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ABSTRACT 

With exploding growth of information exchanges between people, display has become 

indispensable in our daily lives. After decades of intensive research and development in 

materials and devices, and massive investment in manufacturing technologies, liquid crystal 

display (LCD) has overcome various obstacles and achieved the performance we need, such as 

wide viewing angle, high contrast ratio, and high resolution, etc. These excellent performances 

make LCD prevailed in every perspective. Recently, with the demands of energy conservation, a 

greener LCD with lower power consumption is desired. In order to achieve this goal, new 

energy-effective driving methods, such as field sequential color display, have been proposed. 

However, in order to suppress color breakup the LC response time should be faster than 1 ms. To 

overcome this challenge, various fast-response liquid crystal modes, such as thin cell gap, low 

viscosity materials, overdrive and undershoot voltages, polymer stabilization, and ferroelectric 

liquid crystal, are under active investigations. Among these approaches, blue phase liquid crystal 

(BPLC) shows a greater potential with less fabrication limitations. 

 In this dissertation, the feasibility of polymer-stabilized blue phase liquid crystal for 

display applications is explored starting from the building blocks of the material system, 

polymer-stabilization processes, test cell preparations, electro-optical (EO) properties, to 

suggested approaches for further improvements.  
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Because of the nature of blue phase liquid crystals, delicate balance among system 

components is critically important. Besides the properties of each composition, the preparation 

process also dictates the EO performance of the self-assembled nano-structured BPLC 

composite. After the preparation of test cells, EO properties for display applications are 

investigated and results described. Approaches for further improvements of the EO properties are 

also suggested in the final part of this dissertation.  
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CHAPTER 1: INTRODUCTION 

1.1 Thesis Structure 

Liquid crystal is a material state between isotropic liquid and solid crystal. It possesses 

many properties at the same time which are only either found in liquids or solids. For example, 

liquid crystal can flow like liquids and have optical birefringence like crystals. Besides these 

characteristics, liquid crystal could also interact with electric or optical field. Therefore, liquid 

crystal has been widely used for electro-optic and optical applications. 

Based on their properties and formations, liquid crystals can be roughly classified into 

three groups: thermotropic, lyotropic and polymeric liquid crystals. Each type of liquid crystals 

has a wide variety of categories and applications. In this thesis, we will focus mainly on the blue 

phase liquid crystal which is a part of chiral liquid crystals in the thermotropic liquid crystal 

system. Discussions will cover from the observations, the properties of blue phase liquid crystal 

materials, and then, the electro-optic phenomena. At the final part, future research directions of 

blue phase liquid crystals for display applications will be discussed. 

1.2 Chirality and Liquid Crystals 

Chirality is a commonly seen characteristic in nature. An object or a system without 

mirror symmetry is called chiral. The most universally recognized examples are human hands. 



2 

Chirality is also easily observed in the molecular structures with same atomic compositions but 

in slightly different arrangements. Fig. 1.1 presents two pair of chiral examples as human hands 

and amino acid. 

 

Figure 1.1 Chiral pairs as human hands and amino acid. [1] 

In liquid crystals, chirality is also an easily observed characteristic. A chiral liquid crystal 

exists in a compound which is either composed of molecules with chiral structures or induced by 

adding chiral molecules into an achiral liquid crystal system. Because of the chirality, chiral 

liquid crystals possess many distinct and interesting properties. Different from commonly known 

nematic liquid crystals, in a chiral liquid crystal system the mirror symmetry disappears, the 

translation symmetry is reduced, and additionally, the spatial periodicity shows up. These basic 

differences complicate the minimum Landau free energy states in three dimensions and 

ultimately lead to a new liquid crystal state. As a result, new properties that are different from the 

nematic liquid crystal system manifest.  

Depending on applications, different properties of liquid crystal systems could be 

employed, such as thermal transition (in thermotropic liquid crystal) or molecular interaction (in 

lyotropic liquid crystal). Among these features, electric field-induced LC director reorientation is 

commonly used in display and photonic devices. Here, we focus on the electric field-induced 

refractive index change. Generally speaking, when a system composed of polar groups is under 
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the influence of an electric field, the dielectric polarization density (P) can be described as: 

EP 0 ,     (1.1) 

where ε0 is electric permittivity in free space, χ is the electric susceptibility, and E is the electric 

field. In a general system, the electric susceptibility χ is a nonlinear factor to the electric field E, 

which can be expressed as 

...)3()2()1(  EEEEEE  ,   (1.2) 

In a system which lacks of inversion symmetry or centrosymmetry, the linear term of the 

electric susceptibility dominates, which is referred as the Pockels effect. [2] However, in a 

symmetric system, like chiral systems, the linear term vanishes and the χ
(3)

 term dominates. The 

rest of the susceptibility terms still exist but in a relative small value. As a result, the electric 

displacement (D) can be written as 

 ...)3()1(

00  EEEEEPED  ,  (1.3) 

From this expression, the relative permittivity (εr) can be found as 

...1 )3()1(  EEr  .    (1.4) 

From Maxwell equations, the refractive index (n) of the system can be approximated as 

  ...
12

1
1

1

2)3(
)1( 









E
n

.   (1.5) 

The electric-field-induced refractive index change (δn) of the system is mainly proportional to 

the square of the electric field, which is commonly known as Kerr effect [2]: 

2KEn   .     (1.6) 
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For many organic materials studied, the Kerr constant (K) is very small. For example for 

nitrobenzene, its K~4.4 pm/V
2
. A small Kerr constant leads to a small induced refractive index 

unless the applied electric field is large.  

1.3 Cholesteric Liquid Crystals 

The early articles of chiral liquid crystals can be traced back to an Austrian botanical 

physiologist, Friedrich Reinitzer, in 1888. During his examinations over various derivatives of 

cholesterol, besides the already observed color effect above melting point, he found that 

cholesteryl benzoate has two melting points. After more observations and discussions with Otto 

Lehmann and von Zepharovich, he described three important features of a cholesteric liquid 

crystal: 1) existence of two melting points, 2) reflection of circularly polarized light, and 3) 

ability to rotate the polarization direction of the incident light. [3][4] 

From experimental observations and theoretical explorations, cholesteric liquid crystal 

can be regarded as a structure with a helical axis as shown in Fig. 1.2. In the illustration, liquid 

crystal directors gradually rotate in an angle along the helical axis. Therefore, a distance along 

this helical axis can be defined as a pitch (P0) when the liquid crystal director ( n̂ ) rotates back to 

its original direction.  
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Figure 1.2 Molecular structure in a cholesteric liquid crystal. [5] 

Layer-like structures are formed perpendicular to the helical axis in a cholesteric liquid 

crystal. Fig. 1.3 presents the cross-section view along the helical axis of a polymerized 

cholesteric liquid crystal. [6] The pitch length of the cholesteric liquid crystal is about 1μm and 

the helical axis is in the vertical direction. The inset is the transmittance spectrum of this layered 

structure. 
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Figure 1.3 Scanning electron microscopy of cholesteric liquid crystal layer 

structures. [6] (Reprinted by permission from SID, ©  2008) 

Because of this helical arrangement, the refractive index along the helical axis is changed 

periodically. This periodic refractive index distribution makes cholesteric liquid crystal an 

optically active medium reflecting the incident light in certain bandwidth, which leads to distinct 

colors. Fig. 1.4 shows the calculated reflection spectrums when the birefringence (Δn) of the 

liquid crystal host is 0.2 and 0.4, respectively. [7] The center wavelength λo of the reflection band 

can be obtained from [8] 

Pno
~ ,      (1.7) 

where ñ is the averaged refractive index of the liquid crystal and P is the pitch length. The 
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bandwidth Δλ of the reflection band can be found as 

nP ,      (1.8) 

where Δn is the birefringence of the liquid crystal. Depending on the handedness of the helical 

structure, either right- or left-handed circular polarized incident light will be reflected. 

Meanwhile, the incident light with a polarization of opposite handedness will transmit through. 

Thus, the maximum reflectance in Fig. 1.4 is about 50% because the cholesteric liquid crystal is 

only optically active to one polarization of the incident light. 

 

Figure 1.4 Calculated reflection spectrum of a cholesteric liquid crystal. [7] 

Fig. 1.5(a) shows the texture of a cholesteric liquid crystal under polarizing optical 

microscope and Fig. 1.5(b) is the corresponding reflection spectrum. [6] 
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   (a)              (b) 

Figure 1.5 (a) Texture of a cholesteric liquid crystal under polarizing optical 

microscope. (b) The corresponding reflection spectrum. [6] (Reprinted by 

permission from SID, ©  2008) 

1.4 Blue Phase Liquid Crystals 

In the beginning of 20
th

 century, O. Lehmann discovered an intermediate phase in a 

narrow temperature interval during the isotropic liquid and the cholesteric transition, which is 

different from isotropic liquid and cholesteric state. [9][10] Lehmann’s observations were 

confirmed by later investigators, especially by Gray, who called this intermediate phase the “blue 

phase”. [11] Moreover, by calorimetric [12][13] and optical [14][15] measurements two or even 

three stable phases (called BPI, BPII, and BPIII) were found within this very narrow temperature 

interval. Continuous to 1980s, intensive works based on theories from different perspectives [16], 

gradually reveal and explain the stable geometry of the BP states.  

After decades of experimental and theoretical investigations, the commonly accepted 
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crystalline structures in the blue phase states are body center cubic (bcc) structure for BPI, 

simple cubic (sc) structure for BPII, and an unknown amorphous close to isotropic state for BPIII. 

[17][18] The thermal scheme of the blue phase states is illustrated in Fig. 1.6. [16] While 

temperature increases, BP phases appear sequentially from BPI to BPIII between the cholesteric 

and the isotropic states. 

 

Figure 1.6 Thermal schemes of the blue phase states. [16] 

In the cubical model of the blue phase structures, to satisfy the minimum free energy 

configuration the arrangement of the liquid crystal directors is considered as a double-twisted 

cylinder formation illustrated in Fig. 1.7. [17] 
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(a)    (b) 

Figure 1.7 (a) Scheme of local directors in a double-twisted cylinder. (b) Stacking 

of double-twisted cylinders and frustrated defects. [17] [77] (Reprinted by 

permission from Taylor & Francis: Molecular Crystals and Liquid Crystals, 

© 1991) 

In this double-twisted cylinder formation, liquid crystal directors rotate spatially about 

any radius. However, filling these double-twisted cylinders into a three dimensional space is 

topologically impossible. Defects, as illustrated in Fig. 1.7(b), between the intersections of the 

cylinders become the key to relieve the strain. [18]-[23]  As a result, blue phase state is a 

delicately balanced system of the crystalline and defect structures. Fig. 1.8 presents the cubical 

crystalline stacking of the double-twisted cylinders and the corresponding defect lines 

(disclination lines) in different blue phase states. 
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(a)   (b) 

Figure 1.8 (a) Scheme of double-twisted cylinders in the cubical crystal lattice. (b) 

The corresponding frustrated defect lines. [77] (Reprinted by permission from 

Taylor & Francis: Molecular Crystals and Liquid Crystals, © 1991) 

Because of the nature as a defect balanced system, the existence of the blue phase state is 

limited within a very narrow range about few degrees. Under this limited stable range, blue 

phase liquid crystal is only investigated as a scientific interest. Practical application based on 

blue phase liquid crystals is hardly imagined. As a result, approach to widen the stable 

temperature range is the key for blue phase liquid crystals to prevail. To overcome this obstacle, 

several approaches have been proposed. First, Coles et al starts from the molecular engineering 

perspective by creating a new molecular structure as shown in Fig. 1.9. [24] 
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 Figure 1.9 Molecular structure proposed by Coles et al. (Reprinted by permission 

from Macmillan Publisher Ltd: Nature, ©  2005) 

This type of molecule has a rigid biphenyl core in both ends and a flexible alkyl chain in 

the middle connecting these two end groups. The number of carbon (n) in the middle alkyl chain 

is from 7 to 9. A stable wide temperature range in blue phase state, starts from 16.5˚C to 57.7˚C, 

has been reported. Microscopically speaking, the flexible long alkyl chain allows the rigid end 

cores to be orientated in any direction in order to satisfy the blue phase stacking structure as 

shown in Fig. 1.8. Therefore, even over a wide span of temperature, the molecular arrangements 

can still be kept in the blue phase structure. However, the dipole of this type of molecule is small 

so that a high electric field (14V/µm) is required to induce the electro-optical response. 

Another family of new molecular structure for widening the stable temperature range is 

proposed by Yoshizawa et al. [25] This type of mega-molecule has two long chains connected to 

the central phenyl ring and the whole molecular structure is in a T shape. A relatively wide blue 

phase temperature range of about 13 degrees, from 15˚C to 28˚C, is observed during the cooling 

process.  However, this type of mega-molecule has other concerns in practical applications such 

as, small dipole, high viscosity, miscibility to regular liquid crystals, etc. 

The second approach proposed by Yoshida et al is to dope blue phase liquid crystals with 

gold nanoparticles. [26] After doping gold nanoparticles in blue phase liquid crystal mixture by 

sputtering, blue phase temperature range increases from 3 degrees to 9 degrees during the 
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cooling process. Similar approach by mixing blue phase liquid crystal mixture with surface-

functionalized CdSe nanoparticles is reported by Karatairi et al. [27] It is believed that the doped 

nanoparticles are attracted to the defect lines (disclination lines). As a result, the penalty of the 

system’s free energy for the formation of defect lines decreases. Blue phase state, therefore, can 

be stabilized over a wide temperature range. 

The third approach is the polymer stabilization method proposed by Kikuchi et al. Until 

now, this is the most promising approach to widen the stable blue phase temperature range for 

practical applications. In 2002, Kikuchi et al proposed this breakthrough approach which opens a 

new door for practical applications. [28] To realize the stabilization of the liquid crystal 

molecules in blue phase states, polymer networks are introduced into the system. With a properly 

optimized process, polymer network is believed to form in the defect volume, i.e., alone the 

disclination lines as Fig. 1.8 shows. After the formation of the polymer networks in the blue 

phase structures, the stable temperature range is extended over 60 degrees. Besides this wide 

stable temperature, such a polymer-stabilized blue phase liquid crystal also keeps a very fast 

response time as observed in the regular blue phase liquid crystals.  

However, some issues remain a concern for the polymer-stabilized blue phase liquid 

crystals to be utilized in displays, for examples, high operating voltage and hysteresis. In the 

issue of the high driving voltage, different approaches by improving the material compositions or 

the device structures have been proposed by different groups. [29]-[35] These useful methods for 

reducing operation voltage will be discussed in this dissertation. Until now, the practically 

realized operating voltage is ~40Vrms unless protrusion electrodes are considered [35]-[37] 

Another concern is hysteresis. The hysteresis problem has been tackled for decades in liquid 
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crystal/polymer composites such as polymer-dispersed liquid crystal (PDLC) system. 

Unfortunately, hysteresis is also present in blue phase liquid crystal system. [38] Further work to 

reduce hysteresis is still under active investigations. [39]-[40]   

1.5 Liquid Crystal Displays 

Nowadays, flat panel display has prevailed in every corner, from small-size panels in 

personal watches or cellular phones, to mid-size monitors in personal computers to large-size 

TVs or public advertising boards. Among various display technologies, liquid crystal display 

(LCD) based on nematic liquid crystals is the most popular one. With the rapid growth of LCD 

technology, light weight, low power consumption, high resolution, fast response, vivid color 

performance and many other features make LCD indispensable in our daily life. 

Generally speaking, a LCD panel is composed of a light source (backlight), driving 

circuits (TFTs), a liquid crystal layer, polarizers and RGB color filters as shown in Fig. 1.10.  
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Figure 1.10 Device structure of a transmissive TFT LCD pixel with RGB sub-pixels. 

To achieve the abovementioned performances, effort to improve each component is still 

ongoing. Among these improvements, the liquid crystal layer has the greatest impact and also 

evolves dramatically. In the first LCD prototype demonstrated by RCA in 1960s, dynamic 

scattering mode was employed. However, the material stability, contrast ratio, and power 

consumption are big concerns for this operation mode.  In early 1970s, twisted nematic (TN) 

mode was invented. [41] After TN, due to different applications, the liquid crystal operation 

mode evolved rapidly into super-twisted nematic (STN) for high information content, in-plane 

switching (IPS) for wide viewing angle [42][43], multi-domain vertical alignment (MVA) for 

high contrast and wide-view [44][45], and fringing field switching mode (FFS) for wide viewing 
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angle and high transmittance [46]. Currently, because the energy consumption problem becomes 

an urgent issue, the replacement of the backlight unit from cold cathode fluorescent lamps 

(CCFL) to light emitting diodes (LED) has been implemented. Furthermore, the needs for new 

liquid crystal operation mode also become critical to enable a more energy efficient display 

driving, such as the color sequential operation. [47] Compared to the conventional nematic liquid 

crystals, blue phase liquid crystal has a 10X faster response speed at around hundreds of 

microsecond. This fast response time makes blue phase a strong contender as next-generation 

display technology. 

Besides fast response time, some other advantages of blue phase liquid crystals can also 

be realized, such as alignment layer free and cell gap insensitivity if in-plane switching 

electrodes are used. Figure 1.11 illustrates conventional cell assembly process of a TFT-LCD 

panel. 
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Figure 1.11 Cell assembly process of a TFT LCD panel. 

Before the cell assembly process, the bottom and the top glass substrates are prepared 

with TFT structures and RGB color filters (CF), respectively. During the cell assembly process, 

both TFT and CF substrates are first coated with a layer of polyimide (PI) and then rubbed by a 

nylon cloth in a given direction. These two procedures regulate the arrangement of the liquid 

crystal molecules and help to align liquid crystal molecules in a designated direction. After the 

above processes, liquid crystal mixture is injected to the gap between these two glass substrates 

by one-drop-fill (ODF) method. Spacer balls are also spread at the same time to control the cell 

gap (liquid crystal layer thickness) between these two substrates. In the end of the cell assembly 
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process, these two substrates are sealed by a UV curable sealant and cut into proper sizes for next 

polarizer lamination step.  

Because of the self-assembly nature in blue-phase liquid crystals, the cell assembly 

process can be greatly reduced by skipping the PI coating and the rubbing processes. 

Furthermore, the electrode configuration gives another advantage to simplify the fabrication 

process. Generally speaking, the thickness and uniformity of the liquid crystal layer in a 

conventional TFT-LCD panel are very critical. Issues such as brightness uniformity, dark state 

uniformity, color performance, moiré, would show up when the thickness uniformity is slightly 

off. Based on the operation of a blue-phase liquid crystal, an IPS electrode configuration is 

preferred. Due to the limited penetration depth of the effective electric field induced by the 

electrodes on the same substrate, the performance of the blue-phase liquid crystal is not sensitive 

to the cell gap variation when the LC layer is thicker than a certain value, say 3-4 m. [48] This 

tolerance relieves the requirements of the thickness control in the liquid crystal layer and the 

flatness uniformity of the glass substrates which are difficult to control precisely for a large-

panel LCD TV.   

1.6 Summary 

Liquid crystal is a fascinating matter that possesses many special properties at the same 

time. Especially in the chiral liquid crystal systems, various optical active properties, such as 

selective reflections in color and polarization, can be utilized for many applications. In this 

dissertation, the discussion will start from the selection and establishment of blue phase liquid 

crystal systems based on different liquid crystal materials in Ch. 2. Then, the characterization of 
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the electro-optical properties of a properly chosen blue phase liquid crystal system follows in Ch. 

3. In Ch. 4, an easy and most promising blue phase range widening approach, the polymer 

stabilization method, will be utilized to this selected system. Different optimization procedures 

will be performed according to the initial state of the systems. In the aspect for display 

applications, voltage induced transmittance, response time, and the hysteresis issue in polymer-

stabilized blue phase liquid crystal will be addressed and analyzed. In the last part of Ch. 4, the 

roadmap for further improvements in voltage reduction for display applications will be presented. 
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CHAPTER 2: MATERIALS AND CHARACTERIZATION METHODS 

2.1 Material Systems 

In this chapter, the LC components required for forming blue phase liquid crystal system 

is reviewed. In general, to obtain a chiral liquid crystal system either single structure mesogens 

of a chiral nature or chiral molecules doped-achiral LC host are needed. The host material will be 

discussed first, followed by chiral molecules doped-nematic liquid crystals. Finally, we will 

introduce some intrinsically chiral liquid crystals for which blue phase can be observed without 

additional dopants. 

2.1.1 High Birefringence Liquid Crystals 

Several commercially available high birefringence mixtures were studied for their 

suitability as a host LC for blue phase material. In this section we investigate some Merck E, TL 

and BL series of LC mixtures and high dielectric anisotropy TEB-series nematic LC mixture 

from Slichem. 

2.1.1.1 High Birefringence Merck E-series 

First, we start from the most popular liquid crystal mixtures, the E-series. E-series liquid 

crystals are used in various applications. For example, E44 was widely used in optical phase 

modulator, [49] [50] phase grating, [51] focusing lens, [52] [53] spatial light modulator (SLM), 
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[54] polymer/liquid crystal composite, [55] [56] cholesteric liquid crystal laser, [57] and etc. As 

reported in early works, E44 liquid crystal mixture has a cyano polar group [58]. The major 

compounds in E44 have a biphenyl core and a cyano end group as illustrated in Fig. 2.1. 

R CN

 

Figure 2.1 Major structure of compounds in E44. R is alkyl chain. 

2.1.1.2 High Birefringence Merck TL-series 

The second type of liquid crystal used here is the TL-series. The TL-series liquid crystal, 

such as TL213, is commonly used in the polymer-dispersed liquid crystal (PDLC) system [59] 

[60] or phase grating. [61] As reported in prior arts, superfluorinated liquid crystal mixture 

(TL213) and monomer mixture (PN393, Merck) can form a sponge like liquid crystal/polymer 

composite which increases the light scattering effect and is beneficial to the PDLC systems. 

[62][63] 

2.1.1.3 High Birefringence BL-series 

The third type of liquid crystal is the BL-series, which is also used in the PDLC system 

but with a higher birefringence. For example, BL038 with a birefringence of 0.27 is commonly 

seen in holographic PDLC system, [64] PDLC grating, [65] [66] tunable lens, [67] and beam 

steering device. [68] 

2.1.1.4 High Birefringence TEB-series 

The last liquid crystal mixture, TEB300, is from TEB-series by Slichem, which has a 
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higher dielectric anisotropy. This nematic liquid crystal is also usually used for PDLC system. 

[69] The material parameters of the liquid crystal mixture from each series are listed in Table 2.1, 

respectively. 

Table 2.1 Material parameters of liquid crystal mixtures. 

Parameters E-series TL-series BL-series TEB-series 

Mixture E44 TL213 BL038 TEB300 

Viscosity (cSt, 20˚C) 

/(mm
2
s

-1
,20˚C) 

47 49 72 89 

Δε (1kHz, 20˚C) 16.8 5.7 16.4 29.3 

ε// (1kHz, 20˚C) 22 10 21.7 10.3 

Δn (589nm, 20˚C) 0.2627 0.239 0.2720 0.166 

no (589nm, 20˚C) 1.5277 1.527 1.5270 1.677 

K11/10
-12

N (20˚C) 15.5 16.8 13.7 7.4 

K33/10
-12

N (20˚C) 28.0 22.0 27.7 12.6 

 

2.1.2 Chiral Dopants 

To induce chirality in nematic liquid crystal mixtures, chiral agent is a key component. 

Here, we will discuss some commonly used chiral agents. Fig. 2.2 depicts the molecular structure 

of the chiral agents discussed in this work. 

CH3CH3

CN

, CB15 (Merck) 
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Figure 2.2 Molecular structures of three chiral agents. 

One of the key parameter to define the characteristic of a chiral agent is the helical 

twisting power (HTP), which is defined as 

cP
HTP




1
,     (2.1) 

where P is the pitch length, and c is concentration of the chiral agent in the chiral liquid crystal 

mixture. [5] However, the solubility of chiral agents in nematic liquid crystals depends on the 

molecular structure. Some material properties of the above mentioned chiral agent is listed in 

Table 2.2. 



24 

Table 2.2 Material parameters of chiral agents. 

Parameters CB15 ZLI-4752 ISO-(6OBA)2 

HTP (μm
-1

)* ~7 ~50 ~50 

Tm (˚C) 4 133 80 

* HTP is different in different liquid crystal mixture. 

2.1.3 Monomers for Liquid Crystal Composites 

Besides liquid crystal mixtures and chiral agents, polymer is another critical portion. To 

chemically build up a polymer composite, monomers are the basic building blocks. Different 

polymerization approaches, such as heat, light, or electric shocks, can be utilized based on the 

material properties of the monomers and initiators used in the polymerization process. For 

simplicity of fabrication, only photolysis is utilized here. Two types of monomers are illustrated 

in Fig. 2.3.  
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Figure 2.3 Molecular structures of monomers. 

As predicted by the molecular structure in Fig. 2.3, distinct material properties would be 

expected between these two types of monomers. 2-Ethylhexyl acrylate (EHA) is a small 

molecule monomer. The melting point is -90˚C. RM257 has a larger molecular structure, which 

indicates a higher melting point. Furthermore, a nematic liquid crystal mesophase is observed in 

RM257 from 70˚C to 120˚C, which helps the miscibility of this monomer in nematic liquid 

crystal mixtures. [70] 

2.1.4 Supporting Materials 

Besides chiral agent doped liquid crystal mixtures, chiral liquid crystal state can also be 

observed from liquid crystal molecules with chirality by itself. Here we introduce one of the 

chiral liquid crystal molecules. This chiral liquid crystal molecule itself has a blue phase state 

with 9-degree temperature range. The molecular structure is presented in Fig. 2.4. [71] Detailed 

analysis will be discussed as follows.  
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Figure 2.4 Molecular structure of a chiral liquid crystal. [71] 
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2.2 Characterization Methods 

Generally, the mesophase of a chiral liquid crystal mixture can be determined by the 

phase transition temperature, distinct reflection colors, or electro-optical responses, etc. Here we 

discuss the above mentioned material systems in the following approaches. 

2.2.1 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is a thermal analytical technique, in which the 

difference in the amount of heat required to increase the temperature of a sample and the 

reference cell is measured as a function of temperature. This method can quantify the amount of 

heat needed when the sample has a phase transition during heating or cooling cycle.  

To find out the transition temperatures between mesophases, DSC is a convenient tool. 

By several cycles of scanning over a certain temperature range, the transition temperatures can 

be accurately defined. Fig. 2.5 presents the thermal phase diagram of the chiral liquid crystal 

compound shown in Fig. 2.4 measured by DSC.  
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Figure 2.5 DSC measurement of the chiral liquid crystal in Fig. 2.4. 

In this material, several mesophases are observed from the DSC diagram. The detail 

mesophases of this liquid crystal system will be discussed in the following section. 

 

BP TGB 
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Figure 2.6 Reduced heat capacity in cholesteryl nonanoate. [72] (Reprinted with 

permission from J. Thoen, Phys. Rev. A 37,1754 (1988) © 1990 by the American 

Physical Society.) 

However, for such a delicate liquid crystal phase like the blue phase state in most of 

chiral liquid crystal systems, the requirement to the resolution of DSC is very critical. As 

revealed in Fig. 2.6, the temperature range of each blue phase is very narrow (each blue phase 

state is less than 0.5˚C) and the heat capacitance is also very small in the cholesteryl nonanoate. 

[72] The inlet label “CN” stands for cholesteryl nanonate, the “CH” cholesteric liquid crystal 

state, and the “I” isotropic state. As illustrated in this DSC trace, the heat capacitance (the area 

under the peaks) between each blue phase transition is very small compared to the heat 

capacitance in the phase transition to the isotropic state. Additionally, the whole blue phase range, 

including BPI, BPII, and BPIII, is very narrow, which is less than 1 degree. Because of these 

reasons, one could easily reach a misleading conclusion that no blue phase state exists if the 

resolution of a DSC is not enough. Therefore, a high resolution DSC is essential to the 

identifications of blue phases in different liquid crystal systems. 

In this work, the most interesting mesophase to us is the blue phase state. However, 

limited by the capability of our DSC, most of the BP state in the listed chiral liquid crystal 

systems cannot be detected. To observe the BP state in these mixtures, we will mainly rely on the 

next observation approach, polarizing optical microscopy (POM), to investigate the mesophases 

in our chiral liquid crystal systems.  

http://link.aps.org/doi/10.1103/PhysRevA.37.1754
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2.2.2 Polarizing Optical Microscopy 

Although it is an exhausting and time-consuming approach compared to DSC, polarizing 

optical microscopy (POM) is another reliable method to identify the mesophase of a liquid 

crystal system. The liquid crystal sample in Fig. 2.4 is studied as a comparison between the DSC 

and the POM approaches. Fig. 2.7 presents the mesophase textures under POM observations at 

different temperatures. 
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Figure 2.7 POM observations of the liquid crystal molecule in Fig. 2.4 at (a) 75˚C, 

(b) 73.6˚C, (c) 73.4˚C, (d) 73.1˚C, (e) 73˚C, (f) 72.2˚C, (g) 64.9˚C, (h) 64.4˚C, (i) 

63˚C, and (j) 54.4˚C. 
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As indicated from the DSC phase diagram in Fig. 2.5, the blue phase (BP) state is from 

72.6˚C to 63.6˚C and the twist grain boundary (TGB) state shows up below 63.6˚C. The 

transition temperatures from the DSC measurement are about one degree lower than that from 

the POM observations. The temperature difference between these two approaches mainly comes 

from the thickness of the glass substrate used in the POM method, which induces a temperature 

gradient from the heating stage to the sample. As a result, the BP range of this single molecule 

system in Fig. 2.7 is about 9 degrees. During the cooling process, within this BP range, the 

observed color of the BP platelets red-shifts rapidly within one degree and then stays in orange 

until the TGB phase shows up. 

Although a wide blue phase temperature range can be found in this single liquid crystal 

compound, some other criteria have to be considered while preparing an applicable electro-

optical medium for display based on this compound. First of all, the reflection band of a single 

chiral compound is very difficult to be adjusted. For display applications, the reflection band 

should be shifted outside the visible range to avoid a colorful reflection. As a result, this 

compound should be used as a dopant in a proper liquid crystal host. However, the miscibility of 

this compound is limited as its heat fusion enthalpy is high. Second, the dielectric anisotropy (Δε) 

of this compound is very small. This small Δε will lead to a small Kerr constant and, as a result, a 

high driving voltage. An IPS cell with 5µm electrode width and 10µm electrode space filled with 

this compound was prepared as a test sample. Though the driving voltage has reached 200Vrms, 

the transmittance of the sample cell remains quite low under crossed polarizers. Therefore, the 

criterion of a blue phase liquid crystal system for practical applications would be satisfied easier 

if the chiral system is prepared by another approach. 
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The other approach to obtain a chiral liquid crystal system is to add one or more chiral 

agents into a nematic liquid crystal system. In this work, mixtures prepared by the nematic liquid 

crystal mixtures in Table 2.1 and chiral agents in Table 2.2 are studied. The compositions of each 

mixture are listed in Table 2.3. 

Table 2.3 Compositions of chiral agent doped liquid crystal systems. 

Composition 

(%) 
Mixture-E Mixture-TL Mixture-BL Mixture-TEB 

E44 88.5 - - - 

TL213 - 68.2 - - 

BL038 - - 70.9 - 

TEB300 - - - 68.3 

ZLI-4752 11.5 6.8 6.7 6.8 

CB15 - 25 22.4 24.9 

 

First, we start our searches for BP state from a commonly used E-series liquid crystal 

mixture, E44. As discussed, to induce BP state, high chirality in a chiral liquid crystal system is 

preferred. [16] However, each chiral agent has different limit of miscibility in different liquid 

crystal mixture. In Mixture-E, although 11.5% of ZLI-4752 was added, blue phase state was still 

not observed. Increasing the concentration of ZLI-4752 would solidify the mixture during the 

cooling process. Therefore, Mixture-TL (based on TL213) was investigated as the second sample. 

After mixing the designated ratios well, BP state was observed from 49.1˚C to 47.2˚C under 

POM during the cooling process. Fig. 2.8 shows the POM observations over the whole BP range. 

The BP phase range in Mixture-TL is from 49.1˚C to 47.2˚C, which is only 2 degrees.  
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Figure 2.8 POM observations of Mixture-TL at (a) 49.1˚C, (b) 48.5˚C, (c) 48˚C, 

and (d) 47.2˚C. 

The third mixture is based on BL-series nematic liquid crystal, BL038. Fig. 2.9 shows the 

POM pictures of the BP state in Mixture-BL. The BP state range is from 69.5˚C to 66.5˚C, where 

the BP state is about 3-degree wide. 
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Figure 2.9 POM observations of Mixture-BL at (a) 70˚C, (b) 69˚C, (c) 68˚C, and 

(d) 66.5˚C. 

The last mixture, Mixture-TEB, is based on a nematic liquid crystal mixture, TEB300. 

The observed BP state is about 3-degree wide; from 33˚C to 30˚C during the cooling procedure. 

The POM pictures are presented in Fig. 2.10 at different temperatures. 
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Figure 2.10 POM observations of Mixture-TEB at (a) 33˚C, (b) 31.5˚C, (c) 30.4˚C, 

and (d) 30˚C. 

As presented from Fig. 2.8 to Fig. 2.10, though two same types and a comparable weight 

ratio of the chiral agents were added, the color of the BP platelets, which indicates the induced 

chirality, was different in different nematic liquid crystal hosts. Moreover, the temperature range 

of the BP states is located at a different level and has a different width. A narrow BP range (e.g., 

Mixture-TL) and a low temperature level in Mixture-TEB make the LCD panel fabrication and 

characterization much more difficult.   
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2.2.3 Electro-Optical Responses 

Electro-optic (EO) response is another approach to identify the mesophases of a liquid 

crystal system. Similar to the case that various EO responses could be distinguished between 

different mesophases, like ferroelectric, sematic, or nematic phases, based on a similar or even 

the same system compositions. BP liquid crystal system also possesses this feature between 

different BP states. According to U. Singh, the induced refractive index in each BP phase is 

different. [73] Fig. 2.11 shows the electric field-induced birefringence from BP to the isotropic 

states based on cholestryl nonanoate. 

 

Figure 2.11 E
2
/Δn versus temperature for cholestryl nonanoate at an applied 

voltage of 707V. [73] (Reprinted by permission from Taylor & Francis: Liquid 

Crystals, © 1990) 

As indicated in Fig. 2.11, the electric field induced birefringence in BPI state is higher 

than it in BPII or isotropic phase. Based on this feature, we can roughly identify the BP states of 
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a chiral liquid crystal system. Further details on one of the listed chiral liquid crystal mixtures 

will be discussed in the following chapters. 

2.3 Summary 

To prepare a viable blue phase mixture, multiple factors should be considered, for 

example, the capability of having a BP state as wide as possible at a reasonable level of 

temperature, the miscibility of components in the system, the stability of the entire system, and 

an acceptable operating voltage. Therefore, to prepare a BP liquid crystal mixture, the material 

properties of individual composition have to be carefully considered. After all components are 

mixed homogeneously, the properties of the whole system also have to be checked again. From 

the above characterization methods to the mixtures in Table 2.3, the BP state was not observed in 

Mixture-E. As for Mixture-TL, the temperature range is too narrow, which will lead to 

difficulties in sample preparation and characterization. Moreover, though a relatively wide BP 

range is found in Mixture-TEB, it shows up at room temperature, which is too sensitive to the 

environmental conditions. Based on the above considerations, Mixture-BL is used for further 

sample preparations and characterizations of the BP properties.  
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CHAPTER 3: BLUE PHASE LIQUID CRYSTALS 

Although liquid crystal molecule with an intrinsic chirality could be a candidate for 

forming blue phases, chiral agent doped-nematic is still preferred because of its simple control of 

chirality. After considerations over blue phase liquid crystal mixtures from different series of 

liquid crystal hosts discussed in chapter 2, Merck BL series is a promising LC host for further 

studies. 

3.1 Material System 

For transmissive displays, BP reflection band in the visible range should be avoided. By 

adjusting the concentration of chiral agents, the reflection band of a BP mixture could be pushed 

into either ultraviolet (UV) or infrared (IR) region. However, based on prior discussions, [16] it 

is easier to induce a BP state in a high chirality system than it is in a low chirality system. As a 

result, mixture UVBL based on Merck BL LC host was prepared by modifying the ratio of the 

chiral agents up to 25%.  

3.2 Thermal Morphology 

Thermal morphology is an important parameter as the commencement of the total 

evaluations. Both DSC and POM approaches were used here. 



39 

3.2.1 Differential Scanning Calorimetry Results 

First, we used DSC to measure the thermal features of mixture UVBL and results are 

presented in Fig. 3.1. 

 

Figure 3.1 DSC diagram of mixture UVBL. 

As shown, between 60˚C to 0˚C only one broad bump of heat flow around 40˚C was 

detected. From this DSC result, it is difficult to identify which type of mesophase exists in 

mixture UVBL. Therefore, another characterization method, the POM approach, was performed. 

3.2.2 Liquid Crystal Texture 

As the mesophase cannot be identified via DSC, POM observation becomes the 

important key to find the thermal morphology. After searching the entire span of temperature as 

shown in DSC, the observed POM pictures are presented in Fig. 3.2. 
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Figure 3.2 POM observations of mixture UVBL at (a) 41.5˚C, and (b) 36.5˚C. 

As shown in Fig. 3.2, the observed POM is colorless and completely dark. To confirm a 

BP state from POM observations, BP platelets would be the direct evidence to it. However, no 

color reflection should be expected under POM observations since the BP reflection band of 

mixture UVBL was shifted to UV region for display application. Fortunately, though invisible in 

the visible region, slight light leakage, because of the orientation of BP platelets, could help in 

the confirmation of the BP state. By enhancing the contrast ratio and the brightness with post 

image processing, BP platelets can be observed as shown in Fig. 3.3. [38]  
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Figure 3.3 The enhanced image of BP platelets in mixture UVBL. [38] 

As a result, BP state can be confirmed in mixture UVBL which is from 41.5˚C to 36.5˚C 

and 5-degree wide. After further examinations over the whole BP range, two BP states, BPII and 

BPI, were found above and below 39.3˚C accordingly. The EO performance in different BP 

states will be discussed next. 

3.3 Electro-Optics of Blue Phase Liquid Crystal 

Besides thermal morphology, EO response in BPLC is another important issue for 

practical display applications. Because of the crystalline-like molecular arrangement, the EO 

characteristic is rather complicated in the BP states. [74] Various electric field-induced 

phenomena were described from early works until now. [75] [74] Conceptually speaking, as the 

electric field increases the double helix structure in BPLC unwound gradually to different liquid 

crystal states as illustrated in Fig. 3.4. [76] [77]  
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Figure 3.4 Electric-field-induced unwinding scheme in BPLC. [76] [76] 

(Reprinted by permission from Taylor & Francis: Molecular Crystals and Liquid 

Crystals, © 1991) 

Further studies indicate that the electric field-induced effects in a BPLC system can be 

categorized into three types, i.e., local molecular reorientation, electrostriction, and phase 

transition. [76]-[86] First of all, the mechanism of local molecular reorientation is as depicted as 

its name. Under an electric field influence, only the LC molecular orientations aligned either 

parallel or perpendicular to the direction of the electric field is involved. Usually, the response 

time of this mechanism is at the level of hundreds of microseconds. The second mechanism is 

electrostriction. In this level of operation, the macroscopic molecular arrangement, i.e., the lattice 

structure in BPLC system will be either compressed or stretched depending on the direction of 

the electric field, the orientation of the BPLC lattice facets, and the physical properties of the 

BPLC molecule. Fig. 3.5 illustrates the deformations of two BPLC systems with (a) positive and 

(b) negative dielectric anisotropy at different lattice orientations under the same electric field 

direction, respectively. 
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Figure 3.5 Electrostriction in BPLC. [77] [84] [85] (Reprinted by permission from 

Taylor & Francis: Molecular Crystals and Liquid Crystals, © 1991) 

With this electric field-induced deformation, the reflection wavelength shifts in order to 

satisfy the required Bragg condition. Usually, the response time of this mechanism is at a level of 

tens of milliseconds. The last electric field-induced mechanism is phase transition. Because of 

the perturbation from the external electric field, the stacking of BPLC molecules changes 

according to a locally stable free energy state. As a result, various possible electric field-induced 

stable BPLC states can be observed. Fig. 3.6 presents some phase transition schemes under an 

external electric field influence. [77] 
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Figure 3.6 Electric field induced phase transitions in BPLC. [77] (Reprinted by 

permission from Taylor & Francis: Molecular Crystals and Liquid Crystals, 

© 1991) 

Usually, the response time of phase transition is very slow which is about hundreds of 

milliseconds. In some cases, this phase transition feature even takes hours. 

Macroscopically speaking, BPLC is optically isotropic at the field-off state. When an 

electric field is present, it shows different induced birefringence depending on which orientation 

of the crystalline structure is aligned to the electric field direction. [75] [77] [86] In a BP 

molecular structure with cubic symmetry, the Kerr effect is described by three independent 

electro-optic coefficients. [87] However, if biaxiality is neglected and if the average refractive 

index is assumed to remain constant, the field-induced refractive index can be regarded as the 

Kerr effect in an isotropic liquid. [75] Therefore, it can be approximately described by a single 
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Kerr coefficient [88] 

2E

n
K




 ,      (3.1) 

where Δn is the electric field induced birefringence, λ is the wavelength of the incident light, and 

E is the electric field. Therefore, in a simplified scenario, the approximated electric field-induced 

birefringence occurs only in the electric field affected region and also alone the same direction of 

the electric field. As a result, to effectively introduce phase retardation to the incident light, the 

electric field should be perpendicular to the propagation direction of the incident light. Therefore, 

IPS (in-plane-switching) electrode geometry would be a proper structure to fabricate a BPLC cell. 

In this chapter, a BPLC sample is prepared by filling mixture UVBL into an empty glass 

cell. The top substrate is a piece of plain glass. As for the bottom glass substrate, a thin layer of 

interdigitated transparent ITO (indium-tin-oxide) electrodes in IPS geometry is coated. The cell 

gap of sample UVBL is controlled at ~13 μm by spacer balls. Because the molecular 

arrangement in BP state is formed by self-assembly process, rubbing process is not required. 

Furthermore, because of the IPS electrode geometry, the EO performance of a BP sample is not 

sensitive to the cell gap when it is larger than a certain thickness. [48] 

To measure EO responses, a He-Ne laser (λ=633 nm) was used as the light source. 

Sample UVBL was placed between two crossed polarizers. Ideally, when the electric field is 

uniform the transmittance (normalized to that of two parallel polarizers) of the BPLC cell 

through crossed polarizers can be described by following equation [89] 

  









2
sin2sin 22 

T ,     (3.2) 
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where ϕ is the angle of the polarization of the incident light with respect to the front polarizer, 

and δ is the electric-field-induced phase retardation from the test sample. When the polarization 

direction of the incident light is at 45˚ to the polarizer (i.e., ϕ=45˚), the transmittance in equation 

(3.2) is only related to the phase retardation of the sample. Therefore, a maximum transmittance 

can be detected when phase retardation (δ) of the test sample matches integers of π. In an IPS 

electrode geometry, the phase retardation δ in a BP sample can be roughly approximated as 

dKEnd 22
2





  ,     (3.3) 

where K is the Kerr constant, and d is the effective thickness of the induced birefringence layer. 

With this electric field-induced phase retardation, the transmitted light intensity can be 

modulated by the applied voltage signal. Therefore, the static EO response (the voltage induced 

transmittance curve, VT) can be recorded as the reference for further gray level operations.  

The driving electric signal here is composed of a 1 kHz square wave signal of 50% duty 

cycle. To confirm the stability of this sample, two or more cycles of voltage ascending and 

descending procedures were consecutively executed during the measurement. As found in 

section 3.2, there are two BP states in mixture UVBL. Therefore, the EO characteristics in these 

two BP states will be discussed respectively in this section. 

3.3.1 Blue Phase I 

First of all, the voltage-dependent transmittance (VT) of sample UVBL at BPI state was 

measured as Fig. 3.7 shows. Two cycles of voltage ascending and descending procedures were 

performed.  
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Figure 3.7 Measured VT curves of sample UVBL at BPI state (λ=633nm). 

As mentioned in section 3.1, the reflection band of sample UVBL is shifted to the UV 

region for display applications. Moreover, because of the intrinsic optically isotropic property at 

the voltage-off state, the setup of sample UVBL between two crossed polarizers is a normally 

black device, i.e., no light is transmitted through the analyzer at V=0. The transmittance of the 

dark state basically depends only on the extinction ratio of the polarizer. Therefore, the initial 

transmittance in Fig. 3.7 is very low. As voltage increases, the induced phase retardation 

accumulates accordingly by equation (3.3). As a result, the detected transmittance through 

sample UVBL increases along the lower curve which is labeled by a red arrow in Fig. 3.7. When 

voltage rises up to ~108Vrms, the transmittance reaches a maximum. After this maximum, 

transmittance decreases because of an excessive phase retardation induced by a higher voltage. 

As in the procedure during voltage descending, the detected VT curve rises up first, 

because of the decreasing of phase retardation, and then reduced back to its initial low 
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transmittance dark state along the higher curve which is labeled by a blue arrow in Fig. 3.7. Here, 

a voltage difference (ΔV) is observed between the ascending and the descending VT curves at 

half transmittance level. This observed phenomenon is called “hysteresis”. Generally, the 

quantity of hysteresis can be defined as 

pV

V
Hys


 ,      (3.3) 

where Vp is the peak transmittance voltage.  

Hysteresis is a well-known phenomenon in electronic, magnetic, and optical systems. [90] 

[91] Generally speaking, hysteresis should be less than 1% in order to obtain accurate gray-scale 

control. Here, the calculated hysteresis of the VT curves in Fig. 3.7 is 18.5%. 

Dynamic EO response, i.e., the response time, is another critical performance evaluating 

factor in liquid crystal devices. Fig. 3.8 presents the dynamic response time from sample UVBL 

between crossed polarizers.  

 

Figure 3.8 Full on-off response time of sample UVBL at BPI state. 
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The driving pulse signal here is composed of series of square waves in 1 kHz with 50% 

duty cycles in two voltage states. The on-state voltage is set at the peak transmittance voltage in 

Fig. 3.7 and the off-state voltage is at 0V. As shown in Fig. 3.8, the upper trace is the driving 

voltage waveforms while the lower trace is the detected optical signals through the whole setup. 

From the optical response curve, the rise time of sample UVBL is ~1.5ms and the fall time is 

~40.5ms. As illustrated in the optical response trace, two relaxation slopes involved in the 

voltage on-off transitions could be distinguished. It can be clearly observed from the switch-off 

transition that one relaxation process is in the submillisecond level; while the other is in tens of 

milliseconds. Furthermore, during the relaxation transition the transmitted light intensity does 

not go back to its initial dark state within the given relaxation time. This indicates the required 

recovery time should be more than 100ms or a deteriorated dark state will be observed. Based on 

above observations, at least two mechanisms are involved in the EO process. Comparing from 

the relaxation time scales, local molecular reorientation and electrostriction should be the two 

main mechanisms in this driving scheme. Phase transition might be also involved in the EO 

transition. However, the short period of the pulse driving signal makes it unable to be confirmed. 

3.3.2 Blue Phase II 

According to the thermal scheme in section 3.2, another blue phase state, BPII, was 

observed in mixture UVBL when the temperature was above 39.3˚C. Based on the molecular 

stacking geometry in Fig. 1.8, the lattice structure is different in each BP state. Therefore, 

different EO properties could be expected when sample UVBL was operated above 39.3˚C in the 

BPII state. 

Fig. 3.9 shows the VT curves from sample UVBL in BPII state with two voltage scanning 
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cycles. As discussed before, the transmittance increases with an increasing voltage. When the 

driving voltage is increased to 143Vrms, maximum transmittance was reached. Comparing to the 

maximum transmittance voltage ~108Vrms at BPI state, the peak transmittance voltage is higher 

in BPII state. This is because of a smaller Kerr constant in BPII state. [73] During the voltage 

descending procedure, the decreasing transmittance overlaps the same trace from the ascending 

procedure. As a result, different from operating sample UVBL in BPI state, no hysteresis was 

observed when sample UVBL was operated in BPII state. 

 

Figure 3.9 Measured VT curves of sample UVBL at BPII state (λ=633nm). 

Besides the difference in static EO responses, the dynamic response between BPI and 

BPII is also quite different. Fig. 3.10 shows the full on-off response time of sample UVBL at 

BPII state. 
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Figure 3.10 Full on-off response time of sample UVBL at BPII state. 

Same operation scheme in Fig. 3.8 was applied in Fig. 3.10. By switching the driving 

voltage between 0V and 143Vrms, the measured rise time is 208.5μs and the measured fall time is 

157.1μs. Comparing to the response time in BPI state shown in Fig. 3.8, only one relaxation 

process was observed in the BPII state and the response time was reduced dramatically to the 

submillisecond level.  

Until now, various methods starting from different perspectives are used to describe the 

expression for the dynamic behavior in BPLC. [16] Kitzerow et al, uses Dmitrienko’s free energy 

density equation [92] to describe an initially cubic blue phase lattice in a field E [79] 
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where u is the lattice displacement, Λ the elastic related constant, p the elasto-optic coefficient, χ 

the nonlinear dielectric susceptibility, and electric field E is assumed to be in x direction only. 
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After applying the assumptions of unconstrained boundary, incompressible and rest background 

fluid, the relaxation time constant can be expressed as 

2

2

1~
qK


 ,      (3.5) 

where γ1 is the twist viscosity, K2 the twist elastic constant, and q=π/p, the inverse of the pitch 

length.  

Another perspective described by Glesson et al [83] is to analogously use the field 

induced unwinding mechanism in the cholesteric (single axis helical structure) state. They 

assumed that the same process happened in the BP (double axes helical structure) state based on 

Jakeman and Raynes’ works [93]. Under the assumptions of negligible bulk fluid motion and 

small rotation angle, the time varied rotation angle   between the director and the applied field 

is expressed as 
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From equation (3.6), the rise and fall time is given by 
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As presented above, the response time equations from different perspectives lead to the 

same expression. In our sample UVBL, the pitch length of sample UVBL is about 200nm which 
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can be calculated from the peak wavelength of the reflection band. By plugging in the required 

parameters, the estimated fall time from equation (3.7) is about 0.15ms, which matches the scale 

of the measured decay time in Fig. 3.10. This measured full on-off response time also agrees well 

to those published previously by other groups. [28] [79] [82] [83] Another interesting 

comparison between sample UVBL and the conventional liquid crystal devices is that the 

response time in BPII state is about one order faster and below 1ms.  

The expressions of the response time in the blue phase state in equations (3.7) and (3.8) 

are similar to those of nematic liquid crystals as presented in the following equations  
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where γ1 is the rotation viscosity, K11 the splay elastic constant, and d the cell gap.  

From above equations, an extreme case could be assumed as follows. When the pitch 

length (p) of a chiral liquid crystal system, for example the blue phase state, becomes infinitely 

long, the pitch length could be treated as the cell gap (d). Therefore, in this case, this infinite 

pitch length blue phase liquid crystal system can be regarded as a nematic liquid crystal system. 

As a result, the response time expressions in equations (3.7) and (3.8) can be approximated to 

equations (3.9) and (3.10). Generally speaking, the thickness of a nematic liquid crystal cell is 

about 4μm. Thus, calculated from equations (3.9) and (3.10), the response time in a nematic 

liquid crystal cell is about tens of milliseconds.  
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3.4 Summary 

In chapter 3, a potential BPLC system for display applications is evaluated in the thermal 

morphology and the EO responses. Based on the thermal properties of UVBL system, two BP 

states, BPI and BPII, are observed. The EO responses in these two BP states are also 

characterized respectively. According to the experimental observations, each BP state possesses 

its own distinct EO responses. When the sample UVBL is operated in the BPI state, the peak 

voltage corresponding to the maximum transmittance is lower because its Kerr constant is larger. 

However, the total response time in the BPI state is at the level of tens of milliseconds due to 

different field induced mechanisms involved. Also, the hysteresis problem is severe when sample 

UVBL is operated in the BPI state. As for the EO responses in the BPII state, though the peak 

voltage is higher compared to that in BPI, the response time in the BPII state is about 2 orders 

faster than it in the BPI state and the no hysteresis problem is observed.  

However, for real applications the thermal stability is one of the major issues in BPLC 

systems. As discussed in the above sections, the BP temperature range in this system is very 

narrow (only 5 degrees). This narrow temperature range greatly limits the usefulness of this 

BPLC system in practical applications. To overcome this limited BP range, several temperature 

range widening approaches are described. In next chapter, we will discuss the polymer 

stabilization approach for our UVBL mixture. 
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CHAPTER 4: POLYMER-STABILIZED BLUE PHASE LIQUID 

CRYSTALS 

Limited by its narrow temperature range, although possessing many attractive properties 

blue phase liquid crystal does not prevail in the past three decades. Until recently, many 

approaches have been proposed to overcome this obstacle, such as molecular engineering [24] 

[25], mixture doping or combinations [26] [27], etc. In 2002, Kikuchi et al proposed polymer 

stabilization method to expand the stable blue phase range from 1 degree to over 60 degrees. [28] 

In 2005, Coles et al demonstrated a symmetric molecule structure to achieve a wide blue phase 

range over 40 degrees. [24] In this chapter, with the considerations of further EO properties and 

system feasibility, we utilized the photo-induced polymer stabilization approach based on 

mixture UVBL to obtain a wide temperature polymer-stabilized blue phase liquid crystal (PS-

BPLC) sample. 

4.1 Material System 

To prepare a photo-induced polymer precursor, the UVBL system was further doped with 

the monomers in section 2.1. Also, in order to have an easy processing system which possesses a 

proper EO response, ester liquid crystal compound, C3PEstP(3F)EstP(3F)CN, was added to the 

UVBL system. The molecular structure of the compound is presented in Fig. 4.1. 
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Figure 4.1 Molecular structure of C3PEstP(3F)EstP(3F)CN. 

The dielectric anisotropy of this ester compound is about 60. [94] The amount of this 

compound was added as high as possible to increase the dielectric anisotropy of the whole 

system while keeping the mixture mixed homogeneously. Because of the dramatic difference 

between the physical properties of each required components, the ratio of each component has to 

be carefully adjusted and optimized in order to obtain the blue phase state. Moreover, to stabilize 

a blue phase material over a wide temperature, the ratio of monomers is also very critical. [95]  

4.2 Textures and Phase Morphologies 

To evaluate the impacts of the polymerization conditions, two polymer precursors, VIS-

PSBP and UV-PSBP, were prepared. For evaluation simplicity, the reflective color of the VIS-

PSBP mixture was adjusted to the green color. While in the UV-PSBP, the reflection band was 

shifted to the UV region. After POM identifications, the thermal scheme of the blue phase range 

in the precursor VIS-PSBL during cooling procedure is N* 27.7˚C BP 42.9˚C ISO, and N* 

33.8˚C BP 42.7˚C ISO in the heating procedure. [96] Meanwhile, the blue phase range in the 

precursor UV-PSBP during the cooling procedure is N* 42.5˚C BPI 45˚C BPII 49˚C ISO. The 

textures of VIS-PSBP mixture from 29˚C to 38˚C under POM observations are presented in Fig. 
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4.2. As for the UV-PSBP mixture, the POM observations are totally dark because the intrinsic 

reflection occurs in the UV region. 

 

Figure 4.2 POM textures of sample VIS-PSBP at (a) 29˚C, (b) 32˚C, (c) 35˚C, and 

(d) 38˚C. 

4.3 Polymerization Process 

As indicated in reference [28], the photo-polymerization condition for a polymer- 

stabilized blue phase mixture is sensitive and complicated. According to the physical properties 

of the compositions in each system, different polymerization processes should be utilized and 

carefully optimized. In the cases of VIS-PSBP and UV-PSBP here, two polymerization 

approaches will be implemented. As found in section 4.2, the blue phase range of VIS-PSBP is 
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about 15-degree wide. With this wide temperature range, four fixed temperature points during 

the polymerization process were chosen to evaluate the impacts of the curing temperature effect 

on the POM morphology and the EO performance. The setup of the UV polymerization process 

is illustrated in Fig. 4.3. 

 

Figure 4.3 Setup of the polymerization process. 

First, we started with the precursor VIS-PSBP. After stabilization at the designated 

temperature, two stages of UV light exposures were used (0.9 mW/cm
2
, 20 min., and 2.6 

mW/cm
2
, 1 min.) to complete the photo-polymerization process. The POM observations at the 

room temperature of the polymer stabilized VIS-PSBP are shown in Fig. 4.4.  
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Figure 4.4 Room temperature POM textures of VIS-PSBP cured at (a) 29˚C, (b) 

32˚C, (c) 35˚C, and (d) 38˚C. 

In Fig. 4.4(a), the temperature during polymerization process was set at 29˚C, located in 

the super-cooling range of the blue phase state. After polymerization some regions were evolved 

into N* state and cured in-situ as the bright spots. On the other hand, while the VIS-PSBP 

precursor was polymerized in the opposite situation at the higher edge of the blue phase range, 

38˚C, blue phase feature was not observed after the polymerization process as shown in the POM 

observation, Fig. 4.4(d). Except these two extreme cases presented above, blue phase texture was 

kept after polymerization when the curing temperature was chosen at the middle of the blue 

phase range as presented in Figs. 4.4(b) and 4.4(c). However, the pitch length was changed after 

polymerization comparing the color between Figs. 4.2(b), 4.2(c), and Figs. 4.4(b), 4.4(c), 
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respectively. The dark stripes in Figs. 4.4(b) and 4.4(c) are from the damage of the polymer 

network after several voltage operations. Based on the above very different POM textures of 

VIS-PSBP samples polymerized at different curing temperatures, distinct EO performance from 

these samples could also be expected.  

In the second case, the precursor UV-PSBP was polymerized by the same setup in Fig. 

4.3. However, because of the narrow blue phase temperature range, a more complicated curing 

process should be adopted. Based on the polymer kinetic, polymer precursor is a dynamic system 

during the polymerization process. Additionally, as indicated in reference [28], the stable 

temperature range of the blue phase state will expand and also shift at the same time with the 

progress of polymerization. Therefore, a two-step curing procedure with an ascending curing 

temperature (2˚C/20min) at the first step and a fixed temperature at the second step (10min) were 

implemented for the UV-PSBP precursor. Moreover, as found in section 4.2, two blue phase 

states were observed. Thus, two UV-PSBP samples were prepared by curing the precursor at BPI 

and BPII, respectively.  

4.4 Electro-Optics of Polymer-Stabilized Blue Phase Liquid Crystal 

After the polymerization process was completed, the EO performances of these polymer-

stabilized blue phase samples were evaluated by the measurement setup employing two crossed 

polarizers and a He-Ne laser as described in chapter 3. 
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4.4.1 Polymer Stabilized VIS-BPLC 

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

 

 

N
o

rm
a

liz
e

d
 T

ra
n

s
m

it
ta

n
c
e

 (
%

)

Voltage (V
rms

)

 29C

 32C

 35C

 38C

 

Figure 4.5 VT curves at room temperature of the VIS-PSBP samples cured at 

29˚C, 32˚C, 35˚C, and 38˚C. 

Fig. 4.5 depicts the measured VT curves of the VIS-PSBP samples at room temperature. 

Same voltage waveforms and duty cycles as described in chapter 3 were used. The peak voltage 

(Vp) of these VIS-PSBP samples is near 70Vrms. However, the Vp of the two samples cured at 

either the lower (29˚C) or the higher (38˚C) edge is higher than that of the other two samples 

cured in the middle of the blue phase range (32˚C and 35˚C). Besides VT curves, distinct 

difference is also observed in the response time between these VIS-PSBP samples. Fig. 4.6 

shows the full on-off response time of these four samples. 
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Figure 4.6 Full on-off response times of the VIS-PSBP samples cured at 29˚C, 

32˚C, 35˚C, and 38˚C. 

The full on-off response times in samples cured at 29˚C, 32˚C, and 35˚C are all below 

1ms. Surprisingly, although operated under a higher voltage the response time from the sample 

cured at 38˚C is longer than other samples and over 1ms. From the above results, it shows that 

the curing temperature has a great impact to the EO performances of polymer-stabilized blue 

phase liquid crystal samples based on the same mixture. If a blue phase precursor has a narrow 

blue phase range like that in the second case, the UV-PSBP mixture, a more complex curing 

condition should be utilized in order to obtain good EO performance.  

4.4.2 Polymer Stabilized UV-PSBP (Blue Phase I) 

As mentioned before, for transmission-type display applications the colored reflection 

from the intrinsic blue phase pitch should be avoided. Thus, the EO features of the polymer-
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stabilized BPLC with a reflection band in the UV region, such as UV-PSBP, should be used in 

practical applications. After stabilizing the UV-PSBP precursor at BPI state, the VT curves in 

UV-PSBPI by ascending and descending voltage operation cycles was measured and results are 

plotted in Fig. 4.7. 

 

Figure 4.7 Measured VT curves of UV-PSBPI sample from 20˚C to 50˚C. 

The peak transmittance voltage (Vp) shifts from ~90Vrms to ~120Vrms as the temperature 

increases from 20˚C to 40˚C. On the other hand, hysteresis becomes smaller with increased 

operation temperature. Fig. 4.8 shows the full on-off response time of UV-PSBPI operated at 

45˚C.  
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Figure 4.8 Measured full on-off response time of UV-PSBPI sample at 45˚C. 

Different from the sample before polymerization, like UVBL operated at BPI, the 

response time of UV-PSBPI is one order faster and below 1ms. From the measured time domain 

optical response, different from the UVBL sample, only one mechanism was involved in the UV-

PSBPI sample. Local molecular reorientation was believed as the main contribution here from 

the observed submillisecond response time. Therefore, some intrinsic BP features were 

suppressed, such as electrostriction and phase transition mechanisms, due to the existence of the 

polymer network structure. [28] Based on the above theory and evidence, the polymer/liquid 

crystal composite materials after polymerization process, such as UV-PSBP samples, should be 

considered as a different system from the liquid crystal only system. More details of the 

polymer/BPLC composite will be discussed in the following sections. 

4.4.3 Polymer Stabilized UV-PSBP (Blue Phase II) 

Based on the observations in section 4.2, another BP state, BPII, was found in the UV-

PSBP precursor. Therefore, to study the difference between the polymer-stabilized samples at 
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these two blue phase states, another UV-PSBPII sample was prepared by curing the precursor at 

the BPII state. The ascending and the descending VT curves of UV-PSBPII sample from 20˚C to 

50˚C were recorded in Fig. 4.9. 

 

Figure 4.9 Measured VT curves of UV-PSBPII sample from 20˚C to 50˚C. 

Compared to the VT curves in the UV-PSBPI sample, the peak transmittance voltage (Vp) 

of UV-PSBPII is higher than that of UV-PSBPI from about 130Vrms to 150Vrms when the 

operating temperature increases from 20˚C to 40˚C. But, the restored dark state is better than that 

of the UV-PSBPI sample. Also, the hysteresis problem is improved in the UV-PSBPII sample. 

However, if compared to the un-polymerized UVBL sample operated at the BPII state, the 

hysteresis phenomenon was deteriorated significantly.  
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Figure 4.10 Measured full on-off response time of UV-PSBPII sample at 45˚C. 

Fig. 4.10 presents the full on-off response time of the UV-PSBPII sample. The total 

response time is about 0.8ms. Compared to the blue phase system before polymerization, the 

change of response time is insignificant. From the lattice structures of the blue phase liquid 

crystal and based on the above time domain optical responses from samples in both BPI, BPII, 

and before and after polarization processes, some hypothesis can be proposed. First of all, the 

Kerr constant in BPI is higher than that of BPII in both before and after polymerization. Based 

on the molecular arrangement, the compactness of the LC stacking in BPII is less than that of 

BPI. Therefore, the LC stacking in BPII is closer to that of isotropic state than it is in BPI. As a 

result, the director of the LC clusters in BPI can be collectively moved more easily in a same 

direction than it is in the BPII state. Thus, the Kerr constant is higher in BPI. However, during 

the restoration to the initial BPI structure after the electric field is removed, it requires a longer 

time to go back to a more compact lattice structure than it needs in the BPII state. After 

polymerization, based on the formation of the polymer defect line theory [28], although polymer 

networks were formed in the defect lines after polymerization, the influence of the polymer 
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network to the liquid crystal molecular local movement (local molecular reorientation) is not 

huge. The defect clusters in the lattice structure are stabilized and fixed by the polymer network 

after polymerization. As a result, some intrinsic blue phase features, like electrostriction and 

phase transition, were suppressed after the formation of the polymer networks.  

4.5 Gray Level Response Time in PSBP  

Besides basic properties like VT curves and temperature performance, for display 

applications gray level response time is a critically important issue. From the viewpoint of 

measurement convenience and good dark state restoration, UV-PSBPII was used for the gray-

level response studies. Fig. 4.11 shows the designated gray level voltages according to the VT 

curve when the sample was operated at 45˚C.  Eight gray states at different transmittance levels 

were divided.  

 

Figure 4.11 Gray level operating voltages of UV-PSBPII sample at 45˚C. 
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The measured response time between each gray level was collected in Table 4.1. Each 

gray level represents the normalized transmittance at the designated gray state. For example, T10 

presents the gray level state of 10% of the maximum transmittance. The upper right triangle part 

in Table 4.1 is the rise time from a low gray level to a high gray level; while the lower left 

triangle is the fall time from high to low gray levels. 

Table 4.1 Gray level response time. 

 Rise time (μs) 

Fall 

time 

(μs) 

 T0 T10 T20 T40 T60 T80 T90 T100 

T0 X 370.6 208.4 57.6 58.6 57.4 57.6 56.9 

T10 282.2 X 526.0 162.2 121.9 122.4 100.2 57.8 

T20 262.5 307.1 X 300.4 271.4 227.5 156.2 56.6 

T40 341.0 279.8 208.6 X 342.7 357.7 296.6 31.6 

T60 376.8 259.8 197.7 253.8 X 247.9 350.9 251.4 

T80 337.4 313.9 283.7 343.3 202.9 X 185.6 367.3 

T90 381.4 258.1 191.4 223.5 259.0 172.2 X 273.5 

T100 367.5 376.0 344.0 372.8 149.5 321.4 347.9 X 

 

As summarized in Table 4.1, the average rise and fall time between each gray level 

operation is about 300μs. To study the response time between gray level operations, the 

measured full on-off response time was evaluated by equations (3.7) and (3.8) first. The first row 

of the rise time and the first column of the fall time (between T0 and other gray levels) to the 

operating voltage were plotted in Fig. 4.12 and Fig. 4.13, respectively. According to the response 

time equation of a blue phase liquid crystal system in equation (3.7) and equation (3.8), the full-

on time (rise time) is dependent to the applied voltage while the full-off time (fall time) is 

independent of the operating voltage. After fitting equation (3.8) with the measured rise time, the 

fitting curve is drawn as the red line in Fig. 4.12. Two other fitting parameters, critical voltage 

(Vc) and fall time (τfall), can also be found as 42.8Vrms and 315.9μs. Comparing the measured 
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average fall time, 336μs in Fig. 4.13, to the fitted fall time from the response time equations, the 

measured results match quite well to the equations proposed by Gleeson and Coles. [83] 

 

Figure 4.12 Measured rise time between T0 and other gray levels. 

 

Figure 4.13 Average fall time between T0 and other gray levels. 
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In the following part, the gray level response time between T10 and other gray levels was 

studied. Fig. 4.14 and Fig. 4.15 plot the rise time and the fall time between T10 and other higher 

gray level states according to the second row and the second column in Table 4.1.  

 

Figure 4.14 Measured rise time between T10 and other gray levels. 

 

Figure 4.15 Average fall time between T10 and other gray levels. 
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Analogous to the concept used in the gray level response time of a nematic liquid crystal 

device, [97] we propose a bias voltage (Vb) to describe the gray level response time equations for 

a blue phase liquid crystal system. Based on equation (3.7) and (3.8), the gray level response 

time for BPLC can be rewritten as 


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Similar to the bias voltage in the nematic liquid crystal devices, the operating voltage of 

the gray level T10, 58.1Vrms, was set as the bias voltage in equation (4.2) for the gray level 

operations between T10 and other gray levels. After fitting the measured response time in Table 

4.1 to equation (4.2), a fitted fall time was calculated as 308.3μs. Comparing to the measured 

average fall time from table 4.1, 299.1μs, the fitted fall time is within the experimental error.  

4.6 Electrode Dimension Effect 

So far, the above shown operating voltages of a BPLC system were all about 100Vrms, 

which makes BPLC impractical for display applications. To satisfy the basic display criteria, the 

electric field induced birefringence should be large enough to reach a phase retardation of one π 

at an acceptable voltage. According to Gerber and Singh, the induced birefringence (δn) in a 

BPLC system is proportional to the square of the electric field and related to the material 
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parameters in the system as [98] 
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nn
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where Δn is the birefringence, Δε the dielectric anisotropy, K2 the twist elastic constant, and 

q=π/p, the inverse of the pitch length. 

As a result, there are two possible directions to reduce the operating voltage in a BPLC 

system. One of them is to increase the birefringence, dielectric anisotropy or pitch length of a 

BPLC system. However, modifications of the material parameters in the system usually cause the 

blue phase state to disappear or even lead to an unstable material. So far, the largest Kerr 

constant (K~13 nm/V
2
) BPLC composite was reported by the UCF/Chisso group. [35] The EO 

performance of this material will be discussed later in this section. The other approach to lower 

the operating voltage is to increase the effective strength and the affecting volume of the electric 

field. Several approaches have shown the potentials for reducing the required operating voltage. 

[31]-[34] Here in this section, we also demonstrate another viable approach to reduce the 

operating voltage.  

Generally speaking, the Kerr constant of a BPLC material system is at the level of 

0.1nm/V
2
 if the LC birefringence is ~0.15 and dielectric anisotropy ~10. In the high Kerr 

constant BPLC material from Chisso, the LC birefringence is 0.17 and the dielectric anisotropy 

as high as 94. After using this high Kerr constant material, the operating voltage was 

dramatically reduced from ~100Vrms to ~50Vrms in an IPS electrode of 10-μm electrode width 

and 10-μm electrode spacing. To further reduce the operating voltage, increasing the electric 

field strength and penetration depth can also be considered. Based on this high Kerr constant 
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BPLC material, a stronger electric filed induced by a smaller electrode width and spacing was 

evaluated.  

Fig. 4.16 shows the VT curves in different electrode dimension with this Chisso BPLC 

material. The detected transmittance is normalized to the total transmittance when the BPLC 

sample was measured under parallel and crossed polarizers. Four configurations of the electrode 

width and spacing were compared. When the sample was operated under a same temperature, the 

peak transmittance voltage decreased with a smaller electrode width and spacing. The operating 

voltage was decreased to 40Vrms at 25˚C when the electrode width and spacing were reduced to 

2μm and 4μm. Another interesting observation is that the maximum transmittance stays over 

80% even in a smaller electrode, which is a relief to the concern of transmittance reduction and 

also very different from the simulation prediction. [31]  

 

Figure 4.16 Measured VT curves of the high Kerr constant BPLC material with 

different electrode dimension at 25˚C and 35˚C, λ=633nm. 
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Fig. 4.17 summarizes the peak transmittance voltage and the hysteresis in these electrode 

configurations. As shown, except the 10/10 case the hysteresis problem is mitigated when the 

dimension of the electrode gets larger. The reduction of the stress on the polymer network 

induced by the electric field might be the main reason. Detail observations will be discussed in 

the later part. 

 

Figure 4.17 Measured peak transmittance voltage and hysteresis of the high Kerr 

constant BPLC in Fig. 4.16. 

Fig. 4.18 shows the full on-off response time from the sample with different electrode 

dimensions. Except the sample with 2/2 electrode, the full on-off response time in other samples 

are in the level of 2ms. Overall speaking, the response time becomes faster in a smaller electrode 

dimension. As an exception for the 2/2 electrode, the polymer network deformation induced 

phase transition caused by strong electric field might be the reason. Further discussions will be 

given in the following part with more detailed POM observations. 
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Figure 4.18 Measured fall on-off response time of the high Kerr constant BPLC at 

25˚C and 35˚C. 

POM observations of the LC textures at different conditions are presented in Fig. 4.19. 

When a voltage was applied to the BPLC sample, the LC molecules were reoriented along the 

electric field which in turn induces an optical birefringence. Therefore, a bright state can be 

observed with a proper orientation of the sample to the polarizers. Figs. 4.19(a) and 4.19(b) show 

the bright state at the peak transmittance voltage Vp under POM observations from the sample 

with the 5/5 and 10/10 electrode respectively. The black area in the figure is the location of the 

electrode; while the bright area is the spacing between the electrode fingers. In the 10/10 

electrode, Fig. 4.19(b), the ratio of the bright and the dark region is about 1 to 1, which is close 

to the measured peak normalized transmittance in Fig. 4.16. However, the ratio of the bright 

region to the whole area of the 5/5 sample in Fig. 4.19(a) is estimated to be about 70%.  
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Figure 4.19 POM observations of the samples with (a) 5/5, and (b) 10/10 electrodes at the 

specified peak voltage; (c) 5/5, and (d) 2/2 electrode at V=0 after voltage operation. 

Although the ratio of the electrode width and the spacing is the same in the 5/5 and in the 

10/10 sample the transmittance at related Vp is totally different. As shown in POM pictures, the 

bright area infiltrates further into the electrode region in the 5/5 case, which indicates more LC 

molecules within the electrode region were affected by the strong electric field compared to that 

of the sample with 10/10 electrode. This surprisingly high transmittance in the sample with 

smaller electrodes becomes an advantage as it overcomes the low transmittance problem 

predicted by the simulation works.  
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However, there is limitation in reducing the electrode dimension. As presented in Figs. 

4.19(c) and (d), the POM pictures were taken from the samples with 5/5 and 2/2 electrodes after 

voltage operations respectively. In the 5/5 sample, although some fiber-like white textures were 

observed under the POM, in most of the area the texture of the sample was still in the blue phase 

state. On the contrary, after voltage operation the blue phase texture in the 2/2 sample was 

destroyed as shown in Fig. 4.19(d). Therefore, phase transition occurs after voltage operation in 

the 2/2 sample and the response time also became longer than other cases. 

4.7 Summary 

To prove the feasibility of BPLC materials for display applications, attempts in different 

aspects from the stabilization of blue phase system, the avoidance of colored reflection, to the 

reduction of operating voltage by either improving material systems or electric field strength by 

different electrode dimension are discussed. Different polymer stabilization processes are 

conducted according to the condition of each blue phase liquid crystal mixture. Also, the 

difference between the same polymerization procedure at different temperature or blue phase 

state is discussed. Depending on the polymerization condition, different EO performance is 

obtained though based on one same blue phase liquid crystal mixture. After analyzing the EO 

performance of the PSBP samples, we develop a physical model to describe the gray level 

operations of the PS-BPLC. Besides response time, hysteresis in the polymer-stabilized BPLC is 

different from that in the BPLC system. Therefore, polymer-stabilized BPLC possesses some 

different EO features and should be discussed separately.  

At the last part, attempts for low voltage BPLC samples were investigated. Until now, the 
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measured operating voltage is reduced to about 40Vrms by integrating Chisso’s high Kerr 

constant BPLC material into an IPS cell with 2-m electrode width and 4-m electrode gap. 

Further developments in new BPLC materials and optimization of device structures are 

undertaking by Chisso, Merck, and several other research groups worldwide. Thus, in a 

foreseeable near future it is promising to achieve BPLC displays with a fairly low driving 

voltage (<10V) while keeping submillisecond response time. 
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CHAPTER 5: CONCLUSION 

Among the fast-response liquid crystal display technologies, blue phase liquid crystal is a 

promising candidate. In this dissertation, the feasibility and the characteristics of blue phase 

liquid crystal display are investigated from material systems to EO performances under different 

test cells.  

From the material system investigations in chapter 2, various blue phase liquid crystal 

systems were considered. A viable blue phase liquid crystal system for further improvements was 

developed by different evaluation approaches. Based on these evaluations, various criteria of the 

compositions for a blue phase liquid crystal system should be taken into considerations, such as 

miscibility, stability, applicable temperature range, etc. Generally speaking, to achieve a desired 

EO performance, several liquid crystal material properties are desired, such as, low viscosity, 

high birefringence, high dielectric anisotropy, and wide stable temperature range for the blue 

phase state. However, these desired features are usually contradicted to each other. For examples, 

high dielectric anisotropy material usually has a high viscosity; high birefringence material is 

usually unstable; and etc. As a result, the balance of each component in the system becomes a 

key issue. 

To characterize the EO performance of the blue phase liquid crystal, the samples 

developed in chapter 2, chapter 3, and from Chisso were evaluated in different test cells. As 

described in chapter 3 and chapter 4, the response time can be reduced to ~300µs in a PS-BPLC 
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cell which is about one order of magnitude faster than the conventional nematic liquid crystal. 

Equations governing the response time between different gray levels are also proposed and test 

cells characterized. However, the required operating voltage for this PS-BPLC sample is at the 

level of 100V which is too high to be practical for display applications. By utilizing a high Kerr 

constant blue phase liquid crystal material from Chisso, the operating voltage can be reduced to 

about 40V in an IPS cell with an electrode of 2µm in width and 4µm in spacing. However, 

comparing to the normal nematic liquid crystal displays, further reduction of the operating 

voltage is still needed. To achieve this goal, new material systems and new driving approaches 

need to be developed. With the improvements in high Kerr constant material, strong electric field, 

and deeper electric field penetration, a low-voltage blue phase liquid crystal display could be 

achieved in the near future. 

In conclusion, in this dissertation we have developed a workable blue phase liquid crystal 

material. After evaluating the blue phase liquid crystal systems based on the prepared materials, 

some newly discovered BPLC properties are summarized as follows: 

1. The EO properties, such as Kerr constant, response speed, hysteresis, etc are different 

in each blue phase states. For instance, in the BPI state, although the operating 

voltage is relatively low, the response time is slow, which is about 40ms, and the 

observed hysteresis is large, which is about 18%. However, in the BPII state, although 

the operating voltage is relatively high, the response time is fast, which is about 

160µs, and no hysteresis is observed.  

2. After polymerization, the PS-BPLC composite has entirely different EO properties 

because of the introduction of the polymer networks. The operating voltage in the PS-
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BPLC system has the same trend as it in the system without polymer stabilization, i.e., 

the operating voltage is somewhat lower in the PS-BPI state than that in the PS-BPII. 

However, the response time and the hysteresis do not follow the same trend in the 

blue phase system without polymer networks. As depicted in this dissertation, the 

response time in the PS-BPLC at both PS-BPI state and PS-BPII state can be reduced 

to about 800µs. However, the hysteresis issue shows up in the PS-BPLC at both BP 

states, which are 12.2% in PS-BPI at 45°C and 11.8% in PS-BPII at 45°C.  

3. The overall total response time of the dynamic operations between different gray 

scales is confirmed at the level of submillisecond. 

4. The equations to describe the dynamic behaviors of the blue phase in gray scale 

operations are proposed and validated. According to these equations, the gray scale 

response time of a blue phase material can be estimated by the material parameters 

and the condition of the driving voltage. Also, these equations indicate the possibility 

of a faster response time by further utilizing either the overdrive or the undershoot 

operation or both in the PS-BPLC system. 

 We believe this work paves useful guidelines to a better blue phase liquid crystal display.    
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