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ABSTRACT 

Damage in composite material fabricated aerospace, aeronautical, mechanical, civil and offshore 

structures often results from factors such as fatigue, corrosion and accidents. Such damage when 

left unattended can grow at an alarming rate due to the singularity of the stress and strain in the 

vicinity of the damage. It can lead to increase in the vibration level, reduction in the load 

carrying capacity, deterioration in the normal performance of the component and even 

catastrophic failure. In most conditions, the service life of damaged components is extended with 

repair instead of immediate replacement. Effective repair of structural damage is therefore an 

important and practical topic. Repair can extend the service life and can be a cost efficient 

alternative to immediate replacement of the damaged component. 

 

Most conventional repair methods involve welding, riveting or mounting additional patches on 

the parent structure without removing the damaged portion.   These methods tend to be passive 

and inflexible, faced with the limitations of adjusting the repair to the changes in external loads.  

Besides, in certain cases these methods may lead to additional damage to the structure.  For 

example, the in-situ drilling required in some cases can cause damage to items such as hidden or 

exposed hydraulic lines and electrical cables.  Welding or bonding patches can cause significant 

stress alterations and serious stress corrosion problems, apart from burdening the weight 

sensitive structures.  Above all, effective repair applying conventional analytical methods hinges 

on calculation of the singularity of stress and strain in the vicinity of the damage, which is be a 

difficult as only approximate solutions are available.  Thus, a need is felt to update the repair 
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methods with the advancement in fields of materials, sensing and actuating.  This can make the 

repair more effective and efficient than conventional repair methodology. 

Current research proposes the use of piezoelectric materials in repair of delaminated composite 

structures.  A detailed mechanics analysis of the delaminated beams, subjected to concentrated 

static loads and axial compressive loads, is presented.   The discontinuity of shear stresses 

induced at delamination tips due to bending of the beams, under action of concentrated static 

load and axially compressive load, is studied.  This discontinuity of the shear stresses normally 

leads to the sliding mode of fracture of the beam structures.  In order to ensure proper 

functioning of these beam structures, electromechanical characteristics of piezoelectric materials 

are employed for their repair.  Numerical simulations are conducted to calculate the repair 

voltage to be applied to the piezoelectric patches to erase the discontinuity of horizontal shear 

stress at the delamination tips and thus, render the beam repaired.  The variation of repair voltage 

with location and size of the delamination is considered.  FE simulations are performed to 

validate the numerically calculated voltage values. The research presented serves to provide 

information on the design of piezoelectric materials for the repair of delaminated composite 

structures.   
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CHAPTER 1: INTRODUCTION 

In today’s world every one wants structures to be lighter, stronger, and more efficient.    Both 

commercial and military aircrafts are being increasingly being made of composite structures, 

taking the advantage of specific characteristics of composite materials.  For example, wings of 

Grumman X-29 experimental plane, shown in Figure 1, made use of a feature of composites that 

allows them to bend in one direction but not another. We all use tennis racquets, golf clubs, 

helmets and much other sporting equipment made of composites. The canoes, boats and fishing 

gear are being made of composites.  Our car fenders are made of composite material to improve 

shock absorption. Bridges are being repaired with composite patches. The pavement has 

composite rebar to increase flex and reduce wear and tear.  Prosthetics for disabled are being 

made of composites due to their excellent stiffness but lower weight.  In short, today composites 

materials touch every aspect of our lives. 

 

 

Figure 1: A Grumman X-29 experimental plane 
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1.1 Overview of Composite materials 

A composite material is basically a combination of two or more materials, each of which retains 

distinct individual properties. Multiphase metals too are composite materials on a micro scale, 

but generally the term composite is applied to materials that are created by mechanically bonding 

two or more different materials together. The resulting material has characteristics that are not 

characteristic of the components in isolation.  

 

The concept of composite materials is ancient. An example is adding straw to mud for building 

stronger mud walls. Most commonly, composite materials have a bulk phase, which is 

continuous, called the matrix; and a dispersed, non-continuous, phase called the reinforcement. 

Some other examples of basic composites include concrete (cement mixed with sand and 

aggregate), reinforced concrete (steel rebar in concrete), and fiberglass (glass strands in a resin 

matrix).   

 

In about the mid 1960’s, a new group of composite materials, called advanced engineered 

composite materials (aka advanced composites), began to emerge. Advanced composites utilize a 

combination of resins and fibers, customarily carbon/graphite, kevlar, or fiberglass with an 

epoxy resin. The fibers provide the high stiffness, while the surrounding polymer resin matrix 

holds the structure together. The fundamental design concept of composites is that the bulk phase 

accepts the load over a large surface area, and transfers it to the reinforcement material, which 

can carry a greater load. The significance here lies in that there are numerous matrix materials 

and as many fiber types, which can be combined in countless ways to produce just the desired 
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properties. These materials were first developed for use in the aerospace industry because for 

certain applications they have a higher stiffness to weight or strength-to-weight ratio than metals.  

This means metal parts can be replaced with lighter weight parts manufactured from advanced 

composites. For example, the carbon-epoxy composites are two thirds the weight of aluminum, 

and two and a half times as stiff. Besides, composites are resistant to fatigue damage and harsh 

environments, and are repairable.  Figure 2 shows the Lockheed F-22 plane which employs 

composites for over a third of its structures. 

 

 

 

Figure 2: The Lockheed F-22, using composites for at least a third of its structure 

 

The concept of ‘smartness’ coupled with the characteristics of composites materials is fast 

gaining strength these days.  Smart composite structures offer the capability to combine the low 

density, superior mechanical and thermal properties of composite materials along with the 

inherent capabilities of smart materials to sense and adapt to their environments. Thus, the use of 
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smart structures (also referred to as intelligent or adaptive structures) offers the potential to 

significantly improve the performance of aerospace structural components. However, before 

these materials can be implemented into actual structures, the coupled mechanical, electrical, and 

thermal behavior of smart materials must be fully characterized. This has led to extensive 

research since the 1980's to assess both the sensory and active responses of smart materials. 

1.2 Overview of Smart Structures 

Smart structures are distinguished from conventional structures by the presence of integrated 

actuator and sensor elements. In a typical smart structure application, the sensors are used to 

monitor the mechanical response of the structure through changes in the displacements, strains, 

or accelerations. Once an adverse or undesirable structural response is detected in the sensors, a 

controller generates the required input to the actuators. The actuators respond to this input and 

produce a corresponding change in the mechanical response of the structure to a more benign or 

acceptable state. The capability of smart structures to sense and adapt to their environment leads 

to a wide range of potential applications including: vibration suppression of aircraft structures; 

noise control of helicopter rotors; health monitoring of bridges; shape control of large space 

trusses; aeroelastic control of aircraft lifting components; and seismic control of buildings. 

Crawley (1993) and Loewy (1997) provide detailed overviews of the current state of smart 

structures research for aerospace applications 

 

A variety of different materials can be utilized as either sensor or actuator elements in smart 

structure applications. Depending on the specific material used, the sensor and actuator elements 
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are controlled through electric, magnetic, thermal, or light energy. Some of the common actuator 

and sensor materials include: piezoelectric materials, shape memory alloys, fiber optics, 

electrostrictive materials, magnetostrictive materials, and electro-rheological fluids. Of the 

different materials available for use in smart structures, only piezoelectric materials have the 

unique capability to be used effectively as both actuator and sensor elements. Other advantages 

of piezoelectric materials which help account for their widespread popularity include: simple 

integration into the structure; a readily obtainable commercial supply of piezopolymers and 

piezoceramics; and familiarity in using these materials gained from previous applications in 

transducers. 

1.3 Piezoelectric Materials 

Historically, piezoelectric materials have been utilized mainly as active structural elements in 

transducers for application in strain gages, accelerometers, and sonar. Recently, the focus of 

research has shifted away from the transducer applications toward the development of smart 

structure applications which combine the active and sensory behavior of piezoelectric materials. 

The basic characteristics of piezoelectric materials which allow for their use as sensors and 

actuators are the direct piezoelectric effect, converse piezoelectric effect, and the pyroelectric 

effect. In the direct piezoelectric effect, the application of a mechanical load on the piezoelectric 

material induces an electrical response. Through measurement of this electrical response, the 

mechanical state of deformation in the structure can be determined and monitored, leading to the 

sensory application. In contrast, the converse piezoelectric effect transforms an electrical input in 

the piezoelectric material into a corresponding mechanical strain. This leads to the active 
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applications of piezoelectric materials, in which the state of deformation of the structure can be 

controlled or altered by applying the appropriate electrical input. The third characteristic 

behavior is the pyroelectric effect, in which the piezoelectric material responds to changes in 

temperature by producing an electrical response, which will influence both the direct and 

converse piezoelectric effects in changing temperature environments. 

1.4 Delamination in Composites 

Composite materials have been reliably used in many secondary aerospace structures.  For 

example, Graphite/Epoxy composites have been used in primary structures such as wings and 

tails of the military aircrafts.   

 

Figure 3: Delamination and other local damage mechanisms in a composite laminate 
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The primary impediment to full utilization of composites is their inherent tendency to 

delaminate.  Delamination is the most prevalent type of life-limiting failure in composite 

structures occurring in the form of interlaminar separation or debonds.  Technologically, it is also 

one of the most significant problems in advanced composites.  Figure 3 shows a delaminated 

composite laminate with other kinds of damage mechanisms in composite.   

 

There are various sources of delamination.  Delamination may develop during manufacturing 

with improper consolidation of plies.  It may result from impact damage or from three 

dimensional interlaminar stresses that develop at stress-free edges or discontinuities such as the 

free surface of a hole.  Both interlaminar normal and shear stresses as shown in figure-4 can be 

detrimental.   
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Figure 4: Interlaminar normal and shear stresses in a composite laminate 

 

The interlaminar stresses developing at discontinuities in typical composite structures which may 

promote delamination are shown in figure 5.  Interlaminar stresses can also develop due to 

compressive loading in laminates.  A consequence of compressive loading can be local and 

global buckling of plies in a laminate.  This situation is enhanced due to the propensity of 

delamination crack growth and the eventual separation of plies.   
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Figure 5: Interlaminar stresses arise from typical discontinuities in composite structures 

 

An area of considerable concern for composites is their response under low velocity impact.  

Low velocity impact is an important issue since, during servicing, aircraft structures can be 

damaged due to inadvertent dropping of tool.  The damage may not be visible, but internal 

delamination can be quite extensive resulting in the loss of compression strength and structural 

integrity.  The compressive residual strength of the composite structure may be controlled by the 

size and location of the delamination.   

 

Fatigue loading is also common in aerospace structures.  Delamination initiation and growth due 

to fatigue is also of concern.  An implication is that fatigue propagation life of the structure is 

short.   

 



10 

Although laboratory characterization of delamination for various modes appears to be quite 

straightforward, the delamination problem is fairly complex in actual structures.  Thus, it is 

prudent to accurately characterize the onset and growth of delamination in advanced composites.  

The challenge here rests both on material and structure design fields. 

1.5 Research Objectives 

With all due considerations given to the design aspects in the field of materials and structures, 

and with all possible precautions taken, the probability of failure of structure due to delamination 

arising out of the causes listed earlier still prevails.  The current research, thus, assumes 

delamination in composite structures and proposes a method to check the further growth of 

delamination, and eventual failure of the structure. It employs piezoelectric materials to repair 

delaminated composite structures.  This method of repair offers many advantages over the 

conventional repair.  For example, piezoelectric materials can repair weight sensitive structures 

without much added burden because of their light weight.  They enable repair adjustments to 

changes in external loads.   

 

During the current work, a detailed mechanics analysis of the delaminated beams subjected to 

concentrated static loads and axial compressive loads is presented.   The analytical value of 

repair voltage applied to the piezoelectric layers, surface mounted on delaminated beams with 

simply supported and cantilever boundary conditions, is proposed.  Numerical simulations are 

performed to study the variation of the repair voltage with the location and size of the 

delamination.  Results from the numerical simulations are validated by the way of FE 
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simulations using the CAD tool ABAQUS v6.4.  The current work provides a comparative 

analysis of the repair voltage from Numerical and FE simulations and considers the causes for 

possible deviations.  It also considers the future scope of the current study in advanced 

applications.     
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CHAPTER 2: LITERATURE REVIEW 

The initial use of piezoelectric materials dates back to 1880, when the Curie brothers first 

discovered the direct piezoelectric effect. Until recently, the use of piezoelectric materials has 

been limited to a variety of transducer applications. The widespread use of piezoelectric 

materials as distributed actuators began only in the 1980's, when advances in design and 

manufacturing technologies made these applications feasible. The experimental work of Bailey 

and Hubbard (1985) is usually cited as the first application of piezoelectric materials as actuators 

for vibration control. Using a piezoelectric polymer film as the active element on a cantilevered 

beam, they were able to demonstrate active damping of the first vibration mode. This new 

actuator application has led to renewed interest in the development of piezoelectric materials for 

advanced aerospace structures. 

 

As research into characterizing the active and sensory behavior of piezoelectric materials 

progressed, a variety of different analytical models were developed. These models can be 

classified into three broad categories as induced strain models, coupled electromechanical 

models, and coupled thermo-electromechanical models. The induced strain models use 

approximate theories to incorporate the piezoelectric effects and are generally limited to 

predicting only the active response of piezoelectric materials since the electric potential is 

neglected as a state variable in the formulation. The coupled electromechanical models provide a 

more consistent representation of both the sensory and active responses of piezoelectric materials 

by incorporating both the displacements and electric potential as state variables in the 

formulation. Typically, these models are implemented as finite element codes to provide a more 
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general analysis tool and a wide variety of different beam, plate, shell, and solid elements have 

been developed. A natural extension of the coupled electromechanical models is to also 

incorporate thermal effects. These coupled thermo-electromechanical models include 

temperature as an additional state variable to account for thermal effects in addition to the 

piezoelectric effects. A more limited number of finite element codes have been developed with 

this capability. 

2.1 Induced Strain Models 

The induced strain models can be separated into two categories: (1) actuator models and (2) 

actuator and sensor models. The actuator models are concerned only with analyzing the active 

behavior of piezoelectric materials. They typically approximate the strain generated in the 

piezoelectric material by an applied electric voltage using statically equivalent forces and 

moments. The combined actuator and sensor models were developed to include predictions of 

the sensory response of piezoelectric materials. Although these models introduce the 

piezoelectric constitutive equations into their formulation, the electric potential is usually not 

included as a state variable, the conservation of electric flux is not considered in the equations of 

motion, and the sensory voltages are back calculated using the charge equation. 

2.1.1 Actuator Models 

Crawley and de Luis (1987) developed an induced strain actuator model for beams. They 

formulated static and dynamic analytical models based on the governing equations for beams 

with attached and embedded piezoelectric actuators to model extension and bending. 
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Experiments were performed on both isotropic and composite cantilevered beams with attached 

and embedded piezoelectric actuators to validate their models. The study found that segmented 

actuators are always more effective than continuous actuators since the output of each actuator 

can be individually controlled. They also showed that embedded actuators in composites degrade 

the ultimate tensile strength, but have no effect on the elastic modulus. Baz and Poh (1988) 

investigated methods to optimize the location of piezoelectric actuators on beams to minimize 

the vibration amplitudes. Numerical studies demonstrated the potential to control vibrations in 

large flexible structures using a small number of bonded piezoelectric actuators. Im and Atluri 

(1989) presented a more complete beam model which accounted for transverse and axial 

deformations in addition to extension and bending. Governing equations were formulated for a 

beam with bonded piezoelectric actuators for applications in dynamic motion control of large 

scale flexible space structures. 

 

Tzou and Gadre (1989) formulated an induced strain piezoelectric shell theory. A dynamic 

model was derived from Love's shell theory for application to multi-layered thin shells with 

active distributed actuators. A case study was validated with experimental results for the 

vibration suppression of a cantilevered beam with a piezo-polymer actuator film. Crawley and 

Anderson (1990) developed a Bernoulli-Euler model to more accurately model actuation induced 

extension and bending in one-dimensional beams than the model of Crawley and de Luis (1987). 

The model neglected shear effects and was shown to be best suited for the analysis of thin beams 

and actuators. Clark et al. (1991) also extended the model of Crawley and de Luis (1987) to 

study the response of multiple piezoelectric actuators on beam excitations. Based on Euler beam 

theory, their model was validated with experimental results for the vibration response of a simply 
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supported isotropic beam. The model was found to be best suited for performing initial studies to 

determine the optimal location of actuators for exciting specific vibration modes. 

 

Crawley and Lazarus (1991) developed induced strain actuation models for plates. Equations of 

strain actuation were derived for both isotropic and anisotropic plates. Exact solutions were 

found for simple geometries and boundary conditions, while approximate solutions were used to 

solve more complex problems. The models were verified with experimental results. Static 

analysis of a cantilevered composite plate with attached piezo-ceramic actuators were conducted 

to show the potential for shape control of structures. Dimitriadis et al. (1991) extended the one-

dimensional induced strain beam model of Crawley and de Luis (1987) to two-dimensional 

plates with bonded piezoelectric actuators. Dynamic analyses were performed on simply 

supported plates to demonstrate the use of actuators to excite selective modes and the influence 

of actuator geometry on the modal response. Robbins and Reddy (1991) developed a 

piezoelectric layerwise laminate theory which was implemented into a beam element. Numerical 

comparisons were conducted using four different displacement theories (two equivalent single 

layer theories and two layerwise laminate theories) to demonstrate the increased accuracy in 

displacement and stress predictions obtained from using the layerwise theories. 

 

Mitchell and Reddy (1995b) formulated a power series solution for axisymmetric composite 

cylinders with either attached or embedded piezoelectric laminas. The solution was verified with 

finite element analysis. Numerical studies were performed to damp vibrations in truss-type 

structures using both an embedded cylindrical truss actuator element and an attached actuator 

patch. Lin et al. (1996) presented an induced actuation plate finite element based on first order 
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shear deformation theory. Numerical studies were verified with analytical solutions and 

demonstrated capabilities to control the deflection of composite plates using piezoelectric 

actuators. Park and Chopra (1996) formulated one-dimensional models to predict the extension, 

bending, and torsion behavior of beams under piezoelectric actuation. Comparisons with 

experimental data showed good correlation only for applications in which actuators have low 

orientation angles (less than 45°) with respect to the beam neutral axis. 

 

Chandrashekhara and Varadarajan (1997) implemented a finite element model for laminated 

composite beams with integrated piezoelectric actuators derived from a higher order shear 

deformation theory. Numerical studies investigated the effect of stacking sequence and boundary 

conditions on the actuator voltages and demonstrated the capability to achieve adaptive shape 

control of beam structures. Charette et al. (1997) formulated analytical models based on a 

variation approach to study plates with piezoelectric actuators. The model was specialized for a 

simply supported plate and used to determine the effects of piezoelectric actuator on the dynamic 

behavior of the plate. Results of the study were verified with experiments and showed only slight 

changes in the mode shapes of the plate.  

 

Chattopadhyay and Seeley (1997) implemented a third-order laminate theory into a finite 

element formulation to investigate piezoelectric actuators. Numerical results were verified with 

published experimental data. Additional comparisons were conducted to demonstrate the 

limitations of classical laminate theory in analyzing through-the-thickness stress and strain 

variations. Librescu et al. (1997) presented a model for composite beams with piezoelectric 

actuators that included structural tailoring and boundary-moment control. Numerical results 
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demonstrated the potential to improve the dynamic responses of thin-walled cantilevered 

structures. Bhattacharya et al. (1998) developed a finite element formulation based on first order 

shear deformation theory for beams and plates. An eight noded isoparametric piezoelectric 

element was developed to perform free vibration analysis of laminated composite beams and 

plates. Numerical studies assessed the impact of stacking sequence, boundary conditions, and 

applied electric potentials on the free vibration response.  

 

Oguamanam et al. (1998) formulated a piezoelectric composite beam finite element using von 

Karman nonlinear strain-displacement relations. Numerical studies demonstrated the influence of 

stress stiffening effects on the natural frequency of slender beams. Tong et al. (1998) developed 

a two dimensional thin plate finite element to investigate shape control applications. Numerical 

studies were performed to determine the optimum applied voltage, actuator layout, and actuator 

number for shape control of composite plates with distributed piezoelectric actuators.  

Chattopadhyay et al. (1999) implemented a third-order laminate theory into a finite element 

formulation to investigate the dynamic response of delaminated smart composite plates. 

Numerical studies were conducted on piezoelectric composite plates with single and multiple 

delaminations to demonstrate changes in the dynamic response. Hong and Chopra (1999) 

developed an induced strain plate finite element for composite plates based on classical laminate 

theory. The model was verified with experimental results and demonstrated the capability to 

achieve shape control using piezoelectric actuators. 

 

Wang performed extensive studies on the application of piezoelectric layers for repair and 

enhancement of composite structures.  Wang and Quek (2004) studied the application of 
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piezoelectric patches in the repair of delaminated beams subjected to concentrated static loads.  

A comprehensive mechanics analysis of the delaminated composite beam was performed to 

calculate the repair voltage, to be applied to the piezoelectric patches, to eliminate the shear 

stress singularity at the tips of delamination.  The dependence of the voltages on the location and 

size of the delamination was studied and corresponding numerical simulations were performed.  

Wang, Zhou and Quek (2005) investigated the repair of delaminated beam subjected to 

compressive force via piezoelectric layers.  The study focused on the elimination of the 

discontinuity in shear stresses induced at the tips of delamination due to the action of the axial 

compression.  Numerical simulations were performed to arrive at the buckling load of the 

delaminated beam with different boundary conditions and the repair voltage on the piezoelectric 

patches.  In another study, Wang and Quek (2004) focused on the repair of cracked column 

under axially compressive load via piezoelectric patch.  A model of rotational discontinuity at 

the crack location was used to develop the analytical buckling solutions and the effect of the 

crack on the buckling capacity of the damaged column modeled.  They employed small 

piezoelectric patches to induce local moments, and thereby compensate for the decreased 

buckling capacity of the column structures due to crack.  Wang and Wang (2003) considered the 

buckling enhancement of column strips with piezoelectric layer.  They developed the analytical 

model for obtaining the buckling capacity of the piezoelectric coupled column with general 

boundary conditions, modeled with different types of spring applied at the ends of the column.  

The buckling capacity was predicted using Eigen-value solution of the proposed model.  The 

study also considered optimal locations of the piezoelectric layer for higher buckling capacity for 

the various standard boundary conditions of the column.  Wang, Quek and Liew (2002) 

presented the repair of cracked beam with a piezoelectric patch.  The repair voltage to be applied 
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to the piezoelectric patches was developed using simply supported beam as an illustration.  The 

study demonstrated that the required voltage decreases linearly as the distance between the force 

and the location of the crack is increased.  It was also found to vary quadratically with the 

position of the crack along the length of the beam and decrease hyperbolically as the ratio of the 

thickness of the piezoelectric patch to that of the beam increased.   Wang and Wang (2000) 

investigated the optimal placement and size of the piezoelectric patches on beams from 

controllability perspective.  They studied the controllability index, which measures the input 

energy required to achieve a desired structural control by piezoelectric actuators, and observed 

that an optimal design of the piezoelectric actuator is obtained by maximizing the index.   

Earlier, Simitses, Sallam and Yin (1985) developed and analyzed a simple one dimensional 

model for predicting delamination buckling loads.  The model was employed to predict the 

critical loads for delaminated homogeneous plates with both SS and clamped ends.  The effects 

of delamination position, size and thickness on the critical loads were also considered during 

their study.  It was concluded that for certain geometries, the buckling load can serve as a 

measure of the load carrying capacity of the delaminated configuration.   

2.1.2 Actuator and Sensor Models 

Lee and Moon (1989) studied the control and sensing of bending and torsional deformations 

produced by an applied electric field using piezopolymer bimorphs. The experimental results 

validated the analytical model and demonstrated the use of piezopolymers as actuators. Lee 

(1990) developed a model that incorporated the piezoelectric constitutive relations. The model 

was based on classical laminated plate theory and was able to predict both the active and sensory 
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behavior of piezoelectric materials. Lee et al. (1991) investigated the use of sensor actuator pairs 

for active damping control. Experimental studies were conducted on the active damping control 

of the first mode of a cantilevered plate using a sensor and actuator pair to validate the 

piezoelectric plate theory. 

 

Chandrashekhara and Agarwal (1993) developed a laminated piezoelectric plate element based 

on a first-order shear deformation theory applicable to both thin and moderately thick laminates. 

Numerical results were verified with previously published results for a cantilevered plate with 

attached piezoceramic actuators subjected to a static electric field. Hwang and Park (1993) 

developed a piezoelectric plate element based on classical laminate theory and Hamilton's 

principle. The piezoelectric constitutive relations were used to formulate a four noded, two-

dimensional quadrilateral plate element for both sensory and active applications. Case studies 

were performed to investigate the static response of a piezoelectric bimorph beam and the 

vibration control of a cantilevered plate with attached piezoelectric sensors and actuators. 

Koconis et al. (1994a, 1994b) developed separate analytical models to investigate the sensory 

and active behavior of piezoelectric composite beams, plates, and shells. One model is used to 

predict the change in shape when a specified electric voltage is applied to the actuator, while the 

second model is used to determine the electric voltages necessary to achieve a desired shape. 

Both models were formulated using a two dimensional, linear, shallow shell theory which 

includes transverse shear effects and validated with other numerical, analytical, and experimental 

results. 
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Sung et al. (1996) derived sensor and actuator equations for a cylindrical piezoelectric composite 

shell. Based on classical laminate theory, these equations formed the basis of a sensor and 

actuator design methodology to control flexural and torsional vibrations in cylindrical shells. 

This methodology was used to design an experimental rig to demonstrate capabilities of the 

modal sensor and actuator to monitor and control the different vibration modes. Lam et al. 

(1997) developed a finite element model based on classical laminated plate theory for the active 

vibration control of composite plates with distributed piezoelectric actuators and sensors. 

Numerical studies were conducted on a cantilevered composite plate to demonstrate capabilities 

for static and dynamic analysis. Plettner and Abramovich (1997) implemented a consistent 

methodology based on Kirchoff-Love thin shell theory to model the static and dynamic response 

of anisotropic laminated piezoelectric shells. The formulation replaced the induced piezoelectric 

strain with an equivalent mechanical load. The model was verified with experimental and finite 

element results for a rectangular isotropic plate. 

 

Peng et al. (1998) implemented a beam finite element using a third order laminate theory for 

active vibration control of piezoelectric composite beams. Numerical studies were conducted to 

assess shape control applications and to investigate the effect of sensor and actuator locations on 

the response of the beam. Liu et al. (1999) formulated a plate finite element based on classical 

laminated plate theory for modeling the static and dynamic response of composite plates 

containing piezoelectric actuators and sensors. Numerical studies were conducted to verify the 

model with results from previously developed models and to study the influence of stacking 

sequence and sensor/actuator position on the response of composite plates.  
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2.2 Coupled Electromechanical Models 

Attempts to develop a more comprehensive representation of piezoelectric material behavior led 

to the development of more consistent models that captured the coupled response between the 

mechanical and electrical behavior. In these coupled models, the charge equation is incorporated 

into the equations of motion and the electric potential is introduced as an additional degree of 

freedom in the analysis. These models are generally also implemented as finite element programs 

to provide a more flexible and general purpose analytical tool. 

2.2.1 Analytical Models 

Mitchell and Reddy (1995a) formulated a refined hybrid theory for laminated piezoelectric 

composite plates. The displacement fields are modeled using third order shear deformation 

theory while electric potentials are represented using a layerwise laminate theory. An analytical 

solution was developed for simply supported boundary conditions and numerical results 

demonstrated the limitations of the induced strain methods in modeling thick laminates. Heyliger 

and Saravanos (1995) developed exact solutions to predict the vibration characteristics of simply 

supported laminated piezoelectric plates. Numerical studies were conducted to determine the 

influence of different laminations and aspect ratios on the natural frequencies and mode shapes. 

Batra and Liang (1997) developed three-dimensional elasticity solutions for the simply supported 

rectangular laminated plate with embedded piezoelectric layers. Numerical studies examined the 

steady state vibration of both thin and thick plates containing one actuator layer and one sensor 

layer. 
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2.2.2 Finite Element Models 

Allik and Hughes (1970) introduced a three-dimensional tetrahedron element in the finite 

element formulations. Derived at a time when piezoelectric materials were used mainly as 

crystals in transducer applications, the finite element formulation incorporated the piezoelectric 

constitutive relations and demonstrated the potential advantages of utilizing the finite element 

method. Naillon et al. (1983) formulated a finite element model to study the resonance 

phenomena of single piezoelectric structures typically used in ultrasonic transducers. Numerical 

studies were performed on the resonance characteristics of two-dimensional parallelepiped bars 

to assess potential applications in the design of ultrasonic probes. Lerch (1990) formulated two 

and three dimensional finite elements for performing vibrational analysis of piezoelectric sensors 

and actuators. The models were verified with experimental data. The natural frequencies and 

mode shapes of various piezoelectric based laminated composite structures were determined and 

used to optimize applications as transducers. 

 

Tzou and Tseng (1990) developed a thin piezoelectric solid element. Derived from Hamilton's 

principle and the piezoelectric constitutive relations, the element is specifically formulated for 

thin plate and shell structures with distributed piezoelectric sensors and actuators. Numerical 

studies were performed on the vibration response of a cantilevered plate with both an active and 

sensory layer of polymeric piezoelectric material. Lammering (1991) developed a piezoelectric 

shell element. Based on the Reissner-Mindlin shell theory and incorporating the piezoelectric 

constitutive equations, a shell element was formulated for thin shell structures with attached 

piezoelectric layers. Case studies were conducted on a cantilevered beam with an attached 
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piezoelectric polymer layer. Ha et al. (1992) formulated a three-dimensional brick element. 

Using a variational principle and the piezoelectric constitutive relations, they developed an eight-

noded solid element. Results from static and dynamic case studies were verified with 

experimental results for composite plates with attached piezoceramic actuator and sensor 

patches. 

 

Heyliger et. al. (1994) implemented a layerwise laminate theory into a finite element formulation 

for plates. Two separate layerwise models were developed which incorporated the coupled 

equations of piezoelectricity to account for both the active and sensory behavior of laminated 

plates with piezoelectric layers. Numerical results for a simply supported composite plate with 

attached polymer piezoelectric layers were verified with exact solutions. Ray et al. (1994) 

developed a two-dimensional quadrilateral element using a higher order laminated plate theory. 

An eight-noded quadratic isoparametric quadrilateral element was formulated. Results from the 

static analysis of a simply supported cross-ply laminated plate bonded with a piezoelectric 

polymer were verified using previously reported exact solutions. Shieh (1994) developed a 

multiaxially active and sensory laminated piezoelectric beam element. Based on adjusted 

elementary beam assumptions to account for warping effects, the element can simultaneously 

model axial extension, biaxial bending, and torsional twisting of the beam. Numerical studies 

were performed on a space antenna frame to demonstrate capabilities for three-dimensional 

multiaxial vibration control.  

 

Saravanos and Heyliger (1995) developed a layerwise finite element formulation for beams. Two 

separate theories were used to perform static and free vibration analysis of composite beams. 
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Numerical results were verified with previously published analytical studies and demonstrated 

the increased accuracy of stress-strain predictions with the layerwise theory. Shen (1995) 

developed a finite element formulation for beams containing piezoelectric actuators and sensors. 

Based on Timoshenko beam theory, the methodology captured the coupling between the 

longitudinal and bending motions. The theory was validated with previously published analytical 

results for a piezoelectric polymer bimorph beam and experimental results for a cantilevered 

beam with attached piezoelectric sensors and actuators. Suleman and Venkayya (1995) 

formulated a plate element for analyzing composite plates with layered piezoelectric actuators 

and sensors. Based on classical laminate theory, a four-noded bilinear Mindlin plate element was 

developed. Previously published experimental and analytical results for a cantilevered 

piezoelectric bimorph beam and a cantilevered composite plate with distributed piezoelectric 

actuators were used to validate the formulation. 

 

Donthireddy and Chandrashekhara (1996) also formulated a layerwise theory for beams. Results 

from the static response of a cantilevered composite beam with attached piezoelectric actuators 

were validated with previous analytical results. Additional parametric studies were conducted to 

study the influence of boundary conditions and ply orientation on the shape control of beams. 

Heyliger et al. (1996) implemented a layerwise laminate theory into a finite element formulation 

for shells. Results were verified with exact solutions for the static and free vibration response of 

a simply supported plate. Additional studies were performed on the active and sensory response 

of a cylindrical shell. Kim et al. (1996) developed a transition element to connect three 

dimensional solid elements to flat shell elements. The reported approach used solid elements to 

provide detailed models of the piezoelectric material, while flat shell elements were used to 
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provide a more flexible model for the substrate structure, and transition elements were used to 

connect the two regions. The model was verified experimentally for a cantilevered plate. 

 

Samanta et al. (1996) extended the eight-noded quadrilateral element developed by Ray et 

al.(1994) for dynamic analysis. Based on a higher order shear deformable displacement theory, 

the model was developed for active vibration control of laminated plates with integrated 

piezoelectric layers. Numerical results were performed on a simply supported cross-ply plate 

with attached piezopolymer layers to demonstrate the potential to achieve significant reductions 

in vibration amplitude. Kim et al. (1997) provided additional details of the theoretical 

development of the transition element reported by Kim et al. (1996). Numerical studies were 

conducted to demonstrate convergence characteristics and to show the increased computational 

efficiency of this approach Saravanos (1997) presented a shell element for curvilinear 

piezoelectric laminates which combined a first order shear deformation theory for the 

displacements along with a layerwise theory for the electric potential. The quadratic element was 

intended for static and dynamic analysis of thin to moderately thick shell structures. Numerical 

studies quantified the effects of curvature on the active and sensory response of piezoelectric 

shells. 

2.3 Coupled Thermoelectromechanical Models 

All of the previously described models neglect the implication of thermal effects on both the 

active and sensory response of piezoelectric structures. Although Mindlin (1974) derived the two 

dimensional thermo-piezoelectric equations for plates over twenty years ago, only limited 
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research has been performed into this area. The development of models for thermo-piezoelectric 

materials can be separated into two categories: (1) analytical models and (2) finite element 

models. The analytic models extend existing piezoelectric laminate theories to account for 

thermal effects and obtain solutions for specific problems. The finite element models provide a 

more general purpose tool to efficiently analyze complex problems. 

2.3.1 Analytical Models 

Tauchert (1992) developed a thermo-piezoelectric laminate plate theory. His theory extended 

classical laminate theory to account for thin laminated plates with thermo-piezoelectric layers. 

Specific solutions were developed for both free and simply supported composite plates with 

attached piezoelectric polymer layers. Numerical results demonstrated the capability to reduce 

thermal deformations through application of active electric voltages. Tzou and Howard (1994) 

formulated a thermo-piezoelectric thin shell theory for applications to active structures. The 

generic shell theory was derived using Kirchoff-Love shell theory and Hamilton's principle. 

Using a simplification procedure based on the Lame parameters and radii of curvatures, specific 

solutions were obtained for a cylindrical piezoelectric ring, a piezoelectric ring, and a 

piezoelectric beam. Tang and Xu (1995) developed dynamic solutions for a simply supported 

anisotropic piezo-thermoelastic composite plate. The coupling between the elastic field and the 

electric and thermal fields were neglected to simplify the analysis. Numerical results 

demonstrated a significant reduction in deflection of a plate by the addition of a piezoelectric 

layer with a harmonic electric field. 
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Tzou and Bao (1995) extended the thermo-piezoelectric thin shell theory developed by Tzou and 

Howard (1994) for applications to anisotropic shell laminates with distributed sensors and 

actuators. The governing equations were simplified and applied to a thin piezo-thermoelastic 

laminated shell made of a piezoelectric polymer. Applications demonstrated the coupling 

between the elastic, electric, and thermal fields and the importance of all three fields on the 

overall behavior of the shell. Stam and Carmen (1996) presented axisymmetric thermo-

electromechanical solutions for concentric piezoelectric cylinders. The analytical approach was 

used to model the quasi-static response of a linear piezoelectric motor. Results of the study 

demonstrated the capability to extrapolate the nonlinear dependence of the piezoelectric 

coefficients with electric fields to lower temperatures using the constitutive equations. Friswell et 

al. (1997) developed a linear model to investigate active damping of thermally induced 

vibrations. Numerical studies were conducted on a simply supported aluminum beam with a 

piezoelectric sensor/actuator pair to demonstrate the influence of pyro-electric effects on 

vibration control. 

2.3.2 Finite Element Models 

Rao and Sunar (1993) developed a finite element formulation with applications for integrated 

sensing and control of thermopiezoelectric materials. Numerical studies were performed on a 

piezoelectric bimorph beam and an isotropic beam with attached piezoelectric polymer layers. 

The results demonstrated the significance of thermal effects on the performance of distributed 

control systems. Jonnalagadda et al. (1994) implemented a nine-noded Lagrangian plate element 

using a first-order shear deformation theory. Numerical studies were performed on a simply 
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supported composite plate with an attached piezoelectric active layer and demonstrated the 

importance of a higher order laminate theory to accurate predict shear deformations in thick 

laminates. Tzou and Ye (1994) extended the previously developed solid element of Tzou and 

Tseng (1990) to account for thermal effects. The resulting three-dimensional thin hexahedron 

element represented the displacements, electric potential, and temperature as state variables. 

Numerical studies were performed on a cantilevered isotropic beam with attached piezoelectric 

layers to demonstrate the influence of thermal effects on sensing and control. 

 

Chandrashekhara and Tenneti (1995) developed a nine-noded finite element for active thermal 

control of composite plates with piezoelectric actuators and sensors. The approach incorporated 

an induced strain approach to approximate the piezoelectric and thermal strains. Numerical 

studies demonstrated the capability to suppress thermally induced deformations through the 

application of electrical voltages in piezoelectric patches. Shen and Weng (1995) implemented a 

three-dimensional brick finite element to investigate composite plates with piezoelectric layers. 

Numerical studies demonstrated the significant coupling between the strain and electric fields 

and the capability to achieve thermal shape control of a simply supported piezoelectric 

composite plate. Sunar and Rao (1997) formulated finite element equations for the design of 

thermo-piezoelectric sensors and actuators. Numerical studies were conducted on cantilevered 

beams with piezoelectric actuators to show the significance of temperature effects on distributed 

control. 
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2.4 Summary of current work 

 
The objective of current work is to propose a methodology for the repair of delaminated beams 

using piezoelectric layers. In order to focus on the principle behind the proposed method, cases 

of delaminated beam subjected to a concentrated static load and axial compression load are 

considered. The effect of fracture (in terms of generalized stresses and strains) of the beam due 

to the existence of the delamination is analyzed first.  Numerical simulations are performed to 

compute the repair voltage applied on the piezoelectric patches surface mounted on the beams.  

For simplicity purposes, only simply supported and cantilever beams are discussed in the 

research to illustrate the design of the piezoelectric materials in repair of delaminated structures. 

Parametric studies on the effect of the location and the size of the delamination on the repair 

design are performed. Results from the numerical simulations are validated by the way of FE 

simulations performed using the CAD tool ABACUS v6.4, and due consideration for the 

deviations between theoretical and simulation results provided. The studies in the current work 

provide a sound foundation for the application of piezoelectric materials in the repair of 

delaminated structures.  
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CHAPTER 3: MECHANICS OF MODEL 

This chapter discusses the effect of delamination in composite beam structures subjected to 

axially compressive loads and concentrated static loads.  The cases of SS and CL boundary 

conditions are considered for analytical formulation and the repair voltage applied on the 

piezoelectric patches, to eliminate the effect of delamination, is proposed.  The discussion is 

solely based on is on the work done by Wang and Quek (2004) and Wang, Zhou and Quek 

(2005). 

3.1 Current Formulation Assumptions 

The current formulation assumes a simple linear elastic model for composites, without 

considering some other factors, like the post-buckling motion and crack propagation due to 

perturbations in the loading, in the analysis.  Isotropic material properties are assumed for the 

composite structures and piezoelectric layers and the bonding between the two is assumed to be 

perfect.  That is, the bonding layer has an infinite stiffness.   

3.2 Effect of delamination on composite beams 

A detailed mechanics analysis is provided for the effect of delamination in composite beam 

structures.  The analysis is valid for both, beams subjected to concentrated static loads and beams 

subjected to axially compressive loads.  Beams with SS and CL boundary conditions are 

considered for the purpose of analysis.  Figures 6 and 7 and show a delaminated beam subjected 

axially compressive loads and concentrated static loads respectively. 
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The delamination part is studied via Euler-Bernoulli beam theory by considering two layers of 

the beam elements connected at the two ends.  The interface of the two layers is considered as a 

connection of two free surfaces.  Only bending motion is considered for stability analysis, under 

action of concentrated static loads or axially compressive loads, as the lateral and axial motions 

in a beam structure are decoupled.  Since the mid-planes of the two layers are off the mid-plane 

of the delaminated beam, axial elongation and compression on the two layers is induced due to 

bending of the beam.  It is assumed that an incremental tensile force ∆p1 and compressive force 

∆p2 is induced on the top and bottom layers of the delamination, during the bending of the beam.   

 

The material and geometric parameters of the delaminated beam considered for analysis are 

denoted as  

E - Young’s modulus of the host beam 

H - Thickness of the beam 

t - Distance of the delamination from the top of the host beam 

a - Length of the delamination 

L1 - Distance from left tip of delamination to the left end of the host beam 

L2 - Distance from right tip of delamination to the right end of the host  

         beam 
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Figure 6: Fracture mechanism at delamination tip for beam subjected to axially compressive load 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Fracture mechanism at delamination tip for beam subjected to concentrated static load 
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As shown in the figures 6 and 7, the subscripts 1,2,3,4 are used for entities associated with 

various sections of the beam as follows: 

1 – section from left end of beam to the left of delamination  

2 – section above delamination, extending for the entire span of delamination 

3 – section below delamination, extending for the entire span of delamination 

4 – section from right end of delamination to right end of the beam  

 

The continuity of deflection at the left tip of the delamination based on Euler-Bernoulli beam 

theory yields: 
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where,  

xl – Coordinate of the left tip of the delamination 

w1 – Flexural deflection/mode shape of the beam element on the left side of  

 the delamination;  the prime indicates the derivative with respect to x  

u2L – Horizontal deflection/mode shape of mid-plane of the upper layer of the  

delamination at the left tip 

u3L – Horizontal deflection/mode shape of mid-plane of the lower layer of the  

delamination at the left tip 

u1L – Horizontal deflection/mode shape of the mid-plane of the delaminated beam  
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at the left tip of the beam   

Similarly at the right tip of the delamination, we have, 
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where, 

xr – Coordinate of the right tip of the delamination 

w4 – Flexural deflection/mode shape of the beam section at the right side of the  

delamination; the prime indicates the derivative with respect to x 

u2R – Horizontal deflection/mode shape of the mid-plane of upper layer of  

delamination at the right tip 

u3R – Horizontal deflection/mode shape of the mid-plane of the lower layer of the  

delamination at the right tip 

u4R – Horizontal deflection/mode shape of the mid-plane of the delaminated beam  

at the right tip of the beam 

 

According to the elastic theory, the elongation and the compression of the mid-planes of the 

upper and lower layers is respectively expressed as: 
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where,  

T is the width of the beam. 

The characteristic of the non-deformable mid-plane of the delaminated beam implies  
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Comparison of the equations (1), (2), (3), (4), (5), (6) and (7) leads to  
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From equations (8) and (9) we have, 
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Thus, it is seen that the tensile and compressive forces are induced at the upper and lower layers 

of the delamination due to bending of the beam under the action of concentrated static load or 

axially compressive load.  These induced tensile and compressive forces lead to the discontinuity 

of the shear forces at the tips of the delamination, which further results into sliding mode of 

fracture of the beam at the delamination tips.  To avoid the sliding mode of fracture, and thus 
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render the beam repaired, it is required to induce counter forces to balance the shear forces at the 

tips of delamination.   

3.3 Buckling analysis of delaminated beams 

This section provides a simple mechanics model for the buckling solution of delaminated beams.  

SS and CL beams subjected to axially compressive load are considered for illustration purpose.   

Only the lower order Eigen-value problem is considered to arrive at the solution by the way of 

sectional analysis as shown in the figure 6.  Earlier, Simitses, Sallam, and Yin (1985) performed 

the buckling analysis of delaminated beam structures. During their study too, a sectional method 

was adopted and perturbation technique was used in deriving the buckling results. The effect of 

delamination was not explicitly addressed in their study.  Besides, a complicated model, 

involving more efforts, was proposed to arrive at the buckling solution. 

 

Referring to figure 6, the governing equation for section 1 of the delaminated beam is given by: 
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I is the area moment of inertia expressed as: 
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and A is the area of the cross-section of the beam expressed as: 

  )13(HTA =   
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Figure 8: Delaminated SS beam subjected to compressive load 

 

 

 

 

 

 

Figure 9: Delaminated CL beam subjected to compressive load 

 

For SS and CL beams shown in figures 8 and 9, the two types of boundary conditions on the left 

end are pinned and fixed respectively.  These are mathematically expressed as follows: 

For Pinned end: 

( ) )14(0011 =w
  

and 

( ) )15(02
1

1112
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=
=dx

xwd

x
   

For Fixed end:  
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( ) )16(0012 =w
  

and 

( ) )17(0
1

112

01

=
=dx

xwd

x
   

The general solution for ( )xw 11  satisfying the governing equation (11) and boundary conditions 

at the left end is expressed as: 

For Pinned end: 

( ) )18(sin 121111111 xAxAxw += λ
   

For Fixed end: 

( ) ( ) ( ) )19(sin1cos 1122112112 xxAxAxw λλλ −+−=
  

where, 

)20(
EI
F

=λ

 

and  

  A1i and A2i (i=1,2) are coefficients. 

 

Similarly, the expressions for the mode shape function ( )xw 44  on section 4, where (0 <x4 < L2), 

are provided by considering the boundary conditions on the right end of the beams.  The 

boundary conditions at the right ends for the beams in figures 8 and 9 are pinned and free 

respectively.  These are mathematically expressed as follows:  
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For Pinned end: 

( ) )21(0241 =Lw
    

and 

( ) )22(02
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4 2

=
=dx

xwd
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For Free end: 
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and 
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The corresponding general solutions for ( ),44 xw j  (j=1,3) satisfying the same governing equation 

(11), and two boundary conditions shown above are given by: 

For Pinned end: 

( ) ( ) )25(1cossincossin
2

4
21244211441 ⎟

⎠

⎞
⎜
⎝

⎛
−++−=

L

x
DLxxLDxw λλλλ  

For Free end:  

( ) ( ) )26(cossincossin 21244213443 DLxxLDxw +−= λλλλ   

where, 

D1j, D2j and D3j (j=1,3) are coefficients. 
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The delamination is viewed as the free surface between the upper and lower layers since shear 

motions for the two layers are free at the interface (Simitses, Sallam, and Yin, 1985).  The 

governing equations for the delamination part, that is, for the upper and lower layers are 

expressed as: 

( ) ( ) )27(a    0for 0 x 22
2

222
14

2

224
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x

xwd
F

x

xwd
I

dd
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where,  
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The general solution for the mode shapes, ( )xw 22  and ( )xw 23  , is: 

( ) )30(sincos 42321221122 BxBxBxBxw +++= λλ  

( ) )31(sincos 42321221123 CxCxCxCxw +++= λλ  

where, 
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( ) )33(
12

2
2 tE I

F
−

==
λ

λ  

  and   

  Bk, Ck (k=1,2,3,4) are the coefficients 

 

The continuity equations for the deflection and rotation at the interface of section 1 and section 2 

are expressed as: 

( ) ( ) )34(0211 wLw =
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Similarly, at the interface of section 1 and section 3 the continuity equations for the deflection 

and rotation are expressed as: 

( ) ( ) )36(0311 wLw =
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The tensile and compressive forces are induced at the upper and lower layers of the delamination 

induce additional moment given by:  
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Thus, the discontinuity of the moment and the continuity of the shear force at both the interface 

of section 1 and section 2 and the interface of section 1 and section 3 are expressed as follows by 

considering the expressions of ∆p1 in equation (9a): 
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which can be written as: 
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And, 
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which can be written as: 
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Similarly, the continuity conditions for deflection and rotation at the interface of section 2 and 

section 4 are expressed as: 
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)43()0()( 42 waw =
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While those at the interface of section 3 and section 4 are expressed as: 
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Thus, the discontinuity of the moment and the continuity of the shear force at both the interface 

of section 4 and section 2 and the interface of section 4 and section 3 are expressed as follows by 

considering the expressions of ∆p1 in equation (9a): 
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Substitution of the expressions of w1i(x1) (i=1,2), w4j(x4) (j=1,3), w2(x2) and w3(x3) from 

equations (18), (19), (25), (26), (30) and (31) into the continuity and discontinuity conditions in 

Equations (34), (35), (36), (37), (40), (42), (43), (44), (45), (46), (47) and (48) leads to the 
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following homogeneous equation for the coefficients A1i, A2i (i=1,2), B1, B2, B3, B4, C1, C2, C3, 

C4, D1j and D2j (j=1,2,3): 

 

 

 

 

 

[K]    =             (49) 

 

 

 

 

 

where,  

[K] is the coefficient matrix.   

 

The instability of the beam, that is, the buckling load for the delaminate beam will be derived 

from the condition for the non-trivial solution for A1i, B2i (i=1,2), B1, B2, B3, B4, C1, C2, C3, C4, 

D1j and D2j (j=1,2,3), from Equation (49) which is: 

det [K] = 0               (50) 

The corresponding buckling mode shape is available from equations (18), (19), (25), (26), (30) 

and (31) after the buckling load F is derived.  The process of deriving the buckling load and 

buckling mode shape involves the standard Eigen-value solution of equation (49). 
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Based on the above mechanics model, the buckling solutions for the two delaminated beams 

under investigation are obtained from the Eigen-value solutions of equation (49) using 

combinations of index (i,j) as follows: 

• Simply supported beam (i=1, j=1) 

• Cantilever beam (i=2, j=3) 

3.4 Solution for repair of beams subjected to axial compression 

Tensile and compressive forces are induced at the upper and lower layers of the delamination 

due to bending of the beams at their buckling modes.  These induced forces lead to the sliding 

mode of fracture at the tips of delamination.  Piezoelectric layers are used to induce counter 

shear forces at the interface of the piezoelectric layer and the host substrate by applying a 

suitable voltage.  This helps avoid or control the sliding mode of fracture at the tip of the 

delamination, caused by action of axial compressive load and thus, renders the beam repaired. 

 

 

 

 

 

 

 

Figure 10:  Upper layer of delamination bonded by piezoelectric patch 



47 

 

   

 

 

 

 

 

Figure 11: Lower layer of delamination bonded by piezoelectric patch 

 

Figures 10 and 11 show free-body diagrams of the infinitesimal beam elements of the upper and 

lower layers of the delamination, surface-bonded by piezoelectric layers separately. It is easily 

seen that forces at the two layers of the piezoelectric actuators are essential to eliminate the 

tensile or compressive forces applied on the upper and lower layers of the delamination, due to 

the bending of the beam at the corresponding buckling mode.  This helps erase the discontinuity 

of the shear forces at the tip of the delamination and thus the sliding mode of fracture can be 

avoided.  

 

The first pair of piezoelectric actuators is to be bonded with their right ends in the vicinity of the 

left tip of the delamination, while the second pair is to be bonded with their left ends in the 

vicinity of the right tip of the delamination. It was indicated by Crawley and de Luis (1987) that 

the force transferred between the piezoelectric layer and the substrate is over an infinitesimal 

distance near the ends of the actuator, if an infinitely stiff bonding is provided. Therefore, it is 

reasonable to assume that the force induced by the piezoelectric layer is just over the 
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infinitesimal domain near the tip of the delamination, under perfect bonding.  In other words, a 

thinner bonding layer and stiff bonding material is used. 

 

It is expected that each pair of the piezoelectric layers will induce tensile and compressive forces 

of magnitude ∆p1, given by equation (9a), at the interfaces of the piezoelectric layers and the host 

beam as shown in Figures 10 and 11.  Crawley and de Luis (1987) proposed the following 

expression for the shear force between a metal substrate and the piezoelectric layer, under the 

assumption of complete bonding between them: 

)51(
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EHTP

 

with  

)52(
1hE p
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and 

)53(
1

31
h

d V
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where, 

h1 – Thickness of the piezoelectric patch 

α = 6, when structure is considered as a bar 

Ep – Equivalent Young’s modulus of the piezoelectric layer for the one- 

dimensional problem  

d31 – Piezoelectric charge coefficient 
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Comparing equations (9a), (51), (52) and (53) and substituting P = ∆p1 leads to the expression of 

the voltages applied to the pairs of the piezoelectric patches as follows: 

)54()6( ''
2 31

1 ⎟
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=

==
wR xx r
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Note that for each piezoelectric pair, the voltage at the upper and lower piezoelectric layers 

should be of the same magnitude but, should have different alignment in the poling direction of 

the piezoelectric layer, so that the forces in figure 12 can be induced. 

 

          

 

 

 

 

 

 

 

Figure 12: Repair of delamination by piezoelectric patches 

  

It is seen that the induced forces by the piezoelectric pair will form a couple leading to a local 

bending to the beam structure. Such local bending definitely tends to induce deformation, but not 

singularity of stresses on the beam. 

 

Induced Shear Force due to  
Concentrated Static Load

Piezoelectric patch induced
counter force 

Piezoelectric patch induced 
counter force 
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It is significant to note that the piezoelectric layers would be activated only if the measured 

deflection of the beam at a certain position, due to the buckling instability, exceeds a critical 

value of (H/100). Thus, the piezoelectric layer would only be “triggered” when a sensor signal is 

received and the voltage will be applied by a power amplifier to the piezoelectric layer, creating 

an active repair system.  From equation (54), it is seen that the voltage applied on the 

piezoelectric patches is proportional to the difference of slope between left and right tips of 

delamination and is obtained from the Eigen-value solution of the equation (49).   

3.5 Solution for repair of beams subjected to concentrated static load 

As evident from the equation (54), the voltage applied on the piezoelectric patches is 

proportional to the difference in slope between the delamination tips.  A sectional analysis is 

performed to derive the response of delaminated beams subjected to static loading for SS and CL 

boundary conditions.  Due to continuity of deflection and slope at the delamination tips, it is 

reasonable to approximate the response of a delaminated beam to that of beam without 

delamination, on the condition that the effect of the delamination on the response of the 

delaminated beam is not obvious.  This hypothesis is illustrated with a sectional analysis of a 

typical delaminated beam structure.  



51 

 

 

 

 

 

 

Figure 13: Sectional analysis of a delaminated beam 

 

A delaminated beam shown in figure 13 is employed for the analysis. Denoting the support force 

at the left end as F1, the force at the right end, F2, is given as: 

 )55(12 FFF −=

  

The moment induced at the right end is given by 

( ) )56(1LFbLFM −−=

 

In context of figure 13, the three possible general cases of application of static load are: 

Case-1: The static load is applied on the left side of the delamination.   

 That is, b < L1   

Case-2: The static load is applied between the two tips of delamination.   

 That is, L1 < b < (L1+a) 

Case-3: The static load is applied on the right side of the delamination.  

 That is, b > (L1+a) 

where, b is the distance between line of action of force and left end of beam. 
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The expressions for response of the delaminated beam corresponding to the three static loading 

positions will be different.  A detailed mechanics analysis for the case-1, when b < L1, is 

considered hereinafter.  

 

The beam is partitioned into five sections shown in figure 13. For section-1, the governing 

equation based on Euler–Bernoulli beam theory is: 
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From equation (57), the solution of the deflection is obtained as: 
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where, 

( )01y and ( )0'
1y  are boundary conditions at the left end of the beam.  

The governing equation for section-2 is: 
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which has a general solution given by: 
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Based on the continuity conditions at x1 = b and x2 = 0, we have, 

)63(21 yy =  
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From equation (60), the slope at the left tip of the delamination is expressed as 
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Equation (65) is a function of only one unknown parameter, F1, and the boundary conditions at 

the left end of the beam. The reaction force at the left end of the beam is independent of the 

delamination, for the cases of SS and CL beams.  

The slope at the right tip of delamination can be obtained similarly.  Hence, the expressions for 

the slopes for beams with no delamination are related to the derivation of the voltage applied to 

the piezoelectric patches, for the repair of delaminated beams. 

 

 

 

 

 

 

Figure 14: Delaminated SS beam 
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Figure 15: Delaminated CL beam 

  

The responses of the slopes for SS and CL beams shown in figures 14 and 15 are quoted from 

the book by Gere (2001), and the solutions for the voltage are listed as follows: 

For SS beam: 
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Case-2: L1 < b < (L1+a)  
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Case-3: b > (L1+a) 
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For CL beam: 
 
Case-1: b < L1 
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Case-2: L1 < b < (L1+a) 
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Case-3: b > (L1+a) 

( ) )76(2
2

2 12'' aLawR xx R
wL xx L

ba
EI
F

++−−=−
==

 
 

( ) ( ) )77(
6

22 1
4 31

1 Lab
EId

hF
V ++−

+Ψ
=

β

 



56 

CHAPTER-4: NUMERICAL SIMULATIONS 

4.1 Simulation Parameters 

Numerical simulations are conducted to estimate the repair voltage for cases of delaminated SS 

and CL beams, based on the theory proposed by Wang and Quek (2004) and Wang, Zhou and 

Quek (2005). The various simulation parameters considered for the beams and piezoelectric 

patches are as follows:  

L = 1m 

T = 0.05m 

H = 0.01m 

E = (210 x 109) Nm-2 

Ep = (63 x 109) Nm-2 

h1 = 0.001m 

d31 = (190 x 10-12) mV-1 

Since the magnitudes of the voltages applied on all the piezoelectric patches are the same, we 

only investigate the variation of the voltage inducing compression in the piezoelectric layers.  An 

estimate of repair voltage for following two cases of external loads is provided: 

• Concentrated static load 
• Axial compression load 
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4.2 Repair of delaminated beams subjected to concentrated static load 

Current section provides a discussion on the numerical simulations for the case of delaminated 

SS and CL beams.   

4.2.1 SS beams 

Variation of the repair voltage against different parameters can be conveniently derived using 

equations 67, 69 and 71.   

 

The voltage to be applied on the piezoelectric patches for the various values of  L1, the distance 

between the left delamination tip and left end of the beam, is listed in Table 1, at t=0.005m, 

b=0.5m, a=0.2m and F=1N. The results show that the repair voltage is larger as we approach the 

center of the beam, and is found to have maximum value at the center of the beam.  Figure 16 

shows the variation of repair voltage plotted for different values of L1. 

 

Table 1: NS of repair voltage on piezoelectric layers for different values of L1, for a SS beam 

subjected to concentrated static load 

 

 

 

 

L1 (m) 
Repair Voltage 

V (volts) 
  0.1 29.5739 
0.2 44.3609 
0.3 59.1479 
0.4 66.5414 
0.5 59.1479 
0.6 44.3609 
0.7 29.5739 
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Figure 16: NS of (V vs. L1), for a SS beam subjected to concentrated static load 

 

The repair voltage is found to show a similar variation for different values of b, the location of 

the force along the longitudinal direction of the beam.  Table 2 lists the repair voltage for 

different values of b, at a=0.2m, L1=0.4m and t=0.005m, under the action of F=1N.  The results 

show that larger voltages will be needed if the force is applied at the center of the beam.  On the 

other hand, no voltage is necessary if the force is applied at the ends of the beam.  This 

observation is obvious due to the fact that V=0 at b=0 or L, as seen from the equations 67, 69 

and 71.  Figure 17 shows the variation of repair voltage versus b.   
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Table 2: NS of repair voltage on piezoelectric layers for different values of b, for a SS beam 

subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: NS of (V vs. b), for a SS beam subjected to concentrated static load 

 

Figure 18 shows the variation of the repair voltage plotted against the length of the delamination 

(a), at L1=0.4m, b=0.5m, t=0.005m and F=1N.  The magnitude of the repair voltage is found to 

decrease with increase in the size of delamination.  This can be easily verified from the equation 

b (m) 
Repair Voltage 

V (volts) 
0.0 00.0000 
0.1 14.7870 
0.2 29.5739 
0.3 44.3609 
0.4 59.1479 
0.5 66.5414 
0.6 59.1479 
0.7 44.3609 
0.8 29.5739 
0.9 14.7870 
1.0 00.0000 
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69.  Table 3 lists the values of repair voltage on the piezoelectric patches for different values of 

the delamination length.   

 

Table 3: NS of repair voltage on piezoelectric layers for different values of a, for a SS beam 

subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: NS of (V vs. a) for a SS beam subjected to concentrated static load 

a (m) 
Repair Voltage 

V (volts) 
0.2 66.5414 
0.3 61.6124 
0.4 55.4511 
0.5 48.7970 
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4.2.2 CL beams 

In case of the CL beams, variation of the repair voltage against different parameters is obtained 

from the equations 73, 75 and 77.   

 

The voltage to be applied on the piezoelectric patches for the various values of L1 is listed in 

Table 4, at a=0.2m, b=0.5m, t=0.005m and F=1N.  Figure 19 shows a plot of variation of repair 

voltage based on the values in Table 4.  As seen from the figure, the repair voltage for L1≥0.5m 

is zero.  This is obvious from equation 73 where, for L1≥0.5m, b≤ L1 always.   

 

Table 4: NS of repair voltage on piezoelectric layers for different values of L1, for a CL beam 

subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

L1 (m) 
Repair Voltage 

V (volts) 
0.1 -88.7218 
0.2 -59.1479 
0.3 340.1003 
0.4 362.2807 
0.5 0 
0.6 0 
0.7 0 
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Figure 19: NS of (V vs. L1), for a CL beam subjected to concentrated static load 

 

 

Table 5 lists the values of the repair voltage applied on the piezoelectric patches for the different 

values of the loading location, b, at 4, at a=0.2m, L1=0.4m, t=0.005m and F=1N.  Values in 

Table 5 are plotted in Figure 20, which shows that the repair voltage for b≤0.4m is zero.  This is 

again obvious from equation 73.   
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Table 5: NS of repair voltage on piezoelectric layers for different values of b, for a CL beam 

subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: NS of (V vs. b), for a CL beam subjected to concentrated static load 
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On the basis of values in Table 6, variation of the repair voltage is plotted for different values of 

the size of delamination (a) in Figure 21.  Calculations are conducted using equations 73, 75 and 

77, at L1=0.1m, b=0.5m, t=0.005m and F=1N.  As seen from the figure, the magnitude of the 

repair voltage decreases with increase in the size of delamination, as in equation 75. 

 

Table 6: NS of repair voltage on piezoelectric layers for different values of a, for a CL beam 

subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: NS of (V vs. a), for a CL beam subjected to concentrated static load 
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4.3 Repair of delaminated beams subjected to axial compression load 

Current section provides a discussion on the numerical simulations for the case of delaminated 

SS and CL beams by the way of non-dimensional analysis.  The non-dimensional parameters 

used in the simulations are:  

Length of the delamination, 
L
aa =   

Distance of the delamination to the left end of the beam, 
L
L

L
1

1 =  

Distance of the delamination to the top of the beam, 
H
tt =   

The non-dimensional buckling load is defined as 
F cr

FF =   

where,  

Fcr is the buckling load for the healthy beam. For example, the buckling   

load of a healthy SS beam (Timoshenko and Gere, 1961) is given by:  

 

L
F cr

EI
2

2π=  

while that of a healthy CL beam (Timoshenko and Gere, 1961) is given  

by: 

 

L
F cr

EI
4 2

2π=  
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In all subsequent simulations, the value of the voltage is derived by assuming that the 

piezoelectric layer would only be activated if the measured deflection of the beam at its center 

due to the buckling instability reaches a critical value of H / 100.  Distribution pattern of the 

repair voltage obtained here serves as a basis or guideline for similar distribution pattern for 

different values of deflection.   Simulation results are based on the Eigen value solution of the 

equation 49 and equations 51 and 54.    

4.3.1 SS beams 

The voltage required on the piezoelectric layer, to erase the sliding mode of fracture for a 

delaminated SS beam, is plotted in Figure 22.  The horizontal axis in the figure is the location of 

the center of the delamination.  It is seen that the maximum voltage is required when the 

delamination is located around the center of the beam.  

 

This observation can be explained from Equation 54 which shows that the required voltage is 

proportional to the difference of the slope between the two tips of the delamination, i.e. the 

average curvature on the span of the delamination. Since the curvature of the buckling mode of a 

simply supported beam is the maximum at the center, it is reasonable to see from Figure 22 that 

the maximum voltage is required when the delamination is located at the center of the beam.  

Table 7 shows the values of the repair voltage required for corresponding value of location of the 

center of delamination. 
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Table 7: NS of repair voltage on piezoelectric layers for different values of center of  

delamination, for a SS beam subjected to axial compression 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: NS of (V vs. Center of Delamination), for a SS beam subjected to axial compression 
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4.3.2 CL beams 

Table 8 lists the values of the repair voltage required for various values of location of the center 

of delamination. The required voltage on the piezoelectric layer for the cantilever beam is plotted 

in Figure 23, against the center of delamination.  It is seen that from the figure that the maximum 

voltage is required if the delamination is located at the fixed end of the beam while, a minimum 

voltage is required if the delamination is around the free end of the beam.  

 

Table 8: NS of repair voltage on piezoelectric layers for different values of center of 

delamination, for a CL beam subjected to axial compression 

 

 

 

 

 

 

 

 

 

 

 

 

Center of 
Delamination 

(m) 
Repair Voltage  

V (volts) 
0.15 -90.33 
0.23 -89.75 
0.31 -85.17 
0.38 -79.30 
0.46 -72.22 
0.54 -64.29 
0.62 -55.33 
0.69 -46.13 
0.77 -34.92 
0.85 -24.82 
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Figure 23: NS of (V vs. Center of Delamination), for a CL beam subjected to axial compression 
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 CHAPTER 5: FINITE ELEMENT SIMULATION 

FE simulations provide powerful tool to create a virtual model of the real world applications 

from various disciplines like solids, fluids and structures.  Numerical FE packages, with different 

capabilities and applications, are available these days viz., IDEAS, ANSYS, ABAQUS, Pro-

Mechanica, etc.  The underlying principle behind FE simulations remains same to a greater or 

lesser extent, in all these packages.  The process of FE analysis or simulations involves three 

basic stages: 

1) Pre-processing – It involves creating a CAD/geometric model of the part, creating and 

assigning material and physical properties to individual parts, creating assembly of the 

parts, generating a mesh and applying the required constraints, loads and boundary 

conditions.  Results are governed by the type of elements used and the quality of mesh 

generated.  The basic unknown parameter here is the nodal displacement. 

2) Processing – It involves the stiffness generation, mass generation, stiffness modification 

and solution of equations resulting in the evaluation of the nodal variables.  Other derived 

quantities such as gradients or stresses may be evaluated at this stage too.  A stiffness and 

mass matrix are formed for all the elements and are assembled to obtain the 

corresponding global matrices. These are then modified by applying the boundary 

conditions.  The nodal displacements are calculated by solving the FE equations and 

subsequent stresses and strains.   

3) Post-processing – It involves extraction of the results from the FE analysis. In case a 

static analysis it involves estimation of displacements and stresses, and for bucking 
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analysis it involves estimation of mode shapes, Eigen-values and frequencies of vibration 

for the structure.   

 

Of the various FE packages available, ABAQUS was selected to perform the FE simulations in 

current work, due to its capabilities  

• to model delamination  

• to simulate piezoelectric material properties 

 

The version 6.4 of ABAQUS was used for perform all the subsequent simulations.   

5.1 FE simulation using ABAQUS 

FE simulations using ABAQUS/CAE involves the use of modules, and performing the 

corresponding stated tasks, in the sequence mentioned in the Table 9.   



72 

Table 9: Simulation steps in ABAQUS v6.4 

Step 
# 

Module 
Name / FE 

analysis 
Stage 

Task/s Model at End of Task/s 

1 Part / Pre-
processing 

Create a part with features 
• Delaminated beam 
• Four Piezoelectric 

patches surface 
mounted on the beam 

 

 

 
 

2 
Property / 

Pre-
processing 

• Define the materials 
for beam and 
piezoelectric patch 

• Create distinct 
sections for beam and 
patches 

• Assign sections to 
beam and 
piezoelectric patches 

 

3 
Assembly / 

Pre-
processing 

Create an instance of the 
part in step-1 

 

 

4 Step / Pre-
processing 

• Define the nature 
of analysis viz., 
General-Static or 
Linear 
Perturbation- 
Buckle, with 
Subspace Eigen-
solver 

• Define the 
outputs desired 
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Table 9: Simulation steps in ABAQUS v6.4 (contd.) 

Step 
# 

Module 
Name / FE 

analysis 
Stage 

Task/s Model at End of Task/s 

5 Load / Pre-
processing 

Define the loads and BCs.  
BCs need to be defined for 
both, the beam and the 
piezoelectric patches 

 

6 Mesh / Pre-
processing 

• Define and assign the 
elements used for 
different features in 
the model; C3D6H 
for beam while, 
C3D6E for 
piezoelectric patch 

• Define the desired 
distribution of 
elements along 
various features/sub-
sections in model 

• Generate a mesh 

7 Job / 
Processing 

• Create a job to be 
analyzed 

 
• Perform analysis 

 

 
 

8 
Visualization 

/ Post-
processing 

• Create a display 
group which includes 
features of interest 
(delamination in our 
case) 

• View results 
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5.2 Simulation Parameters 

This section validates the results proposed in ‘Chapter 4: Numerical Simulations’ using FE 

simulations, and thus, employs the same material and geometric parameters used by the various 

corresponding sections in Chapter 4.  In addition to the parameters used for conducting NS, some 

additional parameters required for conducting the FE simulations are as follows: 

Poisson’s ratio for beam material: 0.29 

Density of beam material: 7850 kgm-3 

Poisson’s ratio for piezoelectric patch: 0.33 

Density for piezoelectric materials: 1514 kgm-3 

Piezoelectric coupling matrix: 

          

 

 

         Coulomb m-2  

 

 

FE simulations are conducted to validate the repair voltage for cases of delaminated SS and CL 

beams subjected to the following two cases of external loads: 

• Concentrated static load 
• Axial compression load 

 

15.080  0.0  0.0 

-5.207  0.0  0.0 

-5.207  0.0  0.0 

0.0  12.710  0.0  
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5.3 Validation of repair voltage for delaminated beams subjected to concentrated static 
load 

In this section the results proposed in various sub-sections of section 4.2 are validated.   

5.3.1 SS beams 

In this section, a discussion is provided on results from FE simulations performed for the case of 

a delaminated SS beam subjected to concentrated static load.   

 

Tables 10, 11 and 12 list the variation of repair voltage obtained from FE simulations for 

different values of L1, b and a respectively.  The values in Tables 10, 11 and 12 are obtained for 

(t=0.005m, b=0.5m, a=0.2m and F=1N), (a=0.2m, L1=0.4m, t=0.005m and F=1N) and 

(L1=0.4m, b=0.5m, t=0.005m and F=1N) respectively.   

 

Figures 24, 26 and 28 show the distribution of repair voltage plotted against L1, b and a 

respectively, being based on Tables 10, 11 and 12 respectively.  The distribution pattern in 

Figures 24, 26 and 28 is found to be similar to that in Figures 16, 17 and 18, which is based on 

NS.   

 

Figures 25, 27 and 29 show the singularity of stresses at delamination tips, before and after 

application of repair voltage. 
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Table 10: FE simulated repair voltage on piezoelectric layers for different values of L1, for a SS 

beam subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: FE simulation of (V vs. L1), for a SS beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 25: Singularity of stresses at delamination tips for a SS beam at L1=0.1m 
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Table 11: FE simulated repair voltage on piezoelectric layers for different values of b, for a SS 

beam subjected to concentrated static load 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: FE simulation of (V vs. b), for a SS beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 27: Singularity of stresses at delamination tips for a SS beam at b=0.9m 
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Table 12: FE simulated repair voltage on piezoelectric layers for different values of a, for a SS 

beam subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: FE simulation of (V vs. a) for a SS beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 29: Singularity of stresses at delamination tips for a SS beam at a=0.2m 
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5.3.2 CL beams 

This section discusses the results from FE simulations performed for the case of a delaminated 

CL beam subjected to concentrated static load.   

 

Tables 13, 14 and 15 list the variation of repair voltage obtained from FE simulations for 

different values of the parameters L1, b and a respectively.  The values in Tables 13, 14 and 15 

are obtained for (t=0.005m, b=0.5m, a=0.2m and F=1N), (a=0.2m, L1=0.4m, t=0.005m and 

F=1N) and (L1=0.4m, b=0.5m, t=0.005m and F=1N) respectively.   

 

Figures 30, 32 and 34 show the distribution of repair voltage plotted against the parameters L1, b 

and a respectively, based on Tables 13, 14 and 15 respectively.  The distribution pattern in 

Figures 30, 32 and 34 follows the one similar to in Figures 19, 20 and 21, which is based on NS.   

 

Figures 31, 33 and 35 show the singularity of stresses at the tips of delamination, before and after 

application of repair voltage. 
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Table 13: FE simulated repair voltage on piezoelectric layers for different values of L1, for a CL 

beam subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: FE simulation of (V vs. L1), for a CL beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 31: Singularity of stresses at delamination tips for a CL beam at L1=0.1m 
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Table 14: FE simulated repair voltage on piezoelectric layers for different values of b, for a CL 

beam subjected to concentrated static load 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 32: FE simulation of (V vs. b), for a CL beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 33: Singularity of stresses at delamination tips for a CL beam at b=0.8m 
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Table 15: FE simulated repair voltage on piezoelectric layers for different values of a, for a CL 

beam subjected to concentrated static load 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 34: FE simulation of (V vs. a), for a CL beam subjected to concentrated static load 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 35: Singularity of stresses at delamination tips for a CL beam at a =0.5m 
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5.4 Repair of delaminated beams subjected to axial compression load 

This section discusses the results from FE simulations performed for the case of a delaminated 

SS and CL beam subjected to axial compression load.   

5.4.1 SS beams 

Table 16 lists the variation of repair voltage obtained from FE simulations for different values of 

the center of delamination.  The values in Tables 16 are obtained for t=0.005m, b=0.5m, a=0.2m.  

Figure 36 shows distribution of repair voltage plotted against the values of center of 

delamination in Tables 16.  The distribution pattern in Figures 36 is found to be similar to that in 

Figure 22, based on NS.   

 

Figure 37 shows the singularity of stresses at delamination tips, before and after application of 

repair voltage. 
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Table 16: FE simulated repair voltage on piezoelectric layers for different values of center of 

delamination, for a SS beam subjected to axial compression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: FE simulation of (V vs. Center of Delamination), for a SS beam subjected to axial 

compression 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 37: Singularity of stresses at delamination tips for a SS beam for Distance of center of 

delamination from left end of beam as 0.3m 
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5.4.2 CL beams 

Table 17 lists the variation of repair voltage obtained from FE simulations for different values of 

the center of delamination.  The values in Tables 17 are obtained for t=0.005m, b=0.5m, a=0.2m.  

Figure 38 shows distribution of repair voltage plotted against the values of center of 

delamination in Tables 17.  The distribution pattern in Figures 38 is found to be similar to that in 

Figure 23, based on NS.   

 

Figure 39 shows the singularity of stresses at delamination tips, before and after application of 

repair voltage. 
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Table 17: FE simulated repair voltage on piezoelectric layers for different values of center of 

delamination, for a CL beam subjected to axial compression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: FE simulation of (V vs. Center of Delamination), for a CL beam subjected to axial 

compression 
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 (a) Before application of repair voltage  

 

 

 

(b) After application of repair voltage 

 

Figure 39: Singularity of stresses at delamination tips for a CL beam for Distance of center of 

delamination from left end of beam as 0.3m 
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CHAPTER 6: CONCLUSION  

During the course of this work, the effect of delamination on composite structures was studied 

considering relatively simple examples of SS and CL beams subjected to concentrated static load 

and axial compression loads.  The delamination in beam structures is found to induce 

discontinuity of shear stresses at its tips, and is among the primary causes of failure of the beam 

structures.  The use of the electromechanical characteristics of piezoelectric materials for repair 

of delaminated composite structures was considered through various sections of this work.  

 

A detailed mechanics analysis of delaminated beams, subjected to concentrated static load and 

axial compression load, was provided and numerical simulations were performed to calculate the 

repair voltage to be applied to the piezoelectric layers.  Under the action of repair voltage on 

piezoelectric layers, the discontinuity of the shear stress at the tips of delamination is eliminated, 

and the beam is thus repaired.  The variation of repair voltage with location and size of the 

delamination was also considered.  Subsequently, a validation study was performed to confirm 

the numerically proposed values of repair voltage by the way of FE simulations using the CAD 

tool ABAQUS v6.4.   

 

The research presented is an example of the relatively simpler actuator models for the application 

of smart materials in composite repair.  It provides the necessary information for the design of 

piezoelectric materials for repair of delaminated composites.  It also provides a solid foundation 

for the application of smart materials based on more advanced models like, coupled actuator-

sensor models, coupled electromechanical models and coupled thermoelectromechanical models.  
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APPENDIX A: CONSTITUTIVE RELATIONSHIPS OF PIEZOELECTRIC 
MATERIAL 
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The piezoelectric material is a kind of transverse isotropic material. In planes normal to the 

poling direction, all directions are equivalent with respect to the material properties. For plane 

problems, plate problems and beam problems, the respective 2-D or 1-D constitutive 

relationships may need to be derived from the 3-D constitutive relationship. Without losing 

arbitrariness, a coordinate system is supposed so that the thickness directions of plates and beams 

are in the axis 3, the longitudinal direction of beam is in axis 1, as shown in  

Figure A 1:  and Figure A 2. 

 

 

 

 

 

 

Figure A 1: Beam 

 

 

 

 

 

 

Figure A 2: Plate 
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A.1 Poling Direction in Axis 3 

If the piezoelectric material is poled in the direction 3, its constitutive relationship is given by 
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where 11σ , 22σ , 33σ , 12σ , 13σ , and 23σ  are the stress components; 11ε , 22ε , 33ε , 12γ , 13γ , and 

23γ  the engineering strain components; 1D , 2D , and 3D  the electric displacements; 1E , 2E , and 

3E  the electric field intensities; 
EC11 , 

EC33 , 
EC12 , 

EC13 , and 
EC55  the elasticity moduli at constant 

electric field; 31e , 33e , and 15e  the piezoelectric strain coefficients; 11Ξ , and 33Ξ  the dielectric 

constants. 
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(1) For the Mindlin’s Plate Model (IPT) 
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Substituting equation (A-3) into equations (A-1) and (A-2) yields 
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where 
EC11 , 

EC12 , 31e , and 33Ξ  are given by 
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(A-6) 

If the transverse shear stiffness is modified by a shear factor 2κ , equation (A-4) becomes 
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(A-7) 

 

(2) For the Kirchhoff’s Plate Model (CPT) 

Omitting the last two equations of (A-4) yields 
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(A-8) 

Besides of 033 =σ  the CPT also suppose that the transverse shear strains 13γ  and 23γ  vanish. 

Thus, equation (A-5) reduces to 
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(A-9) 

(3) For Plane Stress Problems 

For plane stress problems, 
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033 =σ , (A-10) 

02313 == σσ  (A-11) 

are assumed. Thus, 33ε  can be expressed as equation (A-3) and 13γ  and 23γ  can be expressed as 

follows: 
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(A-12) 

The reduced constitutive relations can be obtained by substituting equation (A-12) into equations 

(A-1) and (A-2) as follows: 
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(A-14) 

where 
EC11 , 

EC12 , 31e , and 33Ξ  are defined as in (A-6); 
ps
11Ξ  is given by 
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(4) For Plane Strain Problems 

The plane strain assumptions, 0231333 === γγε , implies 
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(5) For Beam Problems 

The constitutive relations for beam problems can be derived on the basis of plane stress problems 

by assuming 022 =σ , which implies 
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Substituting equation (A-18) into equations (A-13) and (A-14) gives 
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where 
ps
11Ξ  has been given by (A-15); 

EbC11 , 
be31 , and 

b
33Ξ  are given by 
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A.2 Poling Direction in Axis 2 
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the constitutive relationships for IPT, CPT, plane stress problems, plane strain problems and 

beams can be expressed as follows: 

(1) For the Mindlin’s Plate Model (IPT) 
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(A-24) 

(2) For the Kirchhoff’s Plate Model (CPT) 
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(A-25) 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Ξ
Ξ

Ξ
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

11

33

11

12

22

11

3331

15

3

2

1

00
00
00

000
0

00

E
E
E

ee
e

D
D
D

γ
ε
ε

; 

(A-26) 

(3) For Plane Stress Problems 
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(4) For Plane Strain Problems 
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(5) For Beam Problems 
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A.3 Poling Direction in Axis 1 
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the constitutive relationships for IPT, CPT, plane stress problems, plane strain problems and 

beams can be expressed as follows: 

(2) For the Mindlin’s Plate Model (IPT) 
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(2) For the Kirchhoff’s Plate Model (CPT) 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

15

31

33

12

22

11

55

1113

1333

12

22

11

00
00
00

00
0
0

E
E
E

e
e
e

C
CC
CC

E

EE

EE

γ
ε
ε

σ
σ
σ

, 

(A-36) 



109 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Ξ
Ξ

Ξ
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

11

11

33

12

22

11

15

3133

3

2

1

00
00
00

000
00

0

E
E
E

e
ee

D
D
D

γ
ε
ε

; 

(A-37) 

(3) For Plane Stress Problems 
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(4) For Plane Strain Problems 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

15

31

33

12

22

11

55

1113

1333

12

22

11

00
00
00

00
0
0

E
E
E

e
e
e

C
CC
CC

E

EE

EE

γ
ε
ε

σ
σ
σ

, 

(A-40) 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Ξ
Ξ

Ξ
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3

2

1

11

11

33

12

22

11

15

3133

3

2

1

00
00
00

000
00

0

E
E
E

e
ee

D
D
D

γ
ε
ε

; 

(A-41) 

(6) For Beam Problems 
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