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ABSTRACT 

 
We examine the problem of staffing refreshment stations at a long distance road race. A 

race is modeled as a mixed queueing network in which the required number of servers at each 

service station has to be estimated. Two models to represent the progress of runners along a long 

distance road race course are developed. One model is a single-class model that allows a road 

race manager to staff service stations assuming the runners are identical to those in some 

historical dataset. Another model is a multi-class simulation model that allows a road race 

manager to simulate a race of any number of runners, classified based on their running pace into 

different runner classes. 

 Both the single-class model and the multi-class model include estimates for the 

rates at which the runners arrive at specified locations along the course. The arrival rates, 

combined with assumed service rates, allow us to base staffing decisions on the Erlang loss 

formula or a lesser known staffing rule that gives a lower bound for the required number of 

servers. We develop a staffing strategy that we call the Peak Arrival Staffing Bound (PASB), 

which is based on this staffing bound.  

 The PASB and the Erlang loss formula are implemented in the single-class model 

and the multi-class simulation model. By way of numerical experiments, we find that the PASB 

is numerically stable and can be used to get staffing results regardless of the traffic intensity. 

This finding is in contrast to the Erlang loss formula, which is known to become numerically 

unstable and overflows when the traffic intensity exceeds 171. We compare numerical results of 

the PASB and the Erlang loss formula with a blocking probability level of 5% and find that when 
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the traffic intensity is high, staffing results based on the PASB are more conservative than 

staffing results based on the Erlang loss formula. As the traffic intensity gets lower, we find that 

staffing results based on the PASB are similar to staffing results based on the Erlang loss 

formula. These findings suggest that the PASB can be a valuable tool to aid race directors in 

making staffing decisions for races of all traffic intensities. 
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CHAPTER 1 

INTRODUCTION TO ROAD RACE MODELING 
 

1.1 Motivating Problem 

 

The motivating problem for this research is matching the service capacity at refreshment 

stations along a long distance road race course over time to the arrivals of runners at those 

refreshment stations. Examples of systems that are similar in principle include a convoy of 

vehicles that are traveling on a defined route and arriving at predetermined locations for 

servicing, and street parades in which participants move along a planned course with aid stations 

at predetermined locations. 

 

1.2 Problem Description 

 

The road-race course that is described in this manuscript is equipped with 1K   timing 

detectors placed at selected locations along the course, including the start and finish lines. The 

first detector is at the start line and the last detector is at the finish line. We let 
k

d , 1,2, ,k K

, denote the distance of the 
thk  detector location from the start line, 

0
d , and assume that 

0 1 20 Kd d d d     . 

There are a total of N  runners traversing the course, and data on their arrival times are 

only available at each of the 1K   detector locations. For example, there were 9336 runners in 
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the 2004 WDW Marathon. Each of the N  runners has a unique identifying number, n , for 

1,2, ,n N . Runner n  enters the course at time 
0,nt , and reaches 

k
d  at time 

,k nt . All runners 

are assumed to traverse the entire course and eventually reach the finish line ( )Kd  at 
,K nt . 

Because each runner wears a chip that transmits a signal so that the current time may be recorded 

when that runner makes contact with a detector, we are able to collect arrival data on each runner 

at each detector location. 

Road race managers need some method of approximating the numbers of runners that are 

expected to arrive at the refreshment stations over time in order to make volunteer staffing 

decisions. To approximate the service requirement along the race course, we model a long 

distance road race as a network of queues in which we consider refreshment stations to be 

service stations that are to be staffed with the appropriate numbers of volunteer servers for the 

runners that approach each refreshment station. We assume that all the runners in the race enter 

the queueing network at the start line, enter each station along the race course where they seek 

service for refreshments, and exit at the finish line. This description of the queueing system gives 

rise to a special type of queueing network that will be described in Chapter 2. 

In this research, we address the problem of estimating the staffing requirements in time-

dependent (nonstationary) traffic systems, such as long distance road races, that have high server 

requirements. We develop models that allow road race managers to track the flow of runners at 

each service station, as well as a staffing model that allows road race managers to estimate the 

required numbers of servers needed in a long-distance road race with L  service stations. 

One example of the type of traffic system that is described above is a marathon, the 

principal application motivating this research. The data set that will be used for the experiments 
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herein comes from the 2004 WDW Marathon. (This data set will be described in greater detail in 

Chapter 4.) It is assumed here that there are 25L  service stations, one located at each of the 

first 25 mile markers.  

 

1.3 The Research Plan 

 

The major contributions of this research are: (a) the development of a model for 

determining staffing requirements for service stations along a marathon course that is modeled as 

a queueing network, and is characterized by nonstationary arrival processes at each service 

station, and (b) the development of models to determine how runners transition along the course 

of a long distance road race, as well as the development of models to estimate the arrival rates of 

the runners at each service station. The models developed include a simulation model that allows 

road race managers to simulate the transition of multiple classes of runners along the course of a 

long distance road race that is modeled as a queueing network. Each of these models is 

embedded with a staffing model at each service station in the queueing network in order to 

provide service level requirements at each service station.  

We use the Erlang loss formula as the basis for estimating staffing requirements. We also 

develop another staffing model that uses a modification of a staffing lower bound in Hall [17] for 

estimating the required numbers of servers. We call this model the Peak Arrival Staffing Bound 

(PASB). 

The rest of this manuscript is structured in the following way. In Chapter 2, we briefly 

review the literature relating to the basic principles of simulation and Monte Carlo methods, 
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queueing networks and their applications, and some of the methods that are used to model time-

dependent arrival rates for no-waiting queueing systems. The Erlang loss formula is intended for 

this kind of queueing system; it is reviewed in Section 2.4. In Chapter 3, we develop a 

framework for estimating the peak arrival rates at each of the service stations in the queueing 

network. We also develop the PASB staffing rule that is based on a server lower bound given by 

Hall [17]. Chapter 4 contains experimental results based on the WDW 2004 data. In Chapter 5, 

we develop a simulation model of the queueing network representation of a long distance road 

race with multiple classes of runners. Experimental results from the simulation model are also 

presented in Chapter 5. Finally, in Chapter 6, we discuss the benefits and shortcomings of the 

models, as well as areas for future research.  
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1   Introduction 

 

In this chapter, we present an introduction to simulation and Monte Carlo methods, an 

introduction to queueing networks and some applications of queueing networks, and a review of 

some of the methods that are used to model time-dependent arrival rates for no-waiting queueing 

systems, such as the Erlang loss formula. 

An exhaustive review of the literature did not turn up a single model for staffing a long 

distance road race such as the one described in Chapter 1. In Sections 2.2 and 2.3, we give a brief 

review of the literature related to estimating long distance running times and some of the relevant 

queueing theory literature, with special focus on some application areas of queueing networks. In 

Section 2.4, we review the Erlang loss formula, and give a brief review of the literature related to 

modeling the time-dependent arrival rate for use in the Erlang loss formula. In Section 2.5, we 

give an introduction to simulation and Monte Carlo methods. In Section 2.6, we present a brief 

summary of some application areas of simulation and Monte Carlo methods. In Section 2.7, we 

give a brief review of variance reduction techniques for Monte Carlo methods. 

 

2.2   Road Race Modeling 
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As the popularity of recreational running increases, so does the body of literature 

dedicated to running. However, Rae et al. [32] notes that the current body of work around 

recreational running is focused primarily on the health, medical, and physical aspects of runners.  

An extensive review of the endurance running literature turned up no articles related to 

modeling running times of long distance athletes for the purpose of race management and 

staffing. During the literature review, one article was found with relevance to modeling the times 

of runners. In this article, Strand and Boes [37] used extreme value theory (EVT) to model the 

times of competitive runners. EVT was used to estimate the expected rate of change in 

performance for a runner of any age. The authors did not discuss the impact of the availability of 

service at refreshment stations on the runners’ predicted performance. 

 

2.3   Queueing Networks 

 

The queueing theory literature is replete with examples of physical systems that are 

modeled as queueing networks. See, for example, Kelly [23], Saaty [34], or Stidham [36]. 

However, a thorough review of the literature did not turn up any articles in which a long distance 

road race is modeled as a network of queues. For this research, we model a long distance road 

race as a network of queues in which refreshment stations are considered as service stations that 

are to be staffed with the appropriate numbers of volunteer servers. We assume that the service 

time duration at a service station can be approximated by any choice of continuous probability 

distribution and has a service rate per busy server  , and that the time-varying arrival rates at 
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the 
th

 service station of interest, L,,2,1  , are based on a nonstationary arrival process with 

arrival rate )(t . The queueing network framework is described in Section 3.1. 

According to Bolch et al. [6], a queueing network is a connected queueing system that 

consists of at least two service stations. In such networks, the entities of interest, which may be 

single-class entities or multi-class entities, are transferred between service stations. The queueing 

network is called an open queueing network if the entities of interest are allowed to enter or exit 

the network at any of the service stations in the network. The queueing network is called closed 

if the entities of interest can neither enter nor leave the network. A mixed queueing network 

combines some of the features of both types of queueing networks. For example, a mixed 

network may only allow entities to enter or exit the network at predetermined service stations. In 

the next section, we cover the basics of queueing system notation. 

 

2.3.1   Queueing Theory Nomenclature 

 

This section covers the basics of queueing system notation. For additional details on 

conventions for queueing notations, see Chapter 1 of Gross and Harris [16] or Chapter 5 of Hall 

[17]. Most queueing systems are classified according to the Kendall-Lee notation, characterized 

by the following six factors: arrival process, service process, number of servers, system capacity, 

calling population (of potential customers), and queue discipline. Such a classification is 

represented by a series of six parameters separated by slashes, as shown below: 

 

/ / / / /A B s m n x  
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where 

 A  represents the interarrival-time distribution 

 B  represents the probability distribution of service times 

 s  represents the number of parallel service channels 

 m  represents the system capacity 

 n  represents the size of the calling population 

 x  represents the queue discipline 

 

Borrowing from Hall [17], some of the standard probability distributions are denoted as 

follows: 

 M  exponential (Markovian) distribution 

 G  general distribution 

 D  constant (deterministic) service times 

 

For example, an / / / / /M G s s n FIFO  queue has exponential interarrival times, general 

service times, s  servers, a system capacity of s , a calling population of n , and FIFO queue 

discipline. The ( ) / ( ) / / / /M t G t s s n LIFO  queue has time-dependent exponential interarrival 

times, time-dependent general service times, s  servers, a system capacity of s , a calling 

population of n , and LIFO queue discipline. 
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2.3.2   Examples of Queueing Network Models 

 

Applications of queueing models abound in the literature; however, we have not seen any 

applications of a queueing network representation of a long distance road race. We now examine 

some of the application areas of queueing theory. A compendium of research related to queueing 

networks can be found in Kelly [23]. 

 

2.3.2.1   Communication Network 

 

An extensive coverage of communication networks is given by Reiser [33] and Kelly 

[23]. Stidham [36] gives a condensed coverage of the subject. Whitt [40] derives and describes 

some functional limit theorems that are applicable to communication networks.  

Communication networks are telegraph systems in which a graph represents the system 

with vertices and directed edges corresponding to cities and directed channels, respectively. In a 

communication network, messages originate in a city and are to be transmitted, possibly via 

some intermediate relay city or cities, to their destination city. Each channel in the 

communication network has a maximum capacity, and the various messages interact. 

In the queueing network representation of a communication network, each message is 

regarded as a customer and each channel is regarded as a queue. Messages are assumed to arrive 

from outside the system in independent Poisson streams. Additionally, each message is assumed 

to have its own route through the channels of the system.  
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Kelly [23] discusses two models for the time that it takes a message to pass along a 

channel. The system has L  channels in which n  represents the number of messages waiting at 

the 
th

 channel (including the message being transmitted), and 
1 2, , , Ln n n  are assumed to be 

independent. The first model assumes that the time that it takes a message to pass along the 
th

 

channel is distributed as an exponential random variable with mean  , and is independent of the 

time that it takes to pass along other channels along its route in the communication network. The 

author derived an analytical expression for the steady state behavior of this type of 

communication network. 

The second model assumes that the service requirement for a message along its route in 

the communication network is the same at every queue, follows a general distribution with mean 

 , and is independent from customer to customer. The author derived an expression for the 

steady state behavior of this type of communication network that shows that the mean number of 

messages waiting at the 
th

 queue is 
( )


 

, and the mean waiting time of a message at the 

th
 queue is 1

( ) 
. 

 

2.3.2.2   Machine Interference 

 

The basic form of the machine interference problem is described by Kelly [23], and an 

extensive treatment is discussed by Saaty [34]. For this type of network, there are N  machines 
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under the care of a single operator. From time to time, a machine stops working and requires the 

attention of the operator before it can resume working. The operator can only attend to one 

machine at a time; hence, the machines interfere with each other if two or more machines are 

stopped and must wait on the attention of the operator. 

The system is represented as a closed queueing network in which there are N  identical 

machines, and the operating time of a machine before it is stopped is represented by a general 

distribution with mean 
n , and the time that it takes the operator to service a machine is 

distributed as an exponential random variable with mean  . The queue discipline is FIFO. The 

machines that are stopped queue to receive service, and all service times and operating times are 

assumed to be independent. 

 Kelly [23] derived an analytical expression that describes the steady state behavior of the 

system, which makes it possible to calculate the proportion of time that the operator is busy, or 

the amount of time a machine is busy.  

 

2.3.2.3   Timesharing Computers 

 

67BModeling timesharing computers as a network of queues is described in Chapter 4 of 

Kelly [23], as well as by Huessmann and Goldberg [19] who describes programs for simulating 

computer systems, and gives a very good description of time sharing computer systems.  

68BIn timesharing computer systems, there is a central processing unit (CPU) of the 

computer to which L  terminals are attached. These terminals are assumed to be queues. There 
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are N  jobs, which are considered to be customers. Job , 1,2, , ,n n N  is either being serviced 

by the CPU or is with the computer at terminal , 1,2, , L . The service times for all queues 

in this system, including at the CPU, follows a general distribution. 

 

2.3.2.4   Teletraffic Network 

 

According to Whitt [38] and Whitt et al. [41], the field of teletraffic networks has 

benefited significantly from the developments in queueing theory. Kelly [23] shows a teletraffic 

network can be modeled as an open queueing network. The typical teletraffic network has J  

exchanges, 
1 2, , , Je e e , that are connected to exchange f , which is connected to exchange g . 

There are 
jR  lines between 

je  and f , and S  lines between f  and g . 
jR S  and 

1 2 JS R R R    . Calls that require a line between 
je  and g  are initiated as a Poisson process 

with intensity 
j ; however, these calls are lost if all of the lines from 

je  to f  or all the lines 

from f  to g  are busy. Kelly [23] derived an expression that describes the steady state behavior 

of the teletraffic network. 
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2.3.2.5   Compartmental Models 

 

A comprehensive coverage of compartmental models can be found in Allen [2], Kelly 

[23], and Stidham [36]. The queueing network representation of compartmental models give rise 

to systems that have multiple compartments that are visited by customers. These systems have 

the property that after customers enter the system, they move independently through it. We 

discuss two types of compartmental models below. 

 

 

2.3.2.5.1   Biology Compartmental Model 

 

Reviews of the use of compartmental models in the field of biology can be found in Kelly 

[23] and Stidham [36]. A very comprehensive review of biology compartmental models is 

covered by Allen [2], who uses a biology compartmental model in his doctoral research to model 

tumor growth.  

Compartmental models are used in biology to model the movement of particles through 

the various parts of an animal’s body. In such systems, there are J  compartments, and particles 

enter the system, move around the various compartments, and then exit the system. The arrival 

rate of particles to the system is governed by a Poisson process with intensity  , and the time 

that a particle spends in the thj  compartment of the system is well approximated by any general 

continuous random variable with mean 
j . Kelly [23] shows that, in steady state, the number of 
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particles in the thj  compartment is independent of the number of particles in the other 

compartments, and is distributed as a Poisson random variable with mean 
j . 

 

 

2.3.2.5.2   Birth-Illness-Death Compartmental Model 

 

The birth-illness-death compartmental model is summarized by Stidham [36], and 

discussed in greater detail by Allen [2] and by Kelly [23]. 

In birth-illness-death compartmental models, an individual is born, passes through 

various states of health, and finally dies. There are J  states of the system, which are chosen at 

birth, and the individual moves independently through each of them. The length of time that the 

individual spends in the thj  state follows a general distribution.  

 

 

2.3.2.6   Some Other Applications of Queueing Network Models 

 

An open queueing network model of a computer system with virus infection is described 

by Chao [8]. In this application, a job that is infected with a virus enters the system, and with 

some probability, transmits the virus when it is transferred to other computer processors in the 

network (for example, CPU, diskettes, I/O, etc.). The service time distribution at each service 
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station in the network is approximated by independent exponential distributions, and the arrival 

rate at each service station in the network is modeled as independent Poisson processes.  

When a job finishes its service at a service station in the network, it either goes to another 

service station for service, or it leaves the system. However, when a job goes to another service 

station, there is a non-zero probability that it brings a computer virus to that service station. 

Computer viruses can also arrive from outside the system, for example, jobs arriving on an 

infected floppy diskette. The arrival of a computer virus arrives at a service station leads to the 

immediate destruction of all the customers at that service station, and the server is sent for repair. 

The time to repair a server is assumed to be negligible, and the system resumes operation once 

the server repair is completed. 

George and Xia [10] describe a closed queueing network model of a vehicle rental 

operation that has multiple rental locations in its vehicle rental network. In this application, each 

rental location is modeled as a service location. The arrival rate at each service station in the 

queueing system is approximated by an independent Poisson process. Customers enter the 

system and rent a vehicle that they keep for a period of time that follows a general distribution. 

The vehicle is returned to one of the service stations in the network. If a vehicle is unavailable 

when a customer arrives at a service station, the customer immediately leaves the system; thus, 

there is no queueing at the service stations. Using this framework, with respect to fleet size at an 

arbitrary service station, the authors derived the asymptotic properties of vehicle availability. 

Bar-Lev et al. [4] describe an open queueing network model of a HIV blood testing 

operation. In this model, blood samples undergo two different tests – an enzyme linked immuno-

sorbent assay (or ELISA) test and a polymerase chain reaction (or PCR) test – before the blood 
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samples are assessed to be negative for the HIV virus. There is a processor-sharing service 

station and a delay service station. Service times at both service stations are assumed to be 

exponentially distributed, and the arrival rate at the service stations are approximated by 

independent Poisson processes.  

Blood samples arrive at the processor-sharing service station for ELISA testing. If the 

blood samples are found to be positive for the HIV virus, they leave the system. Otherwise, the 

blood samples are forwarded to the delay service station where they are subjected to PCR testing. 

The blood samples then they leave the system either as HIV positive or HIV negative.  

Haskose et al. [18] describe a queueing network model of a manufacturing production 

process. In this application, a job shop is formulated as an open queueing network with multiple 

service stations. The service discipline at each service station is FIFO. Arrivals at the service 

stations are modeled as independent Poisson processes, and the service times at each service 

station in the network are modeled by independent exponential distributions.  

Jobs enter the system at the first service station in the network, and if there are other jobs 

waiting for service, the arriving jobs queue and wait for service. Otherwise, the arriving jobs 

enter service. When service is completed, the jobs are transported to the next service station in 

the routing sequence. This process is repeated until the jobs visit all their predetermined service 

stations in the system. 

A second queueing model of a manufacturing process is described by Jain et al. [21]. In 

this application, a flexible manufacturing system in which multiple material-handling devices 

and multiple pallets circulate among a fixed number of loading and unloading processing stations 

is modeled as a closed queueing network. Service times at the various service stations are 
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modeled by independent exponential distributions, and parts are transported to processing 

stations according to predetermined routing schedules or process plans.  

During the parts transportation process, a pallet makes several visits to various service 

stations in the system. When the processing of the pallet is completed at a service station, it (the 

pallet) awaits the arrival of a material-handling device. When the material-handling device gets 

to the service station, it is seized by the pallet and immediately exits the station. If a service 

station downstream is available, it is seized by the pallet. Otherwise, the pallet moves to the 

central buffer and awaits the availability of a downstream service station. Once a downstream 

service station becomes available, the pallet reserves it and the material-handling device moves 

towards the downstream service station. At the unloading station, the pallet is unloaded, and 

once empty, it moves to a loading station. 

A third queueing network model of a manufacturing process is described by Juang and 

Huang [22], in which a semiconductor manufacturing process is modeled as an open, multi-class, 

priority / / / / /G G s     queueing network. Each tool in the semiconductor manufacturing 

process is modeled as a single-queue station with infinite buffer space. Lots are modeled as 

individual entities that originate from outside the network and receive service at predetermined 

stations. Then they leave the system. The queueing network model includes a system analyzer 

module and a system predictor module. The arrival and service patterns of each tool group are 

analyzed by the system analyzer module. The system predictor module provides forecasts of the 

performance measures of interest (for example products cycle time, lots remaining cycle time, 

tool utilization, queue length, tool moves, and stage moves).  
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An open queueing network model of a railway network in which trains traverse 

predetermined routes is described by Huisman et al. [20]. The system consists of multiple multi-

server service stations, each having a FIFO service discipline. The arrival rates of trains at a 

service station along its predetermined route are modeled as independent Poisson processes, and 

the service times at these service stations are modeled as independent exponential distributions. 

Muduli and Yegulalp [29] describe a closed, multi-class queueing network model of a 

truck-shovel system of an open-pit operation. In this system, shovels, haulage roads, ore dumps, 

and repair centers are modeled as service stations that are visited by the trucks. Trucks go to a 

shovel, get loaded, then go to an ore or waste dump and return to the same or a different shovel. 

The service discipline is FIFO at each service station, and the arrival rates and service rates at the 

various stations in the network follow independent Poisson processes and independent general 

distributions, respectively.  

Park and Lee [30] describe a closed queueing network model of a maintenance network. 

The network is made up of three nodes - a parts inventory system, a repair depot, and a base. 

Items in operation are subject to failure, and the operating times of any item before failure at a 

base in the network are assumed to be exponentially distributed. Items that fail require a part, 

which must be obtained from the parts inventory node. The immediate repair of a failed part 

depends on the availability of that part at the parts inventory node. If a replacement part is 

available at the parts inventory for the failed part, then the failed item is immediately sent to the 

repair depot. Otherwise, the failed item awaits the arrival of a replacement part at the parts 

inventory. It enters the repair depot upon the arrival of the replacement part at the parts 

inventory. The repair depot is equipped with multiple, identical repair channels, and times 
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between repairs are assumed to be Poisson distributed. Lead times between orders are also 

assumed to follow a Poisson distribution. 

 

 

2.4   Erlang Loss Formula 

 

The life and works of A.K. Erlang are detailed in Brockmeyer et al. [7]. In 1917, Erlang, 

an employee of the Copenhagen Telephone Exchange, published the following loss formula for 

an / / / / /M M s s FIFO  queue:   
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 (2.1) 

 

where   is the arrival rate,   is the service rate per busy server, s  is the number of 

servers and the system capacity, and r 


  is the traffic intensity. 

 The Erlang loss formula gives the blocking probability or the proportion of 

customers that are lost (or cannot be served) because all servers are busy when a customer 

arrives. Alternatively, equation (2.1) can be used to (heuristically) determine the minimum 

number of servers for a given blocking probability. According to Brockmeyer et al. [7], the 
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Erlang loss formula has been used with much success to determine staffing levels of telephone 

call centers. Whitt [40] used a modified version of the Erlang loss formula to staff a call center. 

The Erlang loss formula will be used as the benchmark for the staffing model that is proposed in 

Section 3.4. 

Massey and Whitt [26 - 28] observe that the most restrictive assumption in the 

/ / / / /M M s s FIFO  model is the constant arrival rate assumption. Massey and Whitt [26] 

developed a stationary process approximation for use with the Erlang loss formula when the 

arrival process is known to be nonstationary. However, some of the articles that are reviewed 

later in this chapter present significant progress toward relaxing this assumption.  

A second problem that affects the Erlang loss formula is that it becomes unstable as 
sr  

grows. Qiao and Qiao [31] showed that equation (2.1) becomes unstable as the parameter s  

increases. Qiao and Qiao [31] showed that 171! overflows to  . Additionally, Qiao and Qiao 

[31] showed that equation (2.1) becomes unstable for 154s  because 
155r  overflows to  . 

Therefore, for systems with high server requirements, and by “high server requirement” we mean 

154s , equation (2.1) is not practical.   

In the next few sections, we summarize some approximation methods for nonstationary 

arrival processes that have been used to model the arrival rate in loss models such as the Erlang 

loss formula.  
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2.4.1   The Simple Stationary Approximation (SSA) Method 

 

Alnowibet and Perros [3] observed that the SSA method is applicable to a wide variety of 

queueing systems. Green et al. [12] show that the SSA reasonably approximates nonstationary 

systems with arrival rates that do not deviate more than 10%  from the average arrival rate at any 

time.  

While the SSA method reasonably approximates nonstationary systems that do not 

deviate more than 10%  from the average arrival rate at any time, Alnowibet and Perros [3] 

discussed its shortcomings with respect to the underestimation of the average performance 

measures of nonstationary systems with arrival rates that deviate more than 10%  from the mean 

arrival rate. This finding was corroborated by Green et al. [12] who numerically investigated the 

level of nonstationarity at which the SSA method provides reasonably accurate average 

performance measures.  

 The applicability of the SSA method to relatively small problems, as pointed out 

by Green and Kolesar [13, 14] seems to imply that it would not be appropriate for the type of 

problem that is addressed herein.  

 

 

2.4.2   The Pointwise Stationary Approximation (PSA) Method 

 

Grassman [11] used the PSA method to estimate upper bounds on the expected number of 

entities in a queue, and Green and Kolesar [13] used the PSA method to approximate steady state 

average performance measures for queues with multiple servers and periodic arrival rates. Green 
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and Kolesar [14] used the PSA to get approximate steady-state average performance measures 

for the ( ) / / / / /M t M s s FIFO queue with periodic arrival input function. Whitt [38] showed 

that the PSA gives an upper bound on the expected number of entities in the system and delay 

probabilities when the system is stable (with traffic intensity less than one).  

Alnowibet and Perros [3] noted that the PSA method can be applied to many queueing 

systems; however, it requires that 1r  for all times t . Alnowibet and Perros [3] also observed 

that implementation of the PSA method leads to an overestimation of the peak of the average 

number of entities, regardless of the type of queueing system involved. 

 

 

2.4.3   The Simple Peak Hour Approximation (SPHA) Method 

 

Green and Kolesar [15] proposed the Simple Peak Hour Approximation (SPHA) method. 

The SPHA first uses the PSA method to obtain a performance measure of interest. Then, the time 

at which the performance measure achieves its maximum value is estimated. The average of the 

performance measure of interest over some time interval of interest in which the peak time is the 

center of the interval is the SPHA value for the performance measure of interest.  

It will be seen in Chapter 3 that the proposed models make use of a variation of the 

SPHA in determining the maximum arrival rate at a service station. The model that is proposed 

herein then uses the arrival estimate to estimate different levels of the stationary arrival rates for 

the system.  
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2.4.4   The Fixed Point Approximation (FPA) Method 

 

The fixed point approximation (FPA) method was proposed by Alnowibet and Perros [3] 

to analyze nonstationary loss queues in which the arrivals are governed by nonhomogeneous 

Poisson processes and the service times are Markovian. This method can be used to calculate 

time-dependent performance measures, such as the mean number of entities in the nonstationary 

loss system as well as the blocking probability functions in the nonstationary loss system. 

Alnowibet and Perros [3] noted that the mean number of entities in the 

( ) / / / / /M t M s s FIFO  system at an arbitrary time t  can be approximated by assessing the 

difference between the arrival and departure rates at time t . 

 

 

2.5   Simulation and Monte Carlo Methods 

 

One of the contributions of this dissertation is the development of a multi-class 

simulation model of a long distance road race in which runners are classified based on their 

overall anticipated pace for the entire race. We develop a simulation model of a long distance 

road race, and use a Monte Carlo method to estimate the number of runners in each class that 

arrive at each service station of interest for service. A review of the literature did not turn up any 

similar models for estimating the arrival rate of runners of different classes that arrive at service 

stations in a queueing network. 
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2.5.1   Simulation 

According to Dagpunar [9], simulation is a broad collection of methods and applications 

that are usually done on a computer with specialized software that use pseudo-random numbers. 

The computer is used to evaluate the model numerically by repeatedly replicating the model and 

collecting data after each replication for analysis. The pseudo-random number generator allows 

for the sampling of a random number sequence 
1 2, ,x x  from the continuous uniform 

distribution such that ~ (0,1)ix U  for all i , and 
ix  is independent of 

jx  for all i j .  

 

 

2.5.2   Monte Carlo Methods 

 

In this section, we present a brief introduction of the Monte Carlo method, which is 

covered in great detail by Lafortune [24], who noted that Monte Carlo methods can be regarded 

as methods or techniques for numerical integration. Monte Carlo integration relies on the 

existence of the square-integrable function, 2 (0,1)f L , which implies that 
1

2

0

( )f x dx  exists.  

If one is interested in the following estimand: 

 

1

0

( )I f x dx  ,            (2.2)  
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then, given a uniform random number generator, equation (2.2) can be estimated by 

drawing a sample of Q  uniform random numbers, 
1 2, , , Qx x x , and then using them to evaluate 

the function ( )f  , which is known as the primary estimator. Lafortune [24] shows that the 

expected value of the primary estimator, [ ( )]E f  , is equal to the actual integral, and is 

consequently unbiased. Therefore, the expected value of the primary estimator, 
P , is given as 

follows: 

 

 

1

0

[ ( )] ( )P E f f x dx           

 (2.3) 

 

The variance of the primary estimator, 2

P , is given as follows: 

 

 

1

2 2

0

[ ( )] [ ( ) ]P V f f x I dx          

 (2.4) 

 

The primary objective of Monte Carlo methods is to minimize the variance of the primary 

estimator, which, as shown by Dagpunar [9] and by Lafortune [24], can be accomplished by 

taking W  independent samples, and creating another estimator by averaging the primary 
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estimators. This new estimator is called a secondary estimator, 
SI , which is the sum of the 

primary estimators, and can be written as follows: 

 

1

1 10

( )W W

S w

w w

f x
I dx I

W 

   ,        (2.5) 

 

Lafortune [24] shows that relative to the primary estimator, the variance of the secondary 

estimator, 2

S , is reduced by a factor of W . That is,  
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and has a standard error that is proportional to 1 W . Therefore, variance reduction 

techniques, two of which we discuss in Section 2.7, are concerned with reducing the variance of 

the primary estimator. 
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2.6   Some Applications of Monte Carlo Methods and Simulation 

 

A review of the literature turned up no applications of a simulation model of a long 

distance road race that uses Monte Carlo methods to estimate the required number of servers at 

each service station of interest. In the next few sections, we briefly review some areas in which 

Monte Carlo methods and simulation have been used to estimate parameters and random 

variables of interest in a variety of fields. 

 

 

2.6.1   Monte Carlo Methods and Simulation: Biochemistry 

 

According to Berney and Danuser [5], Monte Carlo simulation is widely used in 

biochemistry and biological research to model molecular activity. In one application, Berney and 

Danuser [5] developed a simulation model of the fluorescence resonance energy transfer (FRET) 

technique, which is used to measure how two molecules interact with each other. In another 

application, LeBlanc et al. [25] described how important principles of a complex molecular 

system were better understood through the development of a Monte Carlo simulation model of 

the molecular system. 

 

2.6.2   Monte Carlo Methods and Simulation: Environmental and Water 

Engineering 

 

Monte Carlo methods and simulation techniques have been used in the field of 

environmental and water engineering to understand important principles of such systems. In one 
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application, Abhulimen [1] developed a simulation model of a reservoir system, and compared 

its output to that of a standard deterministic reservoir engineering model, the Darcy Equation, 

which describes the flow of a fluid through a porous medium. The results show that the 

simulation model provided reliable estimates of a reservoir system’s performance. Additionally, 

by varying input parameters of the simulation model, insights into areas of strength and 

weaknesses of the reservoir system were acquired.  

 

2.6.3   Monte Carlo Methods and Simulation: Maritime Science 

 

Monte Carlo methods and simulation techniques have been applied to the field of 

maritime science. Santos et al. [35] proposed a simulation model for assessing damaged ship 

survivability. The probability that a ship survives, conditional on the severity of the damages that 

the ship sustained, is evaluated using a model that is proposed by the International Maritime 

Organization, which is the conventional approach. In their simulation model, Santos et al. [35] 

proposed probability models to generate estimates of the severity of the damage to a ship, and 

the location of the damage. Data to parameterize the probability models was acquired. 

Additionally, Santos et al. [35] proposed probability models to estimate the vertical position of 

an affected vessel, the center of gravity of the vessel, and the state of the sea at the moment of 

accident. The proposed simulation methodology was applied to a passenger roll-on, roll-off ship, 

and estimates of the variables of interest were estimated. Additionally, by conducting sensitivity 

analyses on the various model inputs, the authors were able to gain important insights into 

damaged ship survivability. 
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2.7   Variance Reduction Techniques 

 

According to Dagpunar [9], a “simple” Monte Carlo method is one that reduces the 

variance of the estimate by evaluating a large number of independent samples and averaging the 

results; however, as was pointed out earlier, the variance in (2.5) decreases as 1 W . The goal 

of variance reduction techniques is to improve the rate of variance reduction. 

 An excellent coverage of variance reduction techniques is found in Chapter 5 of 

Dagpunar [9]. In this section, we summarize two well known variance reduction techniques, 

importance sampling and stratified sampling, both of which, as shown by Dagpunar [9], typically 

result in higher accuracy of the Monte Carlo integral while using fewer function evaluations, at 

least in some instances. 

 

2.7.1   Importance Sampling 

 

According to Dagpunar [9], the basic idea behind importance sampling is to use a simple, 

well-known function to approximate a more complex function from which it may be difficult to 

obtain samples, perhaps because of the complexity of the function. Lafortune [24] shows that if 

an integrand f can be constructed by multiplying two different functions h  and g , where h  is 

almost constant and g  has positive support, then the integral over the multidimensional surface 

V  is as follows: 

 

( / )f dV f g g dV h gdV    ,       (2.7) 
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which implies that one can integrate f  by taking samples from h  instead, with 

nonuniform density gdV . Dagpunar [9] shows that a good choice for h , the sampling density, is 

one that has a shape that is similar to f , the integrand of interest.  

 

 

2.7.2   Stratified Sampling 

 

According to Dagpunar [9], the basic idea behind stratified sampling is to split the 

integration domain of a complicated function that one is trying to estimate with Monte Carlo 

integration into several strata or subdomains, and estimate the partial integral in each subdomain. 

Lafortune [24] shows that the variance resulting from stratified sampling is the sum of the 

variances of each stratum, and is always less than or equal to the simple Monte Carlo integral 

with the same number of samples. 

 

 

2.8   Chapter Summary 

 

The objective of this research is to develop models to estimate staffing requirements in 

time-dependent traffic systems such as long distance road races that have high server 

requirements. We propose a queueing network model of a long distance road race in which we 
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consider refreshment stations as service stations that are to be staffed with the appropriate 

numbers of volunteer servers at each refreshment station.  

We reviewed the literature to assess the gap, if any, that the proposed queueing network 

modeling framework of a long distance road race would fill. The literature review did not turn up 

any similar modeling approach for the problem that this research addresses. This finding 

suggests that, as far as we know, no other researcher has developed a queueing network model of 

a long distance road race to use as a management tool, or a management framework to handle the 

staffing needs for a long distance road race. 

In Chapter 5, we develop a multi-class simulation tool that incorporates the principles 

that we reviewed in this chapter. We model a long distance road race as a mixed 

( ) / / / / /M t G s s N FIFO  queueing network in which we assume that the service time 

duration at the 
th

 service station can be approximated by any choice of continuous probability 

distribution, and where s , the required number of servers at the 
th

 service station, can be 

estimated (heuristically) by using (2.1), the Erlang loss formula. As will be seen in Chapter 5, a 

simple Monte Carlo method is used to estimate the number of runners in each class that arrive at 

each service station of interest for service. The multi-class simulation tool allows the race to be 

repeated as many times as the user specifies (that is, for multiple runs of the same race), and for 

the results to be averaged, thereby potentially reducing the variance of the variable of interest.  

Therefore, this dissertation will help to address the staffing needs of the long distance 

running community, as well as add to the knowledge of approximating and staffing certain types 

of systems that can be modeled as nonstationary queueing networks. Examples of such systems 

include street parades or processions, military convoys, and so on.  
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CHAPTER 3 

MODEL DEVELOPMENT AND METHODOLOGY 
 

3.1   Introduction 

 

The long distance road race that we model in this dissertation is equipped with L  service 

stations, located at each mile marker beginning at Mile 1 and ending at Mile 25. We assume that 

runners enter the course, traverse the entire length of the course, and seek service (for 

refreshments) at each of the L  service stations. Then the runners exit the course at the finish line. 

Because runners enter the course at the beginning of the race, seek service at each of the L  

service stations, are not able to enter or exit at any of the service stations, and exit the course at 

the end of the race, the system can be defined as a mixed ( ) / / / / /M t G s s N FIFO  queueing 

network in which we assume that the service time duration at the 
th

 service station can be 

approximated by any choice of continuous probability distribution, and where s , the number of 

servers at the 
th

 service station, can be estimated (heuristically) by using (2.1). In Section 3.3, 

we will develop a staffing rule that can be used as an alternate to (2.1) to bound s . 

The key assumptions that we make in this chapter are listed below. 

 The pace at which a runner travels for all points between any two consecutive detector 

locations, 
1k

d


 and 
k

d  is constant. 

 There that there are 25L  service stations, one located at each of the first 25 mile markers. 
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 The long distance road-race course is equipped with 1K   timing detectors placed at selected 

locations along the course, including the start and finish lines. The first detector is at the start 

line and the last detector is at the finish line. 

 There are a total of N  runners traversing the course, and data on their arrival times are only 

available at each of the 1K   detector locations. 

 All runners traverse the entire course, seek service at each of 25L  the service stations, and 

eventually reach the finish line. 

The remainder of this chapter is organized as follows: In Section 3.2, we develop 

methodologies to estimate the paces and running times of the runners in the race, as well as a 

methodology to estimate the peak arrival rates at each service station in the 

( ) / / / / /M t G s s N FIFO  queueing network. In Section 3.3, we develop a methodology to 

estimate the staffing requirements at each service station in the ( ) / / / / /M t G s s N FIFO  

queueing network.  

 

 

3.2   A Model of a Road Race Traffic System Based on Available Historical Data 

 

Given historical road race traffic data, the procedure that is described in this section allows us 

to estimate the peak arrival rates at each service station in a long distance road race. In Section 

3.2.1, we estimate the pace of a runner. In Section 3.2.2, we estimate the distance that is traveled 

by a runner at a specified cumulative time. In Section 3.2.3, we develop a procedure to estimate 
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the arrival rates of runners at service stations. In Section 3.2.4, we develop a procedure to 

estimate the peak arrival rate at each service station.    

 

3.2.1   Estimating the Pace of a Runner 

 

Each runner’s arrival time at 
k

d  is denoted by 
,k nt , 0,1,2, , ; 1,2, ,k K n N  . Let 

, , 1,2, , ; 1,2, ,k np k K n N  , denote the pace of the nP
th

P runner between detector locations 

1k
d


and 

k
d  for all k and all n . Then the pace at which the runner travels between detector 

locations 
1k

d


 and 
k

d  is given by the following equation: 

 

 1
,

, 1,

k k
k n

k n k n

d d
p

t t









        

 (3.1) 

 

We assume that 
,k np  is constant for all points between any two consecutive detector 

locations, 
1k

d


 and 
k

d . Because there are 1K   detector locations, for each runner that exits 

from the queueing network, there are K  pace calculations of the form shown in equation (3.1) 

for each runner n .  

 

 

3.2.2   Estimating Running Times 
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For a long distance road race with 1K   detectors placed at arbitrary locations along its 

course, the cumulative time that it takes the 
thn  runner to get to the 

th
 service station from the 

start line can be approximated by the following equation: 

 

1

1,

1 1
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   (3.2) 

 

Applying (3.2) to the data for the 2004 WDW Marathon, which, excluding the detector at 

the start line, had detectors at miles 10, 13.109375, 20, and 26.21875 (finish), the approximate 

the cumulative time that it took the 
thn  runner to get to the 

th
 service station from the start line 

is given by the following equation: 
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1,

1, 2,

,

1, 2, 3,

1, 2, 3, 4,

10

10 10
10 13.109375

10 3.109375 13.109375
13.109375 20

10 3.109375 6.890625 20
20

n

n n

n

n n n

n n n n

p

p p
T

p p p

p p p p





 

  


 
    




    



. 

 (3.3) 

 

Equation (3.3) is helpful in characterizing the rates of arrivals of the runners at service 

stations of interest in the long distance road race applications that are developed and presented in 

this manuscript. 

 

3.2.3   Estimating the Arrival Rates 

 

Because the paces of the runners are different, the N runners are spread out along the race 

course. To estimate the arrival rate at any refreshment station , one can employ the procedure 

in Chapter 5 of Hall [17], and count the number of arriving runners in the interval [ , ]a b  during 

every   time frame for some specified period of time G . These counts are converted into a 

time-dependent arrival rate, ( ),t  by dividing each of the interval counts by / G . Therefore, if 

the number of arrivals in a selected time interval is  , then the arrival rate at service station  is 

estimated as )(t . That is, ( )
/

Gt
G

 
 

  .  
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The arrival rate for the process that we have developed can be derived in a similar 

fashion. For example, suppose a race manager collects a total of J  counts, each one in a time 

interval that is   time units long, at some location  . Suppose further that the number of arrivals 

in the first, second, and up to the final time interval are , , ,   , respectively.  Then the time-

varying arrival rates at location   are computed as,  

 

 

0

2
( )

( 1)

t
G

t
Gt

J t J
G







 




 




 




 
 




  



    

 (3.4) 

 

For the case where 1G   minute, the arrival rates are the observed counts per minute. 

For example, the arrival rate for time 0 1t   is   runners per minute. As pointed out by Hall 

[17], the choice of the length of a time frame is usually a matter of practical judgment. The 

physical context of the modeling problem should dictate the frame length so that whatever it is 

that one is trying to capture is well represented. For example, if a traffic engineer was interested 

in the number of automobiles that pass a point on a street, a time frame of, say, one second may 

be appropriate if the street of interest is a busy thoroughfare in a major city, but a longer time 

frame may be appropriate if the street is in a rural area with light traffic.  
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In the next section, we develop a procedure that uses observed per minute arrival rates to 

estimate the time of peak arrivals and the associated rate of arrivals. The estimates from this 

procedure can be used as inputs for (2.1) and for the staffing model that is described in Section 

3.3. The procedure that is developed in the next section makes use of (3.3) and (3.4). 

 

 

3.2.4   Procedure 1: A Procedure to Estimate Peak Arrival Rates from Historical 

Data 

 

In this section, we develop a procedure for estimating the maximum arrival rate, , at 

the 
th

 service station from sample data. We denote this estimate as 
^
* . Given sample historical 

data, do the following:    

 

Step 1:  Begin by setting up a time-counts table where time (in minutes) is recorded in 

the first column, and the number of arriving runners at each of the L  service stations is recorded 

in the L other columns. (See Table 1) 

Step 2:  Increment distance in (3.3) and record the time of arrival of each runner at each 

service station until all the runners have exited the course.  

Step 3:  Count the number of arriving runners at each service station  in each one 

minute interval. This is the per minute arrival rate, and it is recorded in the appropriate column in 

a time-counts table such as the one shown in Table 1. 

 

*





 

 

39 

 

      Table 3.1: Time-Counts Table 

Min

ute 

Location 

1  

Location 

2 

… Location 

L 

1 λ1 (1) λ2 (1) … λL (1) 

2 λ1 (2) λ2 (2) … λL (2) 

3 λ1 (3) λ2 (3) … λL (3) 

4 λ1 (4) λ2 (4) … λL (4) 

…
 

…
 

…
 

…
 

…
 

 

Step 4:  When all the runners’ times have been recorded for each , 1,2, , L , record 

the maximum value in each column of the time-counts table and the time associated with this 

value. The estimated maximum arrival rate is denoted 
^
* , and the time associated with 

^
*  is 

denoted 
^
*t . 

Suppose that 
^
*  is an estimate of an arrival rate  for a Poisson process. Then, as 

suggested by Green and Kolesar [15], and by Hall [17], 
^
*  can be used as an estimate for the 

arrival rate parameter in the Erlang loss formula. We use 
^
*  in the long distance road race 

applications that are developed and presented in this manuscript.  

If we assume that the service time duration at the 
th

 service station can be approximated 

by any choice of continuous probability distribution, then we can model the long distance road 

race traffic system as a mixed ( ) / / / / /M t G s s N FIFO  queueing network in which s  is the 

number of servers at the 
th

 service station, and can be estimated (heuristically) by using (2.1). 

In the next section, we will develop a staffing rule that can be used to bound s . 

     Table 2: Peak Arrival Rates and Time of Peak Arrivals 

*


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Servi

ce Station 

Peak 

Arrival Rate 

Time of 

Peak  

Arrivals 

(minutes) 

Mile 

1 

1381 

12 

Mile 

2 

741 

22 

Mile 

3 

497 

33 

Mile 

4 

379 

43 

Mile 

5 

310 

58 

Mile 

6 

252 

66 

Mile 

7 

227 

81 

Mile 

8 

201 

85 

Mile 

9 

182 

107 

Mile 

10 

173 

115 

Mile 

11 

152 

117 

Mile 

12 

153 

137 

Mile 

13 

144 

138 

Mile 

14 

142 

160 

Mile 

15 

124 

171 

Mile 

16 

113 

173 

Mile 

17 

109 

183 

Mile 

18 

104 

194 

Mile 

19 

97 

219 

Mile 

20 

96 

222 

Mile 

21 

91 

236 

Mile 

22 

86 

246 

Mile 

23 

82 

257 

Mile 90 274 



 

 

41 

 

Servi

ce Station 

Peak 

Arrival Rate 

Time of 

Peak  

Arrivals 

(minutes) 

24 

Mile 

25 

78 

283 

 

 

3.3   A Framework to Estimate Staffing Requirements in a Long Distance Road 

Race 

 

A problem that affects the Erlang loss formula is its propensity to become unstable, as 

discussed by Qiao and Qiao [31]. In this section, we develop a staffing rule that can be used for 

staffing purposes in instances where the Erlang loss formula is subject to the overflow problem.   

 

3.3.1   Background 

 

For a stationary queueing system with Poisson arrivals and general service time 

distributions, Hall [17] observes that the queue length will be small when the number of servers, 

s , is bounded below as follows: 

 

 s
 

 

 
  
 

.            

 (3.5) 
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In other words, Hall [17] suggests that the queue length will be short when the number of 

servers is at least as many as the sum of the mean and standard deviation of the number of busy 

servers (or traffic intensity) expressed as an integer.  

 

3.3.2   A Staffing Equation Based on Peak Arrival Rates 

 

Staffing based on (3.5) relies on the queueing system being stationary (or time-

independent). However, the system for which we seek staffing is nonstationary (or time-

dependent), and staffing levels based on the time-varying average may not be conservative 

enough for the mixed ( ) / / / / /M t G s s N FIFO  queueing network that is considered in this 

research. To remedy this situation, we modify (3.5) to allow us to compute staffing estimates at 

each service station at the peak arrival rate, . To estimate the staffing requirement, s , at each 

service station 1,2, ,L  in our ( ) / / / / /M t G s s N FIFO  queueing network, we estimate 

the peak arrival rate,  with 
^
* , as described in Section 3.2.4, and modify (3.5) as follows: 

 

* *

, 1,2, ,s L
 

 

 
   
  

.        (3.6) 

 

We call this staffing equation the Peak Arrival Staffing Bound (PASB). The PASB is a 

function of the peak traffic intensity and yields more conservative numbers of servers than (3.5) 

for the same service rate. 

 

*



*


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3.4   Chapter Summary 

 

In this chapter we developed a framework that allows us to model a long distance road 

race (or similar types of traffic systems) as a mixed ( ) / / / / /M t G s s N FIFO  queueing 

network. We developed a staffing rule to estimate a conservative requirement for the number of 

servers at each service station in the queueing network.  

 In the next chapter, we implement the framework that we developed in this 

chapter. 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 
 

4.1   Introduction 

 

We report on an experiment that we conducted for a hypothetical long distance road race. 

We model the long distance road race as a mixed ( ) / / / / /M t G s s N FIFO  queueing 

network. Our objective is to determine the staffing requirement at each service station in the 

queueing network. In the next section, we describe the data from the 2004 WDW Marathon. In 

Section 4.3, we estimate the peak arrival rate for each service station of interest, . In Section 

4.4, we compare the staffing estimates based on (2.1) to the staffing estimates based on (3.6). In 

Section 4.5, we conduct 8 additional experiments with various values of the number of runners in 

the race ( N ), the service rate per busy server at all service stations (  ), and 
bP  (which is given 

by (2.1)). In Section 4.6, we analyze the results of the experiments from Section 4.5. 

 

4.2   Data Description and Summary Statistics 

 

The data that is used for the experiments was provided by the company that managed the 

2004 Walt Disney World Marathon, EMMI (Events Marketing and Management, Incorporated), 

which is based in Orlando, Florida. The data provided by EMMI for the 2004 WDW Marathon 

contained 9336 runners that completed the 26.21875 mile race. For this data set, there were 

detector locations at Miles 0 (start), 10, 13.109375 (half-marathon), 20, and 26.21875 (finish). 

 

*


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4.3   Estimating the Peak Arrival Rates 

 

In this section, (3.3) is applied to all 25 service stations in the queueing network (for each 

mile beginning with Mile 1 and ending with Mile 25) of the 2004 WDW Marathon. A truncated 

time-counts table (Step 1 through Step 3 of Procedure 1) for three arbitrarily selected stations at 

Mile 3, Mile 7, and Mile 11 is shown in Table 3.  

 

                     Table 3: Arrival Counts for Miles 3, 7, and 11 

Time 

(minute) 

M

ile 3 

M

ile 7 

M

ile 11 

1 0 0 0 

… … … … 

20 2

6 

0 0 

… … … … 

33 4

97 

0 0 

… … … … 

45 … 1

1 

0 

… … … … 

81 0 2

27 

3

6 

… … … … 
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117 0 4

4 

1

52 

… … … … 

180 0 0 5

7 

… … … … 

 

Next, we execute Step 4 of Procedure 1 from Section 3.2.4, and record the largest 

observed arrival rates, 
^
* , for each service station. The results of this step are highlighted in 

Table 3. Table 4 gives the largest observed arrival rate values for each service station. For each 

service station, we also give the estimated values for the expected number of busy servers (or 

traffic intensity) 
^
*   when 12   customers per minute.    

             Table 4: Peak Arrival Rates and Traffic Intensity Estimates 

S

ervice  

S

tation 

Ar

rival Rate 

Traffic 

Intensity, 12  

M

ile 1 

13

81 115.08 

M

ile 2 

74

1 61.75 

M

ile 3 

49

7 41.42 
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S

ervice  

S

tation 

Ar

rival Rate 

Traffic 

Intensity, 12  

M

ile 4 

37

9 31.58 

M

ile 5 

31

0 25.83 

M

ile 6 

25

2 21.00 

M

ile 7 

22

7 18.92 

M

ile 8 

20

1 16.75 

M

ile 9 

18

2 15.17 

M

ile 10 

17

3 14.42 

M

ile 11 

15

2 12.67 

M

ile 12 

15

3 12.75 

M

ile 13 

14

4 12.00 

M

ile 14 

14

2 11.83 
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S

ervice  

S

tation 

Ar

rival Rate 

Traffic 

Intensity, 12  

M

ile 15 

12

4 10.33 

M

ile 16 

11

3 9.42 

M

ile 17 

10

9 9.08 

M

ile 18 

10

4 8.67 

M

ile 19 

97 

8.08 

M

ile 20 

96 

8.00 

M

ile 21 

91 

7.58 

M

ile 22 

86 

7.17 

M

ile 23 

82 

6.83 

M

ile 24 

90 

7.50 

M

ile 25 

78 

6.50 
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A noteworthy observation from the results in Table 4 is that it appears that as the runners 

become more spread out, the arrival rates begin to gradually decrease at a decreasing rate, 

thereby becoming more homogeneous. This pattern is most evident for the last third of the race. 

 

4.4   Experiment A: Estimating Staffing Requirements 

 

In this section, the traffic intensity estimates in Table 4 are used in the Erlang loss 

formula (2.1) and in the PASB (3.6) to get staffing estimates.  

 

4.4.1   Experiment A-1: Staffing with Erlang Loss Formula 

 

For staffing with the Erlang loss formula (2.1), a maximum blocking probability of 5% 

was specified. A screenshot of the implementation of (2.1) is shown in Figure 4.1 below. From 

Figure 4.1, cell B12 contains the value of the estimated peak arrival rate, 
^
* , for Mile 1. Cell 

C12 contains the traffic intensity, which is a function of the peak arrival rate and the service rate 

(given in cell E12). The blocking probabilities for Mile 1 are given in column I, and cell I132 

shows a blocking probability of approximately 0.0471, which corresponds to an estimated server 

requirement of 120 servers. For all staffing levels below 120 servers, the blocking probability is 

greater than 0.05.  
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The staffing estimates based on the Erlang loss formula that are given in Table 5 show 

that the numbers of servers change very little for the service stations (Miles 17 - 25) where the 

arrival rates appear to begin to settle down (or become more homogeneous).  
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            Figure 1: Staffing Based on Erlang Loss formula (Screenshot for Mile 1) 
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           Table 5: Staffing Estimates for Experiment A-1 

            Using Erlang Loss Formula with Blocking 

            Probability <=0.05 and Service Rate = 12 

 
S

ervice  

S

tation 

Number 

of  

servers 

based on  

Erlang 

loss formula 

M

ile 1 

120 

M

ile 2 

68 

M

ile 3 

47 

M

ile 4 

37 

M

ile 5 

32 

M

ile 6 

27 

M

ile 7 

24 

M

ile 8 

22 

M 20 
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S

ervice  

S

tation 

Number 

of  

servers 

based on  

Erlang 

loss formula 

ile 9 

M

ile 10 

20 

M

ile 11 

18 

M

ile 12 

18 

M

ile 13 

17 

M

ile 14 

17 

M

ile 15 

15 

M

ile 16 

14 

M

ile 17 

14 

M

ile 18 

13 

M 13 
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S

ervice  

S

tation 

Number 

of  

servers 

based on  

Erlang 

loss formula 

ile 19 

M

ile 20 

13 

M

ile 21 

12 

M

ile 22 

12 

M

ile 23 

11 

M

ile 24 

12 

M

ile 25 

11 

 

 

4.4.2   Experiment A-2: Staffing with the Peak Arrival Staffing Bound 

 

In this section, we report on the results of another experiment on the original 2004 WDW 

Marathon data set. For this experiment, we again assume a constant service rate of 12 customers 
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per minute. Table 6 contains staffing estimates that are based on the PASB (3.6). Once the 

staffing estimates based on the PASB are determined, they are substituted into (2.1) to get a 

blocking probability estimate. For comparison purposes, the staffing estimates based on (2.1) are 

included as well. 

Table 6 shows that the PASB, in terms of blocking probabilities and numbers of servers, 

gives values that are approximately similar to those calculated with the Erlang loss formula at the 

5% blocking probability level. When the numbers of servers based on the PASB are greater than 

or equal to the numbers of servers based on the Erlang loss formula with 0.05bP  , the estimated 

blocking probabilities for the PASB are less than or equal to 5%. On the other hand, when the 

numbers of servers based on the PASB are less than the numbers of servers based on the Erlang 

loss formula with 0.05bP  , the estimated blocking probabilities for the PASB staffing level are 

greater than or equal to 5%. 

A clear pattern that emerges from Tables 4.3 and 4.4 is that the arrival rates become more 

homogeneous as the runners become more spread out, especially for the last third of the race. 

With a fixed service rate, we observe that more servers are needed earlier in the race than are 

needed later in the race. For example, for both staffing methodologies, the staffing requirement 

at Mile 1 is almost twice as large as the staffing requirement at Mile 2 and the staffing 

requirement at Mile 2 is substantially greater than the staffing requirement at Mile 3. However, 

as the runners become more spread out, both staffing methodologies show that the staffing 

requirements change slower as the distance from the start location increases. For example, the 

numbers of servers that are required at both Mile 11 and Mile 12 are only marginally different 

from the numbers of servers that are required at both Mile 13 and Mile 14. For the last third of 
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the race, because the arrival rates begin to settle down, there is very little change in the number 

of servers over the final eight miles. 

 

        Table 6: Arrival Rates and Staffing Estimates for Experiment A 

      Using Erlang Loss Formula with Blocking Probability <=0.05 and 

      12 
 
and the Peak Arrival Staffing Bound (PASB) with 12 

 
 

S

ervice  

S

tation 

Ar

rival Rate 

# of 

Servers - 

based 

on Erlang  

loss 

formula  

 

# of 

Servers –  

base

d on  

PAS

B 

B

locking  

P

robability  

fo

r PASB 

R

esults 

M

ile 1 

13

81 

120 127 0.

03 

M

ile 2 

74

1 

68 70 0.

03 

M

ile 3 

49

7 

47 49 0.

04 

M

ile 4 

37

9 

37 38 0.

04 

M

ile 5 

31

0 

32 32 0.

05 

M

ile 6 

25

2 

27 26 0.

06 
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S

ervice  

S

tation 

Ar

rival Rate 

# of 

Servers - 

based 

on Erlang  

loss 

formula  

 

# of 

Servers –  

base

d on  

PAS

B 

B

locking  

P

robability  

fo

r PASB 

R

esults 

M

ile 7 

22

7 

24 24 0.

05 

M

ile 8 

20

1 

22 22 0.

05 

M

ile 9 

18

2 

20 20 0.

05 

M

ile 10 

17

3 

19 19 0.

05 

M

ile 11 

15

2 

18 17 0.

06 

M

ile 12 

15

3 

18 17 0.

06 

M

ile 13 

14

4 

17 16 0.

06 

M

ile 14 

14

2 

17 16 0.

06 

M

ile 15 

12

4 

15 15 0.

05 
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S

ervice  

S

tation 

Ar

rival Rate 

# of 

Servers - 

based 

on Erlang  

loss 

formula  

 

# of 

Servers –  

base

d on  

PAS

B 

B

locking  

P

robability  

fo

r PASB 

R

esults 

M

ile 16 

11

3 

14 14 0.

05 

M

ile 17 

10

9 

14 14 0.

05 

M

ile 18 

10

4 

13 12 0.

07 

M

ile 19 

97 13 12 0.

06 

M

ile 20 

96 13 11 0.

08 

M

ile 21 

91 12 11 0.

06 

M

ile 22 

86 12 11 0.

06 

M

ile 23 

82 11 10 0.

06 

M

ile 24 

90 12 11 0.

06 
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S

ervice  

S

tation 

Ar

rival Rate 

# of 

Servers - 

based 

on Erlang  

loss 

formula  

 

# of 

Servers –  

base

d on  

PAS

B 

B

locking  

P

robability  

fo

r PASB 

R

esults 

M

ile 25 

78 11 10 0.

06 

 

In the next experiment, we will investigate the effects on the staffing recommendations 

when the expected number of busy servers (or traffic intensity) is quadrupled. Then, it is possible 

to effectively investigate the situations where the number of runners is quadrupled or where the 

service rate is cut by a factor of 4. For demonstration purposes, the service rate is reduced from 

12 (customers per server per minute) to 3. 

 

4.4.3   Experiment B 

 

The objective of this experiment is to investigate the effects of high traffic demands on 

(2.1) and the PASB. We quadrupled the traffic intensity by dividing the original service rate 

)12(   by 4, thereby getting a new service rate of 3  . Table 7 gives the results of the 

quadrupled traffic intensity values. 
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                   Table 7: Peak Arrival Rates and Traffic Intensity Estimates 

S

ervice 

S

tation 

Ar

rival Rate 

 Traffic 

Intensity, 3   

M

ile 1 

13

81 460 

M

ile 2 

74

1 247 

M

ile 3 

49

7 166 

M

ile 4 

37

9 126 

M

ile 5 

31

0 103 

M

ile 6 

25

2 84 

M

ile 7 

22

7 76 

M

ile 8 

20

1 67 

M

ile 9 

18

2 61 

M

ile 10 

17

3 58 
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S

ervice 

S

tation 

Ar

rival Rate 

 Traffic 

Intensity, 3   

M

ile 11 

15

2 51 

M

ile 12 

15

3 51 

M

ile 13 

14

4 48 

M

ile 14 

14

2 47 

M

ile 15 

12

4 41 

M

ile 16 

11

3 38 

M

ile 17 

10

9 36 

M

ile 18 

10

4 35 

M

ile 19 

97 

32 

M

ile 20 

96 

32 

M

ile 21 

91 

30 
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S

ervice 

S

tation 

Ar

rival Rate 

 Traffic 

Intensity, 3   

M

ile 22 

86 

29 

M

ile 23 

82 

27 

M

ile 24 

90 

30 

M

ile 25 

78 

26 

 

These traffic intensities will be used in (2.1) and (3.5) to get staffing estimates for each of 

the service stations. 
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4.4.4   Experiment B-1: Staffing with Erlang Loss Formula 

 

For staffing with the Erlang loss formula, a maximum blocking probability of 5% was 

specified, and (2.1) was executed for each of the 25 service stations. Table 8 contains the staffing 

requirements based on the Erlang loss formula. 

The results in Table 8 confirm the findings of Qiao and Qiao [31]. We can see that the 

Erlang loss formula overflows for the first three service stations because the number of servers 

needed exceeds 154.  
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          Table 8: Arrival Rates, Traffic Intensity Estimates, and 

           Staffing Estimates for Experiment B-1 Using Erlang Loss 

           Formula with Blocking Probability <=0.05 and 3   

 

S

ervice  

S

tation 

A

rrival  

R

ate 

 

Traffic  

I

ntensity   

# of 

Servers –  

based 

on Erlang  

loss 
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M
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4.4.5   Experiment B-2: Staffing with the Peak Arrival Staffing Bound 

 

In this section, we report on the staffing results based on the PASB. Table 9 contains the 

staffing estimates for Experiment B-2. For comparison purposes, the staffing levels prescribed by 

the Erlang loss formula are also included in the table. 

 

  Table 9: Arrival Rates, Traffic Intensity Estimates, and Staffing 

  Estimates for Experiment B-2 Using Erlang Loss Formula with Blocking 

  Probability <=0.05 and 3  and the Peak Arrival Staffing Bound (PASB) 

  with 3   
 

S

ervice 

S

tation 

A

rrival  

R

ate 

 

Traffic  

I

ntensity   

# of 

Servers 

based 

on Erlang 

loss 

formula  

 

# 

of Servers  

ba

sed on  

P

ASB 

B

locking  

P

robability  

fo

r PASB 

 

results 

M

ile 1 

1

381 

4

60 

overfl

ow 

48

2 

N

A 

M

ile 2 

7

41 

2

47 

overfl

ow 

26

3 

N

A 

M

ile 3 

4

97 

1

66 

overfl

ow 

17

9 

N

A 

M

ile 4 

3

79 

1

26 

131 13

8 

0.

02 

M

ile 5 

3

10 

1

03 

108 11

4 

0.

03 

M

ile 6 

2

52 

8

4 

104 

94 

0.

03 

M

ile 7 

2

27 

7

6 

81 

85 

0.

03 

M

ile 8 

2

01 

6

7 

73 

76 

0.

03 

M

ile 9 

1

82 

6

1 

67 

69 

0.

03 

M

ile 10 

1

73 

5

8 

64 

66 

0.

03 

M

ile 11 

1

52 

5

1 

57 

59 

0.

04 

M

ile 12 

1

53 

5

1 

57 

59 

0.

03 
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M

ile 13 

1

44 

4

8 

54 

55 

0.

04 

M

ile 14 

1

42 

4

7 

53 

54 

0.

03 

M

ile 15 

1

24 

4

1 

47 

48 

0.

04 

M

ile 16 

1

13 

3

8 

44 

45 

0.

04 

M

ile 17 

1

09 

3

6 

42 

42 

0.

05 

M

ile 18 

1

04 

3

5 

41 

41 

0.

05 

M

ile 19 

9

7 

3

2 

38 

38 

0.

05 

M

ile 20 

9

6 

3

2 

38 

38 

0.

05 

M

ile 21 

9

1 

3

0 

36 

36 

0.

05 

M

ile 22 

8

6 

2

9 

34 

35 

0.

04 

M

ile 23 

8

2 

2

7 

33 

33 

0.

05 

M

ile 24 

9

0 

3

0 

36 

36 

0.

05 

M

ile 25 

7

8 

2

6 

33 

32 

0.

06 

The finding by Qiao and Qiao [31] is evident for each of the first three service stations 

where the Erlang loss formula overflows due to high traffic intensities indicating server 

requirements that exceed 154 servers for each of the first three service stations. The PASB does 

not overflow, and shows its usefulness in situations where the relative sizes of the arrival and 

service rates cause the Erlang loss formula to overflow. Additionally, as the traffic intensity 

increases, the PASB gives more conservative numbers of servers than the Erlang loss formula 

with 0.05bP  , and in those instances, the blocking probabilities associated with the PASB is 

less than 5%. A recurring theme that is seen from Table 9 is that the differences in the staffing 

numbers between the two staffing methodologies diminish as the rate of change in the traffic 

intensity decreases. In those instances, the blocking probabilities of both staffing methodologies 

are approximately similar. 
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 In the next section, we describe additional experiments conducted with the Erlang 

loss formula (2.1) and the PASB (3.6).  

 

4.5   Additional Experiments 

 

This section presents experiments that were conducted to show the capabilities of the 

staffing models that we present in this research. In Section 4.5.1, we discuss the experiments, and 

in Section 4.5.2, we report our findings. 

 

4.5.1   Experiments 

 

We designed the eight experiments that are summarized in Table 10. The experiments 

were specified in the following way. For Experiments 1 - 4, a blocking probability of 5% was 

specified, and (2.1) was executed for each of the 25 service stations. Similarly, for Experiments 5 

– 8, a blocking probability of 10% was specified, and (2.1) was executed for each of the 25 

service stations of interest. The PASB is also implemented here. Because the PASB does not use 

a blocking probability, it was executed only once for each pair of experiments with the same 

values of N  and  .  
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   Table 10: List of Experiments 

Ex

periments 

N
 

Ser

vice Rate 

(pe

r minute) 

Blocking  

Probabiliti

es for 

Erlang 

loss formula 

1 9

336 

10 0.05 

2 3

7344 

10 0.05 

3 9

336 

20 0.05 

4 3

7344 

20 0.05 

5 9

336 

10 0.10 

6 3

7344 

10 0.10 

7 9

336 

20 0.10 

8 3

7344 

20 0.10 
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4.5.2   Rationale for Choice of Experiments 

 

The purposes of these experiments are to: (a) assess the impact of the race size on staffing 

under different blocking probability assumptions, and (b) assess the impact of the service rate on 

staffing under different blocking probability assumptions.   

 The impact of the race size on staffing is assessed by varying the size of N . By 

quadrupling N , we aim to assess the capabilities of the PASB in estimating the prescribed 

staffing levels when the race size is large. It is worth noting that an increase in N  by a factor 

,   , results in an increase in 
*

  by the same factor  . Therefore, by increasing N , we are 

also assessing the impact of 
*

  on staffing. For example, doubling N  (from WDW) results in 

the doubling of 
*

  at each service station. The impact of the service rate on staffing is assessed 

by varying the service rate. Our aim is to assess how sensitive our staffing models are to service 

rate variability. Tables 4.9 – 4.12 (and Figures 4.2 – 4.5, which are based on the data in Tables 

4.9 – 4.12, respectively) contain the results of our experiments.  
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    Table 11: Number of Servers for Experiments 1 and 5 

S

ervice  

S

tation 

# of Servers 

for  

Experiment 

1:  

based on 

Erlang loss  

Formula:blo

cking  

probability = 

0.05 

# of Servers 

for 

Experiment 

9:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

M

ile 1 

142 131 

150 

N

A 

M

ile 2 

80 73 

83 

0.

03 

M

ile 3 

56 51 

57 

0.

04 

M

ile 4 

44 40 

45 

0.

04 

M

ile 5 

37 33 

37 

0.

04 

M

ile 6 

31 28 

31 

0.

04 

M

ile 7 

28 25 

28 

0.

05 
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S

ervice  

S

tation 

# of Servers 

for  

Experiment 

1:  

based on 

Erlang loss  

Formula:blo

cking  

probability = 

0.05 

# of Servers 

for 

Experiment 

9:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

M

ile 8 

26 23 

25 

0.

06 

M

ile 9 

24 21 

23 

0.

06 

M

ile 10 

23 20 

22 

0.

06 

M

ile 11 

20 18 

20 

0.

05 

M

ile 12 

21 18 

20 

0.

06 

M

ile 13 

19 17 

19 

0.

05 

M

ile 14 

19 17 

18 

0.

07 

M

ile 15 

17 15 

16 

0.

07 
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S

ervice  

S

tation 

# of Servers 

for  

Experiment 

1:  

based on 

Erlang loss  

Formula:blo

cking  

probability = 

0.05 

# of Servers 

for 

Experiment 

9:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

M

ile 16 

16 14 

15 

0.

07 

M

ile 17 

16 14 

15 

0.

06 

M

ile 18 

15 13 

14 

0.

07 

M

ile 19 

14 13 

13 

0.

07 

M

ile 20 

14 13 

13 

0.

07 

M

ile 21 

14 12 

13 

0.

06 

M

ile 22 

13 12 

12 

0.

07 

M

ile 23 

13 11 

12 

0.

06 
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S

ervice  

S

tation 

# of Servers 

for  

Experiment 

1:  

based on 

Erlang loss  

Formula:blo

cking  

probability = 

0.05 

# of Servers 

for 

Experiment 

9:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 
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d on  

PAS

B 

Bl

ocking  

Pr

obability  
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PASB 

res

ults 

M

ile 24 

14 12 

12 

0.

08 

M

ile 25 

12 11 

11 

0.

07 
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Figure 2: Number of Servers for Experiments 1 and 5 
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     Table 12: Number of Servers for Experiments 2 and 6 

S

ervice  

S

tation 

# of Servers 

for  

Experiment 

2:  

based on 

Erlang loss  

Formula: 

blocking  

probability = 

0.05 

# of Servers 

for 

Experiment 

10:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

M

ile 1 

overflow overflow 

576 

N

A 

M

ile 2 

overflow overflow 

314 

N

A 

M

ile 3 

overflow overflow 

213 

N

A 

M

ile 4 

overflow overflow 

164 

N

A 

M

ile 5 

128 119 

136 

0.

02 

M

ile 6 

106 97 

111 

0.

03 

M

ile 7 

96 88 

101 

0.

03 

M

ile 8 

86 79 

90 

0.

03 

M

ile 9 

79 72 

82 

0.

03 

M

ile 10 

75 69 

78 

0.

03 

M

ile 11 

67 61 

70 

0.

03 

M

ile 12 

67 61 

69 

0.

03 

M

ile 13 

63 58 

66 

0.

03 

M

ile 14 

63 57 

65 

0.

03 

M

ile 15 

56 51 

57 

0.

04 

M

ile 16 

51 46 

52 

0.

04 

M

ile 17 

50 45 

51 

0.

03 

M

ile 18 

48 43 

49 

0.

03 

M

ile 19 

45 41 

46 

0.

04 

M 44 40 45 0.



 

 

78 

 

S

ervice  

S

tation 

# of Servers 

for  

Experiment 

2:  

based on 

Erlang loss  

Formula: 

blocking  

probability = 

0.05 

# of Servers 

for 

Experiment 

10:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

ile 20 04 
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04 

M

ile 22 
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04 
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Figure 3: Number of Servers for Experiments 2 and 6 
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    Table 13: Number of Servers for Experiment 3 and 7 

S

ervice  

S

tation 

# of Servers 

for  

Experiment 

7:  

based on 

Erlang loss  

Formula: 

blocking  

probability = 

0.05 

# of Servers 

for 

Experiment 

15:  

based on 

Erlang loss 

Formula: 

blocking  

probability = 

0.10 

# of 

Servers: 

base

d on  

PAS

B 

Bl

ocking  

Pr

obability  

for 

PASB 

res

ults 

M

ile 1 

75 68 

78 

0.

03 

M

ile 2 

43 39 

44 

0.

04 

M

ile 3 

31 27 

29 

0.

06 

M

ile 4 

24 22 

24 

0.

05 

M

ile 5 

21 18 

20 

0.

06 

M

ile 6 

18 16 

18 

0.

04 

M

ile 7 

16 14 

17 

0.

03 

M

ile 8 

15 13 

14 

0.

06 

M

ile 9 

14 12 

13 

0.

06 

M

ile 10 

13 12 

12 

0.

07 

M

ile 11 

12 11 

11 

0.

07 

M

ile 12 

12 11 

11 

0.

07 

M

ile 13 

12 10 

10 

0.

08 

M

ile 14 

12 10 

10 

0.

08 

M

ile 15 

10 9 

9 

0.

08 

M

ile 16 

10 9 

9 

0.

06 

M

ile 17 

10 8 

8 

0.

09 

M

ile 18 

9 8 

8 

0.

08 

M

ile 19 

9 8 

8 

0.

06 

M 9 8 7 0.
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S
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# of Servers 

for  

Experiment 

7:  
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Erlang loss  

Formula: 

blocking  

probability = 

0.05 

# of Servers 
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Experiment 

15:  
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Erlang loss 

Formula: 

blocking  

probability = 
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# of 

Servers: 
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d on  

PAS

B 

Bl
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Pr
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for 

PASB 

res
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ile 20 11 

M

ile 21 

9 7 

7 

0.

09 

M

ile 22 

8 7 

7 

0.

08 

M

ile 23 

8 7 

7 

0.

07 

M

ile 24 

8 7 
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0.

09 

M

ile 25 

8 7 
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11 
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Figure 4: Number of Servers for Experiment 3 and 7 
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     Table 14: Number of Servers for Experiments 4 and 8 

Lo

cation of 

Int

erest 

# of Servers 

for  

Experiment 

8:  

based on 

Erlang loss  

Formula: 

blocking  

probability 

= 0.05 

# of Servers 

for 

Experiment 

16:  

based on 

Erlang loss 

Formula: 

blocking  

probability 

= 0.10 

# of 

Servers: 

bas

ed on  

PA

SB 

Bl

ocking  

Pr

obability  

fo

r PASB 

re

sults 

Mi

le 1 

overflow overflow 

293 

N

A 

Mi

le 2 

overflow 141 

161 

N

A 

Mi

le 3 

105 96 

110 

0.

03 

Mi

le 4 

81 75 

85 

0.

03 

Mi

le 5 

68 62 

70 

0.

03 

Mi

le 6 

56 51 

58 

0.

04 

Mi

le 7 

51 47 

53 

0.

03 

Mi

le 8 

46 42 

47 

0.

04 

Mi

le 9 

42 38 

43 

0.

04 

Mi

le 10 

41 37 

41 

0.

04 

Mi

le 11 

36 33 

37 

0.

04 

Mi

le 12 

36 33 

36 

0.

05 

Mi

le 13 

34 31 

35 

0.

04 

Mi

le 14 

34 31 

34 

0.

05 

Mi

le 15 

30 27 

30 

0.

05 

Mi

le 16 

28 25 

28 

0.

05 

Mi

le 17 

27 25 

27 

0.

05 

Mi

le 18 

26 24 

26 

0.

05 

Mi

le 19 

25 22 

24 

0.

06 

Mi 25 22 24 0.
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# of Servers 
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blocking  
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# of 
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le 20 06 

Mi

le 21 

24 21 

23 

0.

06 

Mi

le 22 

23 20 

22 

0.

06 

Mi

le 23 

22 19 

21 

0.

06 

Mi

le 24 

23 21 

23 

0.

05 

Mi

le 25 

21 19 

20 

0.

06 
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Figure 5: Number of Servers for Experiments 4 and 8 

 

A recurring pattern in Tables 4.9 – 4.12 (and Figures 4.2 – 4.5) is that the PASB gives 

more conservative numbers of servers than the Erlang loss formula when the traffic intensity is 

high. However, as the traffic intensity becomes low, the Erlang loss formula and the PASB give 

similar results, with the Erlang loss formula with 0.05bP   yielding slightly more conservative 

numbers of servers than the PASB. Though obvious, it is worth noting that when a blocking 

probability that is associated with a staffing result that is based on the PASB is less than a 

specified blocking probability for the Erlang loss formula, the staffing result that is based on the 

PASB is more conservative than the staffing result of the Erlang loss formula. Conversely, when 

a blocking probability that is associated with a staffing result that is based on the PASB is equal 
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to or greater than a specified blocking probability for the Erlang loss formula, the staffing result 

that is based on the PASB is equal to or less conservative than the staffing result of the Erlang 

loss formula.  

 For all staffing methodologies, the differences in the numbers of servers decrease 

over the course of the race, and can be seen clearly in Figures 4.2 to 4.5. The differences in the 

numbers of servers that is based on the PASB and the two staffing methodologies that are based 

on the Erlang loss formula get smaller as the runners become more spread out along the course. 

As the rate of decrease in the traffic intensity slows and the runners become more spread out, the 

changes in the numbers of servers become small, and the numbers of servers for both staffing 

methodologies are approximately similar. This finding implies that the numbers of servers based 

on the PASB and the numbers of servers based on the Erlang loss formula may be approximately 

similar when the traffic intensity is lowered.  

 Several intuitive results are evident from our experiments. The inverse 

relationship between the blocking probability level and the staffing level in Tables 4.9 – 4.12 

confirm our intuition regarding how the numbers of servers change as we increase or decrease 

the blocking probability in the Erlang loss formula. Another intuitive result that the experiments 

confirm is the inverse relationship between the service rate and the staffing level. Comparing the 

results of pairs of experiments 1 and 3, (or 2 and 4, or 5 and 7, or 6 and 8) show that an increase 

(or decrease) in the service rate (while keeping the arrival rate constant) leads to a decrease (or 

increase) in the traffic intensity, which leads to a decrease (or increase) in the numbers of 

servers. Another intuitive result is seen from the results of the experiments to assess the impact 

of the traffic intensity (as a result of an increase in the size of the race) on the numbers of 
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servers. A comparison of the results for the pairs of experiments 1 and 2, (or 3 and 4, or 5 and 6, 

or 7 and 8) show that a four times increase (decrease) of the traffic intensity leads to a less than 

four times increase (decrease) of the numbers of servers for all models.  

 

4.6   Analysis of Results 

 

For each of the Tables 4.9 – 4.12, we give the staffing results of the Erlang loss formula 

at 5% blocking probability and 10% blocking probability, and the maximum staffing levels for 

the PASB. Thus, for the PASB, the arrival rate at each service station is fixed at the peak level 

for the entire time that it takes all runners to exit a service station. The results of the experiments 

that we conducted show that the staffing requirements, based on a constant service rate, decrease 

over the course of the race and appear to begin to settle down when the traffic intensity start to 

decrease at a decreasing rate.  

 The results from the experiments in which 37344N   confirm the findings of 

Qiao and Qiao [31] and show that the Erlang loss formula overflows at the early service stations 

during which the traffic intensity is high and would require a server count that exceeds 154. In 

those instances, the PASB shows an advantage over the Erlang loss formula in providing staffing 

estimates regardless of the traffic intensity. As the traffic intensity decreases, the PASB gives 

staffing estimates that are comparable to the staffing estimates of the Erlang loss formula at the 

5% blocking probability level. Thus, key findings of our experiments are that the PASB provides 

more conservative server requirements than the Erlang loss formula when the traffic intensity is 

high, and that the service requirement based on the PASB is similar to the Erlang loss formula as 
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the traffic intensity gets lower. Consequently, the PASB can be used to estimate the numbers of 

servers regardless of the traffic intensity, which may vary depending on the size of the race, the 

arrival rate, or the service rate. However, the same is not true for the Erlang loss formula, which 

becomes numerically unstable and "overflows" when the traffic intensity is high. These findings 

suggest that the PASB can be a valuable tool to aid race directors in making staffing decisions in 

all races regardless of the traffic intensities. 

 

4.7   Chapter Summary 

 

 The staffing rule that we have developed is a staffing alternative to the Erlang loss 

formula, which is known to overflow when the traffic intensity gets large. By way of numerical 

examples, we find that the results of the PASB are similar to the staffing results of the Erlang 

loss formula as the traffic intensity gets lower, and that the PASB provides more conservative 

staffing requirements than the Erlang loss formula when the traffic intensity is high. We also 

verified that the Erlang loss formula overflows when the traffic intensity is high. Because the 

PASB does not suffer from the kinds of numerical instability problems that affect the Erlang loss 

formula, staffing decisions can be made based on the PASB regardless of the traffic intensity. 

Therefore, the PASB can be a valuable tool for a race director to manage the staffing 

requirements for the entire race. The generally conservative staffing levels prescribed by the 

PASB suggests that the PASB is relatively robust with respect to the blocking probability. 
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To make this research more valuable to practitioners, in the next chapter, we will develop 

a simulation model that will provide a road race manager with a flexible management tool to 

manage a long road race with multiple classes of runners. 
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CHAPTER 5  

A MULTI-CLASS MONTE CARLO SIMULATION MODEL OF A LONG 

DISTANCE ROAD RACE 
 

5.1   Simulation Model Development 

 

In this chapter, we extend the single class ( ) / / / / /M t G s s N FIFO  queueing network 

to include multiple classes of runners. The key assumptions that we make in developing this new 

model are the following: 

 Runners can be grouped into distinct groups, based on their overall anticipated paces for the 

entire race. 

 Each group gets a proportion of the total number of runners in the race, and the total of the 

proportions distributed across all groups of runners sums to one. 

For a race with N  runners, we partition the N  runners into C  distinct classes of runners. 

Runners are placed in Class , 1,2, ,c c C , based on their overall anticipated pace for the entire 

race, and we denote the expected proportion of runners in Class c  as 
c . Thus, for example, 

runners in Class 1 occur, on average, 
1 100   percent of the time; runners in Class 2 occur 

2 100   percent of the time, on average, etc., as shown in the second column of Table 15. We 

assume 
1

1
C

c

c




 . 



 

 

91 

 

A pace distribution table gives the pace-ranges for runners in each of the C  classes, and 

is illustrated in the third column of Table 15. Specifically, the range of possible values for the 

paces of all N  runners is given by the pace interval which we define as 
1[ , ]Ca b , where 

1a  is the 

fastest pace and 
Cb  is the slowest pace. We assume that 

1c ca a  , 
1c cb b c  . Also, to account 

for possibly overlapping intervals, 
cb  may be smaller than 

1ca 
. We give an example of the 

multiclass simulation tool with overlapping intervals in the next section. 

 

   Table 15: Class and Pace Distribution Table 

Run

ner Class 

Percentage 

Occurrence 

Class 

Pace  

(seco

nds/mile) 

1  
1  1 1[ , ]a b

 

2  
2  2 2( , ]a b

 

   
1C 

 

 
1 1[ , ]C Ca b 

 

C  
C  [ , ]C Ca b

 

 

 

5.1.1   The Multiclass Simulation Model 

 

The following is the procedure that we used to develop the simulation model in Microsoft 

Excel. This procedure can be repeated as many times as the user specifies (that is, for multiple 

replications of the same race), and the results of all replications averaged in order to get an 

estimate of the variable of interest (which in the present case is the numbers of runners arriving 
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at service stations in the ( ) / / / / /M t G s s N FIFO  queueing network during each one minute 

interval in the race). 

 

Step 0:  Specify the number of runners, N , the number of runner classes, C , the 

expected proportions in each class, 
1 2, , , C   , and the pace ranges for each class of runners.  

Step 1:  For each runner n , 1,2, ,n N , generate a random number and determine the 

runner’s class by comparing the random number to the cumulative class proportions in a manner 

analogous to the inverse CDF transformation for a discrete random variable.  

Step 2.0:  For each L  and each n N , generate the time that it takes a runner to 

traverse between consecutive service stations 1  and  as follows: 

Step 2.1:  Set up a time-counts table. (For an illustration, see Table 1.) 

Step 2.2:  For each runner in Class , 1,2, ,c c C , that is expected to arrive at service 

station , draw a random number (
,nw , for the 

thn  runner to arrive at location ) that 

determines the time that it takes the runner to traverse the distance between service station 1  

and service station  from the interval [ , ]c ca b . Record 
,nw  for each runner at each service 

station until all the runners have exited the course at 
Kd .  

Step 2.3:  When all the runners’ times have been recorded for each L , get the per 

minute arrival rate by counting the number of arriving runners in each one minute interval at 

each service station by checking each column of the time-counts table and recording its 

maximum value, 
^
* , and the time associated with this value, 

^
*t . 
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Step 3:  For staffing purposes, implement a staffing equation at each L  to get staffing 

estimates.  

 

We have implemented the Erlang loss formula (2.1) and the PASB (3.6) at each service 

station. 

 

5.1.2   Implementing the Multiclass Simulation Model 

 

The simulation model described above was implemented in Microsoft Excel. To illustrate 

the workings of the model, we consider a race with 10000N   runners and the classes, 

probabilities, and paces shown in Table 16, which gives an example of the multiclass simulation 

model with overlapping pace intervals. 

 

              Table 16: Pace Distribution and Probability of Occurrence 

C

lass 

Probab

ilities  

for 

Experiments 

used in 

Example 

Pace  

(seco

nds/mile) 

c

1 0.30 

300 - 

390  

c

2 0.20 

330 - 

510 

c

3 0.20 

450 - 

690 

c

4 0.15 

630 - 

870 

c

5 0.10 

810 - 

1050     

c

6 0.05 

990 - 

1200 
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Figure 5.1 shows the implementation of Step 0 from the procedure from Section 5.1.1. In 

the illustration that follows, we use seconds as the time-unit of choice. This choice of time-unit is 

arbitrary; the model that is developed here accepts any time-unit that the user specifies. 

One aspect of Step 0 is shown in cell range K2:L7, which shows a race with six distinct 

classes - Class 1 to Class 6. For example, runners in Class 1 occur in this simulation 

approximately 30% of the time, runners in Class 2 occur approximately 20% of the time, and so 

on up to Class 6 runners who occur approximately 5% of the time.  

Another aspect of Step 0 is shown in cell range N2:P7; thus, for this example, the athletes 

in Class 1 run between 300-seconds and 390-seconds pace per mile for the entire race. Like the 

classes in Step 1, the paces are inputs to the model; thus, the road race manager can change them 

to whatever the appropriate paces are for the race that is being planned.  

The ease with which Steps 1 to 3 can be implemented in Microsoft Excel was the primary 

motivator for our choice on how to implement the steps from Section 5.1.1. There are 

drawbacks, however, to choosing to implement the model in Excel. These drawbacks will be 

discussed later in this chapter. 

We use the RAND() function in Excel to execute Step 1. Step 1 is shown in Column C 

where we use the RAND() function to generate 10000N   random numbers. The first 44 random 

numbers can be seen in Screenshot 5.1.  

The ease with which tables in Excel can be linked was important in our decision on how 

to implement the model. The LOOKUP() function is one of the functions in Excel that allows 

values from different tables to be linked in a user-specified manner. The particular LOOKUP() 



 

 

95 

 

function that we use is the VLOOKUP() function, which takes a value that the user specifies, and 

then goes and looks up that user-specified value in a table. The VLOOKUP() function looks for 

the specified value in the leftmost column of the table, and either finds it or the closest match. 

The result of the VLOOKUP() function can be seen in column B of Figure 5.1 

 

 

Figure 6: Simulation Implementation: Steps 0 – 1 

Step 0 of the simulation modeling procedure allows us to create a dataset of runners 

based on their classification specifications. The remaining steps in the simulation modeling 
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procedure allow for the transitioning of the runners over the entire length of the course, and for 

determining appropriate staffing levels.        

 

The pace distribution table from Step 0 is shown in cell range O2:P7 of Figure 5.1. For 

the specific example, we see from the pace distribution table that Runner #1 is a Class 1 runner, 

and takes between 300 seconds and 390 seconds to run each mile.  

For Step 2, we use the RANDBETWEEN() function in Excel to generate a random value 

between 
ca  and 

cb  to represent the time that it takes a Class c  runner, 1,2, ,c C , to traverse 

the distance between service station 1  and service station, . Hence, for Step 2, we use the 

RANDBETWEEN([ , ]c ca b ) function to simulate the times for each of the N  runners at each of 

the L  service stations from the pace distribution table.  

Continuing with Runner #1, who we know is a Class 1 runner, for the service station at 

Mile 1, we execute the RANDBETWEEN([300, 390]  function which returns a random value 

between 300 seconds and 390 seconds, which is the time that it takes Runner #1 to traverse the 

distance between the start of the race and the service station at the first mile marker. Column B2 

of Figure 5.2 shows that the simulated time for Runner #1 to get from the start of the race to the 

first mile marker is 354 seconds. The paces for the remaining 1N   simulated runners are 

generated in a similar fashion.    

Continuing with Runner #1, we use the RANDBETWEEN([300, 390] ) function to 

simulate the elapsed time between the service station at the first mile marker and the service 

station at the second mile marker for Runner #1. The time that it took Runner #1 to traverse the 
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second mile of the race is 328 seconds, and Column B2 of Figure 5.3 shows that the simulated 

time for Runner #1 to reach the second mile marker from the start of the race is 682 seconds. The 

times and paces for the remaining service stations, and for the remaining 1N   simulated runners 

are calculated in a similar fashion.  

 

 

 Figure 7: Simulation Implementation: Steps 2 and 3 

The final step is to manage the staffing at each service station as specified in Step 3. The 

Erlang loss formula and the PASB are implemented at each service station. Figure 5.2 shows the 

implementation of the Monte Carlo simulation at Mile 1. The implementation of the Erlang loss 

formula is captured in columns R through V, and the implementation of the PASB is captured in 

cell W2. The service rate per busy server is specified in Cell R2, and the traffic intensity is 

specified in Cell S2. For the Erlang loss formula, the numbers of servers for a specified blocking 
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probability are shown in Column T; Columns U and V show the implementation of (2.1). 

Column V is of particular interest because it contains the blocking probabilities for a prescribed 

staffing level. For example, as can be seen in Figure 5.2, given the mix of runners, the blocking 

probability is approximately 87 percent when there are only 25 servers. Cell W2 shows that the 

number of servers based on the PASB is 205 at Mile 1.  

 

 

Figure 8: Simulation Implementation: Steps 2 and 3 
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Continuing with our example, as can be seen from Figure 5.3, given the mix of runners in 

the example of 10000N   runners, if only 25 servers are placed at Mile 2, then the blocking 

probability is approximately 83 percent. As seen in cell W2, the number of servers based on the 

PASB is 159 at Mile 2. 

 

 

Figure 9: Simulation Implementation: Steps 2 and 3 
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Figure 5.4 shows the implementation of Steps 2 and 3 at Mile 25. Given the mix of 

runners in our sample of 10000N   runners, the number of servers based on the Erlang loss 

formula with 0.05bP   is 51, and the number of servers based on the PASB is 53. 

The Erlang loss formula and the PASB are implemented at the remaining service stations 

in a similar fashion to the implementations in the examples in Figures 5.2 – 5.4. With respect to 

the Erlang formula, for any service station of interest, the number of servers required for smaller 

blocking probabilities can be found by scrolling down on the spreadsheet, where it will be seen 

that the required number of servers increases as the blocking probability decreases.   

 

5.1.3   Alternative Approaches and Implementation Limitations 

 

Before we close this section, we discuss alternative ways to develop the multi-class 

simulation model. We also discuss some pros and cons in our choice of implementation platform 

- Microsoft Excel. Of course, the simulation model’s accuracy is bound by the accuracy of 

EXCEL and its random number generator.  

The first area in which the simulation model can be improved is in computational 

efficiency. The way in which we "classify" runners can be improved to make the model less 

computationally expensive. In the model that we have developed, "classifications" result from 

the assignment of random numbers to a pre-determined class. In doing so, we draw a “class” for 

each of N  simulated runners when we know what proportion of the runners are expected to 

belong to each class. Though this approach is theoretically appealing (because it allows us to 

account for variability in the number of runners in each class), an alternative approach that may 
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be less computationally expensive is to compute the number of runners in Class c  by 

multiplying the total number of runners in the race, N , by the proportion, 
c , of runners that is 

expected to be in that class, Class c . For example, the total number of runners in Class 1 is 

simply 
1N  . The number of runners in Class 2 is 

2N  , and so on.  

Another area in which the model can be improved is in the choice of implementation 

platform. The computational efficiency of the LOOKUP algorithms in Excel were not analyzed 

and compared against LOOKUP algorithms that can be utilized on other popular alternative 

implementation platforms such as C++, Java, or Matlab. With computational efficiency (and 

speed of analysis) as the objective, such analyses may lead to a different choice of 

implementation platform.     

We implemented the simulation model in Microsoft Excel, which limits the size of the 

race to the allowable number of rows in Excel. The number of rows in Excel is 65536 for Excel 

2003 users and over 1000000 for Excel 2007 users. Since Excel contains (pre-coded) functions 

that can be applied to key parts of the simulation model development, this makes Excel an 

attractive choice for the kinds of problems that this research considers. However, we caution that 

this choice may not be optimal, at least computationally. 

In the next section, we will conduct a set of experiments with our simulation model, and 

give staffing results based on the PASB. 

 

5.2   Experiments with the Simulation Model 
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In this section, we conduct a set of experiments to demonstrate some important principles 

of the simulation model. The aim of these experiments is two-fold. First, we will demonstrate 

how to simulate races of different mixes of runners, and second, we will demonstrate how to 

simulate races of different sizes. For each of the experiments, we use *  as the arrival rates, and 

12   customers per minute as the service rate at all service stations. Staffing results are based 

on the PASB and the Erlang loss formula with a blocking probability of 5%, and are based on ten 

Monte Carlo runs of each of the experiments, thereby illustrating an important principle of 

Monte Carlo methods that we discussed in Section 2.5. That is, by replicating and averaging the 

results of multiple runs of the experiments, we can get a good estimate of the variable of interest 

(which, in our application, is the number of servers at each of the L  service stations) in the 

( ) / / / / /M t G s s N FIFO  queueing network. 

 

5.2.1   Runner-Mix Experiments 

 

Using our simulation model to conduct runner-mix experiments, a road race manager can 

simulate a race with as diverse a group of runners as the manager envisions. For example, if a 

manager wants to simulate a long distance road race of size N  that is comprised of runners of 

similar capabilities (in terms of their overall paces), then the manager only needs to simulate a 

single class of runner. On the other hand, if the runners’ paces are less homogeneous, then the 

manager can group them by pace, which forms classes of runners. Then during the simulation, 

the (approximate) numbers of runners in each of the C  classes of runners are generated. 
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The experiments that are conducted here are examples of the latter scenario. For each 

experiment, the service rate is fixed at 12 runners per minute. However, it is worth noting that in 

our implementation, the service rate can be changed at each service station to any desired rate. 

Similarly, a distinct blocking probability could be specified for each service station as well.  

In these experiments, the mixes of runners are different, but the size of the races is the 

same. We conducted two experiments, Experiment 5.1 and Experiment 5.2, with 10000N   

runners in both experiments. Experiment 5.1 has the classifications shown in the second column 

of Table 17, and the pace distributions that are shown in the fourth column of Table 17, and 

Experiment 5.2 has the classifications shown in the third column of Table 17, and the pace 

distributions that are shown in the fourth column of Table 17. For both of these experiments, we 

use basic principles of Monte Carlo methods and replicated the steps from Section 5.1.1 ten 

times at each of the 25 service stations.  

 

   Table 17: Runners Pace Distribution and Probability of Occurrence 

C

lass 

Probab

ilities for  

Experi

ments  

5.1 

and 5.3 

Probab

ilities for 

Experi

ment  

5.2 

Pace  

(seco

nds/mile) 

c

1 0.10 0.30 

300 – 

390  

c

2 0.20 0.20 

390 - 

510 

c

3 0.30 0.20 

510 - 

690 

c

4 0.20 0.15 

690 - 

870 

c

5 0.15 0.10 

870 - 

1050 

c

6 0.05 0.05 

1050 

- 1200 
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Tables 18 to 21 give the number of servers for each of the ten Monte Carlo experiments 

or replications (for the PASB and the Erlang loss formula), and the mean and standard deviation 

(which we round up to the nearest integer value) of the ten replications. The mean and standard 

deviation (in parentheses) of the prescribed staffing requirements are shown in the tables.  
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Table 18: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.1 Using 

the PASB with 12     

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Serve

rs 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Server

s 

R

un 9: # 

of 

Server

s 

R

un 10:  

# of 

Server

s 

M

ean  

#

 of 

S

ervers 

M

ile 1 

9

7 

9

5 

9

6 

9

6 

9

6 

9

5 

9

4 

9

7 

9

7 

9

4 

9

6 (2) 

M

ile 2 

8

2 

7

9 

8

2 

8

2 

7

8 

7

6 

7

8 

7

9 

8

3 

7

8 

8

0 (3) 

M

ile 3 

7

0 

7

0 

6

9 

7

2 

7

0 

7

1 

6

9 

6

9 

6

9 

7

0 

7

0 (1)  

M
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6

2 

6

8 

6

0 

6

5 

6

1 

6

2 

5

8 

6

2 

6

6 

6

1 

6
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M
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5

8 

5

8 

5
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5
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5

6 

5

9 

5

7 

5

9 

6

2 

5

7 

5
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2 

5

3 

5

2 

5

6 

5

4 

5

1 

5

2 

5

2 

5

4 

5

3 

5
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M
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5

0 

5
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5
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5

1 

4
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5
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4

9 

4

9 

5

0 

5

0 

5
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4

8 

4

8 

4

7 

4

7 

5

0 

4

6 

4

6 

4

6 

4

8 

4

6 

4
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M
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4

6 

4

8 

4

7 

4

6 

4

4 

4

3 

4

4 

4

3 

4

7 

4

6 

4

6 (2) 

M
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4

4 

4

6 

4

3 

4

2 

4

2 

4

1 

4

2 

4

3 

4

3 

4

3 

4
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4
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Table 19: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.1 

Using Erlang Loss Formula with Blocking Probability <=0.05 and 12     

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Servers 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Servers 

R

un 9: # 

of 

Servers 

R

un 10:  

# of 

Servers 

M

ean  

#

 of 

S

ervers 

M

ile 1 

9

4 

9

5 

9

7 

9

8 

9

7 

9

4 

9

5 

9

5 

9

7 

9

9 

9

7 (2) 

M

ile 2 

6

4 

6

2 

6

4 

6

3 

6

1 

6

1 

6

2 

6

0 

6

2 

6

5 

6

3 (2) 

M

ile 3 

4

6 

4

5 

4

7 

4

5 

4

6 

4

7 

4

7 

4

6 

4

7 

4

7 

4

7 (1) 

M

ile 4 

3

9 

3

6 

3

8 

4

1 

3

8 

3

8 

3

7 

3

9 

3

6 

3

7 

3

8 (2) 

M

ile 5 

3

2 

3

2 

3

1 

3

3 

3

1 

3

2 

3

0 

3

2 

3

0 

3

1 

3

2 (1) 

M

ile 6 

2

8 

2

7 

2

7 

2

8 

2

8 

2

7 

2

7 

2

7 

2

7 

2

8 

2

8 (1) 

M

ile 7 

2

4 

2

4 

2

4 

2

4 

2

3 

2

5 

2

4 

2

3 

2

3 

2

4 

2

4 (1) 

M

ile 8 

2

2 

2

2 

2

3 

2

3 

2

2 

2

4 

2

1 

2

2 

2

2 

2

1 

2

3 (1) 

M

ile 9 

2

0 

2

0 

1

9 

2

0 

2

0 

2

0 

2

0 

1

9 

2

0 

2

0 

2

0 (1) 

M

ile 10 

1

8 

1

8 

1

8 

1

8 

1

8 

1

8 

1

9 

1

9 

1

9 

1

8 

1

9 (1) 

M

ile 11 

1

7 

1

7 

1

7 

1

8 

1

7 

1

8 

1

8 

1

7 

1

7 

1

8 

1

8 (1) 

M

ile 12 

1

8 

1

6 

1

7 

1

7 

1

6 

1

6 

1

6 

1

7 

1

7 

1

8 

1

7 (1) 

M

ile 13 

1

6 

1

6 

1

5 

1

5 

1

5 

1

5 

1

4 

1

6 

1

6 

1

6 

1

6 (1) 

M

ile 14 

1

5 

1

4 

1

5 

1

6 

1

5 

1

5 

1

5 

1

4 

1

5 

1

5 

1

5 (1) 

M

ile 15 

1

4 

1

4 

1

4 

1

4 

1

4 

1

4 

1

4 

1

4 

1

5 

1

5 

1

5 (1) 

M

ile 16 

1

4 

1

4 

1

4 

1

3 

1

4 

1

4 

1

4 

1

4 

1

3 

1

3 

1

4 (1) 

M

ile 17 

1

3 

1

3 

1

3 

1

3 

1

3 

1

3 

1

3 

1

3 

1

2 

1

3 

1

3 (1) 

M

ile 18 

1

3 

1

2 

1

2 

1

3 

1

2 

1

2 

1

3 

1

2 

`

13 

1

3 

1

3 (1) 

M

ile 19 

1

2 

1

2 

1

2 

1

2 

1

3 

1

2 

1

2 

1

2 

1

2 

1

2 

1

3 (1) 

M

ile 20 

1

2 

1

2 

1

1 

1

2 

1

2 

1

2 

1

1 

1

2 

1

2 

1

2 

1

2 (1) 

M

ile 21 

1

2 

1

2 

1

1 

1

1 

1

3 

1

1 

1

1 

1

2 

1

1 

1

2 

1

2 (1) 

M

ile 22 

1

1 

1

2 

1

1 

1

2 

1

1 

1

1 

1

1 

1

2 

1

1 

1

2 

1

2 (1) 

M

ile 23 

1

0 

1

1 

1

1 

1

0 

1

0 

1

0 

1

0 

1

1 

1

1 

1

1 

1

1 (1) 

M 1 1 1 1 1 1 1 1 1 1 1
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ile 24 0 1 1 1 0 1 1 1 1 1 1 (1) 

M

ile 25 

1

0 

1

0 

1

0 

1

0 

1

0 

1

0 

1

0 

1

0 

1

0 

1

1 

1

1 (1) 
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Table 20: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.2 

Using the PASB with 12   

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Servers 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Servers 

R

un 9: # 

of 

Servers 

R

un 10:  

# of 

Servers 

M

ean 

#

 of 

S

ervers 

M

ile 1 

1

79 

1

75 

1

76 

1

82 

1

75 

1

82 

1

79 

1

72 

1

72 

1

82 

1

78 (4) 

M

ile 2 

1

50 

1

49 

1

48 

1

52 

1

46 

1

51 

1

48 

1

52 

1

45 

1

53 

1

50 (3) 

M

ile 3 

1

28 

1

21 

1

20 

1

26 

1

20 

1

26 

1

20 

1

30 

1

23 

1

26 

1

24 (4) 

M

ile 4 

1

04 

1

02 

1

02 

1

03 

1

04 

1

06 

1

03 

1

06 

1

01 

1

05 

1

04 (2) 

M

ile 5 

1

03 

1

01 

1

03 

1

04 

1

04 

1

03 

1

03 

1

05 

1

01 

1

06 

1

04 (2) 

M

ile 6 

9

6 

9

4 

9

8 

9

6 

9

6 

9

8 

1

02 

1

00 

9

1 

1

00 

9

8 (4) 

M

ile 7 

8

8 

9

1 

9

2 

8

7 

9

0 

9

4 

9

1 

9

1 

8

7 

9

0 

9

1 (3) 

M

ile 8 

8

3 

8

1 

8

2 

8

6 

8

0 

8

4 

8

4 

8

4 

7

8 

8

3 

8

3 (3) 

M

ile 9 

8

1 

8

1 

8

4 

8

5 

7

9 

8

0 

8

0 

7

8 

7

6 

8

0 

8

1 (3) 

M

ile 10 

7

9 

7

7 

8

0 

7

9 

7

8 

8

0 

7

9 

7

9 

7

5 

7

9 

7

9 (2) 

M

ile 11 

7

4 

7

2 

7

4 

7

5 

7

1 

7

6 

7

2 

7

2 

6

8 

7

6 

7

3 (3) 

M

ile 12 

7

2 

7

0 

6

9 

7

0 

7

0 

7

1 

6

9 

6

9 

6

8 

7

1 

7

0 (2) 

M

ile 13 

7

1 

6

6 

6

9 

6

6 

7

0 

6

9 

7

0 

7

0 

6

8 

7

3 

7

0 (3) 

M

ile 14 

7

0 

6

7 

6

8 

6

5 

6

7 

7

0 

6

7 

6

7 

6

5 

7

2 

6

8 (3) 

M

ile 15 

6

7 

6

7 

6

4 

6

3 

6

3 

6

5 

6

7 

6

5 

6

3 

6

8 

6

6 (2) 

M

ile 16 

6

4 

6

1 

6

1 

6

3 

6

0 

6

4 

6

4 

6

2 

6

0 

6

4 

6

3 (2) 

M

ile 17 

6

3 

6

2 

6

1 

6

2 

5

9 

6

4 

6

3 

5

8 

5

9 

6

6 

6

2 (3) 

M

ile 18 

6

2 

6

1 

5

9 

6

0 

5

8 

6

0 

6

0 

5

9 

6

1 

6

2 

6

1 (2) 

M

ile 19 

6

1 

5

9 

5

7 

5

9 

5

9 

5

9 

6

0 

5

6 

5

8 

6

2 

5

9 (2) 

M

ile 20 

6

1 

5

6 

5

8 

5

7 

5

6 

6

0 

5

7 

5

6 

5

6 

5

9 

5

8 (2) 

M

ile 21 

5

8 

5

6 

5

8 

5

6 

5

6 

5

7 

5

4 

5

4 

5

4 

5

6 

5

6 (2) 

M

ile 22 

5

5 

5

3 

5

6 

5

4 

5

7 

5

6 

5

3 

5

1 

5

2 

5

5 

5

5 (2) 

M

ile 23 

5

7 

5

4 

5

3 

5

6 

5

4 

5

4 

5

1 

5

2 

5

1 

5

6 

5

4 (3) 

M 5 5 5 5 5 5 5 5 5 5 5
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ile 24 3 1 5 4 2 5 3 3 0 3 3 (2) 

M

ile 25 

5

3 

5

1 

5

3 

5

3 

5

1 

5

3 

5

1 

4

9 

5

0 

5

6 

5

2 (2) 
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Table 21: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.2 

Using Erlang Loss Formula with Blocking Probability <=0.05 and 12   

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Servers 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Servers 

R

un 9: # 

of 

Servers 

R

un 10:  

# of 

Servers 

M

ean 

#

 of 

S

ervers 

M

ile 1 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

N

/A 

M

ile 2 

1

43 

O

/F 

1

43 

O

/F 

O

/F 

O

/F 

1

43 

O

/F 

1

40 

O

/F 

1

43 (2) 

M

ile 3 

1

11 

1

15 

1

14 

1

18 

1

12 

1

16 

1

12 

1

17 

1

14 

1

14 

1

15 (3) 

M

ile 4 

1

08 

1

07 

1

08 

1

15 

1

13 

1

11 

1

11 

1

08 

1

07 

1

13 

1

11 (3) 

M

ile 5 

8

9 

9

1 

9

0 

9

4 

9

4 

8

9 

9

0 

9

0 

9

3 

8

9 

9

1 (3) 

M

ile 6 

8

3 

8

0 

7

9 

8

1 

8

0 

8

5 

8

2 

8

3 

8

1 

8

2 

8

2 (2) 

M

ile 7 

7

2 

7

3 

7

3 

7

8 

7

1 

7

1 

7

5 

7

2 

7

2 

7

3 

7

3 (3) 

M

ile 8 

6

7 

7

0 

7

1 

7

3 

7

4 

6

8 

6

8 

7

2 

7

0 

6

8 

7

1 (3) 

M

ile 9 

6

4 

6

7 

6

8 

6

9 

6

7 

6

6 

6

7 

6

9 

6

4 

6

4 

6

7 (2) 

M

ile 10 

6

5 

6

4 

6

5 

6

6 

6

4 

6

3 

6

0 

6

3 

6

2 

6

3 

6

4 (2) 

M

ile 11 

6

2 

5

9 

6

1 

6

4 

6

0 

6

1 

6

0 

6

0 

6

0 

6

2 

6

1 (2) 

M

ile 12 

5

9 

5

7 

5

7 

6

1 

5

7 

5

9 

5

9 

6

0 

6

0 

5

8 

5

9 (2) 

M

ile 13 

5

7 

5

6 

5

5 

5

9 

5

8 

5

8 

5

7 

5

8 

5

7 

5

9 

5

8 (2) 

M

ile 14 

5

6 

5

3 

5

3 

5

7 

5

5 

5

6 

5

5 

5

8 

5

7 

5

8 

5

6 (2) 

M

ile 15 

5

4 

5

2 

5

2 

5

6 

5

3 

5

4 

5

5 

5

3 

5

6 

5

4 

5

4 (2) 

M

ile 16 

5

3 

5

3 

5

2 

5

2 

5

2 

5

3 

5

3 

5

3 

5

2 

5

2 

5

3 (1) 

M

ile 17 

5

0 

4

9 

4

8 

5

0 

4

9 

5

0 

5

1 

5

0 

5

3 

5

3 

5

1 (2) 

M

ile 18 

4

8 

5

1 

4

7 

5

1 

5

1 

5

0 

5

0 

4

7 

5

2 

4

9 

5

0 (2) 

M

ile 19 

4

8 

4

8 

4

7 

4

9 

4

9 

5

0 

4

8 

4

8 

5

0 

4

9 

4

9 (1) 

M

ile 20 

4

7 

5

1 

4

5 

4

8 

4

7 

4

8 

4

9 

4

9 

5

0 

4

7 

4

9 (2) 

M

ile 21 

4

6 

4

8 

4

5 

4

9 

4

9 

4

8 

4

8 

4

6 

4

6 

4

9 

4

8 (2) 

M

ile 22 

4

6 

4

7 

4

2 

4

6 

4

6 

4

7 

4

6 

4

6 

4

8 

4

7 

4

7 (2) 

M

ile 23 

4

4 

4

5 

4

3 

4

6 

4

4 

4

6 

4

6 

4

5 

4

4 

4

6 

4

5 (2) 

M 4 4 4 4 4 4 4 4 4 4 4
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ile 24 3 3 2 5 4 3 4 4 4 5 4 (1) 

M

ile 25 

4

3 

4

2 

4

1 

4

4 

4

3 

4

3 

4

3 

4

5 

4

5 

4

5 

4

4 (2) 

 

The relationship between the Erlang loss formula and the PASB that were discussed in 

Chapter 4 are noticeable from Tables 18 to 21. Two additional points are noticeable from Tables 

18 to 21. The first point is that, as indicated by the standard deviations (in parentheses), there is 

very little variability around the prescribed numbers of servers at any service station in the 

queueing network. The second point is that, based on the results in Tables 18 to 21, there appears 

to be some significant impact on the required number of servers when we change the mix of 

runners as we did in our experiments. We also observe that the number of required servers 

appears to level off as the distance from the starting line increases.    

 

5.2.2   Race Size Experiment 

 

For this experiment, we want to know the impact on staffing of changing the size of the 

race. We conducted one additional experiment (Experiment 5.3) that we compared to Experiment 

5.1 from Section 5.2.1. In conducting Experiments 5.3, we increased the size of the race in 

Experiments 5.1 to 20000. For Experiments 5.1 and 5.3, the mix of runners is the same, but the 

sizes of the two races are different. The probabilities and paces for this experiment are given in 

Table 17.  
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Table 22: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.3 

Using the PASB with 12     

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Servers 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Servers 

R

un 9: # 

of 

Servers 

R

un 10:  

# of 

Servers 

M

ean  

#

 of 

S

ervers 

M

ile 1 

1

83 

1

83 

1

86 

1

82 

1

80 

1

78 

1

82 

1

86 

1

82 

1

82 

1

83 (3) 

M

ile 2 

1

53 

1

55 

1

52 

1

53 

1

53 

1

52 

1

59 

1

55 

1

52 

1

51 

1

54 (3) 

M

ile 3 

1

18 

1

21 

1

21 

1

19 

1

15 

1

16 

1

16 

1

18 

1

17 

1

15 

1

18 (3) 

M

ile 4 

1

13 

1

15 

1

18 

1

18 

1

11 

1

14 

1

13 

1

14 

1

14 

1

12 

1

15 (3) 

M

ile 5 

9

6 

1

01 

1

03 

1

03 

9

8 

9

8 

9

8 

1

02 

9

6 

9

5 

9

9 (4) 

M

ile 6 

8

5 

8

7 

8

7 

8

7 

8

3 

8

1 

8

3 

8

5 

8

5 

8

5 

8

5 (2) 

M

ile 7 

7

9 

7

9 

8

3 

7

9 

7

8 

7

7 

8

0 

8

3 

8

1 

8

2 

8

1 (3) 

M

ile 8 

7

3 

7

4 

7

4 

7

3 

7

3 

7

3 

7

5 

7

4 

7

6 

7

4 

7

4 (1) 

M

ile 9 

7

2 

7

0 

7

1 

7

3 

7

3 

7

1 

7

0 

7

1 

7

2 

7

2 

7

2 (2) 

M

ile 10 

6

8 

6

8 

7

2 

6

7 

7

1 

6

8 

7

1 

6

5 

6

7 

6

5 

6

9 (3) 

M

ile 11 

6

4 

6

5 

6

6 

6

4 

6

5 

6

5 

6

7 

6

3 

6

5 

6

5 

6

5 (2) 

M

ile 12 

6

3 

6

5 

6

3 

6

4 

6

3 

6

2 

6

4 

6

3 

6

2 

5

9 

6
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6
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3 

5
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6
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6
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5
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5
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5
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5
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5
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5
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5
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5
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5

3 
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4
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5
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5
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5
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5

3 

5
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5

3 

5

3 

4
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5
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5
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M
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5

0 

5
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5

2 

4

9 

5

0 

4

9 

5

0 

4

9 

4

9 

4

9 

5
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M
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1 

4

9 

5

1 

4

7 

5

0 

4

9 

5

0 

4

9 

4

8 

4

6 

4

9 (2) 

M
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4

9 

4

8 

5

0 
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7 

4

9 

4

8 

4

8 

4

6 

4

7 

4

8 

4

8 (2) 

M 4 4 4 4 4 4 4 4 4 4 4
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ile 24 8 8 9 8 8 8 9 6 8 7 8 (1) 

M
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4

5 

4

7 

4

8 

4

6 

4

6 

4

8 

4

8 

4

7 

4

5 

4

5 

4

7 (2) 
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Table 23: Server Requirements Based on 10 Monte Carlo Replications of Experiment 5.3 

Using Erlang Loss Formula with Blocking Probability <=0.05 and 12    

 
S

ervice 

S

tation 

R

un 1: 

#

 of 

Servers 

R

un 2:   

#

 of 

S

ervers 

R

un 3: 

#

 of 

S

ervers 

R

un 4: 

#

 of 

S

ervers 

R

un 5: 

#

 of  

S

ervers 

R

un 6: 

#

 of  

S

ervers 

R

un 7: # 

of 

S

ervers 

 

R

un 8: # 

of 

Servers 

R

un 9: # 

of 

Servers 

R

un 10:  

# of 

Servers 

M

ean  

#

 of 

S

ervers 

M

ile 1 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

O

/F 

N

/A 

M

ile 2 

1

43 

O

/F 

1

43 

O

/F 

O

/F 

O

/F 

1

43 

O

/F 

1

40 

O

/F 

1

43 (2) 

M

ile 3 

1

11 

1

15 

1

14 

1

18 

1

12 

1

16 

1

12 

1

17 

1

14 

1

14 

1

15 (3) 

M

ile 4 

1

08 

1

07 

1

08 

1

15 

1

13 

1

11 

1

11 

1

08 

1

07 

1

13 

1

11 (3) 

M

ile 5 

8

9 

9

1 

9

0 

9

4 

9

4 

8

9 

9

0 

9

0 

9

3 

8

9 

9

1 (3) 

M

ile 6 

8

3 

8

0 

7

9 

8

1 

8

0 

8

5 

8

2 

8

3 

8

1 

8

2 

8

2 (2) 

M

ile 7 

7

2 

7

3 

7

3 

7

8 

7

1 

7

1 

7

5 

7

2 

7

2 

7

3 

7

3 (3) 

M

ile 8 

6

7 

7

0 

7

1 

7

3 

7

4 

6

8 

6

8 

7

2 

7

0 

6

8 

7

1 (3) 

M

ile 9 

6

4 

6

7 

6

8 

6

9 

6

7 

6

6 

6

7 

6

9 

6

4 

6

4 

6

7 (2) 

M

ile 10 

6

5 

6

4 

6

5 

6

6 

6

4 

6

3 

6

0 

6

3 

6

2 

6

3 

6

4 (2) 

M

ile 11 

6

2 

5

9 

6

1 

6

4 

6

0 

6

1 

6

0 

6

0 

6

0 

6

2 

6

1 (2) 

M

ile 12 

5

9 

5

7 

5

7 

6

1 

5

7 

5

9 

5

9 

6

0 

6

0 

5

8 

5

9 (2) 

M
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5

7 

5

6 

5

5 

5

9 

5

8 

5

8 

5

7 

5

8 

5

7 

5

9 

5

8 (2) 

M

ile 14 

5

6 

5

3 

5

3 

5

7 

5

5 

5

6 

5

5 

5

8 

5

7 

5

8 

5

6 (2) 

M
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5

4 

5

2 

5

2 

5

6 

5

3 

5

4 

5

5 

5

3 

5

6 

5

4 

5

4 (2) 

M
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5

3 

5

3 

5

2 

5

2 

5

2 

5

3 

5

3 

5

3 

5

2 

5

2 

5
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0 
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9 

4
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5
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5
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4
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5
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4
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5
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4
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4
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4
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4
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4
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ile 24 3 3 2 5 4 3 4 4 4 5 4 (1) 

M

ile 25 

4

3 

4

2 

4

1 

4

4 

4

3 

4

3 

4

3 

4

5 

4

5 

4

5 

4

4 (2) 

 

 

For the results for Experiment 5.3 that are shown in Tables 22 and 23, we use basic 

principles of Monte Carlo methods and replicated the model (see Section 5.1.1) ten times at each 

of the 25 service stations. Similar patterns as those in the two earlier experiments regarding the 

corroboration of the relationship between the PASB and the Erlang loss formula from Chapter 4, 

the variability of the prescribed staffing levels and the leveling off of the number of servers as 

the distance from the starting line of the race increases are observed here. Given the same mix of 

runners, we expect the peak arrival rates in Experiment 5.3 (which has twice as many runners as 

Experiment 5.1) to be larger than the peak arrival rates in Experiment 5.1, thus, leading to the 

higher prescribed server levels for Experiment 5.3.   

 

5.3   Chapter Summary 

 

In this chapter, we developed a multi-class simulation model for the mixed 

( ) / / / / /M t G s s N FIFO  queueing network. This simulation model allows road race 

managers to simulate a race of size N , and to classify those N  runners, based on their 

(historical or assumed) paces, into , 1,2, ,C c C  classes of runners. We integrated the Erlang 

loss formula and the PASB into the simulation model. We conducted numerical experiments 

using both staffing methodologies. The PASB was highlighted in the experiments that were 

conducted in this chapter because it is more conservative than the Erlang loss formula when the 
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traffic intensity is high, and because it does not suffer from the numerical instability problems 

that cause the Erlang loss formula to overflow when the traffic intensity is high.  

The multi-class simulation model is very flexible, and allows a road race manager to 

simulate different kinds of races. For example, a road race manager can use the simulation model 

to get the staffing requirements for a road race that is made up entirely of elite runners, or for a 

road race that is comprised of only recreational runners. For a more practical example, such as 

the New York Marathon or the Boston Marathon which are comprised of runners of various skill 

levels ranging from elite runners to recreational runners, a road race manager can simulate such 

types of road races, and get the staffing requirements at each service station.   
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CHAPTER 6  

CONCLUSIONS AND FUTURE RESEARCH 
 

6.1   Contribution Summary 

 

In this chapter, we summarize the outcomes of the work that was undertaken in this 

dissertation research project.  

In this research, we modeled a long distance road race traffic system as a mixed 

( ) / / / / /M t G s s N FIFO  queueing network. We developed models that allow road race 

managers (or managers of similar types of events) to provide “service” to runners (or other types 

of similar entities) arriving at service stations at predetermined distances. Deliverables from this 

research include: 

1. A single-class model to address the staffing needs for long distance road race (and related) 

traffic systems with time-dependent traffic patterns. 

2. A multi-class simulation model to address the staffing needs for long distance road race 

traffic systems (or other related traffic systems) with time-dependent traffic patterns. 

3. The development of a mathematical framework to model how runners in long distance road 

races (or other similar type entities in similar types of traffic systems) transition across 

distance and time. 

4. The development of a mathematical framework to estimate the arrival rates of runners (for 

example, runners in a long distance road race) at service stations of interest.  

5. A staffing equation to provide staffing requirements at service stations in the queueing 

network. 
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The analytical framework for the single-class model was developed in Chapter 3. For the 

single-class model, we developed an analytical framework that allows for the estimation of time-

dependent arrivals at a service station of interest. Then, we developed a staffing formula to 

prescribe the number of servers when there are time-dependent arrivals at service stations. 

Empirical analyses showed that the PASB yields staffing requirements that are comparable to the 

Erlang loss formula. However, unlike the Erlang loss formula, the PASB does not overflow.  

An advantage of the single-class model is its ability to duplicate the estimated running 

times of the runners from an available dataset. This feature of the model allows a road race 

manager to create a larger dataset by making copies (or duplicates) of the (estimated) running 

times of the runners from the original data set. The primary benefit of this feature is that it allows 

a manager to easily assess the impact on staffing for a larger (or smaller) race with runners that 

are identical in mix to those in the original dataset. The disadvantage of this model is that it fails 

to capture the staffing effects when the new race is comprised of runners whose paces are less 

homogeneous (or different) from those runners whose records are in the original dataset.         

The multi-class simulation model was developed in Chapter 5. This model allows a road 

race manager to simulate a race of any size, N , and to classify those N  runners, based on their 

(historical or assumed) paces, into different classes of runners. For the purpose of staffing, we 

integrated the PASB and the Erlang loss formula into the simulation model at each service 

station. The multi-class simulation model provides road race managers with a very flexible 

management tool that allows them to simulate different size races with as their choice of runner-

mix. 
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This model improves upon the single-class model by allowing the road race manager to 

design as diverse a race (in terms of the mix of the runners and the number of runners) as the 

manager chooses. The main drawback of this model is that it is relatively slow to run in 

Microsoft Excel as the number of runners in the race gets larger. In our applications, using a Dell 

Latitude D610 laptop with a 2.00 GHz Pentium M processor (with 2.00 GB of RAM), it took 

approximately 4 minutes to run a race with 20000N   runners, 10C   classes and 25L  

service stations, using this model. For the single-class model, it took about half that time to run a 

race with the same number of runners and the same number of service stations. However, this is 

a small price to pay for the added versatility of this model over the single-class model.   

By conceiving and constructing a long distance road race as a single or multi class 

( ) / / / / /M t G s s N FIFO  queueing network in which refreshment stations are to be staffed 

with the appropriate numbers of servers for the runners that approach each refreshment station, 

we have shown how tools and concepts from operations research can be used to design, develop, 

and find solutions for a real-world problem. Before we close this section, we mention some other 

application areas that may benefit from the use of the models that we have developed in this 

research. The model can also be used by practitioners in other areas in which the traffic flows 

and runner types are similar to the kinds that are modeled in this research. Two other possible 

areas where the models can be applied are: 

1. Providing service staff to a convoy of vehicles that are traveling on a defined route and 

arriving at predetermined locations for servicing, and  

2. Providing staffing at aid stations along a street parade route, or along a street procession 

route.   
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Specifically, these models may be useful for supplying needs to military units and 

personnel during a long distance deployment to an area where there is a conflict. 

 

6.2   Recommendations and Directions for Future Research 

 

As far as the literature suggests, we are the first researchers to propose queueing network 

models that address server staffing or volunteer staffing in long distance road race traffic system. 

We believe that the models that we have developed are just a first step to the development of 

more sophisticated models. 

A possible extension to the models that we have developed in this research is to extend 

the models to allow for moving volunteers from one service station to another service station 

during the race at minimum cost.  

Another obvious improvement on what we have developed for the multi-class simulation 

model is to incorporate alternate distributions of running times into the model.    

Another area in which the models that we have developed can be improved is to take 

attrition of runners into account. This improvement can be done by developing attrition models 

and integrating them in the model at each service station. If runner attrition is a matter that 

deserves attention, then the incorporation of attrition into the existing model may lead to fewer 

required servers than would be otherwise needed. 

It would be interesting to apply the models suggested here and the historical data from 

the 2004 WDW Marathon to prescribe service station staffing levels at a different race where the 

number of runners is different than in the historical data set. 
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