
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Incremental Lifecycle Validation Of Knowledge-based Systems Incremental Lifecycle Validation Of Knowledge-based Systems

Through Commonkads Through Commonkads

Feras Batarseh
University of Central Florida

 Part of the Electrical and Electronics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Batarseh, Feras, "Incremental Lifecycle Validation Of Knowledge-based Systems Through Commonkads"
(2011). Electronic Theses and Dissertations, 2004-2019. 2006.
https://stars.library.ucf.edu/etd/2006

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F2006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2006?utm_source=stars.library.ucf.edu%2Fetd%2F2006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

INCREMENTAL LIFECYCLE VALIDATION OF KNOWLEDGE-BASED
SYSTEMS THROUGH COMMONKADS

by

FERAS BATARSEH
M.S. University of Central Florida, 2007

B.S. Princess Sumaya University for Technology, 2006

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida, USA

Spring Term
 2011

Major Advisor: Avelino J. Gonzalez

ii

© 2011 Feras Batarseh

iii

ABSTRACT

This dissertation introduces a novel validation method for knowledge-based systems (KBS).

Validation is an essential phase in the development lifecycle of knowledge-based systems.

Validation ensures that the system is valid, reliable and that it reflects the knowledge of the

expert and meets the specifications. Although many validation methods have been introduced for

knowledge-based systems, there is still a need for an incremental validation method based on a

lifecycle model. Lifecycle models provide a general framework for the developer and a mapping

technique from the system into the validation process. They support reusability, modularity and

offer guidelines for knowledge engineers to achieve high quality systems. CommonKADS is a

set of models that helps to represent and analyze knowledge-based systems. It offers a de facto

standard for building knowledge-based systems. Additionally, CommonKADS is a knowledge

representation-independent model. It has powerful models that can represent many domains.

Defining an incremental validation method based on a conceptual lifecycle model (such as

CommonKADS) has a number of advantages such as reducing time and effort, ease of

implementation when having a template to follow, well-structured design, and better tracking of

errors when they occur. Moreover, the validation method introduced in this dissertation is based

on case testing and selecting an appropriate set of test cases to validate the system. The

validation method defined makes use of results of prior test cases in an incremental validation

procedure. This facilitates defining a minimal set of test cases that provides complete and

effective system coverage. CommonKADS doesn’t define validation, verification or testing in

any of its models. This research seeks to establish a direct relation between validation and

lifecycle models, and introduces a validation method for KBS embedded into CommonKADS.

iv

This dissertation is dedicated to who taught me the lifelong valid meaning of sacrifice,

Dad and Mom, this is for you.

v

ACKNOWLEDGMENTS

First and foremost, I want to show gratefulness to my parents for their endless support of all my

endeavors. I would like to express gratitude to everyone in my family, especially my sisters

(Suha, Reem, Rasha and Zain) for their sheer advice and unconditional love, also to my brothers-

in-law (Amer and Wisam). Much appreciation goes out to my advisor, Dr. Avelino Gonzalez, for

his continuous guidance throughout the years of my study. Many thanks to the respected

committee members, Drs. Damla Turgut, Gita Sukthankar, Robert Franceschini and Rainer

Knauf. I would like to acknowledge my Intelligent Systems Laboratory colleagues (Victor Hung,

Ruben Ramirez-Padron, James Hollister, Steven Kobosko, Cynthia Johnson, Lisa Soros, Miguel

Elvir and Brian Lichtman) for their companionship and help in the experiments. Additionally, I

would like to thank Ruben Ramirez-Padron for his help in the statistical analysis. A show of

thanks goes out to Dr. Issa Batarseh for his continuous moral support all through the course of

my study. Moreover, I would like to express my thanks to Dr. Ronald DeMara for his aid and

advice. A special thank you goes out to all my Jordanian friends at UCF and to all my dear

friends (Toufic Jabbour, Luis and Maria Zea, Con and Mary Wilson, Aras Alkis and Engin

Ayaz) for the utter support they provided during the years. I am thankful to everyone at the

College of Engineering at UCF and the International Services Center for the true facilitation and

professionalism they displayed. Last but not least, I am grateful to anyone else who motivated or

inspired me.

“Pride only breeds quarrels, but wisdom is found in those who take advice”

Proverbs 13:10

vi

“Education is what remains after one has forgotten what one has learned in school. I have no

special talent. I am only passionately curious”

Albert Einstein

 “The greater our knowledge increases the more our ignorance unfolds”

John F. Kennedy

 “The more I see the less I know for sure”

John Lennon

“Every age has its massive blind spots. We might not see them, but our children will. We thought

that we had the answers, it was the questions we had wrong”

Paul Hewson

“I have learned silence from the talkative, toleration from the intolerant, and kindness from the

unkind; yet, strange, I am ungrateful to those teachers”

Jibran Khalil Jibran

“God help us from those who believe that they are the sole possessors of truth. How we manage

at times to agree willingly to become prisoners within our own minds and souls of beliefs and

ideas on which we can never be flexible”

Hussein bin Talal

 “Software engineering today is a race between software engineers stirring to build bigger and

better idiot-proof software, and the universe trying to produce bigger and better idiots. So far,

the universe is winning”

Unknown

http://www.brainyquote.com/quotes/quotes/a/alberteins174001.html�
http://www.quotesandpoem.com/quotes/showquotes/subject/knowledge/6860�
http://www.brainyquote.com/quotes/quotes/j/johnlennon151451.html�
http://www.quotesandpoem.com/quotes/showquotes/author/khalil-gibran/1475�
http://www.quotesandpoem.com/quotes/showquotes/author/khalil-gibran/1475�
http://thinkexist.com/quotation/programming_today_is_a_race_between_software/12252.html�
http://thinkexist.com/quotation/programming_today_is_a_race_between_software/12252.html�
http://thinkexist.com/quotation/programming_today_is_a_race_between_software/12252.html�

vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

LIST OF ACRONYMS/ABBREVIATIONS .. xvi

CHAPTER 1 : INTRODUCTION .. 1

1.1 The Significance of Correct Software ... 1

1.2 Lifecycle Models in Software Development ... 3

1.3 Introduction to Knowledge-Based Systems .. 5

1.4 Introduction to Validation and Verification .. 10

1.4.1 Importance of Validation and Verification - Roles and Differences .. 11

1.4.2 Definition of Validation ... 15

1.4.3 Definition of Verification .. 18

1.5 Validation and Verification for Knowledge-Based Systems ... 19

1.6 Verification Approaches for Knowledge-Based Systems ... 21

1.7 Validation Approaches for Knowledge-Based Systems .. 25

1.7.1 Validation through Analysis of Heuristics ... 26

1.7.2 Validation through Simulation ... 27

1.7.3 Face Validation .. 28

1.7.4 Predictive Validation ... 28

1.7.5 Subsystem Validation .. 28

1.7.6 Validation through Case Testing ... 29

1.7.7 Validation through Graphical Representations .. 30

1.7.8 Validation through formal Methods ... 31

1.7.9 Turing Testing ... 32

1.7.10 Sensitivity Analysis ... 33

1.7.11 Field Testing .. 33

viii

1.8 Summary ... 34

CHAPTER 2 : STATE OF THE ART IN VALIDATION OF KNOWLEDGE-BASED

SYSTEMS... 36

2.1 Validation Methods for Knowledge-Based Systems ... 36

2.1.1 Knowledge Validation Methods .. 36

2.1.2 System Validation Methods ... 40

2.1.3 Multi-Purpose Validation Tools .. 48

2.2 Lifecycle Validation of Knowledge-Based Systems ... 51

2.3 Summary ... 55

CHAPTER 3 : PROBLEM DEFINITION AND CONTRIBUTION ... 56

3.1 General Problem .. 56

3.2 Specific Problem ... 57

3.3 Contributions ... 57

3.4 Hypothesis ... 58

3.5 Evaluation Method .. 59

CHAPTER 4 : LIFECYCLE DEVELOPMENT MODELS FOR KNOWLEDGE-BASED

SYSTEMS... 60

4.1 Life Cycle Models for Knowledge-Based Systems ... 60

4.1.1 DESIRE ... 60

4.1.2 KBSDLC.. 61

4.1.3 Generic Tasks .. 61

4.1.4 KADS .. 61

4.1.5 CommonKADS .. 63

4.2 Selecting CommonKADS for Validation .. 65

4.3 The CommonKADS Models ... 69

4.3.1 The Context Models ... 69

4.3.2 The Concept Models .. 77

ix

4.3.3 The Artifact Models ... 81

4.3.4 UML Diagrams in CommonKADS ... 84

4.3.5 System’s Specification and Implementation .. 85

4.4 Summary ... 86

CHAPTER 5 : THE MAVERICK VALIDATION METHOD .. 87

5.1 Validation through CommonKADS Case Testing .. 88

5.1.1 Test Case Format ... 89

5.2 Method for Automated Validation Embedded into the Reusable and Incremental CommonKADS

(MAVERICK) ... 90

5.3 Test case extraction in MAVERICK ... 94

5.3.1 The Extraction of Test Cases from CommonKADS Models ... 95

5.4 Inspection Validation .. 102

5.5 Context-Based Test Case Reduction (CBTCR) ... 104

5.5.1 Local Importance ... 105

5.5.2 The number of test cases selected for each iteration (N) ... 106

5.5.3 Spiral Development and Validation ... 107

5.5.4 Test Case Reduction through CBTCR ... 110

5.6 Summary ... 113

CHAPTER 6 : PROTOTYPE KNOWLEDGE-BASED SYSTEM ... 114

6.1 The CBTCR Tool .. 114

6.2 The Housing KBS ... 117

6.3 CommonKADS Models for the Housing KBS .. 119

6.3.1 Context Models .. 120

6.3.2 Concept Models ... 127

6.3.3 Artifact Models .. 129

6.3.4 Diagrams for the Housing KBS ... 130

6.3.5 Iterative System Implementation and Validation ... 137

6.4 The Extracted Test Cases .. 140

x

6.5 Summary ... 149

CHAPTER 7 : EXPERIMENTAL EVALUATION OF MAVERICK 150

7.1 Introduction ... 150

7.2 Experiment #1: Detection of Errors seeded by the developer ... 151

7.2.1 Experimental Setup .. 152

7.2.2 Experimental Procedure ... 153

7.2.3 Experimental Results ... 155

7.2.4 Discussions .. 158

7.3 Experiment #2: Errors Seeded by the Human Test Subjects ... 160

7.3.1 Experimental Setup .. 160

7.3.2 Experimental Procedure ... 161

7.3.3 Experimental Results ... 163

7.3.4 Discussions (Statistical Analysis of Results) ... 184

7.4 Experiment #3: Comparison of MAVERICK to Other Methods .. 186

7.4.1 Experimental Setup .. 186

7.4.2 Experimental Procedure ... 188

7.4.3 Experimental Results ... 189

7.4.4 Discussions .. 191

7.5 Summary of Experiments .. 192

CHAPTER 8 : CONCLUSIONS AND FUTURE WORK ... 193

8.1 Summary ... 193

8.2 Conclusion ... 195

8.3 Future Work .. 198

APPENDIX A: LIST OF TEST CASES FOR THE HOUSING KBS 201

APPENDIX B: JAVA CODE FOR THE HOUSING KNOWLEDGE-BASED SYSTEM....... 221

APPENDIX C: EXPERIMENTAL VALIDATION ITERATIONS .. 252

LIST OF REFERENCES .. 289

xi

LIST OF FIGURES

Figure 1: The spiral model [5] .. 4

Figure 2: Different roles in building a knowledge-based system [9] .. 10

Figure 3: Defects cost versus development time phases ... 12

Figure 4: Verification using KADS [29] .. 24

Figure 5: KVAT [54] .. 37

Figure 6: VKB validation method [51] ... 41

Figure 7: VKB within the validation process [47] .. 42

Figure 8: Bi-directional many sided explanation typed multi-step validation method [60] 44

Figure 9: Validation of knowledge-based military systems [61] .. 45

Figure 10: Validation process proposed by Abel et al. [65] ... 47

Figure 11: Spiral model for knowledge-based systems [73] .. 52

Figure 12: KADS models [83] .. 62

Figure 13: CommonKADS set of models ... 64

Figure 14: The organizational model worksheets [9] .. 71

Figure 15: The communication model role [9] ... 80

Figure 16: The design model [9] ... 82

Figure 17: The validation method: MAVERICK ... 93

Figure 18: The effect of GI on sorting test cases .. 109

Figure 19: MAVERICK iterative development and validation .. 110

Figure 20: CBTCR flowchart.. 112

Figure 21: CBTCR Java tool interface.. 116

xii

Figure 22: Structure and people in housing KBS [9] .. 130

Figure 23: UML activity diagram for OM [9] .. 131

Figure 24: DFD for the main process (application-assessment task) [9] 132

Figure 25: State diagram of a single flow of the application-assessment process [9] 132

Figure 26: Residence and application relation in knowledge representation [9] 133

Figure 27: Inference structure for the KM [9] .. 134

Figure 28: Subtype hierarchy for knowledge about priorities in the system [9] 134

Figure 29: Tasks and their inferences (assessment task) [9] ... 135

Figure 30: Domain schema for the housing KBS [9] ... 135

Figure 31: State diagram representing the communication model [9] .. 136

Figure 32: Dialogue diagram of the communication model ... 136

Figure 33: Subsystems relationship for the design model .. 137

Figure 34: Assigner mode ... 138

Figure 35: Data typist mode .. 139

Figure 36: Magazine editor mode ... 139

Figure 37: Bar chart for errors’ types inserted into the system ... 176

Figure 38: Bar chart for errors inserted by all human test subjects .. 182

Figure 39: Pie charts for MAVERICK errors results .. 182

Figure 40: Pie chart for the 22 undetected errors .. 183

Figure 41: Bar chart for the legitimate errors inserted by all the users 183

xiii

LIST OF TABLES

Table 1: Validation general approaches comparison .. 35

Table 2: Worksheet OM-1 .. 71

Table 3: Worksheet OM-2 .. 72

Table 4: Worksheet OM-3 .. 72

Table 5: Worksheet OM-4 .. 72

Table 6: Worksheet OM-5 .. 73

Table 7: Worksheet TM-1 ... 74

Table 8: Worksheet TM-2 ... 75

Table 9: Worksheet AM-1 .. 76

Table 10: Worksheet KM-1 .. 79

Table 11: Worksheet CM-1 .. 80

Table 12: Worksheet CM-2 .. 81

Table 13: Worksheet DM-1 .. 83

Table 14: Worksheet DM-2 .. 83

Table 15: Worksheet DM-3 .. 83

Table 16: Worksheet DM-4 .. 83

Table 17: Example OM3 worksheet for test case extraction .. 96

Table 18: Worksheet OM-1 for housing KBS [9] .. 120

Table 19: Worksheet OM-2 for housing KBS [9] .. 120

Table 20: Worksheet OM-3 for housing KBS [9] .. 121

Table 21: Worksheet OM-4 for housing KBS [9] .. 121

xiv

Table 22: Worksheet OM-5 for housing KBS [9] .. 122

Table 23: Worksheet TM-1 for housing KBS (Task 1) .. 122

Table 24: Worksheet TM-2 for housing KBS (Task 1) .. 123

Table 25: Worksheet TM-1 for housing KBS (Task 2) .. 123

Table 26: Worksheet TM-2 for Housing KBS (Task 2) ... 124

Table 27: Worksheet TM-1 for housing KBS (Task 3) [9] .. 124

Table 28: Worksheet TM-2 for housing KBS (Task 3) [9] .. 125

Table 29: Worksheet TM-1 for housing KBS (Task 4) .. 125

Table 30: Worksheet TM-2 for housing KBS (Task 4) .. 126

Table 31: AM-1 for housing KBS (agent: assigner) ... 126

Table 32: AM-1 for housing KBS (agent: data typist) ... 127

Table 33: AM-1 for housing KBS (agent: magazine editor) .. 127

Table 34: KM-1 for housing KBS .. 128

Table 35: CM-1 for housing KBS (transaction 1) [9] ... 128

Table 36: CM-1 for housing KBS (transaction 2) .. 128

Table 37: CM-1 for housing KBS (transaction 3) .. 129

Table 38: DM-1 for housing KBS .. 129

Table 39: DM-2 for housing KBS .. 129

Table 40: DM-3 for housing KBS .. 129

Table 41: DM-4 for housing KBS .. 130

Table 42: Results for errors inserted into the system by the developer 156

Table 43: Errors inserted by test subject Red ... 164

Table 44: Errors inserted by test subject Blue .. 165

xv

Table 45: Errors inserted by test subject Yellow .. 166

Table 46: Errors inserted by test subject White .. 167

Table 47: Errors inserted by test subject Orange .. 170

Table 48: Errors inserted by test subject Brown ... 172

Table 49: Errors inserted by test subject Grey .. 174

Table 50: Not legitimate vs. legitimate errors inserted by human subjects 184

Table 51: Error categories inserted by the human subjects .. 184

Table 52: General time consumed for MAVERICK .. 190

Table 53: General time consumed for EMBODY .. 190

Table 54: General time consumed for VIVA .. 191

xvi

LIST OF ACRONYMS/ABBREVIATIONS

AI: Artificial Intelligence

AM: CommonKADS Agent Model

BKB: Bayesian Knowledge Base

CBTCR: Context-Based Test Case Reduction

CLIPS: C Language Integrated Production System

CM: CommonKADS Communication Model

CML: CommonKADS Modeling Language

CommonKADS: Common Knowledge Acquisition and Design Support

DESIRE: Framework for Design and Specification of Interacting Reasoning Components

DFD: Data Flow Diagram

DKB: Decision Knowledge Base

DM: CommonKADS Design Model

DoD: US department of defense

eGanges: Electronic Glossed Adversarial Nested Graphical Expert System

EMBODY: Expert Modeling Based on Decision Modularity

ESPRIT: European Union Information Technology Program

xvii

GA: Genetic Algorithms

GenAID: Generator Artificial Intelligence Diagnostics

GI: Global Importance

HA: Highly Applicable

IEEE: Institute for Electronics and Electrical Engineers

IV&V: Independent Validation and Verification

KADS: Knowledge Acquisition and Design Structuring

KARL: Knowledge Acquisition and Representation Language

KBS: Knowledge-based Systems

KBSDLC: Knowledge-Based Systems Development Life Cycle

KM: CommonKADS Knowledge Model

KROL: Knowledge Representation Object Language

KVAT: Knowledge Validation Tool

LA: Low Applicability

LI: Local Importance

MAS-CommonKADS: Multi-Agent Systems CommonKADS

MAVERICK: called Method for Automated Validation Embedded into the Reusable and

Incremental CommonKADS.

xviii

MIKE: Model-based and Incremental Knowledge Engineering

MW: Model Weight

N: Number of selected test cases

NA: Not Applicable

OM: CommonKADS Organization Model

QUEST: Quasi-Exhaustive Set of Test Cases

ReST: Reasonable Set of Test Cases

SHIVA: Spanish Language Acronym for Heuristic Integrated Validation System

SQA: Software Quality Assurance

STRIPS: Stanford Research Institute Problem Solver

TM: CommonKADS Task Model

UCF: University of Central Florida

V&V: Validation and Verification

VESA: Validation Expert System Agent

VKB: Validation Knowledge Base

VTB: Validation Techniques Base

VVR: Validation, Verification and Refinement

1

CHAPTER 1: INTRODUCTION

Software systems participate in many aspects of human life. They control many aspects of our

world. Software systems are found at home, in the factory, on the road, in the office, indoors and

outdoors. Software development is not an arbitrary process; it should be well defined, designed

and planned. Validation and verification are performed to ensure validity, correctness and

reliability of software. Knowledge-based systems are a special kind of software systems; they too

require validation and verification. This dissertation introduces a robust validation method for

knowledge-based systems.

1.1 The Significance of Correct Software

Software development is a challenging process. Different parameters affect this process, such as

manpower, size of the software, project’s budget, and many other factors. Building a robust

software system is critical but can also be tricky. Software problems have postponed space

shuttle launches, caused problems for airplanes and disrupted credit card and financial systems.

Software development is commonly referred to as a science as well as an art [1]. It is

clearly an inexact process, as no two software developers will produce the same exact design,

code or testing plans. The cost of failed software can be high indeed. For example, in 1996, a

test flight of a European launch system, Ariane 5 no. 501, failed as a result of a software bug.

Upon launch, the rocket veered off its path and was destroyed by its self-destruction system. This

loss was later analyzed and linked to a 64-bit floating point number conversion to a 16-bit

integer. This caused certain hardware components to fail. This rocket was destructed because of

an arithmetic overflow in its software, resulting in a loss of more than US$370 million [2].

2

A software bug can occur anytime, anywhere and with anyone. If a project fails, it can

lead to financial loss and might jeopardize an organization's position in the market. Fox Meyer

Drugs, a wholesale pharmaceutical distribution company in Texas developed a resources

planning system that failed after implementation. The system was never tested thoroughly. When

it was installed, many errors appeared and created many problems related to shipping. That put

the organization into bankruptcy in 1996. However, the most dangerous software failures are

those related to critical systems that affect or involve human lives. Three people died between

1985 and 1987 when a radiation therapy system called Therac erroneously subjected patients to

lethal overdoses of radiation. The overdose also caused major and minor injuries to others [3].

The cause of this overdose was an arithmetic software bug in its control system.

Although many lessons have been learned from software systems failures, disasters and

losses are still mounting. During 2005, Toyota recalled 160,000 Prius automobiles from the

market because of a software bug in the hybrid car. These are just some of the many recent IT

projects gone wrong in recent history. In 1995, the Standish Research Group reported that 51%

of software projects fail [4]. They based this result on reviewing 40,000 software systems from

different domains and countries. Software bugs will still happen, and coding errors increasingly

affect our lives, directly or indirectly. The tragedy is that software disasters are avoidable,

predictable and stoppable if the right processes are used while building the software and if

enough resources are placed into testing the software for static and run-time bugs.

Although software disasters can be prevented, it is not an easy task to build fault-free

software. Errors can happen because of a programming mistake, miscommunication among the

code developers, a misunderstanding between the customer and the developer, a mistake in the

requirements document, a politically biased managerial decision, a change in the domain market

3

standards and many other reasons. This dissertation describes a system that can enhance the

ability of developers to ensure correct software by including validation in the lifecycle

development process.

1.2 Lifecycle Models in Software Development

Building software is not a random process. It is a well defined and structured procedure. It is a

challenging practice that needs to be planned and designed in a structured manner. Lifecycle

models can help in building software systems by controlling the software development process.

According to Sommerville [1], the traditional software engineering lifecycle phases are:

1. Requirements definition: The user’s functional, non-functional and domain

requirements are defined.

2. System and software design: The anticipated system is designed. It is usually

represented in graphs, such as data flow diagrams and sequence diagrams.

3. Implementation and coding: This phase is important because here the system is coded.

4. Integration and system testing: The system modules are integrated in this step.

Integration usually causes problems such as mismatches and miscommunication between

the modules of the system. A full system testing is needed to overcome those difficulties,

sometimes called integration testing.

5. Operational Maintenance: This phase takes place after the system is deployed and

while the users are using the system.

This lifecycle is also called the Waterfall Model. Other example lifecycle methods include the

spiral model, the evolutionary development model, the reuse–oriented model, the incremental

development model and the extreme programming model. These are briefly described below [1].

4

1. The Spiral Model: In this model each process is represented as a spiral rather than a

sequence of events, feedback, testing and all the other steps are performed multiple times.

The spiral model is shown in Figure 1.

2. Evolutionary Development: In this model the software is delivered in versions, and

specifications are defined and presented to the developer incrementally.

3. Reuse-Oriented Development: This model is based on assembling different pre-defined

modules that form a system.

4. Incremental Development: The system is delivered in increments, and each increment

includes a set of functionalities.

5. Extreme Programming Development: This model is based on very small deliverables,

with user involvement and fast changes in the code.

The software life-cycle models presented here are not the only ones, but they are the best known

models and have been widely used.

Figure 1: The spiral model [5]

5

There are many differences between these models. Using different models may lead to different

results or might require a different set of resources and different budgets. Each of the models

mentioned above is used for a different set of systems.

One thing that all software engineering lifecycle models have in common is the critical

need for validation and verification. Likewise, any software system requires testing, validation

and verification. The general and most common way of ensuring the robustness of systems is to

perform extensive validation and verification. Before discussing validation and verification, it is

appropriate to introduce knowledge-based systems; the type of software systems that this

dissertation targets.

1.3 Introduction to Knowledge-Based Systems

According to the Webster’s [6] definition, intelligent systems are “systems that perceive their

environment and take actions which maximize its chances of success.” In order to display such

functionality, the system must be indeed intelligent.

Over the past 50 years there have been many efforts towards achieving artificial

intelligence in machines. These efforts have resulted in significant advances in that field.

Computer agents are a type of intelligent system that can interact with humans in a realistic

manner. They have been known to beat the world’s best chess player and locate hostages in a

military operation [7]. A computer agent is an autonomous or semi-autonomous entity that can

emulate a human. It can be either physical such as a robot, or virtual such as an avatar [7]. One

known type of software intelligent systems is knowledge-based systems.

Artificial intelligence raises the question of whether machines can think and learn like

humans. The ability to learn should be part of any system that has intelligence. Intelligent

6

systems must be able to adapt to changes in their environment. Knowledge-based systems belong

to the field of artificial intelligence. Other disciplines in this field include:

1. Machine Learning happens when the agent learns by exploring its surrounding and

figuring what actions are the most rewarding.

2. Neural Networks are a learning paradigm inspired by the human nervous system. In

neural networks, information is processed by a set of interconnected nodes called

neurons.

3. Genetic Algorithms (GA) is a method that finds a solution or an approximation to the

solution for optimization and search problems. GA use biological techniques such as

mutation, crossover and inheritance.

4. Natural Language Processing (NLP) is a discipline that deals with linguistic

interactions between humans and computers. It is an approach dedicated to improving the

human-computer interaction. This approach is usually used for audio recognition.

5. Computer Vision is when the computer captures and analyzes images of the 3D world.

This includes making the computer recognize objects in real-time.

Knowledge-based systems (expert systems) are intelligent systems that reflect the knowledge of

a proficient person. Knowledge-based systems are a specific kind of intelligent system that

makes extensive use of knowledge. They are different from conventional software systems

because they use heuristic rather than algorithmic approaches for decision making. Furthermore,

knowledge-based systems separate the knowledge from how it is used [8]. The idea of a general

problem solver (GPS) was introduced during the early 1960s. This idea used generic search

techniques aided by heuristic knowledge to solve problems [8]. DENDRAL, developed during

the early 1970s, realized the internal structure of unknown compounds. The GPS and the

7

DENDRAL experiences were instrumental in the development of MYCIN, a system that

diagnosed blood disorders. MYCIN is a landmark medical rule-based system developed at

Stanford University. More importantly, MYCIN influenced the creation of the field of

knowledge-based systems. Using the MYCIN experience, a number of knowledge-based systems

in other domains were developed during the 1970s and 1980s such as HEARSAY (for language

understanding), PROSPECTOR (for geology), XCON (for systems configuration) and GenAID

(for electrical equipment diagnosis) [8]. A great number of expert systems have been developed

since that time.

The main component of the knowledge-based system is the knowledge base. Often, the

knowledge reflected is that of an expert. Knowledge-based systems consist of an inference

engine and a knowledge base. Inference engines act as the main controller of the system, where

the knowledge is manipulated to address specific problems or answer specific questions. The

inference engine contains the problem solving knowledge. The knowledge base is typically

elicited from an expert or from an otherwise knowledgeable person in a certain domain. The

knowledge is elicited, represented and built by the knowledge engineer, in a process known as

knowledge engineering. Knowledge engineers can be said to be computer systems experts whom

are responsible for representing knowledge in a computer system in order to solve problems that

require human expertise. The first task of a knowledge engineer is to acquire this knowledge

from its human source. This is known as knowledge acquisition and it is carried out using

various methods such as:

1. Interviews - conducting interviews with the expert and discussing the domain.

2. Questionnaire - developing a questionnaire to be completed by the expert and other

personnel related to the domain.

8

3. Observation and protocol analysis - observing the work environment of the expert

whose knowledge is being elicited and analyzing the processes he/she uses for

different tasks.

4. Collecting cases - collecting all the scenarios that might occur with the expert. This

method is mostly used when a case-based knowledge is developed.

5. Extracting cause-effect relationships - this means identifying the reasoning patterns

of the expert’s tasks, processes and knowledge.

The second major task of a knowledge engineer is to represent the elicited knowledge.

Knowledge can be represented in many ways, but the most common ways are [8]:

1. Rule-based systems - where knowledge is represented in term of rules. If some condition

then some action.

2. Case-based systems - where knowledge is stored as cases. This kind of system is used

when solving new problems depends on the solutions of previous ones.

3. Logic-based systems - where knowledge is stored as logic. In this form of systems,

knowledge is defined as a set of logical operators.

4. Frame-based systems - knowledge is represented in templates or frames. Templates

have a number of slots to be filled. Related facts are clustered in groups in this

representation.

5. Object-based systems – where data is represented in objects. In this representation an

object is a collection of information that represents an entity from the real world and

describes its functionalities.

9

Although expert systems are sometimes called knowledge-based systems, and vice-versa, expert

systems are in fact a sub-set of knowledge-based systems. Not all knowledge is experts

knowledge; it can be elicited from other resources too. Shells are development tools that help the

developer in designing and implementing expert system. Example shells are: CLIPS (C

Language Integrated Production System) and eGanges (Electronic Glossed Adversarial Nested

Graphical Expert System).

Knowledge-based systems have many advantages. These include their efficient

replacement of the human expert when appropriate, and they can act as a repository for human

knowledge in case of loss of human expertise. Furthermore, design of the system and

determination on what type of knowledge representation to adopt is a core set of decisions that

the knowledge engineer needs to make. Finally, the knowledge engineer performs the task with

which this dissertation is most concerned: validation and verification of the system. It takes more

than one person to be able to build a knowledge-based system. Different people interact with the

system and affect its quality. In knowledge-based systems, the knowledge engineer, the expert,

the system developer and the end-user are the main people who relate to the system. Their roles

are sometimes managed by a project manager or a knowledge manager. In some cases, the

knowledge engineer is not directly responsible for implementing the system. A knowledge-based

system developer develops the system while the knowledge engineer is responsible for the rest of

the tasks. There can also be more than one knowledge engineer. Testing, validation and

verification are performed by knowledge engineers and/or experts, and in some cases, by the

knowledge system developer and/or the user. In most cases, a knowledge manager and a project

manager become involved in the process when the project is sufficiently large. People who

10

interact with the knowledge-based system development and their different roles are illustrated in

Figure 2.

Figure 2: Different roles in building a knowledge-based system [9]

The next section introduces definitions for validation and verification, as well as a discussion

about their importance, roles and differences.

1.4 Introduction to Validation and Verification

Many definitions of validation and verification have been introduced in the literature. So many

that there seems to be great confusion as to what each is, even to the point of direct contradiction.

11

Mainstream definitions introduce validation and verification as the two main tasks of evaluation.

Other definitions have verification as part of validation, or testing as part of evaluation. The

following sub-sections aim to insert some sense into the many definitions and arrive at a

definition for the purposes of this dissertation.

1.4.1 Importance of Validation and Verification - Roles and Differences

Validation and verification have a high level of mutual interaction. Many interpretations were

introduced in literature, and there are many publications about their definitions, roles, and

differences [10] [11].

Although validation and verification (V&V) are mentioned together in most cases, they

should not be confused with one another. Validation and Verification are different and have

distinct goals and approaches. Both validation and verification are related to the concepts of

software quality assurance. By themselves, validation and verification do not guarantee software

quality; planning, traceability, configuration management and other aspects of software

engineering are also required to accomplish that. The cost of fixing bugs increases exponentially

if done late in the development phase. Software development managers prefer to create a

validation and verification (V&V) group very early in the software development cycle [10].

Figure 3 illustrates the cost of defects versus time of development. In fact, most validation and

verification groups are created at the same time as requirements specifications are being written.

The role of validation and verification (V&V) in performance assurance and continuous

improvement is clear because validation and verification examine the software development

process and provide an independent assessment of development and operational risk. V&V help

to identify safety, reliability and performance concerns and have generally been demonstrated to

save money by identifying errors early.

12

Validation and verification efforts ensure that requirements are complete, the proposed

system architecture will meet requirements, and traceability is demonstrated among requirement,

design and test cases. Furthermore, suggestions made by validation and verification after errors

are found can help prevent similar errors in the system, thereby improving the overall quality. In

some cases, a third party validation and verification contractor is responsible for performing

validation and verification and is independent from the development group. The presence of a

separate validation and verification contractor provides an incentive for developers to improve

their internal practices.

Figure 3: Defects cost versus development time phases

It is evident that a quantitative measure needs to be developed that can assess the effectiveness of

validation and verification. When performed in parallel with software development, the

validation and verification process yields several benefits [10]:

1. It reveals errors with high risk early. This gives the design team time to develop an ample

solution, rather than forcing them into a quick fix to accommodate software deadlines.

2. It compares the product against the system requirements at an early stage. This ensures

that the development team is meeting the specified requirements.

13

3. It provides management with continuous and comprehensive visibility into the quality

and progress of the development effort, not just at major review milestones that may

occur infrequently.

4. It gives the user an incremental preview of system with the chance to make early

changes

5. It helps in the decision making process: whether to proceed to the next step in

development or not.

Two independent studies were conducted [12] that focused on three projects of different sizes.

Validation and verification were used in the product development from start to finish. The

following results were reported by Anderson et al. [10]:

1. Rates of uncovering errors early in development were better

2. Validation and verification found 2.3 to 5.5 errors per thousand lines of code

3. Over 85% of errors affected reliability and maintainability

4. Early errors detected saved 20-28% of validation and verification costs (for projects

beginning at coding phase) and 92-100% (for projects beginning at requirement phase)

[10]

On the other hand, some weaknesses of the validation and verification process include [11] [13]:

1. It can increase the short-term cost of the project.

2. The interface activities for documentation, data and software deliveries between

developer and validation and verification groups may reduce the productivity.

3. Validation and verification efforts can take years if goals are not properly set. It can

also demoralize the developers.

14

4. Validation and verification requires training and familiarity with the software and

development techniques being used.

5. It can be hard to measure the effectiveness of validation and verification. Some

people believe that validation and verification aren’t needed, especially when a

Software Quality Assurance (SQA) group exists.

6. There is an inherent conflict between developers and the validation and verification

group because some developers might believe that the V&V team is trying to find

errors in their work to embarrass them.

7. The biggest problem in validation and verification is the ‘coordination problem’

between different people interacting with the system during the development of the

software. Example: Exchanging files and documentation while the size and the

content of documents continue to evolve.

A comprehensive validation and verification effort should be administered by a specific group

that may comprise a developer, someone from the end-user organization, contractors and

subcontractors. It may also have members knowledgeable in software quality assurance,

configuration management and data management teams.

Configuration management and data management groups supervise software versions and

data during their development using techniques such as formal audits, change control records,

traceability of requirements, and sign-off records. The user group provides a guarantee that the

software product satisfies the users’ requirements and specifications. It should be noted that

configuration management and documentation collectively aid validation and verification efforts.

Generally, a validation and verification group works independently from the development

group, and is sometimes called independent validation and verification (IV&V). Validation and

15

verification tasks are oriented towards analysis and comprehensive testing. The purpose is to

develop an independent evaluation of software quality and to decide whether the software

satisfies all the critical specifications. Advantages of this approach are detailed analysis and test

of software requirements, an independent determination of how well the software performs, and

early detection of high-risk software and system errors. Disadvantages may include short-term

higher cost to the project and additional development interfaces [10].

Several techniques are currently used for verification and validation. It is important to

note that some of these techniques are used in several phases of product life-cycle. For example,

algorithm analysis is a well-known technique that evaluates algorithms developed during the

software development cycle. This analysis is done during the requirement specification phase to

determine what kinds of algorithms will be needed, then in design phase to see how those

algorithms will be developed, and in coding phase to determine whether the algorithms being

coded conform to V&V requirements. The same is done during unit testing and maintenance of

the software product.

1.4.2 Definition of Validation

As the name implies, validation can be considered to be a process through which a product is

considered valid for fulfilling its intended purpose. Some researchers consider validation as part

of other processes such as evaluation or testing. Other definitions introduce validation as a

standalone process. Introducing a new definition for validation is not the goal of this dissertation.

This section aims to discuss validation definitions in the literature and select one as the official

definition for the purposes of this dissertation. The most popular definition of validation is

introduced by O’Keefe et al. [14]. They define validation as “building the right system”. While

this definition is catchy, straight forward and easy to remember, it doesn’t shed much light on

16

what validation is or how it should be carried out. Furthermore, it’s hard to understand anything

about validation from this definition. For validation to be understood, a more descriptive and

comprehensive definition is necessary.

The US department of defense (DoD) defines validation as “The process of determining

the degree to which a model is an accurate representation of the real world from the perspective

of intended uses of the model” [15]. This definition is comprehensive and descriptive, yet in

some cases it might not be true. This definition introduces validation as a comparison process,

which is true, but not necessarily to the real world. Validation in some cases doesn’t cover the

non-functional aspects of the system, such as the influential personal moods and decisions that

affect the work processes of an organization. Comparing the system to the real world is a

challenging and often a nearly-impossible task. Instead, validation can be a comparison of the

system to a useful model of the real world.

Adrion et al. [11] defined validation as “The determination of the correctness of the final

program or software with respect to the user needs and requirements”. This definition

emphasizes checking the correctness of a program, which is normally considered part of the

verification process (discussed in the next section), and not validation. Another similar definition

is presented by Zlatareva [13]. She defines validation as the intention to declare the functional

correctness of the system’s performance.

A recent definition of validation was introduced by Min et al. [16]. They claim that any

validation process should go through the following steps:

1. Selecting a segment of the system.

2. Evaluating this segment, and reaching decisions about this segment.

3. Running the segment and evaluating its performance and output.

17

This definition is based on modular validation, which is one approach to validation. This

definition, however, doesn’t cover integration testing, which is commonly accepted to be

different than component testing and not the simple sum of its parts. When software segments

are validated individually, problems might rise when these segments are integrated. Therefore,

this definition is not complete.

IEEE [17] defines validation as: “The process of evaluating a system or component

during or at the end of the development process to determine whether it satisfies specified

requirements.” This definition describes validation as a major phase of the development

lifecycle. It describes validation as evaluation, which is not correct. Evaluation is a vague term

and it might include verification or any other form of testing that doesn’t represent validation.

Moreover, this definition is not dedicated to knowledge-based system, and hence doesn’t meet

the needs of this dissertation.

The most comprehensive and descriptive definition of validation in the context of

knowledge-based systems was recently introduced by Gonzalez et al. [18]. They define

validation as “the process of ensuring that the output of the intelligent system is equivalent to

those of human experts when given the same input.” This definition is general and it implies that

validation compares the system to the real world. For knowledge-based systems (or expert

systems), the real world knowledge is the human experts’ knowledge. The system is to be

compared to the expert’s knowledge and not directly to the real world. Furthermore, this

definition is specifically dedicated to knowledge-based systems. This definition, therefore, serves

the purpose of this dissertation and will serve as the official definition of validation for this

dissertation.

18

Therefore, it is asserted here that validation involves the execution of the completed

system and its output is compared to benchmarks to ensure that the output is correct. Such

benchmarks are often human expert opinion.

1.4.3 Definition of Verification

Verification typically doesn’t involve executing the KBS, such as is done in validation.

Nevertheless, it is sometimes considered a part of validation. It is the part that deals more with

the code and the details of implementation. Again O’Keefe et al. [14] defined verification in an

abstract way just as they did for validation. They defined verification as: “building the system

right”. This definition maybe easy to remember but it is unquestionably abstract and vague.

Another very common definition of verification is that by the US Department of Defense:

“process of determining that a model implementation accurately represents the developer’s

conceptual descriptions and specifications” [15]. This definition compares the system to the

developer’s descriptions, which is not correct. In most cases, the developer is assisted by the

knowledge engineer and the expert, as well as sometimes the customer/user. The model should

represent the expert’s knowledge, the knowledge engineer’s design, the developer descriptions

and the customer’s desires and needs. Therefore, verifying the developer’s descriptions and

specifications is not sufficient to reach a verified system.

Adrion et al. [11] defined verification as “The demonstration of the consistency,

completeness and correctness of the software”. This definition is correct, but it limits verification

to three aspects: consistency, completeness and correctness. The IEEE [17] definition for

verification is “the process of evaluating a system or component to determine whether the

products of a given development phase satisfy the conditions imposed at the start of that phase.”

This definition introduces verification as a process to be performed on a system as a whole or a

19

certain component. This definition doesn’t limit verification to certain aspects such as

consistency, but compares the system to the set of conditions imposed at every phase, which

covers a wide set of expectations and required functionalities. Many other definitions for

verification have been introduced. Gonzalez et al. [18] recently compared different definitions

for verification. They also introduced a new, comprehensive and descriptive definition for

verification: “Verification is the process of ensuring that the intelligent system conforms to

specifications, and its knowledge base is consistent and complete within itself”. This will serve

as the official verification definition for this dissertation. The next section discusses validation

and verification for knowledge-based systems and will introduce different V&V approaches that

have been widely used in many disciplines.

Therefore, it is asserted here that verification involves: 1) Comparison of evaluation of

specifications to ensure compliance and 2) examination of code, either manually or through

theorem proving approaches, to ensure that the code is consistent and complete. It is further

assumed that the system is not executed in the process of verification. When performing

verification, one checks for syntactic errors in a rule base such as: redundant rules, conflicting

rules, subsumed rules, circular rules, dead-end rules, missing rules, unreachable rules and

unnecessary if conditions.

1.5 Validation and Verification for Knowledge-Based Systems

Knowledge-based systems generally have a different structure than conventional software

systems. They separate the knowledge from its use with the knowledge base and inference

engine. Each part of the system needs to be verified and validated separately. Inference engines

are usually off-the-shelf software. Therefore, there is little need for their validation and

20

verification as presumably that has already been done by its developer/vendor. Knowledge-bases

are critical parts that hold important data, and therefore need to be validated and verified.

Preece [19] provides an evaluation study on validation and verification for knowledge-

based systems. In his paper, validation and verification processes are divided into types. The

most common category is inspection but it is also the least reliable. It is a manual test of the

knowledge base. The expert merely looks at the rules/cases and their relations in the system.

Manual checks and face validation are examples that fall into the inspection category (these are

discussed in later sections of this chapter). Another validation and verification type is formal

methods. In formal methods, the system is represented in a logic-based format. The most

common method of testing in conventional software engineering is empirical testing. It has two

main methods: functional and structural testing. Functional testing concentrates on the

functionality of the different modules of the system, while structural testing checks the output of

the entire system and how it performs with the users.

There are many validation and verification approaches for knowledge-based systems, but

how do we decide which one to use? Some of the V&V approaches are suitable to use with a

certain type of systems in certain domains. For example, real-time systems require a specific

approach to validation and verification because of their sensitive nature. Furthermore, different

validation and verification approaches could be used at different phases of the knowledge-based

life-cycle. For example, field testing might be used after the implementation phase is complete;

while directed graphs might be used after knowledge elicitation (those approaches are introduced

later in this chapter).

Another categorization of validation and verification approaches was introduced by Balci

[20]. He describes the possible ways to do validation as:

21

1. Informal: relies more heavily on human reasoning than on automated processes and

mathematical analysis. This category is the most common one, and it is used widely.

2. Static: this category is based on accurate analysis of the system models in the design

phase.

3. Dynamic: requires multiple model and system executions then making changes to the

system according to these executions’ results and conclusions.

4. Symbolic: this category is similar to the dynamic methods, but symbols are used to

represent the system modules and as inputs for the tests.

5. Constraint: this category is applied to check the system’s boundaries and assertions.

6. Formal: Based on formal mathematical proof of correctness.

The major goal of this dissertation is to introduce a new validation method. Therefore, it is

important to look at previous validation approaches and assess each. It is important to realize the

difference between an approach and a method. An approach is a general strategy that doesn’t

give detailed steps on how to perform the process, it only provides general direction. On the

other hand, a method is a well defined set of steps that aims to fully guide the process. While

Chapter 2 introduces validation methods, the next two sections review the most important

validation and verification approaches in the relevant literature. Verification is discussed first.

1.6 Verification Approaches for Knowledge-Based Systems

Many authors have introduced approaches to simplify and formalize the verification process for

knowledge-based systems [21] [22] [23] [24]. Verification approaches based on conceptual

models have been successful [25] [26]. At the same time, languages for the transformation

between the model and the real system are important and should be defined. Therefore, many

22

contributions discuss what languages or logical representations are best for verification. Most

recent studies concentrate on representing the knowledge in Petri nets [22] [27] to be able to

extract anomalies.

A Petri net is a directed bipartite graph, in which the nodes represent transitions. Petri

nets have three main parts: arcs that represent the direction of the data, usually input or output;

nodes that represent discrete actions; and transitions - conditions that direct the flow of data [21].

A number of recent verification methods were introduced using the Petri nets approach as in [22]

and [37]. Qingfeng et al. [23] represent the rule-based system in Petri nets and verify the rules

using the graph. Other approaches represented the systems processes in Petri nets for

verification. Representing the knowledge base in graphs or logical representation is desirable for

verification. Other published approaches use meta-knowledge to indicate anomalies. [24] Meta

knowledge is a higher abstraction of knowledge that also needs to be verified. In most cases, the

anomalies that need to be detected are: [24].

1. Redundancy - having the same knowledge in two or more places.

2. Ambivalence - mixed knowledge or unclear representation of knowledge.

3. Circularity - closed loops in the knowledge; a rule leading to itself as a solution.

4. Deficiency - inefficient representation of knowledge.

5. Incompleteness - some expert knowledge not represented in the knowledge base.

6. Inconsistency - any untrue representation of the knowledge.

More recent verification methods tend to move towards formal approaches. Several papers

introduce new languages that might help in formally modeling the knowledge base. Languages

such as ALCNR [28] and KROL (knowledge representation object language) [29] were

23

introduced in 1998 and 2007 respectively. Other researchers dealt with uncertainty and discussed

how verification could interact with testing and validation [30] using probabilistic models.

Embedding knowledge and the knowledge-based system in a conceptual model is an important

step towards defining a comprehensive method. Many authors introduced verification methods

based on structural and conceptual models. Marcos et al. [25] introduced a model-based

verification method based on a planning model called STRIPS (Stanford Research Institute

Problem Solver), which is an automated planner used in many artificial intelligence applications

that consists of goals, operators and states. Other work used models of knowledge-based systems

for verification. In [26], Al-Korany et al. used KADS (knowledge acquisition and design

structuring) for verification of knowledge-based systems. Al-Korany et al. stated that KADS is a

model that “lends itself to verification and validation”; KADS is discussed in Chapter 4 in great

detail. In this method, every layer is verified separately and a verification report is produced.

This method detects three kinds of anomalies: 1) circularity, 2) inconsistency and 3)

incompleteness. This is illustrated in Figure 4. This method doesn’t detect other anomalies that

are discussed previously (ambivalence, redundancy…etc), which is a major drawback. KADS is

an abstract representation of the system. To be able to perform successful verification, more

details should be included and observed. The transformation between the design model and the

real implementation is also important and if the anomalies could be recognized incrementally,

this should be an effective way to minimize the work after the system is done. An important

point to mention here is that models could introduce new types of defects; therefore, when any

model is used, there should be clear definitions on what deficiencies does the model have within

different domains.

24

The transformation between the design models and the real implementation is also

important, and if the anomalies could be recognized incrementally, this should be an effective

way to minimize the verification effort after the system is done. An important point to mention

here is that models could introduce new types of defects; therefore, when any model is used,

there should be clear definitions on what deficiencies does the model have within different

domains.

Figure 4: Verification using KADS [29]

In most cases, verification is more formal than validation. More formal software tools were built

for verification than validation. Examples of the most common verification tools are [31]:

CRSV-CLIPS (a tool that checks for inconsistency and incompleteness in the expert systems

shell CLIPS) [32], KB-REDUCER (takes a rule-based system and uses reduction algorithms to

reduce its size) [33], COVADIS (a tool similar to KB-REDUCER but mainly concerned with

consistency checking) [34], ESC (expert systems checker - a tool dedicated for rule-based

systems that represents the system in tables for verification) [35], IMVER (uses matrices to

represent knowledge and look for anomalies) [36], PREPARE (rules are translated into transition

nets and pattern matching techniques are applied on them to detect anomalies) [37], COVER

25

(transforms the rule base to the cover language and identifies conflicts between rules) [38],

CHECKER (part of an expert system shell that uses uncertain reasoning and has two main

algorithms to perform verification, check 1 and 2) [39] , EVA (is a toolset that detects

unreachable, cyclic missing, redundant and dead end rules by firing them, the system also

generated tests to help the developer point out anomalies in rules) [40] and COCO (an

incremental checking system that checks for consistency and completeness of rule-based systems)

[41].

Verification is an essential process that needs to be performed carefully. Researchers

agree that verification becomes harder as the size of the system increases [11]. Smaller projects

are easier to verify, but still, stating that a knowledge-based system is verified can be a very

demanding conclusion. The main goal of verification is to detect anomalies in the knowledge

base, especially incompleteness and inconsistency [42]. Most verification practices in the

industry are based on manual verification approaches, such as reviews.

Containment checking is also used for verification of knowledge-based systems. Levy et

al [43] introduced a verification method based on the containment checking approach that is

derived from database querying. Containment checking indicates redundant and inconsistent

rules or cases in a knowledge base by requiring knowledge as if the system is running and

observing how many similar answers are returned. If too many similar answers are returned, this

indicates a redundancy problem. Again, verification is an essential step but the industry still

lacks a standard method that could be used at minimal expense.

1.7 Validation Approaches for Knowledge-Based Systems

Validation approaches can be categorized according to the level of abstraction of the testing

process. Black box testing validates the system in a highly abstract manner, by testing inputs and

26

outputs only, without understanding or validating the underlying details. White box testing is the

opposite of black box testing and it is a detailed evaluation of all parts of the system. Validation

can be performed on every module of the system, by defining a set of expected outcomes from

this module. Furthermore system-level validation is more challenging, as it deals with the system

as a black box.

In this section, a list of general validation approaches for knowledge-based systems is

presented, discussed and evaluated. The approaches described next are not mutually exclusive

but most methods in practice combine several of these approaches. Different validation

approaches can be used during different phases of software development. Validation can be

performed towards the end of the development process or incrementally, where it is performed in

parallel with the development process. The appropriate phase is stated for every general

approach.

1.7.1 Validation through Analysis of Heuristics

This general approach is based on performing logical validation with heuristics with uncertainty.

This validation occurs after the knowledge acquisition phase [44].

Validation through analysis of heuristics evaluates the outcome of an individual situation

 action heuristic [45]. As Lenat [45] defines them, heuristics are: “pieces of knowledge

capable of suggesting plausible actions to follow or implausible ones to avoid”. Langlotz et al.

[16] also used the MYCIN expert system for their experiments on this validation method. They

suggested that some rules might not be valid for a certain scenario, and that experts would have

different views on the validity of those rules. In this validation approach, the knowledge engineer

revises the rule base and checks the outcome of rules, based on a certain input using a decision

27

tree. The decision tree describes the rules structure in the knowledge base, and is used to validate

the rules, and their order in the decision making process.

1.7.2 Validation through Simulation

Validation through simulation is an efficient approach used for critical, real time knowledge-

based and conventional software systems. This approach is based on simulating the system under

the same circumstances. It is important to note that simulation is different from prototyping.

Simulation is a representation of the full system, with all parameters that affect its performance,

including the human factors such as stress, fatigue and impatience if applicable. This validation

approach is also used for validating hardware systems. Validation through simulation consumes

much time, effort and money. In some cases, building a simulator could be more difficult than

building the real system. This validation approach is common among military applications and

other critical systems, but it is not used for socio-technical systems [46].

Validation through animation can be considered a category of validation through

simulation. Validation through visual interaction is also called validation through animation. It is

based on representing the system visually using different animation means. In this approach, the

system is represented by visual entities such as nodes or colored shapes. Colors are important in

this approach as they present different types of entities within the system. Example: Input data

flow could be represented by a color and the output data flow by another color. After the

animated presentation is designed, the system is validated by checking and reviewing all the

modules and how they interact with each other. In some cases an animated video is designed to

visualize the system modules in action and point out faults and mismatches with the initial

requirements.

28

1.7.3 Face Validation

Face validation is a general preliminary validation approach, where a number of developers,

knowledge engineers and some potential users run the system and compare its performance to a

human expert knowledge, albeit not in a formal testing process. Face validation is an overly

simple process, but it is still used in industry as one of the main validation approaches. Face

validation is commonly used for all kinds of systems, including conventional software. It

requires human effort and in most cases, it is hard to be automated. Usually, face validation is

accompanied by other, more formal testing approaches.

1.7.4 Predictive Validation

This validation process compares previous validation results with corresponding and current

results of the system. Predictive validation is performed iteratively. When predictive validation is

used, the results are saved, and for the next iteration the same set of tests are performed and

compared with the previous results. Predictive validation cannot be used in isolation; it is simply

an approach to compare test results and evaluate the development process.

1.7.5 Subsystem Validation

Subsystem validation is based on evaluating the various parts of the system independently. When

subsystem validation is performed, another validation approach is used to evaluate the entire

system. This method defines the parts of the system that need to be validated but not how to do

it. Integration testing is performed on the entire system after subsystem validation is completed

to evaluate how different modules of the system will interact.

29

1.7.6 Validation through Case Testing

Validation through test cases is the most used approach for validation and testing. Knauf et al.

[47] defined the main steps of this approach as:

1. Test case generation: The test cases are defined. This step is the most challenging,

because it builds a basis for the next steps. If the design of the set of test cases was not

done properly, the validation process will lose its value.

2. Test case experimentation: this is the step where the test cases inputs are executed on

the system.

3. Evaluation of the experiment: The test case results are evaluated. In most situations,

evaluation is done by comparing the test result to the experts’ answer.

4. Validity assessment: actions toward fixing the errors and presenting the solutions are

defined in this step.

5. System refinement: the knowledge engineer corrects the errors found in the system’s

modules, logic and code as a result of the validation process.

In some applications, use case diagrams are employed in designing test cases. Use case diagrams

are behavioral diagrams used to represent the users’ interaction with the system. They are created

after performing use case analysis. Use case diagrams are defined in UML (Unified Modeling

Language).

Test case design falls into three categories:

1. Requirements-based testing: test cases are defined based on the initial user

requirements. A group of test cases are presented to cover every requirement.

2. Partition testing: Input data and the resulting output usually fall into categories where all

members of a category are connected to each other. These categories are defined by the

30

knowledge engineer and/or the expert. As Sommerville states in his book [1], “Each of

these classes is an equivalence partition or domain where the program behaves in an

equivalent way for each class member”. Test cases should be chosen from each partition.

3. Structural testing: Also called white box testing, a system undergoes complete testing

where all the statements are tested. It is important to note here that not all execution paths

are tested but all the code, knowledge and the inference engine functionalities are.

The reliability of any validation process depends on the number or defects, errors and faults

found before releasing the system to customers. This depends on the quality of test cases

generated. Automated test case generation is an important topic in current research. It can reduce

the time, effort and cost of validating the system and increases reliability [47]. Automated testing

in validation by Knauf et al. [47] is discussed in detail in this dissertation.

1.7.7 Validation through Graphical Representations

Graphical representations can illustrate a knowledge base in an unambiguous manner. This helps

knowledge engineers and/or the validation team in spotting problems in the system. In this sub-

section, decision trees and directed graphs are presented as ways to depict a knowledge base.

They are the most common graphical representations for knowledge-based systems.

1.7.7.1 Decision trees

Decision trees are used for validation because of their clear representation of data. An important

part of knowledge-based systems validation is validating the knowledge. Validating the

knowledge could be a hectic process if the knowledge is not represented in a graph or any other

easy form of visualization of the system. Decision graphs show different courses of action

towards making a certain decision. In this structure, the knowledge engineer can explore the

31

options of a certain input. Furthermore, it can trace the course of decision making of the system

to measure the similarity between the expert’s knowledge and the system’s decision process. The

main challenge in using decision trees or any other graphical representation of a system is the

size of the graph. Extensive validation is performed when systems are large, but it is hard to

present the system in a decision tree when it is complicated and/or if it interacts with other

system within or outside the organization.

1.7.7.2 Directed graphs

A directed graph represents the system in a sequential manner. This kind of graphs is used in

most cases for data flow representation. It should be clear that validation using graphs doesn’t

assure the absence of errors, or a full match between the requirements and the knowledge-based

system. However, it is helpful in pointing out problems in the system. Software tools are used to

present the system in graphs, Murrel et al. [31] present a survey of tools for validation and

verification of knowledge-based systems. Validation tools are discussed in later sections of this

dissertation.

1.7.8 Validation through formal Methods

Mathematical and statistical representations are widely used for validation of software.

This category is also listed as formal methods. Formal methods are getting much attention in

testing of software. In this section the most common approaches are introduced.

1.7.8.1 Simultaneous Confidence Intervals

This validation approach is based on evaluating the system’s performance under different

circumstances over a period of time. Different modules of the system are evaluated in a before-

after situation. Confidence intervals are defined for sub parts of the system or for test cases and

in certain situations for the entire system.

http://mathworld.wolfram.com/Graph.html�

32

1.7.8.2 Paired T-Tests

The paired t-test is a testing approach used to evaluate whether the difference between two

observations is equal to zero. In software, two scenarios are compared and the results are

evaluated. If the difference between the two observations is zero, this means that the system

fully reflects the knowledge or the requirements (depending on what is being tested). Paired T-

Tests is used in many disciplines and applications. It is a commonly used statistical approach that

delivers an informative comparison between two scenarios [48].

1.7.8.3 Consistency Measures

In many domains, experts can honestly disagree with each other on some of the domain’s details.

This validation approach ensures that the knowledge represented in the system meets the expert’s

knowledge. Performing this test requires many experts to perform testing on the system; their

views and results are analyzed by the experts [48]. The main goal of this approach is to check

consistency of the system.

1.7.8.4 Hotelling One-Sampling

Hotelling one sampling serves as a statistical approach to compare the human expert to the

expert system. Tests are performed in pairs - expert result and system result. A set of pairs is

generated (K). K pairs are compared and each corresponding set of cases is compared with

different input values. Then one sample/test t is used to determine whether the means of the array

of samples/tests are significantly different or not.

1.7.9 Turing Testing

The original Turing test was proposed by Alan Turing [49] [50] as a way to determine the

intelligence level of a machine when compared to a human, where a machine and a human

played a game anonymously. This validation version of the Turing test applies the concepts of

33

comparing human to machine and anonymity to the validation process for intelligent systems.

The Turing test is a good candidate for validating systems, but it is a demanding approach that

requires significant time and commitment from experts. This approach is based on validating the

knowledge-based system by comparing its output to the expert’s output. The system and the

expert have the same set of inputs, and their outputs are compared [49]. In the Turing test with its

input-output validation style, the knowledge engineer would not know the error that needs to be

fixed, because of the black box view. They would just identify where the problem is.

1.7.10 Sensitivity Analysis

The sensitivity analysis validation approach is a helpful process for finding problems that the

expert or the knowledge engineer couldn’t locate or find. Sensitivity analysis is performed at the

late stages of validation or testing. It is performed by using the initial experiments/test performed

by the knowledge engineer or by the expert, and tweaking them by entering out of boundary

values. Example: entering a human being’s age = 1000 years old and evaluating the subsequent

results. It can be a long and difficult process because of the many potential values that compose

sensitivity. However, in special cases it can be quite useful.

1.7.11 Field Testing

Field testing is one of the most common black box validation approaches. In field testing, the

system is put under use in the real environment and is used by the ultimate users. User feedback

would be considered when changing the knowledge-based system according to the user needs

and specifications. In field testing, the testers are the actual users. They have no knowledge

about how the system functions.

34

Field testing can be only used with non-critical systems because the users could

potentially rely on an un-validated system. Data collection can be used with field testing. Data

collection is an overly simple procedure when compared to other validation approaches, but it

can be very useful because it is done by the users who will actually be using the system. It is

usually performed when prototypes are developed. Data collection is basically getting input from

users by letting them fill questionnaires and/or interviews. Data collection is accompanied with

other validation approaches; it is not comprehensive if performed solely.

1.8 Summary

This chapter discussed the problem of developing correct knowledge-based systems. In

particular, validation and verification are introduced and discussed as a means of achieving

correct knowledge-based systems. Many early software systems and knowledge-based systems

have showed that it is difficult to evaluate and maintain them. As a result there has been an

interest in developing methods to control the development of the expert system, to test, verify

and validate it. The main focus of this dissertation is on the latter, validation of knowledge-based

systems. In this chapter, intelligent systems were introduced. Knowledge-based systems - a

special kind of intelligent systems is the major focus of this chapter. Validation and verification

techniques are defined and discussed. All the validation approaches discussed in this section are

summarized in Table 1.

Validation could be performed in every step of development, or could be performed after

an initial prototype of the system is built, or even at the end of the real system development.

Validation could be performed solely, or accompanied by evaluation. A set of validation

approaches for knowledge-based systems was introduced in detail in this chapter. The aim of this

dissertation is to introduce a new validation method for knowledge-based systems. The

35

validation method proposed here is not just another validation method. It is a structural and

incremental validation method based on a conceptual model.

Table 1: Validation general approaches comparison

Validation Approach Development Phase Category/Description
Validation through Analysis
of Heuristics

After knowledge Acquisition Logical validation with
uncertainty

Validation through
Simulation

After prototyping Result-oriented validation

Face Validation After development or mature
prototyping

Qualitative Validation/
Preliminary approach

Predictive Validation After development or mature
prototyping

Qualitative Validation

Subsystem Validation All phases Qualitative Validation
Validation through Case
Testing

After development or mature
prototyping

Result-oriented validation

Validation through Graphical
Representations

After Knowledge
Acquisition/Representation

Visual Validation

Decision trees After Knowledge
Acquisition

Visual Validation

Directed graphs After Knowledge
Acquisition

Visual Validation

Simultaneous Confidence
Intervals

After Partial Development Statistical/Quantitative
Validation

Paired T-Tests After Partial Development Statistical/Quantitative
Validation

Consistency Measures After Partial Development Statistical/Quantitative
Validation

Hotelling One-Sampling After Partial Development Statistical/Quantitative
Validation

Turing Testing After development or mature
prototyping

Result-oriented Validation

Sensitivity Analysis After Experts Testing (if
necessary)

Result-oriented Validation

Data Collection After Partial Implementation Usage-oriented Validation
Field Testing After Full Implementation Usage-oriented Validation
Visual Interaction Validation After Knowledge

Acquisition
Visual Validation

36

CHAPTER 2: STATE OF THE ART IN VALIDATION OF KNOWLEDGE-
BASED SYSTEMS

This chapter describes the state of the art in methods to validate knowledge-based systems. Many

validation methods have been recently introduced in the literature based on one or more of the

validation approaches presented in the previous chapter. In the previous chapter of this

dissertation, general approaches to validation were discussed. Those approaches cannot ensure

that the system is valid, as they are not complete and they only provide a general description of

what can be done. On the other hand, methods can ensure a valid system as they introduce step-

by-step techniques towards complete system validation. Validation methods are reviewed and

discussed in this chapter.

2.1 Validation Methods for Knowledge-Based Systems

This section discusses validation methods categorized in three sections: 1) validation of the

knowledge base, 2) validation of the entire system, and 3) multi-purpose validation methods. The

first section reviews validation methods strictly dedicated to validating the knowledge base. The

second section discusses validation methods that aim to validate the entire system. The third

section is dedicated to other types of validation methods and tools.

2.1.1 Knowledge Validation Methods

As the validation definition adopted in Chapter 1 declares, the output of the system needs to be

equivalent to the human experts’ output. The human experts’ knowledge is represented in the

knowledge base. Therefore, it is important to validate the knowledge base. Different methods

[51] [52] [53] [54] have been introduced for this purpose. One of the ideas to achieve this goal is

37

to keep track of knowledge documentation as a reference for measuring the validity of the

knowledge base.

A validation method based on this idea is KVAT (knowledge validation tool) [54].

KVAT performs knowledge elicitation, and validation for frame-based and logic-based systems.

Figure 5: KVAT [54]

As illustrated in Figure 5, KVAT’s knowledge elicitation is based on labeled grids, interviews,

sorts and case histories. The KVAT validation method starts by performing manual case testing

on the system. If KVAT finds any error during case testing, it locates the source of inconsistency

in the knowledge and compares it with the elicitation documents to perform refinement on the

knowledge. This method was introduced to be used across all development phases, but it’s

mainly useful for knowledge representation validation. KVAT automates the stage that compares

the knowledge to the validation documents, but case testing is still manual and informal. Formal

methods are more reliable as they provide a mathematical proof of the validity of the system.

38

Santos et al. [55] presented a formal validation method using case testing and the

probabilistic Bayesian networks. To use the method presented in their paper, the knowledge base

should be what the authors call, Bayesian knowledge base (BKB). BKB are represented in

Bayesian networks in an if-then format. This is an advantage because knowledge engineers are

familiar with such a format. For validation, a set of test cases is designed by deriving it from the

Bayesian knowledge base and the initial user requirements [55]. Every test case is a pair of

evidence and expected answer. The evidence represents the requirement location in the

knowledge base and the expected answer is the right solution. These sets change depending on

the incoming results and outputs of the testing process. Changing the set of test cases means that

new test cases will be added to or deleted from the set. In this method, every requirement from

the users is represented by a test case. The Bayesian representation in this method is based on

nodes. Every evidence and expected answer is represented by a node. If there is a redundant or a

cyclical representation, it indicates a problem that needs to be corrected.

A more generalized validation method for knowledge representation was introduced by

Zlatareva [52]. Her method for validation, verification and refinement and is called VVR. For

validation, VVR uses the concepts of overgeneralization and overspecialization to modify and

refine the knowledge base. Overgeneralization of the knowledge base is when more rules need to

be added to the knowledge to make it valid. Overspecialization of the knowledge base is when

rules need to be removed from the knowledge base because they are redundant, wrong or not

representative of the user specifications and requirements. In VVR, validation starts by manually

generating test cases for the system. VVR uses two kinds of test cases: negative and positive

cases. Positive test cases are used to show the validity of part of the knowledge base; they are

represented in three variables: input, expected result and real result [52]. Negative test cases are

39

used to show that the negation of the inference outcome is wrong. It’s harder to generate

negative test cases, but they can be extracted from the positive cases. The idea of positive and

negative test cases unveils different kinds of problems in the system being validated. In some

cases, during validation and refinement, adding more rules to the knowledge base could be the

solution. In such cases, the knowledge engineers would not know whether there is redundancy in

the knowledge base or in the intelligent program’s code. This can make the size of the program

grow without a justified reason. Negative test cases and overspecialization can address such a

problem. The idea of overspecialization reduces the size of the code and the knowledge base

without affecting its performance.

Two other methods based on overgeneralizations and overspecializations that predate

VVR are SEEK and SEEK2. They have been widely used for knowledge-based systems

validation [56]. SEEK is considered one of the pioneers in validation of knowledge

representation. SEEK was completed in 1982 while SEEK2 was completed in 1988. The main

goal of the two methods was rule validation and refinement for the expert systems concerned

with diagnosis of diseases. The main reason for the development of the tools was to ensure that

the expert system conclusions were similar to known diagnosis results. SEEK and SEEK2 have

applied more than 1500 times [56]. Another method for knowledge validation was recently

presented by Barthelemy et al. [57] based on graphical representation using conceptual graphs.

They introduced a method to detect anomalies in the knowledge base. They call the process

validation although detecting anomalies is a verification practice according to many definitions

[22] [23] [24] [25]. However, in this method, the knowledge is separated into two types,

terminological (contains the main knowledge and the basic terms) and assertional knowledge

(contains a number of conceptual graphs that are based on the terminological knowledge).

40

Assertional knowledge is similar to using meta-knowledge to represent the knowledge base.

Terminological knowledge helps in forming the assertional knowledge that is validated manually

by the experts. Graphical representation is helpful in envisioning the knowledge base, but

without a tool that can transform the knowledge to graphical form, it is difficult and time

consuming to use such methods.

2.1.2 System Validation Methods

The validation methods in this class perform validation on the entire system by executing it. In

the previous section the methods were concerned with validation of the knowledge

representation. In this section, methods compare the system’s output to the expert’s outcome.

One approach to performing system validation is using validation software agents, or in other

words, expert systems that can perform validation. A simulation validation method was

introduced recently based on using three knowledge bases for validation [51], validation

knowledge base (VKB), decision knowledge base (DKB) and validation techniques base (VTB).

This validation method starts by analyzing the knowledge-based system. VKB represents the

expected behavior of the system. A validation technique is selected from the VTB by the DKB

according to the VKB system’s representation [51]. Another module in this method is the

evaluator. As VKB represents the expected final behavior, the evaluator compares the results of

the validation technique selected from the VTB to VKB’s representation. DKB selects a

validation method based on the representation of VKB using a predefined set of rules from the

expert. The evaluator creates a report as a result. The report consists of both the validation

outcome and the VKB representations. Different parts of the validation system are shown in

Figure 6. This validation method relies on the correctness of the decision making of DKB, and

the representation logic of VKB. It is also based on the assumption that the three expert systems

41

(VKB, VTB and DKB) are valid and verified. Different validation methods could be

incorporated within this validation system (specifically into VTB), which is an advantage. This

system can be updated periodically to include new validation techniques.

Figure 6: VKB validation method [51]

The authors didn’t validate their software agent their paper. This is a problem that applies to any

validation software tool, how do you validate the validation tool? The tool should be validated to

ensure a robust performance. Building the tool on top of an already tested application/system is a

straight forward way of solving this problem, or at least reducing the validation effort. Knauf et

al. [47] introduced a validation method based on their previous work for introducing a reasonable

set of test cases (ReST). They introduce the validation knowledge base (VKB), which is the

42

collection of many experts’ expertise and the validation expert system agent (VESA), which is a

software agent that represents one expert’s knowledge. This method uses the case testing

approach. The VESA and VKB modules can replace the experts after a certain amount of time of

learning to validate knowledge-based systems. VKB is a group of test cases, and a set of results

that represent the correct results of testing [47]. The use of VKB within the validation process is

illustrated in Figure 7. VKB consists of knowledge dealing with: test case generation, test case

reduction using ReST, test case rating, evaluation and refinement.

Figure 7: VKB within the validation process [47]

The main idea in this method is that when manual testing starts, VESA could replace any of

experts performing testing. If the expert is not available during testing, the VESA should have

gathered enough knowledge from the expert and VKB during earlier stages of development so it

can replace him/her in the testing process. VESA uses VKB for decision making. Furthermore,

43

VESA extracts the experts’ test cases ratings and certainties. This method reduces human

involvement in the validation process. Experts and knowledge engineers could be replaced in this

method. The only constraint is that this cannot happen before performing a certain number of

tests on the system [47].

Reducing human involvement in validation is a desirable practice. The VESA method

presented is successful in involving software agents and truly decreasing effort and time and

increasing reliability. Test cases validate the user needs and specifications in a structured

manner.

Another validation method based on test cases was introduced by Smith et al. [58]. They

presented their method through a tool called the CASE VALIDATOR. It’s an automatic record-

keeping tool of the test cases used for validation and it provides analysis of these test cases and

how they cover the knowledge base. The test cases are manually entered into the tool through a

user-friendly interface. For every test case, the results, certainties and conclusions are saved after

the execution. Part of the tool is called the record-keeping facility. It keeps track of any changes

on the program and compares the results of the test cases associated with that change. The

coverage analyzer is another part of this method/tool. It consistently checks for any part of the

program not covered by the test cases in the record-keeping facility. CASE VALIDATOR is a

manual approach that is impractical for large knowledge bases. The authors stated that their

method runs test cases on the program in a straight forward manner [49] [58].

The Turing test was used to validate one of the most famous expert systems discussed

previously in this dissertation: MYCIN. In MYCIN’s validation, several physicians were

performing an evaluation of the system [59]. There were many disagreements after performing

Turing tests on how to evaluate MYCIN. Onoyama et al. [60] present a validation method and

44

compare it to Turing test. The authors declared that the Turing test is a good candidate for

validating systems, but it is a high demanding method that requires significant time from the

expert. Therefore, the authors presented a method called Bi-directional many-sided explanation

typed multi-step validation method. It distributes the validation effort among the expert,

knowledge engineer and the system. It is worth mentioning here that when experts are exposed to

tests, their knowledge will be under test and all their knowledge will be in the system. Some

experts might think that they will lose their superiority, which might affect their input into the

test. This is considered a drawback for the Turing test. In this method the authors want to

eliminate this factor. This method is a multiple step validation process. The tests that the expert

performs are the ones that neither the computer nor the knowledge engineer can perform.

Figure 8: Bi-directional many sided explanation typed multi-step validation method [60]

The rest is left for the knowledge engineer and the automated computer process. The computer

stores all the tests’ answers. Comments are also added to the system by the knowledge engineer

and the experts. The results of the validation are stored in the database, as a validation case base,

which could be used in subsequent validation exercises. After the validation process, all the

45

results from the expert, KE and system are aggregated and documented. The Bi-directional many

sided explanation typed multi-step validation method is illustrated in Figure 8 [60].

This method has two major drawbacks. The knowledge engineer and the expert perform

validation separately. Additionally, this method requires effort in project management and

communication between experts and knowledge engineers which can also be expensive. Min

[61] introduces a method for validating military systems and introduces a tool based on this

method. As illustrated in Figure 9, the knowledge base is parted into segments and an expected

behavior for every segment is predefined.

Figure 9: Validation of knowledge-based military systems [61]

In this method, a segment of the knowledge base is evaluated using simultaneous confidence

intervals [61] (see Chapter 1). A formal validation method was introduced through a software

tool KJ3 by Wu et al. [62]. KJ3 stands for knowledge judgment version 3. This tool uses the

graphical representation general approach. KJ3 consists of four main modules: the user interface

(facilitates the usage of the tool), the validation module (the main module responsible for

validating the system), the axiom translator module (converts the validation tasks into

46

reachability first order logic) and the proof interpreter (provides messages to the user about the

validation results). In this tool high-level Petri nets are used to represent the knowledge base.

These high level Petri nets are a meta-representation scheme to present the knowledge. To

validate the Petri net means validating the expert’s knowledge. It is required that such

“equivalence is in a one-to-one mapping relationship” [62] between the knowledge and the Petri

net nodes. The selected procedure has to mirror the inference practice of the original knowledge

base. KJ3 could be used to validate any knowledge representation.

A validation method that aims to reduce a large number of test cases was presented by

Gonzalez et al. [63]. In their method, they based test cases selection on heuristic techniques. In

their paper, they introduce and validate the Generator Artificial Intelligence Diagnostics

(GenAID) system [63]. It was developed in the 1980’s at Westinghouse Electric Corp. Because

the cost of systems diagnosis can be high, customers look for a detailed and solid assurance that

the GenAID system is reliable. GenAID was developed as semi-independent modules. The paper

described two types of modules, self-contained modules and overlapping modules. Overlapping

modules are harder to validate, as they cover more than one part of the system. The system is

represented as a graph and different paths are tested. Once that is done, the test cases are

generated using heuristics. One disadvantage of this method is that heuristics are fallible and

they don’t ensure a 100% valid system.

Abel et al. [64] presented a formal method to validate systems using structural

knowledge. The idea of testing every input to the system is impossible to implement in most

cases. Abel et al. [64] use formal approaches to reduce the number of test cases to present

successful validation method. Their method builds a minimized test cases set. They try to

eliminate the generation of a functionally exhaustive set of test cases and build a quasi-

47

exhaustive set of test cases (QUEST) instead. This set of test cases is meant to represent all the

system cases in a reduced number of test cases. In the quasi-exhaustive set of test cases it is

sufficient to assume that if a subset of the test cases (T) is valid then the whole set (S) is valid

too. Test cases sets are defined and for each set a subset of test cases (T) will be executed. A set

of mathematical classifiers is used to categorize the knowledge into sets where an object can

belong to one or more sets. In this method the authors used statistical and formal means to

achieve that. A year later, Abel et al. [65] criticized the quasi-exhaustive set of test cases

discussing that it still might be unacceptably large and that it is impractical because of its large

cardinality. They introduced another method to further reduce the number of test cases for expert

systems. In their method, they proposed a criteria-driven reduction of test cases to generate a

reasonable set of test case (ReST). This method includes four stages as illustrated in Figure 10.

Figure 10: Validation process proposed by Abel et al. [65]

During the test case evaluation stage (refer to Figure 10), all test cases need to be evaluated by

the validation group. These evaluations are analyzed in the fourth step. During the test case

selection stage, a criterion is defined by answering the question: how well should the model

perform for it to be considered valid? Answering this question requires looking at different

criteria: domain related, user related, and expert related. This method ensures the reduction of the

set of test cases, less than the quasi-exhaustive set of test cases. The reduction of test cases is still

48

a challenging problem. It’s not feasible to run all the test cases on the system, especially when

some of these may not be even physically possible in the real-world.

2.1.3 Multi-Purpose Validation Tools

This section describes generic validation methods and tools. One of the recent generic validation

tools was introduced by Rey et al. [66]. They presented a tool called SHIVA (Spanish language

acronym for Heuristic Integrated Validation System). SHIVA uses a black box general validation

approach that contains three main steps: planning, application and implementation. In the first

step, planning extracts the domain, user and system’s characteristics. During the application step,

SHIVA aims to decide on the quantitative method to be used for validation and applies it to the

system. SHIVA selects one of the following quantitative methods for validation: pairs’ method

(two or more experts’ interpretations are compared to the interpretations of the system),

association measurement (models the outcome of the system and the expert then calculates the

degree of linear association between them) and agreement measurement (for a given set of rules

or any other knowledge representation. An agreement index is defined, and the knowledge is

validated in comparison to this index).

The output of this process defines the distance between the index and the knowledge

under test [66]. SHIVA is not incorporated into the development process, which is a drawback.

The knowledge engineer needs to pick a validation method for the system. If the validation tool

was already incorporated, this would save much time and effort and, most importantly, would

increase reliability because of the lack of any compatibility issues. Based on unifying validation

and development, a validation tool called DIVER is incorporated into the spiral development

model [67]. During each validation cycle, DIVER finds potential logical and semantic

inconsistencies defined in the knowledge base. Detected inconsistencies are sorted into levels.

49

This sorting is based on which inconsistency happened before; earlier ones need to be solved

first because inconsistencies at earlier levels may have a negative effect on later ones. When the

development is over with this method, there is no need for validation except for the last

modifications on the system. Complete system testing is recommended here, however.

A generic validation tool called CORUS was introduced by Abdullah et al [68]. It is built

on another system called the resolver. The resolver handles numerous decision criteria. CORUS

was developed following the spiral model. For any iteration, the system returns five expected

answers or less to the user for every test case. Additionally, it proposes one certain expected

solution. CORUS has the following parts: a database, knowledge base, inference engine, a case

acquisition tool, a user interface and an explanation module. The system validates the results

based on assigning ‘profiles’. For each of the returned solutions, the system associates a profile

so that equal solutions have equal profiles. The expert and the knowledge engineer manually

compare the outcome of the system to the recommended outcome from the tool.

A generic tool called KRFOCL was introduced by Murrel et al. [31] based on backward

chaining. This tool automates the tracing of errors back to the rule-base and selects the rule or set

of rules that are responsible for the errors. Traceability is used to link the outside view of the

system to its inside. KRFOCL can detect missing, contradictory and unnecessary rules. This tool

requires a large set of test cases to initiate the process of traceability and the test cases should run

to indicate where the errors are happening. It would be useful to have traceability back to the

requirements, so the real world would be represented in a more complete manner in the system.

Another tool was presented in the literature is called EITHER [69]. This system is a

method as well as a tool. EITHER uses the logic of overgeneralization and overspecialization

discussed earlier. Furthermore, EITHER uses a theory tree, which is a binary tree with AND/OR

50

representations. If the error is as a result of overspecialization, the rules associated with the

problem will be removed after searching for replacements from the tree. EITHER only validates

the knowledge base, it doesn’t validate the entire system, which is a major drawback. Validation

is intended to capture the experts’ knowledge representation problems. Incomplete knowledge

bases don’t represent the knowledge of the expert fully, and incorrect knowledge bases represent

knowledge in a wrong way. Taking that into consideration, Lockwood et al. [70] proposed that

knowledge validation and knowledge elicitation should be performed in parallel. They

introduced a tool called EMBODY (Expert Modeling Based on Decision Modularity) that

performs both elicitation and validation. EMBODY can generate the rules of the knowledge

base. It uses knowledge charts to generate the rules. Knowledge charts acts like a bridge between

the expert and the rules. They are intended to capture the ‘flow of thought’ of the expert and

illustrate it. For validation, EMBODY ensures that no redundancy, incompleteness, or any kind

of error is occurring. EMBODY validates as it goes, and when the last step is reached, only the

last step needs to be validated. This approach saves time and manpower, but it doesn’t perform

total system validation, which is essential for claiming that the system is valid. As claimed,

EMBODY is embedded into the development process, but it doesn’t validate against the real

world, which is the main challenge of validation. EMBODY lacks a link to the user requirements

and the domain. It captures the expert’s knowledge in a valid way, but not the intended

performance of the system.

Looking at all the validation methods in the literature, it should be noted that many

efforts exist towards making validation a more robust process. Nevertheless, it is important to

note here that validation in the conventional software world is more developed and more mature.

Conventional software validation methods cannot be directly used for knowledge-based systems,

51

because of the differences in the nature of the two types of systems. Researchers in this field

focused more on other aspects such as knowledge elicitation and knowledge representation but

didn’t give much attention to validation. Verification can be viewed as part of validation; a valid

system is a verified system while a verified system is not necessarily valid. More work is done

on verification of knowledge-based systems than on validation, for which general approaches

may have been developed, but an overall incremental validation method that can be implemented

across all phases and domains is still lacking.

2.2 Lifecycle Validation of Knowledge-Based Systems

As presented in previous sections, validation should be performed at any and all levels of the

system development stages. There are different methods for validation that could be used for

different purposes. Some of the validation methods were presented to perform validation on the

knowledge base. Other validation methods perform validation on the entire system. Combining

two methods to validate the knowledge base and the entire system can be a tricky practice. None

of the methods proposed perform validation across all development phases. Furthermore, none of

the mainstream methods presented is completely based on a life-cycle model for system

development. Researchers have looked into incorporating validation into a conceptual software

development model [71] but success there has been limited. A number of methods have been

introduced in the literature but none is widely used or agreed upon. After working with different

validation general approaches, O’keefe et al. [72] concluded that “We should build validation

into the development cycle”. A clear-cut paradigm to build software is still emerging.

Knowledge-based systems are still behind in that aspect. This immaturity would lead to software

failures, financial loss and in some cases loss of human life. Researchers have tried to embed

knowledge-based systems development steps into some conventional software models. Lee et al

52

[71] incorporated knowledge-based systems development phases into the spiral model (shown in

Figure 1). This incorporation is shown in Figure 11 [71]. It is important to note that in this

model, the authors suggested using two types of validation approaches, case testing and field

testing with data collection (all discussed previously in this dissertation). This indicates the need

for more than one validation approach for the outcome of validation to be sufficient. This also

indicates that validation is better when performed incrementally (spiral iterations) to avoid late

risks and unfixable problems.

Figure 11: Spiral model for knowledge-based systems [73]

Researchers have looked into applying conventional software validation models into knowledge-

based systems [71] [73]. Vermesan et al. [74] developed a system and a tool that evaluates

software validation methods and checks their applicability to knowledge-based systems. They

introduced a scale categories of classifications, including HA (highly applicable), A (applicable),

LA (Low applicability), and NA (not applicable). What Vermesan et al. [74] presented helps in

determining whether a method is applicable or not based on mutation testing, which is defined as

53

the process of modifying program's source code in a repetitive minor fashion. These so-called

mutations are based on well-defined mutation operators that either imitates user errors (example:

using the wrong operator) or oblige the formation of valuable test cases. The purpose is to help

the tester develop effective tests or locate weaknesses in the test data used for the program or in

sections of the code that are seldom or never accessed during execution. The approaches that

were tested are control flow analysis and cause-effect graphing.

For most of the techniques developed for conventional software, applying these to KBS is

not straight forward. The framework that the authors present accepts a validation method as an

input and produces a method oriented to knowledge-based systems as an output; with some

indication on how similar are they to each other. No significant results were reported from this

system.

Other researchers looked at the problem from different points of view. Instead of deriving

validation methods from other fields and defining a software development life-cycle model, they

developed a validation method that is life-cycle independent. Wells [75] defined such a life-cycle

independent method called VIVA. VIVA consists of two parts: a set of productions that describe

the system, and a set of steps to show how the products can be used to validate the system. The

VIVA method views the system as a group of entities and a group of links between them. The

links have the following properties: link’s existence (reflects whether the link between two

objects exists or not), connection (the entities that the link connects), referencing (whether

entities at each end reference themselves or each other in a correct manner), completeness

(describes if the representation is complete), and correctness (describes if the link is connecting

two right entities).

54

The definition of VIVA is ongoing and will continue by trying to align VIVA to all kinds

of software systems in any domain and adding more method guidelines. As seen in this section,

methods for the validation of the knowledge base were developed such as BKB, VKB, KVAT,

SEEK and SEEK2. Furthermore, methods for system validation were developed, such as Bi-

directional many-sided explanation typed multi-step validation, VESA, CORUS, Decision KB,

CASE VALIDATOR, KJ3, VVR and quasi-exhaustive set validation. Additionally, other multi-

purpose validation tools were developed such as SHIVA, DIVER, EITHER, CORUS and

EMBODY. Some of the defined models were confirmed by the authors to be a success through

experimentation (SHIVA, KVAT, KJ3, SEEK, SEEK2, VESA, CORUS), some others failed to

introduce that proof (BKB, VKB, Decision KB, CASE VALIDATOR, VVR), while others were

not tested or evaluated (EMBODY, DIVER, EITHER). One of the goals of this research is to

show that none of these methods found complete success because none of them is fully

incorporated into a life-cycle model. If validation is built within a life-cycle model, fewer errors

and bugs could be found with less maintenance time. Bohr bugs (named after Bohr atom model)

are bugs that could be easily regenerated. However, Heisen bugs (named after the Heisenberg

uncertainly principle) are the ones that are difficult to regenerate or duplicate. Obviously, Bohr

bugs are easier to trace. Thus, a well defined life-cycle model creates more Bohr bugs than

Heisen bugs, which means less validation and maintenance time [76].

As it is known, developing knowledge-based systems is a multi-phase process. In every

step major changes are made on the system. Furthermore, there are multiple modules that need to

be validated. Selecting a validation method for every module or for every step is a troublesome

process because many reliability and dependability problems might appear. Many researchers in

this field [71] [72] [73] [74] agree that incorporating the validation process into a software

55

development life-cycle is vital. Some of the methods presented here failed because of their

difficulty of implementing in real life because they need much effort from the knowledge

engineer. Knowledge engineers would rather use a simpler validation method. Although many

methods and approaches are presented to validate a knowledge-based system, measuring the

validity of a system is still a challenging process. It is still difficult to know when to stop

performing validation and when will the knowledge engineer know if the system is valid. Using

a well defined life-cycle model for validation that is incorporated into the development process

definitely helps reduce the ambiguity of when and where to stop, especially by performing

validation in parallel with development in an incremental manner. Some researchers [68] [73]

use the spiral model as the lifecycle model, but the spiral model is not a dedicated knowledge-

based systems development model. Lifecycle models dedicated to knowledge-based systems are

introduced in Chapter 4.

2.3 Summary

The state of the art in validation of knowledge-based is introduced in this chapter. Methods are

presented in three categories: knowledge validation methods, system validation methods and

multi-purpose validation methods. This chapter asserts that no formal validation method is fully

built within a life-cycle development model. The next chapter states the problem definition and

contributions.

56

CHAPTER 3: PROBLEM DEFINITION AND CONTRIBUTION

This chapter presents a concise statement of the problem that is the motivation behind this

research. The first section introduces the problem definition. The first part states the problem of

software validation in the field in general and the second part states the specific problem of

performing validation as part of a life-cycle model. The second and the third sections

respectively present the hypothesis and the contributions of this research to the knowledge

engineering, software engineering and validation research communities. The final section

introduces the test plan (evaluation criteria) for the proposed validation method.

3.1 General Problem

The general problem addressed in this dissertation is the improvement of validation of

knowledge-based systems. For many years, researchers have been concerned with means of

developing quality and reliable software. The best way to ensure a good system design and

minimize the probability of failure is to rigorously perform validation and verification. It has

been well established now that designing, implementing and validating knowledge-based

systems are challenging processes. Different ways of approaching this problem have been

established, both formal and informal.

Validation is a complex process, an important phase of software development and an

essential part of the development life-cycle. Performing validation at the end of software

development is unquestionably expensive, that’s why it has to be planned for and guided within a

well defined process.

57

3.2 Specific Problem

The specific problem addressed in this dissertation is how to make use of results of prior test

cases in a progressive validation procedure to facilitate defining the minimal set of test cases that

provides complete and effective system coverage of knowledge-based systems. In this

dissertation, the case testing approach is used. Therefore, correctly executing all possible test

cases for any system will surely result in a valid system. However, it is a highly impractical

process. Therefore, creating a minimal set of test cases that provides coverage of the knowledge-

based system is important. Minimizing the set of test cases could be done either randomly or

based on a guided process. Generating random test cases is undesirable because it doesn’t

guarantee full coverage of the system. On the other hand, a guided process aids in ensuring that

the right test cases are selected. When validation is performed, the system undergoes changes

and refinements. Thus, in this research, test case reduction and selection are based on the

feedback from the previous validation stages. Furthermore, a validation method for knowledge-

based systems that is seamlessly integrated in an incremental lifecycle model facilitates

extracting the test cases. This idea has never been done before and its absence creates a gap in

the field. Thus, instead of introducing a new and untested lifecycle method with a validation step

in it, this research seeks to incorporate validation into one of the most common knowledge-based

systems development models.

3.3 Contributions

The research presented in this dissertation makes the following contributions to the software

engineering, validation and knowledge engineering research communities:

58

1. Introduced a comprehensive and semi-automated validation method for knowledge-based

systems.

2. Conceived a procedure that determines a minimal set of test cases that would cover the

knowledge-based system. Test cases are reduced based on feedback from the previous

validation stage.

3. Defined a relationship between lifecycle models and validation of knowledge-based

systems.

4. Integrated an incremental validation method within CommonKADS. This would enhance

the CommonKADS set of models by making it perform validation for knowledge-based

systems throughout development. This is the first validation method integrated within

CommonKADS.

5. Provided a knowledge-based system (the housing KBS) that could be used for

experimentation.

6. Developed a user-friendly software validation tool that represents the validation method.

7. Performed rigorous evaluation of the proposed method and provision of test results.

3.4 Hypothesis

Creation of a minimal set of test cases based on previous validation results embedded within an

incremental lifecycle model (CommonKADS) provides more effective and efficient means for

validation of knowledge-based systems than current methods.

59

3.5 Evaluation Method

To ensure that our method is robust, it’s necessary to establish a criterion against which the

method is tested. First, a non-trivial knowledge-based system using CommonKADS was

developed. The CommonKADS knowledge elicitation process was used and the knowledge was

presented in all the suitable CommonKADS models. The validation method was then performed

on this system. Test cases were extracted for the system and validation was performed

incrementally. Test case reduction was carried out and evaluated. Time and manpower were

recorded for this process.

Additionally, errors were intentionally seeded into the systems. The goal was to

determine whether the set of test cases uncovers these seeded errors. Errors were seeded by two

different users; the developer/author and multiple humans test subjects to avoid any kind of bias.

Validity and results of the system after each stage were recorded and evaluated. Furthermore, the

validation method presented was qualitatively compared against other validation methods in

terms of resources consumption. This process evaluation process aims to suggest an effective and

efficient method, as it is presented in the hypothesis. The error finding process evaluates

effectiveness and comparing the method to other validation methods evaluates its efficiency.

60

CHAPTER 4: LIFECYCLE DEVELOPMENT MODELS FOR
KNOWLEDGE-BASED SYSTEMS

This chapter is dedicated to introducing the lifecycle development models for knowledge-based

systems with a special focus on the CommonKADS set of models. This chapter discusses the

reasons why CommonKADS was selected as the lifecycle model for the validation method of

this dissertation. Additionally, this chapter introduces the CommonKADS models in detail with

all the worksheets, UML diagrams and other models’ components. In order to understand the

validation method within CommonKADS, one needs to understand CommonKADS with all its

models, outcomes and processes.

4.1 Life Cycle Models for Knowledge-Based Systems

As it’s mentioned previously, building knowledge-based systems is not a trivial task. As for

conventional software systems, there are many life-cycle models to follow for knowledge-based

systems development. Given the objective of this research to compose a validation method that is

integrated within a KBS development model, such models are discussed next. DESIRE,

KBSDLC, Generic Tasks, KADS and CommonKADS are common examples.

4.1.1 DESIRE

DESIRE (framework for Design and Specification of Interacting Reasoning components) is a

group of explicit models used to represent the knowledge, interaction, and coordination of

complex tasks and reasoning capabilities in agent systems [77]. DESIRE was originally

introduced as a model for specifying complex knowledge-based systems. It views the system as a

series of interacting pieces (objects). DESIRE is good for building multi-agent systems or any

61

other type of system composed of multiple objects because it decomposes the tasks and/or the

objects within the system. The main steps in DESIRE are: 1) task decomposition (this step

classifies the different tasks that the targeted system should be performing), 2) information

exchange (defines data exchange between tasks), 3) sequencing of subtasks (orders the subtasks

for each task), 4) subtask delegation (allocates all the subtasks in the KBS), and 5) knowledge

structures (defines the knowledge structure for the KBS).

4.1.2 KBSDLC

KBSDLC (Knowledge-Based Systems Development Life Cycle) is a prototyping model for

knowledge-based systems [78]. KBSDLC is a sequential development model. It is one of the

traditional knowledge-based systems development models that have been around for a long time.

It is a helpful model but it over simplifies the development process.

4.1.3 Generic Tasks

Generic Tasks is another model for building expert systems [79]. Generic Tasks are high level

building blocks for system development. Generic Tasks is similar to the object-oriented

paradigm: it defines the system, the organization and the users interacting with the system as

objects. Generic Tasks transforms everything to blocks/objects. These objects are assembled

together to form the system. Generic Tasks support reusability, as the objects could be used in

any other system. However, it is not highly dedicated for knowledge-based systems.

4.1.4 KADS

KADS (Knowledge Acquisition and Design Support) represents knowledge in three layers: 1)

task, 2) inference and 3) domain layers, as shown in Figure 12. KADS was developed as a result

of six years of work, and it was produced in the early months of 1990. Its power is in its usage of

62

models, where every stage is described in a model. KADS has four main models: domain

(domain information), inference (description of all inferences), task (goals and tasks), strategic

(control knowledge, Meta rules).

Figure 12: KADS models [83]

KADS presents elementary models, called interpretation models that describe the problem

solving operations collected from the expert (examples: identify, predict, repair, remedy and

transformation). The models are represented in a hierarchal way called the inference structures,

to describe them in terms of knowledge sources. In KADS, goals, tasks and high level control

structures are represented in the task structures.

Modality in KADS is the relation between the system and the user regarding the tasks

between them. The interpretation models are a set of reusable items. They help in the case of

knowledge absence. Those models help the developer in transforming the knowledge taken from

the expert. The interpretation models are a set of predefined entities that could be applied and

used in many domains. KADS has an inference library of useful predefined inferences that has

63

become enriched through the years. This library helped many developers follow KADS in a time

saving manner.

4.1.5 CommonKADS

CommonKADS is a newer version of KADS that is far more detailed. It is based on KADS and

it represents the organization, the users, their communication and many other necessary aspects.

CommonKADS concentrates on the conceptual structure of the knowledge and the system.

The six CommonKADS models are categorized in three groups [9]:

1. Context Models:

a. Organization model: Supports the description and the analysis of the organization.

b. Task model: Describes the tasks that might be performed by the system within the

organization.

c. Agent model: Supports the capabilities, constraints and roles of the agents

performing the tasks.

2. Concept Models:

a. Knowledge/Expertise model: Supports the description of the knowledge invoked

in the tasks.

b. Communication model: Describes the relation between the agents, their

interaction and their communication.

3. Artifact Models:

a. Design Model: Supports the design and the structure of the system.

The CommonKADS set of models is illustrated in Figure 13.

64

According to Schreiber et al. [9], CommonKADS models can be defined/ worked on in

the order presented in Figure 13. However, they could be defined sequentially or even in parallel.

Figure 13: CommonKADS set of models

For instance, the communication model and the knowledge model could be defined in parallel

because they do not rely on each other. On the contrary, the design model cannot be defined

before all the other models are finished. In any case, the general products of CommonKADS are:

1. CommonKADS models documentation that represents the important aspects of the

environment and the delivered knowledge-based system.

2. Additional documentation: information not represented in the filled model templates (e.g.

project management information and UML diagrams)

65

3. The Software: knowledge system software [9].

When building a system using CommonKADS, not all the models need to be constructed; it

depends on the project and its goals. In every model, a number of steps need to be executed. All

the CommonKADS models are introduced in the next section.

CommonKADS is chosen as the KBS lifecycle model into which the validation method

of this dissertation is integrated. CommonKADS is used as the lifecycle model for the validation

method of this dissertation. Next, light is shed on why CommonKADS was chosen for the

validation method presented in this dissertation.

4.2 Selecting CommonKADS for Validation

In this section CommonKADS is compared against the all the other lifecycle models. DESIRE is

discussed first. DESIRE was originally introduced as a model for specifying complex

knowledge-based systems. It views the system as a series of interacting pieces (objects). This

contrasts with general purpose specification languages such as Z [77]. CommonKADS has the

ability to interact with general purpose languages such as KARL (Knowledge Acquisition and

Representation language) [81] and CML (CommonKADS Modeling Language) [82]. DESIRE

pays little attention to knowledge representation and domain requirements, while

CommonKADS has a model for each. It is considered essential that domain requirements be

represented in the system. As stated previously, validation compares the system to the real world,

and domain requirements are the closest thing to the real world because they represent the

organization in which the system is being developed. Therefore, validation of knowledge based

systems cannot be easily built into DESIRE.

66

Validation is already included in KBSDLC. However, KBSDLC has not shown any

significant success in validating knowledge-based systems. It has not been solely used for

validation. Other validation approaches needs to be used with it. Hence, building another

validation stage into KBSDLC would both be confusing and inconsistent with the KBSDLC

multi-step model. KBSDLC is effective for small knowledge-based systems and prototypes only,

but not for large systems [78]. CommonKADS is useful for both large and small systems [15].

As Weitzel et al. [63] stated, validation in KBSDLC requires using a large number of test cases

which is not efficient. Large number of test cases is a resource and time consuming problem.

KBSDLC validation isn’t effective or sufficient and it is not performed incrementally.

Generic Tasks doesn’t deal with knowledge elicitation or representation. Furthermore, it doesn’t

offer any support for organizational issues. It doesn’t represent the tasks of the system while

CommonKADS does all of these.

Because of its building block structure, Generic Tasks implies the use of subsystem

validation, which limits the knowledge engineer’s choice of a validation method. Integration

testing is a must when using Generic Tasks. Knowledge bases require a clear presentation and a

high level of modularity. Generic Tasks doesn’t deal with knowledge representation and

knowledge representation is important when performing validation. Because of its structure,

Generic Tasks cannot perform incremental validation. Generic Tasks is not flexible for a

validation method to be built within it.

Furthermore, to demonstrate CommonKADS soundness, many specialized development

models have been introduced based on it. MIKE, MAS-CommonKADS and PROFORMA

models fall under the family of CommonKADS. They are based on the CommonKADS

concepts.

67

MIKE (Model-based and Incremental Knowledge Engineering) is a general model that

can be used for any domain [84]. MIKE was introduced during the mid 1990s. As stated in [84],

“MIKE proposes the integration of semiformal and formal specification techniques, prototyping,

and life-cycle models into an engineering framework”. It defines a smooth transition between the

semi-formal implementation of the knowledge towards a formal implementation and later

towards development. MIKE uses KARL as its formal descriptive language and a tool was built

for MIKE that uses KARL. MIKE doesn’t have validation or verification process embedded in it.

PROFORMA was developed as a model for building clinical expert systems [85]. It is

dedicated only for a special kind of medical systems, so building a validation method to it is not

as helpful as building a generic validation method into CommonKADS. Vollebregt et al. [85]

state that PROFORMA is new and untested while CommonKADS is widely accepted and more

general. Incorporating a generic validation method into PROFORMA is therefore not practical

because of its specialization. MAS-CommonKADS (Multi-Agent Systems-CommonKADS) also

uses the CommonKADS models as part of its development cycle [86]. It is dedicated for AI

systems that include multiple agents.

CommonKADS had been used in many domains, such as industry, medical systems,

management systems, academia and many other disciplines. It was criticized for the heavy

overhead it places on small projects. Therefore, a model called PragmaticKADS was introduced.

It can be used for small knowledge-based systems. PragmaticKADS extracts the most important

steps from CommonKADS and disregards all the steps that are oriented towards large systems.

Tools have been developed to help in implementing CommonKADS. Examples: Model-

K and OMOS [87]. The development of these and other tools reflects the general acceptance of

CommonKADS. Conceptual model languages had been introduced to support CommonKADS

68

representation formally such as ML2, VITAL and FORKADS. VITAL is a workbench to support

development of knowledge-based systems using KADS and CommonKADS. VITAL is a toolset

that aims to commercialize the use of CommonKADS.

CommonKADS is a flexible model that successfully fits into many approaches. It has

been used for large and small systems [83]. CommonKADS is a knowledge representation

dependent model. CommonKADS was not created independently from other software models.

Rather, other software models influenced the definition of CommonKADS.

According to Schreiber et al. [9] CommonKADS was influenced by structured design, object-

oriented models and quality management. CommonKADS has powerful organizational sub-

models that can represent many domains. CommonKADS offers a de facto standard for building

systems and ensures a modular approach.

CommonKADS is the most comprehensive (as well as the most commonly used) model

for knowledge-based systems development. Nevertheless, CommonKADS doesn’t employ a

complete validation representation and it doesn’t guide the developer on how to perform

validation. CommonKADS, however, does have all the means and the flexibility to have

incremental validation method based on case testing incorporated within it. None of the other

development approaches has the advantages of CommonKADS. CommonKADS is the most

used knowledge-based systems lifecycle model and is the most accepted [9] [29] [82] [83] [86]

[87]. CommonKADS supports reusability and offers guidelines for the developer to achieve high

quality systems [9]. Considering all the mentioned advantages of CommonKADS, it was selected

as the knowledge-based system development model for the validation method presented in this

dissertation. The rest of this chapter is dedicated to describing CommonKADS.

69

4.3 The CommonKADS Models

CommonKADS (Common Knowledge Acquisition and Design Support) is a structured

development lifecycle and design approach for knowledge-based systems. CommonKADS was

initially developed by the project ESPRIT (European Union Information Technologies Program)

as KADS. This program ran from 1983 until 1998. CommonKADS originated at the University

of Amsterdam. Although this model was developed in Europe, it is gaining popularity

throughout the world. CommonKADS was also combined with other methods used in the current

‘state of the art’ knowledge systems research topics, such as object-oriented methods (OO) and

ontological representations of knowledge. CommonKADS supports knowledge modeling and the

design of the knowledge-based system (KBS) by constructing models that form the system. The

models presented in CommonKADS provide the KBS engineer with a set of templates with

which to work and follow as the blue print of the project. CommonKADS provides a way of

representing knowledge, means for knowledge analysis and knowledge storage. It describes the

knowledge based on the organization environment in its organization model. However, none of

the models of CommonKADS discusses or supports validation. It is important to note here that

when we apply CommonKADS to a knowledge-based system development, new inconsistency

errors might be discovered because of the interaction among its models. The CommonKADS

models are introduced next. The six CommonKADS models are introduced in detail in this

section. First, the context models are presented.

4.3.1 The Context Models

Knowledge-based systems not only automate the processes of an organization, but they also

improve them. CommonKADS aims to do that at the organizational level. The context modeling

70

in CommonKADS consists of two main studies, a feasibility study and the impact and

improvement study.

For the feasibility study there are two main steps: analysis of economical and

organizational perspective, and synthesis (selecting the focus areas and targeted solutions). For

the impact and improvement study there are two main steps: analysis of the relations between the

tasks, agents and the organization and synthesis (ensuring organizational integration of the

system and ensuring user acceptance). All the context modeling in CommonKADS is performed

through worksheets. Nine worksheets are needed, five for the organizational model, two for the

task model, one for the agent model and one for summary.

4.3.1.1 The Organizational model

The organizational model is the first model in CommonKADS and in most cases, using

CommonKADS starts by building this model. The issues that need to be represented in the

organizational model are:

1. The structure of the organization

2. Processes

3. The people

4. Power and culture

5. Organization’s resources

The first four worksheets needed for the organizational model are presented in Figure 14.

Worksheets for the organizational model are indicated to as OM-1, OM-2, OM-3, OM-4 and

OM-5 [9]. The worksheets of the organizational model are tables with a list of items that needs to

be addressed. As figure 14 shows, OM-1 identifies knowledge-oriented problems and

opportunities. OM-1 is shown in table 2 [9]. The second worksheet in the organizational model

71

describes the problems introduced in OM-1. In most cases, more than one OM-2 sheet would be

introduced for one system because every sheet describes a certain problem or aspect of the

problem. OM-2 is more specific than OM-1. OM-2 components are shown in table 3. [9]

Figure 14: The organizational model worksheets [9]

Table 2: Worksheet OM-1

Problems and
opportunities

This list is generated based on interviews, brainstorms and
discussions.

Organizational context Indicate important organization aspects into the following
categories:

1. Mission, vision and goals
2. Important external factors
3. Strategy of the organization
4. Organizations value chain and major drivers

Solutions Possible solutions for problems, as suggested by the interviews
and the discussions.

72

Table 3: Worksheet OM-2

Structure Structure chart of the organization’s part that is included in the problem
represented by the sheet.

Process Unified modeling language (UML) activity diagram of the processes related to the
problem. The process is composed of tasks which are discussed in OM-3.

People List all the people included.
Resources Resources used for this problem, including:

1. Information systems
2. Equipment and materials
3. Technologies, patents and rights

Knowledge Due to the importance of this part, it’s left out to its own worksheet OM-4.
Culture
and power

List any informal issues and unwritten rules. This part is an essential one, because
people in many cases don’t pay attention to it.

Table 4: Worksheet OM-3

No. Task Performed
by

Where? Knowledge
Asset

Intensive? Significance

Task
identifier

Task name The agent
performing
the process,
either a
human or a
computer
system.

Location in
the
organization

Knowledge
resources
used by this
task

A Boolean
value
indicating
whether
this value
is
knowledge
intensive.

Indication of
the
significance
of the task,
with a scale
from 1-5.

Table 5: Worksheet OM-4

Knowledge
Asset

Possessed
by

Used in? Right
form?

Right
place?

Right
time?

Right
quality?

Name of
asset

Agent Task (from
OM-3)

Yes or No Yes or No Yes or No Yes or No

OM-3 describes the breakdown of the business process. Each business process is broken down

into more detail. OM-3 is the foundation for the task model. It consists of tasks and their

information such as the location in the organization and the significance. OM-3 is shown in table

4. In OM-2 the knowledge section is discussed briefly. One column is not sufficient to discuss

the knowledge needed.

73

Table 6: Worksheet OM-5

Business feasibility The following points needs to be addressed to achieve this feasibility:
Expected benefits for the organization.
How long is the expected added value?
What are the costs?
Is the solution better than the alternatives?
What are the required changes to the organization?
What are the risks and the uncertainties?

Technical
feasibility

The following questions needs to be answered to achieve this feasibility:
How complex is the solution?
What is the state of the art for the problem?
What are the critical aspects?
What are the measures for success?
How to test for validity and quality? (Important point in the scope of this
document!)
How is the required interaction with the users and other systems?

Project feasibility The following questions needs to be answered to achieve this feasibility:
Is there any needed commitment from the users/stakeholders?
What are the needed resources, knowledge, competences or changes to the
organization?

Proposed actions This part transforms the previous sections into actions, but needs to define
the following points:
Focus: what is the recommended focus to identify the solution?
Target solution
Results, costs and benefits
Project actions: required actions.
Risks: risks of this solution to the organization.

Therefore, OM-4 is dedicated to describing the knowledge assets in the organization. It is meant

to be a first-cut analysis for the knowledge assets; more detail is included in the knowledge

model (a different CommonKADS model). All the organization models and their relations are

illustrated in Figure 14. After performing this analysis, all the information needed for the

organizational model is ready. The last worksheet in the organizational model is OM-5 (shown in

Table 6) [9]. The feasibility decision-making is in OM-5. It presents the feasibility from three

perspectives, business, technical and project feasibility. The main topics which that OM-5

focuses are to help management in taking decisions. After the decision-making process and after

74

the new actions are proposed, zooming in on the tasks is the natural next step. The second model

is the task model.

4.3.1.2 The Task model

Five worksheets are necessary to represent the organization in CommonKADS. More

importantly however, is to present the tasks within the organization.

Table 7: Worksheet TM-1

Task Task name and identifier
Organization Indicates to the organization where the process is performed at
Goal and Value The goal of the task and the value it adds to the system
Dependency and
Flow

Represents what tasks are input to this task and any tasks that are
outputted from this task.
An activity diagram could is used here to represent the input tasks and the
output tasks.

Objects Handled Input objects (knowledge and information): objects inputted to this task.
Output objects: objects outputted from this task.
Internal objects: important objects used for this task that are not inputted
or outputted.
A class diagram is used here to illustrate the objects.

Timing and
Control

Frequency and duration of the task.
Describe the preconditions and the post conditions of this task. An activity
or class diagram is illustrated here.

Agents The staff members (or systems in some cases) who are responsible of
performing this task.

Knowledge and
Competence

TM-2 is responsible for the knowledge needed for a task. Here the needed
skills and competences are listed.

Resources Describe resources used in this task, such as time, equipment and money.
This is a refinement of OM-2.

Quality and
Performance

Defines the quality measures that the organization uses to conclude that
the task was successful.

Tasks consume resources; they require knowledge and they are carried out by agents working at

the organization. To represent the tasks two worksheets are needed per task, TM1 and TM2.

Table 7 illustrates TM1 and Table 8 illustrates TM2.

75

For each task, a number of values need to be defined, such as: the goal of the task, the

timing of the task, the knowledge required and the agent that performs the task. TM1 could be

looked at as a refinement of the data in OM3 within the target process. TM2 represents the

specification of the knowledge engaged for a task and acts as a refinement for OM-4.

Table 8: Worksheet TM-2

Nature of Knowledge True/False Bottlenecks
Formal, rigorous
Empirical, quantitative
Heuristic, rule of thumb
Highly specialized, domain
specific

Experience based
Action based
Incomplete
Uncertain, maybe incorrect
Quickly changing
Hard to verify
Tacit, hard to transfer
Form of Knowledge
Mind
Paper
Electronic
Action skills
Other
Availability of knowledge
Limited in time?
Limited in space?
Limited in access?
Limited in quality?
Limited in form?

TM2 is a ‘true or false’ worksheet. The knowledge engineer illustrates his/her understanding of

the tasks in this worksheet. Values about the knowledge are defined, such as: uncertainty, forms

of knowledge, access to knowledge, knowledge’s quality and availability. All the empty fields in

TM-2 are filled by the knowledge engineer [9].

76

4.3.1.3 The Agent model

The Agent Model is presented in one worksheet AM-1. The main goal of the agent model is to

understand the roles of all the agents involved with the system. The agent model provides an

input to the communication model that presents the means of communication between the agents.

Additionally, the agent model is represented in use-case diagrams [9]. Every agent needs a

worksheet, AM-1. In this worksheet, the agent’s tasks, knowledge, responsibilities and

constraints are defined.

Table 9: Worksheet AM-1

Name Name of the agent
Organization Agents position in the organization
Involved In List of tasks (reflects sheet TM-1)
Communicates with List of agent names
Knowledge Knowledge Items possessed by the agent (reflects TM-2)
Other competences List of other competences of the agent
Responsibilities and
constraints

Responsibilities within a certain task and constraints.
Constraints might be authority, legal or professional issues.

The knowledge engineer should have a clear understanding of the organization, the tasks

performed and who is performing each task after filling all the mentioned worksheets.

Additionally, after defining the Context models, a summary worksheet is used for

managerial decision-making but is not part of the system development. This worksheet is called

OTA-1 (Organization, Task and Agent Models-1) and is a checklist of items and actions that the

managers look at, such as proposed actions, impacts on the organization and commitments.

OTA-1 summarizes all the context worksheets. The context analysis is considered ready after

this stage. Steps towards extracting test cases from the context models worksheets for the

validation method are discussed in Chapter 5.

77

4.3.2 The Concept Models

Analyzing the organization, task and agent models is a knowledge engineering task. However,

those three models are related to the managerial aspects of the organization and the system under

development. The concept models deal with knowledge in a more detailed manner. Its

representation, communication, features and usage are described in the two models discussed

next.

4.3.2.1 The Knowledge model

Knowledge representation is a complicated task. This is partly because in many domains, the

knowledge is not explicit, but it’s tacit. Knowledge is more than just what you formally know.

Knowledge from experts is what they do, what their experience dictates and what their actions

are. That’s why knowledge cannot be simply represented in worksheets as in the first three

models discussed. Knowledge in CommonKADS has a life cycle that consists of three main

steps: conceptualize, reflect and act.

First, knowledge is identified by the knowledge engineer, it is analyzed and its

weaknesses and strengths are identified. Second, changes and improvements on the knowledge

are planned. Finally, the changes are implemented on the knowledge, and the planning is

reflected to improve knowledge. These steps are performed iteratively until the knowledge

engineer and the expert are satisfied by the knowledge. Knowledge management agents,

processes and assets are defined in CommonKADS based on the context models. OM-2 and AM-

1 are used for the agents; OM-2, OM-3 and TM-1 are used for the processes and OM-4 and TM-

2 for the knowledge assets. Knowledge in CommonKADS is presented by three categories: task,

inference and domain knowledge.

78

Domain knowledge is represented using two kinds of diagrams: the UML class diagram

that represents knowledge pieces. Classes in CommonKADS are called concepts because they

don’t include operations. The second diagram is a high level representation of all the classes and

how they are linked together, their relations and types. Concepts in class diagrams can be linked

by inheritance, association, composition or aggregation [9].

Task inference knowledge is the reasoning knowledge in CommonKADS. It uses the

static domain knowledge used to reach conclusions in the system. Inference knowledge consists

of two main types, inferences and transfer functions. Transfer functions interact with the external

world, such as external agents, users and other systems. Inferences are mainly internal well-

defined objects that can be re-used. CommonKADS has a set of predefined inferences that could

be useful in many systems. Any inference developed or defined based on the CommonKADS

standards, can be used in any other system. This is an example of CommonKADS knowledge

reusability features. Inferences in CommonKADS are presented in a structure similar to Data

Flow Diagrams (DFD). A DFD is an illustration of information flow within a process. They

include functions, flow between functions and input/output data. The Task knowledge is the set

of tasks that needs to be performed to achieve a certain goal in the system. Every task is broken

into inferences, transfer methods and task methods. Transfer methods and inferences are

extracted from the inference knowledge. Knowledge model construction steps are defined in

CommonKADS and their documentation is in the form of worksheets. The knowledge model

worksheet KM-1 is presented in Table 10. General knowledge templates (including domain, task

and inference knowledge representations) are predefined in CommonKADS. Defined templates

represent activities that can be performed in a wide range of knowledge-based systems, such as

planning, diagnosis, monitoring and assessment [9].

79

Table 10: Worksheet KM-1

Document Entry Description
Knowledge model Full knowledge model specification in text and figures.
Information source used List of resources used.
Glossary List of application-domain terms with their definitions.
Components considered Components used in identification stage.
Scenarios A list of scenarios used for solving application problems.
Validation results Description of the results of the validation study. Note:

CommonKADS doesn’t have a defined process for validation and
verification of the system but paper-based manual validation and
looking at the worksheets could be performed.

Elicitation material Material gathered during elicitation activities.

Task methods are functions defined in the task model; they are broken into sub methods and

presented in activity diagrams.

4.3.2.2 The Communication model

The communication model represents the relation between the agents, their shared tasks and the

interaction with knowledge. Communication model consists of three main parts: plan, transaction

and information exchange specification. These parts are illustrated in UML diagrams. The

communication model main parts and its interaction with the other CommonKADS models are

illustrated in Figure 15.

The communication plan governs all the relations between the agents. It is constructed

based on dialogue diagrams and is illustrated using state diagrams. Dialogue diagrams present

the detailed transactions and tasks for two communicating agents. The information exchange

specification is performed using pseudo code. Constructs such as: SEND, RECEIVE, PROCESS,

REPEAT, & and IF-Then are the main keywords used in the communication model.

Communication between agents in CommonKADS is presented in two worksheets, CM-1 and

CM-2. CM-1 is Table 11 and CM-2 is Table 12 [9].

80

Table 11: Worksheet CM-1

Transaction identifier name Indicates to the name of the transaction
Information object Indicates the core information object
Agents involved Agents sending and receiving information
Communication plan Indicate to the communication plan
Constraints Any preconditions for the transaction to be carried out
Information exchange
specification

Any further notes about the transaction.
This is detailed in CM-2

Figure 15: The communication model role [9]

81

Table 12: Worksheet CM-2

Transaction Transaction identifier
Agents involved Sender and receiver
Information items All information items that are transmitted in this transaction
Message specification All the information related to the messages exchanged, content and

references
Control over messages Control specification over the message, if necessary. This is done

using the pseudo code notation.

The communication model acts as a link between all the previously defined models. It is the last

model before defining the design of the system in the design model. CM defines the relation

between the agents within the organization, defines how the tasks are communicated between the

agents, and what knowledge is needed for each task.

4.3.3 The Artifact Models

This category of models consists of only one model, the design model. The design model is

responsible for turning the analysis done previously into a software system. The functional

requirements are presented in the communication and knowledge models, while the non-

functional and domain requirements are presented in the organization, task and agent models.

4.3.3.1 The Design model

The design model constructs a structure for the software system. The first five models are

concerned with the experts, protocols, reasoning strategies, problems and opportunities. The

design model is concerned with different aspects, such as the algorithm design, hardware

platform, implementation languages and software architecture. The design lifecycle consists of

four main steps each of which is presented in a worksheet.

1. Design the system’s architecture: specify the general design of the system.

82

2. Identify the target implementation platform: choosing the software and hardware

platforms to be used for building the system. In most cases this is defined by the

customer, but if it wasn’t then this step is essential and will affect steps three and four

immensely.

3. Specify the architectural components: in this step, a detailed design is presented,

subsystems are defined and the interfaces are specified.

4. Specify the application within the architecture: in this step, all the ingredients from the

analysis models are taken and transferred into the architecture. The four steps of design

are illustrated in Figure 16.

Every step is presented in a worksheet. DM-1, DM-2, DM-3 and DM-4 are presented in Tables

13, 14, 15 and 16 respectively. DM-1 is the main design model.

Figure 16: The design model [9]

83

In DM-1, the KBS is designed with the sub-systems. A diagram is drawn to illustrate all the

subsystems. UML Diagrams in CommonKADS are discussed in a following section.

Table 13: Worksheet DM-1

Architecture decision Format
Sub-system structure Draw a diagram with all the subsystems
Control model Characterization of the overall system controls
Sub-system decomposition Refer to diagrams in which every subsystem is decomposed.

Table 14: Worksheet DM-2

Software package Name of the software package
Potential hardware Hardware platforms to run on
Visualization library Libraries available for implementation
Language typing Strong or weak typing, full object oriented?
Knowledge representation Declarative or procedural
Interaction protocol Protocols to interact with the outside world
Control flow Message passing protocols
CommonKADS support Does the software provide support tools for CommonKADS

Table 15: Worksheet DM-3

Architecture component Typical decision points
Controller Mechanism for internal/ external events handling
Task Can a task fail?
Task method Language for control structures, declarative or procedural
Inference Define internal state variable
Inference method Many-to-many mapping from inference to inference method
Dynamic role Data types for roles
Static role Define access operations
Knowledge base Define the rule-instance representation
Views Define interfaces. Standard graphical direct-manipulation interface?

Special facilities required?

Table 16: Worksheet DM-4

Element Design decision
Controller Translate communication plan control into event handlers
Tasks methods Formalize control structure
Dynamic roles Choose data type for each role
Inferences Specification of the invocation of the inference methods
Inference methods Select inference methods
Knowledge bases Translate knowledge base instances to representations formats
View objects Select appropriate views for the application-model

84

DM-2 is a software/hardware decision-making worksheet. The decisions regarding which

software platform to employ, what hardware to build upon and what programming language to

use are defined in DM-2. The last two sheets in the knowledge model are used as a transition

between the CommonKADS models to the targeted implementation. These models define the

core of the system, including the methods, the knowledge base and inferences. Tables 13-16

introduce the design worksheets with all their elements. An example of a complete system with

all its CommonKADS models is presented in Chapter 6.

4.3.4 UML Diagrams in CommonKADS

This section introduces the UML models in CommonKADS. The UML diagrams used in

CommonKADS are:

Activity Diagrams are used to illustrate the information flow and model control. Activity

diagrams are used in the organization model and could be used to represent control flow within a

task. The diagram consists of states that represent the different stages of an activity. Activity

diagrams are used in worksheets OM3 and TM1.

State Diagrams are used to illustrate dynamic behavior. Every state consists of a name,

variables and actions. The states are linked by events and messages. In CommonKADS, state

diagrams are used in the communication model and for business processes representation. State

diagrams are used in worksheet CM1.

Class Diagrams capture static information structure, where a class is a well-defined entity in the

system. Classes can inherit each other too. In CommonKADS, class diagrams can be used for

task modeling. Each class has a number of attributes and procedures. Class diagrams are used in

worksheets KM, DM1 and TM1.

85

Use-Case Diagrams illustrate the services that need to be in the system. They also illustrate the

agents and their uses of the system. Every use-case diagram includes a set of actors and their use

cases. In CommonKADS, use-case diagrams are used in the design model and to show solutions

to the customer. Use-case diagrams are used in worksheet AM1. Chapter 6 will show a full

example for a system defined using CommonKADS with all the UML diagrams.

4.3.5 System’s Specification and Implementation

After performing all the steps of CommonKADS, the system’s implementation should be

performed with no major obstacles, because everything is well defined, documented and

illustrated, and all the critical decisions have been made [9]. The last task for the knowledge

engineer is to ‘translate’ the models into a programming language (This process is discussed in

Chapter 6, where a complete KBS is built through CommonKADS).

All the decisions regarding the types of the system’s components, the structure of the

knowledge base and the design of the system are already defined in the six models. Moreover,

CommonKADS controls project management decisions. This is done through two separate

worksheets. PM-1 and PM-2 (PM stands for project management) are referred to as the seventh

model but they are not related to system development. Project management activities through

CommonKADS are defined by four actions: review, risk, plan and monitor. These actions are

always performed after every major step of CommonKADS. The four predefined actions

represent the activities carried out by managers of the project. PM-1 includes the risk

identification and assessment, PM-2 includes the objectives of every model in CommonKADS

for the system.

86

4.4 Summary

This chapter introduced the lifecycle development models for knowledge-based systems. It

discussed a number of models and compared them to CommonKADS. CommonKADS is the

most appropriate lifecycle model for validation. Therefore, it was introduced in this chapter in

great detail. The context models (the organizational, task and agent models) analyze the

organization and define the success factors for the system. They describe the tasks that need to

be done and the main agents that interact with the system. The concept models (knowledge and

communication models) are used to describe the problem solving functions and knowledge

within the system [9]. Furthermore, the artifact models (design model) convert the other

representations to the technical specification that are the basis for the system. All the

CommonKADS models are discussed in detail. The relation between the models is illustrated to

construct better understanding of the models. UML diagrams are an important part in

CommonKADS; four types of diagrams are presented in this chapter. Additionally, the entire

knowledge-based systems implementation process using CommonKADS is discussed. The

mentioned models, diagrams and worksheets are used in the validation method of this

dissertation. In the next chapter, MAVERICK, the validation method built within

CommonKADS and the main contribution of this dissertation is introduced in a detailed manner.

87

CHAPTER 5: THE MAVERICK VALIDATION METHOD

In software engineering, the development lifecycle has always been an important material for

discussion and improvement. Additionally, it has been established that incremental testing,

validation and verification should be performed instead of the one-phase approach. The main

contribution of this research is discussed in this chapter. The contributed validation method is

called: Method for Automated Validation Embedded into the Reusable and Incremental

CommonKADS (MAVERICK). MAVERICK uses the test cases validation approach. Extracting

test cases from the CommonKADS models, embedding validation into its models and selecting

an appropriate set of test cases are discussed in this chapter. MAVERICK consists of three main

phases, which are performed in cycles:

1. Test Case Extraction

2. Inspection Validation

3. Context-Based Test Case Reduction (CBTCR)

The first two parts are based on CommonKADS; test cases are composed by the knowledge

engineer based on the CommonKADS models and on the guidelines provided by MAVERICK.

Inspection validation is embedded into CommonKADS; it is a manual process that is performed

by the expert and the knowledge engineer. Inspection validation consists of two steps, analysis

validation and design validation. CBTCR is an automated process that is performed iteratively

using the CBTCR tool.

The MAVERICK validation method provides a multi-tier solution for validation of

knowledge-based systems. Most importantly, MAVERICK reduces time, cost and effort needed

88

to validate a system by using the context-based test case reduction (CBTCR) process, which is

introduced in detail later in this chapter.

Because CommonKADS is a model-based lifecycle, results of this MAVERICK

validation method are measured based on models. This is performed by a model weight variable.

Each model will have a validity level. On the other hand, test case reduction has typically been a

process performed just once, usually, before validation starts. In MAVERICK, a dynamic test

case reduction process is followed that provides coverage for the knowledge-based systems

while reducing the number of test cases. Test case reduction is based on previous validation

results. The importance of each test case either increases or decreases based on the outcome of

executing them. This is presented in two variables, the local and global importance. Dealing

with such a problem is complex; the solution presented is broad and deep because of the many

sided solution that deals with test cases, an incremental approach and a lifecycle method. The

steps of MAVERICK are introduced in detail in this chapter.

5.1 Validation through CommonKADS Case Testing

Validation through CommonKADS is performed by extracting test cases from the six models

and their components such as the UML diagrams and worksheets.

Test cases extraction is different from one model to another. In the communication

model, for example, pseudo-code is used to extract test cases. Furthermore, test cases are

extracted from the knowledge model using its inference structures, transfer models, worksheets

and data flow diagrams. It is worth mentioning here that not everything in the CommonKADS

models is used for validation and that different objects in each model are used for extracting test

cases. Some of the information in the worksheets or the UML diagrams, for example, is not

useful for validation. For instance, some organizational model sheets would not be completely

89

filled because of the absence of a certain aspect such as the managerial pyramid in an

organization, thus, no material is present for that section of the worksheet. Test case extraction is

introduced in detail in section 5.3. The test case format for MAVERICK is introduced next.

5.1.1 Test Case Format

As presented previously, CommonKADS provides a general step-by-step process for knowledge

engineers to build any type of knowledge-based system in any domain. Therefore, a generic

validation method that could be used for any kind of knowledge-based system developed through

CommonKADS should be developed. Several variables are defined for every test case in this

method. MAVERICK’s test case format has the following ten variables:

1. Test case ID: An incremental ID number that starts from zero and increments by one for

every test case.

2. CommonKADS model: This indicates from which of the CommonKADS models the

test case was extracted.

3. Input variables: Inputs relevant to this test case.

4. Test setup values: The values of the input variables of the test case.

5. Test execution steps: Defines what needs to be done to run this test case.

6. Expected solution: The expected output for the test case, defined by the expert.

7. System’s solution: The actual output of the test case after execution of the test case.

8. Local Importance: Each test case is assigned a local importance. Local Importance is a

function of: dependency, domain importance, criticality and occurrence. The word local

comes from the idea that the importance of the test case is assigned in comparison to the

90

test cases of the model to which it belongs, not the global set of test cases. Detailed

description of this variable is presented in its dedicated sub-section in this chapter.

9. Number of execution times: This parameter is an incremental number, each time the test

case is executed; this parameter is incremented by one. This factor helps the knowledge

engineer to realize what problems are not being solved throughout the testing process.

10. Informal description: Textual description of the test case, what are its goals, what does

it test and any further comments.

Test cases for every model are extracted mainly from the model’s worksheets and UML

diagrams. An important issue to point out here is the test coverage level of our approach. Test

coverage metrics are used to define the percentage of code covered by the test case sets. Test

coverage metrics can indicate what code/knowledge is not tested, but they cannot accurately tell

what part of the system is validated. Therefore, it presents a challenging issue in most cases. In

CommonKADS, all the knowledge, the information needed to build the system and everything

used in the system is defined within the six models and their components. This means that the

test coverage issue in MAVERICK is addressed directly through CommonKADS. This also

supports CommonKADS usability for validation. The phases of the MAVERICK validation

method are presented next.

5.2 Method for Automated Validation Embedded into the Reusable and Incremental

CommonKADS (MAVERICK)

This section formally introduces MAVERICK, the validation process.

Incremental validation is based on the old adage that prevention is better than cure.

Incremental validation locates the problem in its early stages when they are less expensive to

91

correct. For example, if an error is introduced during knowledge elicitation as a result of

miscommunication between the expert and the knowledge engineer, incremental validation can

help in identifying the error before it’s absorbed into the design and then implemented. The

longer this error remains absorbed within design and development, the harder it becomes to

identify it. Therefore, based on the CommonKADS structure, the test cases extraction and the

life-cycle validation introduced here are performed in seven steps, in the following order:

1. Context Test Cases Extraction: This step defines the test cases that are extracted from

the first three models (the context models: organization, task and agent).

2. Analysis Test Cases Extraction: In this step, the test cases are extracted from the

communication and knowledge models. In CommonKADS, the analysis phase is done

after building five models: organization, task, agent, communication and knowledge.

These five models represent all the requirements of the system.

3. Analysis validation: This is the first step of inspection validation. After the first five

models are defined and before moving into the design model, this validation process

occurs. It checks for conflicting requirements, missing aspects in the analysis and any

ambiguities. This process is performed by the experts and the knowledge engineer

manually on all the documents and diagrams defined so far.

4. Design Test Cases Extraction: This is the last step for test case extraction, where test

cases are extracted from the design model.

5. Design Validation: This is the second and last step of inspection validation. It is

performed before the implementation of the knowledge-based system starts. Design

validation inspects the class diagrams for DM1 to check the initial design. DM1

92

represents the structure of the entire system. Steps 3 and 5 are indicated to as inspection

validation.

6. Spiral System Implementation: Implementation of the system being developed is

performed iteratively. While iterating, system development proceeds and validation is

performed by executing test cases. Test cases are selected in every iteration by the

CBTCR algorithm described later in this chapter.

7. Spiral System Validation: Validation is performed iteratively too, test case selection is

performed for each iteration and test cases are executed on the system. The validation

approach is discussed and introduced in greater detail next. Steps 6 and 7 are indicated to

as CBTCR.

Figure 17 illustrates the general approach towards performing incremental validation within the

CommonKADS steps. Different validation steps are performed during the building of the

CommonKADS models and the system. Nevertheless, the main goal of validation is to attain a

valid system. By looking at the previous chapter, many test cases could be extracted from the

various CommonKADS models because they have all the content that describes the system from

many points of view, the agent, the task, the knowledge and the organization. Because

CommonKADS is an effective model to be used for developing large systems, it is important to

consider that large systems require more effort for validation, and in the scope of MAVERICK,

more test cases. Executing many test cases is not desirable and many times it can be difficult or

impossible to run all the tests. A method to reduce the number of test cases generated from the

CommonKADS models is needed. In MAVERICK, test case reduction is addressed with

CBTCR.

93

Figure 17: The validation method: MAVERICK

94

As it is illustrated in Figure 17, MAVERICK includes three main phases, the green boxes are the

CommonKADS models and the blue boxes are the MAVERICK phases. The next section

introduces test case extraction, section 5.4 introduces inspection validation and section 5.5

introduces CBTCR.

5.3 Test case extraction in MAVERICK

In this section, the first phase of MAVERICK is presented. This is the process of test case

extraction from the CommonKADS models. Starting with the organizational model, an example

is introduced of a test case that follows the format presented earlier in this chapter. As an

example, this section uses a simple knowledge-based system developed using CommonKADS

for a bank or a financial institution to demonstrate the test cases extraction.

An example system requirement is that the initial deposit to open an account be at least $200.

Three test cases should be sufficient to cover this requirement: One with a deposit value less than

$200, one with exactly $200 and one with more than $200, the test case presented next is the first

case:

1. Test case ID: 1.

2. CommonKADS model: organizational model (worksheet: OM3 (organization tasks)).

3. Input variables: deposit = $100.

4. Test setup values: initialize all account numbers; this is a new account test case.

5. Test execution steps:

• Open a new account using the registration screen

• Fill in the personal information

• Deposit $100.

95

6. Expected solution: a message indicating that the account couldn’t be opened.

7. System’s solution: no message was displayed, the system accepted the deposit.

8. Local Importance: 3.75 (this is assigned by the knowledge engineer and the expert)

(formula for calculating LI is introduced in later sections of this chapter).

9. Number of execution times: 1.

10. Informal description: this bank requires $200 as a minimum opening deposit.

It’s worth noting that by comparing the system output and the expected outcome, this test case

has failed after execution. While this indicates an invalid aspect in the system that requires

refinement, this test case should be executed again after corrections are made to the system to

ensure it has a positive outcome. Extracting test cases per CommonKADS model is discussed

using the example financial institution system next.

5.3.1 The Extraction of Test Cases from CommonKADS Models

In this sub-section, the guidelines on how to extract test cases from each model are discussed.

The test case extraction process starts early, while defining the organization model. The first

worksheet from which to extract cases is OM3. It is the process breakdown sheet, thus it is the

most important worksheet for test case extraction in the organization model. All the processes in

OM3 break down into the task model for more details. In this sheet, a relation between the task,

the agent and the knowledge is established. Each task is defined by who is performing it and

what part of knowledge is needed for it. Each of these relations is transformed into a test case.

Every instance where a task requires access to the knowledge is represented in one test case and

every instance where the agent requires access to a certain task is represented in another test

case. Such test cases reflect where knowledge should be allocated in the system and how an

96

agent can access them. This worksheet doesn’t deal with the core of the task or the knowledge.

That’s the responsibility of the task and the knowledge models. The following example

demonstrates how a test case extracted from OM3 (Table 17) looks like.

Table 17: Example OM3 worksheet for test case extraction

No. Task Performed
by

Where? Knowledge
Asset

Intensive? Significance

1 Print
documents

Paul
Hewson

Bank
Teller
Station

Documents
1 and 2 are
needed for
this task

False 3

Example: Task1 is performed by Paul Hewson and documents 1 and 2 are needed for this task.

When the system is built, a test case would be necessary to check the availability of the needed

documents when this task is performed by the mentioned employee. The test case for this

specification is the following:

1. Test case ID: 2.

2. CommonKADS model: organizational model (worksheet: OM3 (organization tasks)).

3. Input variables: Paul Hewson’s user name and password.

4. Test setup values: Logout from all accounts and close all documents.

5. Test execution steps:

• Run task 1 by clicking on the “start task” button

• Log in as Paul Hewson

• Click on ”get documents 1 and 2”

6. Expected solution: 2 PDF files opening on your computer with documents 1 and 2.

7. System’s solution: Document 1 opened but document 2 didn’t.

97

8. Local Importance: 2.5. (formula for calculating LI is introduced in later sections of this

chapter)

9. Number of execution times: 1.

10. Informal description: Paul Hewson needs access to documents 1 and 2 with task 1.

As the example shows, test cases from OM3 strictly test the availability of the knowledge and

the tasks to the agents. On the other hand, OM2 has a ‘culture and power’ part in the worksheet

that deals with social issues, political constraints and rules of thumbs at the organization. This

part doesn’t apply to many organizations, but in cases where it’s necessary, then there should be

also test cases to cover every point in this part of the worksheet. The ‘culture and power’ section

is a bulleted list, each bullet should be considered for a test case. For example, a certain

document needs to go through an approval of a certain person because of his/her position in the

organization; this would require a test case to check whether this is reflected in the system.

OM1 and OM4 are used to introduce the knowledge engineer to organizations, its assets,

departments and structure. They are purely descriptive in nature and nothing from OM1 and

OM4 is used as a part of the system. Therefore, no test cases are extracted from them.

An important part where test cases are to be extracted is the worksheet TM1. In this

worksheet, each task needs a number of test cases. In the task model, each task has a number of

elements defined in the worksheet. These elements are used as parts in the test case based on the

following guidelines: 1) the inputs of the test case are from the dependency and flow section. In

this section, the input objects and the output objects are defined, which are transformed into the

input variables and the test setup values of the test case. 2) In the expected output part of the test

case format, the quality and performance part of the worksheet are copied into the test case. The

quality and performance part in the worksheet deals with expected outcome of the task; this

98

would be the criteria for the test case failure or success. 3) Furthermore, in TM1, one part

contains the preconditions and the post conditions of the task. For each condition, a test case

should be defined as in the banking example (test case 1) introduced previously in this chapter

(condition: to open account a there should be a deposit of $200).

TM2 deals with making the knowledge engineer familiar with assigning tasks to knowledge;

it won’t be used for test case extraction. Knowledge test cases are extracted from the knowledge

model.

Worksheet AM1 defines the agents’ usage of the system. Test cases extracted from this

worksheet are related to security, roles and accesses. As previously introduced in example test

case 2 above, Paul Hewson needed access to task 1. Similar test cases are extracted from AM1.

The knowledge model is a critical model in CommonKADS as it is transformed to represent the

knowledge-base. In MAVERICK, the inference structure and the domain schemas provide the

set of test cases to validate the knowledge. The inferences and the transfer functions are parts of

the inference structure; each instance of them is transformed into a test case. KM1 is a central

worksheet for test case extraction as it defines important parts of the knowledge. In the

knowledge model, the knowledge engineer represents the domain requirements in the domain

schemas. Every object in the domain schema is presented by a test case. In KM1, an important

part in the ‘scenarios’ section, all scenarios related to a certain part of the knowledge are

introduced. Other parts in this worksheet include a glossary of terms, the elicitation material and

other sections that will not be incorporated into the knowledge-based system being developed.

The following example shows what a test case extracted from KM looks like. An example of a

scenario and a test case: The employee Dave Evans needs knowledge about credit cards

overdraft fees to answer a bank’s client. A test case for this scenario extracted from KM1 is:

99

1. Test case ID: 3.

2. CommonKADS model: Knowledge model (worksheet: KM1).

3. Input variables: Dave Evans user name and password.

4. Test setup values: Run the credit card sub-system.

5. Test execution steps:

• Log in as Dave Evans

• Enter a clients name and account number

• Click on ”Display credit cards fees rules”

6. Expected solution: Correct overdraft fees list of rules should display to employee Dave

Evans.

7. System’s solution: Correct overdraft fees list of rules displayed to employee Dave Evans.

8. Local Importance: 1.75.

9. Number of execution times: 1.

10. Informal description: Overdraft fees rules display when required by the employee.

After the knowledge model is defined, the communication model defines the interaction between

the tasks, the agents and the system. CM1 and CM2 are used for test case extraction, because

both of these worksheets components are built into the targeted knowledge-based system. In

CM1, each constraint in the constraints section is copied as a test case (refer for test case 1 for an

example) and the agents involved in this test case (refer to test case 2 for an example). CM2

defines the contents of the communication messages and the control over the messages. Each

transaction needs to be tested using at least one test case. In the communication model, all the

information exchange, message sending and processes between agents are represented in a

pseudo-code syntax defined specifically for CommonKADS. Pseudo-code constructs examples

100

are introduced in Chapter 4 of this dissertation. A test case should be defined for each pseudo

construct. If the construct presents a receive operation, the test case should reproduce that

operation and check if it is performed correctly. The following example demonstrates how a test

case extracted from CM looks like.

Example: a message for a new loan is to be sent from the teller Adam Clayton to the

management department employee Larry Mullen, indicating that a new loan is granted to a client

has the following construct: SEND tramsaction1 (loan granted) from teller to RECEIVE

management. The test case for this communication construct is:

1. Test case ID: 4.

2. CommonKADS model: Communication model (worksheet: CM2).

3. Input variables: Loan number, client name, client age…etc

4. Test setup values: Add a new loan with all the required information.

5. Test execution steps:

• Submit new loan.

• Click on “notify management”

• Enter the loan information

6. Expected solution: A message should be received by Larry Mullen about the loan and its

information from teller Adam Clayton.

7. System’s solution: A message was received by Larry Mullen about the loan and its

information from teller Adam Clayton.

8. Local Importance: 4.

9. Number of execution times: 1.

101

Another important part of the communication model is the dialogue diagram. It is used to test the

sequence of the tasks performed by the system and the agents. Additionally, the design model in

CommonKADS represents the initial design of the targeted system. DM2, DM3 and DM4 are

worksheets that help the knowledge engineer select the hardware platform, software platform

and all technical issues related with building the system, but the real system design is in DM1.

DM1 defines all the subsystems. Test case extraction from this worksheet targets the issue of the

integration of those subsystems. Relations among the subsystems are reflected by

communication between the subsystems and the tasks sequencing among subsystems. In all the

subsystems, the domain specifications are introduced in the organizational, task and agent

models. The functional specifications are presented in the knowledge and communication

models. Worksheets DM2, DM3 and DM4 are not used for test case extraction.

Different systems are obviously defined with different specifications and within different

domains. The extracted test cases introduced here strictly fit the CommonKADS models and

their contents. CommonKADS is a generic set of models; therefore, the guidelines presented in

this section need to be general but somehow detailed at the same time. The knowledge engineer

is encouraged to define more test cases if they are deemed necessary by the expert in any phase.

Chapter 6 introduces a complete system built using CommonKADS with all the test cases

extracted for the system.

Using the test case extraction guidelines defined in this section, all the aspects of the

models are covered and test cases are generated from all the entities included in the targeted

system. The next section introduces the Inspection validation phase.

102

5.4 Inspection Validation

This phase is mainly a “sanity check” for the design and the outcome of the models and their test

cases. It is performed to ensure that there are no major problems and that system implementation

can commence. Inspection validation consists of two parts:

1- Analysis validation: performed after the first five models are defined

2- Design validation: performed after the design model is defined

Design validation and analysis validation in steps 3 and 5 of MAVERICK are performed by

inspecting the worksheets and diagrams defined in CommonKADS. The reason why no

validation phase was defined after the context models is because the context models are strictly

used for managerial decisions. Mostly, the two concept models (knowledge and communication

models) contribute to the final KBS more than the first three context models. Although the

abstract nature of the content of the context models doesn’t support the idea of validation,

analysis validation validates the context models too, along with the concept models.

Because the worksheets are developed by the knowledge engineer, in inspection validation,

the expert reviews the models for any mistakes. The knowledge engineer might have understood

some aspect of the organization or the tasks incorrectly and presented it with mistakes in the

models’ worksheets or diagrams. The expert’s role here is to manually check the worksheets’

contents and modify the worksheets with the knowledge engineer if any mistake is found.

Inspecting diagrams is an efficient technique to see the ‘big picture’ of a CommonKADS

model. Therefore, a number of UML diagrams are manually inspected by the knowledge

engineer and the expert. For analysis validation the UML diagrams inspected are: activity

diagrams of OM3 and TM1, the class diagrams of TM1 and KM, the state diagram of CM and

103

the use case diagram of AM. For design validation, one class diagram is inspected: DM-1, which

checks all the design decisions before the real implementation. The guidelines for performing

inspection validation are:

1. Inspecting the organization, task and agent worksheets for correctness

2. Inspecting the knowledge and communication worksheets to check their

consistency/similarity with the first three models

3. Inspecting the knowledge inferences and diagrams for correctness

4. Inspecting the UML diagrams to ensure that they are consistent with the worksheets

5. Inspecting the communication model constructs to ensure their consistency with the

communication model worksheets

6. Inspecting the design of the system in the design model for correctness

7. Inspecting the test cases to check for any problems, gaps or redundancies

The incremental aspect of MAVERICK is that test cases are not all defined at the same time and

inspection validation is not performed in one phase. Test cases are defined after every set of

models is developed and incremental inspection validation is performed in two phases. Doing so

improves the quality of test cases and the inspection validation process because of the following

reasons:

1- The ideas about the model would be still fairly new in the mind of the knowledge

engineer. Therefore, the test cases are designed with more knowledge about the models.

2- This incremental approach minimizes the possibility of forgetting some aspects of the

model and so would decrease the chances of forgetting to define the test cases

completely.

104

3- This incremental fashion would let the knowledge engineer define specific test cases for

this model without looking at the global picture and the expert to inspect the models in

great detail. If this is not the case, this would sometimes make the knowledge engineer or

the expert overlook local aspects of a model.

Next section presents an important part of MAVERICK, the CBTCR process.

5.5 Context-Based Test Case Reduction (CBTCR)

MAVERICK is designed to be used throughout the development process rather than at the end as

in other validation methods. To use MAVERICK, the knowledge-based system development and

validation are performed in iterations. During any iteration in development, the values of

variables are modified while the system undergoes refinement. This work reduces the number of

test cases based on the context of validation. This is where from the concept of context-based test

case reduction came. In problem solving, the context would inherently contain much knowledge

about the situation in which the problem is to be solved or the environment of the problem [88].

In CBTCR, testing is intensified for the model that failed the most in the previous testing cycle

(the model with the higher number of failing test cases). In other words, test case selection is

affected by the current context.

CBTCR is performed iteratively and is partly automated. The iterative model of this

method is illustrated in Figure 19. CBTCR test case reduction is controlled by a number of

variables. The most important ones are local importance and N. They are discussed in the

following two subsections.

105

5.5.1 Local Importance

Local Importance is a variable associated with every test case. It is factor of dependency, domain

importance, criticality and occurrence. The values of these four variables are set by the expert

and the knowledge engineer for each test case. The numerical ranges and calculations of these

four variables are introduced in section 5.5.3, but first, the reasoning behind selecting these

variables is discussed next.

Dependency: CommonKADS models are dependent upon each other, thus, test cases extracted

from these models inherit this relation. For instance, the items in the task model depend on the

items in the organizational model, making their test cases dependent on one another. Therefore,

dependency is defined for each test case by the knowledge engineer as part of the test case

importance.

Domain importance: A test case represents a certain function in the system. Some test cases

have high importance because of their high representation of certain important functionality

within the domain. Other test cases with less importance represent functions that are not highly

related to the domain.

Criticality: In any organization, some tasks are more important than others. Any test case is

defined to partially or fully evaluate certain functionality. Tasks (and thus, test cases) with more

criticality to the overall process have higher importance.

Occurrence: In a process, some procedures occur more frequently than others. This variable

reflects the level of a task occurrence in the system.

These four variables are influenced by the structure of CommonKADS. The dependency

is in the core philosophy of CommonKADS and the criticality is defined in the worksheets as

‘significance’. The organization model reflects the domain and its most important parts and tasks

106

have different occurrences. For every test case, the average of these four variables is the value of

the local importance.

5.5.2 The number of test cases selected for each iteration (N)

The value for N is chosen by the knowledge engineer. Nevertheless, MAVERICK provides a

recommendation for N through the CBTCR tool (presented in the next chapter) for each

iteration. In most cases, the number of required test cases (N) increases with the size of the KBS.

The value of N is based on three factors.

1- The number of rules in the system (to reflect the size of the knowledge base): The

number of test cases is generally greater than the number of rules in any project, because

in most cases any rule needs one or more test case to validate it. One exception is in the

case of chain of rules that fire each other; several rules can by covered by one test case.

Nevertheless, the number of rules might change at each refinement iteration; the number

of rules might increase or decrease.

2- The number of test cases generated by MAVERICK through CommonKADS

3- Project size (inherited from the CommonKADS design model): The size of the project

could be measured in many ways. Commonplace methods include counting the number

of lines of code in the system or the number or cases in a use case diagram. In

MAVERICK, the project size is measured using the design model of CommonKADS.

The design model presents the overall design of the KBS. Thus, the size is measured by

the number of entities/modules in the DM model.

107

The previous two subsections introduce the local importance and N. Other variables are used in

MAVERICK and they are in introduced in the next section, along with the formulas for

calculating N and LI.

5.5.3 Spiral Development and Validation

This section introduces the main variables used for test case selection.

Before the knowledge engineer starts with system implementation, it is necessary to define a

number of control variables that are used to choose the test cases to be used in every iteration.

These variables are:

1. Local Importance (LI): Each test case is assigned a local importance value that is a real

number between one and five.

Local importance = Average of (dependency, domain importance, criticality,

occurrence).

Local importance is a function of dependency (value assigned from 1-5), domain

importance (value assigned from 1-5), criticality (value assigned from 1-5) and

occurrence (value assigned from 1-5). As discussed earlier, these values are defined by

the knowledge engineer and the expert. The frequency of each task in the system is

indicated in TM2 and this is used as the basis for defining the occurrence factor.

Dependency is in the nature of CommonKADS: the design model depends on the

knowledge and communication models, which depend on defining the task and the agent

models, which are, both based on the organization model which is defined based on the

knowledge elicitation. The organization model has the lowest dependency rate (1),

because it the first model. The design model has the highest dependency rate (5), because

108

it is the last model. For each task, “significance” needs to be assigned as part of

worksheet OM3 (refer to Chapter 4). This can be used as a benchmark for assigning local

importance.

2. Model Weight (MW): Model weight reflects the assurance level of the CommonKADS

model - how valid is the model representation in the system. Every CommonKADS

model is assigned a weight after each iteration of development. Initially, all the models

have the same weight (MW is set to 5), and the same significance. However, when the

development starts, model weights will constantly change based on the outcomes of the

test case execution. The model weight values range between 1 and 10. MW could be set

to any value before the first iteration, 5 is the midpoint from 0 to 10 and therefore, it was

selected as the initial value. After the first validation iteration the knowledge engineer has

no control over the MW; it is controlled by the previous validation results. When the

assurance of all models reaches 10 (100%) and system development is done, validation

stops.

3. N: Represents the reduced number of test cases to be selected in any iteration. N

obviously needs to be less than the total of the extracted test cases; the number of rules is

typically less than the number of test cases. The difference between the number of test

cases and rules represents their relation. If this difference is divided by the number of

modules of the system from DM (project size), the outcome would present a sensible

value that is more than the number of rules, more than the number of modules of the

system and less than the number of test cases. This way, N is always proportional with

those three values and it presents a practical number of test cases that correlate well with

the effort of the system’s development. The formula for N is:

109

(Number of test cases-Number of rules of current iteration)/Project size.

4. Global Importance (GI): This variable is used to define the importance of any test case

within the universal set of test cases. This variable reflects the importance of the test case

within all the models, not only the model that the test case belongs to.

Global Importance = Local Importance * Model Weight.

Figure 18 shows the GI effect on selecting test cases. Although Test case 10 (T10) has

higher LI than Test case 50 (T50), T50 is selected for execution before T10. T10 is in TM

which has a model weight of 3, while T50 is in DM which has a model weight of 8. This

would result in T10 with GI: 5*3=15 and T50 with GI: 2*8=16. Therefore, by comparing

the GI for T50 and T10, T50 is greater and thus selected before T10.

Figure 18: The effect of GI on sorting test cases

These four variables are used for test case reduction. The steps for CBTCR are presented in the

next section.

110

5.5.4 Test Case Reduction through CBTCR

As discussed in Chapter 2, several researchers have tried to reduce the number of test cases [52]

[64], but it is not easy to determine the value of a sufficient number of test cases for a given

system. Approaches to reduce test cases have varied between random [58], formal [65] and

informal [55]. Knauf et al. [47] introduced an exhaustive set of test cases as the absolute

benchmark for validity (discussed previously). Then Abel et al. [65] continued on that work to

introduce a smaller set of test cases that has an equivalent effect. While they obtained

encouraging results, reducing test cases was static, in CBTCR, test case reduction is performed

dynamically and it aims to reduce the selected set of test cases even more.

Figure 19: MAVERICK iterative development and validation

Because CommonKADS covers all aspects of the system, it provides solid ground for test cases.

It helps in claiming that test cases extracted using this method cover the system in a complete

manner. The steps of CBTCR that compose the validation of a system built on CommonKADS

are presented next as well as in Figure 20. This algorithm is built in the CBTCR tool (presented

111

in the next chapter). For every CBTCR step, the degree of automation is indicated in the

following list, whether it’s manual or automated within the CBTCR tool. The steps are as

follows:

1. Assign local importance for each test case. (Manual)

2. Set the size of test case subset: N based on the criteria discussed previously. (Automated)

3. Set all models’ weights/assurance to 5 (Automated)

4. Calculate global importance for all test cases (Automated)

5. Order all test cases according to global importance (Automated)

6. Start iterative KBS implementation, building the KBS (Manual)

7. At the end of the development iteration, select N number of test cases from the ordered

list select test cases 1 to N (Automated)

8. Execute the test cases on the system (Manual)

9. Compare results of executed test cases to its expected result (Manual)

10. Based on results for each CommonKADS model test cases, re-assign assurance for each

model. Example: if 30% of the test cases in a certain model are incorrect, that model’s

assurance will be 7 using the following formula: 100 - (percentage of successful test

case)/10 (Automated)

11. Recalculate global importance for all test cases and reorder (Automated)

12. Flag test cases with a positive outcome (not to be picked again unless a change to their

status was made). Flag test cases with unexpected outcomes (this is used to make sure

that the test case is reselected before end of validation). Flag test cases that are affected

by the refinements (to be selected again). Select different test cases and go to the next

iteration (Automated)

112

13. Refine the system. This might lead to adding new rules, deleting rules and adding new

test cases. This step is performed by the knowledge engineer in a manual fashion.

(Manual)

14. Go back to step 6

15. Stop when assurance of all models is equal to 10 (Automated)

Figure 20: CBTCR flowchart

113

This approach requires some non-trivial manual work by the knowledge engineer, expert or any

other person performing validation, but it has many advantages:

1. Flexibility: the initial values of the weights and the models could be modified by the

knowledge engineer. This gives the knowledge engineer full control.

2. User-oriented: this approach is based on the user needs and a real time testing feedback

based on context. It is not a static function, rather a resilient one.

3. Based on a comprehensive, well-defined and well-structured model: This function is

based on CommonKADS, which as discussed previously, has many advantages on its

own.

4. Semi-automated: this method is partly automated by the CBTCR tool (presented in the

next chapter).

5. Effort and time reduction: reducing the number of test cases reduces effort and time.

Experiments and analysis are performed to test the MAVERICK approach. Experimental

evaluation of MAVERICK is introduced in Chapter 7.

5.6 Summary

This chapter introduced the validation method MAVERICK in detail. MAVERICK consists of

three main steps including test case extraction, the inspection validation phase and context based

test case reduction to reduce the number of test cases. In the next chapter, a prototype KBS is

introduced. A system is built using CommonKADS and validated using MAVERICK. The KBS

developed is a housing KBS.

114

CHAPTER 6: PROTOTYPE KNOWLEDGE-BASED SYSTEM

This chapter describes the KBS built to evaluate the MAVERICK validation method presented in

this dissertation. This KBS is called the housing KBS, and it is built through CommonKADS and

it is validated using MAVERICK. Additionally, a Java software tool is introduced that

implements the automated process of sorting, selecting and reducing test cases. This process is

called: context based test case reduction (CBTCR). The first section introduces the CBTCR tool.

Sections 2 and 3 introduce the CommonKADS models and the details of the housing KBS.

Section 4 lists the extracted test cases for the housing KBS.

6.1 The CBTCR Tool

The housing KBS defined in the CommonKADS book [9] and the information introduced in the

book for the application is a benchmark and a solid foundation for the experiments. The housing

KBS is validated using MAVERICK. The first step in MAVERICK is to extract the test cases

from the system as discussed in Chapter 5.

The test cases are entered into the tool’s spread sheet with the following fields: 1) Test

case ID (An incremental integer that starts from zero and is incremented by one for every test

case), 2) CommonKADS Model (a number between one and six, one for the organizational

model, two for the task model, three for the agent model, four for the knowledge model, five for

the communication model and six for the design model), 3) Local Importance (an integer number

from 1-5), 4) Number of Runs (is initially set to zero, this number is incremented by one every

time the test case is executed), 5) CommonKADS Weight (initially is set to 5 for all models then

it is modified every iteration), 6) Global Importance (the multiplication outcome of local

importance and model weight), 7) Result (all test cases are initially set to two because none of

115

the test cases is executed; when a test case is executed with success, the GI value will change to

one, if it failed, value will change to zero), 8) Input Variables, 9) Test Setup Values, 10)

Execution Steps, 11) Expected Solution, 12) System Solution and 13) Informal Description.

When the spiral development starts, the tool will recommend test cases for execution on the

system. The CBTCR tool’s interface has six panels as illustrated in Figure 21. The six panels are

indicated on the screenshot, and they are discussed next:

Panel 1 displays the selected test cases in a list where the knowledge engineer can indicate the

outcome of the test case, whether it is success or failure. This panel also displays the iteration

number and the value of N. This is the main panel for the knowledge engineer, where the test

cases could be monitored and the results of the test cases after every iteration could be modified.

Panel 2 displays all the test cases, each with its importance, execution results, CommonKADS

model and the number of test cases in the database. In this panel, all the test cases changing

statuses can be observed real time, after every test case execution.

Panel 3 has two functionalities; it displays the algorithm’s steps and explains how things work in

the tool. Additionally, it is the panel the recommended N value is calculated. The knowledge

engineer enters the number of test cases, the number of rules in the project and the project size to

get N. Project size is calculated using the CommonKADS design model diagram. The number of

entities in the diagram represents the project’s size. N is calculated based on the three variables

and the formula presented in the previous chapter.

Panel 4 shows the validation percentage/assurance for all CommonKADS models. This is

calculated by averaging of all the models assurances. A progress bar displays this percentage.

116

Panel 5 displays the console showing all the steps and all the actions performed. The console

serves as a good documentation tool; it keeps all the test cases as well as all the models and their

changing status. Everything is saved and displayed here, then saved to a file on the hard disk.

Panel 6 is where the knowledge engineer can input the system and tester information. This

includes the name, organization, date, department, role and KBS name. This information is

displayed on the console when it is saved.

Figure 21: CBTCR Java tool interface

The CBTCR tool is available for research purposes upon request to the author.

The CommonKADS development steps, models, diagrams and details about developing

the housing KBS are introduced in the next section.

117

6.2 The Housing KBS

The rule-based housing KBS is introduced in chapter 10 of Schreiber et al.’s CommonKADS

book [9] as a case study. This housing KBS is used by the Dutch government to assign

apartments to citizens who apply for one. This process is called residence distribution and

citizens who want an apartment must apply to be a potential applicant. Every two weeks a

magazine is published and distributed in the Netherlands with a list of residences for which

people can apply. Another published proceeding has the names of the winning applicants. This

system’s only user is the Dutch government.

To be eligible for a residence, applicants must meet a number of criteria. If an applicant

doesn’t fit the conditions of any of the residences or all the residences that fit the applicant are

taken, a residence that best fits the criteria out of the remaining available residences is assigned

to the applicant. Residents must consider the number of family members in their household.

Residence category is defined by the area where the residence is located. A fair relation between

the applicant’s income and the rent of the apartment should be established. Other parameters

may apply for every specific case/applicant. The knowledge-based system under development is

to automate the applicants’ assessment process. Inputs to this system include data about the

applicant and the residences. The output is a set of residence assignments for the applicant. The

knowledge-based system communicates with two other systems, a database that contains

information about the applicants, and a program that computes a list that prioritizes the

applicants for every residence.

The knowledge base contains the rules of assignments. The following information is

needed for each applicant: a) Name, b) age, c) date of submitting the application, d) number of

family members and e) annual income. For all the residences, three main parameters will be

118

included in the criteria of assigning applicants: a) Area, b) rent and c) location. The system

considers every applicant for a resident. The first filter is the date of submitting the application;

each applicant is assigned a residence that suits his/her information. If no apartment was found to

meet applicant’s information, the apartment that best suits the applicant is assigned to him/her.

The applicants’ information is categorized into groups, age is categorized as: 0-20 years, 20-40

years, 40-60 years and 60 years and up. The number of family members is defined into five

categories: 1, 2-3, 4-5, 6-7, 8 and more. Annual income is categorized into four categories: €0-

€40,000, € 40,000- €100,000, €100,000- €500,000 and more than €500,000. For each residence,

the area of the apartment is categorized into five categories: 0-600 m2, 600-800 m2, 800 -1000

m2, 1000 -1200 m2 and more than 1200 m2. Moreover, the apartments are divided into five

categories for the location: A, B, C, D and E. Finally, different apartments have different rents:

€545, €750, €1047 and more than €1047.

The living area of the apartment should fit the number of family members. If the number

of family members is equal to one, then the area should be the smallest category: 0-600. The

Rent of the apartment should fit the annual income: Category #1 in rent will be assigned

Category #1 in income, and so on. Age is used to consider more options for the applicant, if the

applicant is of age 20-40 years and has an income more than €40,000, he/she would have more

apartment options. This means that if the applicant is young and has a high salary or old with a

steady job, then the probability of him/her not paying rent is fairly low. Thus, a better apartment

is assigned to him/her. All assignments are approved by the applicants, so if an applicant is not

comfortable with their new apartment location, area or rent, they can decline the assignment and

apply again in the next cycle.

119

The system was built iteratively and validated using the MAVERICK method, first step

was to build the CommonKADS models and extract the test cases. All the steps of building the

systems are introduced next.

6.3 CommonKADS Models for the Housing KBS

In this section, the CommonKADS models for the housing KBS are described. Furthermore, all

the diagrams and graphs included in the system documentation are introduced too. Additionally,

test cases are extracted based on the extraction method introduced in Chapter 5. Test cases are

entered to the CBTCR tool and executed. The results are recorded and introduced in Chapter 7.

This section is structured based on the MAVERICK validation method presented in Chapter 5.

The main five steps for the validation process are:

1. Context Test Cases Extraction: Introduced in section 6.3.1 and 6.4

2. Analysis Test Cases Extraction: Introduced in section 6.3.2 and 6.4

3. Design Test Cases Extraction: Introduced in section 6.3.3. Section 6.4 includes all the test

cases extracted from the diagrams and the worksheets in CommonKADS.

4. Spiral System Implementation: Introduced in section 6.3.5

5. Spiral System Validation: : Introduced in section 6.3.5

The worksheets and diagrams copied from the CommonKADS book [9] have the reference

number 13 next to their title. All the other components were influenced by the book, but

developed by the author. Next section introduces the CommonKADS context models for the

housing KBS.

120

6.3.1 Context Models

CommonKADS context models are shown in Tables 18 – 33.

Table 18: Worksheet OM-1 for housing KBS [9]

Problems and
opportunities

Assessment of individual applications takes too much time.
There is no sufficient staff to handle urgent cases.

Organizational context Mission:
Enable people to take as much as possible themselves
responsibility for finding a suitable home.
Enable insight into the dynamics of the rental housing market.
External factors:
Local council
National regulations
Applicants/public opinion
Rental agencies
Strategies:
Provide high quality for a reasonable price.
Move to semi-private service company.
Broaden scope (include lower segment of privately owned
residences).

Solutions Solution 1:

Develop and automated system for application assessment.
Set up a training program for a group of assigners to specialize in
urgency handling.

Table 19: Worksheet OM-2 for housing KBS [9]

Structure See Figure 22
Process See Figure 23
People See Figure 22
Resources Database of data about applicants and residence.

Priority calculator: a program that computes the applicants’ priorities for each
residence.

Knowledge Assessment criteria: knowledge for judging correctness of individual applications.
Assignment rules: knowledge used for selecting an applicant for a particular
house.
Urgency rules: special rules for urgent cases (e.g. handicapped applicants)

Culture
and power

Hierarchical organization.
Employees view the future with some trepidation.
Management style is still based on history as civil servant department.

121

These models are based on the system description from the CommonKADS book [9]. The

housing KBS has three agents (the assigner, the data typist and the editor) and four main tasks

(data entry, magazine production, application’s assessment and residence assignment) introduced

in the work sheets. The CommonKADS worksheets are self-descriptive. They include all the

details of the KBS.

Table 20: Worksheet OM-3 for housing KBS [9]

No. Task Performed
by

Where? Knowledge
Asset

Intensive? Significance

1 Magazine
production

Magazine
producer

Public
service

N/A No 3

2 Data entry
of
application

Data typist/
automated
telephone
number

Residence
assignment

N/A No 2

3 Application
assessment

Assigner Residence
assignment

Assessment
criteria

Yes 5

4 Residence
assignment

Assigner Residence
assignment

Assignment
rules and
urgency
rules

Yes 5

Table 21: Worksheet OM-4 for housing KBS [9]

Knowledge
Asset

Possessed
by

Used in? Right
form?

Right
place?

Right
time?

Right
quality?

Assessment
criteria

Assigner Application
assessment
(3)

No: paper
form
electronic

Yes Yes Yes

Assignment
rules

Priority
calculator

Residence
assignment
(4)

Yes Yes Yes Yes

Urgency
rules

Assigner Residence
assignment
(4)

Yes Yes Yes No: often
incomplete,
ambiguous
and
inconsistent.

122

Table 22: Worksheet OM-5 for housing KBS [9]

Business feasibility The KBS will cost $150,000 for development and $10,000 for yearly
maintenance. This investment is cost-effective if we assume that fewer
than three people will be needed to do the application-assessment work.
Training costs need to be considered. The system will provide higher
quality and fewer errors which is important for the public image of the
organization.

Technical
feasibility

Assessment tasks are well understood. Many existing system tackle this
task type. the knowledge needed is available.

Project feasibility There is no real expertise in this domain. This minimizes the well-known
risk of lack of experts. Skills needed in this project: experience in building
an assessment application, knowledge about the database and the priority
calculator.

Proposed actions Set a team and schedule for system development.
Start with the required organizational changes: training assigners as
urgency handlers, but first, coordinate with the residence-assignment and
computer departments for support of the new proposed KBS.

Table 23: Worksheet TM-1 for housing KBS (Task 1)

Task Magazine production (1)
Organization Magazine production
Goal and Value Task should ensure the inclusion of all the residences and publish the

magazine on time
Dependency and
Flow

Input tasks: -
Output tasks: -

Objects Handled Input tasks: data about residences
Output tasks: published magazine

Timing and
Control

Carried out once every two weeks

Agents Magazine editor and producer
Knowledge and
Competence

-

Resources -
Quality and
Performance

Not time critical, every 2 weeks.

123

Table 24: Worksheet TM-2 for housing KBS (Task 1)

Nature of Knowledge True/False Bottlenecks
Formal, rigorous
Empirical, quantitative
Heuristic, rule of thumb
Highly specialized, domain
specific

Experience based
Action based X
Incomplete
Uncertain, maybe incorrect
Quickly changing
Hard to verify
Tacit, hard to transfer
Form of Knowledge
Mind
Paper X
Electronic
Action skills
Other X
Availability of knowledge
Limited in time? X
Limited in space?
Limited in access?
Limited in quality?
Limited in form? X

Table 25: Worksheet TM-1 for housing KBS (Task 2)

Task Data entry of applications (2)
Organization Residence assignment department by the data typist
Goal and Value Task should ensure that all applicants’ applications are entered into the

system.
Dependency and
Flow

Input tasks: applications
Output tasks: application assessment

Objects Handled Input tasks: -
Output tasks: -

Timing and
Control

Carried out for every application.

Agents Knowledge system
Knowledge and
Competence

-

Resources -
Quality and
Performance

-

124

Table 26: Worksheet TM-2 for Housing KBS (Task 2)

Nature of Knowledge True/False Bottlenecks
Formal, rigorous
Empirical, quantitative
Heuristic, rule of thumb
Highly specialized, domain
specific

Experience based
Action based X
Incomplete X
Uncertain, maybe incorrect X
Quickly changing
Hard to verify X
Tacit, hard to transfer
Form of Knowledge
Mind
Paper
Electronic X X
Action skills
Other
Availability of knowledge
Limited in time?
Limited in space?
Limited in access?
Limited in quality?
Limited in form?

Table 27: Worksheet TM-1 for housing KBS (Task 3) [9]

Task Application assessment (3)
Organization Residence assignment department by the assigner
Goal and Value Task should ensure that applicants are treated fairly. Essential to deliver

assignment service.
Dependency and
Flow

Input tasks: magazine production and data entry
Output tasks: residence assignment

Objects Handled Input tasks: application and data about residence.
Output tasks: validated application

Timing and
Control

Carried out for every application. Save a log for all the processes with a
summary for each one.

Agents Knowledge system
Knowledge and
Competence

Assessment criteria

Resources -
Quality and
Performance

Not time critical, but requires seconds to get result, availability should be
high

125

Table 28: Worksheet TM-2 for housing KBS (Task 3) [9]

Nature of Knowledge True/False Bottlenecks
Formal, rigorous X
Empirical, quantitative
Heuristic, rule of thumb
Highly specialized, domain
specific

X

Experience based
Action based
Incomplete
Uncertain, maybe incorrect
Quickly changing X X
Hard to verify
Tacit, hard to transfer
Form of Knowledge
Mind X
Paper
Electronic
Action skills
Other
Availability of knowledge
Limited in time?
Limited in space?
Limited in access?
Limited in quality?
Limited in form? X X

Table 29: Worksheet TM-1 for housing KBS (Task 4)

Task Residence assignment (4)
Organization Residence assignment department by the assigner
Goal and Value Task should ensure that applicants are treated fairly. Essential to deliver

assignment service.
Dependency and
Flow

Input tasks: magazine production, application assessment and data entry
Output tasks: -

Objects Handled Input tasks: -
Output tasks: -

Timing and
Control

Carried out for every applicant. Save a log for all the processes with a
summary for each one.

Agents Knowledge system
Knowledge and
Competence

Assignment rules and urgency rules.

Resources -
Quality and
Performance

Time critical

126

Table 30: Worksheet TM-2 for housing KBS (Task 4)

Nature of Knowledge True/False Bottlenecks
Formal, rigorous X
Empirical, quantitative
Heuristic, rule of thumb
Highly specialized, domain
specific

X

Experience based
Action based
Incomplete
Uncertain, maybe incorrect
Quickly changing X X
Hard to verify X
Tacit, hard to transfer
Form of Knowledge
Mind X
Paper
Electronic X
Action skills
Other
Availability of knowledge
Limited in time?
Limited in space?
Limited in access?
Limited in quality? X
Limited in form? X X

Table 31: AM-1 for housing KBS (agent: assigner)

Name Assigner
Organization Residence assignment department
Involved In Tasks 3, 4
Communicates with Database, priority calculators and rental agencies.
Knowledge Assessment criteria, assignment rules and urgency rules.
Other competences Ability to handle problematic cases.
Responsibilities and
constraints

Make sure people are treated equally.

127

Table 32: AM-1 for housing KBS (agent: data typist)

Name Data typist
Organization Residence assignment department
Involved In Task 2
Communicates with Magazine and applications
Knowledge -
Other competences Speed of data entry
Responsibilities and
constraints

Reduce amount of mistakes

Table 33: AM-1 for housing KBS (agent: magazine editor)

Name Magazine editor
Organization Magazine production department
Involved In Residence assignment
Communicates with -
Knowledge -
Other competences No mistakes in magazine
Responsibilities and
constraints

-

The agent models presented here are all the agents involved with the system tasks. These tasks

will be transferred to create the KBS. Other agents presented in Figure 22 are not included in the

systems’ tasks. This concludes all the worksheets for the context models for the housing KBS. In

worksheet OTA-1, the decision is to start developing the KBS by creating a new human role:

urgency handler. The KBS will only handle the regular cases; urgent cases will be processed by

humans who will undergo specialized training.

6.3.2 Concept Models

For this system, one knowledge model worksheet (Table 34) is needed and three for the

communication model.

This is because three communication transactions can occur in the system:

128

1. Order application assessment (Table 35)

2. Obtain application data (Table 36)

3. Report decision (Table 37)

CM2 is not needed for this system because of the lack of any special control over messages or

any specific constraints. The knowledge is not only represented in the worksheet but is also

illustrated in diagrams, Figures 26-31.

Table 34: KM-1 for housing KBS

Document Entry Description
Knowledge model See Figures 26-31
Information source used Experts
Glossary -
Components considered Components used in identification stage.
Scenarios Four scenarios, one for each task. Other scenarios are considered

urgent cases which will be handled by human employees.
Validation results Not valid yet
Elicitation material Interview material and documentation form the context model.

Table 35: CM-1 for housing KBS (transaction 1) [9]

Transaction identifier name Order application assessment
Information object A residence application
Agents involved Data entry + knowledge system + assigner
Communication plan See Figures 31 and 32
Constraints System must interact with the application data entry
Information exchange
specification

Order

Table 36: CM-1 for housing KBS (transaction 2)

Transaction identifier name Obtain application data
Information object Attribute value pairs of an applicant and residence
Agents involved Data base and KB
Communication plan See Figures 31 and 32
Constraints Correct mapping of data requests
Information exchange
specification

Ask-reply

129

Table 37: CM-1 for housing KBS (transaction 3)

Transaction identifier name Report decision
Information object Decision document
Agents involved Assigner + KB
Communication plan See Figures 31 and 32
Information exchange
specification

Ask-reply

6.3.3 Artifact Models

Table 38: DM-1 for housing KBS

Architecture decision Format
Sub-system structure See Figure 33
Control model -
Sub-system decomposition See Figure 33

Table 39: DM-2 for housing KBS

Software package Housing KBS
Potential hardware Intel Core 2 Duo Computer
Visualization library -
Language typing Object oriented
Knowledge representation Rule based
Interaction protocol Class will be developed to interact with outside objects
Control flow -
CommonKADS support CBTCR tool

Table 40: DM-3 for housing KBS

Architecture component Typical decision points
Controller Mechanism for internal/ external events handling
Task No
Task method Java
Inference -
Inference method Presented in system
Dynamic role -
Static role -
Knowledge base Housing KB
Views One interface for each agent presented in the agent model. Agents

need to log in to their interface. All interfaces are Java Swing
interface objects.

130

Table 41: DM-4 for housing KBS

Element Design decision
Controller System on one machine, no communication between machines
Tasks methods Formalize control structure
Dynamic roles -
Inferences Inferences defined in knowledge model
Inference methods Inferences defined in knowledge model
Knowledge bases -
View objects System interface

The four design models with their decisions are introduced in tables 38, 39, 40 and 41.

6.3.4 Diagrams for the Housing KBS

This section includes all the diagrams needed for each set of models.

6.3.4.1 Diagrams for the Context Models

This subsection introduces all the diagrams needed to present the context models. Figure 22

shows the agents of the system and their relations.

Figure 22: Structure and people in housing KBS [9]

131

Figure 23 illustrates the main flow of tasks within the organization (this is initially introduced in

worksheets TM and OM).

Figure 23: UML activity diagram for OM [9]

Figure 24 shows the flow of events of the assignment task in a DFD. The assignment task is the

main task in the KBS. Figure 24 includes the actors, processes, data store and data flow. The last

figure for the context models includes the flow of an application within the organization,

displays the flow of tasks and the resulting outcomes.

132

Figure 24: DFD for the main process (application-assessment task) [9]

Figure 25: State diagram of a single flow of the application-assessment process [9]

133

6.3.4.2 Diagrams for the Concept Models

This subsection introduces all the diagrams needed to illustrate the knowledge and the

communication tasks between the agents. Figure 26 presents the parameters associated with the

residences and the applicants.

Figure 26: Residence and application relation in knowledge representation [9]

Figure 27 introduces the inference structures and constructs. Each inference flow starts with one

applicant and one residence as its input raw data and outcomes a decision based on the rules of

the inference. The decision is either applicant is ‘eligible’ or ‘not eligible’. Figure 28 introduces

the assignment’s decision making priorities for residences.

134

Figure 27: Inference structure for the KM [9]

Figure 28: Subtype hierarchy for knowledge about priorities in the system [9]

135

Figure 29: Tasks and their inferences (assessment task) [9]

Figures 29 illustrate the “assess case” task hierarchy. It establishes the relation between the

applicant and the residence.

Figure 30: Domain schema for the housing KBS [9]

136

Figure 30 shows the big picture for the housing KBS. It shows all the tasks, their relations and

flow directions. Figures 31 and 32 illustrate the communication modules between the tasks and

the agents in the KBS.

Figure 31: State diagram representing the communication model [9]

Figure 32: Dialogue diagram of the communication model

137

6.3.4.3 Diagrams for the Artifact Models:

One diagram is needed to present the design of the KBS. Figure 33 illustrates the design of the

KBS, the three agents’ interfaces and the relations between the KBS sub-components. This

system includes six sub-components as it is illustrated in Figure 33. This is the final figure for

the housing KBS.

Figure 33: Subsystems relationship for the design model

6.3.5 Iterative System Implementation and Validation

At this stage, all the models have been well defined and the system design is complete. Mapping

from the CommonKADS models to the knowledge base is straightforward. All the components

are designed and all the crucial decisions are already made. The following steps are required to

transform the CommonKADS models into the executable system:

138

1. Define the subsystems within the hardware/software platforms defined in the design

model

2. Build the knowledge base based on the KM components

3. Code the tasks in the task model as the main program methods

4. Define the agents as the users of the system and build the communication between these

agents from the communication model

After this phase, the system becomes developed iteratively and validation is performed using

MAVERICK. The 188 test cases extracted are listed in section 6.4.

Figure 34: Assigner mode

139

Figure 35: Data typist mode

Figure 36: Magazine editor mode

140

The system built has two main parts: Knowledge base and Main applet interface. The Knowledge

base Java file consists of the rules for the KBS. These rules reflect the assigning task, which is

the main task of this system. They include the conditions for the applicants and the residences.

The complete system code including the knowledge base is found in Appendix B.

The Main applet interface consists of the methods for controlling the interface and the

access rules for the agents. The system interface is illustrated in three modes, the assigner mode,

the magazine editor mode and the data typist mode. The modes are shown in figures 34, 35 and

36. The data typist enters all the applications (including all their personal information and

residence needs) and the residences with the necessary information (area, location and rent). The

assigner verifies all the assigned residences automatically and can review the outcome using

his/her interface. Furthermore, the magazine editor uses all the information and publishes it

automatically into a text file called: MAGAZINE. The evaluation of the time consumed to build

the KBS and validate it using MAVERICK is included in Chapter 7. A brief description of the

system is also included in the interface. The assigner, magazine editor and the data typist need to

log in to activate their modes.

The CBTCR tool is used for selecting test cases and they are executed on the housing

KBS manually. The information assigned for each test case is used to select the appropriate test

cases for each iteration. Extracted test cases for the housing KBS are presented next.

6.4 The Extracted Test Cases

In this section, all the test cases for the housing KBS are listed with their parameters based on the

test case format presented previously in Chapter 5. The system consists of three agents

(magazine publisher, assigner and data typist) and three main interfaces. The extraction method

introduced in Chapter 5 is used to create test cases from the worksheets and the diagrams.

141

The first set of test cases is extracted from worksheet OM3. In OM3 there are four tasks,

each has an agent and a knowledge asset in the worksheet. Test cases extracted here are designed

to test access of each agent to the needed knowledge asset and to its appropriate interface in the

system (system screens/interfaces are illustrated in Figure 34, 35 and 36). Additionally, it is

important to test whether agents have any access that they are not supposed to have. The first test

case is:

1. Test case ID: 1

2. CommonKADS model: organizational model

3. Input variables: login information for the agent: assigner

4. Test setup values: -

5. Test execution steps: run system and login as assigner to magazine producing interface.

6. Expected solution: system does not allow access.

7. System’s solution: -

8. Local Importance: 2.75

9. Number of execution times: 0

10. Informal description: this test case ensures that the assigner doesn’t have access to the

magazine production screen.

The second test case for worksheet OM3 is:

1. Test case ID: 2

2. CommonKADS model: organizational model

3. Input variables: login information for the agent: assigner

4. Test setup values: -

142

5. Test execution steps: run system and login as assigner to residence assignment interface.

6. Expected solution: system allows access.

7. System’s solution: -

8. Local Importance: 2.75

9. Number of execution times: 0

10. Informal description: this test case insures that the assigner has access to the residence

assignment screen.

The third test case is to ensure assigner has no access to the data typist screen:

1. Test case ID: 3

2. CommonKADS model: organizational model

3. Input variables: login information for the agent: assigner

4. Test setup values: -

5. Test execution steps: run system and login as assigner to data entry interface.

6. Expected solution: system does not allow access.

7. System’s solution: -

8. Local Importance: 2.75

9. Number of execution times: 0

10. Informal description: this test case insures that the assigner doesn’t have access to the

data entry screen.

Each test case has an assigned local importance and it is calculated as described in Chapter 5.

Local importance for the first three test cases is calculated as follows (this applies to the first

three test cases):

143

LI = Average (dependency + domain importance + criticality + occurrence)

LI =1(OM is always 1) +0(case not related to domain) + 5(significance in OM3 is 5) +5(occurs

every time assigner logs in) =11/4= 2.75

The first three test cases test the assigner access rights; test cases 4, 5 and 6 test the magazine

producer access rights in a fashion similar to the first three cases. Likewise, test cases 7, 8 and 9

test the data typist access rights. These are not shown here but are included in Appendix A. The

next three test cases test access to the necessary knowledge asset for all the agents.

1. Test case ID: 10

2. CommonKADS model: organizational model

3. Input variables: login information for the agent: assigner

4. Test setup values: -

5. Test execution steps: run system and login as assigner to residence assignment interface

then click on the button that assigns residences to applicants.

6. Expected solution: residences are assigned to applicants. (the correctness of the

assignment will be tested in the knowledge model)

7. System’s solution: -

8. Local Importance: (1+5+5+4)/4= 3.75

9. Number of execution times: 0

10. Informal description: this test case insures that the assigner can assign residences to

applicants by having access to the priority calculator.

Test cases 11 and 12 ensure access for the magazine producer and the data typist in the same

fashion. Test cases extracted from the agent model worksheet AM1 are for the assigner access to

144

database (test case 13) and the priority calculator (test case 14). For the data typist access to the

applications submitted by applicants (test case 15). See Appendix A for these test cases.

Test cases extracted from the task model’s worksheet TM1 are in four groups (because we

have four main tasks in the housing KBS). Test case number 16 ensures the order of actions

when performing application assignment. As mentioned in Chapter 5, TM1 worksheet

information is transformed into a number of test cases using the input task, output task and

timing parts of TM1.

1. Test case ID: 16

2. CommonKADS model: Task model

3. Input variables: data about residence and an application

4. Test setup values: -

5. Test execution steps: run system and login as assigner to residence assignment interface

then click on the button that assigns residences to applicants (check that data about

applicant is displayed and residence is displayed, use calculator to manually check the

correctness of the residence assignment).

6. Expected solution: residence is assigned using the application and the data about

residence.

7. System’s solution: -

8. Local Importance: (5+5+5+5)/4= 5

9. Number of execution times: 0

10. Informal description: this test case insures that the assignment is based on the right

application and the right residence information.

145

Test cases 17, 18, and 19 are testing the order of tasks execution for tasks 2, 3 and 4 from the

task model. One of the system requirements is to save all the actions in a system log. Since this

part deals with the main tasks, after each task, a test case is used to access the log and read it to

see if the action was saved. Test cases 20, 21, 22 and 23 check the log for tasks 1, 2, 3 and 4

respectively. LI for them is (0+0+0+2)/4=0.5. See Appendix A for these test cases.

The knowledge model of this system consists of many diagrams but one worksheet with

four scenarios. As discussed in Chapter 5, each scenario needs a test case. Test cases in the

knowledge model are important ones as they test the knowledge. The first four scenarios are

general ones; they test each task by running it in its general form. More detailed test cases are

introduced from the diagrams for the rules and the essence of the knowledge base. Test case 24 is

dedicated for task 1, it has the following parameters:

1. Test case ID: 24

2. CommonKADS model: Knowledge model

3. Input variables: magazine produced reflects all the applications and the right information

4. Test setup values: all applications entered by the data typist

5. Test execution steps: run system and login as magazine producer to magazine interface

then click on the button that publishes magazines (check that magazine reflects

residences by checking their numbers).

6. Expected solution: magazine is published with the right number of residences and the

right information.

7. System’s solution: -

8. Local Importance: (5+5+5+5)/4= 5

9. Number of execution times: 0

146

10. Informal description: this test case insures that the magazine publishing is performed

soundly.

Test cases 25, 26 and 27 check for tasks 2, 3 and 4 respectively. Test cases 24-27 have the same

local importance. As discussed previously in this chapter, there are three main transactions in the

communication model. The constraints part of worksheet CM1 is used to generate a test case for

each transaction. See Appendix A. Test case 28 is (for transaction 1):

1. Test case ID: 28

2. CommonKADS model: Communication model

3. Input variables: attribute value pairs of an applicant and the residence

4. Test setup values: -

5. Test execution steps: run system and order application assessment.

6. Expected solution: assigner screen displays an order is being made. (this will ensure that

the transaction went through).

7. System’s solution: -

8. Local Importance: (5+4+3+2)/4= 3.5

9. Number of execution times: 0

10. Informal description: this test case insures that transaction 2 goes through smoothly.

Test case 29 and 30 (Appendix A) test transactions 2 and 3.

Another test case is needed to check the correctness of the transformed data for each

transaction. Test cases 31, 32 and 33 test that for transactions 1, 2 and 3 respectively. Any other

transaction needed in the system would need more test cases such as the ones defined for

transactions 1, 2 and 3.

147

Important test cases are introduced for the knowledge from the diagrams. As discussed

previously, rules in the knowledge base should reflect the applicants’ information to assign them

the right residence. As mentioned previously, three parameters are involved: the number of

family members, the area of the residence and the income of the applicant. Test case need to be

defined to cover the three parameters and test the priority calculator’s functionality (refer to

Figures 29 and 32). Different numbers are generated for testing the knowledge base, e.g. number

of family members = 3, area of residence: area C, income is: $40,000/ year. Test cases generated

here fall under the following categories: family members: 1, 2, 4, 6, 8 and more than 8. Annual

income in Euros: 0-10,000, 10,000-40,000, 40,000-100,000, 100,000-250,000 and 250,000-

500,000. Age: Less than 18, 18-35, 35-45, 45-60 and more than 60. These values are chosen by

the expert not the knowledge engineer as they require knowledge in the domain.

The total of running all the combinations of all the cases is: 6 (income categories) *5 (age

categories) *5 (number of family members categories) =150 test cases. For each test case, the

knowledge engineer and the expert evaluate the results and decide if the test case failed or

succeeded accordingly. Test case 34 for instance is:

1. Test case ID: 34

2. CommonKADS model: Knowledge model

3. Input variables: Family members=1, income= 1000, age = 18.

4. Test setup values: -

5. Test execution steps: run system and fill application with the input values and assign a

residence (check for validity by the expert).

6. Expected solution: Applicant should be evaluated based on the expert knowledge, and get

a residence.

148

7. System’s solution: -

8. Local Importance: (4+5+5+5)/4= 4.75

9. Number of execution times: 0

10. Informal description: test the knowledge.

Test cases 35 – 183 cover all the other variations of income, age and number of family members.

The complete list of test cases is introduced in Appendix A of this dissertation.

Diagrams defined in the CommonKADS models are used for inspection and early stages of

validation (analysis and context validation as defined in Chapter 5). Additionally, the diagrams

are used to extract test cases. For each system a different number of diagrams are defined and

thus different diagrams are used to extract test cases. Every entity in each diagram is used to

extract test cases. An entity in a diagram is a process, data, agent, transaction, inferences…etc. In

the housing KBS, 12 diagrams were drawn. All are presented in section 6.3 of this chapter. For

this small system, only five test cases are extracted from the diagrams and the design model

because most of the cases are covered by the worksheets. An example test case is given from this

diagram (entity is: magazine production):

1. Test case ID: 184

2. CommonKADS model: Organizational model

3. Input variables: primary process (refer to Figure 23)

4. Test setup values: -

5. Test execution steps: run system and call magazine production function.

6. Expected solution: system will enter the magazine production mode.

7. System’s solution: -

8. Local Importance: (1+5+5+3)/4= 3.5

149

9. Number of execution times: 0

10. Informal description: this test case deals with process from UML activity diagram.

Other test cases are introduced similar to this test case to test the system performance and

compare it to the diagrams presented in the models. Test cases 183 to 188 represent the diagram

entities; these test cases test the knowledge base and the system. It is interesting to note here that

a small system like the housing KBS generated 188 test cases. The CBTCR tool is needed to

reduce the number of executed test cases to minimize time and effort.

All the test cases are entered into the excel spread sheet of the CBTCR tool. Thus,

CBTCR tool selects the appropriate set of test cases at each iteration. Test cases are executed on

the knowledge-based system. While refining the system, the knowledge engineer might add more

test cases of newly added features or refined parts of the system. Furthermore, the knowledge

engineer would remove test cases for removed tasks or transactions. Results of running the test

cases are introduced in Chapter 7.

6.5 Summary

In this chapter the housing KBS is introduced including the CommonKADS models. The

diagrams and the system’s worksheets are presented. System development is introduced.

Moreover, the 188 test cases extracted from the system are listed. Next chapter describes the

experiments conducted and their results. The full code for the housing KBS is included in

Appendix B of this dissertation. The full code for the CBTCR tool is available for research upon

request from the developer.

150

CHAPTER 7: EXPERIMENTAL EVALUATION OF MAVERICK

This chapter describes the experiments conducted to evaluate MAVERICK. The

experiments consist of three main sets. The first set of results is obtained by inserting errors into

the housing KBS by the developer (the author). The second set of results is obtained by inserting

errors into the system by seven objective human test subjects. The third experiment is comparing

MAVERICK qualitatively to other validation methods for knowledge-based systems. The

experimental setup, procedures and results for the three sets are discussed in this chapter. All the

experiments are performed using the housing KBS, MAVERICK and the CBTCR software tool.

7.1 Introduction

The first step of this experimental research is to validate a knowledge-based system through

CommonKADS using MAVERICK. The housing KBS in Chapter 6 is used for that purpose.

After developing the system with CommonKADS, MAVERICK should be able to find errors

and invalid aspects in the system. The performance of MAVERICK is then qualitatively

compared to other two validation methods from literature. The detailed steps of the experiments

in this chapter are:

1- Design the housing KBS using CommonKADS (introduce all the models and diagrams)

(described in Chapter 6)

2- Extract test cases from the context, analysis and design models and all the diagrams. (see

in Chapter 6)

3- Implement the housing KBS incrementally

4- Run test cases for each iteration using the CBTCR automated tool

151

5- Record time and effort required for each one of the previous steps and for every iteration

of validation and development

6- After all the steps of development are complete, four types of errors were seeded in the

system by the developer. Errors were seeded into: worksheets, diagrams, design and

implementation

7- Using the CBTCR tool, run test cases and check whether the MAVERICK method

detects the errors.

8- Guide seven human subjects on inserting additional different errors into the housing

KBS.

9- Using the CBTCR tool, run test cases and check if the MAVERICK detects the errors.

10- Record the results and the resources’ consumption

11- Qualitatively validate the system with other two validation methods (VIVA and

EMBODY) to compare with MAVERICK

12- Record the results and the resources’ consumption for the VIVA and EMBODY

Steps 1 through 5 are described in Chapter 6. Steps 6 and 7 are introduced in the section 7.2 of

this chapter. Steps 8, 9 and 10 introduced in section 7.3 while steps 11 and 12 are introduced in

section 7.4.

7.2 Experiment #1: Detection of Errors seeded by the developer

This section describes the first experiment and the first set of results. The purpose of this

experiment is to measure the ability of the validation method to capture different types of errors

in the system at different stages of development.

152

7.2.1 Experimental Setup

As introduced in Chapter 5, one of the stages of MAVERICK is inspection validation. It is

performed manually on the system’s worksheets and diagrams. This stage includes inspection of

the CommonKADS models by the expert and the knowledge engineer to reduce the number of

failed test cases and thus the number of errors at the iterative validation phase. Inspection

validation is not performed in this experiment, because this experiment aims to measure the

capability of CBTCR in detecting errors, not manually by the expert. To comprehensively test

this system, errors had to be entered at different levels of abstraction. Errors are inserted in the

system by the developer in four categories:

1. Errors inserted in the worksheets: these are errors in representing the domain and then in

defining the problem in the worksheets.

2. Errors inserted in the diagrams: these errors relate to seeding wrong representations of the

real world in UML and DFD diagrams.

3. Errors inserted in the design: these errors relate to the design model.

4. Errors inserted in implementation and knowledge base: inconsistencies in the

implementation of the worksheets into code (modifying the code so it doesn’t reflect

requirements). Additionally, errors in the knowledge where they don’t reflect the real

world knowledge.

Twenty errors were inserted by the developer in these four categories. These errors are discussed

in the experimental procedure in sub-section 7.2.2.

153

7.2.1.1 System validity before errors insertion

It is essential to ensure that the housing KBS was valid and clear from errors before the

developer and the human subjects’ errors were inserted. The worksheets and the diagrams

introduced in the previous chapter were all based on a solid benchmark: the worksheets and

content from the book [9]. The CommonKADS models were carefully checked manually by the

author, section by section to ensure their correct representation of the system.

The housing KBS was built based on the worksheets. While developing the system, each

transition was carefully checked and all the related test cases were executed. As a result, all the

extracted test cases were executed on the system in multiple iterations. This was possible

because the number of test cases was relatively small. The housing KBS is a small KBS and

checking all the rules and the logic of the system was feasible in a timely manner. This made it

possible to execute all the test cases. The test cases cover all the possible execution paths for the

knowledge-based system. For bigger systems, the number of test cases could reach up to

millions, however, which would make it impossible to execute all the possible paths. After

executing all test cases, no error was found in the housing KBS.

7.2.2 Experimental Procedure

Upon validation of base version, the housing KBS system and models were purposely modified

at all levels with incorrect code/knowledge. The following errors were inserted into the housing

KBS at the four defined levels defined below:

1. Errors in the worksheets: in real life, resident assignment is performed by the assigner.

The first error seeded here is having OM3 have resident assignment by the data typist.

154

The second error in this category is improperly removing magazine production from the

input tasks section in TM1 for task 2. The third error in this category is not permitting the

assigner to have access to the assessment criteria or the knowledge. (Total errors = 3).

2. Errors in the diagrams: first error here was to remove the action “evaluate” from the

inference structure of the knowledge and replace it with a wrong inference “select” (refer

to Figure 27). The second seeded error removed the residence specific constraints from

the diagram (refer to Figure 28). Third error for this category changed the relation in

Figure 30 from many to 1 to 1 to many. (Total errors = 3).

3. Errors in the design: Error seeded in design changed the location of the seed class and

linked it to the data entry class (refer to Figure 33). (Total errors = 1).

4. Errors in implementation and knowledge base: First error in implementation is seeding a

number of random calculation errors in the priority calculator; this is done with nine

different errors. Second error gives incorrect access to wrong agents by giving them same

user names and same access roles. This is done for the three users, which results in three

errors. The last error in this category is to call the function/object responsible for

application assessment before calling the function responsible order application data.

(Total errors = 13).

These 20 errors are described in Table 42. The errors were inserted using the Java Eclipse

platform. The code files were opened and the code was manually modified. After the 20 errors

were inserted, the CBTCR tool is used to select test cases for every validation iteration. Test

cases are manually executed on the system to detect theses errors.

155

7.2.2.1 Error detection

Errors are detected using the predefined set of test cases. As it is discussed in previous chapters,

in the test cases format, each test case includes an “expected result” and a “system result”. After

executing any test case, if the system’s result is different than the expected result, this indicates

an error in the system.

7.2.2.2 Error location identification

Each test case is designed to test a very specific location in the knowledge-based system. In

CommonKADS, the design model smoothly transforms the context and analysis models to

implementation. This means that each of the models is visible in the design of the system and

therefore, visible in the implementation. Having extracted the test cases from the models and

because each test case is associated with a model, it is easy to realize the location of the error in

the system. Results for this set of experiments are introduced in the next sub-section.

7.2.3 Experimental Results

In this sub-section, the system’s ability to find errors is evaluated, recorded and discussed. The

20 developer-seeded errors were searched for by the CBTCR tool and the results are recorded in

Table 42.

Validation in MAVERICK is performed in iterations. Iterations are part of the spiral

validation in MAVERICK. Spiral implementation is accompanied with iterative validation where

a set of test cases is executed for each iteration. Five iterations were needed to allocate the errors.

Eighteen (18) errors were detected from the 20 inserted errors at different iterations and with

different test cases. Based on the formula presented in Chapter 5 for N, N is equal to 25 in the

first iteration for this system.

156

Table 42: Results for errors inserted into the system by the developer

Error Category Description Detected? Iteration Test
case

1 Worksheets OM3 have resident assignment by the
data typist

Yes 1 18

2 Worksheets Removing magazine production from
the input tasks section in TM1 for task 2

Yes 1 17

3 Worksheets Not permitting the assigner to have
access to the assessment criteria

Yes 1 16

4 Diagrams Remove action “evaluate” from the
inference structure of the knowledge
and replace it with a wrong inference
“select”

No N/A N/A

5 Diagrams Removing the residence specific
constraints from the diagram

Yes 1 26

6 Diagrams Changing the relation in Figure 30 from
many to 1 to 1 to many

Yes 5 187

7 Design Changing the location of the seed class
and link it to the data entry class

No N/A N/A

8 KB Wrong access to assigner Yes 5 1
9 KB Wrong access to data typist Yes 3 185
10 KB Wrong access to magazine editor Yes 3 184
11 KB Numeric error for assignments in rules.

Family members rule.
Yes 1 16

12 KB Numeric error for assignments in rules.
Age rule.

Yes 2 64

13 KB Numeric error for assignments in rules.
Income rule.

Yes 1 40

14 KB Numeric error for assignments in rules.
Area rule.

Yes 1 17

15 KB Numeric error for assignments in rules.
Rent rule.

Yes 1 18

16 KB Numeric error for assignments in rules.
Family members’ categories.

Yes 1 18

17 KB Numeric error for assignments in rules.
Family members and age.

Yes 1 34

18 KB Numeric error for assignments in rules.
Family members and income.

Yes 1 34

19 KB Numeric error for assignments in rules.
Income and age.

Yes 1 34

20 Code Call the function/object responsible for
application assessment before calling
the function responsible order
application data

Yes 1 25

157

The CBTCR tool selects 25 test cases based on the CBTCR algorithm described in Chapter 5. N

= (Number of test cases-Number of rules)/Project size

N = (188 - 40)/6 = 24.6 = 25. During every iteration, the values of LI, GI, MW and result

change. Test cases are flagged and sorted accordingly.

Appendix C shows the parameters for every validation iteration. The test cases are sorted and

displayed in Appendix C in the following format:

'TestCaseID'-'CommonKADSModel'-'LocalImportance'-'NumberofRuns'-'ModelWeight'-

'GlobalImportance'-'Result'-

The result is either 0 (test case failed), 1 (test case succeeded) or 2 (not executed). The

model number is either 0, 1 (organization model), 2 (task model), 3 (agent model), 4 (knowledge

model), 5 (communication model) or 6 (design model). After the test cases are sorted, the first 25

test cases are displayed to the user.

Test cases’ IDs generated by the CBTCR tool for the first iteration were:

16, 17, 18, 19, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50

Test cases ID numbers generated for the second iteration were:

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75

Test cases ID numbers generated for the third iteration were:

10, 11, 12, 13, 14, 15, 28, 29, 30, 31, 32, 33, 184, 185, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86

Test cases ID numbers generated for the fourth iteration were:

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111

Test cases ID numbers generated for the fifth iteration were:

1, 2, 3, 4, 5, 6, 7, 8, 9, 187, 188, 186, 20, 21, 22, 23, 112, 113, 114, 115, 116, 117, 118, 119, 120

158

The listed test cases are executed on the system. Some test cases were able to detect errors (test

cases listed in the table of results). After executing these five validation iterations, several

behaviors for the CBTCR tool were observed and they are discussed next.

7.2.4 Discussions

To find the 20 errors, five validation iterations were performed. It is fair to expect that some of

these errors would have been detected previously by the early manual inspection validation

stages. For example, errors 7 and 4 were not found by MAVERICK; they might have been

detected by the early design and the analysis validation phases. Nevertheless, thirteen errors were

found after the first iteration. One error was found after the second iteration. Two errors were

found after the third iteration. Finally, two errors were found after the fifth iteration. The reason

that the majority number of errors were found in the first iteration is because the design of the

test cases and the local importance factor. In the universal set of test cases, many of the test cases

come from the knowledge model. All the test cases presenting the different variations of

applicants to the system had a high local importance and thus were selected by the CBTCR tool.

That is why it took five iterations to get to all the other models’ test cases. It is worth

considering that the two un-detected errors were seeded into the diagrams. These errors were not

found in the diagrams and weren’t directly reflected into the system rules. All errors seeded into

the knowledge base were detected. The validity of the knowledge in the worksheets was a good

substitute for the defects found in the diagrams. In the housing KBS, the number of test cases for

models such as the communication model or the organizational model was low because of the

nature of the system. The CBTCR tool works better if test cases for different models don’t have a

difference in their number, the less the difference is, the better CBTCR works. Most importantly,

the number of iterations would have been lower if there have been an equal or nearly equal

159

number of test cases with high importance in all the models, not only KM or AM as it is the case

in the housing KBS. The housing KBS doesn’t have a large OM, CM or DM so the errors in

these models were hard to reach because their global importance was low. CBTCR selects better

test cases when models have less difference in the number of test cases in each of them.

On the other hand, the validation percentage displayed in the tool didn’t reflect the real

validity of the system during certain stages. This method treats all the models as being equal in

importance. For instance, the validity of the communication model is set to be equal in

importance to the validity of the organizational model even though in most cases the number of

test cases for a model is more or less than the other models. The validation percentage in the tool

only gives the average validity of the models. It is suspected that bigger systems could yield

better results and would fit into CBTCR better; the more test cases there are the better this tool

will work. Test case reduction depends on many factors. The design of the test cases importance

and which test case is in which model highly affects the process and the results. In CBTCR, if a

test case failed, the model from which this test case is from will have a very high importance in

the next iteration. If there are many errors in many different models, it would take many

iterations to find all the errors. The knowledge engineer should have the experience and

competence to skip some test cases if they are very similar.

Another important thing to point out here is that some test cases help in identifying a

number of errors. For example, a test case such as #16 represents core functionality and helps in

finding many errors after the first iterations. This is because of the successful sorting of the test

cases. The test case that addresses the problem specifically was only considered the one to detect

the error, although in many cases, fixing one error would lead to finding more related errors in

160

the same scope. This was done with the errors seeded by the human subjects. Errors seeded by

the human test subjects are introduced in the next section.

7.3 Experiment #2: Errors Seeded by the Human Test Subjects

The process of inserting errors into the system by objective human test subjects is the main body

of evidence for this research. In the previous section, results were described for errors inserted by

the developer. In statistics, a population of 30 is enough to get a valuable result from an

experiment. In this experiment, 100 errors were inserted into the system. 80 errors were inserted

by the human test subjects. These are in addition to the 20 errors discussed in the previous

section. First, the experimental setup is discussed.

7.3.1 Experimental Setup

To experiment more with MAVERICK, different number of errors were inserted by seven

human subjects. Seven copies of this housing KBS were created, one copy for each human

subject. The seven human subjects are students at the University of Central Florida (UCF) with

different majors and degrees. Each human test subject was given a color code.

1. Red: PhD student in Computer Engineering

2. Yellow: PhD student in Computer Engineering

3. Blue: PhD student in Computer Engineering

4. White: PhD student in Computer Engineering

5. Orange: Undergraduate student in Computer Science

6. Brown: Undergraduate student in Electrical Engineering

7. Grey: Undergraduate student in Computer Engineering

161

A description of the system was provided to each one of the human subjects. They were given a

short presentation on how the housing KBS functions. They were shown the screens, the classes

and the knowledge base. They insert errors based on the following guidelines:

1. Errors could be inserted anywhere in the system

2. Errors inserted could be anything from: redundant rules, inconsistent logic, invalid

information, or any modification to the system that makes it not representive of the real

world system.

3. The human subject can modify certain access rules to make them perform in a wrong

fashion

4. The human subject can modify the priority calculator to make them perform in a wrong

fashion

5. Errors were to be kept secret from the developer until they were discovered by

MAVERICK or undiscovered if MAVERICK claims a valid system

These guidelines were defined and communicated to them by the developer. The human test

subjects then inserted the errors into their copy of the system based on the procedure discussed

next.

7.3.2 Experimental Procedure

The errors were inserted using the Java Eclipse platform. Each test subject inserted the errors in

different places of their copy of the system. In all, 80 errors were inserted by the seven human

test subjects. After errors are seeded, a report was written by each test subject describing her/his

errors. This report was not provided to the developer until after the CBTCR tool was used to find

the errors. The report was sent to a neutral third party and not revealed to the developer. There

162

was no indication on what errors were seeded before running test cases and attempting to detect

the errors. Test cases were executed on each system modified by each human subject separately.

Results were also recorded separately by the developer. Another report was written by the

developer to identify the detected errors. Errors are presented next as they were reported by the

test subjects.

The detailed list of inserted and detected errors per human subject is introduced next in

the experimental results. Each error indicates the test case by which it was identified.

Additionally, a full list of test cases for the housing KBS can be found in Appendix A. The

legitimacy of the errors is discussed next.

7.3.2.1 The legitimacy of the errors

To fairly evaluate MAVERICK, it is important to eliminate errors that don’t address validation.

Not legitimate errors fall into two categories:

1. Verification errors

2. Syntax errors

Some errors were strictly verification errors and not validation errors, which is outside the scope

of MAVERICK. MAVERICK was able to trace some of the verification errors inserted, but not

all of them. MAVERICK is designed to check for errors that deal with representing the real

world, as a validation method. Some users didn’t have a clear understanding on the difference

between validation and verification, thus, inserted verification defects. These errors were

considered not legitimate. Verification errors are identified based on the definition given in

Chapter 1. As the definition states, any error that deals with the consistency or the completeness

of the knowledge base is a verification error. On the contrary, errors that present the real-world

are considered validation errors. Some other errors were strictly syntax errors in the code, for

163

which the knowledge-based system wouldn’t compile or run with. These errors are not

considered validation errors either. They are run-time and syntax errors. In the following

sections, each inserted error will be indicated to as legitimate (validation error) or not legitimate

(verification or syntax error) based on what is discussed in this sub-section.

7.3.3 Experimental Results

Experimental results are introduced per test subject. For each test subject, the list of inserted and

detected errors is discussed. The list of errors inserted was taken from the reports written by the

human test subjects after inserting the errors. The line of code in which the error was inserted is

indicated for all the errors. The complete code with errors locations is in Appendix B. The Part

of code where errors were inserted is colored in green. The location of the error is indicated to by

the color code and the error number. For instance: Red #4 (indicates to the location of error

number 4 inserted by the test subject Red) and Blue #1 (indicates to the location of error number

1 inserted by the test subject Blue).

7.3.3.1 Errors inserted by test subject Red

Table 43 lists the errors inserted by test subject Red. Test subject red inserted nine errors of

which four were detected by MAVERICK. Five errors were not detected. Out of these five

errors, one error should have been caught, number 7. This error represents a logical change to the

system which reflects the validity of the system. In error 7, AND was modified to OR, which

effects the logic of the knowledge. For the other four undetected errors, test subject red inserted

one verification error (#1) and three syntax error (#5, #2 and #3). These errors are considered not

legitimate.

164

Table 43: Errors inserted by test subject Red

Error # Line # Description Detected?
1 328 Set to true No
2 515 Removed equal sign No
3 517 Removed equal sign No
4 524 Added a line to reset counter Yes
5 526 Removed ‘else’ and changed greater than sign to ‘=’ sign No
6 91 Added code to set rent to -2 Yes
7 72 – 90 Changed logical “and” to logical “or” No
8 67 - 69 Changed the area number Yes
9 50-55 Family is randomly assigned a number from 0 to 50 Yes

Errors 4, 6, 8 and 9 were detected by MAVERICK. Errors detected for color code Red:

1- Adding an invalid rule “if income and age < 5 then rent equals -2”

Only one applicant is assigned for an assignment. This error is caused by an added rule:

income<5 and age<5, that is always the case and rent is assigned to -2! This is an invalid

value. (Detected by: Test case 16)

2- Adding the following to the code ”- -ACounter”

Adding - -ACounter after ACounter++. Applicants number not increasing. (Detected by

running the application)

3- Number of family members defined by a random generator

Family members = 30 while is entered 3 or 4, error found in KB, random generator.

(Detected by: Test case 16)

4- Swap two rules for family and Area in the knowledge base

Change in rules for family and Area. Family of 2 is getting a home for a family of 4 and

vice versa. (Detected by: Test case 36)

165

7.3.3.2 Errors inserted by test subject Blue

Table 44 lists the errors inserted by test subject Blue. Test subject blue inserted six errors of

which three were detected by MAVERICK. Three errors were not detected. Out of these three

errors, one error should have been caught, number 2. This error represents a minor change in one

of the rules to the system that reflects the validity of the system. In error 2, a”>=” sign was

changed to “>”. For the other two undetected errors, test subject blue inserted one verification

error (#1) and one syntax error (#3). These errors are considered not legitimate.

Table 44: Errors inserted by test subject Blue

Error # Line # Description Detected?
1 509 ggg was assigned 2 instead of 1 (1 was the correct value). No
2 507 if (Integer.parseInt(jTextFieldfamily.getText()+"") >= 8)fff=5;

was replaced by: if (Integer.parseInt (jTextFieldfamily
.getText()+"") > 8)fff=5;

No

3 709 returnedResults = kb.maincontroller (ARRAYa,ARRAYr,
ACounter,RCounter); was replaced by: returnedResults =
kb.maincontroller(ARRAYa,ARRAYr, RCounter, ACounter);

No

4 82 if (Income == 3 && Age == 1) Rent = 3; was replaced by: if
(Income == 1 && Age == 1) Rent = 3;

Yes

5 92 if (Rent == 0 && Area ==0){return false;} was replaced by: if
(Rent == 0 && Area ==0 && Rent != 0){return false;}

Yes

6 85 if (Income == 3 && Age == 4) Rent = 3; was replaced by if
(Income == 3 && Age < 4) Rent = 3;

Yes

Errors 4, 5 and 6 were detected by MAVERICK. Errors detected for color code Blue:

1- Array of applicants counter is swapped with array of residences counter

This caused a Compilation/Debug error. Array out of bounds: wrong counter for wrong

array. (Detected by: Test case 10)

2- Wrong rule for income and rent

Income = 1 is getting rent = 3 (Detected by: Test case 40)

166

3- Changing the Boolean, reassign() is always called!

Secondary assignments are assigned to what should have been initial assignments.

Reason: re-assign function is called for all the cases for no reason. (Detected by: Test

case 101)

7.3.3.3 Errors inserted by test subject Yellow

Table 45 lists the errors inserted by test subject Yellow. Test subject yellow inserted eight errors

of which three were detected by MAVERICK. Five errors were not detected. Out of these five

errors, one error should have been caught, number 4. This error represents a minor change in the

logic flow of the system. The size of the array defines the number of residences, the error

changed a variable I to 0 in that array. The full code with the error locations is included in

Appendix B of this dissertation. This error affects the validity of the system. For the other four

undetected errors, test subject yellow inserted one verification error (#8) and three syntax errors

(#1, #5 and #6). These errors are considered not legitimate.

Table 45: Errors inserted by test subject Yellow

Error # Line # Description Detected?
1 185 LISTofRESIDENTS.add("7-1000-545-D") changed to

LISTofRESIDENTS.add("7-1000-545-d")
No

2 500 Set fff = (Integer.parseInt(jTextFieldfamily. getText()+"")- 5 Yes
3 521 Set iii = 2 Yes
4 705 ARRAYa[1][i]=SecretlistIncome.get(i); changed to

ARRAYa[1][i]=SecretlistIncome.get(0);
No

5 106 R[0][i]=50; changed to R[0][i]=49; in ASSIGN function No
6 115 R[0][i]=50; changed to R[0][i]=4; in ReASSIGN function No
7 72 In RulesKB, added Area = Family % 2; Yes
8 94 In RulesKB, added Income = Rent % Income; No

On the other hand, errors 2, 3 and 7 were detected by MAVERICK. Errors detected for color

code Yellow:

167

1- Error in rule, is assigning family-5 to number of family members instead of family.

Family members’ value is minus value if less than category 5 (Detected by: Test case 35)

2- Error is adding a rule for income to be in category 2 every time.

Income is always between 100000 and 500000! (Detected by: Test case 41)

3- Add modulo to Area and Income.

Area (is always a low value, due to modulo) and income (is assigned to zero although

mostly is not a zero, when income and rent are same category) assignments are different

that what they should be! Area = family %2 and income = rent %income (Detected by:

test case 64 for area and test case 129 for income)

7.3.3.4 Errors inserted by test subject White

Table 46 lists the errors inserted by test subject White.

Table 46: Errors inserted by test subject White

Error # Line # Description Detected?
1 69 knowledgebase.java changed area assignment to 3 Yes
2 102 change == AREA to !=AREA Yes
3 112 changed == to < for AREA-1 Yes
4 28 changed < a to <=a Yes
5 26 ag=0 changed to ag=2 Yes
6 38 j++ changed to j-- Yes
7 50 == changed to != Yes
8 72 && changed to || Yes
9 77 && changed to & Yes
10 515 MainApplet – <= changed to >= Yes
11 521 iii changed to fff Yes
12 178 SecretlistArea.add(1) changed to SecretlistArea.add(2) No
13 495 Removed initial ! from if statement Yes
14 524 changed ++ to -- Yes
15 526 changed false to true No
16 555 changed “auser” to “a2user” Yes
17 592 changed == null to !=null Yes
18 690 changed [3] to [4] Yes
19 515 changed iii to ggg Yes
20 555 changed true to false No

168

Test subject white inserted twenty errors of which seventeen were detected by MAVERICK.

Three errors were not detected. All of the three errors were verification errors (#12, #15 and

#20). More description about the detected errors is presented next. Errors detected for color code

White:

1- Modifying Area in a rule.

Error was found in knowledge base, when family is set to 4, Area is set to 3 instead of 4.

(Detected by: Test case 44 and 45)

2- Applicants assigned when they shouldn’t be assigned.

When income is from category 1 or age from category one, && switched to || in rule.

(Detected by: Test case 38 and 39)

3- “ANDing” error

Symbol & instead of && in rule (Detected by: Running and compiling the system)

4- Area too big assigned for some applicants

R[1][i]<Area-1 instead of R[1][i]==Area-1

(Detected by: Test case 73)

5- Income not assigned correctly

When income <=100000, ggg=2 and not iii=2. This generates a wrong value for the age

and the income (Detected by: Test case 112, 113)

6- Error in code

Acounter—instead of Acounter++, wrong counter value for arrays holding information

about applicants (Detected by: Compiling the system)

7- Error in interface

169

Jlabelerror: appearing during wrong times. Error asking for missing fields while there

isn’t any! Label set to visible = true (Detected by: Test case 11)

8- Login for assigner changed

Change of username (Detected by: Test case 1)

9- Login for assigner changed

Change of radio-button for assigner (Detected by: Test case 1)

10- Array of applicants has more than expected when assigning residences to

applicants.

ARRAYa=new int[4] instead of int [3] (Detected by: Test case 13)

11- Data typist info saved without the need to enter a name

Error cause by changing a rule from “!=” to “==” (Detected by: Test case 18)

12- Income not assigned correctly

When income >=100000 instead of <= (Detected by: Test case 112, 113)

13- Null pointer error

Null pointer exception, change of”JButtonNewApp != Null” instead of “JButtonNewApp

== Null” (Detected by: Compiling the first time)

14- If age is not set, age is assigned to 2

Age=2 instead of the default value of 0 (Detected by: Test case 67)

15- Always a missing ID for an applicant

Sign “=” found in the loop condition where it shouldn’t be. From class KB.java for

variable “a” i<=a (Detected by: Test case 13)

16- Not all residents are assigned a residence

CONTROL variable != false instead of CONTROL == false (Detected by: Test case 67)

170

17- Wrong area assignments

R[1][i] != Area instead of R[1][i]==Area (Detected by: Test case 67)

7.3.3.5 Errors inserted by test subject Orange

Table 47 lists the errors inserted by test subject Orange.

Table 47: Errors inserted by test subject Orange

Error # Line # Description Detected?
1 72 Changed “Age” to “Family” Yes
2 73 Changed “Age” to “Family” Yes
3 74 Changed “Age” to “Family” Yes
4 75 Changed “Age” to “Family” Yes
5 77 Changed new Rent value to 4 Yes
6 77 Changed new Rent value to 4 Yes
7 130 Set R[0][i] to 100 instead of 50 Yes
8 131 Set R[0][i] to 5 instead of 50 Yes
9 87 Changed Income conditional value to 5 Yes
10 88 Changed Income conditional value to 5 Yes
11 89 Changed Income conditional value to 5 Yes
12 90 Changed Income conditional value to 5 Yes
13 92 Changed first IF condition to Family == 1 No
14 84 Changed && to || Yes
15 84 Changed && to || Yes

Test subject orange inserted fifteen errors of which fourteen were detected by MAVERICK. One

syntax error was not detected (#13). More description about the detected errors is presented next.

Table 49 shows the detailed results for all the human subjects. Errors detected for color code

Orange:

1- Mixed assignments for different family members input

Change in rule of “income&age” to “income&family” (Detected by: Test case 13)

2- Mixed assignments for different family members input

Change in rule of “income&age” to “income&family” (Detected by: Test case 13)

171

3- Mixed assignments for different family members input

Change in rule of “income&age” to “income&family” (Detected by: Test case 13)

4- Mixed assignments for different family members input

Change in rule of “income&age” to “income&family” (Detected by: Test case 13)

Note: Errors 1, 2, 3 and 4 are the same because the error is repeated 4 times in the

knowledge base.

5- Change of rule for rent assignments

Change in rent assignments from 2 to 4 for income 2 and age category 1. Change of rule.

(Detected by: Test case 40)

6- Change of rule for rent assignments

Change in rent assignments from 2 to 4 for income 2 and age category 4. Change of rule.

(Detected by: Test case 64)

7- Age factor working in a wrong manner

Rule change: Income =3 || Age =1, 4 to && (Detected by: Test case 58)

8- Age factor working in a wrong manner

Rule change: Income =4 || Age =1, 4 to && (Detected by: Test case 55)

9- Income is set to group 5 which doesn’t exist

When income= 4 and age = 1 rent = 4, income is changed to 5. (Detected by: Test case 2)

10- Income is set to group 5 which doesn’t exist

When income= 4 and age = 2 rent = 4, income is changed to 5. (Detected by: Test case 2)

11- Income is set to group 5 which doesn’t exist

When income= 4 and age = 3 rent = 4, income is changed to 5. (Detected by: Test case 2)

12- Income is set to group 5 which doesn’t exist

172

When income= 4 and age = 4 rent = 4, income is changed to 5. (Detected by: Test case 2)

13- A residence is assigned multiple applicants

Limiting factor changed in code: R[0][i] = 50 switched to = 100. (Detected by: Test case

2)

14- A residence is assigned multiple applicants

Limiting factor changed in the code: R[0][i] = 50 switched to = 5. (Detected by: Test case

2)

7.3.3.6 Errors inserted by test subject Brown

Table 48 lists the errors inserted by test subject Brown.

Table 48: Errors inserted by test subject Brown

Error # Line # Description Detected?
1 504 fff changed to ggg in main loop if statement #5 Yes
2 506 Eliminated if statement #6 from main loop No
3 514 iii = 2 changed to iii = 5 on second if statement in main loop Yes
4 68 Family changed to Rent in knowledge base 3rd if statement Yes
5 74 Rent changed to family in 8th if statement Yes
6 90 && changed to || in last if statement Yes
7 127 Area+4 changed to area+7 in reassign function Yes
8 83 == changed to != in 15th if statement Yes
9 511 <60 changed to <50 in main loop else if Yes
10 516 <500000 changed to <550000 in main Yes
11 68 3 changed to 8 in third if statement main loop Yes
12 122 Rent changed to family in reassign function Yes

Test subject brown inserted twelve errors of which eleven were detected by MAVERICK. One

verification error was not detected (#2). More description about the detected errors for test

human subject brown is presented next. Errors detected for color code Brown:

1- Rule changes in family and area relation assignments

173

Family changed to “Rent” for area =3 and family =3 (Detected by: Test case 48)

2- Rule changes in family and area relation assignments

Rent changed to “Family” for income =1 and age =2 (Detected by: Test case 64)

3- Rule changes in income and age relation assignments

Age == 3 is changed to age !=3 for rent =4 (Detected by: Test case 65)

4- More assignments to applicants (redundant applicants)

Rent && area changed to rent ||area (Detected by: Test case 16)

5- Wrong area assignment for applicants

Area+4 changed to area+7 (Detected by: Test case 16)

6- Wrong family member number assignment for applicants

Rent-5 changed to family-5 (Detected by: Test case 16)

7- Some families not assigned residences (if family have 6 members)

Missing rule, if family == 6 fff=4 (Detected by: Test case 55)

8- Age entered = 57 is not getting right assignment

Age <50 instead of age<60 (Detected by: Test case82)

9- Family members = 8 is dealt with as = 2

Change in family members rule for category = 3 (Detected by: Test case82)

10- Income is set to a wrong category = 5!

Change iii to 5 instead of 2, category 5 doesn’t exist (Detected by: Test case88)

11- Error for income <500000

Change of income from <500000 to <550000 (Detected by: Test case162)

174

7.3.3.7 Errors inserted by test subject Grey

Table 49 lists the errors inserted by test subject Grey. Test subject grey inserted ten errors of

which eight were detected by MAVERICK. Two syntax errors were not detected (#8 and #1).

Table 49: Errors inserted by test subject Grey

Error # Line # Description Detected?
1 47 In RULES_KB added conditional statement No
2 103 In KnowledgeBase created if statement for first assign Yes
3 73 Changed condition (Income == 1 && Age == 2) Yes
4 112 In ASSIGN, changed two i to i-1 Yes
5 84 For (Income == 3 && Age == 3) rent = 3 Yes
6 65 Age = ag-1 Yes
7 123 In REASSIGN, r has been changed to r*2 Yes
8 112 In ASSIGN, started for loop at i=1 instead of i=0 No
9 101 Removed case: if (Income == 4 && Age == 2) Rent = 4; Yes
10 115 In ASSIGN, changed line RESULTS[1][app]=i; to

RESULTS[1][app/2]=i;
Yes

More description about the detected errors is presented next. Furthermore, all details about the

errors inserted are displayed in Tables 50 and 51. Errors detected for color code Grey:

1- Out of bounds exception

R changed to r * 2 (Detected by: Test case16)

2- Out of bounds exception

Assign is always called, deleted if-statement (Detected by: Test case16)

3- Age Category always wrong

Age = Age-1! (Detected by: Test case16)

4- When Age is in Category 3, applicant not assigned correctly

Income = 1, age = 2 rent =2, age is switched to be equal to 3 (Detected by: Test

case144)

5- System doesn’t handle age for income = 4

175

Missing rule, income = 4 and age = 2, rent = 4 (Detected by: Test case159)

6- Syntax error: assigns even if when rent = 1 and area =0

Rent = 1 and area = 0 is added to KB (Detected by: Test case16)

7- Loop out of bounds exception

I-1 instead of I for assigner’s loop controller (Detected by: Test case16)

8- Wrong assignments for applicants

Applicant 2 is getting what 4 should get; applicant 4 is getting what applicant 8 should

get. Error in code app/2 instead of app in the knowledge base (Detected by: Test case16)

The results show that MAVERICK detected 60 out of 80 errors by the test subjects and 18 out of

20 errors by the developer. This leads to a total of 78 out of 100 (78%). All the errors were

categorized into five main categories (Figure 37 shows the number of errors inserted for each

category):

1. Errors that deal with the users of the system, their access rules and roles

2. Errors that manipulate the knowledge

3. Errors in the interface of the system and the code

4. Errors related to the CommonKADS models

5. Errors that are not legitimate

Out of the 80 inserted errors, 60 of them were detected by MAVERICK.

Overall, a total of 22 errors were not detected, 20 were undetected from the test subject errors

and 2 from the 20 developer errors. 17 of the 22 undetected errors were deemed not legitimate

(17/22 errors). The 17 errors were undetected because of their legitimacy (discussed earlier) in

two categories:

176

1- Some errors were verification errors (7/17 not legitimate verification errors).

2- Some of the errors were syntax errors (10/17 not legitimate syntax errors).

Figure 37: Bar chart for errors’ types inserted into the system

Nevertheless, out of the 22 undetected errors, five were legitimate and should have been

detected. Apart from the two undetected errors inserted by the developer, error number 7 from

the Red human subject was not detected. The error was changing an AND to an OR in a rule.

Additionally, error 2 from the Blue human subject was not detected, a >= sign was changed to >.

Finally, error number 4 from the Yellow user was not detected either, it was a misplaced function

call. The three errors were very minor and hard to get to due to their low level of occurrence. The

tool deviated towards more important parts of the knowledge-based system and couldn’t track

these validation errors. On the other hand, 17 errors were undetected and not legitimate, these

177

errors are categorized as either verification errors or syntax errors. Syntax errors are those that

were inserted that would create a runtime or a compilation error. Verification errors are

identified based on the definition provided in Chapter 1: “Verification is the process of ensuring

that the intelligent system conforms to specifications, and its knowledge base is consistent and

complete within itself” the following list discusses the reasoning behind this categorization for

every error:

1) Verification error (#1) inserted by test subject Red: an “if statement” was set to true,

which results in a true outcome every time it is checked. The “if statement” affects the

logic of the program and its flow. This error results in an inconsistent outcome in the

execution of the system. By having this error, the “false” case of the “if statement”

doesn’t exist anymore resulting in incompleteness. Hence, this is a verification error.

2) Syntax error (#5) inserted by test subject Red: this error includes removing an “else”

from the syntax of the code, this resulted in an unreachable code and a compilation error.

This is a Java syntax error.

3) Syntax error (#2) inserted by test subject Red: an equal sign was removed from the

initialization of the class. This created a runtime error when the object is reached in

runtime. This error is categorized as a syntax error.

4) Syntax error (#3) inserted by test subject Red: similar to the previous error, an equal sign

was removed from an initialize of an object in the main class, thus created a runtime error

when this part of the code is reached while executing the system.

5) Verification error (#1) inserted by test subject Blue: the variable “ggg” represents the age

categories of the applicant in the housing KBS. In the specifications of this system, it is

178

required to have four categories for ages 1, 2, 3 and 4 in the KBS. In this error, category 1

is deleted, resulting in a mismatch with the specifications, thus, a verification error.

6) Syntax error (#3) inserted by test subject Blue: this error consisted of switching the value

of two counters that are passed to the method “maincontroller” in the class KB. The

method maincontroller uses these counters for array sizes and loop counters. Therefore,

switching the two values will result in an “array is out of bound” exception, which is a

syntax error.

7) Verification error (#8) inserted by test subject Yellow: the variable “income” represents

the income of the applicant in the housing KBS. In the specifications of this system,

income is used to calculate the rent that the applicant is capable of paying. This value is

compared with the rent, not the “rent % income” as the error presented. This results in a

mismatch with the specifications, thus, a verification error.

8) Syntax error (#1) inserted by test subject Yellow: In this error, a new resident was added

with rent area D. This was changed from D to d. The test subject reported this as an error,

while it is not. The information about the applicants is not case sensitive. Therefore, not

detecting this error doesn’t reflect validation; it is categorized under not legitimate syntax

errors.

9) Syntax error (#5) inserted by test subject Yellow: In the code, the number 50 is used to

represent an empty cell in the array; this is a coding style used to prevent null values in

arrays and lists. The test subject inserted 49 instead of 50 in the array, which is not

preferable, but is not a real error and most importantly, not a validation error. Therefore,

this is categorized as a syntax error.

179

10) Syntax error (#6) inserted by test subject Yellow: This error is similar to the previous

one. This time, the test subject inserted 4 instead of 50 in the array, which is not a real

error. Therefore, this is categorized as a syntax error.

11) Verification error (#12) inserted by test subject White: this error modifies a variable

passed to a method that controls the list of applicants. This list starts with 1 and should all

be checked. If it is checked starting from 2, the process will be incomplete. This affects

the completeness of the system; therefore, it is a verification error.

12) Verification error (#15) inserted by test subject White: this error changes the initial value

assigned to a Boolean number/controller of the main class from “true” to “false”. This

affects inconsistency with the specifications regarding the applicants’ assignment

process. This error results in an inconsistent outcome in the execution of the class, thus is

a verification error.

13) Verification error (#20) inserted by test subject White: this error is contrary to the

previous one. The test subject changed a “false” to “true” in an initial Boolean value of

the main class. This has the same effect of the previous error, thus is a verification error.

14) Syntax error (#13) inserted by test subject Orange: this error consists of removing an “if

statement” that controls the value “family” in the application to “family == 1”. This

indicated to a clear variance with the specifications which describe that number of family

members might be 1, 2, 3, 4, 5 or more. This error assumes the number of family member

is always 1, which is an obvious verification error.

15) Verification error (#2) inserted by test subject Brown: this error eliminates a rule from the

rule base in class KB.java. This is an example of what is presented in the verification

180

definition introduced in this dissertation: the knowledge base needs to complete within

itself. Eliminating a rule violates completeness; therefore, it is a verification error.

16) Syntax error (#1) inserted by test subject Grey: this error consists of adding a useless

statement to the code. This statement doesn’t affect the system in any shape or form. It is

not relevant to the flow of the system and is unreachable. This error is not inserted into

the knowledge base; therefore it is considered a syntax error.

17) Syntax error (#8) inserted by test subject Grey: this error proposes starting the loop at 1

and not 0. This would not let the “while loop” check for the first item in the array and

therefore skip the first applicant’s information. For the loop to be complete, it should

check all the items. However, this error doesn’t affect the KB or the validity of the

system but the loop itself, therefore it is considered a syntax error.

Syntax errors were detectable because they result in an obvious compilation or runtime error that

is not executable by the system; therefore, the system would halt or crash.

The verification errors were difficult to detect because MAVERICK doesn’t look for

them. These errors could be detected if a process was incorporated into MAVERICK that is

performed prior to validation. This verification process would check for inconsistency and

incompleteness and would compare the system against its specifications. If this was done, the

verification errors would have been detected.

Figure 38 shows the errors inserted by all the users and the number of errors detected for

each human subject.

The overall percentage of success for MAVERICK is 78%. The undetected errors were

due to three reasons discussed previously. However, only five of the errors were legitimate ones

and should have been detected. This relation is illustrated in the pie chart (Figure 40).

181

If one only considers the legitimate errors, the numbers significantly look better for

MAVERICK. Figure 41 shows only the legitimate errors inserted by the human subjects. Out of

the 100 errors, 83 were legitimate errors and out of 83 legitimate errors, 78 were detected. This

leads to a different percentage for MAVERICK’s success in validating the system: 93.9% ≈

94%.

Based on the above discussions, the 94% percentage is used as the official percentage of

this research work, not the 78%. One might think that a verified system is not necessarily a valid

system, which means that if the system has no verification or syntax errors, it doesn’t mean that

it meets the real world requirements, thus, not valid. On the other hand, a valid system also needs

to be verified. Although it is true that a verified system is not a valid system and that a valid

system is a verified system, MAVERICK is strictly a validation method and it is not fair to

include all the different errors in the formula. Furthermore, although all errors are problematic in

the real software development world, this research goal is to address validation only. That’s why

94% is declared as the main result.

Figure 39 illustrates the errors that were detected and the ones that MAVERICK missed,

from which some were legitimate and some weren’t. Tables 50 and 51 introduce a summary of

the specific results of the errors per human subject, based on the errors categories and the types

of errors that are not legitimate.

182

Figure 38: Bar chart for errors inserted by all human test subjects

Figure 39: Pie charts for MAVERICK errors results

183

Figure 40: Pie chart for the 22 undetected errors

Figure 41: Bar chart for the legitimate errors inserted by all the users

184

Table 50: Not legitimate vs. legitimate errors inserted by human subjects

Human Subject Detected/Total Legitimate Errors Syntax
Errors

Verification
Errors

Red 4/9 1 3 1
Blue 3/6 1 1 1

Yellow 3/8 1 3 1
White 17/20 0 0 3

Orange 14/15 0 1 0
Brown 11/12 0 0 1
Grey 8/10 0 2 0

Developer 18/20 2 0 0
Total 78/100 5 10 7

Table 51: Error categories inserted by the human subjects

Human Subject Users/Roles Knowledge Interface/code CommonKADS Not
legitimate

Red 0 3 2 0 4
Blue 0 2 2 0 2

Yellow 0 2 2 0 4
White 3 5 8 1 3

Orange 0 14 0 0 1
Brown 0 9 2 0 1
Grey 0 6 2 0 2

Developer 3 9 1 7 0
Total 6 50 19 8 17

7.3.4 Discussions (Statistical Analysis of Results)

Although the official result for MAVERICK in detecting errors is 94%, in this discussion two

results are considered, the 78% and the 94%.

For the experiments in this dissertation, each inserted error is either detected or

undetected. To measure an actual confidence interval, a statistical interval analysis for the

statistical population was performed. This analysis yields the probability of the occurrence of

these results, regardless of the number of times the experiment is repeated. In this dissertation’s

scope, the confidence interval will indicate that if there were more errors, more human subjects

185

or more experiments, a percentage will be obtained within the interval. This experiment has two

main outcomes for every error, detected or undetected. This illustrates its binomial nature. For

such binomial problems where there are two options, it is suitable to use binomial proportion

confidence interval.

Binomial proportion confidence interval uses the statistical sample provided and

generalizes it. It allows for a sampling error which defines the outer bounds of the confidence

interval. There exist several formulas for binomial proportion confidence intervals, but they all

require binomial distribution. The normal approximation interval will be used here, the formula

for that is:

p ± Z 1-α /2

Where p is the probability, n the sample size and alpha is the sampling error rate. Alpha ranges

from 0-1. The sampling error comes from using a sample of the data rather than all the data. The

sampling error rate in this experiment is 0.05 (a generic sampling error for experiments of this

nature), which makes our desirable percentage 95%. This makes Z1 − α / 2 equal to Z 0.975. To

perform this analysis, the errors need to be grouped and we need to randomly selected errors and

their outcome, 0 or 1, but in this experiment this step is done and we have an absolute percentage

which is 78% or 94%. The 78% is discussed first.

For the first percentage, P is 0.78, n is 100, which represents the 100 errors and Z 0.975 is

equal to 1.959964, which could be rounded to 1.96. The confidence interval formulas for this

percentage are:

0.78 1.96 0.78 1 0.78 100 And 0.78 1.96 0.78 1 0.78 100

186

0.78 + 0.0812 and 0.78 - 0.0812= 0.8612 and 0.6988

The confidence interval is 70% to 86%. This means that if the errors insertion experiment was

repeated on any system similar to the housing KBS and with any number of errors, 95% (alpha)

of the time the percentage of errors detected will be 70% to 86%.

More importantly, for the second percentage, P is 0.94, n is 83, which represents the 83

legitimate errors and Z 0.975 is equal to 1.959964, which could be rounded to 1.96. The official

confidence interval formulas for MAVERICK are:

0.94 1.96 0.94 1 0.94 83 And 0.94 1.96 0.94 1 0.94 83

0.94 + 0.0510 and 0.94 - 0.0510= 0.991 and 0.889

The official confidence interval is 89% to 99%.

This result means that if the errors insertion experiment was repeated on any system

similar to the housing KBS and with any number of errors, 95% (alpha) of the time the

percentage of errors detected will be 89% to 99%. This successful result gives us the interval of

results for which this experiment can get and an assurance about the results of the experiment.

This analysis concludes that this work provides confidence up to 99% that the 94% error

detection rate will be achieved when MAVERICK is used in any other similar KBS.

7.4 Experiment #3: Comparison of MAVERICK to Other Methods

This section introduces the last set of experiments for MAVERICK. This experiment is only

qualitative. This section introduces two methods used for comparison purposes in the experiment

#3. The two methods are used to validate the housing KBS and their consumption of resources is

recorded and compared to the MAVERICK validation method results.

7.4.1 Experimental Setup

187

After inspecting multiple validation methods and considering many candidates, many of the

methods were impossible to use to validate the housing KBS because of different reasons. Some

of the methods strictly required their developed tools to be used and the tools were not available.

Other methods had no useful guidance on how to implement the validation method on a

knowledge-based system. Yet other methods were only useable within a specific domain, such as

validation methods specialized in military or medical knowledge-based systems. Finally, some

methods required test cases extraction; the process of extracting test cases couldn’t be repeated

without bias towards the set for the MAVERICK method. Therefore, all these methods were

ruled out from consideration.

Two methods, however, were found suitable and had no constraints for using them in this

validation experiment. The two methods are successful methods. They have been used before for

validating knowledge-based systems and they use two different validation approaches. The two

methods are VIVA [28] and EMBODY [53]. Both methods were reviewed previously in chapter

2. VIVA is a life-cycle independent validation method and EMBODY validates the system by

embedding knowledge validation into the knowledge acquisition process.

To use EMBODY, a flow chart of the knowledge needs to be defined, as EMBODY uses

a graphical representation of the knowledge for validation. EMBODY represents the real world

knowledge and ensures that it meets the real world case, which is a sound definition of

validation. In the EMBODY method, while the knowledge is being extracted, a model is being

built that would be converted to the knowledge base. The idea in EMBODY is that if the model

is valid then the knowledge base is. This is not perfectly sound, because of some errors occurring

in the transition process.

188

VIVA is based on establishing a relation between the knowledge model, design and the

code/KB without using a lifecycle. VIVA uses transformational links for the transformation

between the knowledge model to the code or the design and between the design and the code and

vice versa. VIVA uses structural links to link between objects within the knowledge model or the

design. This structure is built to present all the contents of the knowledge-based system

development process. After this is done, validation specifications are derived such as:

correctness, completeness and existence. For validation, the structure of the system defined and

the specifications are compared and mismatches are to be revised.

Both VIVA and EMBODY do not perform validation directly on the system, but rather

on a model. Errors might occur when the model is transferred into the knowledge-based systems.

In MAVERICK, validation is performed on the system as well as on the models. Furthermore,

validation is performed on the transition process itself, which is incorporated in the

CommonKADS design model. Additionally, both VIVA and EMBODY don’t refine the system

if errors are found, while MAVERICK does. VIVA and EMBODY are applied to the housing

KBS; procedures and results are introduced in the next two sections.

7.4.2 Experimental Procedure

Comparing MAVERICK against two other validation methods is mostly qualitative and only

numeric in terms of time consumed. Only the time consumed is compared and not the validity or

errors insertion because:

1. MAVERICK used CommonKADS to regenerate the errors and validate. Comparison to

VIVA and EMBODY is unfair because CommonKADS was not used in their cases.

189

2. Many errors were inserted in the CommonKADS models and diagrams, which is not

possible for any other method than MAVERICK.

3. MAVERICK is incremental and is based on a lifecycle. VIVA and EMBODY are not.

4. MAVERICK was employed using the CBTCR tool. Tools for VIVA and EMBODY were

not found to be publicly available.

5. The test application - the housing KBS - was built after generating the CommonKADS

models and diagrams. This would have been a different process if VIVA or EMBODY

had been used.

Any validation method selected would have the same limitations except possibly for reasons 3

and 4 above. Nevertheless reasons 1, 2 and 5 would apply to any other method because no

validation method has ever used or been embedded into CommonKADS.

Based on the mentioned reasons, the housing KBS is validated using VIVA and

EMBODY but only the time consumed by the developer is recorded and compared. No errors

were inserted in the housing KBS for this experiment. This experiment was based only on

following the processes defined in VIVA and EMBODY and recording time for that. The results

for the three methods are discussed in the next section.

7.4.3 Experimental Results

The results of the experiments are illustrated in following three tables. In tables 52, 53 and 54, a

star (*) is added to any step that is considered a validation step. Times consumed for validation

in the three methods are introduced separately by summing the steps indicated to with a star (*).

First, the steps for MAVERICK are presented in Table 52, VIVA is in Table 53 and EMBODY

is in Table 54. The results for each method follow each table.

190

Table 52: General time consumed for MAVERICK

Stage name/ description Time consumed
Context models development 6 hours
*Context Test Cases Extraction 4 hours
Analysis models development 5 hours
*Analysis Test Cases Extraction 5 hours
*Analysis validation 2 hours
Artifact models development 4 hours
*Design Test Cases Extraction 3 hours
*Design validation 1 hours
*Assign local importance for each test case 4 hours
*Fill test cases into the sheet of the CBTCR
tool

11 hours

*Set all models’ weights/assurance to 5 0 hours (Autonomous process)
*Calculate global importance and re-order 0 hours (Autonomous process)
Developing the system 32 hours (Total for all iterations)
*Select N number of test cases 0 hours (Autonomous process)
*Execute test cases on the system 8 hours (Total for all iterations)
*Recalculate global importance 0 hours (Autonomous process)
*Flag test cases based on results 0 hours (Autonomous process)
Refine system and go to next iteration 8 hours (Total for all iterations)

General total for building the housing KBS and validating it using MAVERICK is: 93 hours

Total for validating a KBS using MAVERICK is 4+5+2+3+1+4+11+8 = 38 hours

EMBODY uses diagram-based validation and VIVA is a lifecycle-independent validation

method that is based on traceability. Time consumed for VIVA and EMBODY are described in

the next two tables:

Table 53: General time consumed for EMBODY

Stage name/ description Time consumed
Knowledge acquisition and organization 10 hours (Manual process)
Developing the system 32 hours (This time is assumed to be the same

for all methods)
*Using EMBODY flow charts 17 hours (Manual process)
*Representing knowledge EMBODY tabular
format

12 hours (Manual process)

*Validating the system 18 hours (Manual process)
Refine system 8 hours (Manual process)

191

Total for building the housing KBS and validating it using EMBODY is: 97 hours

Total for validating a KBS using EMBODY is 17+12+18 = 47 hours

Table 54: General time consumed for VIVA

Stage name/ description Time consumed
Knowledge acquisition and organization 17 hours (Manual process)
Developing the system 32 hours (This time is assumed to be the same

for all methods)
*Using VIVA defined methods 15 hours (Manual process)
*Performing the VIVA link types for the
system

8 hours (Manual process)

*Derivation of validation specification 10 hours (Manual process)
*Validating the system 16 hours (Manual process)
Refine system 8 hours (Manual process)

General total for building the housing KBS and validating it using VIVA is: 106 hours

Total for validating a KBS using VIVA is 15+8+10+16 = 49 hours

7.4.4 Discussions

The following conclusions are derived from the comparison introduced:

1. MAVERICK consumes less validation time than VIVA (less by 11 hours).

2. MAVERICK consumes less validation time than EMBODY (less by 9 hours).

3. Using MAVERICK within the KBS development process saves development and

validation times.

4. MAVERICK consumes more time during the first stages but saves more time during the

later stages.

5. The incremental fashion of MAVERICK means that it has more stages and phases.

6. Although MAVERICK is more complicated than EMBODY and VIVA, it uses less time

and shows a clear guided path towards a valid system.

192

7. When the system was validated using VIVA and EMBODY, no indication on the

validation percentage was provided, while in MAVERICK after the 93 hours, the

previously discussed 94% was achieved.

MAVERICK is the first incremental life-cycle based validation method in knowledge-based

systems. This work’s contribution to the research community shows in the results presented.

7.5 Summary of Experiments

This chapter introduced all the results associated with the experiments performed for

MAVERICK. Three kinds of experiments were presented. Errors were seeded into the system by

the developer, by seven human subjects and MAVERICK was used to detect these errors.

Furthermore, MAVERICK was compared to other validation methods. In the next chapter,

summary, conclusions and future work are discussed.

193

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

This chapter provides general conclusions and the overall results of this research. The

significance of the results to the field is discussed. Furthermore, the global value of the

validation method presented in this dissertation is evaluated. This chapter contains three sections:

the first section summarizes the work done in this dissertation; the second section includes the

conclusions reached, and the last section establishes ideas for future research.

8.1 Summary

This dissertation introduced a new validation method for knowledge-based systems. After

reviewing some of the software disasters that happened in the past, it was concluded that more

problems could occur if a rigorous process was not followed to fix errors and minimize loss. One

of the most important phases in software development is software testing, validation and

verification. This is equally true for knowledge-based systems. A definition was given to

validation as the official definition used throughout this dissertation. This dissertation

differentiates between validation approaches and validation methods. Validation approaches are

general ways on validating a knowledge-based system. Validation methods include more specific

processes and they can be used to obtain a valid system. This dissertation surveyed the existing

validation methods in the literature and these methods were categorized and evaluated

separately. An absence of validation methods built within a KBS lifecycle model was noted in

the literature. Thus, the best known lifecycle models for knowledge-based systems development

were introduced and described. The defacto standard for KBS lifecycle development, the

CommonKADS model was chosen as the basis for this research.

194

MAVERICK is built within CommonKADS and consists of three main parts: test case

extraction, inspection validation and context-based test case reduction (CBTCR). Context-based

test case reduction steps include defining CommonKADS model’s weights and using previous

test case results to select the next set of test cases. To perform experiments on MAVERICK, a

knowledge-based system was built based on the CommonKADS model and the MAVERICK

validation steps. A tool was developed for MAVERICK to automate the process. A housing KBS

was built within CommonKADS and based on MAVERICK. The CommonKADS models were

introduced for the housing KBS and test cases were extracted based on the guidelines presented

by MAVERICK. To evaluate the validation method, errors were inserted into the system to

evaluate the ability of MAVERICK to track and detect errors. Errors were inserted by the

developer as well as by seven unbiased human subjects. Errors inserted by the users were

categorized and discussed. The results of detecting errors and error types were introduced. The

final error detection result was 94%, which shows that MAVERICK is effective in detecting

errors. The initial (not legitimate) rate was 78%, but as discussed previously, this only reflects

the validation. If verification had been embedded into CommonKADS and MAVERICK looked

for all types of errors, the results are expected to be better. Nevertheless, the official 94% is very

close to the ultimate goal of 100% error detection. This and other issues are recommended as

future work in another section of this Chapter.

MAVERICK was compared to other two validation methods, VIVA and EMBODY. The

comparison to the other validation methods was mainly subjective and limited to measuring the

time consumed to validate a knowledge-based system by each of the methods.

195

8.2 Conclusion

In a broad outline, the validation of a knowledge-based system is important for three main

reasons: 1) minimize all kinds of losses, 2) the assurance of acceptance by the user/customer 3)

and the commercialization of the system. In most cases, knowledge-based systems are built with

a lifecycle model. Introducing validation within a lifecycle model would help to better meet the

three mentioned goals. For systems that affect human life, it is necessary to have high level of

validation and verification. The ultimate goal of detecting errors and having a valid system is,

obviously 100%. While this number has not yet been achieved, it remains as the ultimate goal.

However, 94% is considered as a successful result that conforms to the hypothesis presented in

Chapter 3.

Introducing a validation method into CommonKADS was a difficult challenge. Many

aspects needed to be considered for the MAVERICK validation method. These aspects include

the fact that the method is incremental, built within a lifecycle model, based on CommonKADS

and uses case testing validation approach. Assembling all these aspects in one validation method

and making them fit together was quite challenging. Furthermore, performing experiments on the

method from the point of view of all the aspects was difficult to achieve. Conducting this

research led to a number of general observations and these observations are discussed next.

Different validation approaches produce different loads on the experts and the

development team. Experts cannot perform classical validation by only examining inputs and

outputs for the system. Such validation burdens the expert and the knowledge engineer. It is

important to follow a defined process that is designed to increase system coverage. Using a

lifecycle model is the most agreed upon way to do that. Thus, building a validation method into

the lifecycle model minimizes the effort and time dedicated to define a process that is dedicated

196

for validation only. From a management point of view, planning and scheduling are essential.

This validation method has been tailored to help management follow the process and evaluate the

performance against deadlines. Because MAVERICK is performed in multiple phases and is

included within the multiple phases of CommonKADS, it is clear where the phase starts and

where it ends. This would help in planning and setting deadlines.

Management requires a solid and explicit organization for software development projects.

MAVERICK defines a clear number of steps and elements. Every element in MAVERICK has a

well defined name, location and documentation. In MAVERICK, all the models are identified,

all the test cases are categorized, all the diagrams numbered and all the rules in the knowledge

base are traced back to a certain part in the models. A well defined structure, yields to better

communication and its usual consequent: better organization.

Although MAVERICK was specifically designed for CommonKADS and knowledge-

based systems, some parts of it could be used for any software development process; specifically,

context-based test case reduction, which is used to reduce the number of test cases. It is the first

method that bases the selection of test cases on the previous set of results for knowledge-based

systems. Using the results of previous validation iterations could be used in any testing process

that uses the case testing approach.

 CBTCR could be used by any testing team, especially that a tool was developed for it. To

use this tool, the only needed step is to insert all the test cases into the excel sheet as the input.

The CBTCR tool can then work with any type of software system. CBTCR tool could be used

for testing and for maintenance too. Maintenance usually is costly and requires significant effort.

To perform maintenance on a software system, traceability is the main difficulty. It is evident

that to properly maintain a knowledge-based system, the requirements need to be well defined

197

and that they could be traced all the way down to the implementation level. In MAVERICK, the

path for any element in the CommonKADS models is very clear from the models to the design

model and down to implementation details. This is considered as a major advantage. In

maintenance, most of the burden is on the expert and the knowledge engineer and user

involvement is typically lacking. While this is true for most late phases in software development,

it is not the case for the early requirements and knowledge extraction phase. Involving the user in

validation and verification is not yet fully achieved in this research field. Involving the user is

feasible because of MAVERICK’s clear process towards reaching a valid system and the

transparent nature of CommonKADS and CBTCR.

Automating the validation process is another aspect of this method. The definitive step in

automating testing is to perform automated refinement. Automated refinement would lead to a

full autonomous testing process. This would not only save time and effort but would insure that

no human error will occur because of manual execution or refinement of tests.

Ultimately, the work presented in this dissertation aims to improve the general

performance of knowledge-based systems. The goal is to attest the hypothesis introduced in

Chapter 3. The hypothesis was based on the idea that MAVERICK’s performance should be

effective and efficient when compared to other validation methods. To be able to explicitly claim

that MAVERICK is better than previous validation methods, it needs to be compared against all

the previous validation methods for KBS. The reasons why this is not attainable were previously

discussed in Chapter 7. MAVERICK introduces a new approach, which is building validation

within an incremental lifecycle model. As it is discussed earlier, this has never been done before.

Therefore, the comparisons performed against VIVA and EMBODY only show that

MAVERICK’s performance is indeed efficient. The errors’ insertion experiments are performed

198

to identify the effectiveness of MAVERICK. The discussion on why some errors weren’t

detected is presented earlier. As the results display, MAVERICK is effective by a percentage

equal to 94% and MAVERICK is more efficient (by time) than the two methods it is compared

against. Finally, some of the ideas presented in this section are already included in MAVERICK,

while others are recommended as future work. Future work is introduced in the next section.

8.3 Future Work

This section suggests future research in the field of validation of knowledge-based system based

on the work presented in this dissertation. The future work recommendations for MAVERICK

are:

1. Define a verification method and embed it into CommonKADS

Verification is essential in building knowledge-based systems. The experiments performed in

this dissertation research showed that if verification was included in CommonKADS, the results

might have been better. Verification targets different kind of problems in knowledge-based

systems. Satisfying this would require an extensive study on how to incorporate verification

means within the CommonKADS models. This would make the global evaluation of knowledge-

based systems within CommonKADS more comprehensive. The ultimate goal of this future

work recommendation is to increase the validation and verification percentage to 100%.

2. Apply MAVERICK to different-sized knowledge-based systems

MAVERICK was tested on only one knowledge-based system, the housing KBS, which is

considered a small system. It would be interesting to observe how MAVERICK would perform

with mid-size and large systems. Furthermore, applying MAVERICK to different systems in

different disciplines would give MAVERICK more assurance on its usability. It would be

199

desirable to perform these experiments in industry, especially in a company that develops and

uses knowledge-based systems. While the experiments in this dissertation support the successful

functionality of MAVERICK, using CommonKADS and MAVERICK for real world projects

would allow for a broader evaluation.

3. Automate the remaining manual processes in MAVERICK and include them within the

CBTCR tool.

MAVERICK was partially automated and partially manual. It would save time and effort if other

steps could be automated. Fully automating the process from beginning to end is not currently

possible. Although some steps could be automated, other steps are difficult to automate because

of their dependency on the knowledge engineer and other human factors. Processes such as

extracting the test cases, executing them on the system and evaluating the results could be

performed autonomously by building a software tool. This would require broad research to

understand programming languages and how to access different parts of the code. This could be

done by building language parsers, which is its own research field.

4. Embed the MAVERICK idea into other lifecycle models for knowledge-based systems

Although this method was dedicated for CommonKADS, it would be a significant contribution

to study whether MAVERICK works well with other lifecycle models. Performing this study

would require full understanding of MAVERICK and a set of experiments to check if

MAVERICK is compatible with other lifecycle models. There’s no doubt that it would be

necessary to make modifications to MAVERICK for each lifecycle model. MAVERICK would

be modified to fit each lifecycle model. Performing this study would be motivating towards

using MAVERICK with other software projects that use lifecycle models other than

CommonKADS.

200

5. Proceed from automated testing towards automated repairing through MAVERICK

The ultimate goal of testing, validation and verification is not only to find all the errors in a

system but also to fix them. MAVERICK partially performs automated testing, which helps in

finding the errors in the system without manually looking for them. Although validation of

knowledge-based systems and software systems in general has improved significantly, no

method exists that performs full automated refinement. Eventually, this would lead to better

evaluation of software systems.

Future work can be directed towards many directions. These future recommendations are

within the scope of this research, specifically in validation of knowledge-based systems through

a lifecycle model. More precisely, these recommendations are dedicated to build upon the main

contribution of this dissertation, MAVERICK.

201

APPENDIX A: LIST OF TEST CASES FOR THE HOUSING KBS

202

TestCase
ID

CommonKADS
Model

Local
Importance

Numberof
Runs

CommonKADS
Weight

1 1 2.75 0 50
2 1 2.75 0 50
3 1 2.75 0 50
4 1 2.75 0 50
5 1 2.75 0 50
6 1 2.75 0 50
7 1 2.75 0 50
8 1 2.75 0 50
9 1 2.75 0 50

10 2 3.75 0 50
11 2 3.75 0 50
12 2 3.75 0 50
13 2 3.75 0 50
14 2 3.75 0 50
15 2 3.75 0 50
16 3 5 0 50
17 3 5 0 50
18 3 5 0 50
19 3 5 0 50
20 3 0.5 0 50
21 3 0.5 0 50
22 3 0.5 0 50
23 3 0.5 0 50
24 4 5 0 50
25 4 5 0 50
26 4 5 0 50
27 4 5 0 50
28 5 3.5 0 50
29 5 3.5 0 50
30 5 3.5 0 50
31 5 3.5 0 50
32 5 3.5 0 50
33 5 3.5 0 50
34 4 4.75 0 50
35 4 4.75 0 50
36 4 4.75 0 50
37 4 4.75 0 50
38 4 4.75 0 50
39 4 4.75 0 50

203

40 4 4.75 0 50
41 4 4.75 0 50
42 4 4.75 0 50
43 4 4.75 0 50
44 4 4.75 0 50
45 4 4.75 0 50
46 4 4.75 0 50
47 4 4.75 0 50
48 4 4.75 0 50
49 4 4.75 0 50
50 4 4.75 0 50
51 4 4.75 0 50
52 4 4.75 0 50
53 4 4.75 0 50
54 4 4.75 0 50
55 4 4.75 0 50
56 4 4.75 0 50
57 4 4.75 0 50
58 4 4.75 0 50
59 4 4.75 0 50
60 4 4.75 0 50
61 4 4.75 0 50
62 4 4.75 0 50
63 4 4.75 0 50
64 4 4.75 0 50
65 4 4.75 0 50
66 4 4.75 0 50
67 4 4.75 0 50
68 4 4.75 0 50
69 4 4.75 0 50
70 4 4.75 0 50
71 4 4.75 0 50
72 4 4.75 0 50
73 4 4.75 0 50
74 4 4.75 0 50
75 4 4.75 0 50
76 4 4.75 0 50
77 4 4.75 0 50
78 4 4.75 0 50
79 4 4.75 0 50
80 4 4.75 0 50

204

81 4 4.75 0 50
82 4 4.75 0 50
83 4 4.75 0 50
84 4 4.75 0 50
85 4 4.75 0 50
86 4 4.75 0 50
87 4 4.75 0 50
88 4 4.75 0 50
89 4 4.75 0 50
90 4 4.75 0 50
91 4 4.75 0 50
92 4 4.75 0 50
93 4 4.75 0 50
94 4 4.75 0 50
95 4 4.75 0 50
96 4 4.75 0 50
97 4 4.75 0 50
98 4 4.75 0 50
99 4 4.75 0 50

100 4 4.75 0 50
101 4 4.75 0 50
102 4 4.75 0 50
103 4 4.75 0 50
104 4 4.75 0 50
105 4 4.75 0 50
106 4 4.75 0 50
107 4 4.75 0 50
108 4 4.75 0 50
109 4 4.75 0 50
110 4 4.75 0 50
111 4 4.75 0 50
112 4 4.75 0 50
113 4 4.75 0 50
114 4 4.75 0 50
115 4 4.75 0 50
116 4 4.75 0 50
117 4 4.75 0 50
118 4 4.75 0 50
119 4 4.75 0 50
120 4 4.75 0 50
121 4 4.75 0 50

205

122 4 4.75 0 50
123 4 4.75 0 50
124 4 4.75 0 50
125 4 4.75 0 50
126 4 4.75 0 50
127 4 4.75 0 50
128 4 4.75 0 50
129 4 4.75 0 50
130 4 4.75 0 50
131 4 4.75 0 50
132 4 4.75 0 50
133 4 4.75 0 50
134 4 4.75 0 50
135 4 4.75 0 50
136 4 4.75 0 50
137 4 4.75 0 50
138 4 4.75 0 50
139 4 4.75 0 50
140 4 4.75 0 50
141 4 4.75 0 50
142 4 4.75 0 50
143 4 4.75 0 50
144 4 4.75 0 50
145 4 4.75 0 50
146 4 4.75 0 50
147 4 4.75 0 50
148 4 4.75 0 50
149 4 4.75 0 50
150 4 4.75 0 50
151 4 4.75 0 50
152 4 4.75 0 50
153 4 4.75 0 50
154 4 4.75 0 50
155 4 4.75 0 50
156 4 4.75 0 50
157 4 4.75 0 50
158 4 4.75 0 50
159 4 4.75 0 50
160 4 4.75 0 50
161 4 4.75 0 50
162 4 4.75 0 50

206

163 4 4.75 0 50
164 4 4.75 0 50
165 4 4.75 0 50
166 4 4.75 0 50
167 4 4.75 0 50
168 4 4.75 0 50
169 4 4.75 0 50
170 4 4.75 0 50
171 4 4.75 0 50
172 4 4.75 0 50
173 4 4.75 0 50
174 4 4.75 0 50
175 4 4.75 0 50
176 4 4.75 0 50
177 4 4.75 0 50
178 4 4.75 0 50
179 4 4.75 0 50
180 4 4.75 0 50
181 4 4.75 0 50
182 4 4.75 0 50
183 4 4.75 0 50
184 1 3.5 0 50
185 1 3.5 0 50
186 3 3.5 0 50
187 4 3.5 0 50
188 4 3.5 0 50

TestCaseID GlobalImportance Result InputVariables
 137.5 2 login information for the agent: assigner

1 137.5 2 login information for the agent: assigner
2 137.5 2 login information for the agent: assigner
3 137.5 2 login information for the agent: Datatypist
4 137.5 2 login information for the agent: Datatypist
5 137.5 2 login information for the agent: Datatypist
6 137.5 2 login information for the agent: Magazine producer
7 137.5 2 login information for the agent: Magazine producer
8 137.5 2 login information for the agent: Magazine producer
9 187.5 2 log in as assigner and try to assign applicants

10 187.5 2 log in as datatypist and try to datatype applicants
11 187.5 2 log in as magaziner and try to publish
12 187.5 2 log in as assigner

207

13 187.5 2 log in as datatypist
14 187.5 2 log in as assigner

15 250 2
assign all residences and check manually the
correctness of the assignments

16 250 2
publish magazine and check if it is published in the
bin folder

17 250 2 type data in DT mode

18 250 2
check applications list, done by assigner…access all
information

19 25 2 Check log for action task 1
20 25 2 Check log for action task 2
21 25 2 Check log for action task 3
22 25 2 Check log for action task 4
23 250 2 magazine is published with the right information
24 250 2 applicants assigned the right residences
25 250 2 all applicants found, no one missing

26 250 2
any correct information could be entered about
either a residence or an applicant

27 175 2 transaction one: order application assessment
28 175 2 transaction two: obtain application data
29 175 2 transaction three: report decision
30 175 2 transaction 1
31 175 2 transaction 2
32 175 2 transaction 3
33 237.5 2 Income: 10000, family: 1 , Age: 18
34 237.5 2 Income: 10000, family: 2 , Age: 18
35 237.5 2 Income: 10000, family: 4 , Age: 18
36 237.5 2 Income: 10000, family: 6 , Age: 18
37 237.5 2 Income: 10000, family: 8 , Age: 18
38 237.5 2 Income: 10000, family: more than 8 , Age: 18
39 237.5 2 Income: 40000, family: 1 , Age: 18
40 237.5 2 Income: 40000, family: 2 , Age: 18
41 237.5 2 Income: 40000, family: 4 , Age: 18
42 237.5 2 Income: 40000, family: 6 , Age: 18
43 237.5 2 Income: 40000, family: 8 , Age: 18
44 237.5 2 Income: 40000, family: 8+ , Age: 18
45 237.5 2 Income: 100000, family: 1 , Age: 18
46 237.5 2 Income: 100000, family: 2 , Age: 18
47 237.5 2 Income: 100000, family: 4 , Age: 18
48 237.5 2 Income: 100000, family: 6 , Age: 18
49 237.5 2 Income: 100000, family: 8 , Age: 18
50 237.5 2 Income: 100000, family:8+ , Age: 18

208

51 237.5 2 Income: 250000, family: 1 , Age: 18
52 237.5 2 Income: 250000, family: 2 , Age: 18
53 237.5 2 Income: 250000, family: 4 , Age: 18
54 237.5 2 Income: 250000, family: 6 , Age: 18
55 237.5 2 Income: 250000, family: 8 , Age: 18
56 237.5 2 Income: 250000, family: 8+ , Age: 18
57 237.5 2 Income: 500000, family: 1 , Age: 18
58 237.5 2 Income: 500000, family: 2 , Age: 18
59 237.5 2 Income: 500000, family: 4 , Age: 18
60 237.5 2 Income: 500000, family: 6 , Age: 18
61 237.5 2 Income: 500000, family: 8 , Age: 18
62 237.5 2 Income: 500000, family: 8+ , Age: 18
63 237.5 2 Income: 10000, family: 1 , Age: 35
64 237.5 2 Income: 10000, family: 1 , Age: 45
65 237.5 2 Income: 10000, family: 1 , Age: 60
66 237.5 2 Income: 10000, family: 1 , Age: 60+
67 237.5 2 Income: 10000, family: 2 , Age: 35
68 237.5 2 Income: 10000, family: 2 , Age: 45
69 237.5 2 Income: 10000, family: 2 , Age: 60
70 237.5 2 Income: 10000, family: 2 , Age: 60+
71 237.5 2 Income: 10000, family: 4 , Age: 35
72 237.5 2 Income: 10000, family: 4 , Age: 45
73 237.5 2 Income: 10000, family: 4 , Age: 60
74 237.5 2 Income: 10000, family: 4 , Age: 60+
75 237.5 2 Income: 10000, family: 6 , Age: 35
76 237.5 2 Income: 10000, family: 6 , Age: 45
77 237.5 2 Income: 10000, family: 6 , Age: 60
78 237.5 2 Income: 10000, family: 6 , Age: 60+
79 237.5 2 Income: 10000, family: 8 , Age: 35
80 237.5 2 Income: 10000, family: 8 , Age: 45
81 237.5 2 Income: 10000, family: 8 , Age: 60
82 237.5 2 Income: 10000, family: 8 , Age: 60+
83 237.5 2 Income: 10000, family: more than 8 , Age: 35
84 237.5 2 Income: 10000, family: more than 8 , Age: 45
85 237.5 2 Income: 10000, family: more than 8 , Age: 60
86 237.5 2 Income: 10000, family: more than 8 , Age: 60+
87 237.5 2 Income: 40000, family: 1 , Age: 35
88 237.5 2 Income: 40000, family: 1 , Age: 45
89 237.5 2 Income: 40000, family: 1 , Age: 60
90 237.5 2 Income: 40000, family: 1 , Age: 60+
91 237.5 2 Income: 40000, family: 2 , Age: 35

209

92 237.5 2 Income: 40000, family: 2 , Age: 45
93 237.5 2 Income: 40000, family: 2 , Age: 60
94 237.5 2 Income: 40000, family: 2 , Age: 60+
95 237.5 2 Income: 40000, family: 4 , Age: 35
96 237.5 2 Income: 40000, family: 4 , Age: 45
97 237.5 2 Income: 40000, family: 4 , Age: 60
98 237.5 2 Income: 40000, family: 4 , Age: 60+
99 237.5 2 Income: 40000, family: 8+ , Age: 35

100 237.5 2 Income: 40000, family: 8+ , Age: 45
101 237.5 2 Income: 40000, family: 8+ , Age: 60
102 237.5 2 Income: 40000, family: 8+ , Age: 60+
103 237.5 2 Income: 40000, family: 6 , Age: 35
104 237.5 2 Income: 40000, family: 6 , Age: 45
105 237.5 2 Income: 40000, family: 6 , Age: 60
106 237.5 2 Income: 40000, family: 6 , Age: 60+
107 237.5 2 Income: 40000, family: 8 , Age: 35
108 237.5 2 Income: 40000, family: 8 , Age: 45
109 237.5 2 Income: 40000, family: 8 , Age: 60
110 237.5 2 Income: 40000, family: 8 , Age: 60+
111 237.5 2 Income: 100000, family: 1 , Age: 35
112 237.5 2 Income: 100000, family: 1 , Age: 45
113 237.5 2 Income: 100000, family: 1 , Age: 60
114 237.5 2 Income: 100000, family: 1 , Age: 60+
115 237.5 2 Income: 100000, family: 2 , Age: 35
116 237.5 2 Income: 100000, family: 2 , Age: 45
117 237.5 2 Income: 100000, family: 2 , Age: 60
118 237.5 2 Income: 100000, family: 2 , Age: 60+
119 237.5 2 Income: 100000, family: 4 , Age: 35
120 237.5 2 Income: 100000, family: 4 , Age: 45
121 237.5 2 Income: 100000, family: 4 , Age: 60
122 237.5 2 Income: 100000, family: 4 , Age: 60+
123 237.5 2 Income: 100000, family: 6 , Age: 35
124 237.5 2 Income: 100000, family: 6 , Age: 45
125 237.5 2 Income: 100000, family: 6 , Age: 60
126 237.5 2 Income: 100000, family: 6 , Age: 60+
127 237.5 2 Income: 100000, family: 8 , Age: 35
128 237.5 2 Income: 100000, family: 8 , Age: 45
129 237.5 2 Income: 100000, family: 8 , Age: 60
130 237.5 2 Income: 100000, family: 8 , Age: 60+
131 237.5 2 Income: 100000, family:8+ , Age: 35
132 237.5 2 Income: 100000, family:8+ , Age: 45

210

133 237.5 2 Income: 100000, family:8+ , Age: 60
134 237.5 2 Income: 100000, family:8+ , Age: 60+
135 237.5 2 Income: 250000, family: 1 , Age: 35
136 237.5 2 Income: 250000, family: 1 , Age: 45
137 237.5 2 Income: 250000, family: 1 , Age: 60
138 237.5 2 Income: 250000, family: 1 , Age: 60+
139 237.5 2 Income: 250000, family: 2 , Age: 35
140 237.5 2 Income: 250000, family: 2 , Age: 45
141 237.5 2 Income: 250000, family: 2 , Age: 60
142 237.5 2 Income: 250000, family: 2 , Age: 60+
143 237.5 2 Income: 250000, family: 4 , Age: 35
144 237.5 2 Income: 250000, family: 4 , Age: 45
145 237.5 2 Income: 250000, family: 4 , Age: 60
146 237.5 2 Income: 250000, family: 4 , Age: 60+
147 237.5 2 Income: 250000, family: 6 , Age: 35
148 237.5 2 Income: 250000, family: 6 , Age: 45
149 237.5 2 Income: 250000, family: 6 , Age: 60
150 237.5 2 Income: 250000, family: 6 , Age: 60+
151 237.5 2 Income: 250000, family: 8 , Age: 35
152 237.5 2 Income: 250000, family: 8 , Age: 45
153 237.5 2 Income: 250000, family: 8 , Age: 60
154 237.5 2 Income: 250000, family: 8 , Age: 60+
155 237.5 2 Income: 250000, family: 8+ , Age: 35
156 237.5 2 Income: 250000, family: 8+ , Age: 45
157 237.5 2 Income: 250000, family: 8+ , Age: 60
158 237.5 2 Income: 250000, family: 8+ , Age: 60+
159 237.5 2 Income: 500000, family: 1 , Age: 35
160 237.5 2 Income: 500000, family: 1 , Age: 45
161 237.5 2 Income: 500000, family: 1 , Age: 60
162 237.5 2 Income: 500000, family: 1 , Age: 60+
163 237.5 2 Income: 500000, family: 2 , Age: 35
164 237.5 2 Income: 500000, family: 2 , Age: 45
165 237.5 2 Income: 500000, family: 2 , Age: 60
166 237.5 2 Income: 500000, family: 2 , Age: 60+
167 237.5 2 Income: 500000, family: 4 , Age: 35
168 237.5 2 Income: 500000, family: 4 , Age: 45
169 237.5 2 Income: 500000, family: 4 , Age: 60
170 237.5 2 Income: 500000, family: 4 , Age: 60+
171 237.5 2 Income: 500000, family: 6 , Age: 35
172 237.5 2 Income: 500000, family: 6 , Age: 45
173 237.5 2 Income: 500000, family: 6 , Age: 60

211

174 237.5 2 Income: 500000, family: 6 , Age: 60+
175 237.5 2 Income: 500000, family: 8 , Age: 35
176 237.5 2 Income: 500000, family: 8 , Age: 45
177 237.5 2 Income: 500000, family: 8 , Age: 60
178 237.5 2 Income: 500000, family: 8 , Age: 60+
179 237.5 2 Income: 500000, family: 8+ , Age: 35
180 237.5 2 Income: 500000, family: 8+ , Age: 45
181 237.5 2 Income: 500000, family: 8+ , Age: 60
182 237.5 2 Income: 500000, family: 8+ , Age: 60+
183 175 2 log in as magazine editor
184 175 2 log in as data entry
185 175 2 enter an invalid application
186 175 2 input 2 residences and one applicant
187 175 2 input 2 applicants and one residence
188

TestCaseID ExecutionSteps
1 run system and login as assigner to magazine producing interface.
2 run system and login as assigner to residence assignment interface
3 run system and login as assigner to data entry interface.
4 run system and login as datatypist to magazine producing interface.
5 run system and login as datatypist to residence assignment interface
6 run system and login as datatypist to data entry interface.
7 run system and login as magazine to magazine data entry.
8 run system and login as magaziner to residence assignment interface
9 run system and login as magaziner to magazine interface.

10 log in as assigner and try to assign applicants
11 log in as datatypist and try to datatype applicants
12 log in as magaziner and try to publish
13 check access to list of applicants and residences
14 check access to applications
15 check access to db and residences
16 log in as assigner and assign all residences
17 log in as Magazine editor and publish
18 log in as DT and type data for new entity
19 log in as assigner and check residences and applications
20 log in, perform task and check log
21 log in, perform task and check log
22 log in, perform task and check log
23 log in, perform task and check log
24 log in, perform task and check the outcome

212

25 log in, perform task and check the outcome
26 log in, perform task and check the outcome
27 log in, perform task and check the outcome
28 log in and communicate
29 log in and communicate
30 log in and communicate
31 run transaction1
32 run transaction2
33 run transaction3
34 enter the input variables for the applicant
35 enter the input variables for the applicant
36 enter the input variables for the applicant
37 enter the input variables for the applicant
38 enter the input variables for the applicant
39 enter the input variables for the applicant
40 enter the input variables for the applicant
41 enter the input variables for the applicant
42 enter the input variables for the applicant
43 enter the input variables for the applicant
44 enter the input variables for the applicant
45 enter the input variables for the applicant
46 enter the input variables for the applicant
47 enter the input variables for the applicant
48 enter the input variables for the applicant
49 enter the input variables for the applicant
50 enter the input variables for the applicant
51 enter the input variables for the applicant
52 enter the input variables for the applicant
53 enter the input variables for the applicant
54 enter the input variables for the applicant
55 enter the input variables for the applicant
56 enter the input variables for the applicant
57 enter the input variables for the applicant
58 enter the input variables for the applicant
59 enter the input variables for the applicant
60 enter the input variables for the applicant
61 enter the input variables for the applicant
62 enter the input variables for the applicant
63 enter the input variables for the applicant
64 enter the input variables for the applicant
65 enter the input variables for the applicant

213

66 enter the input variables for the applicant
67 enter the input variables for the applicant
68 enter the input variables for the applicant
69 enter the input variables for the applicant
70 enter the input variables for the applicant
71 enter the input variables for the applicant
72 enter the input variables for the applicant
73 enter the input variables for the applicant
74 enter the input variables for the applicant
75 enter the input variables for the applicant
76 enter the input variables for the applicant
77 enter the input variables for the applicant
78 enter the input variables for the applicant
79 enter the input variables for the applicant
80 enter the input variables for the applicant
81 enter the input variables for the applicant
82 enter the input variables for the applicant
83 enter the input variables for the applicant
84 enter the input variables for the applicant
85 enter the input variables for the applicant
86 enter the input variables for the applicant
87 enter the input variables for the applicant
88 enter the input variables for the applicant
89 enter the input variables for the applicant
90 enter the input variables for the applicant
91 enter the input variables for the applicant
92 enter the input variables for the applicant
93 enter the input variables for the applicant
94 enter the input variables for the applicant
95 enter the input variables for the applicant
96 enter the input variables for the applicant
97 enter the input variables for the applicant
98 enter the input variables for the applicant
99 enter the input variables for the applicant

100 enter the input variables for the applicant
101 enter the input variables for the applicant
102 enter the input variables for the applicant
103 enter the input variables for the applicant
104 enter the input variables for the applicant
105 enter the input variables for the applicant
106 enter the input variables for the applicant

214

107 enter the input variables for the applicant
108 enter the input variables for the applicant
109 enter the input variables for the applicant
110 enter the input variables for the applicant
111 enter the input variables for the applicant
112 enter the input variables for the applicant
113 enter the input variables for the applicant
114 enter the input variables for the applicant
115 enter the input variables for the applicant
116 enter the input variables for the applicant
117 enter the input variables for the applicant
118 enter the input variables for the applicant
119 enter the input variables for the applicant
120 enter the input variables for the applicant
121 enter the input variables for the applicant
122 enter the input variables for the applicant
123 enter the input variables for the applicant
124 enter the input variables for the applicant
125 enter the input variables for the applicant
126 enter the input variables for the applicant
127 enter the input variables for the applicant
128 enter the input variables for the applicant
129 enter the input variables for the applicant
130 enter the input variables for the applicant
131 enter the input variables for the applicant
132 enter the input variables for the applicant
133 enter the input variables for the applicant
134 enter the input variables for the applicant
135 enter the input variables for the applicant
136 enter the input variables for the applicant
137 enter the input variables for the applicant
138 enter the input variables for the applicant
139 enter the input variables for the applicant
140 enter the input variables for the applicant
141 enter the input variables for the applicant
142 enter the input variables for the applicant
143 enter the input variables for the applicant
144 enter the input variables for the applicant
145 enter the input variables for the applicant
146 enter the input variables for the applicant
147 enter the input variables for the applicant

215

148 enter the input variables for the applicant
149 enter the input variables for the applicant
150 enter the input variables for the applicant
151 enter the input variables for the applicant
152 enter the input variables for the applicant
153 enter the input variables for the applicant
154 enter the input variables for the applicant
155 enter the input variables for the applicant
156 enter the input variables for the applicant
157 enter the input variables for the applicant
158 enter the input variables for the applicant
159 enter the input variables for the applicant
160 enter the input variables for the applicant
161 enter the input variables for the applicant
162 enter the input variables for the applicant
163 enter the input variables for the applicant
164 enter the input variables for the applicant
165 enter the input variables for the applicant
166 enter the input variables for the applicant
167 enter the input variables for the applicant
168 enter the input variables for the applicant
169 enter the input variables for the applicant
170 enter the input variables for the applicant
171 enter the input variables for the applicant
172 enter the input variables for the applicant
173 enter the input variables for the applicant
174 enter the input variables for the applicant
175 enter the input variables for the applicant
176 enter the input variables for the applicant
177 enter the input variables for the applicant
178 enter the input variables for the applicant
179 enter the input variables for the applicant
180 enter the input variables for the applicant
181 enter the input variables for the applicant
182 enter the input variables for the applicant
183 enter the input variables for the applicant
184 transfer to the data entry mode with log in
185 transfere to application assessment mode
186 try to save and assign
187 try to assign, applicant assigned 2 residents? WRONG
188 try to assign, residence assigned 2 applicants? WRONG

216

TestCaseID ExpectedSolution
1 system does not allow access.
2 system allows access
3 system does not allow access.
4 Stop Access
5 Stop access
6 Give access
7 Stop Access
8 Stop access
9 Give access

10
assigner success in assigning applicants (not checking for validity of the
assignment processhere)

11 datatypist success in typing
12 magaziner could access publishing
13 access to applicants list displayed on the interface
14 applications available
15 access to lists displayed on the interface
16 all correct residences are assigned to correct applicants
17 magazine published in bin folder
18 data could be typed in and saved
19 assigner could access all current information
20 Info found in log
21 Info found in log
22 Info found in log
23 Info found in log
24 task performed correctly
25 task performed correctly
26 task performed correctly
27 task performed correctly
28 transaction goes through
29 transaction goes through
30 transaction goes through
31 transaction results are correct
32 transaction results are correct
33 transaction results are correct
34 applicant assigned an apartment based on variables
35 applicant assigned an apartment based on variables
36 applicant assigned an apartment based on variables
37 applicant assigned an apartment based on variables
38 applicant assigned an apartment based on variables

217

39 applicant assigned an apartment based on variables
40 applicant assigned an apartment based on variables
41 applicant assigned an apartment based on variables
42 applicant assigned an apartment based on variables
43 applicant assigned an apartment based on variables
44 applicant assigned an apartment based on variables
45 applicant assigned an apartment based on variables
46 applicant assigned an apartment based on variables
47 applicant assigned an apartment based on variables
48 applicant assigned an apartment based on variables
49 applicant assigned an apartment based on variables
50 applicant assigned an apartment based on variables
51 applicant assigned an apartment based on variables
52 applicant assigned an apartment based on variables
53 applicant assigned an apartment based on variables
54 applicant assigned an apartment based on variables
55 applicant assigned an apartment based on variables
56 applicant assigned an apartment based on variables
57 applicant assigned an apartment based on variables
58 applicant assigned an apartment based on variables
59 applicant assigned an apartment based on variables
60 applicant assigned an apartment based on variables
61 applicant assigned an apartment based on variables
62 applicant assigned an apartment based on variables
63 applicant assigned an apartment based on variables
64 applicant assigned an apartment based on variables
65 applicant assigned an apartment based on variables
66 applicant assigned an apartment based on variables
67 applicant assigned an apartment based on variables
68 applicant assigned an apartment based on variables
69 applicant assigned an apartment based on variables
70 applicant assigned an apartment based on variables
71 applicant assigned an apartment based on variables
72 applicant assigned an apartment based on variables
73 applicant assigned an apartment based on variables
74 applicant assigned an apartment based on variables
75 applicant assigned an apartment based on variables
76 applicant assigned an apartment based on variables
77 applicant assigned an apartment based on variables
78 applicant assigned an apartment based on variables
79 applicant assigned an apartment based on variables

218

80 applicant assigned an apartment based on variables
81 applicant assigned an apartment based on variables
82 applicant assigned an apartment based on variables
83 applicant assigned an apartment based on variables
84 applicant assigned an apartment based on variables
85 applicant assigned an apartment based on variables
86 applicant assigned an apartment based on variables
87 applicant assigned an apartment based on variables
88 applicant assigned an apartment based on variables
89 applicant assigned an apartment based on variables
90 applicant assigned an apartment based on variables
91 applicant assigned an apartment based on variables
92 applicant assigned an apartment based on variables
93 applicant assigned an apartment based on variables
94 applicant assigned an apartment based on variables
95 applicant assigned an apartment based on variables
96 applicant assigned an apartment based on variables
97 applicant assigned an apartment based on variables
98 applicant assigned an apartment based on variables
99 applicant assigned an apartment based on variables

100 applicant assigned an apartment based on variables
101 applicant assigned an apartment based on variables
102 applicant assigned an apartment based on variables
103 applicant assigned an apartment based on variables
104 applicant assigned an apartment based on variables
105 applicant assigned an apartment based on variables
106 applicant assigned an apartment based on variables
107 applicant assigned an apartment based on variables
108 applicant assigned an apartment based on variables
109 applicant assigned an apartment based on variables
110 applicant assigned an apartment based on variables
111 applicant assigned an apartment based on variables
112 applicant assigned an apartment based on variables
113 applicant assigned an apartment based on variables
114 applicant assigned an apartment based on variables
115 applicant assigned an apartment based on variables
116 applicant assigned an apartment based on variables
117 applicant assigned an apartment based on variables
118 applicant assigned an apartment based on variables
119 applicant assigned an apartment based on variables
120 applicant assigned an apartment based on variables

219

121 applicant assigned an apartment based on variables
122 applicant assigned an apartment based on variables
123 applicant assigned an apartment based on variables
124 applicant assigned an apartment based on variables
125 applicant assigned an apartment based on variables
126 applicant assigned an apartment based on variables
127 applicant assigned an apartment based on variables
128 applicant assigned an apartment based on variables
129 applicant assigned an apartment based on variables
130 applicant assigned an apartment based on variables
131 applicant assigned an apartment based on variables
132 applicant assigned an apartment based on variables
133 applicant assigned an apartment based on variables
134 applicant assigned an apartment based on variables
135 applicant assigned an apartment based on variables
136 applicant assigned an apartment based on variables
137 applicant assigned an apartment based on variables
138 applicant assigned an apartment based on variables
139 applicant assigned an apartment based on variables
140 applicant assigned an apartment based on variables
141 applicant assigned an apartment based on variables
142 applicant assigned an apartment based on variables
143 applicant assigned an apartment based on variables
144 applicant assigned an apartment based on variables
145 applicant assigned an apartment based on variables
146 applicant assigned an apartment based on variables
147 applicant assigned an apartment based on variables
148 applicant assigned an apartment based on variables
149 applicant assigned an apartment based on variables
150 applicant assigned an apartment based on variables
151 applicant assigned an apartment based on variables
152 applicant assigned an apartment based on variables
153 applicant assigned an apartment based on variables
154 applicant assigned an apartment based on variables
155 applicant assigned an apartment based on variables
156 applicant assigned an apartment based on variables
157 applicant assigned an apartment based on variables
158 applicant assigned an apartment based on variables
159 applicant assigned an apartment based on variables
160 applicant assigned an apartment based on variables
161 applicant assigned an apartment based on variables

220

162 applicant assigned an apartment based on variables
163 applicant assigned an apartment based on variables
164 applicant assigned an apartment based on variables
165 applicant assigned an apartment based on variables
166 applicant assigned an apartment based on variables
167 applicant assigned an apartment based on variables
168 applicant assigned an apartment based on variables
169 applicant assigned an apartment based on variables
170 applicant assigned an apartment based on variables
171 applicant assigned an apartment based on variables
172 applicant assigned an apartment based on variables
173 applicant assigned an apartment based on variables
174 applicant assigned an apartment based on variables
175 applicant assigned an apartment based on variables
176 applicant assigned an apartment based on variables
177 applicant assigned an apartment based on variables
178 applicant assigned an apartment based on variables
179 applicant assigned an apartment based on variables
180 applicant assigned an apartment based on variables
181 applicant assigned an apartment based on variables
182 applicant assigned an apartment based on variables
183 applicant assigned an apartment based on variables

184
log in and out smoothly, full access to new mode and no prblems or errors
generated.

185
log in and out smoothly, full access to new mode and no prblems or errors
generated.

186 the system should not allow saving
187 applicant assigned one residence only!
188 applicant assigned one residence only!

221

APPENDIX B: JAVA CODE FOR THE HOUSING KNOWLEDGE-BASED
SYSTEM

222

//KnowledgeBase.JAVA

import javax.swing.JButton;

public class KnowledgeBase {

//Sort by applicant date then choose based on the following criteria:
//Location will be assigned automatically
//Area is associated with Family
//Rent/Location is associated with Income
//Age with Associated with Rent/Location
int Family=0; //1,2,3,4,5 --> 1,23,45,67,8
int Income=0; //1,2,3,4 --> 0-40,40-100,100-500,500+
int Age=0; //1,4,3,2 --> 0-20,20-40-,40-60,60+

int Area=0; //1,2,3,4,5 --> 600,800,1000,1200,1200+
int Rent=0;//1,2,3,4 --> 545,750,1047,1047+

int RESULTS [][];

boolean CONTROL = false;

public int [][] maincontroller(int [][] A, int [][] R, int a, int r)//get
array of applicants, array of residences, and number of applicants
{
RESULTS = new int [2][a];
int fm=0,in=0,ag=0; //White #5

for (int i=0; i<a; i++)//fill applicants ID's //White #4
{
RESULTS[0][i] = i;
RESULTS[1][i] = 50;//EMPTY, NOT ASSIGNED YET
}

for (int i=0; i<a; i++)
{
System.out.print("\n"+"-----"+"\n");

for (int j=0;j<a;j++)//White #6
{ System.out.print("RESULTS:"+RESULTS[0][j]+","+RESULTS[1][j]+"\n");}

ag=A[0][i];
fm=A[1][i];
in=A[2][i];
//Grey #1
RULES_KB(fm,in,ag);

CONTROL = ASSIGN(a, R, r, i);

if (CONTROL == false) //White #7
{
ReASSIGN(a,R, r, i);
}
}//Red #9
// return rent and area

223

return RESULTS;
}

private boolean RULES_KB(int fm, int in, int ag) // Assignment rules
{
Family = fm;
Income = in; Yellow #7
Age = ag; //Yellow #8
//Grey #6

if (Family == 1)Area = 1; //Red #8
//White #1
if (Family == 2)Area = 2;
if (Family == 3)Area = 3; //Brown #4
//Brown #11
if (Family == 4)Area = 4;
if (Family == 5)Area = 5;

if (Income == 1 && Age == 1) Rent = 1; //Red #7
//Orange #1
if (Income == 1 && Age == 3) Rent = 2; //White #8
//Orange #2
if (Income == 1 && Age == 2) Rent = 2; //Brown #5
//Orange #3
//Grey #3
if (Income == 1 && Age == 4) Rent = 1;
//Orange #4
if (Income == 2 && Age == 1) Rent = 2; //Orange #5
//Orange #6
if (Income == 2 && Age == 3) Rent = 3; //White #9
if (Income == 2 && Age == 2) Rent = 3;
if (Income == 2 && Age == 4) Rent = 2;

if (Income == 3 && Age == 1) Rent = 3; //Blue #4
if (Income == 3 && Age == 3) Rent = 4; //Orange #14
//Brown #8
//Grey #5
if (Income == 3 && Age == 2) Rent = 4; //Orange #15
if (Income == 3 && Age == 4) Rent = 3; //Blue #6
if (Income == 4 && Age == 1) Rent = 4; //Orange #9
if (Income == 4 && Age == 2) Rent = 4; //Orange #10
//Grey #9
if (Income == 4 && Age == 3) Rent = 4; //Orange #11
if (Income == 4 && Age == 4) Rent = 4; //Orange #12

if (Rent == 0 && Area ==0){return false;} //Blue #5
else {return true;} //Brown #6

//21 rules out of 40 rules

}//Red #6
//Grey #2
private boolean ASSIGN (int a, int [][] R, int r, int app)
{

224

for (int i=0; i<r;i++)//Grey #8
{
if (R[0][i]==Rent && R[1][i]==Area) //rule 38
//Grey #4
//Orange #13
{
RESULTS[1][app]=i;
//Grey #10
//remove residence from array
R[0][i]=50;//not to be taken again
R[1][i]=50;//not to be taken again
return true;

}
else if ((R[0][i]==Rent+1||R[0][i]==Rent-1||R[0][i]==Rent-
2||R[0][i]==Rent+2||R[0][i]==Rent-3||R[0][i]==Rent+3)
&& (R[1][i]==Area+1||R[1][i]==Area-1||R[1][i]==Area+2||R[1][i]==Area-
2||R[1][i]==Area+3||R[1][i]==Area-3)) // rule 39 //White #2
{//Yellow #5
//White #3
RESULTS[1][app]=i;
R[0][i]=50;//not to be taken again //Orange #7
R[1][i]=50;//not to be taken again //Orange #8
return true;
}}
return false;
}
private void ReASSIGN(int a,int[][] R,int r, int app)
{//Brown #12
for (int i=0; i<r;i++)
{ //Grey #7
if ((R[0][i]==Rent+4||R[0][i]==Rent-4||R[0][i]==Rent-5||R[0][i]==Rent+5)
&& (R[1][i]==Area+4||R[1][i]==Area-4||R[1][i]==Area+5||R[1][i]==Area-
5))//rule 40 //Brown #7
{//Yellow #6
RESULTS[1][app]=i;
R[0][i]=50;//not to be taken again
R[1][i]=50;//not to be taken again
}}}}

//MainApplet.JAVA

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Font;
import java.awt.Label;
import java.awt.Point;
import java.awt.Rectangle;
import java.util.LinkedList;

import javax.swing.ButtonGroup;
import javax.swing.JApplet;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;

225

import javax.swing.JPasswordField;
import javax.swing.JRadioButton;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.SwingConstants;
import java.awt.GridBagLayout;
import java.io.BufferedWriter;
import java.io.FileWriter;

public class MainApplet extends JApplet {

private JPanel jContentPane = null;
private JPanel jPanelLogin = null;
private Label labeltext1 = null;
private Label labelusername = null;
private Label labelpassword = null;
private Label labelERROR = null;
private JRadioButton jRadioButtonassigner = null;
private JRadioButton jRadioButtondatatypist = null;
private JLabel loginas = null;
private JLabel jLabeltitle = null;
private JTextArea jTextAreaDESC = null;
private JScrollPane jScrollPaneDESC = null;
private JPanel jPanelAssigner = null;
private JPanel jPanelDatatypist = null;
private JLabel jLabelassigner = null;
private JLabel jLabeldatatypist = null;
private JLabel jLabeltitle1 = null;
private JLabel jLabeltitle2 = null;
private ButtonGroup bgroup = null; // @jve:decl-index=0:
private ButtonGroup bgroup1 = null; // @jve:decl-index=0:
private ButtonGroup bgroup2 = null; // @jve:decl-index=0:
private ButtonGroup bgroup3 = null; // @jve:decl-index=0:

private JButton jButtonsaveandnew = null;
private JButton jButtonSignIn = null;
private JLabel jLabelname = null;
private JLabel jLabelage = null;
private JLabel jLabeldate = null;
private JLabel jLabelmem = null;
private JLabel jLabelincome = null;
private JButton jButtonNEWAPP = null;
private JPanel jPanelresident = null;
private JLabel jLabelarea = null;
private JLabel jLabelloc = null;
private JButton jButtonassingAUTO = null;
private JLabel jLabeltext = null;
private JLabel jLabellistapplicants = null;
private JLabel jLabellistofresidences = null;
private JScrollPane jScrollPaneapplicants = null;
private JScrollPane jScrollPaneresidents = null;
private JTextArea jTextAreaapplicants = null;
private JTextArea jTextAreaREsidents = null;

226

public LinkedList<String> LISTofAPPLICANTS= new LinkedList<String> (); //
@jve:decl-index=0:
public LinkedList<String> LISTofRESIDENTS= new LinkedList<String> (); //
AREA_RENT_LOCATION // @jve:decl-index=0:

public LinkedList<Integer> SecretlistRent= new LinkedList<Integer> (); //
@jve:decl-index=0:
public LinkedList<Integer> SecretlistArea= new LinkedList<Integer> (); //
@jve:decl-index=0:
public LinkedList<Integer> SecretlistFamily= new LinkedList<Integer> ();
// @jve:decl-index=0:
public LinkedList<Integer> SecretlistIncome= new LinkedList<Integer> ();
// @jve:decl-index=0:
public LinkedList<Integer> SecretlistAge= new LinkedList<Integer> (); //
@jve:decl-index=0:

private String AREA=""; // @jve:decl-index=0:
private String RENT=""; // @jve:decl-index=0:
private String LOCATION=""; // @jve:decl-index=0:
private JLabel jLabeltext66 = null;
private JButton jButtonADDRES = null;
private JRadioButton jRadioButtonA = null;
private JRadioButton jRadioButtonB = null;
private JRadioButton jRadioButtonC = null;
private JRadioButton jRadioButtonD = null;
private JRadioButton jRadioButtonE = null;
private JRadioButton jRadioButton600 = null;
private JRadioButton jRadioButton800 = null;
private JRadioButton jRadioButton1000 = null;
private JRadioButton jRadioButton1200 = null;
private JRadioButton jRadioButtonMORE1200 = null;
private JRadioButton jRadioButtonrent1 = null;
private JRadioButton jRadioButtonrent750 = null;
private JRadioButton jRadioButtonrent1047 = null;
private JRadioButton jRadioButtonrent1047more = null;
private JTextField jTextFieldname = null;
private JTextField jTextFieldage = null;
private JTextField jTextFielddate = null;
private JTextField jTextFieldfamily = null;
private JTextField jTextFieldincome = null;
private JLabel jLabeltextshow = null;
private JLabel jLabelsaved = null;
private JLabel jLabelerror = null;
private JTextField jTextFieldusername = null;
private JPasswordField jPasswordFieldpass = null;
private boolean setresidence = false;
private JLabel jLabelmissing = null;
private JButton jButtongetapplicants = null;

int rrr=0;
int aaa=0;
int fff=0;
int iii=0;
int ggg=0;
String ResultsString="Apartments are not assigned yet! Contact Assigner!";
// @jve:decl-index=0:

227

int RCounter = 15; //0-14 are assigned statically
int ACounter = 1; //0 is assigned statically

private KnowledgeBase kb = new KnowledgeBase(); // @jve:decl-index=0:
private JLabel jLabeltext77 = null;
private JScrollPane jScrollPaneresults = null;
private JTextArea jTextAreaResults = null;
private JRadioButton jRadioButtonmagazineeditor = null;
private JPanel jPanelMagaziner = null;
private JLabel jLabelmagaziner = null;
private JButton jButtonPrintMAG = null;
private JLabel jLabelmessgaeformagazine = null;
private JTextArea jTextAreacreidts = null;
/**
This is the xxx default constructor
*/
public MainApplet() {
super();
}

/**
This method initializes this
*
@return void
*/
public void init() {
this.setSize(900, 508);
this.setContentPane(getJContentPane());
bgroup = new ButtonGroup();
bgroup.add(jRadioButtondatatypist);
bgroup.add(jRadioButtonassigner);
bgroup.add(jRadioButtonmagazineeditor);

bgroup1 = new ButtonGroup();
bgroup2 = new ButtonGroup();
bgroup3 = new ButtonGroup();

bgroup1.add(jRadioButton600);
bgroup1.add(jRadioButton800);
bgroup1.add(jRadioButton1000);
bgroup1.add(jRadioButton1200);
bgroup1.add(jRadioButtonMORE1200);

bgroup2.add(jRadioButtonrent1047);
bgroup2.add(jRadioButtonrent1);
bgroup2.add(jRadioButtonrent1047more);
bgroup2.add(jRadioButtonrent750);

bgroup3.add(jRadioButtonA);
bgroup3.add(jRadioButtonB);
bgroup3.add(jRadioButtonC);
bgroup3.add(jRadioButtonD);
bgroup3.add(jRadioButtonE);

//add initial residences (random) AREA-RENT-LOCATION//15 here

228

LISTofRESIDENTS.add("0-600-545-
A");SecretlistRent.add(1);SecretlistArea.add(1); //White #12
LISTofRESIDENTS.add("1-600-1048-
B");SecretlistRent.add(1);SecretlistArea.add(4);
LISTofRESIDENTS.add("2-600-545-
E");SecretlistRent.add(1);SecretlistArea.add(1);

LISTofRESIDENTS.add("3-1000-545-
A");SecretlistRent.add(3);SecretlistArea.add(1); //Yellow #1

LISTofRESIDENTS.add("4-1201-750-
D");SecretlistRent.add(5);SecretlistArea.add(2);
LISTofRESIDENTS.add("5-1201-545-
B");SecretlistRent.add(5);SecretlistArea.add(1);
LISTofRESIDENTS.add("6-800-750-
E");SecretlistRent.add(2);SecretlistArea.add(2);
LISTofRESIDENTS.add("7-1000-545-
D");SecretlistRent.add(3);SecretlistArea.add(1);
LISTofRESIDENTS.add("8-800-750-
B");SecretlistRent.add(2);SecretlistArea.add(2);
LISTofRESIDENTS.add("9-1200-1047-
B");SecretlistRent.add(4);SecretlistArea.add(3);
LISTofRESIDENTS.add("10-1000-1048-
B");SecretlistRent.add(3);SecretlistArea.add(4);
LISTofRESIDENTS.add("11-1201-1047-
C");SecretlistRent.add(5);SecretlistArea.add(3);
LISTofRESIDENTS.add("12-600-750-
C");SecretlistRent.add(1);SecretlistArea.add(2);
LISTofRESIDENTS.add("13-800-545-
B");SecretlistRent.add(2);SecretlistArea.add(1);
LISTofRESIDENTS.add("14-1200-750-
C");SecretlistRent.add(4);SecretlistArea.add(2);

LISTofAPPLICANTS.add("0-"+"Feras"+"-"+"26"+"-"+"04/02/10"+"-"+"7"+"-
"+"20,000");
SecretlistFamily.add(3);SecretlistIncome.add(1);SecretlistAge.add(2);
}

/**
This method initializes jContentPane
*
@return javax.swing.JPanel
*/
private JPanel getJContentPane() {
if (jContentPane == null) {
jLabeltitle2 = new JLabel();
jLabeltitle2.setBounds(new Rectangle(377, 9, 132, 32));
jLabeltitle2.setForeground(Color.white);
jLabeltitle2.setText("The");
jLabeltitle2.setHorizontalAlignment(SwingConstants.CENTER);
jLabeltitle2.setFont(new Font("Dialog", Font.BOLD, 24));
jLabeltitle1 = new JLabel();
jLabeltitle1.setBounds(new Rectangle(380, 56, 132, 32));
jLabeltitle1.setForeground(Color.white);
jLabeltitle1.setText("Housing");
jLabeltitle1.setHorizontalAlignment(SwingConstants.CENTER);
jLabeltitle1.setFont(new Font("Dialog", Font.BOLD, 24));
jLabeltitle = new JLabel();

229

jLabeltitle.setBounds(new Rectangle(376, 107, 136, 38));
jLabeltitle.setFont(new Font("Dialog", Font.BOLD, 24));
jLabeltitle.setForeground(Color.white);
jLabeltitle.setHorizontalAlignment(SwingConstants.CENTER);
jLabeltitle.setText("Application");
jContentPane = new JPanel();
jContentPane.setLayout(null);
jContentPane.setBackground(new Color(0, 0, 51));
jContentPane.add(getJPanelLogin(), null);
jContentPane.add(jLabeltitle, null);
jContentPane.add(getJScrollPaneDESC(), null);
jContentPane.add(getJPanelAssigner(), null);
jContentPane.add(getJPanelDatatypist(), null);
jContentPane.add(jLabeltitle1, null);
jContentPane.add(jLabeltitle2, null);
jContentPane.add(getJPanelMagaziner(), null);
jContentPane.add(getJTextAreacreidts(), null);
}
return jContentPane;
}

/**
This method initializes jPanelLogin
*
@return javax.swing.JPanel
*/
private JPanel getJPanelLogin() {
if (jPanelLogin == null) {
loginas = new JLabel();
loginas.setText("Sign in as:");
loginas.setFont(new Font("Dialog", Font.BOLD | Font.ITALIC, 12));
loginas.setForeground(new Color(0, 0, 51));
loginas.setBounds(new Rectangle(249, 13, 69, 16));
labelERROR = new Label();
labelERROR.setBounds(new Rectangle(119, 105, 118, 19));
labelERROR.setForeground(Color.red);
labelERROR.setText("ERROR: Invalid info");
labelERROR.setVisible(false);
labelpassword = new Label();
labelpassword.setBounds(new Rectangle(4, 75, 65, 23));
labelpassword.setText("Password:");
labelusername = new Label();
labelusername.setBounds(new Rectangle(3, 46, 71, 23));
labelusername.setText("User Name:");
labeltext1 = new Label();
labeltext1.setBounds(new Rectangle(2, 2, 78, 35));
labeltext1.setFont(new Font("Dialog", Font.BOLD, 18));
labeltext1.setText("Sign in:");
jPanelLogin = new JPanel();
jPanelLogin.setLayout(null);
jPanelLogin.setBackground(Color.white);
jPanelLogin.setSize(new Dimension(362, 143));
jPanelLogin.setLocation(new Point(7, 8));
jPanelLogin.setToolTipText("Please log in!");
jPanelLogin.add(labeltext1, null);
jPanelLogin.add(labelusername, null);
jPanelLogin.add(labelpassword, null);

230

jPanelLogin.add(labelERROR, null);
jPanelLogin.add(loginas, null);
jPanelLogin.add(getJRadioButtondatatypist(), null);
jPanelLogin.add(getJRadioButtonassigner(), null);
jPanelLogin.add(getJButtonSignIn(), null);
jPanelLogin.add(getJTextFieldusername(), null);
jPanelLogin.add(getJPasswordFieldpass(), null);
jPanelLogin.add(getJRadioButtonmagazineeditor(), null);
}
return jPanelLogin;
}

/**
This method initializes jRadioButtonassigner
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonassigner() {
if (jRadioButtonassigner == null) {
jRadioButtonassigner = new JRadioButton();
jRadioButtonassigner.setText("Assigner");
jRadioButtonassigner.setBackground(Color.white);
jRadioButtonassigner.setBounds(new Rectangle(247, 35, 83, 21));
}
return jRadioButtonassigner;
}

/**
This method initializes jRadioButtondatatypist
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtondatatypist() {
if (jRadioButtondatatypist == null) {
jRadioButtondatatypist = new JRadioButton();
jRadioButtondatatypist.setText("Data Typist");
jRadioButtondatatypist.setBackground(Color.white);
jRadioButtondatatypist.setBounds(new Rectangle(247, 59, 92, 24));
}
return jRadioButtondatatypist;
}

/**
This method initializes jTextAreaDESC
*
@return javax.swing.JTextArea
*/
private JTextArea getJTextAreaDESC() {
if (jTextAreaDESC == null) {
jTextAreaDESC = new JTextArea();
jTextAreaDESC.setText("Description: The housing application is used by the
Dutch \ngovernment to assign apartments to citizens who apply for
one.\nThis process is called residence distribution and citizens \nwho
want an apartment must apply to be a potential applicant. \nEvery two
weeks a magazine is published and distributed in \nthe Netherlands with a
list of residences for which people can \napply. Another published
proceeding has the names of the \nwinning applicants. To be eligible for a

231

residence, applicants \nmust meet a number of criteria. Residents must
consider \nthe number of family members in their household, \nresidence
category in regards to the area where the residence \nis located and a
fair relation between the applicant’s income \nand the rent of the
apartment. Other parameters may apply for \nevery specific
case/applicant.");
jTextAreaDESC.setToolTipText("Description of KBS");
jTextAreaDESC.setEditable(false);
}
return jTextAreaDESC;
}

/**
This method initializes jScrollPaneDESC
*
@return javax.swing.JScrollPane
*/
private JScrollPane getJScrollPaneDESC() {
if (jScrollPaneDESC == null) {
jScrollPaneDESC = new JScrollPane();
jScrollPaneDESC.setLocation(new Point(522, 7));
jScrollPaneDESC.setSize(new Dimension(362, 143));
jScrollPaneDESC.setToolTipText("DEscription about the KBS");
jScrollPaneDESC.setViewportView(getJTextAreaDESC());
}
return jScrollPaneDESC;
}

/**
This method initializes jPanelAssigner
*
@return javax.swing.JPanel
*/
private JPanel getJPanelAssigner() {
if (jPanelAssigner == null) {
jLabelerror = new JLabel();
jLabelerror.setBounds(new Rectangle(131, 238, 86, 16));
jLabelerror.setForeground(Color.red);
jLabelerror.setEnabled(true);
jLabelerror.setText("Missing Fields!");
jLabelerror.setVisible(false);
//Red #1
jLabelsaved = new JLabel();
jLabelsaved.setBounds(new Rectangle(12, 238, 107, 16));
jLabelsaved.setForeground(Color.red);
jLabelsaved.setEnabled(true);
jLabelsaved.setText("Applicant Saved!");
jLabelsaved.setVisible(false);
jLabelincome = new JLabel();
jLabelincome.setText("Income Per Year (In Euro):");
jLabelincome.setLocation(new Point(5, 165));
jLabelincome.setEnabled(false);
jLabelincome.setSize(new Dimension(152, 16));
jLabelmem = new JLabel();
jLabelmem.setText("Number of Family Memebers:");
jLabelmem.setLocation(new Point(5, 125));
jLabelmem.setEnabled(false);

232

jLabelmem.setSize(new Dimension(169, 16));
jLabeldate = new JLabel();
jLabeldate.setText("Applying Date (MM/DD/YY):");
jLabeldate.setLocation(new Point(5, 84));
jLabeldate.setEnabled(false);
jLabeldate.setSize(new Dimension(153, 16));
jLabelage = new JLabel();
jLabelage.setText("Age:");
jLabelage.setLocation(new Point(5, 61));
jLabelage.setEnabled(false);
jLabelage.setSize(new Dimension(31, 16));
jLabelname = new JLabel();
jLabelname.setBounds(new Rectangle(5, 37, 38, 16));
jLabelname.setEnabled(false);
jLabelname.setText("Name:");
jLabeldatatypist = new JLabel();
jLabeldatatypist.setBounds(new Rectangle(8, 9, 147, 23));
jLabeldatatypist.setFont(new Font("Dialog", Font.BOLD, 14));
jLabeldatatypist.setForeground(new Color(0, 153, 0));
jLabeldatatypist.setEnabled(false);
jLabeldatatypist.setText("Data Typist's Screen:");
jPanelAssigner = new JPanel();
jPanelAssigner.setLayout(null);
jPanelAssigner.setBounds(new Rectangle(7, 160, 437, 260));
jPanelAssigner.setToolTipText("Data typist only screen");
jPanelAssigner.setBackground(Color.lightGray);
jPanelAssigner.setEnabled(false);
jPanelAssigner.add(jLabeldatatypist, null);
jPanelAssigner.add(getJButtonsaveandnew(), null);
jPanelAssigner.add(jLabelname, null);
jPanelAssigner.add(jLabelage, null);
jPanelAssigner.add(jLabeldate, null);
jPanelAssigner.add(jLabelmem, null);
jPanelAssigner.add(jLabelincome, null);
jPanelAssigner.add(getJButtonNEWAPP(), null);
jPanelAssigner.add(getJPanelresident(), null);
jPanelAssigner.add(getJTextFieldname(), null);
jPanelAssigner.add(getJTextFieldage(), null);
jPanelAssigner.add(getJTextFielddate(), null);
jPanelAssigner.add(getJTextFieldfamily(), null);
jPanelAssigner.add(getJTextFieldincome(), null);
jPanelAssigner.add(jLabelsaved, null);
jPanelAssigner.add(jLabelerror, null);
}
return jPanelAssigner;
}

/**
This method initializes jPanelDatatypist
*
@return javax.swing.JPanel
*/
private JPanel getJPanelDatatypist() {
if (jPanelDatatypist == null) { //White #13
jLabeltext77 = new JLabel();
jLabeltext77.setText("Results:");
jLabeltext77.setLocation(new Point(19, 216));

233

jLabeltext77.setForeground(Color.blue);
jLabeltext77.setSize(new Dimension(49, 16));
jLabeltext77.setVisible(false);
jLabellistofresidences = new JLabel();
jLabellistofresidences.setText("List of Residences (Area-Rent-
Location):");
jLabellistofresidences.setLocation(new Point(17, 141));
jLabellistofresidences.setForeground(new Color(0, 0, 51));
jLabellistofresidences.setEnabled(false);
jLabellistofresidences.setSize(new Dimension(231, 16));
jLabellistapplicants = new JLabel();
jLabellistapplicants.setBounds(new Rectangle(16, 75, 107, 16));
jLabellistapplicants.setForeground(new Color(0, 0, 51));
jLabellistapplicants.setEnabled(false);
jLabellistapplicants.setText("List of Applicants:");
jLabeltext = new JLabel();
jLabeltext.setBounds(new Rectangle(291, 40, 125, 16));
jLabeltext.setForeground(Color.red);
jLabeltext.setEnabled(true);
jLabeltext.setText("Applicants Assigned!");
jLabeltext.setVisible(false);
jLabelassigner = new JLabel();
jLabelassigner.setBounds(new Rectangle(8, 6, 136, 23));
jLabelassigner.setFont(new Font("Dialog", Font.BOLD, 14));
jLabelassigner.setForeground(new Color(0, 153, 0));
jLabelassigner.setEnabled(false);
jLabelassigner.setText("Assigner's Screen:");
jPanelDatatypist = new JPanel();
jPanelDatatypist.setLayout(null);
jPanelDatatypist.setLocation(new Point(451, 160));
jPanelDatatypist.setSize(new Dimension(437, 260));
jPanelDatatypist.setToolTipText("Assigner only screen");
jPanelDatatypist.setBackground(Color.lightGray);
jPanelDatatypist.setEnabled(false);
jPanelDatatypist.add(jLabelassigner, null);
jPanelDatatypist.add(getJButtonassingAUTO(), null);
jPanelDatatypist.add(jLabeltext, null);
jPanelDatatypist.add(jLabellistapplicants, null);
jPanelDatatypist.add(jLabellistofresidences, null);
jPanelDatatypist.add(getJScrollPaneapplicants(), null);
jPanelDatatypist.add(getJScrollPaneresidents(), null);
jPanelDatatypist.add(getJButtongetapplicants(), null);
jPanelDatatypist.add(jLabeltext77, null);
jPanelDatatypist.add(getJScrollPaneresults(), null);
}
return jPanelDatatypist;
}

/**
This method initializes jButtonsaveandnew
*
@return javax.swing.JButton
*/
private JButton getJButtonsaveandnew() {
if (jButtonsaveandnew == null) {
jButtonsaveandnew = new JButton();
jButtonsaveandnew.setBounds(new Rectangle(4, 206, 62, 27));

234

jButtonsaveandnew.setEnabled(false);
jButtonsaveandnew.setText("Save");
jButtonsaveandnew.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()
if((!(jTextFieldname.getText().equals("")))&&(!(jTextFieldage.getText().eq
uals("")))&&(!(jTextFielddate.getText().equals("")))
&&(!(jTextFieldfamily.getText().equals("")))&&(!(jTextFieldincome.getText(
).equals(""))))
{LISTofAPPLICANTS.add(ACounter+"-"+jTextFieldname.getText()+""+"-
"+jTextFieldage.getText()+""+"-"+
jTextFielddate.getText()+""+"-"+jTextFieldfamily.getText()+""+"-
"+jTextFieldincome.getText()+"");

if (Integer.parseInt(jTextFieldfamily.getText()+"")==1)fff=1; //Red #2
if (Integer.parseInt(jTextFieldfamily.getText()+"")==2)fff=2; //Yellow #2
if (Integer.parseInt(jTextFieldfamily.getText()+"")==3)fff=2; //Red #3
if (Integer.parseInt(jTextFieldfamily.getText()+"")==4)fff=3; //Brown #1
if (Integer.parseInt(jTextFieldfamily.getText()+"")==5)fff=3;
if (Integer.parseInt(jTextFieldfamily.getText()+"")==6)fff=4;
if (Integer.parseInt(jTextFieldfamily.getText()+"")==7)fff=4;
if (Integer.parseInt(jTextFieldfamily.getText()+"")>=8)fff=5; //Blue #2

//Brown #2
if (Integer.parseInt(jTextFieldage.getText()+"")<=20)ggg=1; //Red #4
else if (Integer.parseInt(jTextFieldage.getText()+"")<=40)ggg=2;
//Red #5 //Blue #1

//White #10
else if (Integer.parseInt(jTextFieldage.getText()+"")<60)ggg=3;
else if (Integer.parseInt(jTextFieldage.getText()+"")>=60)ggg=4;//Brown #9

if (Integer.parseInt(jTextFieldincome.getText()+"")<=40000)iii=1; //Yellow #3
//Brown #3
//White #19

else if (Integer.parseInt(jTextFieldincome.getText()+"")<=100000)iii=2;
else if (Integer.parseInt(jTextFieldincome.getText()+"")<500000)iii=3;
//White #11
//Brown #10
else if (Integer.parseInt(jTextFieldincome.getText()+"")>=500000)iii=4;
//16 rules out of 40 rules

SecretlistFamily.add(fff);
SecretlistIncome.add(iii);
SecretlistAge.add(ggg);

ACounter++; //White #14
jLabelsaved.setVisible(true);
jLabelerror.setVisible(false); //White #15
System.out.print("LISTofAPPLICANTS: ");
System.out.print(LISTofAPPLICANTS);
}
else {jLabelerror.setVisible(true);}
}
});
}

235

return jButtonsaveandnew;
}

/**
This method initializes jButtonSignIn
*
@return javax.swing.JButton
*/
private JButton getJButtonSignIn() {
if (jButtonSignIn == null) {
jButtonSignIn = new JButton();
jButtonSignIn.setBounds(new Rectangle(279, 115, 72, 22));
jButtonSignIn.setText("Sign in");
jButtonSignIn.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {

jLabelmessgaeformagazine.setVisible(false);
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()
System.out.println(jTextFieldusername.getText());

//Passwords and access
if ((jRadioButtonassigner.isSelected()==true)&& //White #20
//White #16
(jTextFieldusername.getText().toString().equals("auser"))&&(jPasswordField
pass.getText().toString().equals("apass")))
{
enableassigner();
disabledatatypist();
disablemagazine();
labelERROR.setVisible(false);
}
else if ((jRadioButtonmagazineeditor.isSelected()==true)&&
(jTextFieldusername.getText().toString().equals("muser"))&&(jPasswordField
pass.getText().toString().equals("mpass")))
{
disableassigner();
disabledatatypist();
enablemagazine();
labelERROR.setVisible(false);
}
else if ((jRadioButtondatatypist.isSelected()==true)&&
(jTextFieldusername.getText().toString().equals("duser"))&&(jPasswordField
pass.getText().toString().equals("dpass")))
{
enabledatatypist();
disableassigner();
disablemagazine();
labelERROR.setVisible(false);
}
else {labelERROR.setVisible(true);disableassigner();disabledatatypist();}
}
});
jButtonSignIn.setText("Sign in");

}

236

return jButtonSignIn;
}

/**
This method initializes jButtonNEWAPP
*
@return javax.swing.JButton
*/
private JButton getJButtonNEWAPP() {
if (jButtonNEWAPP == null) { //White #17
jButtonNEWAPP = new JButton();
jButtonNEWAPP.setBounds(new Rectangle(71, 206, 120, 27));
jButtonNEWAPP.setEnabled(false);
jButtonNEWAPP.setText("New Applicant");
jButtonNEWAPP.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()
jTextFieldname.setText("");
jTextFieldage.setText("");
jTextFielddate.setText("");
jTextFieldfamily.setText("");
jTextFieldincome.setText("");
jLabelsaved.setVisible(false);
jLabelerror.setVisible(false);
}
});
}
return jButtonNEWAPP;
}

/**
This method initializes jPanelresident
*
@return javax.swing.JPanel
*/
private JPanel getJPanelresident() {
if (jPanelresident == null) {
jLabelmissing = new JLabel();
jLabelmissing.setBounds(new Rectangle(18, 227, 37, 15));
jLabelmissing.setForeground(Color.red);
jLabelmissing.setText("Error!");
jLabelmissing.setVisible(false);
jLabeltextshow = new JLabel();
jLabeltextshow.setBounds(new Rectangle(12, 210, 46, 16));
jLabeltextshow.setForeground(Color.red);
jLabeltextshow.setEnabled(true);
jLabeltextshow.setText("Saved!");
jLabeltextshow.setVisible(false);
jLabeltext66 = new JLabel();
jLabeltext66.setText("Rent:");
jLabeltext66.setLocation(new Point(7, 110));
jLabeltext66.setEnabled(false);
jLabeltext66.setSize(new Dimension(38, 16));
jLabelloc = new JLabel();
jLabelloc.setText("Location:");
jLabelloc.setLocation(new Point(7, 166));

237

jLabelloc.setEnabled(false);
jLabelloc.setSize(new Dimension(62, 16));
jLabelarea = new JLabel();
jLabelarea.setText("Area:");
jLabelarea.setLocation(new Point(7, 5));
jLabelarea.setEnabled(false);
jLabelarea.setSize(new Dimension(38, 16));
jPanelresident = new JPanel();
jPanelresident.setLayout(null);
jPanelresident.setBounds(new Rectangle(232, 9, 196, 244));
jPanelresident.setBackground(Color.white);
jPanelresident.setEnabled(false);
jPanelresident.add(jLabelarea, null);
jPanelresident.add(jLabelloc, null);
jPanelresident.add(jLabeltext66, null);
jPanelresident.add(getJButtonADDRES(), null);
jPanelresident.add(getJRadioButtonA(), null);
jPanelresident.add(getJRadioButtonB(), null);
jPanelresident.add(getJRadioButtonC(), null);
jPanelresident.add(getJRadioButtonD(), null);
jPanelresident.add(getJRadioButtonE(), null);
jPanelresident.add(getJRadioButton600(), null);
jPanelresident.add(getJRadioButton800(), null);
jPanelresident.add(getJRadioButton1000(), null);
jPanelresident.add(getJRadioButton1200(), null);
jPanelresident.add(getJRadioButtonMORE1200(), null);
jPanelresident.add(getJRadioButtonrent1(), null);
jPanelresident.add(getJRadioButtonrent1047(), null);
jPanelresident.add(getJRadioButtonrent1047more(), null);
jPanelresident.add(getJRadioButtonrent750(), null);
jPanelresident.add(jLabeltextshow, null);
jPanelresident.add(jLabelmissing, null);
}
return jPanelresident;
}

/**
This method initializes jButtonassingAUTO
*
@return javax.swing.JButton
*/
private JButton getJButtonassingAUTO() {
if (jButtonassingAUTO == null) {
jButtonassingAUTO = new JButton();
jButtonassingAUTO.setBounds(new Rectangle(157, 34, 129, 29));
jButtonassingAUTO.setEnabled(false);
jButtonassingAUTO.setText("Auto Assign All");
jButtonassingAUTO.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()

int [][] ARRAYa = new int [3][ACounter];//--> age,family and income
//White #18
int [][] ARRAYr = new int [2][RCounter];//--> area and income
int [][] returnedResults = new int [1][ACounter];

238

for (int i=0; i <RCounter ;i++)
{
ARRAYr[0][i]=SecretlistRent.get(i);
ARRAYr[1][i]=SecretlistArea.get(i);
}

ResultsString = "Results: ";

for (int i=0; i <ACounter;i++)
{
ARRAYa[0][i]=SecretlistFamily.get(i);

ARRAYa[1][i]=SecretlistIncome.get(i); //Yellow #4
ARRAYa[2][i]=SecretlistAge.get(i);
}

returnedResults = kb.maincontroller(ARRAYa,ARRAYr,ACounter,RCounter);
for (int i=0; i<ACounter;i++) //Blue #3
{
ResultsString= ResultsString+ "ApplicantID: "+ returnedResults[0][i];
ResultsString= ResultsString+ "-ResidenceID: "+ returnedResults[1][i];
ResultsString= ResultsString+ " ----- ";
}
System.out.print(ResultsString+"\n");
jTextAreaResults.setText(ResultsString);
jLabeltext.setVisible(true);
jLabeltext77.setVisible(true);
jScrollPaneresults.setVisible(true);
jTextAreaResults.setVisible(true);

// DISPLAY RESULTS IN TEXT AREA RESULTS
}
});
}
return jButtonassingAUTO;
}

/**
This method initializes jScrollPaneapplicants
*
@return javax.swing.JScrollPane
*/
private JScrollPane getJScrollPaneapplicants() {
if (jScrollPaneapplicants == null) {
jScrollPaneapplicants = new JScrollPane();
jScrollPaneapplicants.setLocation(new Point(16, 95));
jScrollPaneapplicants.setSize(new Dimension(411, 40));
jScrollPaneapplicants.setViewportView(getJTextAreaapplicants());
}
return jScrollPaneapplicants;
}

/**
This method initializes jScrollPaneresidents
*
@return javax.swing.JScrollPane
*/
private JScrollPane getJScrollPaneresidents() {

239

if (jScrollPaneresidents == null) {
jScrollPaneresidents = new JScrollPane();
jScrollPaneresidents.setLocation(new Point(16, 163));
jScrollPaneresidents.setViewportView(getJTextAreaREsidents());
jScrollPaneresidents.setSize(new Dimension(411, 37));
}
return jScrollPaneresidents;
}

/**
This method initializes jTextAreaapplicants
*
@return javax.swing.JTextArea
*/
private JTextArea getJTextAreaapplicants() {
if (jTextAreaapplicants == null) {
jTextAreaapplicants = new JTextArea();
jTextAreaapplicants.setEditable(false);
jTextAreaapplicants.setEnabled(false);
}
return jTextAreaapplicants;
}

/**
This method initializes jTextAreaREsidents
*
@return javax.swing.JTextArea
*/
private JTextArea getJTextAreaREsidents() {
if (jTextAreaREsidents == null) {
jTextAreaREsidents = new JTextArea();
jTextAreaREsidents.setEditable(false);
jTextAreaREsidents.setSize(new Dimension(408, 37));
jTextAreaREsidents.setEnabled(false);
}
return jTextAreaREsidents;
}

/**
This method initializes jButtonADDRES
*
@return javax.swing.JButton
*/
private JButton getJButtonADDRES() {
if (jButtonADDRES == null) {
jButtonADDRES = new JButton();
jButtonADDRES.setBounds(new Rectangle(64, 212, 129, 28));
jButtonADDRES.setEnabled(false);
jButtonADDRES.setText("Add Residence");
jButtonADDRES.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()

if(jRadioButtonA.isSelected()==true)LOCATION="A";
else if(jRadioButtonB.isSelected()==true)LOCATION="B";
else if(jRadioButtonC.isSelected()==true)LOCATION="C";

240

else if(jRadioButtonD.isSelected()==true)LOCATION="D";
else if(jRadioButtonE.isSelected()==true)LOCATION="E";

if(jRadioButtonrent1.isSelected()==true){RENT="545"; rrr=1;}
else if(jRadioButtonrent1047.isSelected()==true){RENT="1047"; rrr=2;}
else if(jRadioButtonrent750.isSelected()==true){RENT="750"; rrr=3;}
else if(jRadioButtonrent1047more.isSelected()==true){RENT="1048"; rrr=4;}

if(jRadioButton600.isSelected()==true){AREA="600";aaa=1;}
else if(jRadioButton800.isSelected()==true){AREA="800";aaa=2;}
else if(jRadioButton1000.isSelected()==true){AREA="1000";aaa=3;}
else if(jRadioButton1200.isSelected()==true){AREA="1200";aaa=4;}
else if(jRadioButtonMORE1200.isSelected()==true){AREA="1201";aaa=5;}

if (AREA!=""&&RENT!=""&&LOCATION!="")
{LISTofRESIDENTS.add(RCounter+"-"+AREA+"-"+RENT+"-"+LOCATION);

SecretlistRent.add(rrr);
SecretlistArea.add(aaa);

RCounter++;
jLabeltextshow.setVisible(true);
System.out.print("LISTofRESIDENTS: ");
System.out.print(LISTofRESIDENTS);
jLabelmissing.setVisible(false);
jLabeltextshow.setVisible(true);}

else {jLabelmissing.setVisible(true);jLabeltextshow.setVisible(false);}
}
});
}
return jButtonADDRES;
}

/**
This method initializes jRadioButtonA
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonA() {
if (jRadioButtonA == null) {
jRadioButtonA = new JRadioButton();
jRadioButtonA.setBounds(new Rectangle(72, 165, 38, 21));
jRadioButtonA.setBackground(Color.white);
jRadioButtonA.setEnabled(false);
jRadioButtonA.setText("A");
}
return jRadioButtonA;
}

/**
This method initializes jRadioButtonB
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonB() {
if (jRadioButtonB == null) {

241

jRadioButtonB = new JRadioButton();
jRadioButtonB.setText("B");
jRadioButtonB.setLocation(new Point(106, 165));
jRadioButtonB.setBackground(Color.white);
jRadioButtonB.setEnabled(false);
jRadioButtonB.setSize(new Dimension(33, 21));
}
return jRadioButtonB;
}

/**
This method initializes jRadioButtonC
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonC() {
if (jRadioButtonC == null) {
jRadioButtonC = new JRadioButton();
jRadioButtonC.setText("C");
jRadioButtonC.setLocation(new Point(137, 164));
jRadioButtonC.setBackground(Color.white);
jRadioButtonC.setEnabled(false);
jRadioButtonC.setSize(new Dimension(33, 23));
}
return jRadioButtonC;
}

/**
This method initializes jRadioButtonD
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonD() {
if (jRadioButtonD == null) {
jRadioButtonD = new JRadioButton();
jRadioButtonD.setBounds(new Rectangle(71, 186, 33, 24));
jRadioButtonD.setBackground(Color.white);
jRadioButtonD.setEnabled(false);
jRadioButtonD.setText("D");
}
return jRadioButtonD;
}

/**
This method initializes jRadioButtonE
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonE() {
if (jRadioButtonE == null) {
jRadioButtonE = new JRadioButton();
jRadioButtonE.setBounds(new Rectangle(103, 185, 33, 24));
jRadioButtonE.setBackground(Color.white);
jRadioButtonE.setEnabled(false);
jRadioButtonE.setText("E");
}
return jRadioButtonE;

242

}

/**
This method initializes jRadioButton600
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButton600() {
if (jRadioButton600 == null) {
jRadioButton600 = new JRadioButton();
jRadioButton600.setBackground(Color.white);
jRadioButton600.setSize(new Dimension(103, 21));
jRadioButton600.setLocation(new Point(46, 4));
jRadioButton600.setEnabled(false);
jRadioButton600.setText("0-600 sq");
}
return jRadioButton600;
}

/**
This method initializes jRadioButton800
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButton800() {
if (jRadioButton800 == null) {
jRadioButton800 = new JRadioButton();
jRadioButton800.setText("600-800 sq");
jRadioButton800.setLocation(new Point(46, 23));
jRadioButton800.setBackground(Color.white);
jRadioButton800.setEnabled(false);
jRadioButton800.setSize(new Dimension(101, 24));
}
return jRadioButton800;
}

/**
This method initializes jRadioButton1000
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButton1000() {
if (jRadioButton1000 == null) {
jRadioButton1000 = new JRadioButton();
jRadioButton1000.setText("800-1000 sq");
jRadioButton1000.setLocation(new Point(46, 44));
jRadioButton1000.setBackground(Color.white);
jRadioButton1000.setEnabled(false);
jRadioButton1000.setSize(new Dimension(103, 24));
}
return jRadioButton1000;
}

/**
This method initializes jRadioButton1200
*
@return javax.swing.JRadioButton

243

*/
private JRadioButton getJRadioButton1200() {
if (jRadioButton1200 == null) {
jRadioButton1200 = new JRadioButton();
jRadioButton1200.setText("1000-1200 sq");
jRadioButton1200.setLocation(new Point(46, 63));
jRadioButton1200.setBackground(Color.white);
jRadioButton1200.setEnabled(false);
jRadioButton1200.setSize(new Dimension(109, 24));
}
return jRadioButton1200;
}

/**
This method initializes jRadioButtonMORE1200
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonMORE1200() {
if (jRadioButtonMORE1200 == null) {
jRadioButtonMORE1200 = new JRadioButton();
jRadioButtonMORE1200.setText("1200++ sq");
jRadioButtonMORE1200.setLocation(new Point(46, 82));
jRadioButtonMORE1200.setBackground(Color.white);
jRadioButtonMORE1200.setEnabled(false);
jRadioButtonMORE1200.setSize(new Dimension(119, 24));
}
return jRadioButtonMORE1200;
}

/**
This method initializes jRadioButtonrent1
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonrent1() {
if (jRadioButtonrent1 == null) {
jRadioButtonrent1 = new JRadioButton();
jRadioButtonrent1.setText("E 545");
jRadioButtonrent1.setSize(new Dimension(65, 17));
jRadioButtonrent1.setLocation(new Point(46, 110));
jRadioButtonrent1.setEnabled(false);
jRadioButtonrent1.setBackground(Color.white);
}
return jRadioButtonrent1;
}

/**
This method initializes jRadioButtonrent750
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonrent750() {
if (jRadioButtonrent750 == null) {
jRadioButtonrent750 = new JRadioButton();
jRadioButtonrent750.setText("E 750");
jRadioButtonrent750.setBounds(new Rectangle(110, 110, 56, 18));

244

jRadioButtonrent750.setEnabled(false);
jRadioButtonrent750.setBackground(Color.white);
}
return jRadioButtonrent750;
}

/**
This method initializes jRadioButtonrent1047
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonrent1047() {
if (jRadioButtonrent1047 == null) {
jRadioButtonrent1047 = new JRadioButton();
jRadioButtonrent1047.setText("E 1047");
jRadioButtonrent1047.setSize(new Dimension(64, 18));
jRadioButtonrent1047.setLocation(new Point(46, 130));
jRadioButtonrent1047.setEnabled(false);
jRadioButtonrent1047.setBackground(Color.white);
}
return jRadioButtonrent1047;
}

/**
This method initializes jRadioButtonrent1047more
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonrent1047more() {
if (jRadioButtonrent1047more == null) {
jRadioButtonrent1047more = new JRadioButton();
jRadioButtonrent1047more.setText("E 1047++");
jRadioButtonrent1047more.setSize(new Dimension(78, 19));
jRadioButtonrent1047more.setLocation(new Point(110, 129));
jRadioButtonrent1047more.setEnabled(false);
jRadioButtonrent1047more.setBackground(Color.white);
}
return jRadioButtonrent1047more;
}

/**
This method initializes jTextFieldname
*
@return javax.swing.JTextField
*/
private JTextField getJTextFieldname() {
if (jTextFieldname == null) {
jTextFieldname = new JTextField();
jTextFieldname.setBounds(new Rectangle(45, 38, 172, 17));
jTextFieldname.setText("Name");
jTextFieldname.setEnabled(false);
}
return jTextFieldname;
}

/**
This method initializes jTextFieldage

245

*
@return javax.swing.JTextField
*/
private JTextField getJTextFieldage() {
if (jTextFieldage == null) {
jTextFieldage = new JTextField();
jTextFieldage.setLocation(new Point(45, 62));
jTextFieldage.setEnabled(false);
jTextFieldage.setText("0");
jTextFieldage.setSize(new Dimension(172, 17));
}
return jTextFieldage;
}

/**
This method initializes jTextFielddate
*
@return javax.swing.JTextField
*/
private JTextField getJTextFielddate() {
if (jTextFielddate == null) {
jTextFielddate = new JTextField();
jTextFielddate.setLocation(new Point(5, 104));
jTextFielddate.setEnabled(false);
jTextFielddate.setText("MM/DD/YY");
jTextFielddate.setSize(new Dimension(216, 17));
}
return jTextFielddate;
}

/**
This method initializes jTextFieldfamily
*
@return javax.swing.JTextField
*/
private JTextField getJTextFieldfamily() {
if (jTextFieldfamily == null) {
jTextFieldfamily = new JTextField();
jTextFieldfamily.setLocation(new Point(5, 144));
jTextFieldfamily.setEnabled(false);
jTextFieldfamily.setText("1");
jTextFieldfamily.setSize(new Dimension(212, 17));
}
return jTextFieldfamily;
}

/**
This method initializes jTextFieldincome
*
@return javax.swing.JTextField
*/
private JTextField getJTextFieldincome() {
if (jTextFieldincome == null) {
jTextFieldincome = new JTextField();
jTextFieldincome.setLocation(new Point(5, 185));
jTextFieldincome.setEnabled(false);
jTextFieldincome.setText("0");

246

jTextFieldincome.setSize(new Dimension(212, 17));
}
return jTextFieldincome;
}

//ACCESS INTERFACES

private void enablemagazine(){
jLabelmagaziner.setEnabled(true);
jButtonPrintMAG.setEnabled(true);
jLabelmessgaeformagazine.setEnabled(true);
}
private void disablemagazine(){
jLabelmagaziner.setEnabled(false);
jButtonPrintMAG.setEnabled(false);
jLabelmessgaeformagazine.setEnabled(false);}

private void disabledatatypist(){
jPanelAssigner.setEnabled(false);
jLabeldatatypist.setEnabled(false);
jLabelname.setEnabled(false);
jLabelage.setEnabled(false);
jLabeldate.setEnabled(false);
jLabelincome.setEnabled(false);
jLabelmem.setEnabled(false);
jTextFieldage.setEnabled(false);
jTextFielddate.setEnabled(false);
jTextFieldfamily.setEnabled(false);
jTextFieldincome.setEnabled(false);
jPanelresident.setEnabled(false);
jTextFieldname.setEnabled(false);
jButtonsaveandnew.setEnabled(false);
jButtonNEWAPP.setEnabled(false);
jLabelarea.setEnabled(false);
jLabeltext66.setEnabled(false);
jLabelloc.setEnabled(false);
jButtonADDRES.setEnabled(false);
jPanelresident.setEnabled(false);

jRadioButton1000.setEnabled(false);
jRadioButton600.setEnabled(false);
jRadioButton800.setEnabled(false);
jRadioButton1200.setEnabled(false);
jRadioButtonMORE1200.setEnabled(false);
jRadioButtonA.setEnabled(false);
jRadioButtonB.setEnabled(false);
jRadioButtonC.setEnabled(false);
jRadioButtonD.setEnabled(false);
jRadioButtonE.setEnabled(false);
jRadioButtonrent1.setEnabled(false);
jRadioButtonrent1047.setEnabled(false);
jRadioButtonrent1047more.setEnabled(false);
jRadioButtonrent750.setEnabled(false);
}

private void enabledatatypist(){
jPanelAssigner.setEnabled(true);

247

jLabeldatatypist.setEnabled(true);
jLabelname.setEnabled(true);
jLabelage.setEnabled(true);
jLabeldate.setEnabled(true);
jLabelincome.setEnabled(true);
jLabelmem.setEnabled(true);
jTextFieldage.setEnabled(true);
jTextFielddate.setEnabled(true);
jTextFieldfamily.setEnabled(true);
jTextFieldincome.setEnabled(true);
jPanelresident.setEnabled(true);
jTextFieldname.setEnabled(true);
jButtonsaveandnew.setEnabled(true);
jButtonNEWAPP.setEnabled(true);
jLabelarea.setEnabled(true);
jLabeltext66.setEnabled(true);
jLabelloc.setEnabled(true);
jButtonADDRES.setEnabled(true);
jPanelresident.setEnabled(true);

jRadioButton1000.setEnabled(true);
jRadioButton600.setEnabled(true);
jRadioButton800.setEnabled(true);
jRadioButton1200.setEnabled(true);
jRadioButtonMORE1200.setEnabled(true);
jRadioButtonA.setEnabled(true);
jRadioButtonB.setEnabled(true);
jRadioButtonC.setEnabled(true);
jRadioButtonD.setEnabled(true);
jRadioButtonE.setEnabled(true);
jRadioButtonrent1.setEnabled(true);
jRadioButtonrent1047.setEnabled(true);
jRadioButtonrent1047more.setEnabled(true);
jRadioButtonrent750.setEnabled(true);
}

private void disableassigner(){
jLabelassigner.setEnabled(false);
jButtonassingAUTO.setEnabled(false);
jLabellistapplicants.setEnabled(false);
jLabellistofresidences.setEnabled(false);
jScrollPaneresidents.setEnabled(false);
jScrollPaneapplicants.setEnabled(false);
jTextAreaapplicants.setEnabled(false);
jTextAreaREsidents.setEnabled(false);
jPanelDatatypist.setEnabled(false);
jButtongetapplicants.setEnabled(false);
jTextAreaResults.setEnabled(false);
jScrollPaneresults.setEnabled(false);
jLabeltext77.setEnabled(false);
}

private void enableassigner(){

jLabelassigner.setEnabled(true);
jButtonassingAUTO.setEnabled(true);
jLabellistapplicants.setEnabled(true);

248

jLabellistofresidences.setEnabled(true);
jScrollPaneresidents.setEnabled(true);
jScrollPaneapplicants.setEnabled(true);
jTextAreaapplicants.setEnabled(true);
jTextAreaREsidents.setEnabled(true);
jPanelDatatypist.setEnabled(true);
jButtongetapplicants.setEnabled(true);
jTextAreaResults.setEnabled(true);
jScrollPaneresults.setEnabled(true);
jLabeltext77.setEnabled(true);
}

/**
This method initializes jTextFieldusername
*
@return javax.swing.JTextField
*/
private JTextField getJTextFieldusername() {
if (jTextFieldusername == null) {
jTextFieldusername = new JTextField();
jTextFieldusername.setSize(new Dimension(165, 20));
jTextFieldusername.setLocation(new Point(75, 48));
}
return jTextFieldusername;
}

/**
This method initializes jPasswordFieldpass
*
@return javax.swing.JPasswordField
*/
private JPasswordField getJPasswordFieldpass() {
if (jPasswordFieldpass == null) {
jPasswordFieldpass = new JPasswordField();
jPasswordFieldpass.setLocation(new Point(75, 77));
jPasswordFieldpass.setSize(new Dimension(165, 20));
}
return jPasswordFieldpass;
}

/**
This method initializes jButtongetapplicants
*
@return javax.swing.JButton
*/
private JButton getJButtongetapplicants() {
if (jButtongetapplicants == null) {
jButtongetapplicants = new JButton();
jButtongetapplicants.setLocation(new Point(15, 34));
jButtongetapplicants.setText("Get All Data");
jButtongetapplicants.setEnabled(false);
jButtongetapplicants.setSize(new Dimension(129, 29));
jButtongetapplicants.addActionListener(new java.awt.event.ActionListener()
{
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()

249

jTextAreaapplicants.setText(LISTofAPPLICANTS+"");
jTextAreaREsidents.setText(LISTofRESIDENTS+"");
}
});
}
return jButtongetapplicants;
}

/**
This method initializes jScrollPaneresults
*
@return javax.swing.JScrollPane
*/
private JScrollPane getJScrollPaneresults() {
if (jScrollPaneresults == null) {
jScrollPaneresults = new JScrollPane();
jScrollPaneresults.setBounds(new Rectangle(71, 210, 356, 46));
jScrollPaneresults.setVisible(false);
jScrollPaneresults.setViewportView(getJTextAreaResults());
}
return jScrollPaneresults;
}

/**
This method initializes jTextAreaResults
*
@return javax.swing.JTextArea
*/
private JTextArea getJTextAreaResults() {
if (jTextAreaResults == null) {
jTextAreaResults = new JTextArea();
jTextAreaResults.setBackground(Color.cyan);
jTextAreaResults.setVisible(false);
}
return jTextAreaResults;
}

/**
This method initializes jRadioButtonmagazineeditor
*
@return javax.swing.JRadioButton
*/
private JRadioButton getJRadioButtonmagazineeditor() {
if (jRadioButtonmagazineeditor == null) {
jRadioButtonmagazineeditor = new JRadioButton();
jRadioButtonmagazineeditor.setBackground(Color.white);
jRadioButtonmagazineeditor.setSize(new Dimension(109, 21));
jRadioButtonmagazineeditor.setLocation(new Point(247, 87));
jRadioButtonmagazineeditor.setText("Magazine Ed");
}
return jRadioButtonmagazineeditor;
}

/**
This method initializes jPanelMagaziner
*
@return javax.swing.JPanel

250

*/
private JPanel getJPanelMagaziner() {
if (jPanelMagaziner == null) {
jLabelmessgaeformagazine = new JLabel();
jLabelmessgaeformagazine.setBounds(new Rectangle(167, 36, 237, 16));
jLabelmessgaeformagazine.setText("Magazine printed to file. Check bin
folder.");
jLabelmessgaeformagazine.setEnabled(false);
jLabelmessgaeformagazine.setVisible(false);
jLabelmagaziner = new JLabel();
jLabelmagaziner.setBounds(new Rectangle(4, 4, 190, 19));
jLabelmagaziner.setFont(new Font("Dialog", Font.BOLD, 14));
jLabelmagaziner.setForeground(new Color(0, 153, 0));
jLabelmagaziner.setText("Magazine Editor's Screen:");
jLabelmagaziner.setEnabled(false);
jPanelMagaziner = new JPanel();
jPanelMagaziner.setLayout(null);
jPanelMagaziner.setBackground(Color.lightGray);
jPanelMagaziner.setLocation(new Point(7, 426));
jPanelMagaziner.setSize(new Dimension(436, 73));
jPanelMagaziner.add(jLabelmagaziner, null);
jPanelMagaziner.add(getJButtonPrintMAG(), null);
jPanelMagaziner.add(jLabelmessgaeformagazine, null);
}
return jPanelMagaziner;
}

/**
This method initializes jButtonPrintMAG
*
@return javax.swing.JButton
*/
private JButton getJButtonPrintMAG() {
if (jButtonPrintMAG == null) {
jButtonPrintMAG = new JButton();
jButtonPrintMAG.setBounds(new Rectangle(30, 29, 131, 30));
jButtonPrintMAG.setEnabled(false);
jButtonPrintMAG.setText("Print Magazine");
jButtonPrintMAG.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent e) {
System.out.println("actionPerformed()"); // TODO Auto-generated Event stub
actionPerformed()

jLabelmessgaeformagazine.setVisible(true);
// write console to notepad!!

FileWriter fWriter = null;
BufferedWriter writer = null;
try {
fWriter = new FileWriter("MAGAZINE.txt");
writer = new BufferedWriter(fWriter);
//WRITES 1 LINE TO FILE AND CHANGES LINE
writer.write("Begining of Magazine! \n \n");
writer.write(ResultsString);
writer.newLine();
writer.write("End of Magazine!");
writer.newLine();

251

writer.close();
} catch (Exception e1) {
}
}
});
}
return jButtonPrintMAG;
}

/**
This method initializes jTextAreacreidts
*
@return javax.swing.JTextArea
*/
private JTextArea getJTextAreacreidts() {
if (jTextAreacreidts == null) {
jTextAreacreidts = new JTextArea();
jTextAreacreidts.setBounds(new Rectangle(452, 425, 436, 73));
jTextAreacreidts.setToolTipText("Credits");
jTextAreacreidts.setText(" This testing tool is developed for academic
research purposes at the \n University of Central Florida (UCF),
Intelligent Systems Lab (ISL).\n The housing application is used to
experiment MAVERICK. \n Developer: Feras A. Batarseh - 2010 ©");
jTextAreacreidts.setEditable(false);
jTextAreacreidts.setLineWrap(true);
jTextAreacreidts.setWrapStyleWord(true);
jTextAreacreidts.setFont(new Font("Dialog", Font.BOLD | Font.ITALIC, 12));
}
return jTextAreacreidts;
}

}

//End of Code

252

APPENDIX C: EXPERIMENTAL VALIDATION ITERATIONS

253

In this appendix, the test cases are sorted and displayed in the following format:

'TestCaseID'-'CommonKADSModel'-'LocalImportance'-'NumberofRuns'-'ModelWeight'-

'GlobalImportance'-'Result'-

Iteration #1:

 '16.0'-'3.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '17.0'-'3.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '18.0'-'3.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '19.0'-'3.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '24.0'-'4.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '25.0'-'4.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '26.0'-'4.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '27.0'-'4.0'-'5.0'-'1.0'-'50.0'-'250.0'-'2.0'-

 '34.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '35.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '36.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '37.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '38.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '39.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '40.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '41.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '42.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '43.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '44.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '45.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '46.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '47.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

254

 '48.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '49.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '50.0'-'4.0'-'4.75'-'1.0'-'50.0'-'237.5'-'2.0'-

 '51.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '52.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '53.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '54.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '55.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '56.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '57.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '58.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '59.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '60.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '61.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '62.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '63.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '64.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '65.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '66.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '67.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '68.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '69.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '70.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '71.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '72.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '73.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '74.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

255

 '75.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '76.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '77.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '78.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '79.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '80.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '81.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '82.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '83.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '84.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '85.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '86.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '87.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '88.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '89.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '90.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '91.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '92.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '93.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '94.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '95.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '96.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '97.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '98.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '99.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '100.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '101.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

256

 '102.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '103.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '104.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '105.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '106.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '107.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '108.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '109.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '110.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '111.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '112.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '113.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '114.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '115.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '116.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '117.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '118.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '119.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '120.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '121.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '122.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '123.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '124.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '125.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '126.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '127.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '128.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

257

 '129.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '130.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '131.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '132.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '133.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '134.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '135.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '136.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '137.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '138.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '139.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '140.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '141.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '142.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '143.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '144.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '145.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '146.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '147.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '148.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '149.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '150.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '151.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '152.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '153.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '154.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '155.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

258

 '156.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '157.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '158.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '159.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '160.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '161.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '162.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '163.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '164.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '165.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '166.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '167.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '168.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '169.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '170.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '171.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '172.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '173.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '174.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '175.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '176.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '177.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '178.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '179.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '180.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '181.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '182.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

259

 '183.0'-'4.0'-'4.75'-'0.0'-'50.0'-'237.5'-'2.0'-

 '10.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '11.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '12.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '13.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '14.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '15.0'-'2.0'-'3.75'-'0.0'-'50.0'-'187.5'-'2.0'-

 '28.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '29.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '30.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '31.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '32.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '33.0'-'5.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '184.0'-'1.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '185.0'-'1.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '186.0'-'3.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '187.0'-'4.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '188.0'-'4.0'-'3.5'-'0.0'-'50.0'-'175.0'-'2.0'-

 '1.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '2.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '3.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '4.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '5.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '6.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '7.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '8.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

 '9.0'-'1.0'-'2.75'-'0.0'-'50.0'-'137.5'-'2.0'-

260

 '20.0'-'3.0'-'0.5'-'0.0'-'50.0'-'25.0'-'2.0'-

 '21.0'-'3.0'-'0.5'-'0.0'-'50.0'-'25.0'-'2.0'-

 '22.0'-'3.0'-'0.5'-'0.0'-'50.0'-'25.0'-'2.0'-

 '23.0'-'3.0'-'0.5'-'0.0'-'50.0'-'25.0'-'2.0'-

Iteration #2:

 '24.0'-'4.0'-'5.0'-'1.0'-'87.0'-'435.0'-'1.0'-

 '25.0'-'4.0'-'5.0'-'1.0'-'87.0'-'435.0'-'1.0'-

 '26.0'-'4.0'-'5.0'-'1.0'-'87.0'-'435.0'-'1.0'-

 '27.0'-'4.0'-'5.0'-'1.0'-'87.0'-'435.0'-'1.0'-

 '34.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '35.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '36.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '37.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '38.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '39.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '40.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '41.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '42.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '43.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '44.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '45.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '46.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '47.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '48.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '49.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '50.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'1.0'-

 '51.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

261

 '52.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '53.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '54.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '55.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '56.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '57.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '58.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '59.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '60.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '61.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '62.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '63.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '64.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '65.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '66.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '67.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '68.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '69.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '70.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '71.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '72.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '73.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '74.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '75.0'-'4.0'-'4.75'-'1.0'-'87.0'-'413.25'-'2.0'-

 '76.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '77.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '78.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

262

 '79.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '80.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '81.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '82.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '83.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '84.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '85.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '86.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '87.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '88.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '89.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '90.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '91.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '92.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '93.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '94.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '95.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '96.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '97.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '98.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '99.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '100.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '101.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '102.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '103.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '104.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '105.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

263

 '106.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '107.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '108.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '109.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '110.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '111.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '112.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '113.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '114.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '115.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '116.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '117.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '118.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '119.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '120.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '121.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '122.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '123.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '124.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '125.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '126.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '127.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '128.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '129.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '130.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '131.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '132.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

264

 '133.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '134.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '135.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '136.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '137.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '138.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '139.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '140.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '141.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '142.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '143.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '144.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '145.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '146.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '147.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '148.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '149.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '150.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '151.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '152.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '153.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '154.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '155.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '156.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '157.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '158.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '159.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

265

 '160.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '161.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '162.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '163.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '164.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '165.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '166.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '167.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '168.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '169.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '170.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '171.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '172.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '173.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '174.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '175.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '176.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '177.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '178.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '179.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '180.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '181.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '182.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '183.0'-'4.0'-'4.75'-'0.0'-'87.0'-'413.25'-'2.0'-

 '10.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

 '11.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

 '12.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

266

 '13.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

 '14.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

 '15.0'-'2.0'-'3.75'-'0.0'-'100.0'-'375.0'-'2.0'-

 '28.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '29.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '30.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '31.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '32.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '33.0'-'5.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '184.0'-'1.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '185.0'-'1.0'-'3.5'-'0.0'-'100.0'-'350.0'-'2.0'-

 '187.0'-'4.0'-'3.5'-'0.0'-'87.0'-'304.5'-'2.0'-

 '188.0'-'4.0'-'3.5'-'0.0'-'87.0'-'304.5'-'2.0'-

 '16.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '17.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '18.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '19.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '1.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '2.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '3.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '4.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '5.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '6.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '7.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '8.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '9.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '186.0'-'3.0'-'3.5'-'0.0'-'56.0'-'196.0'-'2.0'-

267

 '20.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '21.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '22.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '23.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

Iteration #3:

 '10.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '11.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '12.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '13.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '14.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '15.0'-'2.0'-'3.75'-'1.0'-'100.0'-'375.0'-'2.0'-

 '24.0'-'4.0'-'5.0'-'1.0'-'71.0'-'355.0'-'1.0'-

 '25.0'-'4.0'-'5.0'-'1.0'-'71.0'-'355.0'-'1.0'-

 '26.0'-'4.0'-'5.0'-'1.0'-'71.0'-'355.0'-'1.0'-

 '27.0'-'4.0'-'5.0'-'1.0'-'71.0'-'355.0'-'1.0'-

 '28.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '29.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '30.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '31.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '32.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '33.0'-'5.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '184.0'-'1.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '185.0'-'1.0'-'3.5'-'1.0'-'100.0'-'350.0'-'2.0'-

 '34.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '35.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '36.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '37.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

268

 '38.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '39.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '40.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '41.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '42.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '43.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '44.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '45.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '46.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '47.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '48.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '49.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '50.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '51.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '52.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '53.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '54.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '55.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '56.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '57.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '58.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '59.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '60.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '61.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '62.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '63.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '64.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

269

 '65.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '66.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '67.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '68.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '69.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '70.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '71.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '72.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '73.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '74.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '75.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'1.0'-

 '76.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '77.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '78.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '79.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '80.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '81.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '82.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '83.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '84.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '85.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '86.0'-'4.0'-'4.75'-'1.0'-'71.0'-'337.25'-'2.0'-

 '87.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '88.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '89.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '90.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '91.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

270

 '92.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '93.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '94.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '95.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '96.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '97.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '98.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '99.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '100.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '101.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '102.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '103.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '104.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '105.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '106.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '107.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '108.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '109.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '110.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '111.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '112.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '113.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '114.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '115.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '116.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '117.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '118.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

271

 '119.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '120.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '121.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '122.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '123.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '124.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '125.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '126.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '127.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '128.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '129.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '130.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '131.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '132.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '133.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '134.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '135.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '136.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '137.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '138.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '139.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '140.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '141.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '142.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '143.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '144.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '145.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

272

 '146.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '147.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '148.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '149.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '150.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '151.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '152.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '153.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '154.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '155.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '156.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '157.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '158.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '159.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '160.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '161.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '162.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '163.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '164.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '165.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '166.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '167.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '168.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '169.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '170.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '171.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '172.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

273

 '173.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '174.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '175.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '176.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '177.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '178.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '179.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '180.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '181.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '182.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '183.0'-'4.0'-'4.75'-'0.0'-'71.0'-'337.25'-'2.0'-

 '16.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '17.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '18.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '19.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '1.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '2.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '3.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '4.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '5.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '6.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '7.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '8.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '9.0'-'1.0'-'2.75'-'0.0'-'100.0'-'275.0'-'2.0'-

 '187.0'-'4.0'-'3.5'-'0.0'-'71.0'-'248.5'-'2.0'-

 '188.0'-'4.0'-'3.5'-'0.0'-'71.0'-'248.5'-'2.0'-

 '186.0'-'3.0'-'3.5'-'0.0'-'56.0'-'196.0'-'2.0'-

274

 '20.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '21.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '22.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '23.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

Iteration #4:

 '24.0'-'4.0'-'5.0'-'1.0'-'64.0'-'320.0'-'1.0'-

 '25.0'-'4.0'-'5.0'-'1.0'-'64.0'-'320.0'-'1.0'-

 '26.0'-'4.0'-'5.0'-'1.0'-'64.0'-'320.0'-'1.0'-

 '27.0'-'4.0'-'5.0'-'1.0'-'64.0'-'320.0'-'1.0'-

 '34.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '35.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '36.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '37.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '38.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '39.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '40.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '41.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '42.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '43.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '44.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '45.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '46.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '47.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '48.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '49.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '50.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '51.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

275

 '52.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '53.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '54.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '55.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '56.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '57.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '58.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '59.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '60.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '61.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '62.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '63.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '64.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '65.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '66.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '67.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '68.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '69.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '70.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '71.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '72.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '73.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '74.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '75.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '76.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '77.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '78.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

276

 '79.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '80.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '81.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '82.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '83.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '84.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '85.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '86.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'1.0'-

 '87.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '88.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '89.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '90.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '91.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '92.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '93.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '94.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '95.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '96.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '97.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '98.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '99.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '100.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '101.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '102.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '103.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '104.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '105.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

277

 '106.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '107.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '108.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '109.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '110.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '111.0'-'4.0'-'4.75'-'1.0'-'64.0'-'304.0'-'2.0'-

 '112.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '113.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '114.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '115.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '116.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '117.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '118.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '119.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '120.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '121.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '122.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '123.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '124.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '125.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '126.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '127.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '128.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '129.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '130.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '131.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '132.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

278

 '133.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '134.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '135.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '136.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '137.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '138.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '139.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '140.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '141.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '142.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '143.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '144.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '145.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '146.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '147.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '148.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '149.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '150.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '151.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '152.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '153.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '154.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '155.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '156.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '157.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '158.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '159.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

279

 '160.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '161.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '162.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '163.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '164.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '165.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '166.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '167.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '168.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '169.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '170.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '171.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '172.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '173.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '174.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '175.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '176.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '177.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '178.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '179.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '180.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '181.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '182.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '183.0'-'4.0'-'4.75'-'0.0'-'64.0'-'304.0'-'2.0'-

 '184.0'-'1.0'-'3.5'-'1.0'-'82.0'-'287.0'-'1.0'-

 '185.0'-'1.0'-'3.5'-'1.0'-'82.0'-'287.0'-'1.0'-

 '16.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

280

 '17.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '18.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '19.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '1.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '2.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '3.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '4.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '5.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '6.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '7.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '8.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '9.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '187.0'-'4.0'-'3.5'-'0.0'-'64.0'-'224.0'-'2.0'-

 '188.0'-'4.0'-'3.5'-'0.0'-'64.0'-'224.0'-'2.0'-

 '186.0'-'3.0'-'3.5'-'0.0'-'56.0'-'196.0'-'2.0'-

 '20.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '21.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '22.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '23.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '10.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '11.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '12.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '13.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '14.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '15.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '28.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '29.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

281

 '30.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '31.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '32.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '33.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

Iteration #5:

 '184.0'-'1.0'-'3.5'-'1.0'-'82.0'-'287.0'-'1.0'-

 '185.0'-'1.0'-'3.5'-'1.0'-'82.0'-'287.0'-'1.0'-

 '16.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '17.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '18.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '19.0'-'3.0'-'5.0'-'1.0'-'56.0'-'280.0'-'1.0'-

 '24.0'-'4.0'-'5.0'-'1.0'-'48.0'-'240.0'-'1.0'-

 '25.0'-'4.0'-'5.0'-'1.0'-'48.0'-'240.0'-'1.0'-

 '26.0'-'4.0'-'5.0'-'1.0'-'48.0'-'240.0'-'1.0'-

 '27.0'-'4.0'-'5.0'-'1.0'-'48.0'-'240.0'-'1.0'-

 '34.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '35.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '36.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '37.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '38.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '39.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '40.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '41.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '42.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '43.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '44.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '45.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

282

 '46.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '47.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '48.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '49.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '50.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '51.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '52.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '53.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '54.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '55.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '56.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '57.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '58.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '59.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '60.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '61.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '62.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '63.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '64.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '65.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '66.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '67.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '68.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '69.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '70.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '71.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '72.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

283

 '73.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '74.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '75.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '76.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '77.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '78.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '79.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '80.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '81.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '82.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '83.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '84.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '85.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '86.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '87.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '88.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '89.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '90.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '91.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '92.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '93.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '94.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '95.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '96.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '97.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '98.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '99.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

284

 '100.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '101.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '102.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '103.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '104.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '105.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '106.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '107.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '108.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '109.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '110.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '111.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'1.0'-

 '112.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '113.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '114.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '115.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '116.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '117.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '118.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '119.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '120.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '121.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '122.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '123.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '124.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '125.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '126.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

285

 '127.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '128.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '129.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '130.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '131.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '132.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '133.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '134.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '135.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '136.0'-'4.0'-'4.75'-'1.0'-'48.0'-'228.0'-'2.0'-

 '137.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '138.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '139.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '140.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '141.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '142.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '143.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '144.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '145.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '146.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '147.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '148.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '149.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '150.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '151.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '152.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '153.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

286

 '154.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '155.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '156.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '157.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '158.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '159.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '160.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '161.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '162.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '163.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '164.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '165.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '166.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '167.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '168.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '169.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '170.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '171.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '172.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '173.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '174.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '175.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '176.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '177.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '178.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '179.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '180.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

287

 '181.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '182.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '183.0'-'4.0'-'4.75'-'0.0'-'48.0'-'228.0'-'2.0'-

 '1.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '2.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '3.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '4.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '5.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '6.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '7.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '8.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '9.0'-'1.0'-'2.75'-'0.0'-'82.0'-'225.5'-'2.0'-

 '186.0'-'3.0'-'3.5'-'0.0'-'56.0'-'196.0'-'2.0'-

 '187.0'-'4.0'-'3.5'-'0.0'-'48.0'-'168.0'-'2.0'-

 '188.0'-'4.0'-'3.5'-'0.0'-'48.0'-'168.0'-'2.0'-

 '20.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '21.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '22.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '23.0'-'3.0'-'0.5'-'0.0'-'56.0'-'28.0'-'2.0'-

 '10.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '11.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '12.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '13.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '14.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '15.0'-'2.0'-'3.75'-'1.0'-'0.0'-'0.0'-'1.0'-

 '28.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '29.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

288

 '30.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '31.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '32.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

 '33.0'-'5.0'-'3.5'-'1.0'-'0.0'-'0.0'-'1.0'-

END OF ITERATIONS

289

LIST OF REFERENCES

1. Sommerville, I. “Software Engineering” 8th edition, 2007, Chapter 4, published by

Addison Wesley.

2. Dowson, M. “The Ariane 5 Software Failure”, Proceedings of the ACM SIGSOFT

software engineering note, Volume 22, Issue 2, March 1997, pp. 84

3. N. Leveson and C. Turner “An Investigation of the Therac-25 Accident”, Proceedings of

the IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41

4. Clancy, T. “Chaos: A Standish Group Report”, a report by the Standish Research Group,

Year 1995.

5. Abdallah, K. Mohammad, T. and Louis, F. “Validation of Intelligent Systems: a Critical

Study and a tool, Corus” Proceedings of the International Journal of Soft Computing

2007, pp.191-198.

6. The Merriam Webster Dictionary, Merriam Webster Incorporated 2009

http://www.merriam-webster.com/

7. Luger, G. F. “Artificial Intelligence: structures and strategies for complex problem

solving” Fourth edition, Published by Addison Wesley 2002

8. Gonzalez, A.J. and Dankel, D. “The Engineering of Knowledge-Based Systems, Theory

and Practice” published by Prentice Hall 1993

9. Schreiber, G. Akkermans, H. Anjewierden, A. De Hoog, R. Shadbolt, N. Van De Velde,

W. and Wielinga, B. “Knowledge Engineering and Management-The CommonKADS

Methodology”, published by The MIT Press 2000

290

10. Anderson, C. Thelin, T. Runeson, P. Dzamashvili, N. “An Experimental Evaluation of

Inspection and testing for Detection of Design Faults”, Proceedings of the 2003

International Symposium on Empirical Software Engineering (ISESE ‘03)

11. Adrion W., Branstad, M. and Cherniavski, J. “Validation, verification and testing of

computer software”. 1989 IEEE Transactions on Systems, Man and Cybernetics, 21 (2),

pp. 293-301

12. Dolores, R. Wallace, R. and Fuji, R. ”Software Verification and Validation: An

Overview”, Proceedings of IEEE Software, v.6 n.3, p.10-17

13. Zlatareva, N. “A framework for knowledge-based system validation, verification and

refinement: the VVR system” Proceedings of FLAIRS-1992, Ft. Lauderdale, FL, pp. 10-

14.

14. O’Keefe, R. , Balci, O. and Smith, E. “Validating Expert System Performance”, IEEE

1987, Proceedings of the IEEE Expert, Volume 2, pp.81-90

15. US Department of Defense Directive DoDD 5000.59, 199x

16. Min, F. Ma, P. and Yang, M. “A Knowledge Based Method for the Validation of Military

Simulation”, Proceedings of the 2007 Winter Simulation Conference- IEEE, pp.1395-

1402

17. IEEE Std. 610.12-1990, Glossary of Software Engineering Terminology, 1990

18. Gonzalez, A. J. and Barr, V. “Validation and Verification of Intelligent Systems – what

are they and how are they different?” Proceedings of the Journal of Experimental

&Theoretical Artificial Intelligence, October-2000, pp.407-420

19. Preece, A. “Evaluating Verification and Validation Methods in Knowledge Engineering”

Micro-Level Knowledge Management, 2001, pp. 123-145

291

20. Balci, O. ”Validation, Verification and Testing Techniques throughout the Life Cycle of

a Simulation Study”, Proceedings of the 1994 Winter Simulation Conference, pp.215-220

21. Karlsson, D. Eles, P. and Peng, Z. “Formal Verification in a Component-based Reuse

Methodology” Proceedings of the ISSS conference 2002, pp. 156-161

22. Tadji, C. and Laroussi, T. “Dynamic Verification of an Object-Rule Knowledge base

Using Colored Petri Nets” Proceedings of the conference of Systemic, Cybernetics and

Informatics 2009, Volume 4, pp. 337-352

23. Wu, Q. Zhou, C. Wu, J. and Wang, C. “Study on Knowledge base Verification Based on

Petri Nets” Proceedings of the International Conference on Control and Automation

2005, pp. 997-1001

24. Morell, L. “Use of Meta Knowledge in the Verification of Knowledge-Based Systems”

Proceedings of the 1st International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems 1988, pp. 847-857

25. Marcos, M. Del Pobil, D. and Moisan, S. “Model-Based Verification of Knowledge-

Based Systems: a Case Study” Proceedings of the IEEE Journal on Software 2000, pp.

163-167

26. Korany, A. Shaalan, K. Baraka, H. and Rafea, A. “An Approach for Automating the

Verification of KADS-Based Expert Systems” Proceedings of the International

Conference on Applied Informatics and Communications- (WSEAS)-2007, pp. 1-22

27. Tadji, C. and Laroussi, T. “Dynamic Verification of an Object-Rule Knowledge base

Using Colored Petri Nets”, Proceedings of the conference of Systemic, Cybernetics and

Informatics 2009, Volume 4, pp. 337-352

292

28. Levy, A. and Rousset, M. C. “Verification of Knowledge bases Based on Containment

Checking”, Proceedings of the Journal of Artificial Intelligence - 1998, pp. 227-250

29. Al Korany, A., Shaalan, K., Baraka, H., and Rafea, A. “An Approach for Automating the

Verification of KADS-Based Expert Systems”, Proceedings of the 7th International

Conference on Applied Informatics and Communications- (WSEAS)-2007, pp. 1-22

30. De Rougemont, M. “Random Verification of Knowledge-Based Systems with

Uncertainty” Proceedings of the AAAI Conference, 1993, pp. 9-11

31. Murrel, S. and Plant, R. “A survey of Tools for the Validation and Verification of

Knowledge-Based Systems: 1985-1995” Proceedings of the Decision Support Systems –

1997, pp. 307-323

32. Culbert, C. and Savely, R. "Expert system verifications & Validation" Proceedings of

First AAAI Workshop on VV and Testing. Palo Alto, CA August 1988.

33. Williamson, K. and Dahl, M. "Knowledge- based reduction for verifying Rule Bases

Containg Equations" In: Working Notes: 6 Workshop on V.V of KBS at AAAI,

Washington, D.C., pp 66-71

34. Rousset, M. "On the consistency of Knowledge-bases: the COVADIS system"

Proceedings of the ECA188 Conference pp 79-84, Mancher, Germany 1988

35. Cragun, B. Steudel, H. "A Decision Table Based Processor for Checking Completeness

and Consistency" International Journal of Man Machine Studies, No. 26, 1987, pp633-

648.

36. Coener, F. Berch-Capon, T. and Kent, A. "A Binary Encoded Incidence Matrix

Representation to Support KBS Verification" Proceedings of the Working Notes 7

Workshop on V&V of KBS at AAAI 94, pp. 84-93

293

37. Zhang, D. and Nguyen, D. "PREPARE: A Tool for Knowledge-base Verification"

IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 6. December 1994,

pp983-989

38. Preece, A. Shinghal, R. and Batarekh, A. "Principles and Practice in Verifying Rule-

Based Systems", Proceedings of the Journal of Knowledge Engineering Review, Vol. 7,

No. 2, 1992. pp115-141.

39. Yu, X. and Biswas "CHECKER: An Efficient Algorithm for Knowledge-Based System

Verification" In, Proceedings of the Third International Conference on Engineering

Applications of A.I. IEA/AIE-90. 1990

40. Stachowitz, R. Chang, C. Stock, T. and Coombs, J. "Building Validation Tools for

Knowledge-based Systems" First Annual Workshop on Space Operations Automation

and Robotics (SOAR '87) Houston, Texas. August 5-7, 1987, pp. 209-216

41. Loiseau, S. "A Method for Checking and Restoring the Consistency of Rule bases"

Proceedings of the Int. Journal of Human-Computer Studies, 1994, 40, pp.425-442

42. Morell, L. “Use of Meta Knowledge in the Verification of Knowledge-Based Systems”,

Proceedings of the 1st International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems 1988, pp. 847-857

43. Levy, A. and Rousset, M. “Verification of Knowledge bases Based on Containment

Checking” Proceedings of the Journal of Artificial Intelligence - 1998, pp. 227-250

44. Lee, S. and O’Keefe, R. “Developing a Strategy for Expert System Validation and

Verification”, IEEE 1994, Proceedings of the IEEE Transaction on systems, Man and

Cybernetics, Volume 24, pp.643-655

294

45. Langlotz, C. Shortliffe, E.H. and Fagan, L.M. “Using Decision Theory to Justify

Heuristics”, Proceedings of the AAAI conference 1986, pp. 215-219

46. Slafer, L. (Boeing Satellite Systems) “Achieving Software Validation through

Simulation”, Proceedings of the Advanced Dynamics International User Conference

(ADIUS), 2001.

47. Knauf, R. Tsuruta, S. and Gonzalez, A.J. “Toward Reducing Human Involvement in

Validation of Knowledge- Based Systems”, Proceedings of the IEEE transaction on

Systems, Man and Cybernetics, Volume 37- January 2007, pp.120-131

48. O'Keefe, R. M. Balci, O. and Smith, E.P. ”Validating Expert System Performance”

Proceedings of the IEEE Expert, Volume 2, Issue 4, Jan. 1987 pp.81 – 90

49. Turing, A. “Computing machinery and intelligence” Proceedings of Mind 1950, LIX,

Number 236, pp. 433-460

50. Onoyama, T. Oyanagi, K., Kubota, S. and Tsuruta, S. “Concept of Validation and Its

Tools for Intelligent Systems”, IEEE 2000, The Proceedings of the Digital Object

Identifier,TENCON 2000, pp.394-399

51. Min, F. Yang, M. and Wang, Z. “An Intelligent Validation System of Simulation Model”,

Proceedings of the Fifth International IEEE Conference on Machine Learning and

Cybernetics. August 2006, pp. 1459-1464

52. Zlatareva, N. “A Framework for Knowledge-Based Systems Verification, Validation and

Refinement: The VVR System” Proceedings of the 5th FLAIRS conference 1992, pp.10-

14

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=64�
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5006517�

295

53. Kelbasa, H. “Context Refinement- Investigating the Rule Refinement Completeness of

SEEK/SEEK 2” Proceedings of the 15th European Conference on Artificial Intelligence,

2004, pp. 123-154

54. Mengshoel, O. J. and Delab, S. “Knowledge Validation: Principles and Practice”

Proceedings of the Journal of IEEE Experts Systems, 1993, pp. 62-68

55. Santos Jr., E and Dinh, H. “Consistency of Test Case in Validation of Bayesian

Knowledge Bases”, Proceedings of the 16th IEEE International Conference on Tools with

Artificial Intelligence – ICTAI 2004.

56. Ginsberg, A. Weiss, S. and Politakis, P. “SEEK2: A Generalized Approach to Automatic

Knowledge-base Refinement” Proceedings of International Joint Conference on Artificial

Intelligence (IJCAI), 1985, pp. 367-374

57. Dibie-Barthelemy, J. Haemmerle, O. and Salvat, E. “A Semantic Validation of

Conceptual Graphs” Proceedings of the journal of knowledge-based systems. 2006, pp.

498-511

58. Smith, S. and Kandel, A. “Validation of Expert Systems” Proceedings of the Third

Florida Artificial Intelligence Research Symposium (FLAIRS) 1990, pp.197-201

59. Vinze, A. Vogel, D. and Nunamaker, J. “Performance evaluation of a knowledge-based

system, a Validation Study” Proceedings of the Journal of Information and Management

1991, Elsevier Science Publishers, pp.225-236

60. Onoyama, T. and Tsuruta, S. “Validation Method for Intelligent Systems”, Proceedings

of the Journal of Experimental and Theoretical Artificial Intelligence 2000, pp.461-472

296

61. Min, F. Ma, P. and Yang, M. “A Knowledge Base Method for the Validation of Military

Simulation”, Proceedings of the 2007 Winter Simulation Conference- IEEE, pp.1395-

1402.

62. Wu, C. and Lee, S. “KJ3- a tool assisting formal validation of knowledge-based systems”

Proceedings of the Int. J. Human-Computer Studies, 2002, pp. 495-525

63. Gonzalez, A.J. Gupta, U. and Chianese, R. “Performance Evaluation of a Large

Diagnostic Expert System Using a Heuristic Test Case Generator”, Proceedings of the

Engineering Applications for Artificial Intelligence 1996, Volume 9, pp. 275-284.

64. Abel, T., Knauf, R. and Gonzalez, A. J. “Generation of a minimal set of test cases that is

functionally equivalent to an exhaustive set, for use in knowledge-based system

validation” Proceedings of the 9th FLAIRS conference 1996, pp. 280-284

65. Abel, T. and Gonzalez, A. J. “Utilizing Criteria to Reduce a Set of Test Cases for Expert

System Validation” Proceedings of the 10th FLAIRS conference 1997, pp.402-406

66. Mosquiera-Rey, E. and Moret-Bonillo, V. “Validation of Intelligent Systems: A Critical

Study and a Tool” Proceedings of the Journal of Expert Systems with Applications, 2000,

pp.1-16

67. Zlatareva, N. “ Knowledge Refinement During Development and Field Validaiton of

Expert Systems” Proceedings of the 11th International FLAIRS conference, 1998, pp.

467- 472

68. Abdallah, K. Mohammad, T. and Louis, F. “Validation of Intelligent Systems: a Critical

Study and a tool, Corus” Proceedings of the International Journal of Soft Computing

2007, pp.191-198.

297

69. Zlatareva, N. and Preece, A. “State of the Art in Automated Validation of Knowledge-

Based Systems”, Proceedings of the journal of Expert Systems with Applications, 1994,

pp.151-168

70. Lockwood, S. and Chen, Z. “Knowledge Validation of Engineering Expert Systems”

Proceedings of the Journal of Advances in Software Engineering, 1995, pp. 97-104

71. Lee, S. and O’Keefe, R. “Developing a Strategy for Expert System Validation and

Verification”, IEEE 1994, Proceedings of the IEEE Transaction on systems, Man and

Cybernetics, Volume 24, pp.643-655

72. O’Keefe, R. , Balci, O. and Smith, E. “Validating Expert System Performance”, IEEE

1987, Proceedings of the IEEE Expert, Volume 2, pp.81-90

73. Mosqueira-Rey, E. and Moret-Bonillo, V. “Validation of intelligent systems: a critical

study and a tool” proceedings of Expert Systems with Applications, 2000, pp. 1-16

74. Vermesan, A. and Hogberg, F. “Applicability of Conventional Software Verification and

Validation to Knowledge Base Components: A Qualitative Assessment”, Proceedings of

the 5th European Symposium on Validation and Verification of Knowledge Based-

Systems-Theory, Tools and Practice, (EUROVAV ‘99), pp. 343-364

75. Wells, S. “The VIVA Method: A Life Cycle Independent Approach to KBS Validation”,

Proceedings of the IEEE AAAI Conference 1993, pp.102-106.

76. Cook, D. “Software Processes? How Bohring?” Back Talk in the Magazine of Crosstalk,

Journal of Defense Software Engineering, Vol. 23, No.1, 2010, pp. 39

77. Brazier, F. Keplicz, B. Jennings, N. and Treur, J. “DESIRE: Modeling Multi agent

Systems In a Compositional Formal Framework” International Journal of Cooperative

Information Systems, 1997, pp.1-29

298

78. Weitzel, J. and Kerscheberg, L. “Developing Knowledge-Based Systems: Reorganizing

the System Development Life Cycle” Proceedings of ACM journal of Communications,

1989, pp. 481 – 488

79. Chandrasekaran, B. “Generic Tasks in Knowledge-Based Reasoning: High Level

building Blocks For Expert Systems Design” Proceedings of the IEEE Journal of Expert

Systems, 1989, pp. 23- 31

80. Schreiber, G. Weilinga, B. and De Hoog, R. “Common KADS: A Comprehensive

Methodology for KBS Development”, Proceedings of the International Conference on

Computer Design (ICCD ‘94), IEEE 1994, pp.28-36

81. Fensel, D. Angele, D. and Studer, R. “Knowledge Acquisition and Representation

language: KARL” Proceedings of the IEEE Transactions in Knowledge and Data

Engineering, pp.1-93

82. Schreiber, G. Wielinga, B. Akkermans, H. Van de Velde, W. and Anjewierden, A.

“CML: The CommonKADS Conceptual Language” Proceedings of the LNCS 1994.

83. Schreiber, G. Weilinga, B. and De Hoog, R. “Common KADS: A Comprehensive

Methodology for KBS Development”, Proceedings of the International Conference on

Computer Design (ICCD ‘94), IEEE 1994, pp.28-36

84. Angele, J. Fensel, D. Landes, D. and Studer, R. “Developing Knowledge-Based Systems

with MIKE” Proceedings of the Automated Software Engineering Journal, 1998, pp. 389-

428

85. Vollebreget, A. and Lei, J. “A Study of PROFORMA, a Development Methodology For

Clinical Procedures” Proceedings of AI in Medicine, 1999, pp. 1-22

299

86. Medina, M. Sanchez, A. and Casterlanos, N. “Ontological Agents Model Based on

MASCommonKADS Methodology”, Proceedings of the 14th International Conference

on Electronics, Communication and Computers, (CONIELECOMP ‘04), pp. 260-263

87. Vob, W. and Karbach, W. “Implementing KADS Expertise Model with Model- K”,

Proceedings of the IEEE Expert: Intelligent Systems and their Applications, Computer

Society Press, August ’93, pp.74-81

88. Gonzalez, A. J. Stensrud, B. and Barret, G. “Formalizing context-based reasoning: A

modeling paradigm for representing tactical human behavior”, Proceedings of the

International Journal of Intelligent Systems 2008, pp. 822-847

	Incremental Lifecycle Validation Of Knowledge-based Systems Through Commonkads
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER 1 : INTRODUCTION
	1.1 The Significance of Correct Software
	1.2 Lifecycle Models in Software Development
	1.3 Introduction to Knowledge-Based Systems
	1.4 Introduction to Validation and Verification
	1.4.1 Importance of Validation and Verification - Roles and Differences
	1.4.2 Definition of Validation
	1.4.3 Definition of Verification

	1.5 Validation and Verification for Knowledge-Based Systems
	1.6 Verification Approaches for Knowledge-Based Systems
	1.7 Validation Approaches for Knowledge-Based Systems
	1.7.1 Validation through Analysis of Heuristics
	1.7.2 Validation through Simulation
	1.7.3 Face Validation
	1.7.4 Predictive Validation
	1.7.5 Subsystem Validation
	1.7.6 Validation through Case Testing
	1.7.7 Validation through Graphical Representations
	1.7.7.1 Decision trees
	1.7.7.2 Directed graphs

	1.7.8 Validation through formal Methods
	1.7.8.1 Simultaneous Confidence Intervals
	1.7.8.2 Paired T-Tests
	1.7.8.3 Consistency Measures
	1.7.8.4 Hotelling One-Sampling

	1.7.9 Turing Testing
	1.7.10 Sensitivity Analysis
	1.7.11 Field Testing

	1.8 Summary

	CHAPTER 2 : STATE OF THE ART IN VALIDATION OF KNOWLEDGE-BASED SYSTEMS
	2.1 Validation Methods for Knowledge-Based Systems
	2.1.1 Knowledge Validation Methods
	2.1.2 System Validation Methods
	2.1.3 Multi-Purpose Validation Tools

	2.2 Lifecycle Validation of Knowledge-Based Systems
	2.3 Summary

	CHAPTER 3 : PROBLEM DEFINITION AND CONTRIBUTION
	3.1 General Problem
	3.2 Specific Problem
	3.3 Contributions
	3.4 Hypothesis
	3.5 Evaluation Method

	CHAPTER 4 : LIFECYCLE DEVELOPMENT MODELS FOR KNOWLEDGE-BASED SYSTEMS
	4.1 Life Cycle Models for Knowledge-Based Systems
	4.1.1 DESIRE
	4.1.2 KBSDLC
	4.1.3 Generic Tasks
	4.1.4 KADS
	4.1.5 CommonKADS

	4.2 Selecting CommonKADS for Validation
	4.3 The CommonKADS Models
	4.3.1 The Context Models
	4.3.1.1 The Organizational model
	4.3.1.2 The Task model
	4.3.1.3 The Agent model

	4.3.2 The Concept Models
	4.3.2.1 The Knowledge model
	4.3.2.2 The Communication model

	4.3.3 The Artifact Models
	4.3.3.1 The Design model

	4.3.4 UML Diagrams in CommonKADS
	4.3.5 System’s Specification and Implementation

	4.4 Summary

	CHAPTER 5 : THE MAVERICK VALIDATION METHOD
	5.1 Validation through CommonKADS Case Testing
	5.1.1 Test Case Format

	5.2 Method for Automated Validation Embedded into the Reusable and Incremental CommonKADS (MAVERICK)
	5.3 Test case extraction in MAVERICK
	5.3.1 The Extraction of Test Cases from CommonKADS Models

	5.4 Inspection Validation
	5.5 Context-Based Test Case Reduction (CBTCR)
	5.5.1 Local Importance
	5.5.2 The number of test cases selected for each iteration (N)
	5.5.3 Spiral Development and Validation
	5.5.4 Test Case Reduction through CBTCR

	5.6 Summary

	CHAPTER 6 : PROTOTYPE KNOWLEDGE-BASED SYSTEM
	6.1 The CBTCR Tool
	6.2 The Housing KBS
	6.3 CommonKADS Models for the Housing KBS
	6.3.1 Context Models
	6.3.2 Concept Models
	6.3.3 Artifact Models
	6.3.4 Diagrams for the Housing KBS
	6.3.4.1 Diagrams for the Context Models
	6.3.4.2 Diagrams for the Concept Models
	6.3.4.3 Diagrams for the Artifact Models:

	6.3.5 Iterative System Implementation and Validation

	6.4 The Extracted Test Cases
	6.5 Summary

	CHAPTER 7 : EXPERIMENTAL EVALUATION OF MAVERICK
	7.1 Introduction
	7.2 Experiment #1: Detection of Errors seeded by the developer
	7.2.1 Experimental Setup
	7.2.1.1 System validity before errors insertion

	7.2.2 Experimental Procedure
	7.2.2.1 Error detection
	7.2.2.2 Error location identification

	7.2.3 Experimental Results
	7.2.4 Discussions

	7.3 Experiment #2: Errors Seeded by the Human Test Subjects
	7.3.1 Experimental Setup
	7.3.2 Experimental Procedure
	7.3.2.1 The legitimacy of the errors

	7.3.3 Experimental Results
	7.3.3.1 Errors inserted by test subject Red
	7.3.3.2 Errors inserted by test subject Blue
	7.3.3.3 Errors inserted by test subject Yellow
	7.3.3.4 Errors inserted by test subject White
	7.3.3.5 Errors inserted by test subject Orange
	7.3.3.6 Errors inserted by test subject Brown
	7.3.3.7 Errors inserted by test subject Grey

	7.3.4 Discussions (Statistical Analysis of Results)

	7.4 Experiment #3: Comparison of MAVERICK to Other Methods
	7.4.1 Experimental Setup
	7.4.2 Experimental Procedure
	7.4.3 Experimental Results
	7.4.4 Discussions

	7.5 Summary of Experiments

	CHAPTER 8 : CONCLUSIONS AND FUTURE WORK
	8.1 Summary
	8.2 Conclusion
	8.3 Future Work

	APPENDIX A: LIST OF TEST CASES FOR THE HOUSING KBS
	APPENDIX B: JAVA CODE FOR THE HOUSING KNOWLEDGE-BASED SYSTEM
	APPENDIX C: EXPERIMENTAL VALIDATION ITERATIONS
	LIST OF REFERENCES

