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ABSTRACT 

 

In this dissertation physical phenomena relevant to (i) an interface formed between 

two fluids and a solid phase (wetting line) and (ii) an interface between three fluids 

(triple contact line) were investigated. In the former case, the wetting line (WL) 

phenomena which encompass the wetting line energy (WLE) or pinning, the wetting line 

velocity (WLV), and the contact angle hysteresis, were studied using a micropump 

based on electrowetting on dielectric (EWOD). In the latter case, the interfacial 

phenomena such as the air film lubrication effect and the liquid free surface deformation 

were taken into account to explain the dual equilibrium states of water droplets on liquid 

free surfaces.  

EWOD was implemented to devise a pumping method for a continuous flow in a 

microchannel. An active micropump with a simple layout and no moving parts is 

designed and fabricated which has on demand flow on/off capability. The micropump is 

based on droplet/meniscus pressure gradient generated by EWOD. By altering the 

contact angle between liquid and solid using an electric field a pressure gradient was 

induced and a small droplet was pumped into the channel via a uniform flow rate.  A 

surface tension based propellant method was introduced as a low power consumption 

actuation method in microfluidic devices. For an initial droplet volume of 0.3µL and a 

power of 12nW a constant flow rate of 0.02µL/sec was demonstrated. Sample loading 

on-demand could be achieved by regulating an electric potential. Unexpectedly, the flow 

rate of the pump was found to be constant in spite of the changes in the droplet’s 

radius, which directly affects the pump’s driving pressure. 
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The WL phenomena were studied in details to unravel the physical concept behind 

the micropump constant flow rate during the operation. An interesting observation was 

that the shrinking input droplet changes its shape in two modes in time sequence: (i) in 

the first mode its contact angle decreases while its wetting area remains constant due to 

the pinning, (ii) in the second mode the droplet’s WL starts to move while its contact 

angle changes as a function of its velocity. Contact angles were measured for the 

droplet advancing and receding WLs at different velocities to capture a full picture of 

contact angle behavior due to pinning and WLV effects. These results are also relevant 

to the meniscus inside the channel. The changes on the contact angle caused by the 

presence of EWOD at the bottom of the channel were studied in detail.  

The EWOD based micropump was used as a platform to study the contribution of 

the pinning and WLV effects on its constant flow rate. The effects of the WLE on the 

static contact angle and the WLV on the dynamic contact angle in the pump operation 

were investigated. Also the effect of EWOD voltage on the magnitude and uniformity of 

the micropump flow rate was studied.  

Dynamic contact angles (as a function of pinning and WLV) were used to 

accurately calculate the pressure gradient between the droplet and the meniscus and 

estimate the flow rate. It was shown that neglecting either of these effects not only 

results in a considerable gap between the predicted and the measured flow rates but 

also in an unphysical instability in the flow rate analysis. However, when the WLE and 

WLV effects were fully taken into account, an excellent agreement between the 

predicted and the measured flow rates was obtained.  
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For the study of the TCL between three fluids, aqueous droplets were formed at 

oil-air interface and two stable configurations of (i) non-coalescent droplet and (ii) 

cap/bead droplet were observed. General solutions for energy and force analysis were 

obtained and were shown to be in good agreement with the experimental observations. 

Further the energy barrier obtained for transition from configuration (i) to (ii), was 

correlated to the droplet release height and the probability of non-coalescent droplet 

formation. Droplets formed on the solid surfaces and on the free surface of immiscible 

liquids have various applications in droplet-based microfluidic devices. This research 

provides an insight into their formation and manipulation.   
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CHAPTER 1: INTRODUCTION 

 

Micropumps and microvalves are the key components in handling small amount of 

aqueous samples [1-3]. Their importance is recognized, especially, in the field of 

analytical chemistry, biology and medicine in which massive and parallel screening of 

aliquots with the limited amount of usable samples is to be performed or a limited 

amount of dose needs to be supplied with good accuracy.  In such applications, small 

amounts of biological samples or chemical reagents are introduced and transferred by 

means of micropumps and microvalves, followed by chemical reactions and biochemical 

processes such as immobilization, labeling and detection [4, 5]. Micropumps have been 

categorized by means of actuation methods applied to drive the flow rate. The 

electrostatic, piezoelectric, bimetallic, electroosmotic and electrowetting (EW) actuation 

methods have been reported [6]. 

 The performance characteristics of micropumps for biological and chemical 

applications depend on critical parameters such as power consumption, flow rate, 

biocompatibility, disposability and durability of mechanical moving parts. Micropumps 

consisting of moving parts such as mechanical valves and membranes for controlling or 

actuating the liquid may be prone to mechanical failure, and their complicated structure 

often results in prohibitive fabrication cost [7].  Micropumps with low fabrication cost and 

minimal mechanical complexity are highly desirable for designing disposable biochips 

which could be easily replaced once the sample analysis is completed [8].  Therefore 

design and fabrication methods of micropumps with no moving parts are one of the 

central points of research in the field.  
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Among various actuation techniques, the surface tension-driven method was 

shown to be well suited for droplet based transport devices due to its favorable scaling 

effect [8-10]. The surface tension force is linearly proportional to the length of the 

interfacial line between the liquid, air and the solid (WL) in which a droplet forms the 

boundaries of the wetting area on the solid surface. By scaling down the size of the 

system homogenously, the surface to volume ratio of the system increases and the 

surface forces which are negligible on macroscale become dominant on the microscale.  

Although passive surface tension based micropumps are shown to be suitable for 

many applications [8, 9], the ability to control the surface wettability to induce and stop 

the flow on demand would be highly desirable. The control of surface tension, by a 

temperature gradient in thermocapillary and by an electric potential gradient in 

electrocapillary, is implemented for micropumping [2, 3]. However, electrocapillary in the 

forms of EW and EWOD are considered more power efficient than the thermocapillary 

[4]. EWOD is the most promising method due to the electrochemical inertness of the 

substrate and the ability to work with the non-electrolyte aqueous solutions. In EWOD 

phenomenon, the wetting properties of a hydrophobic surface could be modified by 

applying an electric field without changing the chemical composition of the surface.  

The simplest EWOD comprises a water droplet resting on a conducting layer 

covered with an dielectric layer (Fig. 1). A water droplet resting on a solid surface has a 

contact angle, θD which is defined clockwise, inside the liquid phase, from the solid 

surface to the tangent line to the liquid at the point of the contact with solid. θD depends 

on the surface tensions of the three phases of liquid, air, and solid and is equal to 

Young’s equilibrium contact angle. By applying the voltage between the liquid and the 
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conductor of the EWOD substrate, an electrical double layer is formed at the liquid-

substrate interface. The EWOD substrate which is in contact with the liquid, works 

similar to a capacitor. The fringing electric field, at the edge of the double layer, is 

formed at the substrate-liquid-air interface. The electric force parallel component to the 

surface, FE, pulls the double layer forward. This helps liquid to wet the surface and 

move forward and therefore θD is reduced.  

 

 

Fig. 1 Electrowetting on dielectric (EWOD): a voltage is applied between the water 
droplet and the conductor of the EWOD substrate. An electrical bi-layer is 
formed which generates a fringing electric field at the interface of liquid-air and 
solid surface. The electric force parallel component to the surface, FE, pulls the 
liquid forward, reducing θD. The surface tension forces at the three-phase 
interface are shown.  

Although EW and EWOD have been actively studied for a discrete droplet 

manipulation [11-14], to our knowledge an active micropump for continuous flows which 

takes advantage of EWOD was first reported in this research. The alteration of 
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wettability as a propellant method could be combined with a valve to form a pump.  

However, the design and fabrication of a valve that could work with the actuating 

method and form a  complete device remains challenging [1, 15]. Most of the developed 

active electrical microvalves are driven by mechanical actuators [16]. In the proposed 

micropump in chapter 2, the flow could be turned on and off by switching the voltage on 

and off. On contrary to the previous works which used active mechanical microvalves 

for pumping, the EWOD based micropump does not require any moving parts and is 

driven purely based on wettability of the surface which is altered by the electric 

potential. The micropump’s design and performance are discussed in chapter 2.  

The biocompatibility imposes a limit on the type of the liquids which could be used 

for actuation in biomedical devices or induced chemical reactions. Although  secondary 

transport liquid has been suggested as a solution for pumping water based solutions 

[16], the prevention of  two liquids from mixing has remained an issue. Using the 

proposed micropump in chapter 2, aqueous solutions can be driven without using any 

electrolyte or secondary medium.  

In devices that are designed based on EWOD, a liquid meniscus is manipulated by 

an applied voltage which reduces the contact angle of the wetting line (WL) formed at 

the boundary between the liquid, air, and the solid surface. Chapter 3 is dedicated to the 

study of the complex nature of the behavior of the moving WL due to the WL pinning 

and WL velocity effects. These two effects alter the liquid contact angle on the solid 

surface from its equilibrium value obtained from Young’s equation (Fig. 2a) [24, 25]. The 

WLE effect or pinning effect, is a result of the local microscopic defects on the solid 

surface [26], by which liquid is pinned to the surface. Therefore, different values for 
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contact angle are expected depending on whether the WL is in advancing or receding 

modes (Fig. 2b). This effect could be shown on a slightly tilted surface. The WL on the 

lower side of the droplet is forced to advance, but the droplet adjusts its contact angles 

to the advancing contact angle, θA, to resist motion. However the WL on the upper side 

of the droplet is forced to recede, but θD is reduced to a receding contact angle θR 

before the WL start to move. The droplet WL remains pinned to the substrate. This is in 

agreement with our daily observations of rain droplets on a tilted surface such as the car 

windshield. The contact angle is also changed when the WL is moving, depending on 

the magnitude and direction of the WL velocity (Fig. 2c)  [27, 28]. The droplet will 

eventually slide down the surface, if the surface is further tilted. θA is further increased 

and θR is more decreased as the magnitude of the WL velocity, U, increases. Further 

the EWOD voltage effect on the WL pinning and the contact angle hysteresis is studied.   

 

 

Fig. 2  WLE and WLV effects on Young’s equilibrium droplet contact angle (a) A 
droplet resting on a horizontal surface has a static θD (b) Droplet adjusts its 
contact angles depending on the advancing or receding modes of WLs, θA and 
θR respectively, as the surface is slightly tilted. Droplet resists motion and its 
WL is pinned to the substrate (c) Droplet WL starts to move on the surface as 
it is further tilted. θA and θR are further changed as a function of droplet WL 
velocity, U. 

Walker et al. reported that considering the effect of the WLE on contact angle is 

crucial to predicting the time scale of the liquid motion; otherwise the calculated flow 
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rate will be much higher than the experiments [29]. Dussan V. reported the relationship 

between dynamic contact angle and WL velocity in a forced wetting [27]. In chapter 4, 

the WLE effect on static contact angle and the WL velocity effect on dynamic contact 

angle in two different phases of the micropump operation are demonstrated for the first 

time.  

 In devices that are designed based on EWOD, a liquid meniscus is manipulated 

by an applied voltage which reduces the contact angle of the WL formed at the 

boundary between the liquid, air, and the solid surface. Theoretical and numerical 

models have been developed to describe the moving WL [30-33].  In devices based on 

EWOD the problem is more complicated due to the saturation of contact angle at higher 

voltages [34, 35]. The study of the moving WL in EW based devices, for discrete droplet 

manipulation, has also been the focus of many studies [12, 29, 36-46].  It has been 

shown that consideration of the pinning effect is essential to predict the accurate time 

scale of the droplet motion [29, 39]. The dynamics of the WL was also investigated to 

model the droplet motion on the electrodes [12, 42-44, 47, 48]. 

In chapter 5, a combined theoretical/experimental approach based on continuity 

and energy equations is developed to study a continuous flow induced by manipulating 

a meniscus on an EWOD substrate at the bottom of a microchannel.  The WL pinning 

and the WL velocity effects need to be taken into account to describe the dynamic 

contact angles at the WLs: (i) the droplet’s receding WL, (ii) the advancing WLs of the 

liquid meniscus on the upper and side walls of the channel, and (iii) the advancing WL 

at the bottom of the channel with a reduced contact angle due to EWOD. These two 

effects are crucial to developing a physically-relevant model for the flow rate analysis. 
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This is due to the fact that the accurate estimation of the contact angles is necessary to 

calculate the induced droplet/meniscus pressure gradient [37], and subsequently the 

micropump’s flow rate.  

The last chapter of this dissertation (chapter 6) investigates the important physical 

phenomena at the interface between three fluids. The similarities and the differences 

between the two setups used in the previous chapters and chapter 6 are tabulated in 

Table 1.  

Table 1 Dynamics of three-phase interfaces and related physical phenomena 

 

In chapters 3 to 5, the important wetting phenomena at a droplet moving WL on 

solid surface and a meniscus in a microchannel were investigated (Fig. 1 a, b). In 

chapter 6 two different interfaces between three fluids are studied and the relevant 

physical phenomena are described (Fig. 1 c, d). Further the stable equilibrium states of 

the floating droplets at the oil-air interface were predicted using energy analysis.   

 

 

Phases Air, Water, Solid Air, Water, oil 

3-phase Interface Wetting line (WL) Triple contact line (TCL) 

Studied phenomena 
Wetting line energy (pinning), 

Wetting line velocity effect 

Air film lubrication effect, 

Free surface deformation 

Actuation method Electrocapillary (EWOD) Thermocapillary convection 

Substrate phase properties Insulating, Hydrophobic Low surface tension, High density 
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Fig. 3 Interfaces between three phases: (a, b) WLs formed between a solid and two 
fluids: a water droplet on PDMS surface and a meniscus in a microchannel. (c, 
d) floating water droplets on oil: Non-coalescent droplet and cap/bead droplet 
with a triple contact line (TCL). 

The formation of floating aqueous droplets on the free surface of immiscible liquids 

has application in digital microfluidic devices [49], as well as material transportation and 

mixing in lab on a chip [50, 51]. The floating aqueous droplets serve as containers for 

encapsulating reagents in biochemical reactions [52].  They allow low consumption of 

the analytes and give direct access to reaction products [52]. The direct contact with the 

ambient air could be a benefit in sensor applications [53]. Moreover no material transfer 

between them and the liquid platform [54], results in reduced contamination compared 

to the solid counterparts. The sample evaporation could be reduced by encapsulating 

the device as well [53]. In such devices, thermocapillary was used for manipulating the 

floating droplets [50]. The floating non-coalescent (NC) water droplets were first 
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observed by Reynolds on the water’s free surface [55]. Mahajan investigated the effect 

of the surrounding medium on the life of the floating droplets [56]. The droplet’s non-

coalescence caused by a surface tension gradient due to a temperature difference 

between the droplet and the pool liquid [51], a vertical oscillation of base liquid [57], and 

the non-wetting liquid droplet coated with a hydrophobic powder [58], has been 

reported. NC droplets formation on a liquid interface in isothermal condition has also 

been reported [59]. Although describing the floating droplets has been the interest of 

several studies, to our knowledge a general solution has not been provided for the dual 

equilibrium states [51, 59, 60]. Further, while the non-coalescence of a droplet on the 

free surface of the same liquid is widely investigated, the studies using immiscible 

liquids are scarce.  
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CHAPTER 2: EWOD BASED MICROPUMP 

 

Some of the materials used in this chapter have been previously published by 

Elsevier and Springer: R. Shabani and H.J. Cho, “Active surface tension driven 

micropump using droplet/meniscus pressure gradient”, Sensors and Actuators B: 

Chemical, 180, 114–121, 2013. 

R. Shabani and H. J. Cho, “Flow rate analysis of an EWOD based device: how 

important are wetting line pinning and velocity effects?”, Microfluidics and Nanofluidics, 

2013, DOI: 10.1007/s10404-013-1184-y. 

 

2.1 Introduction 

Micropumps are the essential components for many  integrated microfluidic 

systems [2, 3]. Micropumps have been used in biochemical analysis chips and micro 

chemical reactors [61]. Various methods have been reported for driving micropumps [3, 

62]. A passive pumping method previously reported, which takes advantage of the 

droplet’s surface tension, shows that the Laplace pressure gradient obtained from a 

difference in surface curvatures is well suited for the microfluidic devices [9]. EWOD is a 

well-known method for altering the wettability of the surfaces by changing the electric 

potential [14, 35, 63]. In this chapter an on-demand micropump based on EWOD is 

proposed which utilizes a Laplace pressure gradient between a droplet and a liquid 

meniscus as a propellant source, and an alteration of the surface wettability as a valving 

method without using any moving parts. In contrast to the passive pumping methods in 

which a non-stopping flow is induced once initiated, in EWOD micropump the induced 

flow rate is controlled and could be stopped at any time by regulating the voltage. Using 
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the proposed micropump, aqueous solutions can be driven directly contrary to the 

micropump driven by continuous EW actuation [16]. The key concept in our device is 

the linkage of this wettability control and the droplet/meniscus pressure gradient as a 

propellant method for driving a liquid in a microchannel. The power consumption is 

expected to be very small due to a very small current (< 0.01mA) associated with 

EWOD.  

 

2.2 Materials, design and fabrication 

The idea of the micropump was developed by direct observation of alteration of a 

water droplet contact angle on hydrophilic surfaces, such as glass or a silicon wafer with 

a native oxide layer, and hydrophobic surfaces such as a bare silicon wafer, fluorinated 

surfaces, or Polydimethylsiloxane (PDMS) layers. The droplets with different contact 

angles would have different Laplace pressures due to the difference in their surface 

curvatures. A pressure gradient could be induced by altering the liquid contact angle on 

solid surface. As a low power consumption method for controlling the hydrophobicity of 

the solids and therefore inducing a pressure gradient, EWOD was employed. The 

EWOD-based micropump could be turned on and off on demand without any 

mechanical part and could work with non-electrolyte aqueous solutions.  

In designing the micropump, it is assumed that the liquid of interest is applied in 

the form of a droplet using pipettes and syringes, which is a common protocol in 

chemistry. The size of the micropump is designed to work best with sample volumes on 

the microliter scale. The micropump chambers and channels are cast in biocompatible 

PDMS layer with low cost and simple fabrication process for disposability. PDMS is 

widely used in biological diagnosis lab on a chip in which  transparency is required for 
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optical measurement [64]. A single PDMS film is used both as bonding layer to the 

PDMS layer with a microchannel and the hydrophobic layer of the EWOD substrate. 

There are also other novelties in the fabrication process such as using spin-on glass 

(SOG) as the insulating layer that could be applied in a very short time compared to 

normally used dielectric layers in EWOD devices such as silicon dioxide. The EWOD 

micropump was fabricated in a class 1000 cleanroom.  

 

2.2.1 EWOD substrate 

The EWOD substrate of the micropump consists of a conductive layer which is 

used as the bottom electrode and a dielectric layer which insulates the liquid from the 

bottom electrode. A hydrophobic layer is formed on top of the insulating layer to put the 

meniscus in a non-wetting state before applying the voltage. A silicon wafer was used 

as the conductive layer. Other conductive substrates such as indium tin oxide (ITO) 

coated glass slides may also be used as the bottom electrode when a direct optical 

observation through the substrates is needed.  

The electrical insulation was tested with both non-electrolyte and electrolyte 

aqueous solutions. The PDMS layer alone could not completely insulate the electrolyte 

solutions from the bottom electrode but it could be used to form a defect free under 

layer for SOG film which could be used as a main electrical insulator. For instance, 

when a droplet of 1% KCl solution was used (instead of DI water), the generation of 

bubbles and the leaky current were observed on the single layer of PDMS or SOG, 

while those were not observed on the SOG/PDMS layer. 
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Prior to the deposition of the insulating layer the substrate was cleaned via AMD 

(acetone, methanol and DI water) or RCA cleaning step. In order to maximize the 

efficiency of the EWOD the insulating layer must be kept thin while maintaining the 

function of electrical insulator. The PDMS (monomer mixed with curing agent with a 

weight ratio of 10 to 1) was diluted in toluene (volume ratio of 1 to 3) and spin-coated at 

6000 RPM for 10 minutes to suppress the effect of residual surface defects [65]. Then 

SOG was coated at 3000 RPM for 40 sec to form a leak-free electrical insulating layer 

which could withstand relatively high EWOD voltages (Fig. 4a). Direct EWOD in which 

the voltage is directly applied to a droplet on the substrate was used to test the 

insulating layer.  
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Fig. 4 Fabrication steps for the micropump: (a) Silicon wafer was used as the bottom 
electrode. Diluted PDMS was spin-coated to mask the defects. A SOG film 
was formed as an insulating layer (b) Diluted PDMS was spin-coated again to 
form a thin hydrophobic film (c) A SU-8 mold was fabricated on a separate 
silicon wafer using photolithography (d) A PDMS block was cast using the SU-
8 mold to form microchannels (e) PDMS slab was peeled off the mold and 
liquid inlet, the air outlet and the drop formation hole were punched (f) PDMS 
slab with microchannels was bonded to the PDMS film (g) Microfluidic 
interconnection and the electrical contacts were made. 

An ohmic resistor of 1MΩ was connected in series with the EWOD substrate. The 

large resistor protects the system against any short circuit and at the same time could 
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be used to measure the current. Since the resistance is large, any small leakage current 

due to the defects in the insulating layer will result in a large voltage drop in the resistor 

and could be easily detected.   

The hydrophobic layer on top of the insulating layer increases the contact angle 

and therefore increases the pressure inside the liquid due to the increased liquid-air 

surface curvature. This is one of the major design considerations in our device in which 

the accessible range of contact angle is enhanced before applying the electric potential 

[34]. The hydrophobic layer from this point of view puts the meniscus in a non-wetting 

state ready to be relaxed and actuated by applying the voltage. In order to reduce the 

total material cost and simplify the fabrication steps, instead of commonly used 

hydrophobic materials in EWOD such as CYTOP (Asahi Glass Co.), or Teflon AF 

(DuPont), a second PDMS film was formed as both the hydrophobic and the bonding 

layer in our device (Fig. 4b). 

 

2.2.2 Soft lithography and bonding  

Su-8 photoresist was used to make a mold on a different silicon substrate using 

photolithography (Fig. 4c). A separate PDMS block was cast using the SU-8 mold to 

form a replica of the mold in PDMS (Fig. 4d). The PDMS slab was peeled off the mold 

and the silicon wafer (Fig. 4e). In addition to an inlet and an outlet (an escape route for 

air), an orifice for droplet formation was punched into the PDMS block before bonding. 

This slab was bonded to the EWOD substrate to form a closed microchannel (Fig. 4f).  

The fully cured PDMS thin film which was formed as the hydrophobic layer in previous 

step (Fig. 4b) was used as the bonding layer as well. A corona discharge method [66], 

http://en.wikipedia.org/wiki/Asahi_Glass_Co.
http://en.wikipedia.org/wiki/DuPont
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was used at room temperature and atmospheric pressure. A leak free bonding for fluids 

between the PDMS film and the microchannel block was ensured before testing. 

This method is different from the other methods using partially cured or uncured 

PDMS adhesive or a variation of cross linker for bonding. This provides the uniformity of 

surface characteristic to all of the channel walls. It is worth mentioning that the PDMS 

thin film, initially becomes hydrophilic temporarily, due to the corona discharge process, 

but it eventually reverts to the original hydrophobic state [67, 68].   

 

2.2.3 Microfluidic interconnections and electrical contacts 

A metallic tube with a diameter of slightly larger than the size of the punched holes 

in the PDMS block was inserted into the liquid inlet. The PDMS is elastic and could 

easily hold the inserted tube in its place and make a leak free connection for fluid. A 

flexible polymer tube was connected to the steel tube (Fig. 4g). A stainless steel tube 

inserted in the inlet was used as the upper electrode (Fig. 4g). This ensures that 

electrical contact to the liquid is always maintained. The upper electrode was grounded 

and the voltage was applied to the conductive layer in the EWOD substrate. 

 

2.3 Micropump operation 

2.3.1 Characterization of EWOD substrate 

The EWOD substrate was characterized by studying the effect of the electric 

potential on the droplet contact angle. The applied voltage to the liquid was varied from 

0V to 120V and the droplet contact angle on the substrate was measured (Fig. 5). For 

voltages less than 34V the contact angle is at its highest value, θmax, and remains 
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constant with an average value of 86º. As the voltage increases from 34V the contact 

angle decreases. Finally for voltages above 90V the contact angle saturates to its 

lowest value, θmin, with an average value of 57º. In terms of operation, any applied 

voltage above 90V only increases the risk of dielectric break-down.  

 

 

Fig. 5  Droplet contact angle on EWOD substrate vs. voltage: the dash line is the 
theoretical fit to the data. The hysteresis contact angle is shown as θmax, the 
saturation contact angle is shown as θmin, and the onset voltage is shown as 
Vonset. In the equation: A is a constant, c is the capacitance of the EWOD 
substrate. 

A voltage of 100 Volts was selected (above 90V and below 120V) for the 

micropump operation to make sure that the device is working in the saturation region of 

the contact angle (Fig. 5). In other words increasing the voltage further will not improve 

the pump operation since the contact angle will not be reduced further. A working 
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voltage in the saturation region will guarantee that the contact angle is not sensitive to 

small voltage fluctuations of the device. 

The observed plateau at higher voltages is associated with the saturation of the 

contact angle which prevents the full wetting (zero contact angle) and limits the variation 

of the surface tension force. The theoretical explanations behind this saturation are still 

under debate and not conclusive yet. Various explanations have been given, which try 

to find this phenomenon’s origination from trapping of electric charge, ionization of gas 

close to the liquid-solid WL, WL instability, zero interfacial tension criterion and the 

droplet resistance [34, 69]. 

The constant value of the contact angle at lower voltages ( < 34V in Fig. 5) is 

related to the hysteresis of the contact angle  or the pinning effect [46, 69]. The pinning 

effect is the tendency of the liquid to preserve its wetting or non-wetting states on the 

solid surface.  This effect plays an important role at lower voltages in which EWOD is 

not strong enough to force the liquid to wet the hydrophobic surface.  

The pinning effect tends to pin the WL to the surface. When an external force (e.g. 

due to a pressure gradient) is exerted on a WL, the pinning effect makes the WL on the 

surface stationary and as a result the contact angle is increased or reduced without the 

movement of the WL depending on the direction of the external force [26]. The EWOD 

effect tends to increase the wetted area (the contact area between the droplet and the 

surface) and therefore tends to reduce the contact angle. The droplet volume is 

constant so an increase in the wetted area means a decrease in contact angle (Eq. (3)). 

However, the EWOD is too weak at lower voltages and it could not move the WL due to 

the pinning effect and therefore the contact angle does not change. 
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The application of silicone oil to the solid surface has proved to be effective in 

reducing the contact angle hysteresis and improving the liquid’s reaction to the change 

in electric potential in EWOD setup. However such surface treatment is often not 

desirable due to the oil residues and non-uniformity of its effect.    

It is apparent that there is an onset voltage, Vonset, in which the contact angle starts 

a transition from a higher constant value to a lower constant value. The transition region 

could be understood using the Young-Lippmann’s equation [24, 70], which states that 

the contact angle is a function of the applied voltage and the surface tensions in an EW 

setup: 

      
  ((          

  ⁄ )    ⁄ ) (1) 

, where θ is water contact angle on the substrate, γsa, γws
 and γwa are the 

substrate-air, water-substrate and water-air surface tensions respectively in the 

absence of electric potential, V is the voltage and c is the capacitance (µF/m2) of the 

EWOD substrate. Since the surface tensions are constant in this experiment, and c is 

constant for a specific setup, we could simplify the Young-Lippmann’s equation to: 

  ( )     
  (     ) (2) 

, where A and B are two constants. Equation (2) could be fitted to the experimental 

data using A and B as fitting parameters (dash line shown in Fig. 5). A good agreement 

was found between the EW experimental data and the theoretical Eq. (2) for voltages 

above 30V and less than 90V. The values obtained for A and B for the best fit are -

1.8×10-2 and 7.2×10-5 (1/V2) respectively. Using γwa of 72 mN/m, the capacitance of the 

micropump EWOD substrate, c, is obtained to be 10±0.6 µF/m2.  
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The capacitance, c, and the thickness of the insulation layer, t, are related as 

  (    )  ⁄ , where ε0 is the vacuum permittivity and εr is the relative permittivity of the 

insulating layer. The dielectric layer in the fabricated micropump consists of a thin SOG 

layer and two PDMS films. The thickness of the SOG formed at 3000 RPM for 40 

seconds is 0.2 µm. Considering the known values of relative permittivity, εr, of SOG and 

PDMS (3.9 and 2.65) and the thickness of PDMS film (1.1 µm) [65], the capacitance is 

calculated to be 10 µF/m2 which is in excellent agreement with the result obtained from 

the Young-Lippmann’s equation.  

The Young-Lippmann’s fit to the contact angle vs. voltage could be utilized to 

demonstrate the efficiency of EWOD setup and used as comparative measure for 

evaluating the strength of EWOD in one device with that in other fabricated devices. For 

this purpose four parameters associated with Fig. 5 are utilized: the saturation contact 

angle, θmin, the hysteresis contact angle, θmax, the capacitance of the substrate, c, and 

the onset voltage, Vonset. EWOD setup, with a larger difference between the hysteresis 

contact angle and the saturation contact angle, is more efficient and for a higher 

capacitance, c, the switching from θmax to θmin occurs sharply and for less change in the 

applied voltage (Eqs. (1) and (2)). In addition, a lower onset voltage means a lower 

working voltage for the device. This gives an insight into the design guideline for 

energy-efficient EWOD devices. 

 

2.3.2 Working principle 

For priming, water was supplied in the channel to make contact with the 

hydrophobic surface of the EWOD substrate at the bottom of the channel and to form a 
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droplet as a positive pressure source on top of the channel (Fig. 6). A liquid meniscus is 

also formed inside the channel. The droplet and the meniscus contact angles are in a 

non-wetting state on the hydrophobic PDMS surface.  

 

 

Fig. 6  EWOD based micropump: a microchannel cast in PDMS slab is bonded to the 
EWOD substrate (PDMS/SOG/PDMS/Si). An input droplet is driven into the 
channel and a continuous constant flow is induced upon turning on the 
voltage. 

Prior to applying the voltage the droplet was stable and the liquid inside the 

channel was in the non-wetting state (Fig. 7a, b). Only, after applying the voltage 

(V=100V), the droplet starts flowing into the channel (Fig. 7c, d). The EWOD substrate 

which is in contact with the liquid, works similar to a capacitor. A fringing electric field, 

which is formed at the substrate-liquid-air interface, helps the liquid to wet the surface 

and move forward in the channel. In other words the decrease in the contact angle at 

the bottom of the channel reduces the liquid meniscus curvature inside the channel and 
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produces a positive pumping pressure. The droplet/meniscus pressure gradient is 

activated and the droplet is pumped into the channel with a uniform flow rate. 

 

Fig. 7  The micropump in operation at 100 V (a) a slanted view of the input droplet 
and the meniscus before applying voltage, (b) a magnification of the same 
meniscus in a, observed from top, (c) a slanted view of the reduced input 
droplet and the advanced meniscus in the channel after applying voltage (d) 
the same meniscus in c, observed from top which shows the increased wetting 
area. 

The micropump flow rate was measured to be uniform for different sizes of the 

droplet for the similar initial liquid length in the channel and a voltage of 100V. Since in 

microfluidic devices the flow is laminar, their performance in the laminar regime is 

enhanced by maintaining the flow at a constant rate [9]. The result shows that 

regardless of reduction in the droplet size during the operation, the flow rate remains 
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constant [71].  Nevertheless the flow rate is strongly dependent on the initial droplet size 

(Fig. 8a) and the higher flow rate is obtained from a smaller droplet. A smaller droplet 

has a higher Laplace pressure due to higher surface curvature and induces a higher 

flow rate inside the channel. Moreover the liquid flow rate in the channel is increased by 

increasing the micropump’s working voltage (Fig. 8b). The meniscus contact angle on 

the bottom of the channel is reduced by increasing the voltage. The meniscus with 

lower contact angle implies a lower pressure in the channel and therefore a higher flow 

rate is induced.   

 

Fig. 8  The volumetric flow rate in the channel is shown as a function of (a) droplet 
radius at a constant voltage of 100 V and (b) voltage for a similar droplet 
radius of 0.5 mm.  



24 
 

The droplet volume vs. time could be found from the information given in Fig. 8, if 

the initial droplet volume is known. The change in droplet volume is equal to the change 

in liquid volume in the channel, which could be obtained by multiplying meniscus 

velocity in the channel from Fig. 8 by the channel cross section area (250×60µm2). 

Since the meniscus velocity in the channel is constant, the droplet volume decreases 

linearly with time. The micropump input droplet is assumed to be a spherical cap since 

its radius, RD, is less than the capillary length for a droplet, (γwa/4ρw g)1/2,  where ρw is 

the density of water (997 kg/m3) and g is standard gravity. The droplet’s initial volume, 

VD could be calculated from: 

    (
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, where aD, is the initial droplet wetting radius and θD is the initial droplet contact 

angle (86°). Using the top view image of the droplet, the radius of wetting area, aD, 

could be measured directly and is used in Eq. (3) instead of the droplet radius, RD.  

The electrical power,  ̇, required for the operation is estimated by: 
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,where V is the EWOD voltage,   is the liquid volume in the channel and h is the 

height of the channel. The channel height, is 60 µm, c was calculated to be 10µF/m2 

and V is 100 Volt. For the smallest droplet the liquid volumetric flow rate in the channel, 
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is the highest (Fig. 8). Thus, for a flow rate of 0.012 μL/sec, the maximum power 

consumption is extremely low, 12 nW. 

 

2.3.3 EWOD microvalve 

The key concept in the pump design is the utilization of the pressure gradient 

between the droplet and the liquid in the channel as the driving pressure of the 

micropump. The pressure gradient is generated by performing EWOD in the channel. A 

flow is induced/stopped in the channel by turning on/off the voltage (EWOD microvalve).  

A numerical calculation was carried out using MATLAB to predict the switch on 

voltage of the EWOD microvalve for different sizes of the droplets. Some of the 

parameters used in the analysis are shown in the side and top views of the micropump 

schematic (Fig. 9a, and b). The size of the channel is exaggerated as compared to the 

orifice size, d, for clarity. The micropump channel has a rectangular cross section with a 

height, h, and a width, w (60µm × 250µm). Although the nominal depth of the channel is 

supposed to be 100 µm according to the data sheet provided by the SU-8 photoresist 

manufacturer (MicroChem Corp.), the channel thickness was measured at several 

different points using a surface profiler (Tencor Alpha-Step 200) to be 60µm. The input 

droplet has a radius of curvature of RD and a contact angle of θD. The liquid meniscus 

contact angles on the channel sides and top, θCh, are similar while the meniscus contact 

angle on the bottom of the channel, θEW, is smaller due to EWOD.  
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Fig. 9 Analytical model physical parameters defined on (a) side view of the 
micropump and (b) top view of the micropump.  

Also the forces exerted on the meniscus WLs on the four walls of the channel are 

shown in Fig. 10. Unlike the spherical shape of the droplet, the meniscus inside the 

channel has a complicated shape since θCh and θEW are not equal. Therefore to obtain 

the meniscus pressure, an analysis of the surface tension forces acting on the 

advancing WLs in the channel is utilized. The effect of the electrostatic force is taken to 

account by considering a reduced θEW at the bottom of the channel due to EWOD.    
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Fig. 10 Surface tension force exerted at the meniscus WL on the channel side wall (a) 
top view of the channel with the width of w. Differential length of the WL on the 
side wall is dL (b) side view of the channel with a height of h.  

The liquid meniscus in the channel is not spherical, yet due to a uniform Laplace 

pressure in the liquid, the sum of the inverse of the two radii of curvatures (1/R1+1/R2) 

should be similar at all points on the meniscus. Except for the cases with a high 

symmetry, such as a square or rectangular channel with equal contact angles on all the 

channel walls [72], and a confined droplet at equilibrium between two plates with equal 

contact angles [73], computational methods have been used to find the meniscus 

pressure [36]. Nevertheless, it is possible to calculate the pressure of the meniscus 

inside a rectangular channel for a general case (different contact angles on the channel 

walls) without the need to calculate the surface curvature.  

An expression was derived for liquid meniscus pressure, PM, based on the forces 

exerted on the meniscus WLs on the four walls of the channel. The parallel component 

of the surface tension force exerted on the liquid WL on the channel’s side wall (Fig. 
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10a, b) was found to be         . Similarly the parallel components of the surface 

tension forces exerted on the wetting lines on the top and bottom walls of the channel 

were found to be         , and          respectively. The meniscus pressure, PM, is 

derived by dividing the sum of the surface tension forces parallel to the channel by the 

channel area: 

The spherical droplet pressure, PD, from Laplace pressure equation is       ⁄ . 

The micropump driving pressure, PMP, is the difference between PM and PD: 

The micropump pressure predicted by Eq. (6) depends on the accurate estimation 

of θCh and θEW. When the EWOD valve is switching from off to on, θCh is equal to the 

maximum advancing contact angle at zero velocity which was measured to be 100○ 

[71]. θEW (Fig. 5) was scaled from 86° to 100° at zero voltage to account for the 

advancing contact angle. Eq. (6) and the voltage dependence of θEW were utilized to 

predict the micropump driving pressure at different voltages and for various droplet 

sizes (Fig. 11). The input droplet radius and the voltage are used to plot the driving 

pressure of the micropump in a 3D graph (Fig. 11). The constant pressure contours, 

including the zero pressure line, are shown on the surface. The EWOD valve will be 

opened and a flow will be induced in the channel for a combination of voltage and RD for 

which the pressure is positive, (Red region in Fig. 11). The valve remains closed if the 

pressure is negative (Blue region in Fig. 11).   
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Fig. 11  The outputs of MATLAB code showing the micropump pressure as a function 
of voltage and droplet radius in a three dimensional representation.  

For a constant RD of 0.7 mm (white dashed line) the pump pressure crosses the 

zero value as the working voltage increases (Fig. 12a). It is shown that for a very small 

droplet radius, such as 0.2 mm, the pump pressure is always positive and valve is open, 

even without applying voltage. In other words the surface curvature of small droplets is 

high enough to drive the pump by means of a high Laplace pressure inside the droplet.  

Also for a constant voltage (white dot-dashed line), the pump pressure crosses the 

zero value as the radius of the input droplet increases (Fig. 12b). For a range of droplet 

sizes in region I (Fig. 12b) the valve will be always open without applying voltage. In the 
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region II at zero voltage the valve is closed and by increasing the voltage it will switch to 

be open. Therefore region II represents the range of RD for which the droplets are 

pumped on-demand. Further increasing the voltage will increase the pressure and 

induce a higher flow rate in the channel.  
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Fig. 12  (a) Voltage effect highlighted for RD= 5, 0.7 and 0.2 mm and demonstration of 
switch in EWOD microvalve (b) droplet radius effect highlighted for V=0, 70 
and 120V and presentation of on-demand pumping.  
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The micropump pressure gradient is proportional to the liquid flow rate in the 

channel: 

               (7) 

,where K, is a geometrical constant, µw is the water viscosity, Q is the volumetric 

flow rate and Leff is the effective liquid length in the channel (the sum of the liquid length 

in the channel, LCh, orifice length, and other head losses). Equation (7) shows a direct 

relation between the micropump driving pressure, PMP and the flow rate in the channel. 

The code outputs for micropump pressure, shown in Fig. 12a and b, strongly correlate 

with the flow rate data presented in Fig. 8a and b. The flow rate decreases by 

increasing the size of the input droplet and increases by increasing the voltage (Fig. 8). 

This observation correlates with the predicted micropump pressure (Eq. (7)), which 

shows the same trend by altering the input droplet size and the voltage.  

 

2.3.4 Input droplet wetting modes 

After the pump switches on by applying the voltage, droplet shrinks in two phases: 

in phase one, the droplet wetting area remains constant as the contact angle is reduced 

to 80° (Fig. 13a to b). In phase two, both the droplet wetting area and the contact angle 

decrease (Fig. 13b to c). Several models are proposed in the past to describe different 

phases of a shrinking droplet [74-77]. However, the comparison of the different models 

reveals that a generally accepted model has not been developed yet. In general, the 

different observations could be attributed to different experimental conditions.  
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Fig. 13  Droplet pumping phases in which RD is surface radius of curvature and aD is 
droplet wetting radius (a) Stable droplet on top of the PDMS channel with an 
initial contact angle, θD, of 86º prior to applying voltage (b) phase I: aD is 
constant while θD decreases. (c) phase II: both aD and θD decrease.  

By observing the gradually evaporating droplets on a solid surface, two modes are 

described [74]. In the first mode the contact angle is decreasing with a constant wetting 

area (CWA) and in the second mode the wetting area decreases with a constant contact 

angle (CCA). Birdi and Vu have described the shrinkage of the water drop as a single 

phase phenomenon (attributed to the pinning effect) [75], in which depending on the 

initial value of the contact angle, only one of the two modes mentioned above takes 

place: CWA for solid surfaces with wetting characteristics, such as glass (θD<90°) and 

CCA for surfaces with nonwetting characteristics such as Teflon (θD>90°). 



34 
 

McHale et al. suggested a two phases model [76]. The first phase is similar to the 

previous model [75], for both hydrophilic and hydrophobic surfaces. However in the 

second phase both the contact angle and the wetting area are changing though the 

evaporation time scale is dominated by the first phase. This is due to the increasing rate 

of reduction of the contact radius and the velocity dependence of the contact angle. Yu 

et al. also have reported a two phases model [77]. However their model does not 

depend on the initial contact angle. It always starts from CWA and switches to CCA. 

This model is identical to the model used to describe the shrinkage of a passively 

pumped droplet by a surface tension based pumping method [9].  

Our observations are  in relatively good agreement with McHale et al. [76], 

although due to the micropump’s higher flow rate  the second phase is much more 

pronounced. This is the major difference between our experiment and evaporating 

droplets. The concurrent decrease of the droplet’s contact angle and wetting area is 

also observed in the forced wetting [78], in which the droplet wetting area is forced to 

move by application of an external effect, such as a pressure gradient in the 

micropump. In such case the contact angle depends on the velocity of the WL, and by 

changing the velocity the contact angle is changed [71].   
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CHAPTER 3: DROPLETS ON SOLID SURFACES AND WETTING LINE 

 

Some of the materials used in this chapter have been previously published by 

Springer: R. Shabani and H. J. Cho, “Flow rate analysis of an EWOD based device: 

how important are wetting line pinning and velocity effects?”, Microfluidics and 

Nanofluidics, 2013, DOI: 10.1007/s10404-013-1184-y. 

 

3.1 Introduction  

In devices that are designed based on EWOD, a liquid meniscus is manipulated by 

an applied voltage which reduces the contact angle of the WL formed at the boundary 

between the liquid, air, and the solid surface. The behavior of the moving WL has a 

complex nature due to the WL pinning and WL velocity effects, which alter the liquid 

contact angle on the solid surface from its equilibrium value obtained from Young’s 

equation [24, 25]. The WLE effect or pinning effect, is a result of the local microscopic 

defects on the solid surface [26], by which liquid is pinned to the surface. Therefore, 

different values for contact angle are expected depending on whether the WL is in 

advancing or receding modes. The contact angle is also changed when the WL is 

moving, depending on the magnitude and direction of the WL velocity  [27, 28].  

 

3.2 Contact angle hysteresis 

The EWOD substrate of the micropump consists of a silicon wafer, a SOG layer 

and a thin PDMS layer. Silicon wafer is a conductive layer and SOG is an insulating 

layer with a thickness of 0.2µm and a dielectric constant of 3.9. PDMS is a hydrophobic 

layer with a thickness of 1.1µm. The micropump’s input droplet is stable with a contact 
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angle of 86° before applying a DC voltage between the electrodes (Fig. 6). Upon 

applying the voltage, the droplet is driven into the channel in two phases, with a 

continuous flow. In phase I, the droplet’s wetting area remains constant until droplet’s 

contact angle decreases to 80° due to pinning. Such phenomenon has been also 

observed for a passive micropump [9].  

In contrast, in phase II, both the droplet’s wetting area and contact angle decrease 

as the droplet is driven into the channel. The further decrease in droplet’s contact angle 

is due to WL velocity effect [71]. The reported variable droplet’s contact angle on 

untreated PDMS surface is in agreement with the data reported in literature [9, 71]. 

These results are later incorporated in the flow rate analysis of the micropump. 

In an experiment, this phenomenon was studied for droplets with advancing and 

receding WLs by measuring the droplet’s contact angle, θD, with respect to its WL 

position. A syringe pump was connected to a microchannel leading to an open orifice 

formed in a PDMS layer (Fig. 14a). Pinning without EWOD was observed by injecting 

(drawing) liquid at a very low flow rate to form an advancing (receding) droplet on top of 

the orifice.  
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Fig. 14:  Experimental setups for (a) contact angle hysteresis and WL velocity effect 
and (b) pinning effect with EWOD. 

In stage 1 of the experiment, the liquid was pumped out of the orifice with a 

uniform and low flow rate of 0.1 µL/min (Fig. 15a). The contact angle remained constant 

at the advancing contact angle, θA, with an average of 86○ as the WL was moving 

forward. In stage 2 the droplet from stage 1 was drawn back into the orifice using 

refilling mode of the syringe pump. The WL was pinned to the substrate as the contact 

angle was decreasing from θA to the receding contact angle, θR, with an average of 69○.   

In stage 3, the droplet was drawn further. The droplet contact angle remained constant 

at θR as the WL was receding. Then liquid was pumped out again (stage 4) and the 

droplet contact angle increased from θR to θA while the WL was pinned to the surface. 
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Fig. 15: Contact angle hysteresis and the mode switch (a) A droplet (on top of an 
orifice formed in PDMS) with advancing (stage 1), receding (stage 3), and 
pinned (stages 2 and 4) WLs when no voltage is applied. Droplet contact 
angle, θD, decreases in stage 2 and increases in stage 4 due to pinning (b) 
Droplet contact angle versus its WL position, measured from the center of the 
droplet. Contact angle hysteresis loops for 0V and 100V.   
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The contact angle hysteresis with four stages is shown as a closed loop by plotting 

the contact angle versus WL position (Fig. 15b). Droplet’s WL position was measured 

from the center of the droplet. Interestingly, when EWOD is performed the droplet 

exhibits a similar behavior, only the contact angle hysteresis loop is shifted toward lower 

contact angles (Fig. 15b).  

A high gauge needle connected to a syringe pump was placed close to EWOD 

substrate (Si as lower electrode/ Dielectric SOG/ Hydrophobic PDMS) and used for 

injecting (drawing) liquid (Fig. 14b). The needle was also used as the upper electrode. A 

power supply was connected between the needle and the silicon substrate. Liquid was 

injected (drawn) through the needle at a very low flow rate, to form an advancing 

(receding) droplet on EWOD substrate. Contact angle hysteresis is reduced by 

increasing the DC voltage, as evidenced by the smaller area occupied by the hysteresis 

loop. This is discussed in more details in next section.   

 

3.3 Wetting line velocity effect 

The advancing (receding) contact angles are further changed by the direction and 

the magnitude of the droplet’s WL velocity [27, 78]. In next experiment this effect was 

shown for positive (advancing), zero, and negative (receding) velocities (Fig. 16a, b). 

The setup depicted in Fig. 14a, was used to observe the effect of WL velocity on 

droplet’s contact angle by increasing the injecting (drawing) flow rate (dynamic contact 

angles). The contact angle was measured versus the WL velocity using frame by frame 

video analysis.   

In stage A, a droplet is pumped out of the orifice (positive WL velocities). For a 

constant pumping rate, the droplet’s WL velocity is higher when it is small and becomes 
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lower for larger size of the droplet. A higher value for contact angle is observed for 

higher velocities. In stage B, the droplet is drawn back into the orifice without giving time 

to the droplet for relaxation. The contact angle is reduced to 80○ while the wetted area 

remains constant. The contact angle change at zero velocity (vertical line) represents 

the pinning or the hysteresis in contact angle (Fig. 16b, stage B). In stage C, the droplet 

is drawn further resulting in negative WL velocity. Here, a smaller contact angle is 

observed for higher magnitude of the WL negative velocity. 
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Fig. 16: WL velocity effect on the contact angle (a) A droplet is pumped out (stage A) 
and drawn into (stages B and C) an orifice on PDMS surface. (b) Droplet’s 
dynamic contact angle versus its WL velocity. The values of the droplet and 
channel contact angles (for a pinned WL in Stage B), θD and θCh respectively, 
are estimated and labeled. 
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In summary, a significant change in contact angle as large as 50° could be 

induced by WL velocity and pinning effects for the range of WL velocities studied here.  

The measured data for the receding WL (Fig. 16b, stage C) is used to describe the 

variable contact angle of the shrinking droplet versus its WL velocity during the phase II 

of the micropump operation [71]. 

For an initial input droplet diameter of 1 mm a meniscus velocity of 0.5 mm/sec 

was measured in the microchannel using frame by frame video analysis of the top view 

of an advancing meniscus in the channel. The liquid velocity was obtained from the 

slope of the measured meniscus position versus time. The meniscus velocity is much 

larger than the velocity of the droplet WL in Fig. 4b (<0.05 mm/sec). For such high 

velocities the method used in Fig. 16a, b is not feasible due to limitation in flow rate of 

the syringe pump and the droplet instability and deformation. Fortunately, without 

applying any voltage to the setup depicted in Fig. 6, all four walls of the channel have 

the same contact angle and θCh could be directly measured from top view images. 

Meniscus velocities, UCh, as high as 2 mm/sec, could be easily achieved inside the 

channel. Experimental data depicted in Fig. 17 are used for the contact angle on the 

side and top walls of the channel in the flow rate analysis.  



43 
 

 

Fig. 17 Dynamic contact angle in the channel, θCh, versus meniscus velocity.  

The last data needed is the liquid contact angle on the bottom of the channel, θEW, 

upon applying a DC voltage of 100V. However, the direct observation of θEW from the 

side view of the PDMS channel is not feasible unlike the observation of θCh from the top 

view. This is due to non-smooth and opaque surfaces when PDMS was cut on the 

sides. Moreover the contact angle calculated by Young–Lippmann’s equation for a 

voltage of 100V could not be used since the pinning and WL velocity effect are present 

at the bottom of the channel (dynamic θEW at the advancing WL in the channel). Instead, 

θEW was considered as a fitting parameter and the validity of values obtained for θEW 

were justified by comparing with other experimental data, i.e. the contact angle should 

be smaller in the presence of EWOD as compared to θCh. 

 

3.4 EWOD effect on wetting line pinning 

Micrographs of a droplet with advancing and receding WLs show the EWOD 

voltage effect on the WL pinning and the contact angle hysteresis (Fig. 18a). DI water 
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was injected (drawn) through a needle, at a very low flow rate to form a droplet with 

advancing (receding) WL. A high gauge needle (30G) was used to minimize the 

distortion in the droplet shape. The needle was also used to apply a DC voltage to the 

droplet Fig. 14b). To avoid the WL velocity effect, ample time was given to the droplet 

for relaxation.  

The advancing (receding) θD was measured for different DC voltages between 0V 

to 120V (Fig. 18b). For voltages less than 40V the advancing contact angle is not 

affected by EWOD (θA ~86 º), while above that, the contact angle is decreased. 

However, for voltages above 90V, the contact angle reaches its lowest value and 

saturates at θA ~ 56º [69]. A very similar pattern was observed for the receding contact 

angle, only with a larger onset voltage for EWOD to affect the contact angle (70V). Such 

transition region between the highest and lowest contact angles by increasing the 

applied voltage has been also reported previously [46]. Interestingly, the WL pinning 

effect (the difference between the advancing and receding contact angles, θA – θR), is 

noticeable at voltages below 40V (region I in Fig. 18b), while at voltages above 70V 

there is no significant pinning effect (region III in Fig. 18b). There is also a transition 

region in which the pinning effect decreases gradually since only θA is affected by 

EWOD (region II in Fig. 18b).  
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Fig. 18: WLE effect competing with EWOD (a) Droplet’s advancing and receding 
contact angles decrease by increasing the voltage from 0V to 120V. Also the 
difference between advancing and receding contact angles decreases at 
higher voltages. (b) Advancing and receding contact angles at different 
voltages (EW numbers). 
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It has been reported that for a DC voltage, the hysteresis is essentially voltage 

independent [79], while in this study a decrease in the pinning effect was observed for 

voltages above 40V (region II and III in Fig. 18b). This is due to the fact that there are 

several major differences between the experimental setups used in these two studies, 

such as the working liquid, insulating material and its thickness and also different range 

of EW numbers (Fig. 18b). 
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CHAPTER 4: DYNAMIC WETTING LINE EFFECT ON MICROPUMP 

 

Some of the materials used in this chapter have been previously published by The 

Royal Society of Chemistry and Springer: R. Shabani and H. J. Cho, “A micropump 

controlled by EWOD: wetting line energy and velocity effects”, Lab on a Chip 11 (20), 

3401-3403, 2011. 

R. Shabani and H. J. Cho, “Flow rate analysis of an EWOD based device: how 

important are wetting line pinning and velocity effects?”, Microfluidics and Nanofluidics, 

2013, DOI: 10.1007/s10404-013-1184-y. 

 

4.1 Introduction 

In this chapter, the WLE effect on static contact angle (Fig. 15), and the WL 

velocity effect on dynamic contact angle (Fig. 16 and Fig. 17), investigated in chapter 3, 

are investigated as to dominant parameters influencing the operation of the micropump 

discussed in chapter 2 (Fig. 6).  Walker et al. reported that considering the effect of the 

WLE on contact angle is crucial to predict the accurate time scale of the liquid motion; 

otherwise the calculated flow rate will be much higher than the experiments [29]. 

Dussan V. reported the relationship between dynamic contact angle and WL velocity in 

a forced wetting [27].  

 

4.2 Micropump switch in operation  

The liquid was supplied into the channel to form a droplet above the orifice. Once 

voltage is applied, the droplet begins flowing and the liquid moves forward in the 

channel (Fig. 19a-d). The meniscus position in the channel was measured versus time 
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for various droplet volumes using the similar initial liquid length in the channel and a 

voltage of 100V (Fig. 19e).  

 

Fig. 19 (a- d) Time lapse sequences of the micropump in action. (e) Micropump flow 
rate for different droplet volumes. The phase I and phase II domains are 
shown as highlighted grey and white regions. 
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In a schematic of the setup, droplet and channel contact angles are shown as θD 

and θCh respectively (Fig. 20a). Before applying the voltage between the electrodes, the 

liquid is stable with θD of 86º. The micropump operation can be divided into two phases. 

In phase I, the droplet’s wetting diameter, a, remains constant until θD decreases to 80º 

(Fig. 20b and phase I in Fig. 20d). In contrast, in phase II, both the wetting diameter and 

the θD decrease as the liquid length in the channel, LCh, increases (Fig. 20c and phase II 

in Fig. 20d). In phase II the droplet has a θD of less than 80° and a wetting diameter, a, 

larger than the orifice size (500µm). Interestingly, the micropump flow rate remains 

almost constant despite the transition from phase I to phase II (Fig. 19e). The depicted 

transition was calculated from the initial droplet volumes and the transition droplet 

contact angle of 80°. The flow stops in the channel when the drop reaches the orifice 

edge.  
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Fig. 20 Micropump operation: (a) the droplet is stable on top of the channel with the 
initial contact angle, θDI, of 86º. (b and c) By applying a constant voltage of 
100V, the droplet is driven into the channel in phase I and phase II. (d) Droplet 
contact angle, θD, vs. its WL velocity, U.  
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The pressure gradient which is developed between the droplet and the liquid in the 

channel is utilized for driving the flow. The liquid velocity in the channel V is obtained 

from: 

V = (PD – PLM) / CµLeff (8) 

, where PD and PLM are the Laplace pressures of the droplet and the liquid 

meniscus in the channel, respectively, C is a geometrical constant, Leff is the effective 

length ( the sum of Lch , orifice length, and other head losses) and µ is the liquid 

viscosity. By applying the voltage to the EWOD substrate, an electrical double layer is 

formed at the liquid-substrate interface. Similar to a capacitor the fringing electric field at 

the edge of the double layer has a component parallel to the substrate which could pull 

the double layer forward and therefore reduces θCh and increases the meniscus radius 

of curvature. Since the other three channel walls are hydrophobic the decrease in θCh is 

not enough to change the meniscus from convex to concave. However the Laplace 

pressure in the channel, PLM, will be lower which results in a positive pumping pressure 

(Eq. (8)), and the liquid is driven through the microchannel.  

The Young-Lippmann’s equation predicts static contact angles of both θCh and θD 

[24, 34, 70]. However, a constant value of contact angles θCh and θD results in an 

unstable situation in which a slight difference between the channel pressure, PLM, and 

the droplet pressure, PD, may drive the droplet into the channel or vice versa (Eq. (8)). 

The stable formation of the droplet before applying the voltage in a wide range of 

droplet volumes and LCh is not in agreement with the static contact angle predicted in 

Young-Lippmann’s equation. The direct observation of contact angles shows that the 

contact angle between the liquid, air, and the PDMS surface could change between a 
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highest and a lowest limit (advancing, θA, and receding, θR, contact angles respectively) 

due to the surface pinning induced by the defects on the surface [26] (Fig. 20d). In fact, 

the contact angle adjusts itself to resist the motion until it reaches either the lower or the 

higher limit. The pinning effect could explain the stability of the droplet before actuation. 

In order to accommodate this effect to justify the observations, the three-phase WLE 

should also be considered in Young-Lippmann’s equation [26].  

 

4.3 Wetting line velocity effect on micropump 

In addition to the WLE, which explains the contact angle variation for a constant 

wetted area (phase I, Fig. 20b), the contact angle also depends on the velocity of the 

WL [27], when the wetted area is changing (phase II, Fig. 20c). The WL velocity is the 

rate at which the liquid WL with the substrate (in the case of the droplet, the circular line 

of the droplet’s outer edge) moves on the solid surface.  

When the drop is formed on top of the orifice its WL is advancing and θD is on the 

advancing region of Fig. 20d. As it becomes larger its WL velocity, U, decreases and θD 

is reduced to θA, which in this case is 100°. Ample time is given to the droplet for 

relaxation before starting the micropump (applying the voltage) during which θD 

decreases from 100° to 86°. By applying the voltage, the droplet flows into the channel 

and θD decreases from 86 to θR which in this case is 80° (phase I in Fig. 20d).  

The pinning effect is also present inside the channel, evident by repeated short 

stops of the flow when the voltage is low. However, by increasing the voltage the 

pinning effect inside the channel decreases. The pinning effect becomes negligible at a 

working voltage of 100V, and the flow rate is stabilized.  
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Phase I ends when θD reaches 80° and for smaller contact angles, the droplet 

wetted area starts to shrink. In phase II the droplet wetted area is decreasing and θD is 

below θR. The magnitude of U increases as the droplet shrinks and the higher velocity 

results in a lower θD (phase II in Fig. 20d).  

For a shrinking droplet with a constant θD the radius of curvature, R, is shrinking. 

However for a shrinking droplet with a constant wetted diameter, a, and decreasing θD, 

R increases. In phase II both the wetted diameter and θD are decreasing which have 

opposite effects on R. We have observed that in overall R in phase II is decreasing. The 

flow stops at the end of phase II when the droplet reaches the orifice.  

 

4.4 EWOD voltage effect on micropump flow rate 

 

In a second set of experiments, the low pinning regime (region III in Fig. 18b) was 

more closely studied by changing the micropump working voltage from 60V to 100V. 

The EWOD based micropump depicted in Fig. 6 was used as the test setup. An input 

droplet with an initial size of 1 mm was used for the measurements at different voltages. 

By applying the voltage the droplet was driven into the channel. The liquid meniscus 

position in the channel was measured versus time for each voltage (Fig. 21a, b).  

Interestingly, the flow rate at low voltages (60V<V<100V) is completely nonlinear 

(Fig. 21b) and it changes drastically at different meniscus position inside the channel. 

This behavior is due to surface defects (located randomly inside the channel) which 

increase the contact angle and therefore reduce the flow rate. The influence of such 

defects seems to be lessened for higher voltages (e.g. at 100V) and hence such 

voltages are needed as the working voltage of the micropump, if a constant flow rate is 

desired. The meniscus position inside the channel versus time for different voltages are 



54 
 

calculated by a model based on WLE and WLV effects. This is discussed in more 

details in chapter 5.  

 

 

Fig. 21 EWOD voltage effect on flow rate (a) Top view pictures of the micropump’s 
channel taken in every second show the advancing meniscus at 100V. (b) The 
micropump’s meniscus position versus time for different voltages.  
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CHAPTER 5: MICROPUMP FLOW RATE ANALYSIS 

 

Some of the materials used in this chapter have been previously published by 

Springer: R. Shabani and H. J. Cho, “Flow rate analysis of an EWOD based device: 

how important are wetting line pinning and velocity effects?”, Microfluidics and 

Nanofluidics, 2013, DOI: 10.1007/s10404-013-1184-y. 

 

5.1 Introduction 

In this chapter, a combined theoretical/experimental approach based on continuity 

and energy equations is developed to study a continuous flow induced by EWOD 

micropump demonstrated in chapter 2.  An input droplet was used as a positive 

pressure source. By applying the voltage the contact angle is reduced at the bottom of 

the channel which results in a lower Laplace pressure inside the channel. Therefore, a 

positive pressure gradient is produced between the droplet and the meniscus. The 

droplet’s WL recedes as it shrinks into an orifice leading to the channel. The WL pinning 

and the WL velocity effects, discussed in chapter 3, need to be taken into account to 

describe the dynamic contact angles at the WLs: (i) the droplet’s receding WL, (ii) the 

advancing WLs of the liquid meniscus on the upper and side walls of the channel, and 

(iii) the advancing WL at the bottom of the channel with a reduced contact angle due to 

EWOD. These two effects are crucial to developing a physically-relevant model for the 

flow rate analysis (for more details see the discussion in chapter 4). This is due to the 

fact that the accurate estimation of the contact angles is necessary to calculate the 

induced droplet/meniscus pressure gradient [37], and subsequently the micropump’s 

flow rate.  
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5.2 Experimental assumptions 

The EWOD substrate of the micropump consists of a silicon wafer spin-coated 

with a stack of three thin films of (i) polydimethylsiloxane (PDMS), (ii) spin on glass 

(SOG) and (iii) a second layer of PDMS, (Fig. 6). Silicon wafer is a conductive layer. 

SOG is an insulating layer with a thickness of 0.2µm and a dielectric constant of 3.9 (Pai 

1987; Wang et al. 1997). The first PDMS layer (on silicon) was found to improve the 

quality of the insulating layer by covering the surface defects. The second PDMS layer 

is used as a hydrophobic layer with a thickness of 1.1µm. SU-8 mold on a different 

silicon wafer was used to cast a microchannel in a PDMS slab (soft lithography). The 

PDMS slab was bonded to the EWOD substrate to form a closed channel. A syringe 

pump was connected to the microchannel as shown in Fig. 6. The liquid flowed through 

the channel and then through a via-hole which has a bigger cross-section compared to 

the channel, forming a droplet on top of the orifice. The micropump’s input droplet is 

stable with a contact angle of 86°. Only after applying a DC voltage between the silicon 

wafer and the steel pin (electrodes) the liquid will flow through the channel. 

The input droplet is driven into the channel in two phases. In phase I, the droplet’s 

wetting area remains constant until droplet’s contact angle decreases to 80° due to 

pinning. Such phenomenon has been also observed for a passive micropump [9]. In 

contrast, in phase II, both the droplet’s wetting area and contact angle decrease as the 

droplet is driven into the channel. The further decrease in droplet’s contact angle is due 

to WL velocity effect [71]. The reported variable droplet’s contact angle on untreated 

PDMS surface in chapter 3 is in agreement with the data reported in literature [9, 71]. 

These results are incorporated in this chapter for the analysis of the micropump 

constant flow rate. 
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The measured data for the receding WL (Stage C in Fig. 16b) is used to describe 

the variable contact angle of the shrinking droplet versus its WL velocity during the 

phase II of the micropump operation [71]. Also the experimental data depicted in Fig. 

16c are used for the contact angle on the side and top walls of the channel, θCh in the 

flow rate analysis.  

The last data needed is the liquid contact angle on the bottom of the channel, θEW, 

upon applying a DC voltage of 100V. However, the direct observation of θEW from the 

side view of the PDMS channel is not feasible unlike the observation of θCh from the top 

view. This is due to non-smooth and opaque surfaces when PDMS was cut on the 

sides. Moreover the contact angle calculated by Young–Lippmann’s equation for a 

voltage of 100V could not be used since the pinning and WL velocity effect are present 

at the bottom of the channel (dynamic θEW at the advancing WL in the channel). Instead, 

θEW was considered as a fitting parameter and the validity of values obtained for θEW 

were justified by comparing with other experimental data, i.e. the contact angle should 

be smaller in the presence of EWOD as compared to θCh. 

 

5.3 Derivation of governing equations  

A novel approach for flow rate analysis is introduced by taking a dynamic contact 

angle into account in writing energy equation for the system. This is an improvement 

over sophisticated commercial software, limited only to equilibrium Young contact angle 

[36], based on Young’s equation. 

 Here we need to highlight that (a) the flow rate inside the channel is a function of 

the meniscus contact angle and (b) the contact angles themselves are a function of the 

flow rate. Therefore, a self-consistent solution could be obtained only using implicit 



58 
 

computational methods. The algorithm for this approach is developed following the 

continuity and energy equations and its physical implications are demonstrated. The 

proposed algorithm could be fitted to various microfluidic systems with different 

geometries for flow rate estimation. A numerical calculation was carried out using 

MATLAB. Some of the parameters used in the analysis are shown in the side and top 

views of the micropump schematic (Fig. 9a, and b). The micropump driving pressure, 

PMP, derived in chapter 2 (Eq. (6)) is repeated below for the readers:  

       (
 

  
 
((    )               )

  
) 

The total driving pressure in Eq. (6) should be equal to the viscous pressure loss 

in the channel,      . The channel head loss, hf, is obtained from the Darcy-Weisbach 

equation to be           
  (    )  in which f is the friction factor, Leff is the effective 

liquid length in the channel (the sum of LCh, orifice length, and other head losses), UCh is 

the liquid velocity in the channel, and DH is the hydrodynamic diameter. The DH of the 

rectangular channel with a width, w, and a height, h, is equal to    (   )⁄ . The 

Reynolds number for the flow in the channel with an order of 1mm/s is calculated to be 

~0.1 using DH. Thus assuming a laminar flow in the microchannel, the friction factor will 

be       ⁄ . The relation between the micropump pressure, PMP, and the liquid velocity 

in the channel, UCh, is expressed by:  

       (       (  ⁄    ⁄ ) )⁄  (9) 

Bond number measures the relative strength of gravity with respect to surface 

tension and is defined as     
    ⁄ , where L is the characteristic length scale e.g. the 
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droplet’s radius or the height of the microchannel. The bond number for the droplet with 

an order of size of 1mm is small (~0.1) and hence the gravity is neglected throughout 

the rest of the analysis.  

The capillary number is the ratio of viscous force to the surface tension force 

acting across the WL and is defined as         ⁄ , where µw is the liquid’s viscosity, 

and UCh is the WL velocity. The capillary number is calculated to be much smaller than 

unity (~ 10-5) for water’s viscosity of 1mPa.s and surface tension of 72mN/m and an 

order of WL velocity of 1mm/s. Thus the surface tension force dominates the inertial 

force.  

The dimensionless EW number represents the ratio of the electrostatic energy to 

the surface tension and is defined as        ⁄ , where c is the capacitance of the 

EWOD substrate and is calculated to be 10 µF/m2 [80], and V is the applied DC voltage. 

The EW number for the EWOD setup is calculated to be 1 for the applied DC voltage of 

120V. Therefore for the range of the applied voltages, a substantial contact angle 

decrease could be achieved at the WL in the channel.  

 

5.4 Model 1 based on wetting line energy and velocity effects  

Eqs. (6) and (9) were implemented to develop an algorithm for flow rate analysis 

based on the WLE and WLV effects (Model 1 WLE & WLV). The continuity equation 

implies that the rate of the shrinkage of the input droplet is equal to the liquid flow rate in 

the channel. The initial θD for the input droplet was assumed to be equal to the relaxed 

advancing contact angle at zero voltage which is 86° (Fig. 15b).  

In phase I of the micropump, θD changes from 86° to 80° with a constant droplet 

wetted area due to the pinning. In Phase II, in which droplet’s WL is receding, the data 
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from Fig. 16b is used to estimate θD for the receding WL of the droplet. The data in Fig. 

17 is used to find θCh, in phases I and II for the advancing WL in the channel. The liquid 

contact angle on the bottom of the channel, θEW, was obtained by flow rate analysis.  

Since in one hand θCh is a function of UCh (Fig. 17) and in the other hand UCh is a 

function of θCh (Eqs. (6) and (9)), an implicit approach was used here to calculate θCh 

based on the self-consistency of the results.  In each time step a guess value for θCh 

was chosen, and then UCh was calculated from Eqs. (6) and (9). However, it should be 

noted that the assumed θCh and the value obtained for UCh should be in agreement with 

the data shown in Fig. 17. Therefore, the initial value for θCh was modified until the 

calculated UCh shows a good agreement with the experimental data.  

Fig. 22 shows an excellent agreement between the measurement and numerical 

values obtained by model 1 (WLE and WLV), using θEW of 82° for an initial droplet size 

(2aD) of 1.06 mm. Fig. 22a shows the experimental and calculated values for the radius 

of droplet wetted area, aD and droplet contact angle, θD and also calculated values for 

droplet radius of curvature, RD, versus time. The transition from phase I to phase II is 

marked with vertical dashed line at 4.8 sec. In Fig. 22b, PD and PM are shown as the 

droplet is driven into the channel. The droplet pressure decreases in phase I from 271 

Pa to a minimum of 267.3 Pa and increases again in phase II. However, the driving 

pressure which is the difference between the PD and PM increases monotonically to 

overcome the increasing viscous loss. In Fig. 22c the estimated liquid meniscus position 

versus time is compared to the measurement data. The calculated data exhibits the 

linear behavior as the experimental data. 
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Fig. 22 Model 1 WLE and WLV numerical values for (a) Droplet’s θD, aD, and RD 
versus time. Measurement data for θD and aD are plotted. (b) PD and PM vs. 
time. (c) Meniscus position versus time. Circles are the data and solid line is 
the best fit to the data. Dashed line and dot-dashed line show the effect of a 
small change in θEW (±1○) on the convergence of the fit.    
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In phase I of micropump operation, θD is reduced (Fig. 22a), resulting in an 

increase in RD and subsequently a decrease in the droplet pressure (Fig. 22b). 

However, phase II is more complex since both aD and θD are changing (Fig. 22a). 

Therefore the change in PD and PM is non-monotonic in phase II. Interestingly, the 

meniscus pressure seems to follow the droplet pressure and therefore the driving 

pressure of the pump (the difference between PD and PM) remains small over time (Fig. 

22b).  

This phenomenon is the underlying reason for the constant flow reported for this 

micropump. Since the size of the meniscus in the micro-scale channel is much smaller 

than the droplet’s free surface, small changes in θCh (±0.1°) could change PM sufficiently 

to compensate for the change in PD (Fig. 22b). Therefore, the variation in micropump’s 

pressure induced by the shrinking input droplet would result in small variation of 

meniscus contact angle. Since θCh and UCh are linked through WL velocity effect, such 

small changes in θCh, also imply negligible changes in the liquid velocity in the channel 

which explains why the liquid velocity and therefore the flow rate remain nearly 

constant. The dynamic contact angle of the meniscus in the channel is the dominant 

factor determining the flow rate according to this analysis.  

 

5.4.1 Droplet size effect 

The meniscus velocity in the channel is higher for smaller sizes of the droplet [71]. 

The numerical values obtained by model 1 WLE and WLV are in good agreement with 

the experimental data for the meniscus position in the micropump’s channel for different 
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sizes of the droplet (Fig. 23). The analytical fits to the data follow a similar linear 

behavior as the experimental data.   

 

 

Fig. 23 Model 1 WLE and WLV predicting the meniscus position versus time for 
different diameter of the droplet wetted area, 2aD. Markers are measurement 
data and solid lines are the best fits to the data. 

 

5.4.2 EWOD voltage effect 

In a second set of experiments, the low pinning regime (region III in Fig. 18b) was 

more closely studied by changing the micropump working voltage from 60V to 100V. By 

applying the voltage the droplet was driven into the channel. The liquid meniscus 
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position in the channel was measured versus time for each voltage (Fig. 24). Since the 

location of surface defects cannot be measured inside the channel, any attempt to 

model such a complex system could only aim to obtain the effective average flow rates 

but not the local values. Fig. 24 shows the experimental and calculated meniscus 

positions versus time at different voltages. A better agreement is obtained between the 

calculated and the measured data when the EWOD voltage is high enough to suppress 

the effect of local surface defects on dynamic contact angle.  

 

 

Fig. 24 Model 1 WLE and WLV predicting meniscus position versus time for different 
voltages. Markers are measured data and solid lines are the best fits to data.  
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The calculated θEW for different voltages (Fig. 25) is higher than the relaxed 

advancing contact angle at a similar voltage (Fig. 18b). This is in agreement with the 

concept of dynamic contact angle which shows larger values for larger advancing 

meniscus velocities. 

 

 

Fig. 25 Numerical values for θEW versus EWOD voltage, calculated by model 1 WLE & 
WLV. 

 

5.5 Comparison with wetting line energy model and Young contact angle 
model  

In order to highlight the importance of considering the WLE and WLV effects on 

the moving WL, two further models (models 2 and 3) were developed and compared to 

the comprehensive model 1 shown in the previous section.  

The model 2 is based on the WLE effect [26], and does not include the WL velocity 

effect on contact angle (Model 2: Young-Tadmor). In model 3, neither the pinning effect 
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nor the WL velocity effect was considered and the contact angle was assumed to be 

equal to the equilibrium Young contact angle (Model 3: Young). The assumptions and 

the contact angle values for each model are reported in Table 2 for comparison.  

Table 2  Experimental assumptions and dynamic contact angles for models 

 
Assumptions θ

D
 (Phase I) θ

D
 (Phase II)  θ

Ch
 θ

EW
                 

Model 1  Comprehensive          

(WLE & WLV)  

86°→80° 

(a
D
 CONST) 

Fig. 16b  Fig. 17 82° 

Model 2  Young-Tadmor        

(only WLE)  

86°→80° 

(a
D
 CONST) 

80° 100° 88° 

Model 3  Young equation  

(Young contact angle) 

86° 86° 86° 109° 

      
 

The numerical values for the liquid meniscus position in the channel for an initial 

diameter of the droplet wetted area, 2aD, of 1.06 mm are plotted for model 1(Fig. 22c) 

and for models 2 and 3 (Fig. 26a and b respectively). The values obtained for the θEW, 

for models 1 to 3, are tabulated in Table 2. In model 3 based on equilibrium Young 

contact angle (Fig. 26b), a large gap exists between the measured and the predicted 

flow rate [29, 39]. Model 2 provides a better fit to measured data (Fig. 26a) as compared 

to the model 3 by taking to account the pinning effect. The predicted flow is significantly 

improved by including the WL velocity effect in model 1 (Fig. 22c). The sensitivity of the 

calculations to θEW is also investigated. In model 1, if θEW is changed by 1°, the 

estimated flow in the channel will slightly vary, while maintaining its linear behavior (Fig. 

22c), unlike models 2 and 3 which are very sensitive to small changes in θEW (Fig. 26b, 

c). This also shows the accuracy of the estimated θEW by model 1. It is expected that the 
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contact angle is reduced at the bottom of the channel due to EWOD [70]. The value 

obtained for θEW (82○) is reasonable since it should be smaller than, θCh, with a value of 

104°, due to EWOD. 

  

Fig. 26 Meniscus position versus time for (a) Model 2 (Young-Tadmor) and (b) Model 
3 (Young). Circles are measurement data and solid lines are the best fits to the 
data. Dashed lines and dot-dashed lines show the effect of a small change in 
θEW on the convergence of the fit.      
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Although the comprehensive model 1 utilizes several nonlinear experimental 

equations, its estimation of flow rate provides an excellent agreement with the observed 

constant flow rate. Such comparison shows the importance of taking both the WLE and 

the WLV effects into account for an accurate and realistic flow rate analysis.   



69 
 

CHAPTER 6: DROPLETS ON LIQUID SURFACES AND TRIPLE 
CONTACT LINE 

 

Some of the materials used in this chapter have been previously published by 

American Institute of Physics: R. Shabani, R. Kumar, and H. J. Cho, “Droplets on liquid 

surfaces: dual equilibrium states and their energy barrier”, Applied physics Letters, 102, 

184101, 20132013. 

 

 

6.1 Introduction 

 

The formation of floating aqueous droplets on the free surface of immiscible liquids 

has application in digital microfluidic devices [49], as well as material transportation and 

mixing in lab on a chip [50, 51]. The floating non-coalescent (NC) water droplets were 

first observed by Reynolds on the water’s free surface [55]. Although describing the 

floating droplet has been of interest, to our knowledge a general solution has not been 

provided for the dual equilibrium states [51, 59, 60]. Further, while the non-coalescence 

of a droplet on the free surface of the same liquid is widely studied, the studies using 

immiscible liquids are scarce.  

 

6.2 Stable configurations of floating droplets  

 

An oil phase (FC-43, 3M) at 25οC with a surface tension, γoa, of 16 mN/m and a 

density, ρo, of 1860 kg/m3 was used as a base medium for formation of floating droplets. 

A droplet of water at room temperature (25οC) with a density, ρw, of 997 kg/m3 was 

released on the free oil surface using a high precision needle connected to a syringe 
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pump. The water droplets are released due to a gravity driven pinch-off from the tip of 

the needle [60]. The stable configuration of the droplet at the air-oil interface depends 

on the height from which the droplet is released and the surface tension of the three 

phases. If the droplet is released from within a range of height, it will not rupture the free 

surface as it does not have sufficient momentum. Instead, it will rest on the stretched 

free surface which is deformed by the weight of the NC droplet (Fig. 27a, c).  

 

 

 

Fig. 27 Stable configurations of aqueous droplets at oil-air interface: (a) NC droplet 
resting on a stretched and deformed free surface (b) C/B droplet with TCL (c, 
d) the effect of the droplet size on the deformation of the free surfaces. 
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Bond number (defined as      
    ⁄ ) for a droplet radius, RD, with an order of 

1mm is small (~0.1) and hence a uniform pressure is assumed inside the droplet. The 

droplet is assumed to be spherical from Laplace pressure equation [51]. By increasing 

the droplet release height, HR, it gains more energy to rupture the free surface and 

becomes submerged. However the droplet is held up by the buoyancy force (ρo >ρw) 

and becomes stable at the oil-air interface. The water droplets shown in Fig. 27b and d 

have two parts of cap in air and bead in oil (C/B droplet). A triple contact line (TCL) is 

formed at the circular perimeter of the intersection of the spherical cap and bead. 

 

6.2.1 Probability of formation of non-coalescent droplets versus Weber number 

 

The probability of formation of NC droplets was studied as a function of the 

droplet’s HR. Different gauge needles (35G to 23G) were used to release droplets of 

different sizes. A hundred droplets were released from each needle and weighed to 

calculate the equivalent droplet radius, RD, for each needle [54]. The probability of 

formation of the NC droplets (percentage of the observed NC droplets to the total 

droplets released) is measured as a function of HR for different droplet sizes. Since it is 

more appropriate to use dimensionless parameters [54], Fig. 28 shows the results as a 

function of Weber number which is the ratio of the droplet kinetic energy to the base 

medium surface energy, (         )    ⁄ . It could be used to show whether the 

released droplet from a specific HR, has sufficient kinetic momentum to overcome the 

liquid surface energy and break up its free surface. As Weber number increases, 

breaking up the free surface becomes easier for the droplets, and the probability of 

formation of NC droplets becomes zero. However, the complexity of NC droplet 
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formation could not be captured by We number only. Fig. 2 shows that for a similar 

Weber number the probability increases as RD decreases. This is due to the fact that 

Weber number compares the droplet kinetic energy with the surface energy of the base 

medium, which is not the only obstacle that a falling droplet faces to break the surface. 

Other energy terms such as the gravitational potential energy of the displaced base 

medium and energy used for wave formation should be taken into account as discussed 

in the next section. 

 

Fig. 28 The probability of formation of NC droplets versus Weber number obtained for 
different droplet’s radii, RD. 

For each droplet size there is a transition region, in which the probability of forming 

NC droplets changes from 100% to 0% by increasing HR (Fig. 28). This transition region 
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is wider for higher RD and becomes sharper as RD decreases. NC droplet formation in 

transition region shows a statistical nature which is more pronounced for larger droplets. 

This might be understood in terms of wave energy dissipation and the time required for 

damping the initial oscillation of droplet surface upon pinching off from the needle. While 

a small droplet quickly attains its stable shape (spherical) the lager droplet may not 

have enough time to dissipate the facial waves which may affect the NC to C/B 

transition. 

Here it should be mentioned that even the droplets that survive the first impact and 

stay on the surface (NC droplets), will at some point coalesce with the oil surface and 

sink down to C/B configuration [54, 55]. This observation demonstrates that the latter 

has a lower energy and thus is more favorable while the NC configuration is metastable.  

 

6.2.2 Non-coalescence of droplets due to thin film of air 

Several studies have been focused on the physical origin of NC droplets in 

different experimental setups with inclined or horizontal free surfaces of base mediums 

and also various surrounding mediums with different surface tensions, densities and 

viscosities [51, 54-58, 81]. A thin film of air between the droplet and the free surface is 

believed to be responsible for the formation of NC droplets by preventing the two liquids 

to wet [54, 81-84].    

The existence of such film has been confirmed in literature using different methods 

such as the mirror-like reflection, an infinite electrical resistance [85], and no material 

transfer between the droplet and the base medium [54]. This is also obvious in the case 

of miscible liquids in which the droplet should make contact and mix with the base 



74 
 

medium if there was no air gap between them. The air layer thickness was reported to 

be about 10μm [51, 85], much larger than the van der Waals attraction range 

(10nm)[54]. The air film’s slow drainage postpones droplet coalescence [82], due to the 

lift generated by the lubrication effect of the flowing air film [57]. However, the effect of 

the air film is merely limited to separating the two surfaces and it does not bring any 

external forces into the system. At last the purity of the base liquid’s free surface and 

the surrounding medium from dust particles is essential in stability of the NC droplets 

[55, 56]. 

 

6.3 Energy analysis and prediction of stable equilibrium states 

Energy analysis was done separately for two observed configurations, since the 

transition from NC to C/B is not continious and the energy is not a well behaved function 

during the transition. Therefore, two different sets of parameters were defined to 

describe the geometries of the two observed configurations (Fig. 29a, b).  
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Fig. 29 Physical and geometrical parameters used in energy analysis of (a) NC droplet 
and (b) C/B droplet configurations. 

The ratio of the radii of curvature of the cap and bead (Rcap and Rbead respectively) 

is proportional to the ratio of surface tension of water in contact with air and oil (γwa and 

γwo respectively) due to uniform Laplace pressure in the droplet [49]. γwa and γoa are 

known to be 72mN/m and 16mN/m respectively at 25οC. The Interfacial tension 

between water and FC-43, γwo was estimated to be             ⁄  using a method 

shown by Fox [86]. The three surface tension satisfy the Neumann’s inequalities, which 
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means none of the surface tension between any pair of fluids exceed the sum of the 

other two [87]. If the Neumann’s inequalities are not satisfied, a TCL will not be formed 

between the three phases [87]; and one of the phases will be fully submerged in one of 

the two other phases (fully submerged configuration) [49, 87]. The radius of the cap’s 

circular base area,            , is equal to the radius of the bead’s base area, 

             . The droplet volume is constant and is equal to the sum of the cap and 

the bead volumes. The net force per unit length of TCL has to be zero in a stable 

configuration and therefore knowing the three surface energies, and using Neumann’s 

triangle concept, three contact angles of θa, θo, and θw (defined inside air, oil, and water 

respectively) are found.   

The total energy of both floating droplet configurations, Enet, is the sum of the 

gravitational potential energy of (i) the water droplet, UD, and (ii) the displaced liquid 

volume of the base medium, UDL, as well as (iii) the total of the surface energies of the 

interfaces between each two phases, ES:  

                (10) 

For the NC droplet, φD and for the C/B droplet, φcap were changed as the 

independent variables. The droplet’s vertical position varies as φD for NC droplet (φcap 

for C/B droplet) changes. Assuming that the pool of the base medium is large, the 

Young-Laplace equation for an axisymmetric problem (in the cylindrical coordinates) 

was used to describe the free surface profiles of the base medium, in both 

configurations [51, 60, 87, 88]. The Young-Laplace equation is a relation between the 

hydrostatic pressure difference across the oil-air interface and its local mean curvature:   
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        [
      ⁄

(  (    ⁄ ) )  ⁄
 

    ⁄

 (  (    ⁄ ) )  ⁄
]    (11) 

,where y and r are the height and the radial distance of a point on the free surface 

profile in cylindrical coordinates (Fig. 29a, b).  

 

6.3.1 Calculation of liquid free surface profile 

In the NC droplet configuration, an inflection point on the free surface profile exists 

in which its second derivative,  ̈, changes its sign from positive to negative as r 

increases. Since the lower part of the droplet’s profile with a radius of RD, has a 

positive  ̈, it starts to loose contact with the free surface’s profile at this point (Fig. 30a). 

The droplet’s inflection angle, φD measures the angle between the bottom of the droplet 

and the inflection point (Fig. 30a). The depth of the inflection point from the height of the 

free surface (far from the droplet) is h. In the C/B droplet configuration, the TCL’s height 

from the height of the free surface is h (Fig. 30b). The cap angle, φcap, is the angle 

measured from the cap’s top point to TCL. An iterative procedure in a MATLAB code 

was utilized to find the key parameter of h for both configurations using Eq. (11) with the 

boundary conditions shown in Fig. 30.  
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Fig. 30 The calculated oil’s free surface profiles and the boundary conditions used in h 
estimation in (a) NC droplet configuration and (b) C/B droplet configuration. 

In NC droplet configuration, φD was changed from 0 to 90 degrees to find the 

equilibrium state, thus the first derivative of the free surface profile,     ⁄  equal to 

      was changed from zero to infinity. Therefore     ⁄  and       ⁄  were 

substituted with     ⁄  and       ⁄  respectively in Eq. (11) and a similar algorithm was 

implemented to find h, for higher values of     ⁄ . 
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6.3.2 Droplet’s size effect on liquid surface deformation 

Using the calculated profile of the free surface, the area of the deformed oil-air 

interface and the volume of the displaced base medium and finally Enet are calculated. 

As expected, the energy analysis predicted a minimum of Enet (equilibrium state) for 

each configuration. The MATLAB code outputs were imported to Pro/E to generate the 

three-dimensional images of a floating droplet at the oil-air interface in both equilibrium 

configurations. These images depicted in Fig. 31 show good agreement with the 

pictures taken from floating droplets with similar sizes, for both configurations in Fig. 27. 

As expected, smaller droplets deform the surface to a less extent as compared to larger 

ones (Fig. 31c, d). φD for NC droplets and φcap for C/B droplets were measured for RD of 

0.9mm to 1.4mm (needle gauges of 35G to 23G). A good agreement between the 

experimental data and the values predicted by energy analysis were obtained (Fig. 

31e). The gravity contribution as compared to that of the surface tension force becomes 

negligible at small droplet size limit (RD 0), due to the scaling effect. Therefore the 

energy analysis results in φD=0, for a NC droplet but a non-zero φcap, for a C/B droplet 

(π-θa) when RD approaches zero. 
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Fig. 31 Energy analysis simulation of both equilibrium states: (a) NC droplet and (b) 
C/B droplet (c, d) the effect of droplet size on the deformation of the free 
surface (e) φD for NC droplets and φcap for C/B droplets versus droplet radius. 
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6.3.3 Force analysis  

To further confirm the results obtained by energy analysis, force analysis was also 

conducted [89, 90]. The states of the droplet in different vertical positions are called the 

mechanically enforced stationary states and could be achieved by using a hypothetical 

external force which could compensate for the net vertical force acting on the droplet 

[89, 90]. A mechanically enforced state is an equilibrium state only when the external 

force needed to achieve a stationary state is zero. For a floating droplet in a stable 

equilibrium state with the minimum Enet, the net force exerted on the droplet, Fnet must 

be zero. Fnet consists of the weight of the droplet, FW, the buoyancy force, FB, and the 

surface tension force, FS.  

 ⃗     ⃗   ⃗   ⃗  (12) 

The surface tension force is exerted on a NC droplet from the stretched free 

surface along a circular line passing through the inflection point (Fig. 32a). In case of 

C/B droplet the surface tension force is exerted on the droplet from the deformed free 

surface along the TCL (Fig. 32b). The buoyancy forces for NC and C/B droplets were 

obtained by calculating the displaced oil volumes (grey parts of the droplets in Fig. 32a 

and b respectively).   
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Fig. 32 The free body diagrams of (a) NC droplet and (b) C/B droplet. Arrows show 
the surface tension force, FS, the buoyancy force, FB and the droplet’s weight, 
FW. 

A perfect agreement was obtained between the two methods and similar values 

for equilibrium states were found (Fig. 33a, b). In NC droplet configuration, an 

equilibrium state was predicted in which Fnet was calculated to be zero (Eq. (12)) for a 

φD of 35ο and Enet (Eq. (10)) was obtained to be minimum.  In C/B droplet configuration, 

similar results were shown for a φcap of 30 ο.  
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Fig. 33 Enet and Fnet for a droplet with RD of 1mm plotted for (a) φD for NC droplet and 
(b) φcap for C/B droplet.  

 

6.4 Estimation of energy barrier between dual equilibrium states 

 

 As it was mentioned before if the droplet’s kinetic energy is not enough to 

puncture the oil surface it will form the NC configuration. Interestingly, the energy 

analysis could be utilized to estimate the energy barrier that the droplet should 
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overcome to puncture the surface and reach the more stable C/B configuration. Enet 

divided by droplet’s weight, wD was plotted versus the height of the center of the mass 

of the droplet from the free surface, hc (Fig. 34a). The energy reference point was 

chosen as state I in which the droplet is right on top of the free surface without 

deforming the oil-air interface. If the droplet has enough kinetic energy it will pass the 

first equilibrium point (state II) and reach the largest possible surface deflection (state III 

in Fig. 34b) where φD is 90ο (supporting surface tension force, FS, is vertical). 

After this point the droplet breaks the oil surface and sinks to state IV in C/B 

configuration. Finally by dissipating the extra energy in a damped oscillation between 

states IV and VI, it will settle down in the more stable state V (Fig. 34c). Therefore the 

energy barrier to achieve C/B configuration is the energy difference between state III 

and state I. The highest release height for which the NC droplets are formed with a 

probability of 100%, HR,1, should be equal to Enet of state III divided by wD (Fig. 34a). 
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Fig. 34 The transition between the floating droplet’s stable equilibrium states with a RD 
of 1mm (a) Enet divided by wD versus hc (b) NC droplet in states I to III (c) C/B 
droplet in states IV to VI. 
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However, by correlating the calculated HR,1 with the measured HR,1 for different RD 

(Fig. 35), it was found that  consistently a lower value is obtained as compared to the 

experiment. Since the calculated value is the theoretical upper limit, the higher value 

obtained in experiment shows that other phenomena resulting in energy dissipation 

should be considered [84]. The formation of capillary waves at the oil surface, and also 

the longitudinal waves inside the base medium created by the droplet impact could 

carry away part of the droplet’s kinetic energy [81, 85]. 

 

Fig. 35 Highest release height to form NC droplets with a probability of 100%, HR,1, for 
different droplet’s radius, RD.   

Interestingly, it was found that the thickness of the oil base affects HR,1 which not 

only confirms the creation of waves but also shows that the reflection from the bottom of 

the container may affect HR,1. Therefore in this study a thick layer of oil was used where 

the reflected wave has no effect on the stability of the droplets. Further study is required 

to investigate the wave reflection phenomena. 
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6.5 Non-dimensional analysis of liquid surface deformation  

Further the effect of the droplet size on its stability was studied by calculating Enet 

for different RD of NC and C/B droplets. For the NC droplet, Enet has a minimum at a 

particular φD for all the droplet’s RD (dot-dash line in Fig. 36a). The minimum Enet 

decreases as the droplet size increases, thus a bigger NC droplet is stable with a lower 

energy. A similar size effect is shown for a C/B droplet (Fig. 36b). 

  

Fig. 36 Enet versus RD and (a) φD for a NC droplet and (b) φcap for a C/B droplet. The 
dot-dash lines show the minimum Enet decreases by increasing RD. 
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Based on the force and the energy equations (Eq. (10) and (12)) two non-

dimensional parameters of     ⁄  and the inverse of Bond number,     , were 

introduced. The non-dimensional     ⁄ , is calculated by the energy analysis and 

plotted versus the two non-dimensional groups of parameters (Fig. 36c). This parameter 

represents the deformation of the free surface, which as expected is less for larger      

and    ⁄ .  

 

Fig. 37 Oil’s free surface deformation factor, hc/RD, versus the non-dimensional 
parameters of Bo-1 and ρo/ρw obtained from the force balance and energy 
equations. 
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CHAPTER 7: CONCLUSIONS 

In this dissertation, both experimental and theoretical studies were conducted to 

explain physical phenomena observed at an interface formed between two fluids and a 

solid phase (wetting line), and an interface between three fluids (triple contact line). 

In the first part of this dissertation, the pressure gradient induced between the 

droplet and the meniscus in the channel was used to design a micropump with no 

moving parts and the fabricated device itself was used as a test platform to study 

various interfacial phenomena. Altering the surface tension by changing the electric 

potential in EWOD (electrowetting on dielectric) was introduced as an efficient method 

for flow regulation, which provides on demand flow on/off capability. The micropump 

was made using one mask fabrication process and could be operated at preset 

voltages. The EWOD substrate was evaluated using four parameters: capacitance, 

hysteresis contact angle, saturation contact angle, and onset voltage. The non-

mechanical valving method based on switching EWOD voltages and the on-demand 

pumping method with respect to various droplet sizes were proposed and explained. 

The predicted driving pressure from the EWOD valve model was correlated to the 

measured data for the liquid flow rate in the channel. The developed micropump is 

simple in its design and fabrication and yet provides the on-demand supply function with 

much desired features such as short response time, low power consumption, no fluid 

leakage, no dead volume, disposability and biocompatibility. 

A model based on the forced wetting was developed for explaining the behavior of 

the actuated input droplet. In the first phase the droplet wetting area is constant while 

contact angle is decreasing and in the second phase the droplet contact angle and the 
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wetting area are decreasing simultaneously. A systematic approach was utilized to 

show the importance of taking account of the dynamic contact angle and explain the 

behavior of microfluidic devices that involve a moving WL. Dynamic contact angles 

observed in both the source droplet and the meniscus inside the microchannel of the 

EWOD pump were studied. Further, the WL-related phenomena were comprehensively 

studied, since the device performance was strongly affected by contact angle 

hysteresis, WLV effect, and EWOD. 

Some of the major experimental findings were as follows: (1) a mode switch in 

micropump operation originates from the contact angle hysteresis; (2) the dynamic 

contact angle based on the magnitude and direction of WLV in a microscale channel is 

responsible for constant flow rate; (3) EWOD reduces the contact angle for voltages 

larger than an onset voltage and its effect saturates at higher voltages, and (4) EWOD 

could reduce the pinning effect using DC voltages. 

A flow rate analysis of the EWOD micropump, based on the continuity and energy 

equations by implementing the aforementioned experimental observations, 

was conducted. The predicted flow rate was in excellent agreement with the measured 

constant flow rate of the micropump. 

The lower pinning effect at higher working voltages leads to a relatively higher and 

constant flow measured in the channel. The effect of EWOD voltage on the flow rate 

was modeled, and the numerical values obtained by comprehensive model, based on 

WLE and WLV effects, for the dynamic θEW were verified against the relaxed advancing 

contact angles at a similar voltage. 
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Simpler models, based on Young’s equation (equilibrium Young contact angle) 

and Young–Tadmor equation (incorporating the pinning effect on contact 

angle) were developed for comparison. They showed disagreement between 

the numerical and measured flow rates, and resulted in an unphysical behavior for the 

system. Such examples demonstrate the importance of inclusion of the 

aforementioned wetting-line energy and wetting-line velocity effects to 

accurately model the flow rate, in particular for the micropump investigated in our study, 

and in general for any devices utilizing the Laplace pressure gradient. 

In the second part of this dissertation, the interface between three fluids was 

studied, by forming floating droplets on liquid free surfaces, and the relevant physical 

phenomena are described.  

Floating aqueous droplets were formed at oil-air interface and two stable 

configurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. 

General solutions for energy and force analysis were obtained for both configurations, 

and were shown to be in good agreements with the experimental observations. The 

energy barrier obtained for transition from configuration (i) to (ii) was correlated to the 

droplet release height and the probability of non-coalescent droplet formation. It was 

shown that energy dissipation through wave phenomena should be taken into account.  

Based on the force and the energy equations two non-dimensional parameters of 

ρo /ρw and the inverse of Bond number, Bo-1, were introduced. A general solution was 

developed for the dual equilibrium states of the floating droplets. Also the transition 

region for the probability of formation of non-coalescent droplets as a function of Weber 
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number was shown. A dimensionless parameter was defined to represent the oil free 

surface deformation and was calculated by the energy analysis.  

The data represented by non-dimensional groups of parameters could be used as 

a guideline to design experiments to form various sizes of floating droplets for the 

effective droplet manipulation. 

 

Future work 

The EWOD micropump devised in this work, could be used as a key component in 

handling small amount of aqueous samples. Its ability to work with small input droplets 

makes it suitable for application in the field of analytical chemistry, biology and medicine 

in which a limited amount of dose needs to be supplied with good accuracy.  In some of 

the applications, small amounts of biological samples or chemical reagents are 

introduced into the chip in the form of an input droplet, for chemical reactions and 

biochemical processes such as immobilization, labeling and detection. The features of 

the fabricated EWOD based micropump such as low fabrication cost and minimal 

mechanical complexity makes it suitable for disposable biochips. 

Other techniques for controlling the surface tension could be proposed as a driving 

method in droplet based devices for continuous flow in the microchannel due to its 

favorable scaling effect. In designing such devices the wetting line phenomena which 

were comprehensively studied in this work could work as a guideline to find the 

appropriate range of the change in surface tension for inducing the flow. Such methods 

for controlling the surface tension include a temperature gradient in thermocapillary and 

an electric potential gradient in electrocapillary. The ability to control the surface 
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wettability could be useful to design various types of flow-on-demand devices for 

practical applications. 

In one application the EWOD micropump, with its simple design, could be used as 

a sample loading component in a disposable biochip. For example, it could be used to 

substitute syringe pumps for injecting samples into the plasma separators. Syringe 

pump is commonly used to fill the plasma separators with a sample [17-23]. Substituting 

it with a small scale disposable micropump is especially important when only limited 

amount of samples are available. The EWOD micropump could be easily integrated with 

the reported blood plasma separators in literature. The separators based on the 

Zweifach–Fung effect [17-19], geometric singularities [20], or large output channel [21, 

22], indicate the modular integration with the proposed pump is possible. 

Thermocapillary is also used for manipulating floating droplets of biochemical 

samples on a liquid substrate for chemical reactions.  In this way the temperature 

gradient induced in the base medium could be used to drive floating aqueous droplets 

formed on the free surface of immiscible liquids for application in digital microfluidic 

devices[49], as well as material transportation and mixing in lab on a chip [50, 51]. Thus 

the floating aqueous droplets studied in this work, could serve as containers for 

encapsulating reagents in biochemical reactions [52].  These micro chemical reactors 

have the desired features of low consumption of the analytes, direct access to reaction 

products [52], and reduced contamination as compared to the droplets on solid 

surfaces. The floating droplets could also be used in sensor application due to direct 

contact with the ambient air [53].  
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The general solution obtained in this work, by taking advantage of non-dimension 

groups of parameters does not depend on the values of the fluids properties such as 

density and surface tension or the droplet size and thus could be applied to different 

experimental setups. The data could be used as a guideline to select a combination of 

three fluids to form different sizes of floating droplets for droplet manipulation. 
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APPENDIX A: EWOD MICROPUMP FABRICATION 

This appendix contains the detailed process steps for the fabrication of EWOD-

based micropump. The device was fabricated in a cleanroom class 1000.  

  

EWOD substrate 

1. A 3 inch <100> silicon wafer single side polished was cut in four parts using a 

diamond cutter on the direction of the crystal.  

2. A quarter of the silicon wafer was rinsed with acetone, then methanol, and finally 

with isopropyl alcohol. 

3. The wafer was dried using a nitrogen gun and examined under the microscope to 

make sure the small fragments of silicon that might have been remained on the wafer 

after it was cut are removed.   

4. Make an uncured polydimethylsiloxane (PDMS) mixture with a weight ratio of 

10:1, by mixing 2 grams of SYLGARD® 184 SILICONE ELASTOMER base with 0.2 

grams of its curing agent in a petri dish for several minutes to form a uniform mixture. 

The curing agent solidifies the PDMS which is a viscous liquid at room temperature. 

Special attention should be given to the corners of the petri dish, since they will remain 

liquid after PDMS is cured if the base part was not thoroughly mixed with curing agent.  

5. Air bubbles are formed in the PDMS mixture while stirring.  

6. Toluene which is a good solvent for PDMS is used to dilute PDMS with a 

volumetric ratio of 3:1 in a small glass beaker. Later toluene could be used again to 

clean the beaker.  
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7. A spin-coater with a maximum spin rate of 6000 RPM was used for spin coating 

the diluted PDMS on the quarter wafer. The spin-coater chamber is covered with 

aluminum foil to avoid contamination of its wall with PDMS (Cleaning PDMS off the 

spin-coater could be cumbersome!) 

8. The spin-coater is programmed for 6000RPM for 10 minutes. 

9. The optional step of two minutes baking on hot plate at 200οC is used to 

completely remove water from the wafer.  

10. The quarter wafer is placed on the stage of a spin coater after it is cooled down 

and it’s centered on the stage to have a relatively balanced rotation.  

11. The vacuum is turned on to hold the quarter wafer in its place.   

12. The Diluted PDMS is poured on the wafer and the spin-coating is run. 

13. The sample is placed on the hot plate for baking at 90C for 10 minutes.   

14. The sample is placed on the spin-coater after it’s cooled down. 

15. Spin-on glass (SOG) is coated on the sample at 3000 RPM for 40 seconds. 

16. Sample is baked on hotplate at 200οC for 1 minute to remove the solvents from 

SOG.  

17. Repeat steps 10 to 13 to form a second PDMS thin film. 

 

SU-8 2050 mold fabrication 

18. A 3 inch <100> silicon wafer single side polished was rinsed with acetone, then 

methanol, and finally with isopropyl alcohol (IPA). 

19. The wafer was dried using a nitrogen gun 
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20. Five minutes baking on hot plate at 200οC is used to dehydrate the wafer 

surface.  

21. Cover the spin-coater chamber with aluminum foil before spin coating. 

22. Center the silicon wafer on spin-coater stage and turn on the vacuum. 

23. Pure small amount of SU-8 2050 photoresist on the center of the wafer. 1 mL of 

resist per inch of wafer diameter. 

24. Run a two-step spin-coating: 

500RPM for 13 seconds with an 85 rpm/sec ramp (Resist spreading) 

1500RPM for 41 seconds with a ramp of 340 rpm/sec (Resist coating) 

The resist thickness will be 100μm based on the manufacturer data sheet. 

25. Remove the SU_8 resist from the edge of the wafer using a sharp blade (Edge 

bead removal). 

26. Two step soft baking the resist on hot plate: 

T=65οC for 25 minutes 

T=95οC for 35 minutes 

  Cool down 20 minutes. 

27. UV exposure for 40 seconds. 

28. Post exposure bake: 

T=65οC for 1 minutes 

T=95οC for 35 minutes 

29. Using a Pyrex dish, develop the resist in Propylene Gycol Methylether Acetate, 

99%, AIDRICH Co. until all the unexposed area is solved in developer (about 5 
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minutes). Use less agitation and longer developing time, to prevent overdeveloping of 

smaller features. 

30. Rinse the wafer using IPA. Dry with nitrogen gun. 

31. Hard bake the resist after developing: 

T=70C for 5 minutes 

T=100 for 5min 

T=150 for 3min 

Use different hot plates for the three-step baking, since hot plates will not reach to 

the desired temperature in a few minutes. Leave on hot plate to cool down.  

 

PDMS casting 

32. Repeat step 4 but use 20 grams of SYLGARD® 184 SILICONE ELASTOMER 

base with 2 grams of the curing agent. 

33. Put the SU-8 mold on silicon wafer which was fabricated in steps 18 to 31 in a 

petri dish. Pour PDMS from step 32 on it.  

34. Leave at room temperature for 30 minutes to remove the air bubbles. Examine 

under the microscope to check all the air bubbles have escaped from the uncured resin. 

If not, allow more time for air bubble removal before proceeding to next step. 

35. Put the petri dish on the hot plate and bake for one hour at 95οC. 

36. Cut the PDMS using sharp surgical blade and peel it off the SU_8 mold. Punch 

inlets using a blunt needle gauge 21.  
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Bonding, fluidic interconnections and electrical contacts 

37. Bond the PDMS slab with microchannel from step 35 to the EWOD substrate 

prepared in steps 1 to 17 using corona discharge method. Hold each bonding surfaces 

under the corona for 15 seconds. Put the bonding surfaces together and press the top 

PDMS layer on the bottom EWOD substrate using tweezers to remove any air bubbles 

between them. 

38. Use hollow high precision stainless steel tubes and transparent highly flexible 

plastic tubes for microfluidic connections. Attach a wire to the steel tube and the silicon 

wafer of the EWOD substrate for electrical connections. 
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APPENDIX B: FORCE ANALYSIS EQUATIONS FOR CHAPTER 6 

NC droplet configuration 
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C/B droplet configuration 
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APPENDIX C: ENERGY ANALYSIS EQUATIONS FOR CHAPTER 6 

 

NC droplet configuration 

 Surface energy: 
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 ) 

,where area of the deformed free surface is: 
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It is assumed for r larger than 15mm the free surface deflection is negligible. 

 Droplet’s gravitational potential energy: 
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,where geometric centroid of the water droplet is: 

               

 

 Displaced base medium gravitational potential energy: 
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 The net energy of the NC droplet configuration is: 

               

 

C/B droplet configuration 

 Surface energy: 
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 Droplet gravitational potential energy: 
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 Displaced base medium gravitational potential energy: 
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,where the volume of the base liquid below the deformed free surface,     is: 
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The geometric centroid of the displaced base medium is derived as below: 
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 The net energy of the C/B droplet configuration is : 
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