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ABSTRACT 

Global sea surface temperature (SST) anomalies have a demonstrable effect on 

terrestrial climate dynamics throughout the continental U.S. SST variations have been 

correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric 

interactions known as climate teleconnections. Prior research has demonstrated that 

teleconnections can be used for climate prediction across a wide region at sub-continental 

scales. Yet these studies tend to have large uncertainties in estimates by utilizing simple linear 

analyses to examine chaotic teleconnection relationships. Still, non-stationary signals exist, 

making teleconnection identification difficult at the local scale. Part 1 of this research 

establishes short-term (10-year), linear and non-stationary teleconnection signals between SST 

at the North Atlantic and North Pacific oceans and terrestrial responses of greenness and 

precipitation along multiple pristine sites in the northeastern U.S., including (1) White 

Mountain National Forest – Pemigewasset Wilderness, (2) Green Mountain National Forest – 

Lye Brook Wilderness and (3) Adirondack State Park – Siamese Ponds Wilderness. Each site was 

selected to avoid anthropogenic influences that may otherwise mask climate teleconnection 

signals. Lagged pixel-wise linear teleconnection patterns across anomalous datasets found 

significant correlation regions between SST and the terrestrial sites. Non-stationary signals also 

exhibit salient co-variations at biennial and triennial frequencies between terrestrial responses 

and SST anomalies across oceanic regions in agreement with the El Nino Southern Oscillation 

(ENSO) and North Atlantic Oscillation (NAO) signals. Multiple regression analysis of the 

combined ocean indices explained up to 50% of the greenness and 42% of the precipitation in 
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the study sites. The identified short-term teleconnection signals improve the understanding and 

projection of climate change impacts at local scales, as well as harness the interannual 

periodicity information for future climate projections.  

Part 2 of this research paper builds upon the earlier short-term study by exploring a 

long-term (30-year) teleconnection signal investigation between SST at the North Atlantic and 

Pacific oceans and the precipitation within Adirondack State Park in upstate New York. Non-

traditional teleconnection signals are identified using wavelet decomposition and 

teleconnection mapping specific to the Adirondack region. Unique SST indices are extracted and 

used as input variables in an artificial neural network (ANN) prediction model. The results show 

the importance of considering non-leading teleconnection patterns as well as the known 

teleconnection patterns. Additionally, the effects of the Pacific Ocean SST or the Atlantic Ocean 

SST on terrestrial precipitation in the study region were compared with each other to deepen 

the insight of sea-land interactions.  Results demonstrate reasonable prediction skill at 

forecasting precipitation trends with a lead time of one month, with r values of 0.6. The results 

are compared against a statistical downscaling approach using the HadCM3 global circulation 

model output data and the SDSM statistical downscaling software, which demonstrate less 

predictive skill at forecasting precipitation within the Adirondacks.  
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CHAPTER 1 : INTRODUCTION 

Climate change and variability estimates from the Intergovernmental Panel on Climate 

Change (IPCC) in 2007 forecast an increase in North American temperature and precipitation 

during the 21st century (Meehl & Stocker, 2007). These fundamental natural processes are a 

result of the complex and chaotic interactions of the Earth system, which can be described as a 

collection of subsystems of interconnected parts or spheres, including the atmosphere, 

biosphere, hydrosphere and geosphere, each of which is open and allows the flow of mass and 

energy from one to another (Rial et al., 2004).  

Abrupt changes in temperature and precipitation can have a profound effect on the 

natural environment. Global vegetation density, or greenness, is highly correlated with 

temperature and precipitation (Los et al., 2001), and is susceptible to future climate variability. 

Yet it is unclear how teleconnection signal propagations could affect local temperature and 

precipitation patterns and subsequent ecosystem response, such as vegetation greenness, 

across different locales of North America. These IPCC forecasts trigger a renewed interest to 

study the response of precipitation patterns and terrestrial ecosystems in association with 

some hydrometeorological forcing processes of circumglobal teleconnection in the context of 

climate change. Such circumglobal teleconnection in the context of this paper refers to climate 

anomalies being related to each other at far distances (often thousands of kilometers). 

Understanding these relationships can yield new insight into forecasting the effects of climate 

change, as they relate to environmental time series data, such as precipitation or greenness.  
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New tools in remote sensing and spatial statistical analysis now permit deepened 

investigation of the mechanistic links between changing teleconnection patterns and their 

residual effect or memory on local terrestrial environments (David B. Enfield et al., 2001; 

Hodson et al., 2009; Keener et al., 2010; Raible, 2003; Sutton and Hodson, 2007). These 

mechanistic links can then provide a basis to estimate future impact on local precipitation and 

greenness in association with teleconnection patterns through various hydrometeorological 

forcing processes (Cai et al., 2009; Keener et al., 2010). 

1.1 Teleconnections 

Strong oceanic, hydrometeorological and ecological phenomena are physically linked 

across the globe by atmospheric circulation through some excitation mechanisms (Buermann, 

2003; Franzke and Woollings, 2011; Hubeny et al., 2011; Johnstone, 2010; Joseph and Nigam, 

2006; Sutton and Hodson, 2005). Climate teleconnections are often categorized in known 

oceanic–atmospheric circulation patterns, such as the El Nino Southern Oscillation (ENSO), 

North Atlantic Oscillation (NAO), Arctic Oscillation (AO) and the Pacific North American Pattern 

(PNA). These climatic patterns can be linked with time-series observations based on a 

multivariate array of oceanic (e.g., sea surface temperature, SST) and atmospheric (e.g., sea 

level pressure, SLP) variables. Teleconnection signals can also be found between univariate 

oceanic variables and inland terrestrial temperature, precipitation or greenness (Huber and 

Fensholt, 2011).  

Of particular interest in teleconnection research is the exploration of specific periodicity 

of these climate signals over which multiple terrestrial phenomena can be linked with each 



3 
 

other. Long-term multidecadal teleconnections have been observed and modeled over North 

America (David B Enfield et al., 2001; Franzke and Woollings, 2011; Hodson et al., 2009; Sutton 

and Hodson, 2007). These studies demonstrated low-frequency covariability in periods of 80 

years between Atlantic and Pacific SST-related climate indices and the variability of 

temperature and precipitation in North America. Higher-frequency teleconnections ranging 

from days to biennial and triennial periods also have been observed (Athanasiadis and 

Ambaum, 2009). Johnstone (2011) documented more than 30 global quasi-biennial (25–26 

months) temperature and precipitation oscillations that were discovered during the past 40 

years, with six existing cases over the United States; yet the study sites involved with coupled 

natural forcing and anthropogenic disturbance (such as urban areas) made teleconnection 

signals unidentifiable.  

The identification of distinct climatic teleconnection signals has long been used for 

specific forecasting of various hydrologic events. In traditional teleconnection identification, a 

linear correlation is often assumed between anomalous SST and SLP across the Pacific Ocean 

(Montroy, 1997) for projections of many local and regional terrestrial responses throughout the 

northern hemisphere, including the number and location of wildfires (Dixon et al., 2008), 

groundwater recharge rates (Holman et al., 2011), streamflow levels and nutrient loading 

(Keener et al., 2010). More recently, nonlinear and nonstationary tools have been developed to 

explore how the low- and high-frequency behavior between teleconnections and hydrologic 

system variables interact, which can lead to the development of robust forecasts in the field of 

hydrologic time series prediction. 
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1.2 Hydrologic Time Series Prediction 

Hydrologic time series prediction has been a successful modeling tool to address the 

underlying physical mechanism through a holistic approach (Coulibaly and Baldwin, 2005). A 

problem arises in that the physical system is highly dynamic, exhibiting nonlinearity and 

nonstationarity, meaning that the characteristics of the system change over time due to 

external forcings and internal feedback mechanisms. Inputs and outputs of the systems are not 

proportional, and they are subject to frequent abrupt change, as opposed to slow and gradual, 

where multiple states of equilibrium are normal (Rial et al., 2004). This is in contrast with 

traditional assumptions of stationarity in many environmental systems analyses.  

Climate, and therefore climatic processes (e.g. precipitation), is generally understood as 

the best example of nonlinear dynamics. Drivers of the climate system, such as the Atlantic 

Meridional Overturning Circulation (MOC), have been shown to exhibit multiple states of 

equilibrium and thresholds that result in periods of abrupt climate change (Marshall et al., 

2001). Such traits are characteristics of nonlinear behaviour. 

Hydrologic forecasting has historically been performed using environmental time series 

data, which are essential tools for the planning and management of water resource systems 

including water quality, water demand, water pricing and hydrometeorological processes 

(Maier and Dandy, 2000). These modeled time series data have historically relied upon the use 

of multivariate Auto Regressive Moving Average (ARMA) models (Rao and Krishna, 2009), which 

have long been considered an acceptable and successful representation of stochastic time 

series (Young et al., 1991). However, Coulibaly and Baldwin (2005) pointed out that the 



5 
 

fundamental assumption in most empirical or statistical approaches, such as the ARMA models, 

is stationarity over time, which cannot fully explain the complexities of geophysical data. Such 

difficulties expressing the geophysical system in traditional models have given rise to the use of 

artificial neural network (ANN) models for nonlinear, nonstationary data analysis. 

1.3 Objectives and Organization 

The objective of this study was to examine the low- and high-frequency teleconnection 

signals in association with hydrometeorological patterns between the Northern Atlantic and 

Pacific oceans simultaneously at pristine terrestrial forest regions of northeastern U.S., with 

limited anthropogenic disturbance in the study period, and to determine if the discovered 

statistical relationships could be leveraged in a hydrologic forecasting scheme.  In the context of 

high temporal resolution for hydroclimatic applications, the high-frequency teleconnections are 

defined here as correlation signals at the intraannual scale, whereas the low-frequency scale is 

for the interannual scales.  

This study is divided into two primary research investigations. In the first investigation, a 

short-term (10 year) study researches climate teleconnections between SST, precipitation and 

greenness in three pristine forested sites in the northeastern U.S., including (1) White Mountain 

National Forest - Pemigewasset Wilderness, (2) Green Mountain National Forest – Lye Brook 

Wilderness, and (3) Adirondack State Park – Siamese Ponds Wilderness, to gain a statistical 

insight of relevance region wide. The short-term time scale was chosen based on the availability 

of greenness Enhanced Vegetation Index (EVI) data, which are at high spatial resolution scales 

from satellite remote sensing imagery. Integrated remote sensing and wavelet analysis were 
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employed to detect distinct interannual (2 to 3 years) signals of enhanced variability suggestive 

of these aforementioned teleconnection patterns into the region of northeast U.S.  The 

teleconnection signal propagation was investigated by using statistical methods, including a 

pixel-wise correlation between precipitation, greenness and SST, as well as spectral analyses of 

the time series data using wavelet analysis. The short-term research helps confirm how low- 

and high-frequency transients through the teleconnections affect terrestrial vegetation cover 

and precipitation patterns at the three predetermined pristine forested sites. 

 The second investigation performs a long-term (30 year) study which focuses only on 

the teleconnection between SST in the northern Atlantic and Pacific and the precipitation at the 

Adirondack State Park. In addition to a teleconnection investigation, the long-term research 

also includes an ANN-based precipitation forecasting scheme developed to predict seasonal 

and monthly precipitation within the Adirondack boundary. 

 The following research is organized into seven chapters, including Chapter 1, this 

Introduction; Chapter 2 will present a detailed literature review of teleconnections and 

hydrologic time series prediction models; Chapter 3 will present the short-term teleconnection 

investigation and research findings; Chapter 4 will present the long-term teleconnection 

investigation, forecasting models and research findings; Chapter 5 will present the concluding 

remarks; and Chapter 6 will present the list of references and citations.
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Teleconnections in the Northeastern U.S. 

Observations during the past 1,000 years indicate the strong role that the Pacific and 

Atlantic oceans play in the New England area (Hubeny et al., 2011). The correlation signals 

between the PNA, NAO and ENSO and the New England climate are still predominant in the 

precipitation and temperature response for the region today. Precipitation amounts over the 

past century have increased by 10 to 15% and are expected to increase up to 34% during the 

next century (Beckage et al., 2008; Tang and Beckage, 2010). This increased precipitation has 

been influenced by positive cycles of PNA, characterized by above-average temperatures in 

western Canada and the U.S. and below-average temperatures across the south-central and 

southeastern U.S. (National Weather service Climate Prediction Center, 2012).  

ENSO, a coupled ocean-atmospheric system, has a strong influence over the global 

climate system, including the New England area.  Per the NOAA National Climate Data Center 

(NCDC), the Southern Oscillation Index (SOI) is a standardized index based on the observed sea 

level pressure differences between Tahiti and Darwin, Australia, which is one measure of the 

large-scale fluctuations in air pressure occurring between the western and eastern tropical 

Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes (Center, 

2012).  The negative phase of the SOI represents below-normal air pressure at Tahiti and 

above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values 

coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of 
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El Niño (La Niña) episodes. Linking with a difference in tropical Pacific sea level pressure 

between Tahiti and Darwin, ENSO has a general oscillation period of 2 to 7 years (National 

Weather Service Climate Prediction Center, 2012). The warm El Niño  phase influences climate 

across the eastern U.S. by shifting the jet stream southward, bringing cold winter weather, 

whereas the cold La Niña  cycle shifts the jet stream poleward, bringing warmer and milder 

winter weather to the same region (Greene, 2012). Pacific-Atlantic communication may also 

exist along the equator, with the tropical Pacific modulating the Hadley cell across Central and 

South America. Along this teleconnection, Atlantic SST and wind patterns are influenced by 

ENSO, with ENSO-derived Atlantic SST variations lagging the Pacific patterns by 4–5 months 

(Enfield and Mayer, 1997) based on various interannual time scales. Thus, New England climate 

associated with Atlantic-based variability may originate in the Pacific. 

The PNA pattern is a broad reflection of the upper-level jet stream, which typically 

consists of a large ridge and trough pattern across the U.S. The PNA index details the oscillation 

of this Northern Hemispheric wave (Leathers et al., 1991). The phase of PNA, and therefore the 

location of the jet stream, strongly influences the storm track and weather patterns in the 

northeast. Notaro et al. (2006) identified the positive PNA pattern as influencing winter time 

drought conditions in the northeast, as well as frequent frontal passages through New York 

during negative PNA and positive NAO cycles, with a zonal upper-level jet generally positioned 

over New York. PNA is also influenced by ENSO, especially during strong ENSO periods, which 

modulates the position of the East Asian jet stream. Positive PNA patterns are often observed 
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during El Niño periods, and negative patterns associated with La Niña periods (National 

Weather Service Climate Prediction Center, 2012). 

Atlantic patterns have a clear effect on the New England climate, particularly 

temperature.  The NAO is the dominant pattern of climate variability in the northern Atlantic 

and is sometimes considered the Atlantic component of the northern hemispheric annular 

mode, the AO. NAO is simply the SLP difference between the Icelandic Low and the Azores High 

(Marshall et al., 2001). Other primary modes of variability in the northern Atlantic include the 

Tropical Atlantic Variability (TAV), consisting of the fluctuations in tropical Atlantic SST and 

trade winds along the Intertropical Convergence Zone (ITCZ), and the Atlantic MOC, the Atlantic 

component of the fluctuating thermohaline circulation. The NAO atmospheric pattern is most 

dominant in the mid-latitudes, where NAO-derived extratropical forcings excite the TAV by 

rearranging the the Hadley circulation patterns and ultimately the location of the ITCZ. In 

addition, by modulating the location and intensity of the sinking branch of the MOC, the NAO 

effectively controls the primary heat transfer mechanism of the equatorial Atlantic to the 

northern latitudes. This broad influence over the North Atlantic basin is why NAO can be linked 

to such wide variations of temperature, precipitation, storm track and ecosystem variability 

across wide reaches in North America, Europe, Asia and North Africa, and why NAO can be 

considered a rival teleconnection pattern to ENSO in many regions, including New England. In 

New England, negative NAO phases (warm, high-pressure periods near Iceland) are marked by 

colder temperature, while the opposite is true for positive phases. This temperature pattern is a 

result of a fluctuating jet stream.  
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During positive NAO phases, Icelandic low-pressure systems and Azores high pressures 

lock the jet stream in a northeastern zonal path across North America toward Western Europe. 

During negative NAO phases, higher-pressure systems near Iceland weaken the atmospheric 

pressure gradient, which causes the jet stream to behave more meriodonal, often moving far 

southward and bringing polar weather south to the U.S. Because jet stream forcings are 

common to both ENSO and NAO, periods of both El Niño and negative NAO phases can cause 

unusually cold weather and storm tracking across New England. SST anomalies in the North 

Atlantic are linked to precipitation variability throughout the region, although to a lesser extent 

than temperature (Marshall et al., 2001). Because precipitation and temperature are the 

primary mechanisms of vegetation dynamics, greenness patterns are expected to correlate 

directly with regional precipitation and temperature and indirectly with the NAO–SST mode.  

The climatic trend and ecosystem response associated with the northeastern U.S. 

suggest that the climate at the time of European colonization had a strong nonlinear control 

over broad-scale vegetation patterns (Foster et al., 1998). This correlation signal has been 

significantly weakened over the past 350 years due to increasing anthropogenic impacts to 

ecosystems. This signal change must therefore be considered in analyzing the relationships 

between contemporary climate change and ecosystem dynamics. For this reason, a screening 

procedure for site selection was developed in this study to isolate pristine, heavily vegetated 

environments that nullified, to the greatest extent possible, the influence of anthropogenic 

“noise” on the climate teleconnection signal.  This procedure allowed the application of wavelet 
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multi-resolution spectral analysis to retrieve the nonlinear and non-stationary teleconnection 

patterns. 

2.2 Artificial Neural Networks 

Artificial Neural Networks were conceived in mid-20th century (McCulloch and Pitts, 

1943) to approximate the architecture of the biological neural network of the human brain. The 

highly distributed information processing of ANNs enables them to identify underlying 

relationships and interactions in highly complex nonlinear data, and is well suited for nonlinear 

modelling, pattern recognition, classification and control. Over time, the capabilities of ANNs 

became increasingly popular, and by the 1990s were beginning to be used in the field of water 

resources. Several hydrologic disciplines requiring multivariate forecasts have successfully 

implemented ANN modeling, including rainfall-runoff estimation (Minns and Hall, 1996), stream 

flow forecasting and water quality (Keener et al., 2010), ground-water modeling (Holman et al., 

2011), precipitation forecasting (Abbot and Marohasy, 2012), water management policy and 

reservoir operations (ASCE, 2000). Some of the key advantages that enabled ANNs success over 

traditional ARMA models include input data that do not require Gaussian distribution, seasonal 

variability allowance, strong performance with limited data, nonlinear capabilities and the 

ability to approximate the underlying relationships within the data without requiring a physical 

model or fundamental understanding of the system (Maier, 1997).  

Input data of ANNs can vary widely depending upon the goals of the model. All models, 

however, attempt to limit the input (predictor) variables to only those that can improve the 

model results, because too many variables, or inconsequential ones, can cause unnecessary 
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complexity, expense and poor performance. Traditional predictor parameters include the 

historic values of the time series in which the model is based (e.g. streamflow), as well as other 

exogenous variables the modeler expects are related to the modeled phenonmena (e.g. 

precipitation or evapotranspiration).  

Recently ANN models have found climate teleconnection patterns as useful predictor 

variables for hydrologic forecasting. These teleconnection patterns take the form of published 

climate indices of variable oceanic-atmospheric patterns across the globe. The ENSO pattern, 

for example, is an important coupled oceanic-atmospheric phenomena with global significance 

to the Earth’s climate, with strong manifestations in  temperature and precipitation worldwide 

(IPCC, 2007). Abbot and Marohasy (2012) found a strong performance enhancement to 

Australian precipitation ANN forecasting when combining multiple climate teleconnection 

indices, including the SOI, Pacific Decadal Oscillation (PDO) and the Niño 3.4 index. 

ANNs are inherently reliant on the basic time series predictor data of the model. Early 

ANN-based hydrologic studies reported limited forecasting success, which has been attributed 

to weaknesses in the the time series inputs. To solve this, (Wang and Ding, 2003) proposed to 

pre-treat the time series data by decomposing them into their fundamental signals, using 

wavelets, in a new hybrid ANN model called Wavelet Neural Network (WNN). Wavelet 

decomposition provides a mathematical process for distilling a signal into multiple levels of 

details, while also extracting local information of the time series (Rao and Krishna, 2009), 

providing a more robust representation of the time series data. WNNs also solve a common 

problem in ANN forecasting, in that multivariate hydrologic time series data are routinely 
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combined from many sources of varying frequencies into a single model, such as 

evaportransporation and streamflow data (Anctil and Tape, 2004). This can have a conflicting 

effect on the ANN, causing the model to diverge from the solution. By extracting the underlying 

frequency behavior of these datasets, the WNN models can more successfully interpret the 

interrelationships. 

WNN forecasting has been successfully applied in a number of hydrologic processes, 

including rainfall runoff, groundwater level and precipitation prediction. These studies have 

primarily modeled point source areas, such as stream and rain gauge data, to validate forecast 

skill. Such models are useful at the river or gauge location, or to make reasonable prediction 

about continental-scale climate patterns, but do not provide the spatial resolution or 

distribution necessary to help water managers at the local, watershed scale.  

Mwale et al. (2004) used a WNN-based model to forecast seasonal precipitation across a 

gridded array of rainfall data at a continental scale. With a novel approach, Mwale et al. (2004) 

applied wavelet principal component analysis (WPCA) to individual scale-averaged wavelet 

power (SAWP) datasets to identify homogeneous zones of rainfall variability and predictability 

in East Africa. Interestingly, Mwale et al. (2004) did not rely on traditional teleconnection 

regions, such as ENSO and NAO, to include in the predictive modeling, and instead relied on 

objectively-identified non-traditional teleconnection regions to obtain predictor data. The 

research discussed herein builds upon these earlier ANN modeling efforts to leverage existing 

teleconnection signals to develop more robust predictive models for hydrologic forecasting. 
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CHAPTER 3 : SHORT-TERM TELECONNECTION IDENTIFICATION 

3.1 Methodology 

The analytical framework for this study (Figure 3-1) emphasizes the screening and 

selection of three study sites in relatively pristine forestland.  The screening criteria rejected 

areas with identified forest fires, logging, residential development, hurricane impacts, 

landslides, debris flows or other relevant natural and anthropogenic impacts. Synchronous 

remote sensing imageries collected by satellite sensors and corresponding ground-based radar 

stations were then grouped to meet the requirement of consistent records in SST, precipitation 

and vegetation cover over the study period. All remote sensing datasets were processed in 

ArcGIS. To identify the correlation between the SST anomalies and response in terrestrial 

ecosystem, statistical analysis was performed using MATLAB, with code developed by Grinsted 

et al. (2004). Ocean indices were then extracted where the high- or low-frequency signal was 

dominant. Index-based oceanic regions were then identified to detect common low-frequency 

signals between greenness/SST and precipitation/SST via wavelet analysis.  

The following scientific questions were explored in the short-term investigation: (1) are 

high- and low-frequency signals present between SST anomalies and greenness and 

precipitation; (2) does precipitation explain a significant portion of greenness variability under 

the long-standing teleconnection signals; (3) do short-term, localized regions reflect similar 

teleconnection patterns as those in long-term known teleconnection regions; (4) can combined 

ocean regions aid in the predictability of local greenness and precipitation variability; and (5) is 
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there a residual or memory effect in terms of the SST anomalies over the time horizon on 

terrestrial responses of precipitation and greenness variation. 

 

  



16 
 

 

Figure 3-1:  Analytical framework for the short-term investigation. 
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3.2 Three Pristine Sites of Little Anthropogenic Influence 

Wilderness sites were chosen as the pristine and natural lands for this study, and are 

defined as “an area where the earth and its community of life are untrammeled by man (The 

Wilderness Act, 1964).”  The designation by U.S. Wilderness Act of 1964 restricts commercial 

activities, permanent roadway, motorized equipment, structure or installation of facilities 

within designated wilderness areas.  The three terrestrial study sites are (1) the Pemigewasset 

Wilderness within the White Mountain National Forest (WMNF) in New Hampshire; (2) the Lye 

Brook Wilderness within the Green Mountain National Forest (GMNF) in Vermont; and (3) the 

Siamese Ponds Wilderness (SPW) within the Adirondack State Park in New York (Figure 3-2). 

These sites are all highly vegetated areas >10,000 acres (4,046 ha), where climate 

teleconnection signals with North Atlantic and Pacific SST mode can potentially be greatest. 

Unlike similar studies (Cho et al., 2010; Holman et al., 2011; Huber and Fensholt, 2011) 

conducted over vast areas or in urban environments, these three study sites have experienced 

little to no anthropogenic impact (logging, prescribed burning or mining) or natural disasters 

(hurricanes or wildfires) within the past three decades. This screening process limited 

teleconnection signal distortion due to manmade interactions and extreme weather. 
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Figure 3-2: Terrestrial study regions including Lye Brook Wilderness, Pemigewasset Wilderness 
and Siamese Ponds Wilderness. 

 

3.2.1 White Mountain National Forest – Pemigewasset Wilderness 

The WMNF is located in northern New Hampshire and extends partly into southern 

Maine, covering an area of 796,700 acres (322,420 ha). It hosts numerous mountain peaks, 

including 48 that exceed 1,200 m (3,937 ft) and a large alpine zone in the east. Dominant 

vegetation is softwoods and northern hardwood forests. Nearly 115,000 acres (46,540 ha) of 

wilderness exist in five separate areas of the forest, including Great Gulf, Presidential 
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Range/Dry River, Pemigewasset, Sandwich Range and Caribou-Speckled Mountain (USDA, 

2008).  

The 45,000-acre (18,211 ha) Pemigewasset Wilderness (PW), officially established in the 

1984 New Hampshire Wilderness Act, is located within the WMNF. Extensive logging during the 

railroad era in the 19th and early 20th centuries led to major wildfires in the region. Currently, 

wildfire is not a common natural disturbance within the wilderness; no significant wildfire has 

occurred within the past 100 years. Elevations within the PW range from 387 m (1,270 ft) to 

1600 m (5,249 ft). The PW is managed only for nonmotorized recreational use (hiking and 

backpacking). 

3.2.2 Green Mountain National Forest – Lye Brook Wilderness 

The GMNF is located in southwestern and central Vermont, totaling more than 400,000 

acres (161,878 ha). Like the WMNF, Green Mountain is characterized by rugged mountain 

peaks with large northern hardwoods and softwood forests. Early colonial land practices 

primarily consisted of subsistence farming, grazing and orchard operations. Later, more intense 

industries including mining and logging reshaped the landscape. Continued degradation of the 

land, as well as a major flood in 1927, led to legislative actions creating the GMNF in 1932.  

Lye Brook Wilderness (LBW) located in southwest GMNF totals 17,841 acres and ranges 

in elevation between 242 m (794 ft) and 878 m (2,801 ft). Over the past 80 years, the GMNF has 

been assembled parcel by parcel by land acquisition from private landowners, and it is now the 

largest contiguous expanse of public land in Vermont. These private lands historically were 

heavily logged and grazed, with much of their natural resources removed or degraded. Today, 
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the forest is recognized as an area of significant ecological diversity, including at least 69 unique 

natural communities ranging from small marsh wetlands to stands of hemlock. Open wetlands, 

rocky outcrops and cliffs compromise 7,000 acres or 2,833 ha (2% of the forest). Approximately 

100,000 acres (40,469 ha) are used for logging and other industry, although not within the LBW. 

Natural disasters, including wildfire and insect disease, are a noted problem to the forest, 

including 282 acres (114 ha) of land burned in 2009 alone. The Asian longhorn beetle and the 

emerald ash borer are two pests that threaten the forest’s future (USDA, 2009); although they 

were not considered significant for the purposes of this study. 

3.2.3 Adirondack State Park – Siamese Ponds Wilderness 

SPW, 114,010 acres (46,139 ha) of forest preserve land, is one of the largest wilderness 

areas in the Adirondack Park, located in the park’s south-central portion within the counties of 

Warren and Hamilton (New York State Department of Environmental Conservation, 2005). SPW 

is considered part of the Adirondack highlands, with elevations ranging from 387 m (1,270 ft) to 

1,052 m (3,451 ft).  In the early 19th century, the forests of the SPW, as in the rest of Adirondack 

Park, were heavily logged by the timber industry and clear-cut for expanding farms in the 

region. Several open pit mines were established within SPW; only the garnet mines in Ruby 

Mountain are currently in operation. After much of the SPW was logged for timber, the land 

reverted to state ownership in the late 19th century through tax sales. More than 80% of SPW 

was state-owned by 1910. 

Slash and debris from the logging era accumulated, and severe drought in the early 20th 

century brought the great fires that burned thousands of acres within the SPW. Subsequent 
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natural disasters included the blow-down of 1950, caused by hurricane-force winds that 

damaged large areas of the western SPW, and major disease outbursts such as beech bark 

disease have affected the hardwood in large areas since the 1960s. 

3.2.4 SST Delineation in North Atlantic and Pacific Oceans 

The areas marked in both the Northern Atlantic and Pacific oceans (Figure 3-3) were 

selected to examine SST anomalies and climate signal teleconnection to the three terrestrial 

sites.  

 

 

Figure 3-3: Northern Atlantic and Pacific boundaries in this study. The areas marked in both the 
Northern Atlantic and Pacific oceans were selected to examine SST anomalies and climate signal 
teleconnection to the three terrestrial sites. 
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3.3 Remote Sensing Data Preparation 

Table 3-1: Summary of Remote Sensing Imagery and Instruments. 

Remote 

Sensing 

Sensors 

MODIS Terra 

Enhanced Veg. Index 

(EVI) 

AVHRR Pathfinder 

GHRSST Global Level 4 

(SST) 

NEXRAD Level 4 

Data 

(Univ. of Okla) 

(Precipitation) 

Data 
Detects vegetation density 

(greenness) 

Detects Sea Surface 

Temperature (SST) 

Detects 

precipitation 

Temporal 

Resolution 

Monthly data product from 

daily overpass images 

Daily worldwide SST 

images 

Daily precipitation 

totals 

Spatial 

Resolution 
1-km resolution 0.25-degree resolution 4-km resolution 

Ground-

Truthing 

Correction 

No ground-truthing 

adjustments 

Ship and buoy ground-

truthing 

Jan 2002 – Dec 

2010 data record 

(108 months) 

Time Period 
Feb 2000 – Dec 2009 data 

period (119 months) 

Feb 2000 – Dec. 2010 data 

record (131 months) 

Rain gage ground-

truthing bias 

adjustment 

Data Source http://mrtweb.cr.usgs.gov/ http://podaac.jpl.nasa.gov/ University of Okla 

 

3.3.1 Enhanced Vegetation Index (EVI) 

EVI data were obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument onboard the TERRA satellite (Table 3-1). Launched in December 1999, 

MODIS has been capturing high-quality multispectral data used to estimate vegetation density. 

The MODIS EVI product provides much higher spatial resolution than the Advanced Very High 

Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) product, while 

matching its daily temporal resolution. The MODIS EVI calculates vegetation density in similar 

ways as NDVI. However, it corrects for a number of atmospheric particle distortions and 

saturation effect, has a greater optical penetration into canopies, and thus offers more robust 

reconstruction than NDVI in viewing areas with high biomass (like forests) (Chuvieco and Huete, 
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2010). In this study, monthly 1 km resolution EVI data were obtained from the MODIS Online 

Reprojection Tool for the period February 2000 through December 2009.  

3.3.2 Precipitation 

Level 4 NEXRAD data, processed by the University of Oklahoma, yielded precipitation 

estimates from the ground-based NEXRAD radar coverage with bias-adjustments from ground-

truthing rain gauge sites. The original precipitation data in 4 km resolution were downscaled to 

1 km resolution using cubic interpolation techniques and gridded over each site to match the 

scale and spatial extents of the EVI data. Data were available from February 2002 through 

December 2010. 

3.3.3 Sea Surface Temperature 

SST data were obtained from the Group for High Resolution Sea Surface Temperature 

(GHRSST) global Level 4 SST analysis. This product produces a daily 0.25-degree grid of SST at 

the NOAA National Climatic Data Center and uses optimum interpolation (OI) data from the 4 

km AVHRR Pathfinder Version 5 time series. The data are bias-adjusted using in-situ ship and 

buoy observations. The resolution was resampled at a 0.5-degree scale using cubic 

interpolation to obtain more computationally efficient analysis of the Ocean boundaries. Data 

from 2000 through 2010 were used in the analysis. 

3.4 Modeling Scheme 

Identifying climate teleconnections conducted in this study expands upon the work 

performed by Huber and Fensholt (2011), who demonstrated strong teleconnection signals 
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between the African Sahel region and portions of the Atlantic and Pacific oceans; however, 

previous studies were limited to linear relationships between SST and greenness, discounting 

the nonlinear patterns that may influence teleconnection signals (Huber and Fensholt, 2011). In 

the current study, a linear correlation method was used as a simple initial screening process to 

identify indexed regions with strong sea-land correlation in Atlantic and Pacific oceans. Regions 

of these oceans with strong correlation for a period of at least 3 months are then extracted as 

individual SST indices followed by a stepwise regression analysis (SRA). All extracted indices are 

then modeled as independent variables in the SRA against the greenness and precipitation 

dependent variables for each site. Indices without statistically significant predictive terms were 

discarded. The final SST indices were then characterized using wavelet spectral analysis to 

search for nonlinear and non-stationary signals of climate teleconnections associated with the 

three terrestrial sites. The benefit of using wavelet analysis is that the time-frequency 

relationship of multiple time series can be simultaneously analyzed in comparison to the linear 

correlation analysis that can only address the “partially explained” results in a correlation 

analysis. 

3.4.1 Linear Correlation Analysis and Data Preprocessing 

Pixel-wise linear correlation maps were developed between each terrestrial dataset and 

the Atlantic and Pacific SST anomalies using Pearson’s coefficient of correlation: 

𝑟 =

(

 
∑ [(𝑥𝑖 − 𝜇(𝑥)) ∗ (𝑦𝑖+𝑑 − 𝜇(𝑦))]
𝑛
𝑖

√∑ (𝑥𝑖 − 𝜇(𝑥))
2𝑛

𝑖 × √∑ (𝑦𝑖−𝑑 − 𝜇(𝑦))
2𝑛

𝑖 )

  (1) 
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where r is the correlation coefficient, n is the number of observations in a time series, x 

is a measurement of terrestrial dataset time series, y is an SST measurement in time series, µ is 

the mean and d is the time lag.  Before calculating the correlation coefficients, all datasets were 

converted to monthly averages (SST and EVI) or monthly totals of precipitation. Both terrestrial 

and oceanic time series were converted to anomaly values to remove seasonality. Anomaly 

values were computed by subtracting the monthly median value from each pixel for each 

month over each raster image. Median values, instead of mean values, were used for 

calculating climatology values because the time series is less than the 30-year period, and 

therefore the mean value would give undue weight to outliers over a shorter period as 

indicated by the World Meteorological Organization (Huber and Fensholt, 2011). For further 

noise reduction, all time series were smoothed using a 3-month moving-average filter. Each 

terrestrial dataset was reduced to a single time series by calculating the area-averaged value 

(Figures 3-4 and 3-5).  

Pixel-wise correlation maps for each time series dataset were computed for all lags 0–12 

months. Regions of highly correlated areas were extracted as individual SST indices and then 

further screened using the SRA method. 
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Figure 3-4: Normalized EVI anomalies in which greenness anomaly time series is less consistent, 
particularly the more coastal PW site, and shows a general decreasing trend. 

 

 

Figure 3-5: Precipitation anomaly in which the time series precipitation maps show a consistent 
pattern across all datasets, with a slow increasing trend across the time horizon. 
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3.4.1.1 Stepwise Regression Analysis 

SRA is a multilinear regression model that performs a series of regressions on an array 

of potential explanatory variables that are added or removed from the model at each step 

based on their statistical significance. Each step calculates the predictive value of a variable’s 

coefficient estimate from its F-statistic and tests against the model with and without that 

potential parameter. The method is concluded when no additional variables can improve the 

model. Each extracted SST index was included as a potential explanatory variable in predicting 

greenness and precipitation at each site, whereas indices not found to be significant were 

discarded.  A variable lagged SRA analysis was performed to find the best model with the 

highest R2 value, which is considered the most significant time lag between the SST indices 

(independent variable) and terrestrial dataset (dependent variable), leading to the generation 

of the best causal relationship for explaining the teleconnection signal propagation with respect 

to multiple index regions in both Pacific and Atlantic oceans. 

3.4.2 Wavelet Analysis 

Wavelet analysis decomposes discrete time series observations into the time-frequency 

domain. The spectral analysis allows the determination of dominant localized variations of 

power (i.e., where the variance of the time series is largest for a given frequency) (Keener et al., 

2010). By decomposing a time series into the time-frequency domain, one can determine both 

the dominant modes of variability and how those modes vary in time (Torrence and Compo, 

1995). In this study, wavelet analysis was used to quantify and visualize statistically significant 
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changes in monthly North Atlantic and Pacific SST transients and the terrestrial greenness as 

well as precipitation over the three pristine forested sites. 

3.4.2.1 Continuous Wavelet Transform 

Assume a time series, , with equal time spacing  and , and a 

wavelet function, , that depends on a nondimensional time parameter . To be a 

legitimate wavelet, the function must have a zero mean and be localized in both time and 

frequency space (Farge, 1992). The Morlet wavelet used in this study is a wavelet consisting of 

a plane wave modulated by a Gaussian:  

𝜓(𝜂) = 𝜋−
1

4𝑒𝑖𝜔𝑜𝜂𝑒−
𝜂2

2 , (2) 

 

where is the nondimensional frequency. 

Morlet wavelets are non-orthogonal, complex functions that can be used with the 

continuous wavelet transform . The continuous wavelet transform (CWT) of a discrete 

sequence  is the convolution of  with a scaled and translated version of , and is given 

by: 

  𝑊𝑛(𝑠) =  ∑ 𝑥𝑛′𝜓
∗[(𝑁−1

𝑛′=0 𝑛′ − 𝑛)𝛿𝑡/𝑠]  , (3) 

where * is the complex conjugate, s is the wavelet scale,   is the discrete sequence, s 

is the scale, n is the localized time index, is the translated time index and   is the 

normalized wavelet. To approximate the CWT, the convolution should be performed N times 

for each scale, where N is the number of points in the time series. By choosing N points, the 
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convolution theorem allows all N convolutions to be performed simultaneously in Fourier space 

using a discrete Fourier transform. The discrete Fourier transform of  is: 

𝑥̂𝑘 = (
1

𝑁
)∑ 𝑥𝑛𝑒

−
2𝜋𝑖𝑘𝑛

𝑁𝑁−1
𝑛=0 , (4) 

where k=0…N-1 is the frequency index. In the continuous limit, the Fourier transform of 

a function  is given by . By the convolution theorem, the CWT is the inverse Fourier 

transform of the product: 

𝑊𝑛(𝑠) =  ∑ 𝑥̂𝑘𝜓̂ ∗ (𝑠𝜔𝑘)𝑒
𝑖𝜔𝑘𝑛𝛿𝑡𝑁−1

𝑘=0 . (5) 

The wavelet power spectrum is defined as  and the amplitude at each point, 

, can be found. The univariate wavelet analysis was performed using the MATLAB 

WAVETEST script provided by Torrence and Compo (1995). 

3.4.2.2 Cross-Wavelet Analysis 

To demonstrate the teleconnection signal between two time series, a cross wavelet 

transform (XWT) is performed. A thorough description of cross wavelet analysis is provided by 

Torrence and Compo (1995), with practical applications and MATLAB scripts provided by 

Grinsted et al. (2004). 

Given two time series X and Y with wavelet transforms  and , the XWT 

defined as  is: 

𝑊𝑛
𝑋𝑌(𝑠) = 𝑊𝑛

𝑋(𝑠)𝑊𝑛
(𝑌∗)(𝑠), (6) 
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where * is the complex conjugate. The XWT identifies regions in time frequency space 

where the two time series show high common power and significance. Two time series with a 

significant XWT signal and relationship can suggest causation and thus potential teleconnection. 

3.4.2.3 Wavelet Coherency Analysis 

The wavelet coherency transform (WTC) identifies regions where multiple time series 

covary in frequency space, but they do not necessarily have a high common power. WTC 

therefore demonstrates local covariance and will typically have more significant areas than 

XWT. The wavelet coherency is defined by Grinsted et al. (2004): 

𝑅𝑛
2(𝑠) = (

|𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)∙𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2
)
), (7) 

where S is a smoothing operator. This equation is notably similar to that of traditional 

correlation coefficient, but it is localized in time-frequency space. 

Similarly, an XWT and WTC can be made between two time series datasets. The XWT may 

enable the identification of high common power between two separate time series and can 

suggest possible teleconnections between multiple regimes. The WTC may show how each time 

series covary, but the regions do not necessarily have high common power. 

3.5 Results and Discussion 

3.5.1 Linear Correlation and Wavelet Analysis of Anomaly Data 

Across all three study sites, the greenness anomaly time series (Figure 3-4) is less 

consistent than precipitation, particularly in the more coastal PW site, and shows a general 
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decreasing trend. The time series precipitation maps (Figure 3-5) show a more consistent 

pattern across all datasets, with a slow increasing trend across the time horizon. The time series 

of greenness versus precipitation over each site (not shown) display little consistency, with 

periods of low greenness associated with high precipitation and vice versa. A basic visual 

interpretation of the graph comparison is generally unhelpful, particularly if underlying low 

frequency relationships are to be understood. Wavelet analysis permits the underlying modes 

of variability between the time series to be observed. 

To demonstrate wavelet analysis, two CWT expanded time series for SPW greenness 

and the Index 1 SST (east coast of U.S./Canada as shown in figure 3-9) were carried out (see 

Figure 3-6). Both time series include the raw, unfiltered time series record, averaged spatially 

over their respective regions. The SPW greenness graph shows a strong signal (dark red) 

centered on the 12-month frequency, which is consistent with the annual cycle of vegetation 

growth. The graph also shows a moderately strong signal (green and yellow region) centered on 

the 6-month frequency, a consistent finding considering that the vegetation density in the 

autumn and spring can appear similar, whereas summer and winter greenness appear different, 

causing frequency strengths roughly half of those expected at the 12-month period. Notice, 

however, that there is no significance line (bold black line) around the 6-month frequency. The 

“U” shaped region of the graph is consistent from one image to the other and is determined 

based on the length of the time series. In order for a wavelet to determine the power of each 

period, the non-dimensional wavelet expands to encompass larger periods and contracts to 

encompass smaller periods. Thus, larger periods suffer from “edge effects” where the larger 
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wavelets have a much smaller window over which they can completely propagate through the 

time series; therefore, zeroes are “padded” to either end of the time series to compensate. 

These areas of the graph, indicated by the opaque regions and known as the Cone of Influence 

(COI), are not fully reliable because the wavelet is influenced by the artificial zero values. 

Longer periods have a very narrow region of the graph where the data are considered valid, 

due to the edge effects. SST (bottom image) has a similar appearance to greenness, which is 

consistent with the annual warming and cooling of the oceans. 

 

Figure 3-6: CWT of Siamese Ponds greenness (top image) and SST Index 1 (bottom image) 
datasets. For both images, the x-axis is the time (in months) beginning February 2000 and the y-
axis is the frequency period (in months). The opaque regions are areas of the graph subject to 
edge effects of wavelet analysis. The color indicates wavelet power, with high power appearing 
dark red. The bold black line indicates regions of statistical significance.  
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Lagged correlation anomaly maps from SPW greenness and PW precipitation show 

strong correlation exists in large regions throughout the northern Atlantic and Pacific oceans 

(Figures 3-7 and 3-8). Time lag of 0–12 months refers to time of SST leading both precipitation 

and greenness. Across all correlation maps, minimum spatial correlation across ocean 

boundaries ranges from 12–45%, exceeding the 10% correlation anticipated with a two-tailed 

5% probability threshold, indicating that the correlation patterns do not reflect random 

variability. A general pattern in the anomaly maps indicates a mixed positive and negative 

correlation throughout both oceans from lags 0–7 months; specifically a strong negative 

(positive) correlation dominates greenness (precipitation) during the longer lag periods. For 

LBW (not shown) and SPW, greenness shows stronger correlation trends than precipitation, as 

determined by the extent of significant correlation regions. This trend is reversed for PW, which 

shows a strong precipitation correlation, particularly in the North Atlantic. 

 The analysis results further show particular areas of the Atlantic and Pacific 

oceans are more significant in correlation than other areas. In the Atlantic, regions south of 

Greenland show strong, long-term evidence of correlation consistent with the NAO 

teleconnection regions (Barnston and Livezey, 1987). The greenness and precipitation 

correlation regions in the Atlantic at the 12-month time lag reveal a distinct layered tripole of 

correlation consistent with the NAO meriodonal variability reported in IPCC 2007, with a strong 

negative correlation around Greenland and north of the 50°N latitude, followed by a strong 

positive region of correlation between 30°N–40°N before transitioning to negative again at 

25°N. This 12-month tripole pattern is aligned with the 1-year memory of the winter NAO, 
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where observations have shown that 25% of the winter NAO variance can be predicted from 

the preceding seasonal SST pattern (Czaja and Frankignoul, 1999). This evidence is consistent 

with an oceanic feedback to atmospheric forcings, although it is not clear what effect this 

memory has on greenness and precipitation responses.  
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Figure 3-7: PW precipitation and SST correlation maps for all lags 0-12 months. For all images, 
dark red represents statistically significant regions of correlation at the 99% confidence level, 
dark blue represents anticorrelation at the 99% confidence level with yellow and light blue 
representing significant positive and negative correlation at the 5% confidence level, 
respectively. 
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Figure 3-8: SPW EVI and SST correlation maps for all lags 0–12 months. For all images, dark red 
represents statistically significant regions of correlation at the 99% confidence level, dark blue 
represents anticorrelation at the 99% confidence level with yellow and light blue representing 
significant positive and negative correlation at the 5% confidence level, respectively. 
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In the Pacific Ocean, the equatorial regions of the ocean display the broadest extent of 

correlation, generally positive during the middle time lags and negative during later time lags. 

This strong correlation in the equatorial Pacific Ocean is consistent with the known ENSO 

climatic impacts in the contiguous U.S. Strong correlation also is observed in the more northern 

latitudes of the Pacific in regions with known PNA teleconnections. In the lag periods of 10–12 

months, greenness maps show similar strong anticorrelation with SST anomaly in the latitudes 

of 0–30°N, slight positive correlations from 30–45°N and strong anticorrelation again from 45–

60°N. 

The areas of high correlation in both oceanic regions seem to follow particular time-

space patterns and slowly “drift” from one time lag to the next. These areas are noticeable in 

the mid-latitudes of the Atlantic Ocean and are consistent with the eastward advection of 

anomalous heat patterns driven by the Gulf Stream, which repeat over a 6-year period 

(Marshall et al., 2001). A detailed evaluation of the relationship between oceanic currents and 

teleconnection signals is beyond the scope of this study, however. 

From the correlation maps, regions with long-term (more than 3 months) and 

consistently high correlation were extracted from the SST anomaly dataset (Figure 3-9) and 

further converted to single indices using an area-weighted average. Index 1, located in a 

teleconnection region known as the North Atlantic Ridge (RDG) identified by (Cassou et al., 

2004), is a region closest to the sites within a consistent negative greenness correlation in early 

time lags and a strong positive precipitation correlation. Indices 2–4 are regions south of 

Greenland that coincide with the known NAO SST anomalies.  Index 3 displays a strong positive 
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correlation with greenness in the early months in SPW and LBW, and indices 2 and 4 show 

strong negative correlations with greenness in middle-late time lags with SPW and LBW and 

strong positive correlation with precipitation specifically with the PW site.  In the Pacific, Indices 

5, 7 and 8 represent SST anomalies located along the equatorial line within the limits of the 

known ENSO Niño Indices 3, 3.4 and 4, respectively. These indices all demonstrate strong 

positive correlation with greenness, with Index 8 correlating strongly at lags 0–5 months and 

Indices 5 and 7 at slightly later time lags. Index 6 is not directly associated with traditional 

teleconnection regions.  Just off the western coast of Mexico, Index 6 exhibits one of the most 

consistently positive correlations with greenness for SPW from time lags 1–10 months and from 

3–9 months for LBW (not shown). The area northeast of Brazil was not included in the index 

extractions due to the generally long lag period needed to establish a correlation. 

The extracted eight indices were screened using a lagged SRA model to determine the 

degree at which an index, or combined indices, could explain the most vegetation and 

precipitation dynamics at each site. The best model demonstrating the highest R2 value for each 

variable (greenness and precipitation) reflects the number of months that greenness and 

precipitation lag SST (Table 3-2). Only those indices that were included in the SRA model 

provided lag information. The reported R2 values from the SRA models show values generally 

consistent from 0.30–0.50, with a PW greenness outlier of 0.07. Similar studies, such as Huber 

and Fensholt (2011), demonstrate multiple ocean influences of >0.50. These studies, however, 

typically use the favorable winter-only period to calculate correlation because this season has 

been demonstrated to show the most consistent interannual variability. The remaining seasons 
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can be severely muted by the seasonal noise in the data. An R2 value of 0.50 across a 

continuous monthly time series shows the benefit of site screening and selection of pristine 

areas.  

 

Figure 3-9: Ocean indexed sites identified with high correlation for teleconnection signal 
propagation. 
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Table 3-2: Stepwise regression analysis with reported indexed regions’ t-statistic. Indexed 
regions with a t-statistic of a magnitude of 2 or higher, corresponding to a probability of <5%, 
were included in the final model, with the R2 value reported in the final column. The numbers in 
parenthesis correspond to the number of months in which greenness or precipitation lag SST. 

Site / Index Index 
1 

Index 
2 

Index  
3 

Index 
4 

Index 
5 

Index 
6 

Index 
7 

Index 
8 

r r2 

SPW 
Greenness 

-3.4 
(2) 

-3.8 
(7) 

2.8   
(0) 

-1.3 -1.2 0.7 -0.5 5.5   
(3)  

0.71 0.50 

SPW Precip 
3.5  
(2) 

3.4 
(2) 

-0.8 2.6  
(4) 

-1.5 0.3 4.2   
(8) 

0.4 0.65 0.42 

LBW 
Greenness 

-2.3 
(3) 

-0.9 0.9 -0.4 -5.8  
(0) 

5.4   
(6) 

0.2 1.2 0.63 0.40 

LBW Precip 
1.6 3.0  

(2) 
-0.4 1.9 2.2   

(3) 
-0.4 -4.8  

(9) 
1.8 0.56 0.31 

PW 
Greenness 

-2   
(3) 

0.96 0.65 0.38 -3.02  
(0) 

-1.47 -0.86 1.97 0.26 0.07 

PW Precip 
4.9  
(2) 

2.6  
(2) 

0.2 1.8 -1.0 1.2 1.4 1.6 0.64 0.41 

 

All indices were used in at least one SRA model (Table 3-2); however, the Atlantic Ocean 

indices have greater influence on the three sites in the northeast U.S., as determined by the 

number of included indices in all SRA models.  Indices 1 and 2, located off the U.S. northeast 

coast and the Azores, respectively, show the most influential ocean region studied across all 

sites. Index 1 is used in all greenness models, with a consistent 2-month lag period, while Index 

2 is used in all precipitation models with a 2-month lag period. These findings agree with earlier 

studies that the New England climate is linked with NAO and regional New England SST 

(AIRMAP, 2004; Marshall et al., 2001). The 7-month lag for SPW greenness and Index 2 indicate 

that precipitation explains a low amount of the greenness variability, a finding confirmed by 

previous studies between northern U.S. forested greenness and precipitation (Zhou, 2003), 
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where temperature patterns are the primary drivers of greenness. Index 5, associated with the 

Niño 3 region, shows strong correlation and a 0 lag with LBW and PW greenness. A 0-month, 

“instant” correlation between the northeast U.S. and the eastern equatorial Pacific suggests 

that atmospheric forcings cause the coincident anomalous behavior. Such behavior is possible 

during periods of strong ENSO where upwelling of cold waters in the eastern Pacific are driven 

by strong trade winds, which are also known to affect mid-latitude westerlies and the location 

of the jet stream over the northeast U.S. The short lags of Index 5 greenness are juxtaposed 

with the 8–9 month lags of Index 7 precipitation for both the SPW and LBW sites. These time 

lags in the Niño 3.4 region reflect a longer, more remote relationship with storm track patterns 

across the northeast U.S. 

For greenness, the SPW displayed the best model, with 50% of the variability being 

explained by the combined Indices 1, 2, 3 and 8 at time lags varying from 0–7 months. This 

model shows the complex relationship that the New England climate has with varying 

teleconnection regimes, and that multiple ocean basins play important roles in the local 

ecosystem dynamics. For precipitation, each site showed a fairly consistent SRA model, with R2 

values ranging from 0.31–0.42. Additionally, Indices 1, 2 and 7 demonstrate consistent skill 

across the study regions, suggesting that predictive models may be possible. 

3.5.2 Wavelet Analysis Results 

For all wavelet maps, dark red indicates a positive correlation with statistical significance 

above the 99% confidence level, and dark blue indicates negative correlation above the 99% 

confidence level. Light blue and yellow indicate negative and positive correlation above the 5% 
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confidence level, respectively. CWT images for each terrestrial and oceanic index (Figures 3-10 

and 3-11) show the univariate time series transform of the anomalous datasets. These graphs 

expand the one-dimensional time series into a two-dimensional time-frequency image. The x-

axis represents the date, in years, beginning in February 2000 and ending in December 2010. 

The y-axis is the period (frequency) in months. The color levels are indications of wavelet 

power, with red indicating high power and blue indicating low power. The opaque color region 

of the graph indicates the influence of edge effects in wavelet analysis, a result of padding each 

time series with zeroes. Bold black lines indicate areas of statistical significance at the 95% 

confidence level.  

The CWT images reveal different patterns between each dataset. For terrestrial data, 

the greenness images show the most consistency between all sites and are characterized by 

weak high-frequency significance regions beginning around the 4-month period and increasing 

in power at lower frequencies of 12 months and lower. Each site shows a clear significance 

region at the 16–24 month period, beginning in the early months of 2005. For precipitation, the 

CWT images also show high-frequency significance from the 4–8 month period, with SPW and 

LBW displaying a strong 10–16 month period beginning in mid-2006 to 2008. 
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Figure 3-10: CWT images of the terrestrial index time series: (A) PW Greenness anomaly; (B) PW 
Precipitation anomaly; (C) LBW Greenness anomaly; (D) LBW Precipitation anomaly; (E) SPW 
Greenness anomaly; (F) SPW Precipitation anomaly. 

 



44 
 

 

Figure 3-11: CWT images of the oceanic index time series: (A) Index 1 anomaly; (B) Index 2 
anomaly; (C) Index 3 anomaly; (D) Index 4 anomaly; (E) Index 5 anomaly; (F) Index 6 anomaly; 
(G) Index 7 anomaly; (H) Index 8 anomaly. 

The oceanic CWT images also show consistent signals throughout most of the extracted 

indices. Generally, a weak yet significant high-frequency signal is observed between the 4–8 

month period followed by a much stronger significant signal between 16 and 32 months. As 

with the terrestrial CWT images, the low-period signal exists between mid-2005 and 2008; 

however, this pattern is primarily observed with the Pacific datasets. Interestingly, this time 

period is consistent with a change in the southern oscillation from an El Niño period to a 
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moderate La Niña one. A similar phase shift also exists during this period with NAO transitioning 

from a historically positive phase to a slight negative phase in 2005 followed by a more 

significant negative phase in 2008–2009. The general similarities between the terrestrial and 

oceanic CWT images, especially in the 2005–2008 low-frequency signals, suggest the existence 

of a low-frequency teleconnection. 

Following the CWT anlaysis, the XWT and WTC images were analyzed to retrieve the 

most significant terrestrial–oceanic pairs identified in Table 3-2 and compared to the avaiable 

linear time series. WTC and time series graph of SP greenness and Index 3 are provided in 

Figure 3-12. The WTC image shows varying patterns of high-frequency coherency, specifically in 

the late 2003 and 2008 period, identified by regions A and B. The strong coherency can be seen 

on the time series graph, where the normalized anomalies closely match. The lower-frequency, 

24-month period is consistent across the entire time domain, suggesting a biennial 

teleconnection response to greenness from the Index 3 SST. Similar patterns are also observed 

on the time series as the 24-month moving averages. Unlike the CWT, the WTC images display 

arrows to determine phase direction and lead–lag relationships. Arrows pointing to the right 

indicate that the two time series are in-phase; arrows pointing to the left indicate an anti-phase 

relationship; and arrows pointing up or down indicate a lead–lag relationship, with upward 

arrows indicating SST leading greenness or precipitation. The complete circle of the phase 

arrows equates to the period of frequency, meaning that phase direction along lower 

frequencies imply longer lead and lag times, with the exception of 0° and 180° reflecting 

absolute in-phase and anti-phase, respectively.  The low-frequency signal in Figure 3-12 
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indicates that SST is in-phase and leads greenness, meaning that anomalously high (low) 

temperatures in Index 3 are associated with anomalously high (low) greenness patterns at SPW 

with a lead time of several months. 

 

Figure 3-12: WTC image of SP greenness and SST Index 3 (top) and time series (bottom). 
Callouts A and B show two regions of high frequency coherency. Strong low frequency 
coherency is shown throughout the time domain in the 20–30-month period in the WTC image 
and in the 24-month moving average of the time series. 
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WTC image and time series of PW precipitation and SST Index 1 (Figure 3-13) show that, 

similar to SPW, periodic high-frequency coherency is present, but the more consistent period is 

found with lower-frequency bands, centered on the 30-month period. The time series moving 

average lines show a strong consistency with the WTC image.  
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Figure 3-13: WTC image of PW precipitation and SST Index 1 (top) and time series (bottom). 
Strong low frequency coherency is shown throughout the time domain at the 30-month period 
in the WTC image and in the 30-month moving average of the time series. 

The XWT and time series of PW greenness and the associtaed multivariate ENSO index 

(MEI) are shown with the time series displaying the Index 7 anomalies (Figure 3-14). The time 

series shows how the MEI and Index 7 (Niño 3.4 region) relate, with colder periods associated 
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with a negative MEI (La Niña) and warmer periods associated with a positive MEI (El Niño). The 

PW greenness shows an opposite trend in the time series, with El Niño periods associated with 

negative greenness trends and La Nina periods with high greenness. The time series further 

reveals that greenness patterns are particularly negative in the summer following a La Niña 

winter. Because La Niña periods are consistent with mild to warm winters, reduced summer 

greenness could be a response to early onset spring conditions or an increased water demand 

due to evapotranspiration rates. The XWT image confirms the negative phase trend of the time 

series, showing a distinctive anti-phase direction. Unlike WTC, the XWT shows common high 

wavelet power and not just local coherency. This image shows a strong interannual 

teleconnection across the entire time period, with significant strength beginning in 2004–2005 

when the ENSO period began to shift toward a more dominantly La Niña period. The weak SRA 

model for PW greenness, however, suggests that predictive skill across this time domain is low.  
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Figure 3-14: XWT image of PW greenness and MEI (top) and time series of PW greenness, MEI, 
SST Index 7 (bottom). Strong interannual wavelet power is shown throughout the time domain 
at the 20–30-month period in the XWT image with a consistent negative phase. Negative 
greenness summer events are common following a La Niña winter. 

The LBW greenness and Index 6 WTC and time series shown in figure 3-15 (with SST 

shifted 6 months), show the closely related variability between regions of the Pacific and the 

northeastern climate patterns to be consistent with the Pacific-induced SST variability identified 
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by Enfield and Mayer (1997). This region is not known to be part of a tradional teleconnection 

region, and is located just north of the equator, off the west coast of Mexico. Further research 

with longer periods of data are needed to determine if this area shows teleconnection evidence 

across different terrestrial regions (Wunsch, 1999). 
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Figure 3-15: WTC of LB greenness and SST Index 6 anomalies (top) and time series with a 6-
month shift for Index 6 (below). 

 

Based on the sciences questions posed, both high- and low-frequency signals were 

identifeid between SST anomalies and greenness and precipitation. From the correlation maps, 

greenness and precipitation are shown to contain statistically significant relationships to both 
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known teleconnection regions (ENSO, NAO) as well as previously unknown teleconnection 

regions (i.e. Index 6). In the north Atlantic, higher-frequency seasonal time lags (1-3 months) 

appear to have the most significance on terrestrial greenness and precipitation, whereas in the 

north Pacific, lower-frequency time lags (6-9 months or longer) appear to be dominant. The 

wavelet images reveal that even lower-frequency periods, such as the biennial-triennial signal, 

may also play an important role in understanding the oceanic-based memory on terrestrial 

climate.  

The precipitation patterns at the three sites were not able to clearly explain a significant 

porition of the greenness variability, suggesting that temperature may be the dominant 

physical process driving greenness trends. Finally, the Pacific and Atlantic-based 

teleconnections suggest that the combined ocean regions may aid in the predictability of local 

greenness and precipitation variability when accounting for multiple oceans and their 

associated memory effect on local climate conditions. In the following chapter, these 

underlying relationships will be further explored to develop teleconnection-based precipitation 

forecasting models. 
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CHAPTER 4 : LONG-TERM TELECONNECTION IDENTIFICATION AND 

PRECIPITATION FORECASTING 

In the previous Chapter, short-term climate teleconnection signals were identified between 

the northeastern U.S. and the northern Atlantic and Pacific basins. The findings suggest that 

nonlinear statistical relationships exist, which may be useful in climate prediction models. As is 

evident from the teleconnection maps, consistent regions in the northern Atlantic and Pacific 

basin associated with known teleconnection (ENSO, NAO, etc...) are present, and can explain a 

large portion of the greenness and precipitation variability within the three study sites. These 

dominant teleconnection regions are supplemented by regions of the oceans not typically 

associated with teleconnection influences. It is the intent of this chapter to establish both the 

leading and non-leading teleconnection patterns that are particular to the Adirondack region in 

the northeastern U.S. These teleconnections will be objectively identified through statistical 

relationships and compared against leading teleconnection regions, with the overall objective 

to produce a precipitation forecasting model based on teleconnection input. 

 To establish the occurrence of potential non-leading teleconnection patterns unique to 

a particular region, it is critical to understand the historical influence of leading teleconnection 

patterns on local climatic conditions. As discussed in Chapter 2, the northeastern U.S. has been 

well documented as having strong correlations between such teleconnection indices as the 

Pacific North American Pattern (PNA), ENSO and the North Atlantic Oscillation (NAO). The warm 

El Niño phase of the ENSO has been linked with cold, stormy winter weather in the 
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northeastern region and warm mild weather under La Niña conditions. The NAO, traditionally 

measured by sea level pressure differences between the Azores and Iceland, is the dominant 

pattern of Atlantic climate variability, and has been shown to have broad influence over 

Atlantic storm track, including nor’easters. PNA is a dominant extratropical teleconnection 

pattern in the Northern Hemisphere, characterized by above average SLP heights over the 

Hawaiian region and over the mountainous regions of western North America, as well as below 

average heights south of Alaska and over the southeastern U.S. The positive cycle of PNA has 

been linked to increases of precipitation over the northeastern U.S. by up to 15% over the last 

century (Beckage et al., 2008; Tang and Beckage, 2010). Figure 4-1 illustrates generalized 

locations of the leading teleconnection regions associated with ENSO, NAO and PNA 

(teleconnection regions over land masses are not shown). 

 

Figure 4-1: Gridded boundary regions for Adirondack State Park and the northern Atlantic and 
Pacific basins. Generalized leading teleconnection regions over oceanic areas are outlined in 
blue. 
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The following scientific questions are explored in the long-term investigation: (1) Do 

non-leading teleconnection signals exist between the Adirondack region precipitation and SST 

in the northern Atlantic and Pacific basins? (2) Can an ANN monthly precipitation prediction 

model be developed using only historic precipitation time series as well as teleconnection 

patterns in the northern Atlantic and Pacific oceans? (3) Does the ANN precipitation prediction 

model perform better than a statistical downscaling model for the same study region and time 

domain? This paper hypothesizes that both leading and non-leading teleconnection signals exist 

for the study region, and that a reasonable ANN long-term precipitation forecasting model can 

be developed using only historic precipitation and the objectively identified teleconnection 

inputs. 

4.1 Data and Methods 

4.1.1 Data 

The precipitation dataset used for this study is the Climate Prediction Center’s Unified 

Gauge-Based Analysis of Daily Precipitation over the Contiguous United States (CPC data). The 

CPC data has a continuous spatial coverage of 0.25 x 0.25 degrees at daily temporal resolution 

from 1948 to the present. The data are derived from over 13,000 daily rain gauges reporting 

across the contiguous U.S. Quality control procedures including ground-based radar 

precipitation and satellite corrections from the GOES 8 and GOES 10 IR data are used for data 

correction. Thirty-nine gridded stations fit within the Adirondack state park boundaries.  
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SST data were obtained from the Group for High Resolution Sea Surface Temperature 

(GHRSST) global Level 4 SST analysis. This product produces a daily 0.25 degree x 0.25 degree 

grid of SST at the NOAA National Climatic Data Center and uses optimum interpolation (OI) data 

from the 4-km AVHRR Pathfinder Version 5 time series. The data are bias adjusted using in-situ 

ship and buoy observations.  

Both data sets cover the period from 1981–2010, and are converted into monthly 

anomaly time series. SST data were converted to a spatial resolution of 5 degrees. A total of 

116 and 255 grids cover the northern Atlantic and Pacific basins, respectively. See Figure 4-1 for 

a map of the study area domains, and Table 4-1 for a summary list of the data sources used. 

The SST and precipitation data collected were used in the ANN forecasting model after the 

processing steps described in the following sections. 

Table 4-1: Remote Sensing Data Products Summary. 

Data Products 
CPC Unified Gauge-Based Daily 

Precipitation over CONUS 
GHRSST 

Data Precipitation SST 
Primary Remote 

Sensing 
Instruments 

Rain-gauge array AVHRR 

Agency NOAA NOAA 
Temporal 
Resolution 

Daily – converted to monthly 
anomaly 

Daily – converted to monthly 
anomaly 

Spatial Resolution 
0.25 x 0.25 degrees – converted 

to 5 x 5 degree 
0.25 x 0.25 degree 

Ground-Truthing 
/ Correction 

Ground-based radar and 
satellite corrections from GOES 

8 and GOES 10 IR data 
Ship and buoy ground-truthing 

Data Source 
http://www.esrl.noaa.gov/psd/
data/gridded/data.unified.html 

http://podaac.jpl.nasa.gov/datase
t/NCDC-L4LRblend-GLOB-

AVHRR_OI 

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.html
http://podaac.jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR_OI
http://podaac.jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR_OI
http://podaac.jpl.nasa.gov/dataset/NCDC-L4LRblend-GLOB-AVHRR_OI
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4.1.2 Method 

Long-term teleconnection analysis is hampered by using linear correlation to evaluate 

nonlinear systems (Franzke, 2009) and by an over-reliance on teleconnection indices that suffer 

from low signal to noise ratios. Additionally anthropogenic influences can affect local 

precipitation dynamics and mask weak signals of natural climate-based teleconnection (Mullon 

et al., 2013). This study aims to overcome these weaknesses by capturing the nonlinear and 

nonstationary teleconnection trends between Adirondack precipitation and SST in the Atlantic 

and Pacific basins. Teleconnection indices are generated to be site-specific, without relying on 

traditional published teleconnection regions in an attempt to capture the most significant 

oceanic regions to the study site, and are termed herein as non-leading teleconnections. Due to 

the strong evidence of leading teleconnection influence, it is expected that the non-leading 

teleconnection patterns developed herein will relate with the leading teleconnection oceanic 

regions regarding the ENSO, NAO and PNA described above. The non-leading teleconnections 

identified in this study will be derived independently and based exclusively on the data used 

herein. 

The proposed analysis uses a stochastic technique for long-range forecasting of 

precipitation trends based on historic precipitation observation and teleconnection indices 

derived from SST observations. Local meteorological information associated with mesoscale 

and synoptic scale weather phenomena are not included in this approach, as they would be in a 

more deterministic weather prediction scheme for short-term meteorological analysis. Two 

time scales are used in this study, including a monthly and seasonal (i.e. 3 months) evaluation. 
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Monthly and seasonal time steps are used to balance and average the high spatiotemporal 

variability associated with weather events that cannot be explicitly detailed using this 

approach, as well as to compare the forecasting skill at various intervals. For the monthly 

analysis, data are calculated sequentially and continuously throughout all months. For the 

seasonal analysis, seasonal data are calculated for each season, where December-January-

February (DJF) represents winter; March-April-May (MAM) represents spring; June-July-August 

(JJA) represents summer; and September-October-November (SON) represents fall.  

An analytical framework for the study is provided in Figure 4-2. The framework includes 

the methodology used to identify the non-leading teleconnection patterns specific to the study 

area, as well as the ANN modeling used to forecast precipitation. As depicted in Figure 4-2, the 

first step is to obtain the precipitation and SST data, which are the hydrologic time series of 

interest. This step is followed by a wavelet transformation, where the original time series values 

are decomposed, using wavelets, into their fundamental signals and used to extract the scaled 

average wavelet power (SAWP) within defined frequency bands. Principal component analysis 

is then performed on the precipitation data array to create a single time series, representing 

the majority of the precipitation variability (WEOF-SAWP) within the Adirondacks. The new 

precipitation time series is then mapped, using pixel-wise correlation with the SST SAWP data 

to create the teleconnection map. Statistically significant teleconnection regions are then 

extracted from the teleconnection map and used as the exogenous data input into an ANN 

modeling framework. Historic precipitation values are also used as ANN input data. A fully 
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recurrent neural network model is then used to forecast precipitation one month or one season 

ahead.  

As a comparison to the ANN modeling created as part of this research, a statistical 

downscaling model, using the SDSM software, is used to generate precipitation prediction 

across the same study site, using the same precipitation data observations. The ANN and SDSM 

models are compared using standard statistical metrics. 

 

Figure 4-2: The analytical framework of the Long-Term study. 
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4.2 Wavelet Analysis Methodology 

As discussed in the previous chapters, wavelet analysis has become a very useful tool for 

analyzing nonlinear and nonstationary behavior in environmental data. Traditional approaches, 

including Fourier analysis, were successfully used for stationary data analysis but were not well 

suited at describing nonstationarity. To solve this, Windowed Fourier Transform was developed 

for nonstationary signal processing, but is insufficient when analyzing environmental processes 

where a wide range of dominant frequencies are expected (Torrence and Compo, 1995). 

Wavelet analysis provides good time resolution for lower-period components as well as good 

period resolution for high-period components of the same signal (Anctil and Tape, 2004). 

Wavelet transform is the process of decomposing time series data into an associated 

time-frequency domain. A type of spectral analysis, wavelet decomposition allows the 

determination of dominant localized variations of power (i.e. where the variance of the time 

series is largest for a given frequency) (Keener et al., 2010). By decomposing a time series into 

the time-frequency domain, one can determine both the dominant modes of variability and 

how those modes vary in time (Torrence and Compo, 1995). For this study, wavelet analysis 

was used to isolate dominant modes of North Atlantic and Pacific SST variability and to 

correlate these modes with like precipitation modes over the Adirondack state park to identify 

leading and non-leading teleconnection regions. Decomposed SST data are then used in an ANN  

precipitation forecasting model, herein denoted as WPC-ANN. 
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4.2.1 Scale-Averaged Wavelet Power (SAWP) 

The continuous wavelet transform produces a wavelet power spectrum, a matrix 

representing the energy coefficients of the decomposed time series. The magnitude of the 

wavelet spectrum coefficients shows how well the wavelet matches the time series, with each 

scale depicting the amplitude of the time series. Individual scales are useful for demonstrating 

dominant modes of variability (Mwale et al., 2004). However, a range of dominant scales can be 

averaged into a SAWP and can be used to visualize the modulation of many frequencies within 

a single time series. The SAWP is the weighted sum of the wavelet power spectrum over scales 

s1 and s2: 

2

2

2 ( )

s

j
n j

n

j j j

W sj t
W

C s

 



   (8) 

 

Where C is the reconstruction of a function from its wavelet. For this study the Morlet 

wavelet was used with a C constant of 0.776. 

4.2.2 Teleconnection Wavelet Processing 

For the precipitation and SST datasets, two parallel procedures were carried out based 

on the time scales, monthly and seasonally. For each time scale, anomaly data were 

determined by calculating the monthly (or seasonal) averages of each time scale and 

subtracting that value from each gridded time series value, which represented the 30-year time 
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series for each gridded location. Each monthly (or seasonal) anomaly time series was then 

decomposed using the CWT process discussed in Chapter 3. 

Figure 4-3 displays an example precipitation monthly time series result. The top image 

displays the inputted time series record (monthly anomaly). The central image shows the local 

wavelet power spectra where the dark red areas illustrate regions, in both time and frequency, 

where high wavelet power exists and blue areas illustrate regions of little power. The black bold 

lines are regions of statistical significance at the 95% confidence. The inverted arch shape 

represents the cone of influence in the image, which is determined by the length of the time 

series. In order for a wavelet to determine the power at each period, the non-dimensional 

wavelet expands to encompass larger periods and contracts to encompass smaller ones. Thus, 

larger periods suffer from “edge effects” where the larger wavelets have a much smaller 

window over which they can completely propagate through the time series. Therefore, zeroes 

are “padded” to either end for the time series to compensate. These regions of the graph 

outside of this line are not fully reliable because the wavelet is influenced by artificial zero 

values. Longer periods have a very narrow region of the graph where the data are considered 

valid, due to the edge effects. The graph on the right illustrates the global wavelet power. The 

bottom image represents the SAWP, which was calculated with the s1 and s2 scales set at 0.25 

and 1 years, respectively.  

After interpreting the wavelet power spectra for each SST and precipitation grids, a 

fairly consistent monthly trend emerged where dominant wavelet power was concentrated 

between the 0.25-1 year period bands. This is further evidenced by reviewing the global 
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wavelet power spectra on the right, which shows a dominant intrannual signal. This suggests 

that several dominant frequencies within this period band (i.e. the seasonal to annual period) 

exist that influences the SST and precipitation variability. Lower frequency wavelet power, 

illustrated by the dark red areas, are also present in the 1-8 year period as having strong 

wavelet power, but were generally shown to be less significant than the intrannual signal. 

To efficiently capture the dominant frequencies, SAWP was calculated with the scales 

set at 0.25 and 1 year for all gridded monthly data. The gridded time series data are therefore 

converted from the original monthly anomaly time series into a new wavelet variability time 

series between the 0.25 and 1 year period band. This data are termed the precipitation and SST 

SAWP time series. The SAWP band window of 0.25–1 year was used for all gridded precipitation 

and SST datasets. 

Figure 4-4 shows the same wavelet decomposition analysis, but using a seasonal SST 

grid (note that the center wavelet power spectra image uses contour lines for greater clarity for 

the seasonal data). Like the monthly power spectrum image in Figure 4-1, the 1-8 year period 

does display strong wavelet power, but in the seasonal analysis this period is statistically 

significant. The significance of the 1-8 year period in the seasonal data could suggest that the 

monthly time series data may contain noise that dampens the power spectrum at lower 

frequencies. For the seasonal analysis, the SAWP between the 1-8 year power spectrum is 

calculated. It is noted that the higher-frequency seasonal power spectrum is not able to be 

calculated as it is in the monthly analysis, because the data itself are seasonal. 
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The long-term seasonal wavelet findings are generally consistent with the findings in 

short-term investigation Chapter 3, where the interannual signal was shown to be dominant. 

The long-term monthly findings, showing dominant intrannual strength, differ somewhat from 

the short-term assessment. 
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Figure 4-3: Wavelet decomposition example of a single monthly precipitation grid. The top 
image shows the monthly anomaly data with the X and Y axes representing time and SST in 
degrees, respectively. The middle image shows the expanded two-dimensional time frequency 
wavelet power spectra contour graph, with the X and Y axes representing time and period in 
years, respectively. The right graph shows the global wavelet power, with X and Y axes 
representing wavelet power in degrees C and period in years, respectively. The bottom image 
represents the SAWP time series based on the 1-8 year period band, with X and Y axes 
representing time in years and average variance, respectively. 
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Figure 4-4: Wavelet decomposition example of a single seasonal SST grid. 
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4.2.3 Multivariate Principal Component Wavelet Processing 

To establish specific oceanic teleconnection regions between the Adirondack 

precipitation and SST, pixel-wise correlation analysis was employed as a useful tool to identify 

regional teleconnection “hotspots.” Due to the 39 precipitation grids within Adirondack, it is 

not practical to compare how each individual grid correlates with the SST within the oceanic 

boundaries. Principal component analysis was therefore used to consolidate the 39 gridded 

precipitation SAWP data into a single time series.  

Principal component analysis uses empirical orthogonal functions (EOF) to transform 

multivariate data into spatially uncorrelated modes of variability (Venegas et al., 1996). The 

resulting PCs are time series data of the same length as the original and represent the 

variability within multivariate data. For large amounts of data with limited variability, a very few 

number of principal components (or just the first component) is needed to represent the 

majority of the variability within the original data.  

The monthly SAWP precipitation time series data were consolidated into a single 

principal component (PC) time series. Calculating PCs on SAWP wavelet time series data has 

previously been denoted by Mwale et al. (2004) as Wavelet Principal Components (WPCs), and 

will be denoted as such herein. The resulting WPCs are considered frequency-compacted 

energy variability, and indicate the magnitude of events of time series averaged from the 

individual scales (Mwale et al, 2004). 

WPCs for the monthly precipitation dataset were calculated. Because the precipitation 

within Adirondack region is relatively homogenous, the first WPC (i.e. WPC 1) was able to 
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describe approximately 90% of the overall variability, and is therefore a good representation of 

the entire dataset. The WPC precipitation dataset is plotted in Figure 4-5. 

WPCs for the seasonal precipitation dataset were also calculated. WPCs for each season 

are shown in Figure 4-6. This figure shows that the strongest wavelet variability occurs in the 

last decade of the study. 

 

Figure 4-5: First Principal Component of the average precipitation SAWP time series (WPC). 
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Figure 4-6: First Principal Component of the average precipitation SAWP seasonal time series 
(WPC). 

 

4.2.4 Mapping Teleconnection Regions 

4.2.4.1 Monthly Teleconnection Mapping 

For the monthly time scale, pixel-wise correlation maps were calculated between the 

WPC precipitation and the SAWP SST dataset at various lags from 1–12 months. This mapping is 

similar to the method used in Chapter 3, but uses the variability trends in lieu of simple 

anomalous data to capture the nonlinearity of potential teleconnection regions. Figure 4-7 

shows the results of the teleconnection map based on the 12-month precipitation WPC lag, 

which was the strongest teleconnection map created from all lag periods. The colored contours 

represent correlation values with yellow and red indicating statistically significant positive 
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correlation at the 95% and 99% confidence interval, respectively, and light blue and dark blue 

indicating negative correlation at the 95% and 99% confidence intervals.  

In the Atlantic basin, the strongest correlation zones are strongly oriented in the known 

NAO regions. The NAO is typically associated with high-pressure systems centered near the 

Azores and lower-pressure systems northward. This phenomenon is caused by the westerly 

atmospheric jet stream and the oceanic Gulf Stream. A signature of the NAO is an atmospheric 

pressure difference that causes a layered, meriodonal variability affect. The strong negative 

correlation from 45°-60°N and a positive correlation from 15°-45° are consistent with this NAO 

pattern. In the Pacific region, other known teleconnection patterns appear dominant. The 

strongest correlation occurs south of Alaska as well as along the eastern and western equatorial 

region, which are associated with the PNA and ENSO regions, respectively. Other leading 

teleconnection regions, including the Niño 1+2 and the Western Pacific Pattern (WPP) also 

appear. The strong adherence to traditional teleconnection regions between the Adirondacks 

and the northern Atlantic and Pacific basins reflects the historical evidence of the leading 

teleconnections with the northeastern U.S. discussed in Chapter 1, as well as the 

teleconnection maps prepared in Chapter 3. 

In addition to the recreated leading teleconnection regions, high-correlation regions 

also exist that are not part of known teleconnection areas. A strong negative correlation off the 

western coast of Baja California (Index 6 in Chapter 3), as well as regions in the western North 

Atlantic, are present and are generally consistent with teleconnection patterns observed in 

Chapter 3, for northeastern teleconnections. These potential non-leading teleconnection 
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regions justify the need to examine teleconnection signals that relate specifically to a location, 

and not just rely on the traditional teleconnection indices. 

 

Figure 4-7: Results of the pixel-wise correlations between Adirondack precipitation WPC and 
SST SAWP time series. Yellow and dark red contours illustrate correlation at the 95 and 99% 
confidence intervals, respectively. Light and dark blue regions illustrate the negative correlation 
at the 95% and 99% confidence intervals, respectively. 

 

From the 12-month lag map, the SAWP SST regions with greater than two statistically 

significant contiguous grids were extracted to create the teleconnection datasets, totaling 11 

teleconnection regions. As with the precipitation data, principal component analysis was used 

to extract the underlying SAWP variability into single time series records for each extracted 

region. For each teleconnection region the first PC was calculated and extracted. The extracted 

teleconnection PCs are herein known as TPCs. 
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4.2.4.2 Seasonal Teleconnection Mapping 

For the seasonal teleconnection mapping, eight maps were produced, corresponding to 

the lagged seasonal relationships one and two seasons ahead between Adirondack 

precipitation WPC and the SST SAWP time series; see Figure 4-8 for an example. From the 

maps, all of the statistically significant SAWP grids were extracted to create individual 

teleconnection datasets. As with the monthly teleconnection mapping, the dominant statistical 

regions generally aligned with known teleconnections of the NAO, PNA and ENSO, however 

other potential non-leading site are also identified. The first 5 PCs from both the Atlantic and 

Pacific seasonal teleconnection datasets were then extracted. The extracted PCs are used as the 

exogenous input into the WPC-ANN model used for seasonal prediction.  

 

Figure 4-8: Results of the seasonal pixel-wise correlation map between the SON SST-SAWP 
dataset and the subsequent MAM precipitation WPC time series (i.e. two seasons ahead). 
Yellow and dark red contours illustrate correlation at the 95 and 99% confidence intervals, 
respectively. Light and dark blue regions illustrate the negative correlation at the 95% and 99% 
confidence intervals, respectively. 



74 
 

4.3 WPC-ANN Model 

4.3.1 Monthly Precipitation Model 

For this study a traditional 3-layer ANN model was used, consisting of an input, hidden 

and output layer. In these networks, the input layer receives the input variables used for 

estimating the output. This layer is the means of transferring data into the ANN model. The 

output layer includes the values predicted by the neural network, which represents the model 

output. The middle, hidden layer contains the number of nodes (neurons), which are 

predetermined by the modeler. Nodes within neighboring layers of the network are connected 

by links, with all nodes connected. Weights are assigned to each link to represent the 

connection strength of two nodes at both ends, which predicts the input-output relationship. 

Data enters the input layer, is processed through the hidden middle layer and is output into the 

output layer in the classic feed-forward architecture. 

The basic feed-forward structure, however, is not sufficient for modeling the 

spatiotemporal variability of hydrologic processes, which requires that the neural network 

estimation procedure to be dynamic in order to more accurately interpret nonlinear feedback 

processes (American Society of Civil Engineers, 2000). To introduce memory into the static 

network architecture, a fully recurrent feedback process is also introduced that encloses the 

layers of the network, creating interconnection between the internal nodes. The defining 

equation for the model is as follows: 

( ) ( ( 1), ( 2),..., ( ), ( 1), ( 2),...u(t n ))y uy t f y t y t y t n u t u t        (9) 
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Where the next value of the dependent output signal y(t) is regressed on the previous 

values of the output signal and previous values of an independent (exogenous) input signal for 

modeling nonlinear dynamic systems (Beale and Hudson, 2013).  

For the monthly precipitation prediction model, the input variables are the raw, 

monthly, individual precipitation time series with the 11 TPCs serving as the independent input 

signal. For back-propagation, the Levenberg-Marquardt algorithm, a second-order nonlinear 

optimization technique, is used.  

The goal of ANN modeling is to learn the underlying patterns and relationship from a 

subset of input data, from which the model is trained. To test the capabilities of the network, 

an unknown input (input not used in the training step) is used for prediction purposes. This 

process is known as generalization. Standard generalization approaches split the input data into 

three components, a training set used to train the neural net, the validation set to test the 

performance of the neural net that are not used in the trained set, and finally a test set for 

checking the overall performance. Training should be stopped when the minimum validation 

error occurs. When training is not stopped, overtraining can occur and the performance of the 

test set decreases, despite improvements on the training data. This approach can have 

drawbacks when dealing with limited time series data, as three division sets require less data to 

be used in the original training step. In nonlinear systems, it is important to train neural 

networks on a representative set of data. In limited nonlinear time series such as precipitation, 

low-frequency recurrent signals might not be “seen” in the training set if the time series is not 
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long enough. It is therefore important to have the longest training set possible without 

compromising the test set.  

As a check against potential overfitting within the proposed WPC-ANN model, the ANN 

capacity test developed by Wang et al. (2014) was used. In this test, the training samples are 

measured against a theoretical lower and upper bound of the capacity of an ANN, which is 

based on the number of inputs, the number of outputs and the number of neurons used in the 

model. The algorithm is presented below: 

 1 NL P L
M

    (10) 

Where P is the capacity of the ANN (number of samples), L is the number of neurons, N 

is the number of inputs and M is the number of outputs in the ANN model. For the proposed 

WPC-ANN model, the number of samples represents the number of forecasted months (30), 

the number of neurons used is 10, the number of inputs is 12, and the number of outputs is 1. 

Thus, for the proposed model, 10 30 130  meets the capacity test. 

Because the precipitation dataset encompasses a spatial coverage area of 39 gridded 

time series with relative homogeneity, it was not necessary to create 39 different precipitation 

forecast models. Instead, the average raw precipitation value was calculated across the entire 

precipitation dataset. This average precipitation time series was used as the historical 

precipitation input into the WPC-ANN model. The 11 TPCs extracted from the teleconnection 

mapping were used as the exogenous input into the WPC-ANN model. 
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To evaluate the performance of the WPC-ANN model, Pearson’s correlation coefficient 

and root mean square error (RMSE) values were calculated. After the optimum model was 

developed using the average precipitation data, the individual gridded precipitation data were 

used to forecast the precipitation at each grid one month ahead. Maps were produced between 

the observed precipitation events and the predicted values for each grid. The prediction 

statistics are calculated as follows: 

Pearson’s Correlation: 
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Where r is the correlation coefficient, n is the number of observations in a time series, x 

is a measurement of precipitation dataset time series, y is the predicted measurement and  is 

the mean. 

Root Mean Square Error: 
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For this study, training was conducted over the period from 1981 – 2007 and testing was 

carried out from 2008–2010, a period of 30 months, or approximately 8.3% of the time series 

record. 
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4.3.2 Seasonal Prediction Model 

The seasonal precipitation model is similar to the monthly precipitation model, except 

the input variables are the raw, seasonal, individual precipitation time series with the 10 

seasonal TPCs serving as the independent input signal. For back-propagation, the Levenberg-

Marquardt algorithm, a second-order nonlinear optimization technique, is used.  

To evaluate the performance of the WPC-ANN model, Pearson’s correlation coefficient 

and root mean square error (RMSE) values were calculated for each gridded time series. Maps 

were produced for each seasonal result between the observed precipitation events and the 

predicted values for each grid. For the seasonal model, training was conducted over the period 

from 1981–2003 and testing was carried out from 2004–2010, a period of 7 years, or 

approximately 25% of the time series record. Because the seasonal prediction model is based 

on such a limited data record (only 7 forecast seasons), Bayesian regularization is used for the 

neural network generalization, which is a generalization scheme optimized for small datasets. 

Bayesian regularization allows the data set to be split simply into a training and validation set, 

and does not require the capacity test to be performed. 

4.4 Statistical Downscaling Comparison 

As a comparison to the proposed WPC-ANN model, a statistical downscaling approach 

for forecasting Adirondack precipitation using the Statistical Downscaling Model (SDSM) 

software (version 4.2) was used. Statistical downscaling is a technique that uses large-scale 

weather and climate output data as predictor information and calibrates the information with 

local observed precipitation to downscale the data resolution for use at regional and local 



79 
 

scales. The large-scale weather and climate data are obtained from observed data, or from the 

NCEP-NCAR re-analysis information. Long-term forecasts are made possible by substituting 

general circulation model (GCM) predictor data output over the period of interest. The SDSM 

model was only used as a comparison against the monthly WPC-ANN model, due to data 

limitations of the seasonal time series record. 

Statistical downscaling is similar to model output statistics and perfect prog analyses 

used for hydrologic time series prediction, and is a popular climate forecasting technique 

because of its low computational cost and fast assessments of local climate phenomena, 

primarily temperature and precipitation. The SDSM software is described as a hybrid of the 

stochastic weather generator and transfer function downscaling techniques, as large-scale 

circulation patterns and atmospheric moisture variables are used to condition local-scale 

weather generator parameters, and stochastic techniques are used to downscale GCM time 

series to correlate with local observations (Wilby and Dawson, 2007).  

SDSM has been used to forecast long-term precipitation trends globally, including areas 

in the northeastern United States and southeastern Canada, with similar precipitation and 

climatic patterns. Tryhorn and DeGaetano (2011) used SDSM to calibrate rain gage data over 

much of the northeastern U.S., including the Adirondacks, using NCEP-NCAR re-analysis data 

and the HADCM3 GCM for long-term climate forecasts of extreme rainfall events. In 

southeastern Canada, north of the Adirondacks region, SDSM-based precipitation forecasting 

was found to be more capable than an ANN model in reproducing various statistical 

characteristics of observed data in its downscaled results (Khan et al., 2006). This study, 
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however, relied on NCEP-NCAR re-analysis data to calibrate and forecast precipitation from 

1961–2000, which is the available NCEP-NCAR data record for the SDSM software, and did not 

use GCM data for precipitation forecasting.  

4.4.1 SDSM Methodology 

SDSM requires an input of the predicted (observed precipitation), predictors (observed 

or NCEP-NCAR re-analysis climate variables, such as temperature, surface pressure and wind 

direction) for conditioning, and GCM output of the same predictors for long-term climate 

forecasting. For this study, the NCEP-NCAR reanalysis climate data from 1981–2001 was used as 

well as the HADCM3 GCM output for climate forecasting from 2002–2010, the list of climate 

variables available is provided in Table 4-2 below.  A screening procedure is available for the 

modeler to analyze which predictor variables to use in the downscaling scheme. Available 

statistics include correlation matrices, partial correlation analysis and scatterplots. 

 

Table 4-2: List of predictor variables available for the SDSM downscaling using NCEP reanalysis 
data and HADCM3 GCM output data. Bold variables were used for downscaling and forecasting 
precipitation at the Adirondacks. 

Variable NCEP HADCM3 

Mean Sea Level Pressure X X 
Surface Airflow Strength X X 
Surface Zonal Velocity X X 

Surface Meriodonal Velocity X X 
Surface Vorticity X X 

Surface Wind direction X X 
Surface Divergence X X 

500 hPa Airflow Strength X X 
500 hPa Zonal Velocity X X 
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Variable NCEP HADCM3 

500 hPa Meridional Velocity X X 
500 hPa Vorticity X X 

500 hPa geopotential Height X X 
500 hPa Wind Direction X X 

500 hPa Divergence X X 
850 hPa Airflow Strength X X 

850 hPa Zonal Velocity X X 
850 hPa Meridional Velocity X X 

850 hPa Vorticity X X 
850 Geopotential Height X X 
850 hPa Wind Direction X X 

850 hPa Divergence X X 
Specific Humidity at 500 hPa X X 
Specific Humidity at 850 hPa X X 

Surface Specific Humidity X X 
Mean Temperature at 2m X X 

 

For this study, surface zonal velocity, surface meriodonal velocity, surface vorticity, 

surface wind direction, 500 hPa geopotential height, surface specific humidity and mean 

temperature were chosen as predictor variables. A correlation matrix of all predictand and 

predictor variables was performed to measure the various explanatory power of the chosen 

variables. The results of the correlation matrix are provided in Table 4-3. From this table, 

surface vorticity has the strongest correlation with observed precipitation. Surface specific 

humidity and mean temperature at 2m are also relatively strong as compared with the 

remaining variables, which demonstrate weak explanatory power. 
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Table 4-3: Correlation matrix for all variables, including predictand (precipitation) and 
predictors for the period of 1980-2001. 

 
Observed 

Precip 

Surface 
Zonal 

Velocity 

Surface 
Merid. 

Velocity 

Surface 
Vorticity 

Surface 
Wind 

Direction 

500 hPa 
Geopotential 

Height 

Surface 
Specific 

Humidity 

Mean 
Temp at 

2m 

Observed 
Precipitation 

1 0.017 0.019 0.487 0.011 0.004 0.197 0.132 

Surface Zonal 
Velocity 

0.017 1 0.12 0.071 -0.668 0.004 0.143 0.141 

Surface 
Meriodonal 

Velocity 
0.019 0.12 1 0.074 -0.211 0.406 0.288 0.302 

Surface 
Vorticity 

0.487 0.071 0.074 1 -0.08 0.13 0.37 0.369 

Surface Wind 
Direction 

0.011 -0.668 -0.211 -0.08 1 -0.122 -0.21 -0.196 

500 hPa 
Geopotential 

Height 
0.004 0.004 0.406 0.13 -0.122 1 0.808 0.868 

Surface 
Specific 

Humidity 
0.197 0.143 0.288 0.37 -0.21 0.808 1 0.932 

Mean Temp 
at 2m 

0.132 0.141 0.302 0.369 -0.196 0.868 0.932 1 

 

Calibration of the predictors and predictand is then carried out by computing the 

parameters of multiple regression equations via optimization algorithms (dual simplex or 

ordinary least squares). A Weather Generator step then creates ensembles of synthetic 

weather series given the predictor atmospheric variables (NCEP-NCAR). This step enables the 

verification of calibrated models and the creation of artificial time series for present climate 

conditions. In the final step, the Scenario Generator creates ensembles of synthetic weather 

time series given the predictor variables supplied by the GCM (HADCM3) for past, present or 



83 
 

future climate conditions, instead of the observed (NCEP) predictors. For this study, the 

HADCM3 data were downscaled for the period of 2001–2010 and used as a comparison 

forecast tool to the WPC-ANN forecasting model. Bias correction for the proposed precipitation 

downscaling was modeled with a value of 1.0, indicating no bias correction, as is the 

recommended default value in the SDSM user’s manual. 

Statistical downscaling has a natural advantage over the WPC-ANN forecasting model, 

as the former can account for the weather variables presented in Table 4-2. These variables are 

based on observed and modeled climate patterns, which offer a more comprehensive view of 

the regional climate processes than the WPC-ANN model. Additionally, the SDSM tool enables 

ensembles of climate scenarios to be used, which permits the development of a risk and 

uncertainty analysis. 

Weaknesses also exist using statistical downscaling that the WPC-ANN model avoids. In 

statistical downscaling, predictor data are dependent on the underlying GCM, meaning that 

GCM regions that may not explain complex climate processes, such as those due to poor 

boundary forcings will not produce suitable downscaling results. In addition, the regression 

techniques used during the model calibration process can have poor performance when the 

predictor-predictand relationships are nonlinear and nonstationary. Low-frequency climate 

variability, such as periodic climate teleconnection patterns, is also known to be problematic 

with respect to statistical downscaling, as the process does not account for the memory effect 

of the ocean-atmospheric system.  
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4.5 Results and Discussion 

4.5.1 Monthly WPC-ANN & SDSM Comparison 

The results from the monthly WPC-ANN and SDSM precipitation forecast models are 

provided in Figure 4-9. The top graph represents the average precipitation across the 39 

precipitation grids within the Adirondack park boundary. The middle graph depicts the SDSM 

statistical downscaling precipitation forecasting model overlain in dark red with the average 

precipitation, beginning in 2001. The bottom graph depicts the WPC-ANN precipitation 

forecasting model, with the red graph representing the training and validation through region 

through 2008 and the green representing the forecasting, through 2010. Statistics of the results 

are provided in Table 4-4. 

The SDSM forecasting period is longer than the WPC-ANN forecast period because the 

available NCEP reanalysis data used to condition the SDSM model ended in 2001. SDSM was 

able to reasonably capture the seasonality of the precipitation, but was not able to match the 

peaks and lows of the precipitation trends. This could be a result of poor correlation statistics 

between the available climate variables and the precipitation observed within the Adirondack 

State Park during the weather conditioning process. Because the model depends on the 

relationships between the predictor variables and the predictand, it is unlikely that highly 

accurate predictions can be made. Another potential source of error comes from the 

nonstationary and nonlinear behavior of the precipitation data, as well as a reliance on the 

HADCM3 GCM output for this region. Statistical downscaling is known to perform poorly when 

using highly nonstationary and nonlinear time series or when the underlying GCM large-scale 
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weather variables are not properly calibrated with the trained data. It is expected that other 

climate predictands, such as temperature, would perform better than precipitation using 

similar downscaling approaches. 

The WPC-ANN model was developed using two primary inputs, the historic precipitation 

as well as the 11 TPCs, identified using wavelet analysis, during the teleconnection mapping. 

Both inputs were fed into the WPC-ANN to produce precipitation forecasts one month ahead. 

As seen in Figure 4-6, the WPC-ANN model produced a stronger precipitation forecast than 

SDSM, with correlation values approximately double that of the SDSM forecasting model. 

Additionally, the WPC-ANN model more accurately predicted the summer and autumn highs 

and winter and spring low precipitation amounts that occur over the Adirondack region. 

Multiple WPC-ANN models were developed with different forecasting periods (not shown). As 

the forecasting duration increased above 30 time steps, the predictive capabilities of the WPC-

ANN model decreased rapidly. This is expected in ANN models, as the model is highly sensitive 

to previous precipitation conditions and generally performs better with longer time series 

records. Thus, longer precipitation time series record may produce stronger forecasting 

capabilities. 

The WPC-ANN model was developed using the average historic precipitation across all 

39 grids. To determine the spatiotemporal variability within the Adirondack region, the same 

WPC-ANN model was applied to each of the individual precipitation gridded time series, thus 

forecasting 39 separate precipitation values. Figure 4-10 shows the WPC-ANN model results 

distributed across the Adirondack park boundary, with the left image showing the correlation 
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contours between the observed and forecasted precipitation, and the right image showing the 

average precipitation error contours. Interestingly, stronger correlation trends are observed 

throughout most of the Adirondack region as compared to the average precipitation graph 

shown in Figure 4-9, with correlation values of 0.8 achieved in the northeastern quadrant. The 

forecast error image on the right however shows that some regions of high correlation areas in 

the northeast are significantly under predicting the precipitation, suggesting that some high 

correlation regions are somewhat misleading, and not producing as strong of a forecast as 

suggested. Generally, the central portions of the Adirondacks have a small average forecast 

error and a relatively strong correlation with the observed prediction trends. The northeast and 

southeast quadrant with higher average precipitation errors could be due to topographical 

conditions, such as the mountainous northeast, which may produce anomalous precipitation 

trends difficult to forecast. 

 

Table 4-4: Statistics for the SDSM and WPC-ANN precipitation forecasting models. 

Statistic SDSM WPC-ANN 

Pearson’s r 0.3 0.6 

RMSE 1.3 0.7 
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Figure 4-9: Forecasting results for the SDSM and WPC-ANN models. The top graph shows the 
original averaged precipitation time series for the Adirondack State park in gray. The middle 
graph shows the SDSM model precipitation forecasting results from 2001 – 2010 overlain in 
dark red. The bottom image graph shows the WPC-ANN model overlain with the red indicating 
the training and validation and green showing the precipitation forecasting 
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Table 4-5: WPC-ANN Forecasting Tabular Results. 

Date 

Average 
Observed 

Precipitation 
(mm/day) 

WPC-ANN 
Forecasting Result 

(mm/day) 

Error 
(mm/day) 

Jul-08 4.22 3.18 1.04 
Aug-08 6.14 4.30 1.85 
Sep-08 2.02 3.00 -0.98 
Oct-08 2.08 1.88 0.20 
Nov-08 4.22 4.07 0.15 
Dec-08 4.40 3.40 1.00 
Jan-09 1.83 2.20 -0.37 
Feb-09 2.00 2.12 -0.12 
Mar-09 2.25 2.12 0.14 
Apr-09 1.61 2.56 -0.95 
May-09 3.95 2.45 1.51 
Jun-09 4.10 3.29 0.82 
Jul-09 3.64 3.16 0.49 

Aug-09 3.90 2.43 1.46 
Sep-09 2.48 2.25 0.23 

Oct-09 3.94 1.77 2.17 
Nov-09 3.67 2.89 0.77 
Dec-09 2.76 3.43 -0.68 
Jan-10 1.75 2.97 -1.22 
Feb-10 2.27 2.48 -0.20 
Mar-10 2.61 2.58 0.03 

Apr-10 1.84 2.58 -0.74 
May-10 2.06 2.53 -0.46 
Jun-10 3.30 2.33 0.97 
Jul-10 4.24 3.66 0.58 

Aug-10 2.78 5.28 -2.50 
Sep-10 4.83 4.51 0.33 
Oct-10 6.58 3.93 2.65 
Nov-10 2.94 2.38 0.56 
Dec-10 3.02 2.44 0.57 

 

 

 



89 
 

 

Figure 4-10: WPC-ANN modeled precipitation forecasting applied to all 39 Adirondack 
precipitation grids. The image on the left shows the correlation contour. The image on the right 
shows the precipitation error with blue indicating under prediction and green indicating over 
prediction. 

 

4.5.2 Seasonal WPC-ANN Results 

Pearson’s correlation and RMSE maps for the DJF predicted Adirondack precipitation are 

shown on Figure 4-11. Maps 4-11A and 4-11B show the WNN results where all 10 TPCs for both 

ocean regions were included, whereas maps 4-11C and 4-11D only include one ocean region’s 

TPC input from the Pacific and Atlantic basins, respectively. From map 4-11A, correlation values 

exceeding 0.8 are realized in the southern two thirds of the Adirondack state park with lower 

predictive values in the northern reaches, suggesting high predictive ability for winter rainfall 

patterns in most of the study area. RMSE values (map 4-11B) show a similar pattern with lower 

values of 0.4 occurring in the south, suggesting greater predictive skill than the north. Map 4-
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11C shows a much lower predictive skill than Map 4-11D, suggesting that the Atlantic basin is 

more important to winter Adirondack precipitation than the Pacific. 

Regions of low correlation in Figure 4-11A do not necessarily represent specific areas 

within Adirondack that are not well predicted. As illustrated in Figure 4-12, the 2006 winter 

season was very accurately predicted, with an R2 value 0.83 across all 30 gridded regions. 

Similar predictive skill was found for the 2004 winter period, whereas 2010 produced a 

prediction correlation value of only 0.43. These findings suggest that strong winter 

predictability exists for Adirondack region, which could be reasonably relied upon for 

watershed-scale precipitation forecasts. 

The predictive ability for the seasons MAM, JJA and SON did not produce meaningful 

predictive skill. A longer time series record is expected to improve the WNN model forecasts for 

the remaining seasons. Additional measures, including higher temporal resolution, could also 

benefit the WNN model, as the higher frequency variability would be captured in the wavelet 

decomposition process and ultimately used in the WNN model. 
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Figure 4-11: Maps A-D in clockwise order from the upper left. For all maps, the bold black 
outline represents the Adirondack state park boundaries, with the gray squares representing 
the 39 precipitation data grids. Map A is the correlation (red contours) between observed and 
predicted precipitation from 2004-2010 for each grid using all 10 TPCs from the Atlantic and 
Pacific oceans. Map B is the same as A except uses the RMSE (blue contours) statistic. Maps C 
and D are the same as map A except only the TPCs from the Pacific (Map C) or Atlantic (Map D) 
are included in the WNN model, respectively. 

B 

A 

C D 
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Figure 4-12: Seasonal precipitation prediction skill for winter 2006 year for all 39 precipitation 
grids. 

 

From the three science questions posed, it has been demonstrated that wavelet-based 

teleconnection mapping may be a suitable process for deriving the leading teleconnection 

regions associated with the Adirondacks that have been established in the literature, including 

the ENSO, NAO and PNA oceanic regions, using a 12-month lag. Non-leading teleconnections 

areas, such off the west coast of Baja California, as well as the other leading patterns unknown 

to be associated with northeastern U.S. climate, like the Western Pacific Pattern, are similarly 

identified in this process. These potential non-leading patterns warrant detailed analysis, as 

they may play an important role in the underlying processes that drive regional climate 

patterns in the northeastern U.S. Using only historic precipitation, as well as the TPCs identified 
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in the teleconnection mapping, a WPC-ANN precipitation forecasting model has been 

developed to predict precipitation amounts one month and one season ahead. When 

considering seasonal forecasts, the winter period exhibits the strongest predictive skill. The 

monthly WPC-ANN prediction model was also compared against a statistical downscaling 

approach using the SDSM software. The WPC-ANN precipitation model was able better predict 

precipitation trends than the SDSM model. 
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CHAPTER 5 : CONCLUSION 

5.1 Short-Term Investigation Conclusion 

High-resolution remote-sensing imagery provides us with the global ability to identify 

climate teleconnection signals in terms of greenness and precipitation variability in local areas 

of the northeast U.S. Using nonlinear spectral wavelet analysis, a consistent biennial to triennial 

low-frequency signal can be collectively identified among greenness, precipitation and SST 

anomalies in the Northern Atlantic and Pacific oceans. Linear correlation “hot spots,” 

specifically within the 0–3 month time lag for the Atlantic and eastern equatorial Pacific basin, 

and 8-9 months (or longer) for the central and western equatorial Pacific basin proved useful in 

locating specific ocean regions where teleconnection signals may exist. Extracted indices 

reproduce those areas of the oceans where traditional teleconnections exist, including the NAO 

and ENSO. This method of linear correlation is effective in screening and identifying these links 

over a vast area.  

Such an integrated remote sensing and wavelet analysis establishes a strong correlation 

link between each terrestrial site and surrounding oceans, with R2 values up to 0.50 for 

greenness and 0.42 for precipitation when considering multi-ocean influences using lagged 

stepwise regression analysis. This analytical process suggests that linear models using simple 

SST anomalies could be used for prediction estimates. Because SST indices are extracted from 

optimal locations, often within known teleconnection regions, this method may prove more 
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successful for localized studies than those that consider published teleconnection data suitable 

for broader areas.  

Wavelet analysis reveals signals of climate teleconnection between 16 and 30 months 

across all datasets, illustrating a clear biennial to triennial variability between SST and terrestrial 

response. A 3–9 month lag between equatorial Pacific SST and precipitation variability suggests 

that Pacific-induced Atlantic SST anomalies were present, which truly represent a 

teleconnection influence through tropical Pacific–Atlantic processes. Negative greenness 

patterns following La Niña winters also suggest that ENSO was influencing mid-latitude jet 

stream patterns. For precipitation patterns, NAO indices explain the most variability, with the 

Index 2 region showing a consistent 2-month lead time over each study site. This finding is 

consistent with earlier studies, suggesting that NAO-induced precipitation patterns were 

associated with nor’easter storm tracking following jet stream fluctuations.  

Precipitation was not a strong source of greenness variability when high periods of 

precipitation were associated with low periods of greenness and vice versa. Temperature 

variations might have stronger association with greenness variability. This allows ENSO 

teleconnections to have a significant effect on northeastern greenness by modulating the jet 

stream patterns, which can generate wildly different temperature anomalies as polar weather 

is forced into and out of the region. 

Finally, this analysis considered a 10-year short-term time series sufficiently long to 

establish small interannual teleconnection signals; however, the datasets are not long enough 

to investigate longer-term interannual or decadal periods. Caution must be used when drawing 
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conclusions from short-climate records, which may lead to the misinterpretation of statistical 

noise from deterministic causes. A longer time series, additional site locations, and climate 

variables are needed to further explore the teleconnection processes and the ecosystem 

response. 

5.2 Long-Term Teleconnection Summary 

Using wavelet theory, objectively identified teleconnection regions associated with the 

Adirondack state park in the northeastern U.S. have been used to forecast monthly and 

seasonal precipitation trends using a new artificial neural network scheme. Monthly wavelet 

decomposition reveals that the dominant wavelet power period for both precipitation and SST 

domains is the seasonal to annual frequency band. Lower interannual periods from 1-8 years 

exhibit high wavelet energy but are statistically insignificant. Seasonal wavelet decomposition 

reveals similar lower interannual periods of high wavelet power from 1-8 years, which are 

statistically significant. The lack of statistical significance for the interannual period in the 

monthly data differs from the results in the short-term study for the SPW site. Considering that 

the Adirondacks cover a much larger area than just the SPW, and that the study time period is 

30 year, and not 10, these statistical differences can largely be explained. 

Using the dominant wavelet energy band of 0.25–1 year for monthly time scale, and 1-8 

years for the seasonal time scale, the SAWP was calculated to extract the wavelet variability 

within the frequency bands. Using principal component analysis, the precipitation SAWP 

dataset was consolidated into its first principal component (WPC of precipitation). 
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Teleconnection mapping was performed using lagged pixel-wise correlation between the WPC 

precipitation and the SAWP SST domain. 

The identified monthly teleconnection patterns in the 12-month lag as well as the 6-

month lag for seasonal teleconnection maps are consistent with the leading teleconnections 

defined in the literature as having influence in the northeastern U.S. Potential non-leading 

teleconnections associated with the northern Atlantic and Pacific oceans are also visible. 

Principal component analysis is again used to extract the underlying teleconnection variability 

across the SST domain, known as the TPCs. 

Eleven TPCs for the monthly analysis and 10 TPCs for the seasonal analysis were used as 

inputs into a neural network model (WPC-ANN). Analysis reveals that the monthly WPC-ANN 

model performed better than a statistical downscaling model using the SDSM software, with 

the WPC-ANN model able to better model observed precipitation from summer and autumn 

highs and winter and spring lows. Average precipitation errors are concentrated in the 

northeastern and southeastern quadrants of the Adirondacks, suggesting that local topography 

may play a role in forecasting quality. It is noted that previous studies demonstrated stronger 

SDSM forecasting skill in the northeast U.S. and southeastern Canada, but were evaluated at 

different time domains, longer (40 year) data period, and did not include GCM output (Khan et 

al., 2006; Tryhorn and DeGaetano, 2011).  

For the seasonal WPC-ANN model, only the winter prediction model produced 

meaningful results. For the year 2006, the precipitation model accurately forecasted 

precipitation across the entire 39 gridded Adirondacks region, with R2 values of approximately 
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0.83. While the monthly forecast model reproduced overall more consistent precipitation 

estimates, the seasonal winter forecast model is shown to most accurately reproduce 

precipitation totals. 

The methodology proposed herein uses a stochastic technique for long-range 

forecasting of precipitation trends based on historic precipitation observation and 

teleconnection indices derived from SST observations. Monthly and seasonal time steps are 

used for forecasting, consistent with similar teleconnection-based forecasting efforts. 

Mesoscale and synoptic scale weather patterns and climatic data are not explicitly considered, 

which would be needed for higher temporal resolution and deterministic-based forecasting. It 

is anticipated that a longer time series record as well as the incorporation of other predictor 

variables, such as temperature, SLP and wind direction will improve the long-range forecast 

skill, which is recommended for future research. 

From the science questions posed, the leading and potential non-leading teleconnection 

patterns have been identified using wavelet-based teleconnection mapping. The unified leading 

and non-leading areas were successfully used in a WPC-ANN modeling scheme and compared 

against a statistical downscaling model. The WPC-ANN was able to better predict precipitation 

than the downscaling approach within the study region and time domain, consistent with the 

author’s hypothesis. This study suggests that non-leading teleconnection regions may play an 

important role in various regional and local climatic processes. The ability to objectively 

determined teleconnection regions associated with a particular terrestrial area may also prove 
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an important means of developing predictive models, or to augment existing models for 

regional and local forecasting purposes. 

5.3 Concluding Remarks 

This research has demonstrated the effectiveness of using nonlinear spectral analysis for 

the identification of statistical teleconnection regions to the northeastern U.S. and the northern 

Atlantic and Pacific oceans. For this study, wavelet analysis was used as the principal tool for 

the identification and exploration of teleconnection patterns. Wavelet analysis techniques have 

become a popular method for analyzing environmental data, and for establishing causal 

relationships between multiple time series.  It is noted, however, that wavelet analysis is not 

the only, nor necessarily the best, nonlinear statistical technique for teleconnection 

identification. A recent observation of wavelet-based research is the existence of wavelet 

“energy leakage” (Peng et al., 2009), which is a function of the wavelet band overlap degree 

and the time resolution for discrete wavelet transforms. Wavelet energy leakage could lead to 

weaker statistical relationships that may otherwise be present and dominant. Other methods, 

including Hilbert Huang Transform and Singular Value Decomposition are available to analysts 

for forecasting hydrologic time series. These methods have their own strengths and 

weaknesses, and may be more or less successful than wavelet analysis in revealing underlying 

statistical relationships, though such an analysis is beyond the scope of this research.  

Regardless of the method used, nonlinear spectral analysis with nonlinear ANN modeling offers 

a relatively inexpensive means for developing moderate to long-term climate forecasts. Such 

models are expected to become highly valuable tools for water managers, as well as for 
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industries that rely on the accurate forecast of precipitation patterns, such as hydropower 

producers, water supply utilities, agricultural management facilities, flood management 

authorities, urban planning (related to climate change forecasts), and water quality regulation. 
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