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ABSTRACT 

The potential  benefits of autonomous satellite formation flying in such areas as high- 

resolution remote sensing, and sparse aperture radar, has stimulated interest in modeling the 

satellite environment for feasibility and simulation studies to help explore and define the 

technical challenges that must be solved in order to achieve successful autonomous  satellite 

formations.  The purpose of this paper is to develop and describe a numerical simulation of the 

orbital environment including central force field perturbations and atmospheric drag effects 

which will be a useful analytical tool for investigating issues relating to maintaining satellite 

formations in low-earth-orbit.  Many of the  studies done in this area confine their research to 

circular orbits, with and without perturbation effects.  This study will investigate apply orbital 

dynamic equations to the problem of maintaining satellite formations in both circular and 

elliptical orbits, with and without the presence of J2 gravity perturbation effects and atmospheric 

drag. This effort is primarily focused on modeling the orbital mechanics of one and two satellites 

in the presence of J2 and drag  perturbations This effort is  being performed as part of a multi-

disciplined University of Central Florida KnightSat project,  sponsored by the Air Force, to 

develop a two-satellite formation in the nanosatellite class, for investigating issues related to 

using formation satellites for remote earth sensing, to develop three-dimensional mapping.
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CHAPTER ONE: INTRODUCTION 

Background 

 With the development of inexpensive, lightweight, yet rugged micro-electronic  

components, it has become feasible in recent years to realistically consider the advantages 

offered by making use of formations of small orbiting satellites.   These satellites would be 

equipped with sensors, processors, algorithms, and actuators sufficient to autonomously maintain 

desired orientation and spacing required to accomplish the intended tasks, and communicate key 

information back to ground stations for further processing.  This class of small satellites has 

become known as "nanosatellites", with a typical mass per individual satellite of less than 15 kg. 

according to reference(1).   Optimum formation orientation and spacing may vary with the 

particular sensing task, and thus might require the orbit to shift orientation or spacing, through a 

command from ground control.  Examples of formation satellite use under consideration include 

sparse-aperture radar, interferometry, atmospheric observations, and three-dimensional earth 

surface mapping using digital cameras and multi-spectral imaging, to name a few.   

 The Air Force Office of Scientific Research (AFOSR) has awarded the University of 

Central Florida (UCF) a grant to pursue technical issues related to using satellite formations as 

camera platforms for three-dimensional digital mapping of the earth surface.  Sensor or camera 

spacing is an important parameter to maintain within tight tolerances, for the success of the 

mapping mission.  The University is developing both the hardware and software required to 

perform this mission, including modeling and simulation studies to identify problems and 

develop solutions, long before the hardware actually flies.  
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 Most Keplerian two-body analyses assume a spherical mass distribution for modeling a 

gravitational force field, whereas, for maintenance of real-world low earth-orbits, the earth's 

oblateness must be accounted for, often requiring the use of on-board thrusters to periodically 

provide orbit corrections.  When attempting to maintain satellite relative spacing, fuel and weight 

limitations dictate that the  controller-commanded correction requires careful planning, to help 

minimize fuel expenditure while maximizing useful payload.  

  In the past much of the previous modeling and analysis of satellite formations has made 

use of the relatively simple Hill or Clohessy-Wiltshire equations, developed for circular orbits 

with no perturbations present, but recent efforts as described in references (2) and (3) have 

attempted to expand the solution to include J2 perturbation effects in the form of a linearized 

solution, while maintaining a Hill equation format, for ease of formation analysis.  Reference (4) 

has attempted to solve formation equations using an eccentric reference orbit. 

 

Objective 

  The present thesis effort is intended as part of the development of the UCF engineering 

simulation tools necessary to help research and define formation satellite orbital issues.  

Specifically, this study will focus on developing a program to simulate two independent satellite 

orbits to study the problems of maintaining a two-satellite formation subjected to the effects of 

earth gravity perturbations, and atmospheric drag in low-earth-orbit (LEO).  .   This thesis  

describes development of an orbital simulation which includes two independent orbiting  

satellites using a model structure that appears to support a Hill-like analysis when the satellite 

orbits are in close proximity, approximating formation spacing. To these two independent 

satellite models, standard text-book J2 perturbation and drag models were added.  The integrated 
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models were then initialized and operated from simple to more complex cases, including circular 

and eccentric orbits, to verify general results of various relative orbit and perturbation 

combinations.   In addition to examining the orbits of two closely orbiting passive satellites, a 

rudimentary three-axis thrust capability was added to the follower or deputy satellite model 

providing the ability to exercise the models in an open-loop formation adjustment maneuver, and 

to observe the resulting dynamics when the delicate orbital balance is upset. 

The orbital equations of motion used for the development of this simulation model were 

based on equations of motion presented in reference (5).  These equations were developed and 

expressed in polar coordinates, and offer some advantages over other approaches, including the 

ability to compute multiple orbits without quadrant concerns, true anomaly computed directly for 

circular or eccentric orbits, and straight-forward incorporation of perturbation vector components 

and control input vectors .  These perturbation vectors included  J2- gravity perturbation 

acceleration components from reference (6) and drag perturbation vector from equations and data 

provided in reference (7).  A two-satellite formation was modeled, one called the"leader" or 

"chief" and the other called "follower" or "deputy".   From properly designed open-loop studies, 

control strategies will be determined,  based on resulting "delta-v" observations gained from this 

and subsequent studies using this program as an analysis tool.  "Delta-v" is a cumulative measure 

of the velocity differences between formation members, specifically the chief may be used as the 

reference satellite, and the deputy, as the satellite orbit requiring correction with-respect-to the 

reference orbit.  

The model components were verified individually, and also as they were integrated 

together.  The formation model verification process included trivial check cases along with an 

elliptic case from reference (8).  Once the basic spherical two-body model was verified, the J2 
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perturbation model was added, which included perturbation acceleration terms added for each 

satellite, as well as inclusion of precession drift effects being added to the argument of perigee, 

longitude of the ascending node, and mean anomaly.  Then an atmospheric drag perturbation 

model was added from reference (7).   

The analysis approach used in the development of this thesis-related program is described 

as follows.  The model was programmed in the MATLAB environment and verified against 

available check-case data or readily apparent simple-case results.  The model was then initialized 

with user defined test conditions, and set up to run integration loops until the desired loop or 

time-count was achieved.  Usually the cases were run for one orbit, although two-orbit cases 

were run.  Orbital test cases could be set up for any combination of initial conditions, which 

included defining the chief orbital parameters, and perturbations, as well as deputy independent 

orbit parameters and perturbations.  From these orbital test runs, variables of interest were 

indexed for post plotting and  subsequent analysis.  Of particular interest were Hill-like relative 

velocity and positional components.  From the chief and deputy orbital test runs, with J2 gravity 

perturbations, and drag  perturbation present, as desired, the data were analyzed for circular and 

elliptical orbits, making observation of  any position or velocity divergence between deputy and 

chief that might provide insight into any delta-v implications or requirements.  In addition delta-

v was computed directly from the model structure by subtracting the two "velocity dot" terms for 

each satellite and integrating the result with respect to time.  

  

Statement Of Work 

 The purpose of this thesis work was to provide separation analysis of a two-satellite 

passive formation in low-earth orbit, in the presence of central force field and drag perturbations, 
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in support of the University of Central Florida KnightSat project.   This present effort includes 

the development of an engineering simulation program to be used for modeling two independent 

orbiting nanosatellites.  The orbital mechanics equations used for this analysis are structured to 

provide ease of computation and analysis, and facilitate integration of perturbation and control 

components from other sources.  The integrated model was programmed in MATLAB, and 

partially verified against independent test cases.  The validation process presented in this paper 

included running six-test cases ranging from the simple leader-follower case to out-of-plane 

elliptical cases, first without perturbations and then with perturbations, to help isolate 

perturbation effects.   Also some simple thrust examples are included, and a simulated direct to 

orbit launch from Cape Kennedy with various initialized formation array positions.            
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CHAPTER TWO: LITERATURE REVIEW 

The following references were used as the basis for this thesis work: 

1) Campbell and Schetter, "Formation Flying Mission for the UW Dawgstar Satellite",   

 University of Washington, Seattle, WA, IEEE 0-7803-5846-5/00, 2000. 

 This reference provides a description of the University of Washington formation flying 

nanosatellite project called ION-F, awarded by  AFRL/DARPA/NASA as part of the University 

Nanosatellite joint program with some other universities.  The objectives of the project include 

the use of a three-satellite formation to make ionospheric measurements and formation flight 

management.  The satellite design included full attitude and position control capability.  In 

addition the intended thruster system was described as "the integration of pulsed plasma 

thrusters".  One project goal was to "demonstrate autonomous formation maneuvering with no 

ground communications, except high-level commands".  This reference provides a brief high 

level description of the UW simulation, and discusses some of the results of simulation studies 

and implications.  Some interesting delta-v estimates are provided for various tasks and total 22.0 

m/sec. for phase I and 45.0 m/sec for phase II..  These estimates include formation keeping, 

formation maneuvering, and least is attitude control with about 15 percent, of the total for each 

phase, for a two-month mission period.      

 

2) Schweighart & Sedwick, "High-Fidelity Linearized J2 Model For Satellite Formation 

 Flight", Massachusetts Institute of Technology, Cambridge, MA, May 2002. 

 This reference addresses the need to incorporate "the effect of  J2 potential" into the 

equations of relative motion in order to improve formation satellite research modeling.  Within 
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this reference is derived a set of linearized constant-coefficient differential equations, which 

include the J2 effects, and also manage to retain the form of the Hill equations.  However  from 

these extended equations a new formation satellite mode has been observed, called "tumbling".  

This is the name given to describe an effect observed in the revised model in which the 

formation cluster rotates about the velocity vector as it progresses along in the track direction..  

Although this reference adds the effects of J2 potential, the solution does not go beyond a circular 

orbit.  Numerical simulation results are also presented. 

 

3) Roberts & Roberts, "The Development of High Fidelity Linearized J2 Models For 

 Satellite Formation Flying Control., AAS 04-162, Cranfield University, UK, 2004. 

 This reference verifies the J2 modified Hill equations developed in reference (2), against 

the Satellite Took Kit (STK) numerical orbit propagator.  The gradient of J2 terms are then 

implemented as time varying coefficients in the state matrix, performance of the time varying 

model is evaluated.  Once verified then the developed model was to be used to design a Linear 

Quadratic Regulator (LQR) for use in a controller algorithm.  Only circular orbits are considered. 

   

4) Inalhan, Tillerson, & How, "Relative Dynamics and Control of Spacecraft Formations In 

 Eccentric Orbits",  Stanford and MIT, February 2002. 

 "This paper generalizes previous aperture design approaches and presents a complete 

initialization procedure for a fleet of vehicles with an eccentric reference orbit.  The main result 

of the paper is derived in two ways.  The primary analysis uses the solutions of linearized 

equations of relative motion with respect to an eccentric reference orbit.  These solutions are 

used to find the necessary and sufficient conditions on the initial states that produce periodic 
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solutions, that is vehicles return to the initial relative states at the end of each orbit.  In the 

second method, the orbital elements are used to derive the exact nonlinear condition that ensures 

periodic relative motion from the differential energy matching condition." 

  

5) Roger Johnson, etal "Guidance and Control for Aerospace Vehicles", Hanford House 

Publishing, London, NATO AGARDograph 131, June 1969. 

 

The equations used to describe the basic orbital equations of motion for this study were 

obtained from this reference. These equations are used to describe both a leader and follower 

satellite, to constitute a complete independent model for each satellite, capable of modeling both 

circular and eccentric orbits. See the symbol list for value of µ used in this study and definition 

of variables contained in the equations.  These equation are listed below, with additional  

descriptions contained in the Methods section. 

d2r/dt2 +( µ/r3) r  =  p  + u  ,                equation (1)       

where µ = G(m1 + m2), where G is the universal gravitational constant and m1 and m2 are 

mass of the earth and satellite respectively in this case.    The vector quantities  p and u  represent 

a perturbation vector and control vector respectively.  

dv/dt  = -µw/vr3 + (iv · p ) + (iv · u )                                                   equation (2) 

dr/dt = w/r                                                                equation (3)  

dw/dt =  v2 – µ/r + (r · p) + (r · u)                                                    equation (4) 

dν/dt = ((v2 – (w/r)2)1/2)/r      equation (5)    
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Equations (2) through (5) describe motion in the orbital plane.  In addition the following 

two equations add the capability to describe motion outside the plane, allowing changes in orbit 

inclination and angular momentum vector as appropriate to the situation being modeled. 

di/dt = vh/r(sin( ω + ν))       equation (6) 

dH/dt = 1h · ( r  x  p ) + 1h· ( r  x  u )     equation (7) 

 

 

6) Curtis, Orbital Mechanics for Engineeing Students, Embry-Riddle Aeronautical 

 University, Elsevier Aerospace Engineering Series, Elsevier Butterworth-Heinemann, 

 Oxford, UK, 2005.   

 The  J2 perturbation equations used in this study were obtained from this reference.  This 

reference  is a textbook on mechanics of space systems and includes the following J2 

perturbation component equations, structured in polar coordinate format, with the subject 

satellite located at the tip of the radius vector.  Pr  is the radial perturbation in acceleration 

experienced by at satellite at the prescribed location (r, i, ω,  ν ),  P┴  is the transverse component 

in direction of v, and Ph is the cross-track or out of plane component: 

 

Pr = -µ/r2 3/2 J2 (R/r)2 [ 1 – 3sin2(i)sin(ω + ν)2) ]                             equation (8) 

 

P┴ = -µ/r2 3/2 J2 (R/r)2 [sin2(i)sin(2(ω + ν)) ]                                   equation (9) 

 

Ph  = -µ/r2 3/2 J2 (R/r)2 [ sin(2i)sin(ω + ν) ]                                     equation(10) 
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These components from this source were integrated with the orbital equations of motion 

listed as equations (2) through (7) above by taking the indicated dot products. 

 

 7)  David A. Vallado, Fundamentals of Astrodynamics and Applications (second edition) , 

 Microcosm Press, El Segundo, CA, 2001. 

This source used to help provide overall background and confirmation for parts of this 

effort.  This reference is used as a graduate textbook and provides a broad  background on many 

of the fundamental disciplines required to understand the field of orbital mechanics.  With regard 

to formation satellite modeling, this reference contains a brief but comprehensive description of 

the development of the Hill or Clohessy-Wiltshire equations in Section 6.8 on Relative Motion, 

pages 374-399.  This reference also provided good description of perturbations in Chapter 8, 

specificaly in Section 8.6.1 Gravity Field of a Central Body,  on pages 511-524, of the J2 "zonal 

harmonics" perturbation, including a statement that "J2 is almost 1000 times larger than the next 

largest coefficient (J3)".     

Atmospheric drag is also considered as a perturbation in Section 8.6.2 of the same 

chapter, pages 524 through 542.    Therefore the drag perturbation equation can be stated as the 

following: 

adrag =  -1/2 ρ (CD A/m) vv          equation (14) 

 

 

 

8)  Schaub and Junkins, Analytical Mechanics of Space Systems,  AIAA Education Series, 

 2003. 
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This reference is intended as a text-book and overall reference on the subject of Space 

Systems.  Chapter 14 of this reference is dedicated to Spacecraft Formation Flying.  The first part 

of the chapter develops the Hill or Clohessy-Wiltshire equations and provides solutions for a 

circular, no perturbation case, as an example.  Then a method called the "orbit element difference 

description" is developed to include both circular and eccentric orbits, although perturbations 

again are not included.  However the last half of this chapter provides some insight into 

strategies for the design of J2-invariant relative orbits.  This reference does provide the equations 

for describing secular drift in the mean longitude of the ascending node, mean argument of 

perigee, and mean anomaly, due to J2  gravitational perturbation. 
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CHAPTER THREE: METHODOLOGY 

 To study the problems of satellite formation flying, such as how best to maintain the 

formation at minimal fuel and weight cost, requires the ability to model dynamic satellite orbits 

that include the relatively minor effects known as perturbations which can, over the long term, 

have drastic effects on satellite formation spacing.   So the methodology used in this study 

included identifying a convenient set of  equations of motion for describing satellite orbital 

dynamics, and also identifying and adding the perturbation equations of interest  at the 

appropriate point in the model.  In addition required axis systems need to be defined for 

reference, when developing the satellite formation model. 

I. Satellite Model Development. 

 A. Axis Systems. 

  The earth fixed-inertial system, IJK, was used as the reference coordinate-axes for this 

study and are presented in Figure 1.  According to reference (7) this system is most commonly 

used.   Also for chief-deputy relative analysis, a body-fixed coordinate system fixed at the chief 

center of mass, was used and is depicted in Figure 2.   Unlike the Hill system, this system is 

defined as positive "x" along the track, positive "y" to the right of an on-board observer or chief, 

and positive "z" along the radial axis pointed toward the center of the Earth.  This system can be 

described as similar to an aircraft body-axis, however its primary purpose is to provide a 

convenient reference frame for defining deputy motion relative to the chief.    

 B. Numerical Integrators. 
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  Once the orbital equations of motion including perturbations were determined then an 

integration routine was selected to provide acceptable accuracy.  In this study the fourth-order   

 

J
Chief or 

deputy 

Ķ 

Geocentric 

Equatorial 

I 

Geocentric Equatorial Coordinate System  (I, J, K ) 

reference axis system, defined in reference(7) 

Figure 1: Reference Axis System 
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Earth

deputy

Z-axis positive toward earth

V,  x-axis positive along velocity track

y-axis positive cross track to right

Figure-2- Satellite axis system

chief

 

Figure 2: Satellite Axis Reference System- Deputy At (x y, z) Relative To Chief. 
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Runge-Kutta algorithm was used for  integrating  rapidly changing variables such as dr/dt, dv/dt, 

and dw/dt,  otherwise a first-order Euler integrator was used for slower variables such as Euler 

angle updates..   

 C. Orbital Equations of Motion. 

  The baseline orbital equations selected for this study were obtained from reference (5), 

in which the equations of motion were derived using basic principles.  These first order nonlinear 

differential equations may be used for either ballistic missile trajectories or orbiting satellite 

orbits;, they include terms already representing perturbation vectors and control input vectors, so 

simply substituting and taking the indicated dot or cross-products resulted in the perturbation 

terms being integrated with the basic equations.   The perturbations of interest for this study were 

the J2 gravitational perturbations and the atmospheric drag.  It is recognized that there are other 

sources of perturbation forces on orbiting satellites including other gravitational effects, and 

solar radiation, and third-body, gravitational effects, however the effects being included in this 

study are considered  the major sources.   

The following equations, from reference (5), were used as the basis for this thesis work: 

(1)   The equations are easily derived using Newton's laws and standard vector 

relationships such as dot and cross product rules.  Key equations used as the starting point are 

provided below: 

µ = G(m1 + m2), where G is the universal gravitational constant and m1 and m2 are mass 

of the earth and satellite respectively in this case.   The µ parameter is used to quantify the 

gravitational attraction force between earth and other known masses of interest. Using this 

parameter, the first orbital equation of motion is provided below from reference (1) as: 
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d2r/dt2+ µ/r3 r  =  p + u  ,                             equation (1)      

where the underline represents vector quantities and p and u  represent a perturbation 

vector and control vector respectively.  It can be shown that by taking dr/dt dotted with vector 

equation (1),  and recognizing the dr/dt equals v,  results in the following scalar equation: 

dv/dt  =  -µw/vr3 + (iv · p ) + (iv · u )                                                  equation (2) 

Also, since w is defined as r dotted with dr/dt,  it can be shown that, 

dr/dt  =  w/r                                                                  equation (3)  

Also, it can be shown that  

dw/dt =  v2 – µ/r + (r · p) + (r · u)                                                    equation (4) 

Recognizing that the vertical and horizontal components of v, the velocity vector, are 

dr/dt and r times dν/dt respectively, in polar coordinates, the range angle rate or true anomaly 

rate (dν/dt) may be solved for by using the properties of a  right triangle to arrive at  

dν/dt  = (1/r) (v2 – (w/r)2)1/2      equation (5)    

Equations (2) through (5) describe motion in the orbital plane.  In addition the following 

two equations add the capability to describe motion outside the plane, adding the possibility of  

changes in orbit inclination (i) and  angular momentum vector (H). 

di/dt = vh/r(sin( ω + ν))       equation (6) 

describes inclination rate of the orbital plane, where vh describes the out-of-plane (cross-

track) velocity component,  and the rate of change in angular momentum is described by 

dH/dt = 1h ( r  x  p ) + 1h ( r  x  u )     equation (7) 
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 D. J2 Perturbation Equations. 

 In the present study appropriate equations for J2 gravity perturbations were identified in 

reference (6) and these were added to the orbital models of both the chief satellite and the deputy 

satellite.  These are listed below in spherical coordinate format.   The subject satellite is located 

at the tip of the radius vector and the J2 perturbation components are  Pr, the radial perturbation 

acceleration experienced by at satellite at the prescribed location (r, i, ω,  ν ),  P┴ , the transverse 

component in direction of v, and Ph ,  the cross-track or out of plane component: 

 

Pr = -µ/r2 3/2 J2 (R/r)2 [ 1 – 3sin2(i)sin(ω + ν)2) ]                             equation (8) 

 

P┴ = -µ/r2 3/2 J2 (R/r)2 [sin2(i)sin(2(ω + ν)) ]                                   equation (9) 

 

Ph  = -µ/r2 3/2 J2 (R/r)2 [ sin(2i)sin(ω + ν) ]                                     equation (10) 

 

These components listed in equations (8), (9), and (10) can be integrated with orbital 

equations (2), (4) and (7) above by taking the indicated dot products. 

 

Also since J2 gravity perturbation is known to cause satellite orbit precession with respect 

to a fixed-earth reference, these effects described by equations from reference (6), were included 

in the model and are described in the equations (11) through (13) following:  

dΩ/dt = -1.5 J2 n (Req/p)2 cos(i)                                                      equation (11) 

dω/dt = 0.75 J2 n (Req/p)2 √1 – e2 )( 5 cos(i)2 – 1)                           equation (12) 
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dM/dt =0.75 J2 n (Req/p)2 √1 – e2 ) (3 cos(i)2 – 1)            equation (13) 

 E. Atmospheric Drag. 

 The drag perturbation simulation used in this study is based on information presented in 

reference (7).   On page 555 of reference (7) the following equation is provided along with the 

knowledge that it is based on three assumptions,  using an exponential atmosphere (for density), 

ignoring complex interactions with the winds in the relative-velocity calculations, and assuming  

vrel is the same as the velocity of the satellite.  Therefore the drag perturbation equation can be 

stated as the following: 

adrag =  -1/2 ρ (CD A/m) vv          equation (14) 

 

where  ρ is atmospheric density, and CD  is the drag coefficient, given a value of 2.2 as is 

often assumed for satellites in the upper atmosphere.  Again from reference (7) equation (8-34), 

an expression is provided for determining the density  and is shown below: 

ρ = ρo  EXP[ -( helip – ho)/H ],         equation (15) 

where ρo is reference density used with the reference altitude ho, and where  helip is the 

actual altitude above the ellipsoid (earth), and H is defined as scale height, and changes with 

altitude range. 

 

F. Data Analysis Methods. 

Based on reviewing most of the technical references listed in this report, it became 

apparent that structuring the formation satellite model in Hill equation form (x, y , z, dx/dt, dy/dt/ 

dz/dt) is desirebable from a data analysis viewpoint.  The variables x,y,z, and their derivatives 

are deputy coordinates relative to the chief,  and this format enhances the ability to determine 
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"delta-v" directly between the reference or chief satellite.  Analysis of these data then provide a 

means to estimate fuel and thrust requirements as well as required design features of the satellite 

formation feedback controller.    

To help with the analyses of the KnightSat formation, it was observed that the dynamic 

model structure used for this analysis lends itself to similar information as provided by the Hill 

equations.  Since true anomaly is being computed for each satellite, and the radius of each 

satellite is nearly equal, then the along track "x-component" distance between satellites may be 

computed from the  known radius and true anomaly differences.  The following relationships 

were used to compute "x", "y" and "z" relative Hill-like component positions: 

 

xchf-dep =((rdep  + rchf)/2) sin(0.5(νchf – νdep))     (from geometric considerations) 

ychf-dep =((rdep  + rchf)/2) (incchf – incdep)  sin(ω + νchf)     (from geometric considerations) 

zchf-dep =( rchf - rdep)      (from geometric considerations) 

In addition, to obtain relative Hill-like relative velocity components the following 

relations were used where the subscript "veldiff" indicated velocity differences:  

xveldiff = vchf – vdep

yveldiff = vh – vhdp

zveldiff = (dr/dt)chf – (dr/dt)dep

These relations were obtained through geometric considerations and with the desire to be 

consistent with the following sign conventions described below and shown in  Figure 2.  The 

positive x-axis is defined to be aligned with the chief velocity vector, through the chief center-of-

mass, with positive infront of the chief and negative as behind the chief.  Also, for the positive y-

axis, the origin is at the chief center of mass,   and positive direction is to the right.  That is, if the 
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deputy is on the right of the chief , it is at "positive-y".  The positive z-axis is defined as positive 

downward, or earthward, and negative above the chief, with the z-axis origin located again 

through the center of mass.  

G. X-, Y-, Z-, Thruster Addition 

Since one purpose of this study is to provide a simulation tool to perform formation 

maintenance "delta-v" studies when the satellite formation is subjected to "real-world" gravity 

and drag perturbations, an additional three-axis thrust capability was added to the follower or 

deputy model.  The thrusters are configured in a mutually perpendicular triad located on the 

center-of-mass, with one thruster aligned along the "x-axis" to provide direct pro-v or retro-

thrust, one thruster to provide a radial thrust component, and one thruster to provide cross-plane, 

or cross-track thrust, in the direction of the angular momentum vector, H.   The thrust might be 

considered as a specific thrust since its acceleration capability is stated in km/secs, with no 

scaling up or down for satellite mass size.  These thrust components are integrated with the 

model through the equations of motion.  Specifically equations (2), (4), and (7) provide a means 

for introducing the input vector, u, where u is defined arbitrarily as 

u =  arîr   + avîv  + aH îh 

where the three thrust components are modeled as either on, or off , with the acceleration 

value to be determined during delta-v studies.  The acceleration value may be positive or 

negative depending on the combination needed to accomplish the task. 

For equation (2) the resulting thruster addition is (iv · u ) = av, which results in a term 

added directly to the programmed deputy equation.  Similarly for equation (4) the (r · u) term 

becomes (r  · ar ) . For equation (7) the ( r  x  u ) term results in (arr îh   -  aHr îv).   Dotting this with 

îh results in adding arr to the deputy program model.  Since the  ar acceleration term is affected, 
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for the sign convention and axis system used in this program, this translated to adding and "x- 

axis" rocket term to the dh/dt equation.  During the thrust maneuver the following constraint 

equation can be used to maintain steady-state relationship between the two orbiting vehicles: 

Energy level(Ec) of chief = energy level(Ed) of deputy; at all times. 

 

H. Delta-V Calculations. 

Delta-v, is a measure of the difference in velocity magnitude between the satellite state of 

interest and the velocity required for a desired orbit or of a target satellite.  Delta-v in the case of 

formation satellites may be determined by taking the differences in "vdot" between the follower 

and chief satellites, integrating with time over an orbital period or other time of interest.  So the 

delta-v computed in this study resulted from differences in "vdot" times the time-step, dt, and 

summed over an orbit period. 

   

I. Programming Considerations. 

 To perform a research study such as this, requires a programming environment and 

analysis tools to allow for convenient numerical graphical observations.   MATLAB was selected 

for much of this effort because of ease of programming and plotting capabilities, and the relative 

inexpense of the commercially available program, Student Version Release 13.   

Once the component system equations were identified or developed, they were 

programmed in the MATLAB environment for solving the resulting first order, nonlinear, 

differential-equations using a fourth-order Runge-Kutta integration scheme developed within the 

program, for ease of time-step adjustment.  Time-steps were varied between 1 and 5 seconds for 

most of this analysis.  
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See the Appendix for a listing of the MATLAB code used here. 

 

 

I. Model Verification Process. 

 Prior to using the model for satellite formation studies, such as predicting when and 

where a formation might diverge, or the effects of thrusters, the model, including perturbation 

sub-models, must be verified and validated as much as possible.  One approach to this is to test 

the model initially against simple cases and adding additional levels of complications to help 

build up confidence in the analysis or simulation program.  This type of approach was taken with 

this program and the test matrix is listed in Table 1 of Section 4.  For example the first test case 

listed was the simple circular orbit "leader-follower" formation, for a 1 km. separation distance.  

For the next case, the model was checked against an elliptical orbit check-case presented in 

reference (8), which had been generated using reference (8) equations.  Next, the J2 perturbation 

effects were added to the elliptical case just ran.  Then atmospheric drag was added on top of 

this, so that this model build-up test method might help to isolate a significant effect due to 

perturbations additions.  Finally a circular case just like the simple leader-follower case was run 

but with J2 and drag active.  

 The variables monitored were selected to try to isolate effects are for relative satellite 

positions in "Hill-like" coordinates, and relative "Hill-like" velocities.  The reason the term "Hill-

like" is used is due to the fact that these results were not obtained by solving the Hill differential 

equations, but were obtained from performing relative simple operations described in the Data 

Analysis Methods section above.   

l  
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CHAPTER FOUR: FINDINGS 

 This section is divided into three sections, the general formation test cases to demonstrate 

the model overall ability to simulate a two-satellite formation in low-earth-orbit for both circular 

and elliptical orbits, and with and without drag and J2 gravitational perturbations.  The specific 

testing approach and test conditions are described in the General Model Demonstration section 

below.    This is followed by a section describing the Addition Of A Thruster Model, and a 

section on Delta-V Computation, along with a specific demonstration case of a formation 

satellite launch from a direct orbit launch from the Kennedy Space Center in Florida   

 

I. General Model Demonstration. 

 As a means of validating the integrated model sample check runs were conducted using 

the orbital simulation program.  The initial conditions and set-up parameter values for these test 

runs are listed in Table I.   Selected portions of these test results  are contained in Figure 3 

through Figure 29.  These figures contain MATLAB  plots of orbital parameters such as radius 

and velocity verses time for one orbit, or true anomaly for one orbit, generally expressed in 

radians.  The following sections contain discussion about each particular test case. 
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Table 1:Orbital Test Cases Investigated. 

Orbital Test Cases Investigated Using MATLAB-Based Program  

                                                                               Orbit Parameters                     (Perturbations)                
Test  Conditions                         a,km       e       i,rad        Ω,rad.      ω,rad.     Mo,rad.   J2     Cd        
 
1- Chief Orbit (circular).           6678.     0.0    0.837     0.349       0.1745     0.0          0.0    0.0 
  - Deputy Orbit ( 1 km. trail)    6678.     0.0    0.837     0.349       0.1745   -0.00015  0.0    0.0  
 
2- Chief Orbit (ellipse)               7555      0.03   0.837     0.349      0.1745     0.0          0.0    0.0 
  - Deputy Orbit                          7555.     0.03* 0.837*    0.349*   0.1745*   0.0*        0.0    0.0 
 
3- Chief Orbit (ellipse)               7555      0.03   0.837     0.349      0.1745     0.0           1     0.0 
  - Deputy Orbit                          7555.     0.03* 0.837*    0.349*   0.1745*   0.0*         1     0.0 
 
4- Chief Orbit (ellipse/J2/Cd)    7555      0.03   0.837     0.349      0.1745     0.0           1     2 
  - Deputy Orbit                          7555.     0.03* 0.837*   0.349*    0.1745*   0.0*         1     2 
 
5- Chief Orbit(ellipse/J2/Cd)     7555      0.13   0.837     0.349      0.1745     0.0           1     2 
  - Deputy Orbit(200m trail)       7555.     0.13* 0.837*   0.349*    0.1745*   0.0*          1     2 
 
6- Chief Orbit(circular/J2/Cd)   6678.    0.0    0.837      0.349      0.1745     0.0           1     0.0   
  - Deputy Orbit( 1 km. trail)     6678.    0.0    0.837     0.349       0.1745  -0.00003,.   1     0.0   
   
 
                                                                                                                                                       *  
Note- 1. When J2 effects are active, J2 = 0.00108263. 
          2. When drag perturbation active, Cd =2.2 
          * indicates deputy orbits are chief orbits plus small added delta's (examples from reference(4)) 
      See specific Figures  for test case conditions. 
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 Case 1: Circular Orbit, No Perturbations, With Deputy In 1 km. Trail. 

   Case 1 was considered to be a simple check case to verify that the model is providing 

correct results for the basic case of the "leader-follower" satellite formation.  For this case the 

chief satellite is initialized in a circular orbit with the deputy initialized at the same orbital 

parameters except displaced 1 km. aft of or trailing the chief.  This translates to setting the 

deputy at  the chief anomaly (Mo) "minus" 0.00015 radians, at the orbit radius.   

  In Figure 3, the orbit radius is plotted verses true anomaly in radians, and is a constant 

6678 km, or 300 km above spherical earth altitude of 6378 km. The next trace is velocity in 

km/sec. verses true anomaly.  The third trace is true anomaly verses time in seconds.  It is noted  

that for the circular orbit true anomaly is linear with time, or the orbit angular rate is constant, 

unlike eccentric orbits.  Also on Figure 3 under the figure number, the test set-up values are 

presented for both the chief satellite and deputy.  The deputy initial values are shown as "delta's" 

from the chief orbit, and the simulation program is set up to convert these delta's to deputy orbit 

parameters.  Reference (8) used this "delta" structure when setting up their example formation 

problems contain in Chapter 14, in the "orbit element difference vector".   In Figure 4 are 

presented the orbit inclination rate the derivative of angular momentum value, both of which 

have "zero" value when no  perturbations are present, which is the case here.  The middle trace is 

the orbit inclination in radians.  . 

Case 1 was considered to be a simple check case to verify that the model is providing 

correct results for the basic case of the "leader-follower" satellite formation.  For this case the 

chief satellite is initialized in a circular orbit with the deputy initialized at all the same orbital 
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parameters except for being displaced 1 km. rearward, which translates to setting the deputy at  

the chief anomaly (Mo) "minus" 0.00015 radians, at the orbit radius 

 

 

Figure 3: Circular Orbit Case With Deputy In 1 km Trail, No Perturbations (Case1- 1/5). 

Chief Satellite Initial Conditions: 

Circular Orbit, e = 0.0,   a = 6678. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects = 0.,   atmospheric drag = 0.   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.0 ,   δa = 0. km,  δi = 0.0 deg.,   δΩ = 0.0 deg. 

δω = 0.0 deg.,  δMo = -0.00015 rad  (deputy  1 km behind chief )    
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Figure 4: Circular Orbit-No Perturbation Effects (Case 1-2/5). 

  In Figure 4 are presented the orbit inclination rate the derivative of angular momentum value, 

both of which have "zero" value when no  perturbations are present, which is the case here.  The 

middle trace is the orbit inclination in radians.   
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Figure 5: Circular Orbit With No Perturbations So Constant 1 km Separation. (Case 1- Plot 3/5). 

 It can be observed from the above figure that the "along-track" separation is a constant 

negative 1 km. indicating that the deputy is 1 km behind (x  = -1.0 km) the chief as they perform 

a complete orbit.  This is as expected since the effective gravitational model is a Keplerian two-

body central force field with no perturbations, at this point. 
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Figure 6 Polar Plot Of Deputy Total Separation From Chief  (Case 1- Plot 4/5) 

 Figure 6 shows the chief-deputy separation distance vector magnitude verses true 

anomaly for a complete orbit.  Note that the separation is again a constant for the complete orbit.  

The polar plot provided the same information as shown in the bottom trace of Figure 5, displayed 

in a different format to help interpret the results when perturbations are added.  
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Figure 7: No Velocity Differences For Circular Orbit With No Perturbations. (Case 1-plot 5/5) 

 In Figure 7 it is noted that there are no relative velocity differences between the chief and 

deputy as would be expected for this case.  For the simple case shown, these velocity differences 

are "zero" as the satellites orbit, indicating no tendency to drift apart or towards each other, thus 

requiring no correction to maintain the 1.0 km spacing, while they continue on at the same radius 

and velocity magnitudes.  

.  
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Case 2- Elliptic Orbit, No Perturbations, Deputy Offset In Three Axes (ref.(8)) 

 Case 2 was selected from reference (8) as a check-case of the model, prior to the 

activation of the perturbation effects models.  This case provided a situation where the deputy 

satellite was to be initialized at  slightly different offset values from the chief orbit to exercise  an 

additional degree-of-freedom,  out-of-plane or cross-track variations of the deputy relative to the 

chief reference orbit.  Also this case included "delta's" for all orbital states except "a", the semi-

major axis.  This is because the orbital period is a function of this parameter, through the 

relationship below: 

 

 Orbital Period = 2π[a3/µ]1/2  from reference (7). 

 

If the semi-major axis for each member of the formation are not identical, then they will either 

drift apart or possibly collide.  This is a practical application of the orbital constraint requirement 

for satellite formations. 
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Figure 8: Elliptical Orbit-No Perturbations. (Case 2-plot 1/5) 

Chief Satellite Initial Conditions: 

Elliptical Orbit, e = 0.03,   a = 7555. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects = 0.,   atmospheric drag = 0.   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.00095316,,   δa = 0. km,  δi = 0.006 deg.,   δΩ = 0.100 deg. 

δω = 0.100 deg.,  δMo = -0.100    

Note: Orbital parameters from Table 14.1 of reference (8), used as check-case against reference (8) results. 
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Figure 9: Elliptical Orbit No Perturbations Check Case (Case 2 -plot 2/5) 

 The values shown in Figure 9, indicate the x,y, and z-distance between the chief satellite 

at the origin, and the deputy satellite.  Note that with the chief body fixed axis system and sign 

convention chosen, that the along track x-direction indicates the deputy starts approximately 12 

km. behind the chief.  This amount of the deputy trailing distance, corresponds to the deputy 

being initialized at Mo of -0.100 deg., at this orbit radius.  Also note that the deputy is about 7 km 

below the chief (downward being positive).   Also, with a slight inclination angle offset (0.006 

deg), note that the resulting motion appears to the chief as the deputy crisscrossing the chief 

track periodically, at one cycle per orbit revolution.  
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Figure 10: Elliptical Orbit Check-Case With No Perturbations. (Case 2-plot3/5) 

 From Figure 10 the magnitude of the separation vector vs. true anomaly, can be observed 

in the bottom third of the figure as the satellite formation of chief and deputy orbit according to 

the initial conditions.  
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Figure 11: Elliptical Orbit, No Perturbations, Along-Track vs. Radial. (Case 2 - plot 4/5).  

 From Figure 11, it can be observed that the deputy orbit appears as an ellipse when 

projected in the orbital plane (plane containing the radius vector and velocity vector).   The peak-

to-peak amplitude along-track of about 25 km  appears to agree with results presented in 

reference (8) Figure 14.6.  Also the radial variation observed with the thesis model was about 15 

km, vs. about 15-20 km in reference 14.6.       
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Figure 12: Elliptical Orbit X-, Y-, Z- Relative Velocities (ref.8 case)(Case 2-5/5). 

 In Figure 12 the relative velocity components between the chief and deputy are shown, as 

the satellite pair orbit the Earth.   If a lateral offset such as a chevron is required to be held 

constant for some period of time then, some form of thrust will be required to provide the 

necessary "delta-v" to maintain desired spacing.  These are among the items that must be 

considered in designing the control algorithm and control system.    
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Case 3- Elliptic Orbit, J2 Perturbation, Deputy Offset In Three Axes. 

 The next test case, Test Case 3, continues with the same elliptical orbit test case but adds 

the J2 perturbation effects to each satellite model, along with the precessions in mean anomaly, 

argument of perigee, and right ascension of the ascending node, according to the equations 

described previously.   The radius and velocity verses true anomaly plots for this case are not 

presented here, since they are nearly duplicates of Figure-7.  However two new plots are added  

showing effects of J2 gravity perturbations on orbit inclination angle and rate, due to 

perturbations in the angular momentum vector h.   Under Figure-13 is listed the test conditions 

for Test Case 3, which is essentially Test Case 2, plus J2 perturbation components from reference 

(6).  From equations for these components  it can be noted that they are functions of radius, orbit 

inclination, and true latitude (argument -of-perigee plus true anomaly) from reference(6).     
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Figure 13: J2 Perturbation Effects On Chief And Deputy Satellites. (Case 3 -1/6). 

 

Chief Satellite Initial Conditions for Test Case 3: 

Elliptical Orbit, e = 0.03,   a = 7555. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects = Active,   atmospheric drag = 0.   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.00095316,,   δa = 0. km,  δi = 0.006 deg.,   δΩ = 0.100 deg. 

δω = 0.100 deg.,  δMo = -0.100 deg. , J2 effects = Active,   atmospheric drag = 0. 
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Figure 14: Elliptic Case With J2 Effects On Inclination And Angular Momentum (Case 3- 2/6) 

 In Figure 14 the effects of  J2 on orbit inclination rate, and angular momentum can be 

observed, in contrast to the non-perturbation case shown in Figure 4.   
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Figure 15: J2 Induced Precession Rates For Selected Orbit. (3/6). 

 Figure 15 shows the effects of J2 induced daily precession rates on right ascension of the 

ascending node, Ω, and argument of perigee, ω, as well as mean anomaly, Mo.  These precession 

rates are functions of the inclination angle, so care is needed when planning a formation satellite 

orbit, to consider orbit inclination In Figure 16 the lateral drift due to J2 perturbation can be 

observed, and it was computed independently for both the chief and deputy, based on the amount 

of  angular momentum perturbation, "hdot", experienced by each satellite based on its orbital 

location and state.  Since these two satellites were within 20 km. at all times during the orbit, the 

amount of perturbation on each satellite was computed to be numerically nearly identical, with 

Figure 16 showing a plot of the difference in this lateral drift rate, between the two satellites.  
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Figure 16: Chief And Deputy Lateral Precession Due To J2. (Case 3- 4/6). 

 

 The differences between lateral drifts for the chief and deputy were computed, and it was  

noted that the differences in lateral drift for a whole orbit don't exceed 0.005 km, or about 5 

meters.  Care is needed in interpreting results due to lack of accuracy and precision in these 

calculations.  However it may be noted that all members of a formation might be affected by a 

perturbation in the same general manner, so that maintaining desired ground track may be a 

larger concern that maintaining spacing, in some situations. 
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Figure 17: Separation Magnitude Between Chief And Deputy. Case 3-plot 5/6. 

 In Figure 17 deputy relative movement appears very similar to Case 2, with no 

perturbation however, as noted earlier, a lateral drift has been added to the above for both 

satellites.   

 

 

 

 

 

43 



 

 

Figure 18: Velocity Component Differences Between Chief And Deputy. Case 3 - plot 6/6. 

 Comparing Figure 18 to Figure 12, the main noticeable difference is the difference in 

cross-track velocity, with Figure 18 showing not only a disturbance, but a bias in the negative 

direction, leftward.  However since this was obtained by taking differences in out-of-plane 

velocity components by subtracting one from the other, then the parallel left drift is not the 

contributor here, since it would have been roughly equal for both satellites.  
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Case 4- Elliptic Orbit, w/J2 and Drag, Deputy Offset In Three Axes  

 For Test Case 4,the initial conditions are like Case 3, but with the addition of  

atmospheric drag perturbation.  For this case the radius and velocity plots again looked the same 

as in Figure 7, so will not be repeated here.   Also the y lateral drift or precession due to J2 

(about – 7.5 km per orbit revolution) appears unchanged by the addition of drag, however this 

plot is still presented as Figure 19.   

 

Figure 19: Elliptical Orbit With J2 And Drag Effects Included, Showing Lateral Drift. (Case 4).  

Chief Satellite Initial Conditions for Test Case 4: 

Elliptical Orbit, e = 0.03,   a = 7555. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects = Active,   Atmospheric drag = Active.   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.00095316,,   δa = 0. km,  δi = 0.006 deg.,   δΩ = 0.100 deg. 

δω = 0.100 deg.,  δMo = -0.100 deg. , J2 effects = Active,   Atmospheric drag = Active 
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Figure 20: Chief-Deputy Separation During Elliptic Orbit With J2 And Drag. Case 4 -plot 2/2.  

 The addition of drag perturbation was undetectable for one orbit, since no significant 

numerical differences could be observed within the accuracy of these computations.  However 

real-world experience has obviously taught that orbits erode with time due to atmospheric drag 

will have to be considered as a long term effect.   
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Case 5- Elliptic Case w/J2 and Drag- Deputy in 200 m. Trail. 

 

Figure 21: Elliptic Case J2 And Drag, With Deputy In 200m. Trail. 

Chief Satellite Initial Conditions for Test Case 5 (plot 1/5): 

Elliptical Orbit, e = 0.03,   a = 7555. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects = Active,   atmospheric drag = Active   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.0,   δa = 0. km,  δi = 0.0 deg.,   δΩ = 0.0 deg. 

δω = 0.0 deg.,  δMo = -0.0000265 rad. (trail 200 km.) , J2 eff. = Act.,   Atmospheric drag =Act. 
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 To investigate the tendency for a closely spaced formation in the same orbit to collide, 

the follower satellite was placed in a relatively close orbit of 200 m. trailing orbit, with J2 and 

drag active.  Such orbits might be of interest for monitoring radio frequencies, where each 

satellite would act as a node for a particular wavelength.  From Figure 21 it is seen that the 

leftward lateral drift, or precession component is still present, roughly equal for both satellites.  

In Figure 22 the trajectory of the deputy relative to the deputy is shown in the orbital plane in 

polar plot format, as the formation makes a complete orbit in true anomaly.    

 

 

Figure 22: Elliptic Polar Plot Showing Separation In Km- Deputy Initialized At 200m. Trail. 
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 At least in this case there is a distinct tendency for the formation to separate in the orbital 

plane, being almost 10 km. separation distance between them by the end of just one orbit.  Of 

course it must be rememberd that this is an elliptic orbit, however, with the addition of 

perturbations, the separation path is not as predictable or uniform as with no perturbations. 

 

Figure 23: Elliptical Orbit With J2 And Drag, Deputy Initialized At 200m. 

 Figure 23 shows the x,y, and z positions verses true anomaly for Case 5, for one orbit.  

There appears to be a  tendency for along-track divergence for elliptic orbit with perturbation.  

The other axes appear to remain together, so control algorithms may need to focus on providing 

"x-along track" compensation.  
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Case 6- Circular Orbit With J2 and Drag- Deputy in 1 km. Trail. 

 This is the last case considered from the Table 1 list.  It consists of a circular orbit with 

the deputy initialized in a 1 km. along-track trailing position, just like Case 1.  However, drag 

and J2 perturbation effects were added to the conditions of Case 1.  The chief orbit and velocity 

plots look identical to Case for the accuracy shown here, so will not be included in these Figures.  

 

Figure 24: Polar Plot Of Deputy Circular Orbit With J2 & Drag. (Case 6- 1/6) 

Chief Satellite Initial Conditions: 

Circular Orbit, e = 0.0,   a = 6678. km,  i = 48. deg.,   Ω = 20. deg. 

ω = 10.0 deg.,  Mo = 0.0 ,  J2 effects =Active,   Atmospheric drag =Active.   

Deputy Satellite Initial Conditions( Chief plus follwing δ's) 

Elliptical Orbit, δe = 0.0 ,   δa = 0. km,  δi = 0.0 deg.,   δΩ = 0.0 deg. 

δω = 0.0 deg.,  δMo = -0.00015 rad  (trailing chief  1 km )    

J2 effects =Active,   Atmospheric drag =Active. 
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Figure 25: Circular Orbit Radial Difference Between Chief And Deputy. (Case 6 -plot 2/6). 

 From Figure 25 it can be noted that the J2 induced lateral drift and difference in lateral 

drift between the two satellites is essentially like the elliptic case within the accuracies of these 

calculations.  However it is suspected that as eccentricity is increased beyond the e = .03 case 

investigated that the relative drifts may diverge more, especially near apogee and perigee.   
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Figure 26: Circular Orbit J2 Effect On Orbit Inclination And Momentum. (Case 6 -plot3/6) 

 Comparing Figure 26 to Figure 14, it appears that the orbital inclination variations and 

angular momentum perturbations due to J2 effects are slight higher for the circular orbit than for 

the elliptical orbit, although this may be due in part to the fact that a = 6678 km for the circular 

orbit and a = 7555 km for the elliptical  orbit, the larger orbit having a higher angular momentum 

to overcome, in order to cause an inclination change.   

 To determine whether the above pattern repeats for each orbit, or diverges, an additional 

run was made of Test Case 6 to go for two orbits.  The results are presented in Figure 27 on the  
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Figure 27: Test Case 6 For Two Orbits Shows Repition In J2 Distrubance Pattern. (plot 4/6) 

next page, and shows the pattern of Figure 26 repeating for the next orbit.  This was also true of 

the other variables examined, but not plotted in this report. Although not plotted in this report, 

the J2 precession rates computed in the analysis program used for this study, agree well with the 

charts presented in reference (6).for  the right ascension of the ascending node , argument of 

perigee, and mean anomaly for both the chief and deputy satellites.  These precession rates 

appear nearly constant during the orbit which agrees with expected results. 
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 From Figure 6, circular orbit with no perturbation, that the deputy remained a constant 1 

km. behind chief.  However note in the Figure 28, a polar plot for the deputy to chief along-track 

separation, that the relative orbit spacing is not constant, but varies from about 1 km. at true 

anomaly of 180 degrees to about 1.2 km at 0 degrees.   This variation in spacing appears to range 

up to 200 m. beyond the initial 1 km. separation, for a circular orbit.  This variation in along-

track spacing is the result of  including the J2 perturbation components in the model.   

 

 

Figure 28:  Polar Plot Of Differences Vs. True Anom. In Along-Track Spacing. (Case 6-plot 5/6) 
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Figure 29: Deputy Relative Velocity Component Differences For Two Orbits. (Case 6 –plot6/6). 

 

  In Figure 29 the three dimensional velocity component differences between the two 

satellites may be seen.  For the x (along-track) and z (radial) there appear to be no significant 

velocity differences so only small  corrections or delta-v's would be required in these axes for the 

circular case, to maintain a satellite formation.  However for the cross-track direction or y-axis it 

appears that there are noticeable differences in the velocity components and it can be observed 

that the area under the velocity curve appears to be biased in the negative direction such that a 

net negative y-velocity would result, if left uncompensated.   This may account for the negative 
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velocity drift or precession portrayed in Figure 25 and elsewhere for both elliptic and circular 

orbits.   It may be noted by comparison with Figure 6, that the cross-track velocity variation is 

the result of adding the J2 perturbation effects.  As far as the effects of drag perturbation on this 

case, it was not readily observable. 

 These tests were intended to provide a level of confidence that program is useful 

simulation of the low-earth-orbit gravitational and atmospheric environment, so far as it pertains 

to the the study of a two-satellite formations.  However to provide some additional functionality 

to the program, a three-axis rocket thruster was added to the deputy or follower model.  The next 

section provides some limited cases of thruster inputs and and resulting dynamics.   
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Table 2:  Results of Cases Investigated Using Program In  MATLAB-Environment..  

Orbital Test Cases Investigated and Summary of Results.  

                                                                               Orbit Parameters                     (Perturbations)                
Test  Conditions                         a,km       e       i,rad        Ω,rad.      ω,rad.     Mo,rad.   J2     Cd        
 
1- Chief Orbit (circular).            6678.     0.0    0.837     0.349       0.1745     0.0          0.0    0.0 
  - Deputy Orbit (1 km. trail)     6678.     0.0    0.837     0.349       0.1745   -0.00003   0.0    0.0  
  - Results -  Orbits tracked exactly- maintained 1 km. spacing. 
 
 2- Chief Orbit (ellipse)              7555      0.03   0.837     0.349      0.1745     0.0          0.0    0.0 
  - Deputy Orbit                          7555.     0.03* 0.837*    0.349*   0.1745*   0.0*        0.0    0.0 
  - Results-  Model produced results much like check-case of reference(4) with no perturbations. 
 
3- Chief Orbit(ellipse w/J2)       7555.     0.0    0.837      0.349      0.1745     0.0           1     0.0   
  - Deputy Orbit (same as 2- )    7555.     0.0    0.837      0.349       0.1745  -0.00003,.  1     0.0     
  - Results  - Both orbits added similar cross-track drift component. (~ 7.5 km y-drift/orbit) 
 
4- Chief Orbit (ellipse)               7555      0.03   0.837     0.349      0.1745     0.0           1     2 
  - Deputy Orbit (same as 2- )    7555.     0.03* 0.837*    0.349*   0.1745*   0.0*         1     2 
  - Results – Same as for case 3, with no noticeable affects due to drag. 
 
5- Chief Orbit (ellipse/J2/Cd)    7555      0.03   0.837     0.349      0.1745     0.0           1     2 
  - Deputy Orbit   (1 km trail)    7555.     0.03* 0.837*   0.349*    0.1745*   0.0*         1     2 
  - Results – Dep. drifted  from 1 to 10 km along track distance during orbit also same lat. drift. 
 
6- Chief Orbit(circular/J2/Cd)   6678      0.0   0.837     0.349      0.1745     0.0           1     2 
  - Deputy Orbit(1 km trail)       6678.     0.0   0.837*   0.349*    0.1745*   0.0*         1     2 
  - Results – Chf-dep cross-track velocity variations due to addition of J2. compared to Case 1.   
   -- Ran case for two orbits and perturbation patterns repeated. 
 
                                                                                                                                                       *  
Note- 1. When J2 effects are active, J2 = 0.00108263. 
          2. When drag perturbation active, Cd = 2.2 for each satellite. 
          * indicates deputy orbits are chief orbits plus small added delta's (examples from reference (4) 
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II. Addition Of A Three-Axis Thruster Model. 

 In order to introduce rocket-like thrust forces into the formation satellite simulation, a 

three-axis, on-off, thrusting capability was added to the deputy satellite model at points in the 

equations designated for control input vectors.  The purpose of the thrusters was to provide a 

means to incorporate thrust into the model and observe model behavior in response to these 

inputs.  The three thrust directions included were "x-rocket" along the track, for directly assisting 

or retarding velocity; "y-rocket" axis for cross-track accelerations to left or right, and "z-rocket" 

to provide forces in the radial direction.  The rocket thrust effects were simulated as constant 

accelerations, either positive or negative, for the duration of the rocket firing.  Also each rocket 

was either at  full thrust, or "off".   

 Two sample cases are provided in this thesis as Figures 30 and 31.  In Figure 30, while in 

a circular orbit initially together,  the deputy rocket attempts a deceleration of 0.00008 km/sec2 . 

Figure 
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Figure 30: Deputy Attempt Decel And Hold Three Km. 
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for 100 seconds, to drift rearward until a 3 km. separation is achieved, and then arrest backward 

drift with a like magnitude firing in the opposite direction.  However, without any radial thrust 

compensation orbital mechanics dictates that when the deputy slows up, it also moves upward, at 

least initially, changing it's radius relative to the chief reference track.  This velocity-radial 

coupling will require compensation during formation corrections and repositioning.  However 

control algorithms are easily designed to include these effects.      

 

 

Figure 31: Relative Velocity Components For 3 Km Hold Manuever. 

 In Figure 31 the relative velocity  profile for each component is shown, resulting from the 

accelerations shown in Figure 30.  In Figure 32 is an attempt to add a radial 
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thrust component to the "3 km separate and hold maneuver" and observe the orbit for two 

revolutions.      

 

 

Figure 32: Three Km Sep. & Hold Maneuver With Radial Thrust. 

It may be noted that the result of this input over two orbits was to cause 
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a large "along-track separation."   In Figure 33 is shown the thrust component profiles that 

produced the responses shown in Figure 32. 

  

 

Figure 33: Thruster Input Profile That Resulted In Formation Separation Of Figure 32. 

 

III. Direct Launch To Orbit From Cape Kennedy  

 As an example of the possible use of the satellite formation simulation program, the 

situation of a launch directly into orbit case is considered.  From reference (7) is provided the 

launch site longitude and latitude.  Also for this type of launch directly to the east, with no other 

maneuvering, defines the orbit inclination as the launch site latitude.  The satellite formations  to 
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be considered for this example are 1 km trail, 3 km trail, 1 km chevron, and 3 km chevron.  Also 

for these cases, delta-v calculations were added, to demonstrate its utility.   In Figure 34 the 

relative positions of the deputy relative to the chief are presented.  It is noted that the chief long-

track (x-distance) varies around the orbit from 3.0 to 3.22 km, or roughly 80 m.  This variation 

happens once per orbit, and is definitely the result of the presence of J2 perturbations in the 

simulation.   So even a relative circular orbit may present unexpected variations with the 

prescence of  J2 effects.      

 

 

Figure 34: Launch From Cape Kennedy Deputy Trail 3 Km. 
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 The following formations were simulated for a circular orbit with J2 and drag present, 

using the Cape Kennedy launch conditions from reference (7): 

Kennedy Launch Orbital Test Cases Investigated and Summary of Results.  

                                                                               Orbit Parameters                     (Perturbations)                
Test  Conditions                         a,km       e       i,rad        Ω,rad.      ω,rad.     Mo,rad.   J2     Cd        
 
1- Chief Orbit (circular).            6678.     0.0    0.4974     3.3       1.57     0.0          Active  Active 
  - Deputy Orbit (1 km. trail)      6678.     0.0     0.4974    3.3       1.57   -0.00003     "            " 
  - Results -  Orbits tracked exactly- maintained 1 km. spacing. 
 Delta-v peak  =  
 
2- Chief Orbit (circular).            6678.     0.0    0.4974     3.3       1.57     0.0          Active  Active 
  - Deputy Orbit (3 km. trail)      6678.     0.0     0.4974    3.3       1.57   -0.00015     "            " 
  - Results -  Variation of about 80 m. around orbit.. 
 Delta-v peak = 0.1 x 10-5 km/sec. 
 
3- Chief Orbit (circular).            6678.     0.0    0.4974     3.3       1.57     0.0          Active  Active 
  - Deputy Orbit (1 km. chevrn) 6678.     0.0     0.4974+   3.3       1.57   -0.00003     "            " 
  - Results -   
 Delta-v peak = 0.668 x 10-5 km/sec 
 
4- Chief Orbit (circular).            6678.     0.0    0.4974     3.3       1.57     0.0          Active  Active 
  - Deputy Orbit (3 km. chevron)6678.     0.0    0.4974+  3.3       1.57   -0.00003     "            " 
  - Results -   
 Delta-v peak = 2.0 x 10-5 km/sec 
______________________________________________________________________________ 
 _____________________________________________________________________________                        
+ indicates that the deputy inclination will not be initialized at same value as chief, for the 3 km 
lateral spacing. 
  
 Delta-v peak was the peak value observed during an orbit.  As the orbit completed a cycle 

the delta- v's would approach zero.  If it is desired to maintain a formation for a complete orbit, 

then "delta-v" in the form of thrust will be required to maintain the desired formation, such as a 3 

km chevron, and the above delta-v computations provide as estimate of fuel required, for 

thrusting purposes.  A 3 km. chevron for this study, is defined as the deputy trailing 3 km back, 

and 3 km to the right, of the chief.   
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CHAPTER FIVE: CONCLUSIONS 

 The main purpose of this study was to develop a simulation program that can  be used by 

the UCF KnightSat team to investigate issues and problems related to establishing and 

maintaining satellite  formations in the presence of  atmospheric drag and gravity perturbations.  

Results derived from this program will be useful in defining "delta-v" budgets, and in developing 

closed-loop control algorithms  and control strategies, to help manage a satellite formation.  The 

program developed during  this effort includes the following features:  1) two independent 

satellite orbital models based on the orbit radius, velocity, true anomaly, orbit inclination angle, 

and angular momentum vector, 2) circular or elliptic may be simulated, 3) each model includes  

affects of J2 gravity perturbation, and drag,  4) models are programmed in the MATLAB 

environment, 5) models use fourth order Runge-Kutta integration for the dynamic "fast 

variables" with integration step size used from 1 to 10 seconds.  

 Model performance has only been checked  against non-perturbation test cases from 

reference (8) for an elliptic orbit.  The variable structure of the program emphasizes relative orbit 

variations, similar to Clohessy-Wiltshire or Hill equations,to monitor relative positions and 

velocities.  The variations of deputy with respect to chief, measured with this model were in 

reasonable agreement for all three-axes. The results obtained during this study demonstrate 

the following characteristics relative  to the maintenance of satellite formations in the presence of 

perturbations.  The addition of J2 gravity perturbations to the model caused the satellite tracks to 

drift in a leftward or "negative y" direction, about 7.5 km, during each orbit.  However for the 

Cape Kennedy launched cases, these variations were less, about 3.5 km per orbit, likely due to 

the differences in inclination of the orbits.  Also based on results obtained from this model, the 
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atmospheric drag perturbation effect was not observable, for the accuracy of the models and time 

that the models were run.  Obviously in the real-world this effect eventually erodes a satellite 

orbit in LEO, but for the limited scope of this study, it was not observable as to affecting a 

satellite formation, or an individual satellite for that matter.  The drag model was from reference 

(7).    

 To demonstate the satellite formation models reaction to thrust or rocket inputs, a simple 

three-axis, on-off, thrust capability was added to the simulation of the deputy.  One result readily 

apparent was that the velocity and radial states are dynamically coupled, as would be expected, 

such that simple thrust inputs in the direction of the velocity vector will require radial thrust 

compensation to maintain formation positioning, during thrusting. 

 In addition to the above capability, a delta-v computation was implemented in the 

program, based in taking the relative differences in "vdot" for the chief and deputy for each time 

step, and integrating these to obtain a cumulative delta-v.  Results indicate that as lateral 

displacement, by inclination difference,  is increased, the required delta-v, to maintain a 

formation, is increased.  

 This programmed model provides a means to examine an array of effects including 

variations in orbital initial conditions, satellite spacing, gravity and drag  perturbations,  

inclination angle, altitude, and eccentricities and the implications for delta-v  and contol 

algorithm design.  However, it should be recognized that this model has limitations, as all models 

do, and additional comparative analysis against such programs as Satellite Took Kit (STK) could 

be the subject of future research, to develop additional confidence, or point to areas that may 

need improvement.   
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APPENDIX: ANALYSIS PROGRAM IN MATLAB 

Program KSC_1.m  written in MATLAB programming language 
By Robert L.Cannaday 
% ******** KSC_1.m *************** (11/25/05) 
%  
% "KSC_1.m" developed to provide UCF KnightSat project simulated check 
% cases for an array of chief-deputy formations.  J2 and drag active. 
% Test Condition Assumptions-  Launch KnightSat two-satellite constellation directly 
% into orbit from Cape Kennedy, FL.  
% Lauch Site Coordinates >> Latitude = 28.5 deg, Longitude = -80.55 deg. << 
%  --Pre-launch analysis: 
%  --For Direct Launch into orbit, launch lat = orbit inclination, so inc = 28.5 deg. 
%  --cos(lambdau)=cos(beta)/sin(i)>>>lambdau = 90.0 deg from Vallado(6-15)p.328 
%  --so from Vallado Fig 6-8, THTLST= OMG + lambau>>OMG = -80.55+90.+180=+189.45 
%  --launch azimuth sin(beta)= cos(inc)/cos(launch lat)>>beta=90.deg? 
% No thruster rocket inputs made for KSC cases.  
% FORMATIONS TO BE RUN: 
% Form(1)-  Together, no spacing.(trivial case- same track "delta-v"=0?) 
% Form(2)-  Chief lead deputy 1 km., same track. (implies dep dMo = 
% -0.00014975 radians) 
% Form(3)- Chief leads deputy 3 km., same track 
% Form(4)- Deputy in 1 km chevron, 1 km to right, 1 km back 
% Added rocket thruster to slow up/speed up ("delta-v" related)(11/14/05) 
% Added polar coord. format for several "difference variables" vs. true anmly.(11/11/05)  
% Corrected y-lateral (cross-track) variation equations.?(11/03/05) 
% Corrected true anomaly by adding J2-precession term to both sats.(11/01/05) 
% Added drag perturbation (10/29/05) 
% Added capability to do multiple plots on one page(10/26) 
% Added simple x,y,z relative computation.(10/24) 
% Corrected Runge-Kutta integration and installed for both 
% satellites(10/24) 
% Added deputy satellite with J2 effects(not verified) (10/10/05) 
% Added transform from orbit a,e,i, OMG, arg of perigee, mean anomaly to  
% earth inertial X,Y,Z. (10/08/05) 
% Added J2 precession effects on arg of perg, long of ascending node(10/08) 
% Added Runge-Kutta fourth order integration for r,v, and w 
% Updated 10/06/05 
% program j2force.m added J2 gravity perturbation accelerations to  
% two-body gravity Keplerian model 
 
format compact 
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% ******** >>> USER SUPPLIED <<<< CHIEF ORBITAL PARAMETERS *********** 
a = 6678.  %km, semi-major axis for ellipse (300 km above Req, spherical earth) 
ecc = 0.0               %orbital eccentricity (circular=0.0) 
 
% ******* >>> USER SUPPLIED <<<< CHIEF INITIAL CONDITIONS ************ 
OMG(1) = 189.45/57.2958      %rad,longitd of ascnding node,(mesured in equtrl plane wrt Ix) 
inc(1) = 28.5/57.2958    %inclination angle, since launch eastward at max latitude "perigee" pt  
M(1)= 0.0                %Mo, initial mean anomaly,rad. 
TA(1) = 0.0              % initial true anomaly, rad 
gamma = 90.0/57.2958   %rad, initial angle between vel. vctor & radial.(90 deg @ prgee?) 
argpg(1)= 90.0/57.2958  %radians, argument of perigee(since launch from KSC) 
 
w(1) = 0.0 % km^2/sec,initial radial w-state  compt? (zero at perigee)(not a velocity) 
%ychf(1)= 0.0       %chf initl latrl displcmnt in Hill-like coord.(chf always at origin?)  
 
% ****** >>>> USER SUPPLIED <<<<<< CHIEF DRAG PERTURBATION ******** 
Cd = 2.2     %from Vallado, typical satellite drag coeff in upper atmosphere 
Area = .04   % m^2,KnightSat assumed NANOSAT with 8" X 8" >> .2m X .2m = .0.04m^2 
mass = 8.0   % kg, KnightSat target weight. 
Hsclf= 53.628 % scale height. Valladaotable 8-4(select for each orbit range,see p 537) 
rhoref = 2.418e-11 % reference density from Vallado Table 8-4, page 537.(300 km alt) 
href = 300.  % reference or base altitude, from Vallado, Table 8-4, page 537.  
 
 
% ****** >>>> USER SUPPLIED <<<<<< DEPUTY DRAG PERTURBATION ******** 
Cddp = 2.2     %from Vallado, typical satellite drag coeff in upper atmosphere 
Areadp = .04   %m^2, KnightSat assumed NANOSAT with 8" X 8" >> .2m X .2m = .0.04m^2 
massdp = 8.0   % 8 kilograms KnightSat target weight. 
% *******>>> USER SUPPLIED <<<<** DEPUTY INITIAL J2 EFFECT VARIABLES ** 
 
argJ2(1) = 0.0 
MJ2(1)= 0.0 
 
% ****** >>>> USER SUPPLIED TIME STEP INFO <<<<<< ****** 
T(1)= 0.0 
dt = 4.0      % time step, seconds 
num = 2716     % integer, (1358= 5431sec/4)(2716 = 2 orbits) 
 
% ****** >>>> USER SUPPLIED <<<<< DEPUTY SATELLITE ****** 
% ***** Initialize ORBIT ELEMENT DIFFERENCE VECTOR (OED)(Deputy w.r.t. 
Chief)***** 
% ***** OED methodology and notation from Schaub, chapter 14. 
 
da = 0.0                          %given in meters, converted to km, (Table 14.2) 
de = 0.0%0095316%0.0001            %dimensionless( Table 14.2) 
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di = 0%-0.000149745   %rad, 1 km to right>>requires lower inclintn ang than chf, so must add a 
"neg" di 
dOmg = 0.0%1/57.2958    %rad (deg in Table 14.2) 
darg = 0.0%1/57.2958       %rad (deg in Table 14.2) 
dMo = -0.000449236     %rad, >>>> dMo = -3km/6678km = -.000449236 rad <<<< 
 
% **** >>> USER SUPPLIED <<<< (deputy initialing)******* 
w_dp(1) = 0.0      %km^2/sec, assumes gamma = 90 at perigee. 
 
% *******>>> USER SUPPLIED <<<<** DEPUTY INITIAL J2 EFFECT VARIABLES ** 
argJ2dp(1) = 0.0 
MJ2dp(1)= 0.0  
 
%**** CONSTANTS ******* 
Mu = 3.986E5     %km^3/sec2     Mu = G (Mearth + Msat) 
Req= 6378.137    %km, radius of earth 
J2 = 1.08263e-3  % earth oblateness coeff, 2nd zonal harmonic  
pi = 3.14159 
 
 
  
% ******** COMPUTED CHIEF ORBITAL PARAMETERS ****************** 
 
p = a*(1. - ecc^2)       % semiparameter, km (from Vallado) 
h = sqrt(Mu*p)        % angular momentum, km^2/sec (from Vallado) 
n = sqrt(Mu/a^3)         % mean motion, rad/sec 
L = sqrt(a/Req) 
rp = a*(1. - ecc) 
ra = a*(1. + ecc) 
Pd = 2.*pi/n       % period, rad/sec(P= 5431. sec) 
hp  = rp - Req   % km,  altitude at perigee??(presumed start at perigee) 
eta = sqrt(1 - ecc^2) 
r(1) = rp              % km, orbit radius at perigee?? 
hat(1)=r(1) - Req       %km, chief height above spherical earth.  
 
 
% ****** CHIEF ORBIT INITIAL CONDITIONS (computed from input)*********** 
theta(1) = argpg(1)+TA(1)  %radians, true latitude (argpg + true anomaly) 
Vp = sqrt((2.*Mu/r(1)) - (Mu/a)) % vel. at perigee, km/sec.(from Vallado eqtn) 
v(1) = Vp         % km/sec, initial horizontal x-axis sat velocity 
 
 
% ******(computed) DEPUTY SATELLITE Orbital Elements = Chief + delta's listed above. 
a_dp = a + da              % km, where subscript "dp" refers to deputy satellite. 
ecc_dp = ecc + de 
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inc_dp(1) = inc(1) + di         %rad  
OMG_dp(1) = OMG(1) + dOmg       %rad 
argpg_dp(1) = argpg(1) + darg   %rad 
M_dp(1) = M(1) + dMo            % rad 
 
 
% ************(computed) DEPUTY ORBITAL PARAMETERS ********************** 
 
p_dp = a_dp*(1. - ecc_dp^2) 
h_dp = sqrt(Mu*p_dp) 
n_dp = sqrt(Mu/a_dp^3) 
rp_dp = a_dp*(1. - ecc_dp) 
ra_dp = a_dp*(1. + ecc_dp) 
Pd_dp = 2.*pi/n_dp 
eta_dp = sqrt(1 - ecc_dp^2) 
 
% ****(computed) DEPUTY INITIAL CONDITIONS (delta's referenced to CHIEF)***** 
TAdp(1) = TA(1) + dMo  
r_dp(1) = rp_dp 
dephat(1)= r_dp(1)-Req          %km, deputy height above spherical earth. 
RDiff(1) = hat(1)-dephat(1)     %km, diff between ht. of chief and depty.(neg if rdep>rchf) 
thtdp(1)= argpg_dp(1) + TAdp(1) 
Vpdp = sqrt(2.*Mu/r_dp(1) - Mu/a_dp) 
v_dp(1) = Vpdp 
 
w_dp(1) = 0.0      %km^2/sec, assumes gamma = 90 at perigee. 
 
 
% ****** CHIEF DRAG COMPUTATION (if Cd >0)*********************** 
hellip= r(1)-Req 
rho(1)= rhoref*exp(-(hellip - href)/Hsclf) 
kdrag = (Cd*Area/mass) 
drag(1) = .5*rho(1)*kdrag*v(1)^2            %drag force on chief. 
 
% ****** DEPUTY DRAG COMPUTATION (if Cddp >0)*********************** 
kdragdp= (Cddp*Areadp/massdp) 
hellipdp = r_dp(1) - Req 
rhodp(1)= rhoref*exp(-(hellipdp - href)/Hsclf) 
dragdp(1)= .5*rhodp(1)*kdragdp*v_dp(1)^2      %drag force on deputy 
 
% ****** DEPUTY ROCKET ACCELERATION ********************** 
% *******(rocket triad:  thrust components aligned with deputy x-direction 
% (along track), deputy y-direction (h-direction or cross-track), and  
% z-direction (radial with positive toward earth). 
X_rocket(1) = 0.0    % km/sec^2, specif thrust aligned in dep x-direction. 
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Y_rocket(1)= 0.0   % km/sec^2, specif thrust, aligned cross-track (parallel to h) 
Z_rocket(1)=0.0 
 
 
% ****** Initializing  CHIEF J2 force peturbation parameters ************ 
% *********( eqtns from Curtis page 178)************* 
 kj2 = 1.5*(Mu/r(1)^2)*J2*(Req/r(1))^2 
 pr(1) = -kj2*(1 - 3.*sin(inc(1))^2*sin(theta(1))^2) %km/sec^2, radial comp of pert. 
 
 ptrans(1) = -kj2*sin(inc(1))^2*sin(2*(theta(1)))      %km/s^2,transverse (w/vel vector) 
 
 ph(1) = -kj2*sin(2*inc(1))*sin(theta(1))   % km/sec^2,  where theta = w + TA 
 
%******** J2 ON CHIEF equations below from Schaub 14.133a,b, and c. ************* 
 
% ************************************************************************* 
 
OMGJ2dot(1)=-1.5* J2 * n *(Req/p)^2* cos(inc(1)) %J2 ascndng node drift(rad/sec), 
 
argJ2dot(1)=.75* J2 * n *(Req/p)^2*(5.*cos(inc(1))^2 - 1.)%J2 mean drft arg o perige,(rd/sc) 
 
MJ2dot(1)=.75* J2 *n*(Req/p)^2*eta*(3.*cos(inc(1))^2 - 1.)%J2 mean anmly drft(rd/sc) 
                                                            
OMGJ2dotplt(1)= 86400.*57.2957* OMGJ2dot(1)  %convert J2 induced drift to deg/day for 
plot. 
   
argJ2dotplt(1)= 86400.*57.2957* argJ2dot(1) %cnvrt J2 induced arg of perigee drift'deg/day-for 
plot 
   
MJ2dotplt(1)=86400.*57.2957* MJ2dot(1) % convert J2 induced in mean anomaly rate  
 
%****** Initializing CHIEF Satellite States w/J2 pert. **************************  
rdot(1) = w(1)/r(1)                      % First value of Rdot for deputy. 
vdot(1) = -Mu*w(1)/(v(1)*r(1)^3) + ptrans(1)-drag(1) % First value of Vdot. 
wdot(1) = v(1)^2 -Mu/r(1) + r(1)*pr(1)           % km^2/sec^2, First value Wdot. 
TAdot(1)=(1/r(1))*sqrt(v(1)^2 -(w(1)/r(1)^2))+ MJ2dot(1)% rad/sec, init tr anmly rate 
 
%***** Initializing CHIEF cross-track velocity and position componentsdue to J2 
(11/03/05)*** 
hdot(1) = r(1)*ptrans(1)                     
idot(1) = hdot(1)*cos(theta(1))/(n*a^2*eta)  % from Vallado eqtn 9-21 (10/25) 
vh(1) = idot(1)*r(1)*sin(theta(1)) 
yJ2chf(1) = vh(1)*dt     %km, initial cross-trk displacement from mean trk due to J2. 
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% ****** Initializing  DEPUTY J2 force peturbation parameters ************ 
% *********( eqtns from Curtis page 178)************* 
 kj2dp = 1.5*(Mu/r_dp(1)^2)*J2*(Req/r_dp(1))^2 
 prdp(1) = -kj2dp*(1 - 3.*sin(inc_dp(1))^2*sin(thtdp(1))^2) %km/sec^2,radial(+ outward) 
 
 ptrnsdp(1) = -kj2dp*sin(inc_dp(1))^2*sin(2*(thtdp(1)))      %depty transverse (w/vel vector) 
 
 phdp(1) = -kj2dp*sin(2*inc_dp(1))*sin(thtdp(1))   %  where theta = w + TA 
  
  
% Initializing DEPUTY J2 effects on OMG, arg of perigee, and mean anomaly 
 
OMGJ2dotdp(1)=-1.5* J2 * n_dp *(Req/p_dp)^2* cos(inc_dp(1)) %J2 ascndng node 
drift(rad/sec), 
 
argJ2dotdp(1)=.75* J2 * n_dp *(Req/p_dp)^2*(5.*cos(inc_dp(1))^2 - 1.)%J2meandrft arg o 
perige,(rd/sc) 
 
MJ2dotdp(1)=.75* J2 *n_dp*(Req/p_dp)^2*eta_dp*(3.*cos(inc_dp(1))^2 - 1.)%J2 mean anmly 
drft(rd/sc) 
                                                            
OMGJ2dotdpp(1)= 86400.*57.2957* OMGJ2dotdp(1)  %convert J2 induced drift to deg/day for 
plot. 
   
argJ2dotdpp(1)= 86400.*57.2957* argJ2dotdp(1) %cnvrt J2 induced arg of perigee drift'deg/day-
for plot 
   
MJ2dotdpp(1)=86400.*57.2957* MJ2dotdp(1) % convert J2 induced in mean anomaly rate to 
deg/day for plot.   
 
 
%****** Initializing DEPUTY Satellite States w/J2 pert. **************************  
rdotdp(1) = w_dp(1)/r_dp(1)                            % First value of Rdot. 
vdotdp(1) = -Mu*w_dp(1)/(v_dp(1)*r_dp(1)^3) + ptrnsdp(1)-dragdp(1) % First value of Vdot. 
wdotdp(1) = v_dp(1)^2 -Mu/r_dp(1) + r_dp(1)*prdp(1)          % km^2/sec^2, First value Wdot. 
TAdotdp(1)=(1/r_dp(1))*sqrt(v_dp(1)^2 -(w_dp(1)/r_dp(1)^2))+MJ2dotdp(1)%rad/sec, init TA 
rate 
 
%***** Initializing DEPUTY cross-track velocity and position components due to J2. *** 
hdotdp(1) = r_dp(1)*ptrnsdp(1)-r_dp(1)*Y_rocket(1)                          
hdp(1) = sqrt(Mu*p_dp)                                %initial angular momentum 
idotdp(1) = hdotdp(1)*cos(thtdp(1))/(n_dp*a_dp^2*eta_dp)  % from Vallado eqtn 9-21 (10/25) 
vhdp(1) = idotdp(1)*r_dp(1)*sin(thtdp(1)) 
yJ2dp(1) = vhdp(1)*dt 
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yCfDpdiff(1)= yJ2chf(1)- yJ2dp(1) 
 
 
 
% ******** Initializing Hill-like parameters *****(10/24/05) 
tadiff(1) = TAdp(1)-TA(1)     %rad, difference in true anomly betwn chief and dep (neg if chf 
ahead) 
incdiff(1) = inc(1)-inc_dp(1) %rad,difference in chief/depty inclintion angle(s/b neg if dpty on 
right) 
xsep(1) = (2*(r(1) + r_dp(1))/2)*sin(.5*(tadiff(1)))   % km, x-axis deputy wrt chief 
yHL(1)=((r(1) + r_dp(1))/2)*(incdiff(1))*sin(theta(1))%km, y-axis deputy wrt chief(pos 
dpty@RWng) 
 
zsep(1) = r(1) - r_dp(1)  %km, z-axis dep wrt chief (positive for dep below chief) 
septn(1) = sqrt(xsep(1)^2 + yHL(1)^2 + zsep(1)^2) 
 
% ***** Initializing Hill-like (?) velocity parameters**** (10/25/05) 
    
xveldiff(1) = v(1) - v_dp(1)   % km/sec  , tangential velocity diff. 
yveldiff(1) = vh(1) - vhdp(1)   % km/sec , lateral or cross-track vel diff. 
zveldiff(1) = rdot(1) - rdotdp(1)  % km/sec, vertical or radial vel. diff. 
% ***** Total lateral displacement = y(due to incdiff) + y(due to J2)*** 
yINCdp(1)=-incdiff(1)*r_dp(1)*sin(theta(1)) 
yINCchf(1)=0.0 
yTOTchf(1)=yJ2chf(1)+yINCchf(1) 
yTOTdp(1)= yJ2dp(1) + yINCdp(1)  
 
% ***** Initializing Delta-V ******(11/26/05) 
deltaV(1)= (vdot(1) - vdotdp(1))*dt   %km/sec, initializing "delta-V" accumulator 
 
 
% ****************** END Initializing *************************** 
% *************** BEGIN LOOPING ********************************* 
for i = 1:num 
    % **** CHIEF PERTURBATION COMPUTATION ***********(see Curtis p. 178)*** 
    kj2 = 1.5*(Mu/r(i)^2)*J2*(Req/r(i))^2 
    pr(i) = -kj2*(1 - 3.*sin(inc(i))^2*sin(theta(i))^2)  
 
    ptrans(i) = -kj2*sin(inc(i))^2*sin(2*(theta(i))) 
 
    ph(i) = -kj2*sin(2*inc(i))*sin(theta(i))   % theta = w + TA 
 
  % **** Computation of J2 EFFFECTS on CHIEF orbit parameters OMG, arg of perigee, and 
M ***** 
  % *********************** equations from Schaub, 14.133 a, b, and c ************** 
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  OMGJ2dot(i) = -1.5* J2 * n *(Req/p)^2* cos(inc(i)) % J2drift in mean long of ascendg node, 
   
  argJ2dot(i)=.75* J2 * n *(Req/p)^2*(5.*cos(inc(i))^2 - 1.)%J2drift rate in mean arg of perigee, 
   
  MJ2dot(i)=.75* J2 *n*(Req/p)^2*eta*(3.*cos(inc(i))^2 - 1.)%J2 mean anmly 
drft(rd/sc)(14.133c),Schaub 
                                                           
      
  OMGJ2dotplt(i) = 86400.*57.2957* OMGJ2dot(i)  % convert J2 induced drift into degrees/day 
for plot. 
   
  argJ2dotplt(i) = 86400.*57.2957* argJ2dot(i)      % convert J2 induced arg of perigee drift 
(deg/day) for plot 
   
  MJ2dotplt(i) = 86400.*57.2957* MJ2dot(i)      % convert J2 induced in mean anomaly rate to 
deg/day for plot.   
     
    %********************************************* 
    % ***** CHIEF DRAG COMPUTATION (if Cd>0)************** 
    hellip= r(i)-Req 
    rho(i)= rhoref*exp(-(hellip - href)/Hsclf) 
    drag(i) = .5*rho(i)*kdrag*v(i)^2 
     
    % ***************************************** 
 
         
    rdot(i) = w(i)/r(i)                             %f1 
    vdot(i) = -Mu*w(i)/(v(i)*r(i)^3) + ptrans(i) - drag(i) %f2 (**includes J2 & drag) 
    wdot(i) = v(i)^2 - Mu/r(i) + r(i)*pr(i)         %f3 (**includes J2perturbation) 
    TAdot(i) = (1/r(i))*sqrt(v(i)^2 - (w(i)/r(i))^2)+ MJ2dot(i)   %f4 
    vh(i) = r(i)*idot(i)*sin(theta(i)) 
     
     
     
    % ** CHIEF INTEGRATION SECTION ************************************* 
    %********************************************************* 
    j = i + 1 
          
    % ********************* Runge-Kutta fourth order ************** 
    % ******** CHIEF RK4 for rdot to r *********** 
    % new RK4 here >>>>>> 
    % ******** RK4 for rdot to r (redone 10/14)********** 
    % ***  
    k1r(i) = dt*rdot(i)             % k1 for computing r(t(i)) 
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    r_half_est = r(i) + .5 * k1r(i) 
    rk1slope = (r_half_est - r(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2r(i) = dt* rk1slope                      %k2 for r(t) 
     

    r_half_est = r(i) + .5 * k2r(i) 

     

    rk2slope = (r_half_est - r(i))/(dt/2)   %slope is (delta r)/(delta t) 
     
    k3r(i) = dt* rk2slope 
     
    r_full_est = r(i) +  k3r(i) 
     
    rk4slope_full = (r_full_est - r(i))/dt 
     
    k4r(i) = dt* rk4slope_full 
     
    r(j) = r(i) + (1/6)*(k1r(i) + 2.*k2r(i) + 2 *k3r(i) + k4r(i))  
     
     
    if r(j) < Req, break, end   
    %********************************************* 
    hat(j)= r(j)-Req                % km, chief height above terrain 
    % ********** CHIEF RK4 for vdot to v (redone 10/14)*********** 
       
     
    k1v(i) = dt*vdot(i)               % k1 for computing v(t(i)) 
     
         
    v_half_est = v(i) + .5 * k1v(i) 
    vk1slope = (v_half_est - v(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2v(i) = dt* vk1slope                      %k2 for v(t) 
     
    v_half_est = v(i) + .5 * k2v(i) 
     
    vk2slope = (v_half_est - v(i))/(dt/2)   %slope is (delta r)/(delta t) 
     
    k3v(i) = dt* vk2slope 
     
    v_full_est = v(i) +  k3v(i) 
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    vk4slope_full = (v_full_est - v(i))/dt 
     
    k4v(i) = dt* vk4slope_full 
     
    v(j) = v(i) + (1/6)*(k1v(i) + 2.*k2v(i) + 2 *k3v(i) + k4v(i))  
     
     % ******************* RK4 for wdot to w ******* 
    
    k1w(i) = dt*wdot(i) 
     
     
    w_half_est = w(i) + .5 * k1w(i) 
    wk1slope = (w_half_est - w(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2w(i) = dt* wk1slope                      %k2 for r(t) 
     
    w_half_est = w(i) + .5 * k2w(i) 
     
    wk2slope = (w_half_est - w(i))/(dt/2)   %slope is (delta w)/(delta t) 
     
    k3w(i) = dt* wk2slope 
     
    w_full_est = w(i) +  k3w(i) 
     
    wk4slope_full = (w_full_est - w(i))/dt 
     
    k4w(i) = dt* wk4slope_full 
     
    w(j) = w(i) + (1/6)*(k1w(i) + 2.*k2w(i) + 2 *k3w(i) + k4w(i)) 
     
    % w(j) = w(i) + wdot(i)* dt  %old Euler integrator, not used.             
     
    % ************************************************** 
    % other variables are considered "slow variables" so 
    % Euler should be ok. 
    TAdot(j) = (1/r(j))*sqrt(v(j)^2 - (w(j)/r(j))^2)+MJ2dot(i) 
    TA(j) = TA(i) + TAdot(j)*dt 
    argpg(j) = argpg(i) + argJ2dot(i)*dt 
    theta(j) = argpg(j) + TA(j) 
         
         
     
    % *********** perturbation terms at j = i +1 *************** 
    kj2 = 1.5*(Mu/r(j)^2)*J2*(Req/r(j))^2 
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    pr(j) = -kj2*(1 - 3.*sin(inc(i))^2*sin(theta(j))^2) %note:opposite sign 
 
    ptrans(j) = -kj2*sin(inc(i))^2*sin(2*(theta(j))) 
 
    ph(j) = -kj2*sin(2*inc(i))*sin(theta(j))   % theta = w + TA(opp sign)) 
     
    % ******************************************** 
    hdot(j)= r(j)*ptrans(j) 
    idot(j) = hdot(j)*cos(theta(j))/(n*a^2*eta)     % From Vallado eqtn 9-21 (10/25/05) 
    inc(j) = inc(i) + idot(j)*dt                  % rad, chief inclination angle  
    vh(j) = r(j)*idot(j)*sin(theta(j)) 
    yJ2chf(j) = vh(j)*dt + yJ2chf(i)     %km, initial cross-trk displacement from mean trk due to J2 
     
      
     
    OMG(j) = OMG(i) + OMGJ2dot(i)*dt 
    MJ2(j) = MJ2(i) + MJ2dot(i)*dt  
     
         
     
   % **** Computation of J2 EFFFECTS on CHIEF orbit parameters OMG, arg of perigee, and 
M ***** 
  % *********************** equations from Schaub, 14.133 a, b, and c ************** 
   
  OMGJ2dot(j) = -1.5* J2 * n *(Req/p)^2* cos(inc(j)) % J2drift in mean long of ascendg node, 
   
  OMG(j) = OMG(i) + OMGJ2dot(j)*dt 
 
  argJ2dot(j)=.75* J2 * n *(Req/p)^2*(5.*cos(inc(j))^2 - 1.)%J2drift rate in mean arg of perigee, 
   
  argJ2(j) = argJ2(i) + argJ2dot(j)*dt      
   
  MJ2dot(j)=.75* J2 *n*(Req/p)^2*eta*(3.*cos(inc(j))^2 - 1.)%J2 mean anmly 
drft(rd/sc)(14.133c),Schaub 
  MJ2(j) = MJ2(i) + MJ2dot(j)*dt                                                          
      
  OMGJ2dotplt(j) = 86400.*57.2957* OMGJ2dot(j)  % convert J2 induced drift into degrees/day 
for plot. 
   
  argJ2dotplt(j) = 86400.*57.2957* argJ2dot(j)      % convert J2 induced arg of perigee drift 
(deg/day) for plot 
   
  MJ2dotplt(j) = 86400.*57.2957* MJ2dot(j)      % convert J2 induced in mean anomaly rate to 
deg/day for plot.   
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%******************* END CHIEF CALCULATIONS 
******************************* 
 
  % **** DEPUTY COMPUTATION LOOPS **(same loop actually as chief)******(see Curtis 
p. 178)*** 
 % ************* DEPUTY J2 PERTURBATIONS ****************** 
  
 kj2dp = 1.5*(Mu/r_dp(i)^2)*J2*(Req/r_dp(i))^2 
 prdp(i) = -kj2dp*(1 - 3.*sin(inc_dp(i))^2*sin(thtdp(i))^2) %km/sec^2, radial pert 
 
 ptrnsdp(i) = -kj2dp*sin(inc_dp(i))^2*sin(2*(thtdp(i)))      %depty transverse (w/vel vector) 
 
 phdp(i) = -kj2dp*sin(2*inc_dp(i))*sin(thtdp(i))   %  where theta = w + TA 
  
 % **** Computation of J2 EFFFECTS on DEPUTY orbit parameters OMG_dp, arg of perigee 
dp, and M_dp ***** 
  % *********************** equations below from Schaub, 14.133 a, b, and c 
************** 
    
  OMGJ2dotdp(i)=-1.5*J2*n_dp *(Req/p_dp)^2* cos(inc_dp(i)) % J2drift in mean lng of ascndg 
node, 
   
   
 
  argJ2dotdp(i)=.75* J2*n_dp*(Req/p_dp)^2*(5.*cos(inc_dp(i))^2 - 1.)%J2drift rt. mean arg 
ofperigee, 
   
     
  MJ2dotdp(i)=.75* J2 *n_dp*(Req/p_dp)^2*eta_dp*(3.*cos(inc_dp(i))^2 - 1.)%J2 mean anmly 
drft(rd/sc) 
                                                          
      
  OMGJ2dotdpp(i) = 86400.*57.2957* OMGJ2dotdp(i)  % convert J2 induced drift into 
degrees/day for plot. 
   
  argJ2dotdpp(i) = 86400.*57.2957* argJ2dotdp(i) % convert J2 induced arg of perigee drift 
(deg/day) for plot 
   
  MJ2dotdpp(i) = 86400.*57.2957* MJ2dotdp(i)   % convert J2 induced in mean anomaly rate to 
deg/day for plot.   
    
  
 % ************** Deputy Drag computation ********* 
 hellipdp= r_dp(i)-Req 
 rhodp(i)= rhoref*exp(-(hellipdp - href)/Hsclf) 
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 dragdp(i) = .5*rhodp(i)*kdragdp*v_dp(i)^2 
  
 % ************** LOGIC FOR FIRING "X-AXIS" Deputy ROCKET 
******************* 
  
 if i < 101, 
     X_rocket(i) = 0.0; 
     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0; 
 end 
 if i > 101, 
    X_rocket(i) = 0.0%-.00008;           %km/sec2("minus" means deputy breaking wrt chief) 
    Y_rocket(i) = 0.0%0008; 
    Z_rocket(i) = 0.0%0.00006               %km/sec2 (need positive to accel upward. 
 end 
 if i > 125, 
    X_rocket(i) = 0.0; 
    Y_rocket(i) = 0.0; 
    Z_rocket(i) = 0.0; 
 end 
 if i > 300, 
    X_rocket(i) = 0.0%.00006;       %km/sec2 ("positive" value means deputy accel fwrd wrt 
chief) 
    Y_rocket(i) = -0.0%0008; 

    Z_rocket(i) = 0.0%0005; 

 end 
 if i > 325, 
     X_rocket(i) = 0.0; 
     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0; 
 end 
 if i > 1000, 
     X_rocket(i) = 0.000; 
     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0;  
 end 
 if i > 1025, 
     X_rocket(i) = 0.0; 
     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0; 
 end 
 if i > 1200, 
     X_rocket(i) = -0.0000; 
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     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0;  
 end 
 if i > 1225, 
     X_rocket(i) = 0.0; 
     Y_rocket(i) = 0.0; 
     Z_rocket(i) = 0.0; 
 end 
 
%******  DEPUTY Satellite States w/J2 & drag pert. **************************  
rdotdp(i) = w_dp(i)/r_dp(i)                              % Deputy Rdot. 
vdotdp(i)=-Mu*w_dp(i)/(v_dp(i)*r_dp(i)^3)+ ptrnsdp(i)-dragdp(i)+X_rocket(i)% Deputy Vdot. 
wdotdp(i) = v_dp(i)^2 -Mu/r_dp(i) + r_dp(i)*prdp(i)+r_dp(i) * Z_rocket(i)% km^2/sec^2, Dep. 
Wdot. 
TAdotdp(i)=(1/r_dp(i))*sqrt(v_dp(i)^2 -(w_dp(i)/r_dp(i)^2))+MJ2dotdp(i) %rad/sec, depty 
truAnomly.  
 
%*****  DEPUTY cross-track velocity and position components. *** 
hdotdp(i) = r_dp(i)*ptrnsdp(i) - r_dp(i)*Y_rocket(i)      % 11/17/05 Added cross-track rocket 
thrust.                          
idotdp(i) = hdotdp(i)*cos(thtdp(i))/(n_dp*a_dp^2*eta_dp)  % from Vallado eqtn 9-21 (10/25) 
vhdp(i) = idotdp(i)*r_dp(i)*sin(thtdp(i)) 
 
%***** DELTA-V COMPUTATION ***********************(added 11/26/05)** 
 
deltaV(j)= (vdot(i)-vdotdp(i))*dt + deltaV(i)       %km/sec, cummulative delta-v. 
 
 
% DEPUTY INTEGRATION SECTION ************************************* 
%********************************************************* 
    j = i + 1 
    % add new RK4 here>>>>>>(10/24) 
    % ******** RK4 for rdot to r (redone 10/14)*******(fixes 10/24) 
    
    k1rdp(i) = dt*rdotdp(i)             % k1 for computing rdep(t(i)) 
     
    rdp_half_est = r_dp(i) + .5 * k1rdp(i) 
    rk1slopedp = (rdp_half_est - r_dp(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2rdp(i) = dt* rk1slopedp                      %k2 for rdp(t) 
     
    rdp_half_est = r_dp(i) + .5 * k2rdp(i) 
     
    rk2slopedp = (rdp_half_est - r_dp(i))/(dt/2)   %slope is (delta r)/(delta t) 
     

81 



    k3rdp(i) = dt* rk2slopedp 
     
    rdp_full_est = r_dp(i) +  k3rdp(i) 
     
    rk4slopedp_full = (rdp_full_est - r_dp(i))/dt 
     
    k4rdp(i) = dt* rk4slopedp_full 
     
    r_dp(j) = r_dp(i) + (1/6)*(k1rdp(i) + 2.*k2rdp(i) + 2 *k3rdp(i) + k4rdp(i))  
     
     
    if r_dp(j) < Req, break, end   
    %********************************************* 
    dephat(j) = r_dp(j)-Req   % km, deputy height above mean spherical earth. 
    RDiff(j)= hat(j)- dephat(j) % km, diff in radii, (s/b neg if rdep> rchf.) 
    % ********** RK4 for vdot to v (redone 10/14 & 10/25)*********** 
      
     
    k1vdp(i) = dt*vdotdp(i)               % k1 for computing vdp(t(i)) 
     
    vdp_half_est = v_dp(i) + .5 * k1vdp(i) 
    vk1slopedp = (vdp_half_est - v_dp(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2vdp(i) = dt* vk1slopedp                      %k2 for v(t) 
     
    vdp_half_est = v_dp(i) + .5 * k2vdp(i) 
     
    vk2slopedp = (vdp_half_est - v_dp(i))/(dt/2)   %slope is (delta v)/(delta t) 
     
    k3vdp(i) = dt* vk2slopedp 
     

    vdp_full_est = v_dp(i) +  k3vdp(i) 
     
    vdpk4slope_full = (vdp_full_est - v_dp(i))/dt 
     
    k4vdp(i) = dt* vdpk4slope_full 
     
    v_dp(j) = v_dp(i) + (1/6)*(k1vdp(i) + 2.*k2vdp(i) + 2 *k3vdp(i) + k4vdp(i))  
     
     % ******************* RK4 for wdot to w ******* 
    
    k1wdp(i) = dt*wdotdp(i) 
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    wdp_half_est = w_dp(i) + .5 * k1wdp(i) 
    wk1slopedp = (wdp_half_est - w_dp(i))/(dt/2)    %slope at half time step, dt/2. 
     
    k2wdp(i) = dt* wk1slopedp                      %k2 for wdp(t) 
     
    wdp_half_est = w_dp(i) + .5 * k2wdp(i) 
     
    wdpk2slope = (wdp_half_est - w_dp(i))/(dt/2)   %slope is (delta w)/(delta t) 
     
    k3wdp(i) = dt* wdpk2slope 
     
    wdp_full_est = w_dp(i) +  k3wdp(i) 
     
    wdpk4slope_full = (wdp_full_est - w_dp(i))/dt 
     
    k4wdp(i) = dt* wdpk4slope_full 
     
    w_dp(j) = w_dp(i) + (1/6)*(k1wdp(i) + 2.*k2wdp(i) + 2.*k3wdp(i) + k4wdp(i)) 
     
     
    
    % Euler should be ok for slow variables following. 
    TAdotdp(j)=(1/r_dp(j))*sqrt(v_dp(j)^2 -(w_dp(j)/r_dp(j))^2)+MJ2dotdp(i) 
    TAdp(j) = TAdp(i) + TAdotdp(i)*dt 
    argpg_dp(j) = argpg_dp(i) + argJ2dot(i)*dt 
    thtdp(j)= argpg_dp(j) + TAdp(j) 
     
     
      
    % *********** perturbation terms at j = i +1 for DEPUTY *************** 
    kj2dp = 1.5*(Mu/r_dp(j)^2)*J2*(Req/r_dp(j))^2 
    prdp(j)=-kj2dp*(1 - 3.*sin(inc_dp(i))^2*sin(thtdp(j))^2)%"+" since diff axis definition. 
 
    ptrnsdp(j) = -kj2dp*sin(inc_dp(i))^2*sin(2*(thtdp(j)))  %depty transverse (w/vel vector) 
 
    phdp(j) = -kj2dp*sin(2*inc_dp(i))*sin(thtdp(j))   % "+"(see above),where theta = w + TA 
     
     
     
    hdotdp(j) = r_dp(j)*ptrnsdp(j)-r_dp(j)*Y_rocket(i) %>>Neg on rocket so y(pos)>>y(pos rate) 
    idotdp(j) = hdotdp(j)*cos(thtdp(j))/(n_dp*a_dp^2*eta_dp)  % from Vallado eqtn 9-21 (10/25)  
    inc_dp(j) = inc_dp(i) + idotdp(j)*dt 
    vhdp(j) = r_dp(j)*idotdp(j)*sin(thtdp(j)) 
         
    OMG_dp(j) = OMG_dp(i) + OMGJ2dotdp(i)*dt 
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    argJ2dp(j) = argJ2dp(i) + argJ2dotdp(i)*dt   
    MJ2dp(j) = MJ2dp(i) + MJ2dotdp(i)*dt  
     
    yJ2dp(j) = yJ2dp(i) + vhdp(i)*dt    %km,cross-track y-movement due to J2-h 
    yCfDpdiff(j)= yJ2chf(j)- yJ2dp(j) 
    yINCdp(j)=incdiff(i)*r_dp(j)*sin(theta(j)) 
    % ******** Hill-like relative position parameters *****(10/24/05) 
    yTOTchf(j)=yJ2chf(j) 
    yTOTdp(j)= yJ2dp(j) + yINCdp(j)  
 
tadiff(j) = TAdp(j)-TA(j)     % rad, difference in true anomaly betwn chf and dep (neg. if chf 
ahead) 
incdiff(j)=inc(j)-inc_dp(j) %difference in chief/deputy inclination angle 
xsep(j) = (2*(r(j) + r_dp(j))/2)*sin(.5*(tadiff(j)))   % km, x-axis deputy wrt chief 
yHL(j) = ((r(j) + r_dp(j))/2)*(incdiff(j))*sin(theta(j))% km,y-axis dpty wrt chief("+" 
dpty@rt.wing) 
zsep(j) = r(j) - r_dp(j)     %km, z-axis dep wrt chief (positive for dep below chief) 
septn(j) = sqrt(xsep(j)^2 + yHL(j)^2 + zsep(j)^2) 
 
   % ***** Hill-like (?) relative velocity parameters**** (10/25/05) 
    
   xveldiff(j) = v_dp(j) - v(j)   % km/sec  , tangential velocity diff. 
   yveldiff(j) = vhdp(j) - vh(j)   % km/sec , lateral or cross-track vel diff. 
   zveldiff(j) = rdot(i) - rdotdp(i)  % km/sec, vertical or radial vel. diff. 
 
%   % ******* ROCKET ****** 
    X_rocket(j)= X_rocket(i)       
    Y_rocket(j)= Y_rocket(i) 
    Z_rocket(j)= Z_rocket(i)  
    % ****************** 
    T(j) = T(i) + dt 
    i= i + 1; 
 end 
  
 % ************** PLOTTING SECTION ************************** 
 plot(T,deltaV),xlabel('Time,sec'),ylabel('cumulative Dv,km/sec'),title('KSC Dep 3 km Trail, J2 
& Drag Act'), 
 axis([ 0   12000    -.00005   .00005]),grid 
 pause 
%polar(TA,r),title('TrueAnom vs.Chf Radius, J2=Act,Drg=Act, Dep 3 km Rt Chevrn') 
%pause 
%print 
%polar(TA,hat),title('TrueAnom vs.Chf HAT,J2=Act,Drg=Act, Dep 3 km Chevrn') 
%pause 
%print 
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%polar(TAdp,dephat),title('TrueAnom vs.Dep HAT,km,J2=Act,Drg=Act, Dep 3 km Chev') 
%pause 
%print 
%polar(TA,RDiff),title('TrueAnom vs.CHF-DEP Rdiff,km,J2=Act,Drg=Act, Dep 3 km Chev') 
%pause 
%print 
%polar(TA,septn),title('TrueAnom vs.CHF-DEP totdiff,km, J2=Act,Drg=Act, Dep 3 km Chev') 
%pause 
 
subplot(3,1,1),plot(TA,xveldiff),xlabel('Time,sec'),ylabel('x-vel diff,km/s'),title('KSC Dep. 3 km 
Trail, J2 & Drag Act'), 
axis([ 0   13.0    -.001  .001]),grid 
subplot(3,1,2),plot(TA,yveldiff),xlabel('Time,sec'),ylabel('y-vel.diff.,km/s'), 
axis([ 0   13.0      -.001  .001]),grid 
subplot(3,1,3),plot(TA,zveldiff),xlabel('Time,sec'),ylabel('z-vel.diff,km/s'), 
axis([ 0   13.0    -.001    .001]),grid 
pause  
%print 
subplot(3,1,1),plot(T,xsep),ylabel('x chf-dep alongtrk,km'),title('KSC Dep. 3 km Trail, J2 & Drag 
Act') 
axis([0.0  12000    -4.0   -2.0]),grid 
subplot(3,1,2),plot(T,yHL),ylabel('y chf-dep crosstrk,km') 
axis([0.0  12000    -5.   5.]),grid 
subplot(3,1,3),plot(T,zsep),xlabel('Time,sec.'),ylabel('z chf-dep radial sep,km') 
axis([0.0  12000    -1.0   1.0]),grid 
pause 
%print 
subplot(3,1,1),plot(T,xveldiff),ylabel('x vel diff,km/sec'),title('KSC Dep. 3 km Trail, J2 & Drag 
Act') 
axis([0.0  12000    -.001   .001]),grid 
subplot(3,1,2),plot(T,yveldiff),ylabel('y cross-trck vel diff,km/sec'), 
axis([0.0   12000    -.001   .001]),grid 
subplot(3,1,3),plot(T,zveldiff),xlabel('Time,sec.'),ylabel('radial vel diff,km/sec'), 
axis([0.0   12000    -.001   .001]),grid 
pause 
%print 
%subplot(3,1,1),plot(T,X_rocket),ylabel('X-dep rocket,km/sec2'),title('Rocket Triad Inputs For 3 
km Hold') 
%axis([0.0  12000    -.0001   .0001]),grid 
%subplot(3,1,2),plot(T,Y_rocket),ylabel('Y-dep rocket,km/sec2'), 
%axis([0.0   12000    -.0001   .0001]),grid 
%subplot(3,1,3),plot(T,Z_rocket),xlabel('Time,sec'),ylabel('Z-dep rocket,km/sec2'), 
%axis([0.0   12000    -.0001   .0001]),grid 
%pause 
%print 
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subplot(3,1,1),plot(T,septn),ylabel('Chf-Dep Separation,km'),title('KSC Dep.3 Km Trail, J2 & 
Drag Act') 
axis([0.0   12000    0.0   5.]),grid 
subplot(3,1,2),plot(T,idotdp),ylabel('dep idot,rad/s') 
axis([0.0   12000    -.0001   .0001]),grid 
subplot(3,1,3),plot(T,inc_dp),ylabel('dept inclinatn, rad.') 
axis([0.0   12000    .49   .50]),grid 
pause 
subplot(3,1,1),plot(T,yJ2dp),ylabel('y disp/ J2,km'),title('KSC Dep.3 Km Trail, J2 & Drag Act') 
axis([0.0   12000    -10.   10.]),grid 
subplot(3,1,2),plot(T,yTOTdp),ylabel('y total disp,km') 
axis([0.0   12000    -10.   10.]),grid 
subplot(3,1,3),plot(T,yTOTchf),ylabel('y chf tot disp,km') 
axis([0.0   12000    -10.   10.]),grid 
pause 
% 
polar(TA,xsep),title('TrueAnom vs. CHF-DEP x-axis diff, e=0.03, J2=Act,Drg=Act, Dep Trail 
Chf 200 m') 
pause 
%print 
polar(TA,yHL),title('TrueAnom vs. CHF-DEP y-axis diff, e=0.03, J2=Act,Drg=Act, Dep Trail 
Chf 200 m') 
pause 
%print 
polar(TA,zsep),title('TrueAnom vs. CHF-DEP z-axis diff, e=0.03, J2=Act,Drg=Act, Dep Trail 
Chf 200 m') 
pause 
%print 
polar(TA,xveldiff),title('TrueAnom vs.CHF-DEP x-rel vel, km/s, e=0.03, J2=Act,Drg=Act, Dep 
Trail Chf 200 m') 
pause 
%print 
polar(TA,yveldiff),title('TrueAnom vs. CHF-DEP y-axis diff,e=0.03, J2=Act,Drg=Act, Dep Trail 
Chf 200 m') 
pause 
%print 
polar(TA,zveldiff),title('TrueAnom vs. CHF-DEP z-axis diff,e=0.03, J2=Act,Drg=Act, Dep Trail 
Chf 200 m') 
pause 
%print 
polar(TA,yCfDpdiff),title('TrueAnom vs.CHF-DEP, y-axisJ2diff,e=0.03, J2=Act,Drg=Act, Dep 
Trail Chf 200 km') 
pause 
%print 
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 subplot(3,1,1),plot(TA,r),ylabel('Orbit Radius, km'),title('chief orbit, J2=Act,drg=Act, e=.03') 
 axis([0  13.0   6800.  8000.]),grid 
 subplot(3,1,2),plot(TA,v),ylabel('Velocity, km/sec') 
 axis([0  13.0   0    10.]),grid 
 subplot(3,1,3),plot(TA,w),xlabel('True anomaly, rad'),ylabel('w-state, km^2/sec)') 
 axis([0  13.0   -2000.  2000.]) 
 pause 
 pause 
 %print 
  
 %plot(T,TA),xlabel('TIME,sec'),ylabel('True Anomaly, radians'),title('drag=Act,J2=Act, e=.0') 
 %axis([0.  7000.     0.    7.0])   
 %pause 
 %print   %(2) 
  
   
 subplot(3,1,1),plot(TA,yJ2chf),xlabel('TrueAnomly,rad'),ylabel('Chf y-drift wrt track, km'), 
 axis([ 0   13.0  -20.   20. ]),grid,title('Drag&J2=Act,Chf&Dep y-mvmnt wrt mean,e=0.0') 
 subplot(3,1,2),plot(TA,yJ2dp),xlabel('TrueAnomly,rad'),ylabel('Depty y-drift wrt track, km'), 
 axis([ 0  13.0   -20.   20.]),grid 
 subplot(3,1,3),plot(TA,yCfDpdiff),xlabel('TrueAnomaly,rad'),ylabel('Chf-Dep y(J2)diff, km'), 
 axis([ 0  13.0   -5.   5.]),grid 
 pause 
 %print  
  
 plot(TA,yHL),xlabel('TrueAnomaly,rad'),ylabel('Chf-Dep y-sep, km'),title('Drag&J2=Act,Chf-
Dep Diff dueto J2,e=0.0') 
 axis([ 0  13.0   -0.05   0.05]),grid 
 pause 
 %print 
 %plot(T,TAdot),xlabel('TIME,sec'),ylabel('sigmadot,rad/sec-e=.0') 
 %axis([ 0  6000.   0    .002]) 
 %pause 
 %print 
 %plot(TA,r),xlabel('true anomaly,rad'),ylabel('Orbit Radius, km'),title('J2 =0,e=.00') 
 %axis([ 0.0  7.0  0   10000.]) 
 %pause 
 %print 
 %subplot(3,1,1),plot(TA,pr),ylabel('J2 radial accel'),title('J2=0,drg=act,circulr') 
  
 %subplot(3,1,2),plot(TA,ptrans),ylabel('J2 w/vel vector'), 
 %subplot(3,1,3),plot(TA,ph),xlabel('true anomaly,rad'),ylabel('J2 norm to orbit plane'), 
  
 %print 
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subplot(3,1,1),plot(TA,idot),xlabel('Time,sec'),ylabel('incl_rate,rad/sec'),title('Drag&J2=Act,e=.0
') 
 subplot(3,1,2),plot(TA,inc),ylabel('orbit inclination,rad') 
 subplot(3,1,3),plot(TA,hdot),xlabel('true anom,rad'),ylabel('hdot,km^2/sec^2') 
 pause 
 pause 
 pause 
 %print 
  
 subplot(3,1,1),plot(TA,OMGJ2dotplt),ylabel('J2 OMGdot,deg/day'),title('Drag&J2=Act., Daily 
arg drifts ,e=.0') 
 axis([0.0  13.0    -10.   10.]) 
 subplot(3,1,2),plot(TA,argJ2dotplt),ylabel('J2 wdot,deg/day') 
 axis([0.0  13.0    -10.   10.]) 
 subplot(3,1,3),plot(TA,MJ2dotplt),xlabel('true anomaly,rad'),ylabel('J2 Mdot,deg/day') 
 axis([0.0  13.0    -10.   10.]) 
 pause 
 pause 
 %print 
  
 subplot(2,1,1),plot(TA,OMG),ylabel('Right ascension,rad'),title('Drag&J2=Act, RtAscen vs 
trueAnom,e=.0') 
 axis([0.0  13.0    .3   .4]),grid 
 subplot(2,1,2),plot(TA,OMG_dp),xlabel('true anomaly,rad'),ylabel('Dep Right asc,rad') 
 axis([0.0  13.0    .3   .4]),grid 
pause 
%print 
 
subplot(2,1,1),plot(TA,argpg),ylabel('arg of perigee,rad'),title('Drag&J2=Act,.Arg of Prgee Drift 
vs trueAnom,e=.0') 
axis([0.0 13.0    .1   .2]) 
subplot(2,1,2),plot(TA,MJ2),xlabel('true anomaly,rad'),ylabel('J2=Act, drift mean anomaly,rad'), 
axis([0.0  13.0    0   1.2]) 
pause 
%print 
 
subplot(3,1,1),plot(TA,xsep),ylabel('x chf-dep alongtrk,km'),title('Drag&J2=Act.,Chf-Dep 
Seprtn-e=.0') 
axis([0.0  13.0    -20.   20.]),grid 
subplot(3,1,2),plot(TA,yHL),ylabel('y chf-dep crosstrk,km') 
axis([0.0  13.0    -5.   5.]),grid 
subplot(3,1,3),plot(TA,zsep),xlabel('true anomaly, rad'),ylabel('z chf-dep radial sep,km') 
axis([0.0  13.0    -20.   20.]),grid 
pause 
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pause 
pause 
%print 
 
plot(TA,septn),xlabel('true anomaly,rad'),ylabel('Chf-Dep separtn,km'),title('Drag&J2=Act,Chf-
Dep sep,e=.0') 
axis([0.  13.0      0.  30.0]),grid 
pause 
%print 
plot(xsep,zsep),xlabel('along track disp,km'),ylabel('radial disp,km'),title('Drag&J2=Act,Orbit 
plane chf/dep,e=.0') 
axis([-20. 20.  -20.  20.]),grid 
pause 
pause 
pause 
%print 
 
subplot(3,1,1),plot(TA,xveldiff),ylabel('x vel diff,km/sec'),title('Drag&J2=Act.,Chf/Dep rel.vel 
,e=.0') 
axis([0.0  13.0    -.01   .01]),grid 
subplot(3,1,2),plot(TA,yveldiff),ylabel('cross-trck vel diff,km/sec'), 
axis([0.0  13.0    -.01   .01]),grid 
subplot(3,1,3),plot(TA,zveldiff),xlabel('true anomaly,rad'),ylabel('radial vel diff,km/sec'), 
axis([0.0  13.0    -.01   .01]),grid 
pause 
%print 
plot(zsep,yHL),xlabel('radial distance, chf/dep,km'),ylabel('cross-track dist, 
chf/dep,km'),title('Dist to dpt,Drag&J2=Act, e=.0') 
axis([-20. 20.  -5.  5.]),grid 
pause 
pause 
 
 
%print
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