p
r2s+r

2
p

1 0 0

0 0 2rsrp
r2s+r

2
p

0

0 0 0 2rsrp
r2s+r

2
p


. (136)

At normal incidence, θ = 0, r2s = r2p =
¡
n−1
n+1

¢2
, and the Mueller matrix becomes

M(0) =

µ
n− 1
n+ 1

¶2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


. (137)

Backscattering from a smooth surface results in a well-defined specular reflection,

while a rough surface broadens this specular reflection peak. The diagonal elements 22,

33, and 44 will remain 1, -1 and -1, respectively, since only the facets normal to the incident

direction will reflect light into the backscattering direction. In such a facet model that we

briefly describe below, a rough surface is non-depolarizing while the intensity profile will

depend on the surface characteristics.

The facet model considers that the surface is composed of microfacets having orienta-

tions (slopes) that follow a certain probability distribution P (�). For surfaces with a single

correlation length a simple model consists of randomly oriented facets with horizontal pro-

jections equal to L (see Fig. 3.33). For describing the surface we consider a distribution

of heights P (h) as measured from a reference plane following Gaussian statistics with zero

mean and σ as the rms roughness.133 This problem is treated using a geometric optics
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approach where the characteristic length L of the facets and the standards deviation σ of

the heights distribution are larger than the wavelength.

The statistical character of the surface is described by the probability density P (�)

of the distribution of local slopes. In this model, the heights of points separated by L,

h1(x) and h2(x + L), are statistically independent random variables that have the same

probability density. Hence, the joint probability density P (h1, h2) factors as P (h1)P (h2).

It follows that P (�) also has a Gaussian shape and can be written as

P (�) =
exp

h
− ¡ L

2σ
tan �

¢2i
π cos2 (�)

. (138)

θ

h(x) L n1 = 1

n2 = n
∈

Figure 3.33. Facet model: � - local slope, h(x) local height, L - horizontal projection of
facets, n - refractive index, θ - incident (analyzing) direction.

For a compacted powder consisting of polyhedral alumina particles one can assume

that the surface of the powder is well described by such a facet model. This description

cannot however be directly applied for a powder made of identical spheres. If one considers

the spherical surface of a particle as being composed of discrete flat facets, all facets with

slopes between ±60◦ have the same probability of occurrence. Therefore, P (�) is 1/π
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for −π/3 < � < π/3, and zero for larger angles since facets at larger angles are hidden

to normal incidence by the neighboring spheres. However, if the powder consists of an

ensemble of polydisperse spheres (as is generally the case), smaller spheres will fill in the

spaces between larger spheres and the overall surface can be described by the Eq. 138.

Double reflection on adjacent facets is also possible. In order to have light backscat-

tered along the incident direction, the two facets have to be orthogonal. The polarimetric

contribution for such a facet pair is given by M(θ+ �)M(π
2
− θ− �) where θ is the global

orientation of the surface and � is the local slope of the first facet. This contribution has

to be integrated over a range of slopes between 0 and π/2 for the first slope (allowing for

the second slope to vary between −π/2 and 0) with the appropriate probability to have a

pair of adjacent orthogonal facets. Assuming independent statistics for the two slopes, the

joint probability to have such a pair is P (�)P (π
2
− �). Therefore, the contribution of this

effect to the backscattered light can be safely neglected at least for narrow distributions

of slopes (surfaces that are not very rough).

In the geometry considered here, only those facets that are normal to the incident

direction contribute to the backscattered intensity. Specular reflections of the type shown

on the right side of the Fig. 3.33 are not detected. The main outcome is that the Mueller

matrix corresponding to back-reflection at an angle θ is given by the matrix M(0) for

reflection at normal incidence (formula 137) weighted by the probability P (θ) of having

facets oriented at θ.

The probability distribution described by the formula 138 has been derived for the

case of rough surfaces133 having randomly oriented facets with the same horizontal projec-
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tion L. This assumption might not always be valid, and different probability distributions

should be considered depending on the scattering system. Our measurements on com-

pacted powders are well described by a Lorentzian distribution of slopes, as it will be seen

below.

3.5.1.2. Volume scattering

For the volume scattering contribution, the bulk of the sample is considered as being

composed of particles closely packed together (see Fig. 3.34). To a first approximation,

however, the scatterers are treated as independent and collective scattering is disregarded.

It is also assumed that the sample is semi-infinite with no real boundaries and the volume

scattering is analyzed separately from the surface effects.

θ

Figure 3.34. Volume scattering.

In transmission configuration through a slab, the Mueller matrix is diagonal with

its elements decaying exponentially to zero when the optical density increases.69, 89 The

contribution of ballistic and forward scattered photons, that preserve the incident state of
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polarization, vanishes for large optical densities, and the scattering system behaves like a

total depolarizer. In reflection geometry, however, it is expected that low-order scattering

events have always a significant contribution in the power balance. Short trajectories

preserve to some extent the input state of polarization, while for long trajectories, multiple

scattering completely depolarize the input light. For example, in the case of small particles

the phase function is almost isotropic and 2-3 scattering events are highly probable; the

reflected light is partially polarized. For large particles, on the other hand, the phase

function is strongly peaked forward, short trajectories being less probable than long ones;

short trajectories have in this case a small contribution to the back-scattered power, the

reflected light being strongly depolarized.

Considering the symmetries discussed for a cloud of particles in Ref.9 and extending

the average over a large number of trajectories inside the compacted powder, it is assumed

that the Mueller matrix corresponding to backscattering has a diagonal form

Mvol = w



1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c


, (139)

where w, a, b, and c depend on the size of the particles as described above. To a first

approximation it is also assumed that the volume scattering is isotropic, independent on

the observation direction.

It is also helpful to analyze the extreme cases of particles which are very small and

very large as compared to the wavelength. In both cases the amount of multiply scattered,

depolarized light is significantly reduced. For very small particles, such as dipoles, the bulk
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can be considered as a cloud of randomly oriented dipoles (still considered independent)

for which the Mueller matrix is diagonal (1, 1, -1, -1). For very large particles, the system

becomes homogeneous, behaving like a single rough particle. It is reasonable to assume

that the depolarization index, that describes the global depolarization properties of a

scattering medium, has a minimum for Mie particles, somewhere in between these limits.

The experimental data that is presented in the next Section confirms this assumption.

The surface effects and the volume scattering are considered to be independent processes,

and their contributions add on an intensity basis. Therefore, the total Mueller matrix is

Mtotal(θ) = P (θ)

µ
n− 1
n+ 1

¶2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


+ w



1 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c


, (140)

where w is the weight of the volume scattering with respect to the surface scattering.

Outside the specular reflection peak, where the surface effect becomes negligible, as com-

pared to the volume scattering, the diagonal elements 22, 33, and 44 are determined by

a, b, and c respectively.

3.5.2. Experimental results and discussions

The setup comprises a polarization state generator, a sample situated on a rotation

stage, and a polarization state analyzer as shown in Fig. 3.35. The laser operates at

532 nm and the polarization generator (Section 2.2.2) produces sequentially 4 states of
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polarization. The scattered Stokes vector is measured by the polarization state analyzer

(Section 2.2.4) for each input polarization and the backscattering Mueller matrix is then

calculated. The measurement system is completely automated (LabVIEW controlled).

Seven samples consisting of Silica (size parameter 1.7, 4.3, 8.6, and 12.9, respectively)

and Alumina (size parameter 12.7, 32.8, and 105.7, respectively) powders were prepared.

The powders were placed into a cylindrical mold and pressed until the surface of the

powder was flush with the surface of the mold, providing a flat rigid surface from which

to scatter the incident beam. The mold was then mounted on the rotating stage.

Laser
Polarization 
State 
Generator

Sample

Polarization 

State Analyzer
Rotation 
Stage

α

θ

Figure 3.35. Experimental setup.

The angle α between the illumination and analyzing directions (Fig. 3.35) was kept

constant at approximately 16◦, resulting in a specular reflection peak at about 8◦ incidence

angle, as seen in Fig. 3.36. The experimental errors in determining the Mueller matrix

elements is about 2% as confirmed by testing the system on standard optical elements

such as quarter and half waveplates and polarizers.
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Figure 3.36. Typical experimental results, shown here for Silica particles 1.5µm diameter.

Measurements of the Mueller matrix began at −70◦ off normal incidence, and were

taken in steps of 5◦ until reaching −5◦ off normal incidence. From −5◦ to 15◦ measure-

ments were taken in steps of 1◦ in order to increase the resolution of the specular peak.

Measurements from 15◦ to 70◦ were again taken in steps of 5◦.

Fig. 3.36 illustrates typical experimental results. The experimental data is very well

fitted with a Lorentzian distribution for slopes,

P (θ) =
1

π

(Γ/2)2

(θ − α)2 + (Γ/2)2
(141)

where Γ is full width half maximum of the specular reflection peak.

The volume scattering contribution (w, a, b, c) is angularly independent and is eval-

uated outside the specular reflection peak for each matrix element (as indicated in Fig.

3.36). The magnitude S of the specular reflection peak is measured from this angularly-
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independent baseline (Fig. 3.36). The base and the magnitude of the peak are determined

similarly for the depolarization index D (formula 5).

As predicted by our simple model, the width of the peak depends on the size of

the particles, as shown in Fig. 3.37. It is interesting to notice that for spherical Silica

particles, the width of the peak is the same for all 3 diagonal elements 22, 33, and 44, but

is different for polyhedral Alumina particles. This could indicate a certain sensitivity of

the measurement to the shape of the particle which was not included in our model.
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Figure 3.37. Full width half maximum of the specular reflection peak as function of
particle size for Silica (left) and Alumina (right).

As seen in Fig. 3.38, the magnitude S of the specular reflection peak changes from

element to element, and varies with the size of the particle.
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Figure 3.38. Magnitude S of the specular reflection peak as function of particle size for
Silica (left) and Alumina (right).

Examining the volume scattering contribution, as shown in Fig. 3.39, one notices that

the factor w, which measures the amount of light backscattered from the bulk is fairly

independent of the particle size for both spherical Silica particles and polyhedral Alumina

particles. The other diagonal elements, a, b, and c, vary significantly with the particle

size.
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Figure 3.39. Volume scattering contribution as function of particle size for Silica (left)
and Alumina (right).
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Figures 3.40 and 3.41 show the base and the magnitude of the peak for the depolar-

ization index D (formula 5) for Silica (left) and Alumina (right) particles. One can notice

that the scattering system is strongly depolarizing the incident light for large angles (base

- Fig. 3.40) confirming that the depolarization is mainly due to volume scattering. Fig.

3.40 also indicates significant differences among the depolarization levels corresponding

to different particle sizes following the trend suggested by our physical model. One can

also notice that the powder is not depolarizing as much for angles corresponding to the

specular reflection peak (Fig. 3.41) because in this region the main contribution comes

from surface scattering as described by the facet model. The magnitude of the peak is,

however, fairly independent on the size of the particles indicating that there is a certain

ratio between nondepolarizing surface scattering and the partially depolarizing volume

scattering. It is believed that the difference in the peak magnitude between Silica and

Alumina is related to the index of refraction of the particles.
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Figure 3.40. Base of the depolarization index D as function of particle size for Silica (left)
and Alumina (right).
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Figure 3.41. Peak magnitude of the depolarization index D as function of particle size for
Silica (left) and Alumina (right).

Using the Mueller matrix formalism, a model was developed describing the light scat-

tering depolarization effects that occur in backscattering from highly scattering media.

The surface effects are accounted for by using a facet model in which the intensity profile

depends on the correlation length and roughness of the surface. The volume effects are

derived by considering the bulk as a system of closely packed independent particles where

low-number scattering events are nondepolarizing. The model explains the main features

observed experimentally for backscattering on compacted powders, but cannot explain

the differences in the width of the specular reflection peak for the diagonal elements of

the Mueller matrix. Also, some features observed in the off-diagonal elements of the

matrix cannot be elucidated. Additional refinements, such as accounting specifically for

low-number scattering events, are needed to completely describe the experimental results.

This simple model has direct applications in characterization of optical coatings, paints

and papers, remote sensing, and medical applications.
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CHAPTER 4

SUMMARY OF ORIGINAL CONTRIBUTIONS AND CONCLUSIONS

Measuring the polarization of light is an important tool for investigating the inter-

action of light with matter. This dissertation presented theoretical and experimental

studies of the polarimetric characteristics of random electromagnetic beams, and of the

polarimetric signatures of different scattering systems. New experimental techniques were

developed and used for studying various scattering regimes and configurations pertinent

to random media characterization.

The basic concepts and notations of the Jones, Stokes-Mueller, polarization matrix,

and cross-spectral density matrix formalisms, used for the description of random electro-

magnetic beams, the state of polarization, and the polarization transfer phenomenology

were reviewed in the Introduction. A broad range of applications relying on polarimetry

was also summarized.

Chapter 2 described four new techniques for polarimetric characterization of random

electromagnetic beams and of the transfer of these beams through various systems. The

degree of polarization rather than the full description of the state of polarization is of

interest in multiple scattering regime. In such applications, the statistical nature and not

the deterministic component of light bears relevant information. A new interferometric

technique was developed for determining polarimetric characteristics of light governed by

Gaussian statistics. Based on only two measurements of the contrast of the intensity
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fluctuations in a Mach-Zehnder interferometric setup∗, the method allows simultaneous

determination of the degree of polarization and of the second normalized Stokes com-

ponent. Since both outputs of the interferometer are used for measurements, another

significant advantage is that no input light is wasted, as opposed to the case where po-

larizers are used. It was also shown that the signal-to-noise ratio can be increased using

phase modulation in certain conditions. Using spatial light modulators it is possible to

control the contrast and therefore the SNR in every point across the beam, a capability

which should be of interest for applications involving the control of random electromag-

netic beams.

In order to investigate the situations where the degree of polarization bears the rel-

evant information one needs a light source with a controllable degree of polarization.

Therefore, we developed a method for generating such complex random electromagnetic

beams based on a Mach-Zehnder interferometer. For describing a random electromag-

netic field one has to specify its spectral, coherence, and polarization properties. These

properties are related to each other, and in general, they change on propagation. Optical

beams are superposed in certain applications, and therefore, it is desirable to understand

how these characteristics combine. The recently developed unified theory of coherence

and polarization of random electromagnetic beams8 provides a theoretical framework,

namely the cross-spectral density matrix, for deriving the spectral density, the spectral

degree of coherence and the spectral degree of polarization. As a direct application of this

theory, it was shown in Chapter 2 that, under certain conditions, the spectral and the

∗ M. Mujat, A. Dogariu, and G. S. Agarwal, ”Interferometric measurement of the degree of polar-
ization and control of the contrast of intensity fluctuations”, Optics Letters (in press)
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polarimetric characteristics can be controlled by adjusting the correlation between par-

allel components of polarization propagating through the two arms of a Mach-Zehnder

interferometer∗. A novel light source with controllable spectral density and degree of po-

larization was demonstrated using phase modulators in a Mach-Zehnder interferometer

illuminated with broadband unpolarized light.

The interferometric techniques discussed above for tuning and measuring the degree

of polarization require a good understanding of how random electromagnetic beams are

superposed. A closer examination of the interference of such beams lead to a second inter-

ferometric measurement technique that actually provides complete description of the state

of polarization. A generalization of the laws of Fresnel and Arago was first developed† for

the interference of electromagnetic beams with any state of coherence and polarization. It

was found that one single formula and three generalized laws describe all possible cases of

interference. As a direct application of this new generalized interference law, an original

imaging polarimeter was proposed based on a modified Sagnac interferometer. Very good

agreement with standard Stokes polarimetry is demonstrated‡. This measurement tech-

nique has, in certain situations, a significant advantage over the standard Stokes imaging

polarimetry: one needs only one frame to obtain both the degree of polarization and the

retardance, as opposed to least three images required in classical Stokes polarimetry. In

this novel approach, orthogonal components of the polarization are projected along the

∗ M. Mujat and A. Dogariu, ”Polarimetric and Spectral Changes in Random Electromagnetic Fields”,
Optics Letters 28(22), p.2153-2155, 2003.
† M. Mujat, A. Dogariu and E. Wolf, ”Generalized Interference Laws of Fresnel and Arago for Any
State of Coherence and Polarization”, in preparation
‡ M. Mujat, E. Baleine, and A. Dogariu, ”Interferometeric imaging polarimeter”, submitted to JOSA
A
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same direction by a polarizer, and their interference is directly related to the degree of

polarization of the analyzed light. An additional benefit is that the fringe spacing is easily

adjustable allowing for tunable spatial resolution in determining the state of polarization,

as opposed to previous interferometric techniques.

The measurement of the state of polarization is required for analyzing the polariza-

tion transfer through systems that alter it. The choice of the measurement technique

is based on the particularities of the system to be investigated. An electronically agile

device with no moving components and high sensitivity, simple and relatively inexpensive

is generally desired. In the second part of Chapter 2, after a review of the current mea-

surement techniques, two methods for performing Mueller polarimetry based on intensity

measurements were presented. Practical considerations like calibration and optimization

of Mueller polarimeters, as well as decomposition and noise filtering of Mueller matrices

were also discussed.

The first method can be described as sequential generation - simultaneous analysis∗.

It allows simultaneous measurement of all four Stokes vector components. Four input

states of polarization are sequentially produced and the Mueller matrix is obtained after

measuring the corresponding four output states of polarization. In this original technique,

there are no moving parts, which simplifies the mechanical setup and the control of the

measurement process. The entire process (control of the polarization generation unit,

measurement and analysis) is efficiently controlled in LabVIEW eliminating the need

for lock-in amplifiers, sophisticated electronics and optics, high-voltage amplifiers and

∗ M. Mujat and A. Dogariu, ”Real-time measurement of the polarization transfer function”, Applied
Optics 40(1), p. 34-44, 2001
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power supplies for electro-optic modulators. Through measurements on standard optical

elements, an overall accuracy better than 2.5% was demonstrated. The ability to complete

a Mueller matrix measurement in less than 50ms is appealing for monitoring structural

dynamics in a variety of applications. The setup is designed to specifically investigate the

polarization signature of particulate systems with high volume fractions.

The second method based on intensity measurements involves no time modulation of

the retardance for any of the active elements in the Stokes generator or analyzer and it uses

photomultipliers as detectors. The main advantage of this technique is that it provides

a high dynamic range in measuring very low power optical signals typical for multiple

scattering. In the experimental setup, the Stokes analyzer is mounted on a rotation stage

and revolves around the sample, allowing the full measurement of the scattering matrix.

A computer controls the Stokes generator, the counter, the rotation stage, and the data

acquisition.

A practical aspect of Mueller polarimetry is selecting the optimal input Stokes vectors.

Based on the maximization of the determinant of the transfer matrix, a novel procedure

was developed∗ to minimize the effect of (i) power variations between the measurement of

input and output states and (ii) fluctuations of the retardances introduced by the Stokes

vector generator. An intuitive representation of the optimization procedure was described

using the Poincarè sphere and an experimental validation was also presented. The analysis

developed in Chapter 2 permits to estimate the expected error in measuring the Mueller

∗ M. Mujat and A. Dogariu, ”Practical considerations on the design of Mueller polarimeters” - OSA
Annual Meeting 2002, 29 Sep. - 03 Oct. 2002, Orlando, Florida USA.
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matrix with a specific setup and can be used to optimize a measurement designed to

attain a certain experimental precision.

The novel polarimetric techniques described in Chapter 2 were used for analyzing new

effects in random media in several applications of practical interest. The polarimetric

properties of various scattering systems were analyzed in Chapter 3, and they were then

related to the structural properties of the global system, and to the size distribution,

shape, orientation, birefringent or dichroic properties of the individual scatterers. The

analysis was made in various scattering regimes, in forward and backward scattering

configurations, or as function of the scattering angle.

A considerable number of reports exist in the literature which deal with experiments

and theoretical calculations of light scattering from spherical particles. For most of the

practical applications however, monodisperse ensembles of spherical particles are just

idealized representations. The analysis presented in Chapter 3 elucidated some practical

aspects of single and multiple scattering on polydisperse systems.

The experimental results were first presented for ensembles of spheres, a spray of

droplets of water or solutions of fructose and galactose. The scattering matrix for a

single sphere (or an ensemble of identical spheres) is a pure, non-depolarizing Mueller

matrix. However, if the ensemble is polydisperse, even in the single scattering regime,

the scattering matrix of the ensemble exhibits depolarization effects. This effect has

not been previously addressed. It seems to be generally accepted that depolarization

effects can only be associated to multiple scattering. However, our analysis proved that

depolarization also occurs in single scattering on polydisperse spherical particles. This
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could be easily explained considering that along a certain observation direction particles

with different diameters scatter light differently and the detector records an ensemble of

pure states of polarization that is equivalent to partially polarized light.

Another case of practical interest investigated in Chapter 3 was the polarization trans-

fer through systems consisting of individual layers of partially aligned fibers not previously

addressed. The analysis aimed at describing the polarizing behavior observed for partially

oriented cylinders. It was demonstrated that a certain degree of alignment has the effect

of a partial polarizer and the efficiency of this polarizer depends on the degree of align-

ment and of the packing fraction of the system∗. This polarizing effect is generated by

the shape anisotropy of the fibers in combination with their partial alignment.

In specific applications such as long range target identification, it is important to know

what type of polarization is better preserved during propagation through atmosphere.

Previous studies investigated the depolarization effects for specific types of input state of

polarization. These results can be easily derived from our analysis of the Mueller matrix†.

The Mueller matrix associated with particulate systems of various optical densities was

measured in transmission. The measurements demonstrate that for small spherical parti-

cles, as compared with the wavelength of light, linear polarization is better preserved than

circular polarization as light propagates through turbulent media. For large particles, the

situation is reversed, circular polarization is better preserved than the linear component.

∗ M. Mujat and A. Dogariu, ”Measurements of structure-induced polarization features in forward
scattering from collections of cylindrical fibers”, J. Quant. Spectrosc. Radiat. Transfer 70(4-6), p.555-
567, 2001.
†M. Mujat and A. Dogariu, ”Real-time Mueller matrix measurement for particulate systems”, in Laser
Radar Technology and Applications V, G. W. Kamerman, U. N. Singh, C. Werner, and V. V. Molebny,
eds., Proc. SPIE 4035, p. 390-400, 2000.
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It was also demonstrated here that this is not true for polyhedral or cylindrical particles,

that behave differently. These effects need to be considered in remote sensing and long

range communications.

Optical activity measurements have been performed for a long time on homogeneous

materials. However, for medical applications and remote sensing of biological media it is

imperative to understand and quantify the effect of optical activity in multiple scattering

regime. The analysis∗ presented in Chapter 3 shows that the output state of polarization

depends not only on the optical density of the scattering medium, but it is also strongly

influenced by the optical rotatory power and the amount of circular dichroism associated to

the scattering medium. It was shown that in the circular birefringence case, the scattering

and optical activity work together in strongly depolarizing the light, while in the dichroic

case the two effects compete with each other resulting in a preservation of the degree of

polarization due to optical activity.

Light scattering from dense scattering media is of interest in material sciences in-

cluding the characterization of paints, papers, and rough surfaces, as well as in remote

sensing and various noninvasive medical investigation techniques. There are many theoret-

ical models and numerical procedures used for analyzing the polarized scattering pattern

from rough surfaces and multiply-scattering media, but they are in general computa-

tional extensive and time consuming. A simple and intuitive model to characterize dense

scattering media† was proposed in Chapter 3. In this model, scattering was split into

∗ M. Mujat and A. Dogariu, ”Light scattering in granular chiral media” - OSA Annual Meeting 2001,
October 14-18, 2001, Long Beach, California USA.
† M. Mujat, A. Spier and A. Dogariu, ”Polarimetric signature of dense scattering media”, in Polar-
ization Science and Remote Sensing, J. A. Shaw, J. S. Tyo, eds., Proc. SPIE 5158, p.217-225, 2003.
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a surface and a volume component, which were examined by using the Mueller matrix

formalism. The nondepolarizing surface contribution was interpreted using a facet model,

while the depolarizing volume effects were explained by considering the system to con-

sist of closely packed independent particles and accounting for nondepolarizing low-order

scattering events.

This dissertation presented novel theoretical and experimental contributions to polari-

metric characterization of random electromagnetic beams, and random media. Innovative

experimental techniques were developed and used for studying various scattering systems

which are relevant for applications in biology, medicine, material sciences, and remote

sensing.
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