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ABSTRACT 

This dissertation concerns the development of the MicroWave Radiometer (MWR) 

brightness temperature (Tb) algorithm and the associated algorithm validation using on-orbit 

MWR Tb measurements. This research is sponsored by the NASA Earth Sciences Aquarius 

Mission, a joint international science mission, between NASA and the Argentine Space Agency 

(Comision Nacional de Actividades Espaciales, CONAE). The MWR is a CONAE developed 

passive microwave instrument operating at 23.8 GHz (K-band) H-pol and 36.5 GHz (Ka-band) 

H- & V-pol designed to complement the Aquarius L-band radiometer/scatterometer, which is the 

prime sensor for measuring sea surface salinity (SSS). MWR measures the Earth’s brightness 

temperature and retrieves simultaneous, spatially collocated, environmental measurements 

(surface wind speed, rain rate, water vapor, and sea ice concentration) to assist in the 

measurement of SSS. 

This dissertation research addressed several areas including development of: 1) a signal 

processing procedure for determining and correcting radiometer system non-linearity; 2) an 

empirical method to retrieve switch matrix loss coefficients during thermal-vacuum (T/V) 

radiometric calibration test; and 3) an antenna pattern correction (APC) algorithm using Inter-

satellite radiometric cross-calibration of MWR with the WindSat satellite radiometer. The 

validation of the MWR counts-to-Tb algorithm was performed using two years of on-orbit data, 

which included special deep space calibration measurements and routine clear sky ocean/land 

measurements.  
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CHAPTER 1  

INTRODUCTION 

The Aquarius/SAC-D is an Earth science satellite mission to obtain monthly, global, sea 

surface salinity (SSS) measurements [1]. This program is an international collaboration between 

the National Aeronautics and Space Administration (NASA) and the Argentine Space Agency 

(Comisión Nacional de Actividades Espaciales, CONAE). NASA developed the Aquarius 

instrument (an L-band salinity remote sensor) and provided the satellite launch from Vandenberg 

Air Force Base in California; and CONAE provided the SAC-D spacecraft, several instruments, 

telecommunications control and command, and science data acquisition. 

1.1  Aquarius Science Objectives 

The measurement of ocean salinity will provide a key to better understand the interaction 

between climate, ocean circulation, and the Earth’s water cycle (land runoff, melting and 

freezing of the sea ice, precipitation and evaporation over the ocean). Over oceans, the sea 

surface loses the moisture (water vapor) into the atmosphere by evaporation, which causes the 

sea surface salt content (salinity) to increase. Conversely, the atmospheric circulation transports 

the ocean’s water vapor to form clouds that produce precipitation (rain and snow) that eventually 

enters the ocean to reduce the salinity. Thus, the ocean SSS is a sensitive tracer of freshwater that 

will provide scientists to better understand the Earth water cycle and the role of ocean circulation 

on climate change. 
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The design of the AQ/SAC-D system is to provide a global SSS map every seven days 

using a polar-orbiting space-borne, and an active/passive remote sensor. Weekly observations are 

combined to produce global measurements of SSS on a monthly basis with a required accuracy 

of 0.2 psu (practical salinity unit) at a spatial resolution of 150 km. Figure 1.1 shows a global 

image of sea surface measurements provided by the Aquarius instrument during the time period 

between August 25, 2011 and July 7, 2012. The color scale is chosen to cover the dynamic range 

of SSS with red representing the highest salinity of 40 psu and the purple representing the lowest 

salinity of 30 psu. 

 

   

Figure 1-1 Global image of sea surface temperature during the first 10 months of Aquarius  

operation [18]. 
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1.2  Aquarius/ SAC-D 

The SAC-D spacecraft carries several instruments, but only two are relevant to this 

dissertation, namely: Aquarius and the MicroWave Radiometer (MWR). Figure 1.2 illustrates the 

Aquarius/SAC-D in the stowed launch configuration (left hand side panel) and in the deployed 

on-orbit configuration (right hand side panel). 

The primary SSS remote sensor is Aquarius [2], a combined passive/active L-band 

microwave instrument operating at L-band (1.413 GHz, where the brightness temperature Tb is 

sensitive to changes in salinity). Because the observed brightness temperature also depends on 

surface roughness (ocean waves), Aquarius also includes a scatterometer operating at 1.26 GHz 

to provide a critical roughness correction for this effect.  

The Aquarius SSS measurements are complemented by a CONAE sensor known as 

MWR. This instrument, which operates at 23.8 GHz (K-band) and 36.5 GHz (Ka-band), 

measures the ocean brightness temperature (Tb) and provides geophysical parameters such as 

rain rate, water vapor, ocean surface wind speed, and sea ice that are used to derive accurate sea 

surface salinity retrievals. 
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Figure 1-2 Stowed and deployed configurations of Aquarius instrument on SAC-D. 

 

 

1.3  Aquarius Measurement Geometry 

Since the Sun is an intense interference noise source at L-band; the AQ/SAC-D was 

designed to fly in a 98° inclined, sun-synchronous polar orbit with a sensor viewing away from 

the sun (dark side of the day/night terminator) as shown in Fig. 1.3. This orbit satellite assures 

that the Sun never crosses the orbit plane thereby reducing the unwanted effects of solar noise 

caused by sun glint off the ocean. Further, this repeating ground track orbit results in a global 

mapping of SSS in exactly 103 orbits (~7days). 



5 

 

The prime remote sensor of SSS, an active (radar)/passive (radiometer), is also named 

Aquarius. For the passive measurement, AQ consists of three Dicke radiometers that measure 

microwave brightness temperature in vertical and horizontal polarizations. The three radiometers 

are connected to three separate horn antennas that share a common 2.5-m offset parabolic 

reflector to produce three spot-beams. These beams view the surface in the cross-track direction 

producing three elliptical footprints at earth incident angles (EIA) of 29.3, 38.4 º, and 46.3 º for 

inner (red), middle (green) and outer (yellow) beams respectively [1, 2], and the corresponding 

instantaneous field of view (IFOV) are: 79 x 94 km, 84 x120 km, and 96 x 156 km, which results 

in a measurement swath of 390 km. 

 

 

 

Figure 1-3 Aquarius footprints and on-orbit geometry 



6 

 

1.4  Dissertation Objective 

The objective of this dissertation is the development of an improved version of the 

counts-to-Tb algorithm (V6.0) for the CONAE MWR Instrument. This research began with the 

comprehensive on-orbit evaluation of the previous version of counts-to-Tb algorithm (V5.0S), 

which was found to produce anomalous results. Based upon our discoveries, a new algorithm 

was developed and was successfully validated using inter-satellite radiometric calibration with 

the WindSat satellite radiometer. Results are presented and demonstrate that this new algorithm 

(V6.0) is fully compliant with MWR requirements. 

This dissertation is organized into six chapters. Chapter 1: Introduction, presents the 

dissertation objective and an introduction to the Aquarius/SAC-D Mission. Chapter 2: 

MicroWave Radiometer (MWR), describes the MWR science objectives, the instrument design, 

and the on-orbit measurement geometry. Chapter 3: MWR Algorithm Counts-to-Tb 

Development, discusses the MWR algorithm (V5.0S) and presents anomalous Tb measurement 

performance related to the smear effect and to MWR system non-linearity. Chapter 4: 

Development of Counts-to-Tb Algorithm (V6.0), is the focus of this dissertation that describes 

innovative solutions to observed Tb measurement anomalies. Chapter 5: MicroWave Radiometer 

Post Launch Calibration and Validation, describes the post launch calibration and validation 

using CFRSL XCAL approach for inter-satellite radiometric comparison with the WindSat 

satellite radiometer. Chapter 6: Conclusion and Future Work, presents conclusions and 

recommendations for the next generation of counts-to-Tb V7.0 algorithm. 
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CHAPTER 2   

MICROWAVE RADIOMETER (MWR) 

2.1   MWR Science Objectives 

CONAE developed the MWR science instrument to fly on AQ/SAC-D satellite to 

provide the retrieval of relevant geophysical parameters that support the AQ SSS mission 

objectives. Specifically, MWR measures simultaneous and spatially collocated brightness 

temperatures that are spatially and temporally collocated with the AQ 3-beam IFOV’s. The 

choice of radiometer channels (frequencies and polarizations) was selected to retrieve the 

following environmental parameters; ocean surface wind speed, oceanic rain rate, integrated 

atmospheric water vapor, and sea ice concentration. These geophysical measurements (and other 

auxiliary data) are used by the AQ data processing system to derive an accurate sea surface 

salinity (SSS). 

2.2  The MWR Instrument Description   

MWR is a three-channel, push-broom, Dicke radiometer with noise injection for 

radiometric calibration, which is similar to the AQ L-band radiometer described by Tanner et al. 

[3] and the details of MWR are found in [4]. A simplified block diagram, shown in Fig. 2.1, 

consists of five major subsystems, namely; antenna, antenna switch matrix, radiometer receiver, 

power detector, and analog-to-digital electronics. Other subsystems, such as electrical power, 

thermal control and telemetry, are not germane to this dissertation and are therefore omitted. 
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Figure  2-1   MWR radiometer block diagram with two internal calibration 

 

 

Antenna Subsystem: The MWR antenna subsystem comprises two parabolic torus reflectors 

and associated feeds to produce two push-broom antennas, one looking forward (Ka-band) and 

one looking aft (K-band), as shown in Fig. 2.2 (a). Each reflector supports a different frequency 

band and a set of eight feed-horns arranged in two rows. The MWR IFOV’s are approximately 

50 km resolution and lie on two conical arcs (odd beams with earth incidence angle -EIA- of 52° 

and even beams with EIA = 58°) in cross-track direction within the AQ measurement swath. As 

shown in Fig. 2.2 (b), the 8 MWR beam footprints overlap the AQ beam swath, thereby 

providing greater than Nyquist spatial sampling. 
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(a) 

 

 

 
 

(b) 

 

Figure  2-2 Aquarius and MWR Geometry.
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Antenna Switch Matrix: Three antenna switch matrices (ASM) are used to guide the polarized 

Tb signals captured by the feed-horns into the corresponding receivers. For each channel, the 

ASM was divided into three layers for a total of seven switches. Four switches were located at 

first layer (at the feed horns), two switches at the second layer, and one switch at the input to the 

directional coupler, as shown in Fig. 2.3. The ferrite circulator switches (magenta color) are 

electronically switched to a particular port by sending positive or negative current pulses to 

individual switch drivers to change the magnetic field polarity contained inside the switch. This 

results in the microwave propagation being either clockwise or counter clockwise within the 

circulator ferrite puck. 

Radiometer Receiver and Power Detector: A microwave radiometer antenna delivers a very 

weak broadband noise to the receiver with the noise bandwidth higher than the receiver 

bandwidth. To make measurements in the desired pass-bands in the receiver, a band pass filter is 

used followed by an amplifier to increase the strength of the signal. Next, the desired signal is 

extracted by a square-law detector. The square-law output voltage follows the low frequency of 

the input power (envelop) and is proportional to the input. Next, the signal passes through an 

integrator (low-pass filter) to remove the high frequency fluctuation of the rectified RF noise and 

to estimate the mean noise power. Thus, the mean value of the detector output voltage is linearly 

proportional to the brightness temperature at the input of the receiver. 

Analog-to-Digital Electronics: The first stage of the signal processing electronics is a function 

generator, which is a device that contains an oscillator to generate a waveform as an input to the 

analog signal. Then an analog signal conditioning is performed to manipulate and make the 

analog signal suitable at the input of the analog-to-digital converter where the signal is digitized. 
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2.3  MWR Noise Injected Dicke Radiometer 

The detailed block diagram of the MWR is shown in Fig. 2.4 [5]. While the MWR 

measures 4 polarization states, this dissertation is concerned with only the horizontal and vertical 

polarized Tb measurement. At each feed there is an ortho-mode transducer (OMT) that separates 

the brightness temperature into H-pol and V-pol components, connected to two Dicke 

radiometers, which provide mitigation against the detrimental effects of receiver gain 

fluctuations [6]. Also, a two point radiometric calibration is provided by using two internal noise 

sources with different noise levels: 1) a blackbody waveguide termination at ambient physical 

temperature and 2) an active noise diode that produces an equivalent “hot” blackbody source. 
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Figure  2-3 Simplified schematic of MWR antenna switch matrix. 
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Figure  2-4  Schematic MWR Ka-band [5]
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Using the three ASM’s, each radiometer receiver time-shares the eight beams 

sequentially with a beam integration time of 0.24 s, as illustrated in the MWR timing diagram 

shown in Fig. 2.5, where the beam number corresponds to the feed horn number. Since there are 

eight beams with an integration time of 0.24 s, each beam is sampled once every 1.92 s. Note 

that the 0.24 s integration period is distributed into eight cycles, where each cycle includes 

measurements from; antenna, antenna + noise, and reference load. The cycle integration period is 

9 ms to obtain a Tb, and 8 Tb’s are averaged on-board to yield a single MWR Tb measurement 

sample for a given beam. The 1 ms interval between two cycles Tb’s is used as a “blanking 

interval” (null measurement) to protect MWR from potential radio frequency interference from 

the AQ scatterometer transmit pulse [7]. 

 

 

Figure  2-5 The MicroWave Radiometer Timing Diagram. 
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Radiometer Theory: A microwave radiometer is a very sensitive receiver that makes an 

absolute measurement of "blackbody emission" power from Earth's surface. The radiometer 

average noise power captured by the radiometer antenna is expressed as antenna brightness 

temperature and is defined as: 

Tb = <P>/kB      (2.1) 

where <P>  is the average noise power collected by the antenna, k is Boltzmann’s constant and B 

is the receiver bandwidth. 

CONAE MWR is a 3-state Dicke radiometer, and a simplified block diagram of the 

instrument is presented above in Fig. 2.1. The scene brightness temperature is captured by a feed 

horn and sequentially routed through the switch matrix to a directional coupler and then to the 

radiometer receiver input (antenna port of the Dicke switch). The directional coupler allows a 

Gaussian noise signal (noise diode of known brightness temperature) to be periodically turned 

on/off and then inject noise into the receiver, for radiometric calibration purposes. The Dicke 

switch is used to alternately sample the noise collected from the antenna (Dicke switch in 

antenna position), the antenna plus noise (Dicke switch in antenna position and noise diode is 

on), and the waveguide terminated in a matched load (Dicke switch in reference load position). 

After the signal passes through the receiver subsystem, it is detected by the square-law (power) 

detector, and this analog output voltage is digitized (using the voltage to frequency converter and 

a frequency counter) to produce the digital “Rad_counts” output. 

Considering an ideal (total power) radiometer [6], the MWR radiometric transfer function 

that relates the output Rad_counts to the radiometer input brightness temperature (Tin) is linear 
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(Fig. 2.6). The slope of the linear regression represents the receiver power gain, which is 

independent of the input power. Thus, for the 3-Dicke radiometer states, the output counts are: 

        (2.2) 

    (2.3) 

        (2.4) 

where Ca is the radiometer digital output “antenna counts”, Cn is the “antenna plus noise” counts, 

Co is the “reference load” counts, To is the physical temperature of the reference load, Tn is the 

injected noise diode temperature (constant and known), and Tin is the brightness temperature at 

the antenna port of the Dicke switch. 

By subtracting Eq. 2.2 from Eq. 2.3, the gain is derived as: 

     (2.5) 

where -  is defined as the noise diode deflection (deflection counts). 

For a linear radiometer, the noise diode deflection and noise injection noise are constant 

and independent of the scene brightness temperature. From Eq. 2.5, it is concluded that the gain 

for a linear radiometer is also constant and independent of the scene brightness temperature. 

Using Eq. 2.5 and subtracting Eq. 2.4 from Eq. 2.2, the brightness temperature at the input of the 

Dicke switch at the antenna port is: 
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   (2.6) 

The next chapter applies the above radiometer theory to a discussion of the counts-to-Tb 

algorithm V5.0S. 
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Figure  2-6 Typical Dicke radiometer transfer function. 
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CHAPTER 3  

EVALUATION OF MWR ALGORITHM COUNTS-TO-TB (V5.0S) 

A satellite microwave radiometer is a very simple instrument that measures power. It has 

no knowledge of the radiometric brightness of the earth scene, nor of which antenna beam is 

being sampled, nor of the satellite position in its orbit. In other words, the radiometer only 

responds to the magnitude microwave power presented at its input, and its transfer function 

(input power to output voltage) is independent of all external factors except the ambient physical 

temperature and the applied electrical power supply (voltage/current). Thus, a reasonable test is 

to examine the radiometer output voltage (digital counts) under a variety of on-orbit conditions 

to assure that this fundamental hypothesis is satisfied. 

The initial (pre-launch) MWR counts-to-Tb algorithm was developed in 2011 by Biswas 

[7]. This research effort included the analysis of the pre-launch laboratory testing, the 

development of a statistical regression algorithm (version 2.0) using MWR thermal vacuum 

radiometric calibration data, and limited post-launch Tb algorithm calibration/validation 

(CAL/VAL) using ~ 90 days of on-orbit data. At the end of this period, a modified Tb algorithm 

(V2.1) resulted, and within the next 6 months, an improved V5.0 was developed and was used to 

provide MWR Tb data for engineering and scientific utilization. It is important to note that the 

development of V5.0 is not part of this dissertation; but the Tb validation and the associated 

algorithm improvements resulting in V6.0 is. To provide background information, a brief 

overview of the development of V5.0 follows. 
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3.1  MWR Algorithm Counts-To-Tb  (V5.0) 

The V5.0 algorithm was the result of the on-orbit calibration/validation (CAL/VAL) 

analysis that occurred during the first 6 months following MWR turn-on (September, 2011 thru 

February, 2012). A critical part of this process was the inter-satellite radiometric calibration 

(XCAL) [8] with the well calibrated WindSat polarimetric radiometer [9] that was developed by 

the Naval Research Laboratory and operates on board the USAF Coriolis satellite. 

Fortunately, the MWR channel frequencies and polarizations are a subset of the WindSat 

radiometer channels, and the AQ/SAC-D and Coriolis fly in similar sun-synchronous orbits. 

Thus, on a weekly basis, the orbits drift with respect to one another such that on average ~ 60% 

of MWR data can be collocated with WindSat data, within ±1hr as described by Kahn [10]. 

Since the scientific objectives of MWR support those of the AQ sea surface salinity 

mission, the primary MWR Tb validation was for ocean scenes. The polarized (V- & H-pol) 

ocean brightness temperature depends on the atmospheric and oceanic environmental 

parameters, on the earth incident angle (EIA), and on the channel frequency. Because MWR and 

WindSat have different earth incident angles, a theoretical radiative transfer model [8] was used 

to adjust the WindSat brightness temperatures at EIA = 53° to the corresponding values of MWR 

odd beams (EIA = 52°) and even beams (EIA = 58°) before XCAL comparisons were performed. 

Further, the design of MWR is a push-broom system with 8 antenna spot beams, which 

are time multiplexed into a single receiver (for each of 3 radiometer channels). This time-

division multiplexing is achieved by a 1 x 8 antenna switch matrix (ASM, see Fig. 2.2).  Because 

the losses in each path are not matched, the radiometric calibration is equivalent to 3 x 8 = 24 

separate radiometers. 
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The V2.0 Tb algorithm employed a statistical regression using MWR thermal vacuum 

radiometric calibration data to find the ASM losses (b-coefficients). The scene brightness 

temperature (Tb) received by each MWR feed is calculated using the inverse model: 

 

    (3.1) 

 

where To is the physical temperature of the internal calibration reference load of the 

corresponding MWR receiver, Tav = (T1+T2+T3+T4)/4, where T1, T2, T3 are the physical 

temperatures of the 3 switch levels in the ASM and T4 is the physical temperature of the antenna 

feed-horns. The quadratic term b3Tin
2
 is an ad hoc correction for the radiometer system non-

linearity, and Tin is the MWR antenna temperature at the antenna port of the Dicke switch, which 

is computed from the digital counts (Eq. 2.6).  

For V5.0, the coefficients in (Eq. 3.1) were derived from the on-orbit XCAL data. Since 

Tin, To, Tav are measured, the WindsSat Tb's adjusted to the MWR EIA’s were used in the 

equation to obtain the regression coefficients b1 through b5. The WindSat brightness 

temperatures include the antenna pattern correction (APC); therefore, no explicit APC correction 

to convert Tant to Tb is necessary in this version of the calibration algorithm. All the coefficients 

are tabulated in Appendix-A. 

After collecting several months of on-orbit data, the detailed evaluation of V5.0 revealed 

two major anomalies, namely; the “smear effect” and the MWR system non-linearity, which are 

described in the following sections. 
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3.2  MWR Smear Effect 

While the MWR smear correction is not a part of this dissertation, it is very relevant; thus 

a brief discussion is given below and more details are provided in Appendix – B. 

Based upon an analysis of MWR Tb’s (V5.0), it was observed that the brightness 

temperature of all channels were anomalous at high contrast radiometric scenes (e.g., land/water 

crossings). The Tb transitions from land to water appear to be displaced relative to the coast-line 

map that caused a “smearing” of the radiometric land/water boundary, as illustrated in the left 

side panel of Fig. 3.1. Further, this effect can be better seen in the corresponding Tb time series 

of beams #1 and #7 shown in Fig. 3.2. Here the Tb for each beam has an anomalous step 

function change, which precedes (beam #1) and lags (beam #7)) as the beam IFOV passes over 

the land/water boundary. The initial evaluation suggested an antenna sidelobe issue; but 

subsequent analysis by CONAE [11], revealed that the cause is a cross-coupling of signals from 

different beams. 

CONAE developed an empirical method to correct the smear effect, and the performance 

of this algorithm is excellent, as illustrated in Fig. 3.1 (right hand panel) and its corresponding 

time series (Fig. 3.2). When applying the smear correction, it can be seen that the effect is 

mitigated for all the beams, and the step function change was removed. After a comprehensive 

on-orbit evaluation, the smear correction was adopted and the subsequent counts-to-Tb algorithm 

was named V5.0S, where "S" stands for smear correction. These are the data which are used in 

this dissertation. 
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Figure  3-1  MWR Tb measurements for 8 beams of the 23 GHz H-pol channel during a 

descending orbital pass over the tip of India .                                      

 

Figure  3-2 Corresponding MWR Tb time series for beam # 1 and beam # 7 of the MWR 23.8 

GHz channel shown in Fig. 3.1. Red and black curves are before smear correction and blue and 

magenta curves are after smear correction 
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3.3  MWR System Non-Linearity 

The MWR instrument was designed to be linear, and this was a fundamental requirement 

to obtain accurate brightness temperature measurements of the variable earth scene. However, 

based upon pre-launch calibration test of noise diode deflection (NDD), it was discovered [7] 

that the gain compression occurs for scene Tb's approaching 300K. Thus, an empirical second-

order term was included in the counts-to-Tb algorithm to compensate for the MWR gain 

compression. 

The starting point for the present dissertation was after the smear effects have been 

removed; therefore, this dissertation performed an evaluation of the MWR linearity based upon 

Tb V5.0S. A special emphasis was placed on verifying that the empirical non-linearity correction 

of Biswas [7] was not adequate to produce a linear radiometer transfer function. Specifically, a 

study was conducted to characterize the NDD counts (Cn - Ca) as a function of the radiometer 

input brightness temperature (i.e., output of the ASM, Tin), and the results of that study are 

presented below. 

For an ideal linear radiometer receiver with constant gain, the simulated NDD are 

constant and independent of the scene brightness temperature. This is illustrated in Fig. 3.3 as 

simulated global images of MWR NDD for 14 orbits (~ one day) separated by ascending and 

descending passes. Note that the width of the MWR measurement swath is 380 km for 8 antenna 

beams. 

However, under typical on-orbit conditions, the orbital receiver physical temperature (To) 

changes, and this produces a corresponding linear variation in the system gain. On orbit, the 

MWR baseplate physical temperature was controlled by an active thermal control subsystem, 

which resulted in a highly repeatable pattern of < 1 K peak-to-peak (Fig. 3.4). Further, this 
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produced a corresponding change of the NDD (system gain) as shown in the scatter diagram Fig. 

3.5, where the % change in NDD ~ -1.0 %/K (increasing physical temperature of the receivers 

cause the NDD to decrease). 

Using these results, the simulated orbital pattern of expected NDD was calculated (Fig. 

3.6) and over a single day, each orbit revolution (rev) had a nearly identical physical temperature 

cycle. Thus, the pattern of simulated NDD was the same and did not exhibit any dependence on 

the radiometric scenes, i.e., same value for radiometrically hot land and radiometrically cold 

ocean. 

 

 

     a) Descending                                                       b) Ascending 

 

Figure  3-3 Simulated image of noise deflection counts for a linear radiometer with constant gain. 
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Figure  3-4 Time series of the reference load temperature (To) over a typical orbital period. 

Figure  3-5 Relationship between noise diode deflection (Cn-Ca) and the baseplate physical 

temperature (To) – typical result for one 
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                                 a) Descending                         b) Ascending 

 

Figure  3-6 Simulated image of an expected noise deflection counts for a linear radiometer with 

sinusoidal physical temperature changes, where colors represent the noise diode deflection. 

Next, the differential noise diode deflection image was produced by subtracting the 

observed pattern of MWR NDD (Fig. 3.7) from the simulated pattern (Fig. 3.6). Results are 

shown in Fig. 3.8, where the color bar is the differential NDD (after subtracting the mean 

difference that was calculated separately for ascending and descending revs). Note that the 

simulated and observed patterns had much similarity over oceans; but over land, there significant 

step-wise NDD decreases at land/water boundaries. This anomaly was observed in all MWR 

receivers (37V, 37H, 23H), which was correlated with the antenna scene Tb. 
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                          a) Descending                       b) Ascending 

Figure  3-7 Image of observed noise deflection (Cn - Ca) for 36.5GHz H-pol. Warm colors 

indicate higher than average noise deflection and cool colors indicate less than average counts. 

Further, to illustrate that the NDD steps occur whenever the scene changes, the noise 

diode deflection time series was plotted for one particular orbit, where the spacecraft is pitched-

up to cause the MWR antenna to view radiometrically cold space during one portion of the orbit 

(see Fig. 3.9). This maneuver, known as a “Deep Space Calibration” (DSC) [9, 12], provided a 

wide dynamic range of scene brightness temperatures for the MWR channels. In this figure, the 

observed NDD for 36.5 GHz H-pol channel decreased abruptly whenever the antenna Tb 

transitioned from radiometrically cold to hot scenes and vice versa. 

Obviously, the observed inverse correlation of the NDD with the geophysical scene Tb 

was anomalous and the empirical correction provided in V5.0S was not adequate. The solution 

for this issue is discussed next. 
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                         a) Descending             b) Ascending 

Figure  3-8  Image of the difference between observed and simulated NDD’s for the 36.5 GHz H-

pol channel, which exhibits a strong decrease of the NDD over land. The color scale is the 

differential NDD with the mean removed (separately for ascending and descending revs).  

 
 

Figure  3-9 MWR noise diode deflection counts for 37 GHz V-pol channel, during a typical deep 

space calibration orbit. The colorbar represents the scene brightness temperature that ranges from 

cold space (blue) to hot land (red). Note the significant NDD jumps at rapid changes in scene 

temperature.  
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3.4  Characterization of MWR Gain Non-linearity 

As described above, the changes in MWR gain (NDD) with the radiometric scene Tb was 

indicative of non-linear (anomalous) system response, which was most likely from the square-

law detector. To characterize this effect, it was necessary to measure the total power radiometer 

transfer function [6] on-orbit, which presented several challenges.  

First, it was necessary to remove the effect of a time variable radiometer gain that was the 

result of the orbital cycle of receiver physical temperature, To (see Fig. 3.4). In the Counts-to-Tb 

algorithm, the instantaneous gain was determined using the NDD; however, this was shown 

(section 3.3) to exhibit anomalous changes with the antenna scene Tb. Therefore, the gain 

normalizing procedure was developed using the reference load counts (Co) and the measured To, 

and the instantaneous normalized reference counts (Co_norm-i) were: 

i

norm
Gain

Gain
CC

ii


 0_0         (3.2)

  

where  

Co-i  = (Toi + <Trec>)* Gaini 

Toi  is the instantaneous reference load physical temperature in Kelvin 

<Trec>  is the orbit average receiver noise temperature 

Gaini  is the instantaneous system gain 

<Gain> is the orbit average gain 
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To evaluate the effectiveness of the gain normalization procedure (Eq. 3.2), an 

experiment was performed to examine the reference counts before and after gain normalization. 

First, the time series of the reference load counts (colored curve) and reference load temperature 

To (black color) were plotted over an orbital period as shown in Fig. 3.10 (a). For ease of 

presentation, the means were removed to compare the patterns of these variables. The change in 

Coi was the result to two effects, namely: 1) the change in system gain with To, and 2) the 

blackbody emission of the reference load (being proportional to To). 

Next, the gain normalization procedure was applied to the reference counts and the 

corresponding time series was plotted in Fig. 3.10 (b). Before the counts normalization (Fig. 3.10 

a), the reference load counts (Co) and To were out of phase, and the effects of variable system 

gain dominated. On the other hand, after gain normalization (Fig. 3.10 b), the effects of variable 

gain were removed, and the peak-to-peak change of Co was reduced by an order of magnitude. 

However, the reference counts were not constant because the reference load physical temperature 

and the blackbody emission were changing over the orbit such that: 

 GainTC onormo *_      (3.3) 

where  

ΔCo_norm = Co_norm-i - < Co_norm > 

ΔTo = (Toi +Trec) - < To+Trec > 
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                                       (a)                     (b) 

Figure  3-10 Time reference load counts (multicolor) and reference load temperature (black color), a) before gain normalization, b) 

after gain normalization. Note that in the time series of the reference load counts, the color represents the scene brightness 

temperature. 
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Given that this procedure, worked well in removing the time-variable system gain for 

reference counts, it was generalized for the other MWR Rad_counts, namely: ant_counts and 

ant+noise_counts, which produced the “gain normalized Rad_counts” that would have been 

observed if the system gain was constant over the orbit. The generalized formula was: 

   (3.4) 

where Cx_norm are the normalized Rad_counts (i.e., ant, ant+noise, and ref) and Cxi are the 

instantaneous Rad_counts. 

The next step in determining the MWR transfer function was to develop a model [13] for 

the system gain expressed as: 

     (3.5) 

where Go is the mean of long term gain, g(To) is the orbital gain changes due to the physical 

temperature, and h(Tin) is the gain compression due to variable scene brightness temperature. As 

a result, the instantaneous gain for a non-linear radiometer is different for each of the three Dicke 

states, and become: 

    (3.6) 

    (3.7) 

Cx_norm = Cxi *
<Co > /(<To > + <Trec >)( ) 

Coi / (Toi+ <Trec >)( )

Grec =Go *g(To)*h(Tin )

)(*)(* antinrefoant ThTgGG 

)(*)(* NinrefoN ThTgGG 
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    (3.8) 

where Gant, GN and Gref are the gains corresponding to the antenna, antenna + noise and reference 

states, and Tin-ant, Tin-N, and Tin-ref are the receiver input temperatures, respectively. 

To characterize the MWR system non-linearity, a deep-space calibration orbit was 

selected that included a wide range of scene Tb’s including deep space (2.7 K), ocean (100 – 200 

K), and land (300 K). After gain normalizing, a total power radiometer transfer function was 

constructed by performing a second order regression of the normalized Rad_counts versus the Tin 

for a single orbit. An example of this procedure for 37 GHz V-pol channel for one orbit is shown 

in Fig. 3.11, where the y-axis is the Rad_counts and the x-axis is the full dynamic range that 

includes Tin-ant (Dicke switch in antenna position and noise diode is off) and Tin-N (Dicke switch 

in antenna position and noise diode is on). The quadratic regression equation for this orbit is 

defined as: 

9.3272*61.16*10*719.7_
24  

inin TTcountsRad    (3.9) 

The existence of a negative quadratic term "-7.719*10
-4*

Tin
2
" demonstrates that the 

system is non-linear and compressive. The normalized gain compression h(Tin) is set equal to the 

first derivative of (Eq. 3.9) after normalizing by the peak value, and a plot is shown in Fig. 3.12. 

From this figure, it can be seen that the normalized gain compression decreases with the increase 

of Tin, and the corresponding radiometer system non-linearity is about 4%. 

One additional analysis was performed to demonstrate the MWR system non-linearity. In 

this approach the NDD (using gain normalized counts) was cross-correlated with the radiometer 

)(*)(* refinreforef ThTgGG 
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input brightness temperature Tin in a scatter diagram (Fig. 3.13). After performing a linear 

regression, the NDD decreases monotonically with the increase of Tin, verifying that the MWR 

system gain is non-linear and compressive. 

In conclusion, based upon the empirical on-orbit results presented herein, the MWR 

system is slightly non-linear (~4%), and as such accurate Tb’s cannot be obtained. Therefore the 

development of a MWR non-linearity correction algorithm is presented in the next chapter. 
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Figure  3-11  MWR Radiometer Transfer Function for 37V V5.0S (constant gain)  for One Orbit 

 

 

Figure  3-12 Normalized Radiometer Gain Compression "h(Tin)".
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Figure  3-13 Noise diode deflection for MWR 37H radiometer after removing the time-varying component of gain change due 

to physical temperature. Color scale is the scene Tb. 
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CHAPTER 4  

DEVELOPMENT OF COUNT-TO-TB ALGORITHM V6.0 

The primary objective of this dissertation is to develop a new version (V6.0) of the MWR 

counts-to-Tb algorithm. This chapter describes the new algorithm, which corrects observed Tb 

anomalies for version V5.0S that includes the following new features: 1) a correction for system 

non-linearity, 2) a running average technique to reduce gain fluctuations, 3) a temperature 

correction for the noise diode injection noise, 4) and improved antenna switch matrix loss 

coefficients. 

4.1  Radiometer System Non-Linearity Correction 

As discussed in the previous chapter, the MWR transfer function was discovered to be 

slightly non-linear (compressive) during the on-orbit Cal/Val investigation [14]. While it is not 

possible to determine the root cause, it is most likely a deviation from square-law characteristic 

of the power detector. Regardless of the source, it is believed that the system non-linearity occurs 

in the receiver and is therefore common to all channels. 

Initially the forward radiometer transfer function was obtained without gain 

normalization, and this approach proved to be unstable and ineffective in developing a procedure 

for consistently removing the system non-linearity for all orbits. On the other hand, by first gain-

normalizing the counts, the non-linearity was successfully corrected for every orbit of the many 

evaluated. Thus, to establish a universal non-linearity correction procedure (rather than each 

orbit individually), seven “deep-space calibration orbits” that occurred during 2012 were 
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analyzed. These special radiometric calibration tests, which included deep space, ocean and land 

observations, provided a wide range of the brightness temperatures (from approximately 3 to 300 

K). The analysis procedure was performed separately by channel (radiometer receiver) for each 

orbit and each beam; but because the nonlinearity was not orbit nor beam dependent, results for 

each channel were averaged. The analysis procedure for a single orbit is described next. 

First, using smear corrected counts from V5.0S, the gain normalized Rad_counts 

(antenna - Ca, antenna + noise - CN and reference load - Co) were calculated using Eq. 3.2, and 

then the radiometer input temperature (Tin) was calculated using Eq. 2.6.  Next the forward 

transfer function Rad_counts = f(Tin) was established by performing a second-order least squares 

regression (see Fig. 4.1.a). It should be noted that a third order regression was also evaluated and 

rejected because the observed transfer function non-linearity was predominately second order. 

Also, because non-linear counts were used in V5.0S, the resulting Tin values were progressively 

too low. To evaluate the effect of this on the regression coefficients, an iterative procedure was 

used to recalculate the forward radiometer transfer function after correcting Tin for non-linearity. 

This experiment showed that there was only a minor change in the second-order term, and for 

simplicity this iterative approach was not followed. 

To correct the radiometer system non-linearity, a procedure was developed to subtract the 

quadratic term from the Rad_counts. Because the eight beams of a given channel are sequentially 

integrated for 240 ms in the same receiver, a given beam was sampled every 1.92 s. Over this 

short interval, the mean radiometer gain should be effectively constant for all the beams. 

Furthermore, the gain-normalization procedure for Rad_counts adjusted the gain at each 

sampling period to be equal to the mean gain for the entire orbit; therefore, all beams should 
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have the same transfer function (i.e., slope and offset should be equal). Thus, the second order 

coefficients of the quadratic regression, derived for eight beams and seven deep space calibration 

orbits, were averaged and presented in Table 4.1.  

Table  4-1  Mean and std of the second order coefficients for the three MWR Channels. 

Channel 37V 37H 23H 

Mean -7.46*10
-4

 -6.90*10
-4

 -2.17*10
-4

 

STD 2.35*10
-5

 4.44*10
-5

 8.91*10
-6

 

 

Using these mean values, the instantaneous counts linearization equation for the three 

channels are: 

for 37V  

  (4.1) 

For 37H 

  (4.2) 

for 23H 

  (4.3) 

where Cx represents antenna, antenna + noise and reference load, and Tin is the input brightness 

temperature to the Dicke switch (which is estimated using smear-corrected non-linear counts). 

2-4

_ *)10*(-7.4677 inxlinearx TCC 

2-4

_ *)10*(-6.9064 inxlinearx TCC 

2-4

_ *)10*(-2.1708 inxlinearx TCC 
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The performance of the non-linearity correction is illustrated in four different examples 

that follow. The first compares radiometer forward transfer functions in Fig. 4.1, where panel-a 

shows the transfer function before counts linearization and panel-b shows the same after counts 

linearization. In the left panel, the quadratic coefficient is 6.9x10
-04

; and after the non-linearity 

correction (Fig. 4.1.b), the quadratic coefficient, reduced by a factor of > 500, becomes 

negligible. 

The second example of the effectiveness of the counts linearization is presented in Fig. 

4.2 as a global image of noise deflection for 37GHz V-pol for one day (~14 orbits), where panel-

a is for V5.0S and panel-b is V6.0 (after linearization). Note that for V5.0S, the noise deflection 

counts changed abruptly at the ocean/land crossing boundaries, whenever the brightness 

temperature contrast was high. On the other hand, for V6.0 the noise deflection counts were 

independent of the scene Tb. Also note that as expected both images show slight latitudinal 

dependence of noise deflection due to the orbital receiver physical temperature cycle.  

The third example shown in Fig. 4.3 presents a scatter diagram between the noise 

deflection counts and Tin for 37GHz V-pol for one deep space calibration orbit, where the color 

is the scene Tb. The left panel side (V5.0S) shows that the noise diode deflection depended on 

the input power; whereby increasing input Tin caused the deflection counts to monotonically 

decrease. In the right panel-b, after applying the non-linearity correction in V6.0, the deflection 

counts were independents of the input power. 

Finally, the last example (Fig. 4.4) presents the time series of the radiometer gain, 

          , during one deep space calibration orbit. In the left panel (Fig. 4.4.a), as 

expected, the gain changed due to the orbital physical temperature cycle of the receiver; however 
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there were frequent anomalous gain jumps that are correlated with significant changes of the 

scene brightness temperature. Note the very large gain changes occurred when the scene changed 

from radiometrically hot land (red) to radiometrically cold space (blue). The performance of the 

MWR after non-linearity correction (V6.0) is shown in the right panel (Fig. 4.4.b). Here the gain 

varied cyclically over the orbit period because of the change of the receiver physical 

temperature; however there were no gain jumps with scene Tb changes.  

. 
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                                        (a)                                                                                (b) 

 

Figure  4-1  Radiometer transfer function that relates the Rad_counts to Tin: a) V5.0S (non-linear counts), b) V6.0S (linear 

counts). 
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                                      (a)                                                                                            (b) 

Figure  4-2 On-orbit noise diode deflection (NOT gain normalized), descending passes for one day (All Beams) for 37GHz V-

pol, a) non-linear counts from V5.0S, b) linear counts from V6.0. Note the color represents the noise diode deflection. 
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                                    (a)                                                                            (b) 

Figure  4-3  Scatter diagram of the noise diode deflection vs. Tin for 37GHz V-pol; a) nonlinear counts from V5.0S, b) linear 

counts from V6.0. The color represents the scene brightness temperature, where the blue, yellow, and red colors are deep 

space, ocean, and land measurements respectively. 
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                                       (a)                                                                                 ( b) 

Figure  4-4  Time series of the gain (Cn-Ca)/Tn. The color represents the scene brightness temperature for 37GHz H-pol, where 

the blue, yellow, and red colors are deep space, ocean, and land measurements respectively. 
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4.2  Running Average Technique 

In the MWR, the Dicke radiometer state measurements (equations 2.2-2.4) are performed 

during a short period time (τ/3 = 80 ms for each state), during which the gain and offset are 

considered constant. By subtracting Eq. 2.2 from Eq. 2.3 and Eq. 2.4 from Eq.2.2 we can derive 

the radiometer's observable "R" parameter [3, 15], which, in the mean, is independent of 

radiometer parameters; system gain, receiver noise temperature and offset voltage:  

                                                     (4.4) 

However, instantaneously the Rad_counts have independent random errors during the 3 

Dicke states, which combine to yield the radiometric resolution (NEDT):  

     (4.5)                                 

where B is bandwidth and  

 τ is the Tb integration time = 240 ms 

The system gain changes inversely proportional to the receiver physical temperature, and 

to minimize this effect, the receiver baseplate temperature (To) is controlled on-orbit to within ± 

0.5 K. In addition, Dicke radiometers mitigates the effect of radiometer receiver gain variation, 
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by rapidly switching the receiver input between antenna and internal reference noise sources 

(every 10 ms).  

For the MWR receivers, the two noise references are: 1) a blackbody waveguide 

termination at ambient physical temperature and 2) a reverse-biased avalanche noise diode that 

produces an equivalent “hot” blackbody source. The Rad_counts are used in Eq. 2.5 to calculate 

the average system gain on each measurement period (240 ms); so that systemmatic gain 

changes, that occur on the sampling interval 1.92 s, will not produce Tb errors. However, since 

the individual counts have noise (NEDT), then the resulting calculated (estimated) gain will be 

corrupted with Gaussian noise. So the gain samples were passed through a recursive low-pass 

digital (smoothing) filter to reduce the associated gain fluctuations and provide an improved gain 

estimation for the calculation of Tin. 

In the MWR counts-to-Tb algorithm V6.0, a triangular moving average is used to reduce 

the gain fluctuations, while maintaining the long-term gain tracking capability. The recursive 

filtering is defined by the equation: 





n

nj

jji wgainsmoothedgain )*(_                                        (4.6) 

where j = -n,…0,…,n, and wj are the gain weighting coefficients. 

To cover the same number of samples of the smoothed gain as the original gain, the data 

at both ends of the vector is reflected and extended by half length of triangular window. The 

length of the window is selected, so that the long-term stability of the gain can be achieved while 

RMS noise in the gain estimation is reduced. This is determined by calculating the power 
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spectrum of the on-orbit gain and selecting the desired filter frequency response to remove white 

noise.  

To perform this Fourier analysis, a time series of MWR calcuated gain for 8 beams from 

15 orbits (one day) were combined to produce a series length of 441720 samples with the 

sampling period of 240 ms. An example of the power spectrum of the calculated gain for 37GHz 

V-pol is shown in Fig. 4.5. The desired signal is the low frequency portion of this spectrum, 

where there are 4 dominant spectral components corresponding to the fourier components of the 

orbital receiver temperature. The undesired signal is the high frequency white noise beyond a 

cutoff frequency of  approximately 2.7 x 10
-3

 Hz, which corresponds to a digital filter window of 

191 samples that has a triangular weighting applied and then a moving average taken. The 

corresponding triangular moving average window lengths for all channels are given in Table 4.2. 

Table  4-2  Triangular moving average length for the three MWR channels. 

Filter Window Length 

37V 37H 23H 

191 151 191 

 

From the normalized cumulative sum of the power spectrum of the gain (Fig. 4.6.a), it 

can be seen that the signal contained 90% of the white noise (dominant) and only 10% of the true 

signal. By applying the running average (Fig. 4.6.b), the noise contribution is reduced to 10%, 

and the true gain is increased to 90%. 

The power spectra of the gain (green) and the smoothed gain (magenta) are illustrated in 

Fig. 4.7. The blue color represents the true gain, where the calculated gain and the smoothed gain 
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match. The 1/f value is also noted at the intersection of the black line and the red line (slope of 

the true gain). From this figure, it can also be noted that the white noise performance is reduced 

by about 20 dB while the true gain remained the same. 

Figure 4.8 shows the time series of the gain (blue dots) and the smoothed gain (red line). 

From this figure, it can be seen that the high frequency fluctuations (white noise) are reduced, 

while keeping the low frequency fluctuations over an orbit (true gain). 
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Figure  4-5 Amplitude Spectrum of the gain 

 

. 
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                                          (a)                                                                                      (b) 

Figure 4-6 Cumulative sum of the power spectrum of the gain (a) and Cumulative sum of the power spectrum of the smoothed 

gain (b). 
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Figure 4-7 Power spectra of the gain (black), the smoothed gain (magenta), and the 191 samples of the power spectra of the gain 

(blue). 
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Figure 4-8 Time series of the gain (blue) and the smoothed gain (red). 
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4.3  Injected Noise Temperature Characterization 

It is noted that the values of the injected noise temperature used in the counts to Tb 

algorithm versions 2.0 to 5.0S (derived by Biswas [7]) were from the pre-T/V test (see section 

4.4); however, for the new version (V6.0), the noise diode injection noise (Tn), is characterized 

on a per orbit basis, using on-orbit data using the following procedure. 

First, the rad_counts were linearized (to remove radiometer system non-linearity) and 

gain-normalized (to remove gain changes associated with the receiver physical temperature 

cycle). Next, a linear regression was performed, between the antenna counts (Ca) and the antenna 

temperature (Tin) to define the total power transfer function defined as: 

 

    (4.7) 

Using the measured “antenna + noise” counts (Cn), the Ca was replaced by Cn and Tin 

(noise diode is off) replaced by “Tin + Tn” (noise diode is on). Solving for the noise diode 

injection noise yields: 

    (4.8) 

A typical time series of the characterized Tn for 37 GHz V-pol for one orbit is illustrated 

in Fig. 4.9. It can be seen from this figure that Tn varies cyclically over an orbital period. Note 

that the changes of Tn  over an orbit is typically 0.5 K peak-to-peak. 

offsetTslopeC ina  *
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After collecting one year of data, the mean Tn was characterized as a function of the 

reference load (baseplate) physical temperature (To). An example of this characterization is 

shown in Fig. 4.9 for 37 GHz V-pol over the period Jan-Nov, 2013. After removing the outliers, 

a linear regression was performed to derive the injected noise temperature for 37 GHz V-pol as: 

 

59.145*45107.0  on TT      (4.9) 

 

Similar analyses were performed for 37 GHz H-pol and 23 GHz H-pol are: 

 

for 37 GHz H-pol : 

05.259*03974.0  on TT                           (4.10) 

for 23 GHz H-pol: 

85.346*14598.0  on TT                          (4.11) 
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Figure 4-9 Typical time series of the noise diode injection noise characterized using on-orbit data. 
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Figure 4-10 Scatter diagram between noise diode injection noise (Tn) and reference load temperature (To). The colors represent 

number of points. 
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4.4  Improved Antenna Switch Matrix Loss Coefficients and Injected Noise Temperature 

Validation 

The original analysis of the pre-launch radiometric calibration tests (Biswas [7]) were 

performed before implementing the MWR non-linearity correction; therefore these tests were 

reanalyzed using linear counts with the objective of: 1) verification of the noise diode injected 

noise temperature, and 2) deriving improved antenna switch matrix (ASM) loss coefficients.  

4.4.1  Pre Thermal Vacuum Calibration Test 

The objective of the pre-T/V calibration test was to determine the injected noise 

temperature, Tn for the three MWR channels. During this test, the ASM’s were removed and 

were replaced by a blackbody waveguide termination located at the calibration reference point 

(input to the directional coupler), as shown in Fig. 4.11. Thus, the blackbody brightness 

temperatre was equal to the measured physical temperature of the termination, which was 

sequently heated and then cooled using hot water and liquid nitrogen respectively to create the 

two temperature sources, hot load 'Th' and cold load 'Tc'. After propagating through the 

dissipative loss of the inter-connecting test waveguide to the directional coupler input, the Tb's 

were modified as shown in Fig. 4.11.  

During the test, the receiver was maintained at constant temperature (To) by the MWR 

thermal control subsystem, As shown in the Fig. 4.12, there was a small drift of ± 0.04 K about 

the mean during the interval of the test (~ 2 hours); so the resulting gain normalization of counts 

was negligible. After collecting counts for the hot and cold loads, the raw (non-linearized) counts 
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were used to estabilsh a corresponding total power radiometer transfer function as shown in Fig. 

4.13a for 37 GHz V-pol, where the  known brightness references were: cold load, reference, and 

hot load. The noise diode injected noise (Tn) in this analysis was obtained from the previous 

version V5.0S of MWR counts to Tb algorithm, where it was  assumed to be constant (Tn = 274 

for 37GHz V-pol). Finally a second-order regression was performed, and the counts were 

linearized (see section 3.4) by subtracting the quadratic term. For the 37 GHz V-pol the 

relationship is:  

                             (4.10) 

where Cx are the non-linear counts that represent: cold load (Cc), hot load (Ch), reference (Co), 

cold load + noise (Cc+n) and hot load + noise (Ch+n) counts, and Tin represents the corresponding 

input brightness temperatures. 

The effectiveness of the non-linearity correction was assessed in two ways. The first is 

shown in Fig. 4.13.b, where the radiometer transfer function is confirmed to be linear, when 

using the linearized rad_counts. Based upon the quadratic polynomial fit, the non-linearity 

(second order term) is reduced to a negligible value (4.0492 x10
-8

).  

The second method of assessing the effectiveness of the non-linearity correction is 

concerning the measurment of the noise diode injected noise temperature at the hot and cold end 

of the brightness temperature scale.  For this analysis, we use a linear total power transfer 

function (slope and offset) for V5.0S (non-linear counts) and V6.0 (linearized counts) to 

2

_ *)(-0.001121 inxlinearx TCC 
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calculate the brighness temperature for the “cold load + noise” (Tc+n) and “hot load + noise” 

(Tc+n) given as: 

                                     (4.11) 

                                      (4.12) 

By subtracting these equations, the noise diode injection noise Tn is: 

 

for the cold load 

(Tn )cold  = Tc+n  - Tc                                                      (4.13) 

for the hot load 

(Tn )hot  = Th+n  - Th                                                       (4.14) 

The time series of Tn are shown for V5.0S in Fig. 1.15a and V6.0 shown in Fig. 4.15.b. In 

Fig. 4.15.a, because of the radiometer system non-linearity, Tn = 265 K for the hot load, while Tn 

= 272 K for the cold load. Obviously this is anomalous because the noise diode injected noise 

temperature is constant. 

In Fig. 4.15b, after the non-linearity correction, the Tn  for both test are ~273 K, as it was 

expected. Thus, it is concluded that the Tn in V6.0 does not depends on the scene Tb's and 

depends only on the noise doide physical temperature. Because the pre-T/V calibration test was 

conducted only at one reference load temperature, it is not possible to extrapolate the results to 

other physical temperatures experienced on-orbit.  Thus, in the new version of counts to Tb 

algorithm V6.0, we decided to use the Tn values determined on an orbit by orbit basis as 

presented in sectiom 4.3., Eq. 4.8. 

slopeoffsetCT ncnc /)(  

slopeoffsetCT nhnh /)(  
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Figure  4-11 Pre-T/V calibration test. The matched termination (blue in the bottom picture) is heated and cooled to create Th 

and Tc. The temperatures are measured using a platinum temperature sensor attached to the termination. The receiver and the 

termination are connected through the calibration waveguide. The equations are the three Dicke state for HOT and COLD 

cases. 
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Figure  4-12 Time series of the reference load temperature for hot load (red dots) and cold load (blue dots) tests for 37GHz V-

pol. 
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                                           (a)                                                                                      (b) 

Figure  4-13 Radiometer transfer function: a) before non-linearity correction, b) after non-linearity correction 



 

65 

 

 

                                                (a)                                                                                      (b) 

 

Figure  4-14 Noise diode deflection (deflection counts) for 37GHz V-pol for: a) V5.0S using non-linear counts, b) V6.0 using 

linear counts. 
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                                                    (a)                                                                                      (b) 

 

Figure  4-15 Noise diode injection noise for 37GHz V-pol : a) V5.0S using non-linear counts, b) V6.0 using linear counts. 
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4.4.2  Thermal Vacuum Calibration Test 

The primary objective of the pre-launch MWR Thermal Vacuum (T/V) Calibration Test 

was to perform MWR radiometric calibration under simulated on-orbit conditions and thereby 

develop a forward radiometer transfer function that related apparent brightness temperature input 

at the antenna feed aperture to Rad_counts in the instrument science data output.  A necessary 

part of this objective was to empirically derive the antenna switch matrix losses coefficients. 

Also, there were important secondary objectives; to validate the performance of the instrument's 

thermal control over the expected range of on-orbit temperatures and to verify engineering 

telemetry, which includes physical temperature measurements of the key radiometer 

components.  

The 4-day T/V test was conducted in September, 2009 in CONAE's environmental test 

facility Teófilo Tabanera Space Center or CETT (Centro Espacial Teófilo Tabanera) in Córdoba, 

Argentina. During this test, the MWR's antenna reflectors were removed and replaced by 

broadband microwave absorber targets (Fig 4.16.a). As a result, the microwave thermal emission 

(apparent brightness temperature) from these blackbody targets were captured by the feeds and 

resulted in known Tb’s that were equal to the corresponding target physical temperatures. Five 

precision temperature sensors were mounted on the targets to measure the temperature in 

different locations (one at the center and 4 at the corners) as shown in Fig. 4.16.c. To simulate 

the on-orbit thermal environment, the MWR instrument was placed inside an aluminum box 

(MWR coffin) that was covered with infrared absorbing paint as illustrated in Fig. 4.16.a. Then, 

the MWR coffin was put inside the T/V chamber, which was heated by infrared heaters and 

cooled by liquid nitrogen (Fig. 4.16.b).  
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An example of the temperatures for the T/V calibration test is shown in Fig. 4.17, where 

the black trace represents the average of the measured blackbody target temperature from the 

five sensors. With the assumption of unity target emissivity, the brightness temperature (Tapmeas) 

was captured by the feed horns, and the received Tb signal from each feed was sequentially 

routed inside the antenna switch matrix to the receiver. Because of dissipative losses of the feed 

horn and switch matrix components, leakage through the switches, and reflections at the feed 

horn apertures, the received Tb signal at the radiometer input was modified. Thus, the brightness 

temperature (Tin) at the antenna port input of the Dicke switch was calculated using linear counts 

and is represented by the trace of magenta color, and the blue traces represent the physical 

temperatures T1, T2, T3, and T4 for SW#1, SW#2, SW#3, and feed horn respectively, which 

appear in the MWR science data output. To compute the brightness temperature at the feed horn, 

the inverse radiative transfer model was used [7]: 

Tap=[Tin-(b2*To+b3*T1+b4*T2+b5*T3+b6*T4)]/b1  (4.15) 

where b1, b2, b3, b4, b5, and b6 are the antenna switch matrix (ASM) loss coefficients.  

 In this dissertation, the ASM loss coefficients were empirically derived. First, Tap in 

Eq.4.15 was replaced by the measured target apparent brightness, Tapmeas; and then a multi-

variate linear regression analysis was performed using temperatures (Tin, To, T1, T2, T3, and T4) to 

derive the  ASM loss coefficients. Next, the apparent temperature was calculated using Eq.4.15, 

and the result is shown as the red trace in Fig. 4.17. The computed apparent temperature matched 

the measured apparent temperature during the entire time period of T/V test with a small residue, 
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which means that the output of the regression model is an excellent estimator for the ASM loss 

coefficients. 
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Figure  4-16 TV calibration test. a) MWR instrument with blackbody target and MWR coffin (aluminum box), b) MWR coffin inside 

TV chamber, c) blackbody target with the five temperature sensors. 
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Figure  4-17 Time series of the measured apparent temperature (black circle), computed apparent temperature (red dots), calculated Tin 

using linear counts (magenta color), temperature of the switches and the feed horn (blue colors), and reference load temperature To 

(green color) 
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Another objective of the T/V calibration test was to characterize noise diode injection 

noise (Tn). For this analysis, two plateaus where To was stable were selected. The first plateau 

occurred during the time period between 200 and 800 minutes, and the second plateau was 

between 2400 and 2900 minutes. For each plateau, the transfer function that relates the gain-

normalized and linearized Rad_counts to the Tin was established. Then, a linear regression was 

performed to retrieve the slope, which is the radiometer system gain. To calculate Tn, Eq. 2.5 is 

used: 

gain

CC
T

an
n


                                                        (4.15) 

By subtracting antenna counts from antenna + noise counts, the noise diode injected noise 

temperature was estimated. Since, over these plateaus the receiver physical temperature was 

constant, the gain was expected to be stable and any changes are attributed to variations of  the 

Tn. The results, of this analysis over the two plateaus, are shown in Fig.4.18, where the magenta 

and green colors corresponds the first and second plateau respectively. From this figure it is 

estimated that there is a small physical temperature dependence of the noise diode injected 

temperature of about 0.4K. 

As a conclusion of this chapter, it should be noted that all MWR pre-launch calibration 

tests were conducted without reflectors, and it was assumed that the feed-horns capture only the 

signal coming from the absorbers with no spill over. Therefore, it was necessary to perform the 

post-launch calibration to derive the Antenna Pattern Correction (APC) coefficients, as will be 

discussed in the next chapter. 
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Figure  4-18 Tine series of the noise diode injection noise (Tn) during two different plateaus. The characterization of each plateau were 

performed separately 
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CHAPTER 5  

MICROWAVE RADIOMETER POST LAUNCH CALIBRATION 

VALIDATION 

After a successful reanalysis pre-launch radiometric calibration tests, there remained 

several possible sources of Tb biases in the V6.0 computed brightness temperature. For example, 

the T/V calibration test was performed without the reflectors being present, and it was assumed 

that the emissivity of the absorber target was unity and that the feed-horns captured only the 

blackbody emission coming from them without spill-over. On-orbit, the MWR's aluminum 

reflectors were assumed to be non-emissive, but certainly there were feed spill-over and antenna 

pattern (main beam efficiency) considerations that must be taken into account. Thus, post-launch 

radiometric calibration was necessary to complete the MWR V6.0 counts to Tb algorithm, 

specifically in developing an antenna pattern correction algorithm and the removal of other 

calibration biases.  

Finally, the quantitative evaluation (validation) of V6.0 Tb’s was performed by the 

analysis of special Deep Space Calibration tests and by the inter-satellite radiometric calibration 

(XCAL) with the WindSat satellite radiometer. Results are presented that demonstrate that V6.0 

fully meets the requirements for the MWR Tb’s product L1B. 

 

5.1  Dataset for MWR XCAL 

5.1.1  WindSat Comparison 

The Naval Research Laboratory’s WindSat (WS) satellite radiometer [12], on board the 

United States Air Force’s Coriolis satellite, is an excellent choice for the radiometric calibration 
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standard for the MWR XCAL. First, WS is a well calibrated radiometer that has been used in a 

number of inter-satellite radiometric calibrations for NASA’s Precipitation Measurements 

Program [8]. Second, the 3 MWR channels (23 GHz H-pol and 37 GHz V- & H-pol) are subset 

of the WindSat frequencies, which is highly desirable for XCAL. Finally, both the AQ/SAC-D 

and Coriolis satellites fly in sun-synchronous orbit with similar inclination angles and have the 

same equatorial crossing time that frequently results in both radiometers viewing the same earth 

scene at nearly the same time.  

Before the AQ launch, a simulation was performed to evaluate the feasibility of using 

WS to perform XCAL of MWR. In his thesis, Kahn [10] used Satellite Tool Kit (STK) [16] to 

evaluate temporal and spatial collocation between MWR and WindSat and an example of his 

results are shown in Fig. 5. 1. Because the satellites fly at different altitudes, their orbits drift into 

and out of phase (time coincidence and spatial collocation) with a period of approximately 45 

hours. Thus, the overlapping swaths vary on a daily basis according to the orbits relative phasing, 

which results in an average of ~ 60% of MWR observations being collocated with WindSat 

within a temporal window of ±1hr.  
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Figure 5-1Satellite Tool Kit (STK) simulation collocations between MWR (green) and WindSat (magenta) for ascending (a) and 

descending (b) passes. The red color dots are the collocated 0.5º resolution boxes [10]. 
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5.1.2  MWR Dataset 

MWR's science data were multiplexed with other instruments on board of AQ/SAC-D 

satellite and captured twice/day by the CONAE ground station. These data were sorted and 

processed by CONAE to provide an earth-located MWR dataset of engineering data (physical 

temperatures, raw radiometer counts, IFOV center latitude and longitude, time, etc.) known as 

L1A [4, 7]. Next, these MWR data were used as input to the V6.0 counts-to-Tb algorithm 

(supplied by CFRSL) to produce the L1B Tb dataset, which included MWR smear and non-

linearity correction discussed in Chapter 3. These MWR Tb’s were binned into 1° boxes over 

oceans and collocated with WS and environmental data from a NOAA numerical weather model 

for use in the CAL/VAL process. 

5.1.3  GDAS Data 

GDAS (Global Data Assimilation System) is one of the operational, global, numerical 

weather analyses produced by the National Weather Service's National Centers for 

Environmental Prediction (NCEP). The GDAS data are produced every six hours at 00, 06, 12, 

and 18 UTC on a 1º latitude/longitude grid, which results in a matrix (181 x 360). A subset of 

GDAS environmental parameters are the input to the CFRSL XCAL RTM, namely: sea surface 

temperature, 10 meters wind speed, atmospheric (height) profiles of pressure, temperature, 

specific humidity and cloud liquid water at 21 levels between pressures of 1000 mb and 100 mb. 

The RTM outputs theoretical Tb’s for both MWR and WS for CAL/VAL purposes discussed 

below. 
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5.2  Post Launch MWR Antenna Pattern Correction and Radiometric Calibration 

As mentioned above, there were neither tests nor analysis to correct for the effect of the 

MWR antenna pattern and other radiometric biases on the antenna temperature. Therefore, a post 

launch calibration using inter-satellite radiometric comparison technique, developed by Central 

Florida Remote Sensing Lab (CFRSL) [8], was used in this dissertation to provide the APC and 

remove other radiometric biases.  

To correct for the APC and other radiometric biases, a scatter diagram is performed 

between The WS Tb's and MWR antenna temperature Ta, then a linear regression was applied to 

retrieve the coefficients (slope and offset). By tuning up The MWR Tb to match the WS Tb, we 

performed the APC and removed the undesired power captured by the feedhorns. Because the 

WindSat frequencies correspond to the MWR channels (23 GHz and 37 GHz), and WS and 

MWR have different EIA (EIA for WS is 53°, whereas the MWR beam EIA’s are 52° and 58° 

respectively for odd and even beams), it was necessary to match the corresponding MWR EIA’s 

using simulated radiative transfer model (RTM) values calculated using collocated GDAS 

geophysical parameters. Therefore, the adjusted WS Tb (WSadj) is expressed as: 

 simsimobsadj WSMWRWSWS      (5.1) 

where WSobs is the WS observed Tb, MWRsim is MWR simulated Tb (at 52° or 58°), and WSsim is 

WS simulated Tb (at 53°). Note that the second term in the Eq. 5.1 is the expected difference 

between the WS and MWR Tb's, due to different EIA’s. 

In the counts-to-Tb algorithm V6.0, the brightness temperatures are computed based 

upon the inverse transfer function (see Chapter-4). Unfortunately, this results in antenna 
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temperatures that are biased because of uncorrected antenna pattern effects and other radiometric 

calibration errors. Fortunately, the simultaneous and collocated Tb’s provided in the WS sensor 

data record (SDR) are the true scene apparent brightness. Thus, the linear regression between 

observed MWR Tb’s and adjusted WS Tb’s (to account for EIA differences) provides the 

necessary MWR APC, which also removes MWR inter-beam radiometric biases. This procedure 

was performed separately for each channel and each beam, and an example for 37V for beam #1 

is shown in Fig. 5.2.  

In this analysis, 20 days of XCAL ocean Tb’s (September through December, 2012) were 

combined with MWR Tb’s from the deep space calibration measurements. Previous analysis of 

the WindSat deep space calibrations [9] demonstrates that the observed WS Tb’s were nearly 

identical to theoretical values; therefore the corresponding WS space measurements in this figure 

were assumed equal to 2.73 K. Thus, space and clear sky ocean measurements were combined to 

perform the scatter diagram and linear regression, which converts MWR antenna temperature Ta 

into co-polarized brightness temperature Tb at the antenna boresight. This characterization of the 

APC removes the effect of unwanted radiation that is captured in antenna paternal outside of the 

main beam (spill over). This can be achieved using the following linear equation that relates Ta 

and Tb [6]: 

 
MB

spilloverab TTT


1
*                                           (5.2) 

where ηMB is the main beam efficiency and defined as  

Slope
MB

1
                                                          (5.3) 
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and Tspillover is the brightness temperature contribution for side lobes outside the main beam and 

defined as: 

offsetT MBspillover *                                                         (5.4) 

Figure 5.2 shows a comparison between MWR observed Tb and WS adjusted Tb for 37V 

for beam # 1. Before correction (Fig.5.2.a), the slope and the offset of the linear regression are 

0.92329 and 0.40928, respectively. Note that the WS Tb includes the APC correction. This 

means that the slope and the offset values are due to the APC and other radiometric biases 

related to the MWR Tb's. After correcting the MWR observed Tb using Eq. 5.2, the slope and 

the offset of the linear regression which is applied only on clear sky ocean and space data 

(excluding land) became 0.99952 and 0.091 respectively. This demonstrates that the APC and 

other radiometric biases were removed successfully by forcing the MWR observed Tb to match 

the WS adjusted Tb. Note that the red color in Fig 5.2.b represents the land measurements of 

MWR observed Tb and WS observed Tb. No adjustments of the Tb observations over land are 

made because the incidence angle dependence of Tb is negligible. By holding the ocean and 

space observation plot and performing a scatter diagram of the land measurements of both 

instruments, we can see that the linear regression over space and ocean points is a good fit for the 

land measurements. Despite the fact that MWR and WindSat share some similarities, the spatial 

coverage causes the differences in Tb over land between the two sensors. The WindSat has a 

mean spatial resolution of ~15 km, whereas MWR has a mean spatial resolution of ~50 km (~ 3 

times the WindSat footprint). This causes the MWR and WindSat observations to be 

inconsistent, especially for complex terrain and heterogeneous landscapes. It is expected that the 
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higher biases will be over large water bodies, such as coastal areas, Amazon River, and Great 

Lakes.  

Counts-to-Tb algorithm V6.0 Matlab code and ASM coefficients are giving in 

Appendices C and D respectively. 
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                (a)                                                                                          (b) 

 

Figure  5-2  A comparison of MWR observed Tb (V6.0) and WS adjusted Tb for 37V beam # 1 : a) before correction, b) after 

correction. 
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5.3  Post-Launch Validation 

5.3.1  Deep Space Calibration  

A “deep space calibration” (DSC) maneuver for satellite microwave radiometers is a 

special on-orbit test, whereby the spacecraft is reoriented from the nominal earth-pointing mode 

to cause the microwave sensor antenna to view space. Space presents a known brightness 

temperature scene that is non-polarized, homogenous and isotropic black body radiance of 2.73 

K for a wide range of microwave frequencies up to ~ 100 GHz. As such, space makes an 

excellent target for radiometric calibration at the low-end of the brightness temperature scale, 

and the CFRSL has considerable experience in analysis of DSC starting with the WindSat 

satellite radiometer in 2004 [9, 12] and continuing through the present.  

During the year of 2012, Aquarius/SAC-D performed several pitch maneuvers for the 

calibration purposes of the L-band AQ radiometer. MWR also benefited from these maneuvers to 

obtain Tb measurements on all three channels and 8 beams/channel at the cold end of the Tb 

scale. Results from 7 DSC revs were used in the post-launch Cal/Val campaign as discussed in 

Chapter 4, and this section concentrates on validation of MWR V6.0 Tb at the cold end. 

A cartoon of the DSC maneuver is shown in Fig. 5.3. In normal science mode, the 

satellite flies clockwise around the Earth, and slowly rotates in pitch (360°/orbit) to maintain 

earth pointing for AQ and MWR to observe the earth brightness temperatures. At phase -1, the 

satellite pitch changes from a normal nadir-pointing attitude until 180º pitch-up attitude is 

achieved (phase-2). Between phase-2 & -3, the pitch remained constant for ~ 10 min where the 

main reflectors were viewing the space, and then the pitch reverses (ramps down) to the nominal 

0º pitch attitude. The entire DSC occurs in less than one-half an orbit (~ 30 – 45 minutes). 
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For the MWR frequencies, space is a uniform distributed target of a brightness 

temperature 2.73K. Since the black body radiance is homogeneous and isotropic, the brightness 

temperature is constant regardless of where the antenna beam is pointing. Given this fact, all 8 

antenna beams should see the same Tap during the entire time that the antenna views space. Thus, 

a comparison of V5.0S and V6.0 during DSC is indicative of inter-beam radiometric biases that 

may result because of improper characterization of the ASM losses and/or antenna pattern 

effects.  A comprehensive analysis of the MWR DSC is beyond the scope of this dissertation; 

however, several important results are presented as shown in Fig. 5.4 (and Appendix-F).  

Considering the left side panel of this figure (Fig.5.4.a), where the y-axis is Tb and the x-

axis is samples (relative time), at approximately 1150 samples the spacecraft has pitched-up to 

cause the forward-looking Ka-band beams to leave the earth, and between 1200 and 1300 

samples the Tb are relatively stable, while the beams view space. Between 1300 and 1350, the 

spacecraft reached its maximum pitch, and the Tb’s monotonically increase a few Kelvin as the 

antenna sidelobes progressively illuminate the “hot earth”. After 1350 the spacecraft pitch 

reverses and the Tb time series is symmetric to the “pitch-up” portion of the DSC. From these Tb 

time series plots, it is obvious that the MWR V5.0S radiometric calibration is seriously flawed 

and the radiometric biases range from -30 to -45 K. Further inter-beam radiometric biases are ~ ± 

10 K.  

On the other hand, in the right hand side panel of Fig. 5.4.b, during the period of 1200 to 

1300 samples MWR Tb’s results for V6.0 are in excellent agreement with the expected scene Tb 

of 2.7 K. After this time all beams exhibit very similar patterns as the sidelobes intercept the 

radiometric hot earth, but unlike V5.0S, here all beams have small inter-beam biases < 1 K. 
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Overall V6.0 has no apparent deficiencies at the cold end of the scene brightness temperatures, 

which implies no APC problems nor issues with the ASM loss coefficients.  
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Figure  5-3  Cold Sky Calibration 
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      (a)                   (b) 

 

Figure  5-4 37V, cold sky calibration brightness temperature measurements for even beams for a) V5.0S, b) V6.0 
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5.3.2  V6.0 Counts to Tb Validation 

The final validation of the MWR V6.0 counts to Tb was performed using the inter-

satellite radiometric comparison (XCAL) between MWR and WS Tb's over ocean. The specified 

Tb stability for MWR is ± 1 K under all on-orbit ocean scene conditions that includes both 

random and systematic variations, and this is the standard for mission success that is levied upon 

the MWR. 

To perform the XCAL between MWR and WindSat (WS), a match-up dataset was 

created using the steps illustrated in the flow diagram in Fig. 5.5. In this process, WS is the 

radiometric calibration standard, which has been full vetted in other NASA XCAL activities [8] 

and has been shown to be stable to <  ± 0.1 – ± 0.2 K over 1 year. In this dissertation, MWR is 

the “target satellite radiometer” to be calibrated relative to WS. The MWR XCAL was 

performed every 5 days for the period of ~ 2 years. In each 5 day period 24 radiometer beams 

were compared to WS and Tb biases were estimated. 

The first step in the XCAL process is to grid the data (MWR and WS data) in a 1
o 

resolution box. Because the environmental files from GDAS are generated at 00, 06, 12, and 18 

hours Greenwich Mean Time (GMT), the closest file within ± 3hrs of the grid time is chosen for 

collocation with MWR and WS. Next, we perform a spatial and temporal collocation between 

MWR, WS and GDAS within ± one-hour time window over the 1
o 

boxes. A typical example of 

this spatial/temporal collocation for one day between MWR and WS is shown in Fig. 5.6, which 

results in ~ 60% of MWR measurements being collocated with WS.  

Next, for each 1° box, we calculate the theoretical (expected Tb differences) between two 

satellites with perfect radiometric calibration. This is accomplished by running theoretical ocean 

Tb calculations (RTM) using the environmental parameters from GDAS and the respective 
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radiometer parameter information (frequency, polarization and incidence angle) from both 

instruments. After obtaining theoretical Tb’s for WS and even and odd MWR beams, we 

calculate the theoretical difference for the 24 beam sets of MWR.  

Next, we average all Tb’s for each MWR channel/beam and also average WS Tb’s within 

the 1° box. We run conservative filters to eliminate non-homogeneous clear-sky ocean scenes, 

and then after filtering, calculate the observed Tb differences.  

Finally, the last step is to calculate the “double difference” of the single differences.  This 

step is important because it eliminates several “common mode” error sources and results in a 

very robust Tb bias estimate that is mostly independent of the radiometer properties and the 

ocean scene brightness. An example of the WS/MWR XCAL results has been reported by 

Santos-Garcia [17].  
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Figure  5-5 Flow diagram of CFRSL XCAL approach. 

 
 Figure 5-6 MWR and WindSat temporal and spatial collocation within ±1 hour window and a  

 1° x 1° Lat/Lng box.  
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In this dissertation, MWR (V6.0) and WS XCAL data from 2012 and 2013 were used to 

validate the MWR Tb. Based upon thousands of 1° boxes, a five-day average double difference 

radiometric bias was calculated by MWR channel and beam, to verify the results of the MWR 

counts-to-Tb algorithm (V6.0).  

Figure 5.7 shows the results of the five day average double difference for the 8 beams for 

37 GHz V-pol for the year of 2012, and similar results for the other MWR channels are presented 

in Appendix-E. Because WS is a very well calibrated instrument, any bias in the Fig. 5.7 is 

related to MWR Tb's error. Starting Jan 2012 until March 2012, it can be seen that all the beam 

has a bias close to -1K, which after all the beams became stable except beam # 7, which has 

more fluctuation. The results of the double difference technique of 2012 demonstrate that the 

MWR calibration (V6.0) meets the ±1K specification for the 37GHz V-pol channel for all the 

beams. Note that the bars of this figure present the standard deviation of the double difference.  

Figure 5.8 presents the five day average double difference for all the beams for 37 GHz 

V-pol for time period of Jan-Nov of 2013. From this figure, it can be seen that the even beams 

have the same pattern, which is expected. At the beginning of the year, the even beams biases 

were close to zero, after which they start increasing until they reach their max (~ 1K), then they 

start decreasing. Beam #1 & #3 look also stable during the entire year with a bias less than one, 

and they have the same pattern, which is also expected. Beam #7 has more fluctuations, but kept 

the specification of ±1K bias. However, beam #5 has an anomalous ~ -1.5K drift. The mean and 

standard deviation of figures 5.7 & 5.8 are presented in tables 5.1, 5.2, 5.3, and 5.4. 

Another useful evaluation is to display the DD bias as a function of latitude and time (5 

day steps).  In this manner, seasonal variations may appear differently in ascending (latitudes 0° 

– 180°) and descending (180° - 360°). Figures 5.9 & 5.10 show five day average in 5° Lat Zones 
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for 37 GHz V-pol for odd and even beams separately. Thus in this analysis, the even (and odd) 

beams were averaged in latitude bins that separated ascending and descending orbit segments, 

which ranged from 0° - 360º , where 0º, 180º, and 360º correspond the south, north, and south 

poles respectively. Next, the data were averaged every five days every 5º latitude. The colors in 

this image represent the MWR biases. From these figures, we can conclude that there are no 

observable anomalies and that the V6.0 Tb calibration meets the ± 1 K spec. Again similar 

results for the two other MWR channels are presented in Appendix-E. 

In addition, the validation of Tb V6.0 over land are presented in Appendix-G
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Figure  5-7  37 GHz V-pol five day average double difference for 8 beams, from 2012. 

 



 

94 

 

 
Figure  5-8  37 GHz V-pol five day average double difference for 8 beams, from 2013. 
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Table  5-1 Monthly average of double differences per beam for year 2012 

Beam Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 -0.492 -0.467 -0.038 -0.247 -0.169 -0.497 -0.442 -0.292 -0.193 0.047 -0.227 -0.314 

2 -0.970 -0.966 -0.511 -0.237 0.034 -0.030 0.067 0.158 -0.112 -0.124 -0.048 -0.044 

3 -0.290 -0.491 0.042 -0.167 -0.171 -0.502 -0.453 -0.237 -0.068 -0.052 -0.199 -0.186 

4 -0.582 -0.674 -0.182 -0.058 0.140 0.123 0.184 0.215 -0.032 -0.079 -0.094 -0.035 

5 -0.136 -0.265 0.274 0.302 0.340 0.047 0.115 0.175 0.215 -0.040 -0.106 -0.477 

6 -0.350 -0.485 -0.097 0.039 0.211 0.107 0.108 0.069 0.000 -0.064 -0.039 -0.009 

7 -0.398 -0.434 0.150 0.581 0.646 0.317 0.434 0.615 0.207 -0.198 -0.203 -0.068 

8 -0.857 -0.922 -0.445 -0.303 -0.046 -0.147 -0.149 -0.089 -0.089 -0.111 -0.033 -0.011 

 

 

 



 

96 

 

Table 5-2 Standard deviation of the double differences per beam for each month of 2012 

Beam Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0.369 0.330 0.228 0.175 0.242 0.304 0.189 0.159 0.170 0.170 0.153 0.249 

2 0.381 0.281 0.149 0.216 0.177 0.217 0.145 0.134 0.140 0.097 0.146 0.229 

3 0.454 0.389 0.221 0.187 0.284 0.316 0.155 0.185 0.167 0.200 0.147 0.227 

4 0.432 0.281 0.126 0.342 0.201 0.215 0.151 0.152 0.123 0.110 0.169 0.206 

5 0.496 0.376 0.178 0.210 0.263 0.258 0.142 0.183 0.109 0.232 0.165 0.325 

6 0.420 0.191 0.128 0.224 0.334 0.183 0.128 0.123 0.106 0.100 0.173 0.154 

7 0.663 0.504 0.236 0.291 0.290 0.340 0.311 0.162 0.211 0.213 0.211 0.367 

8 0.341 0.182 0.164 0.164 0.266 0.158 0.145 0.140 0.130 0.110 0.206 0.143 
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Table  5-3 Monthly average of double differences per beam for year 2013 

Beam 

# 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

1 -0.144 -0.011 0.161 -0.022 0.060 -0.001 0.092 0.139 0.292 0.530 0.345 

2 -0.024 -0.028 0.270 0.447 0.712 0.760 0.896 0.876 0.711 0.773 0.691 

3 -0.093 -0.082 0.270 0.076 0.080 -0.003 0.137 0.262 0.491 0.523 0.423 

4 -0.055 -0.061 0.205 0.384 0.686 0.668 0.746 0.686 0.471 0.480 0.362 

5 -1.008 -1.571 -1.359 -1.376 -1.271 -1.422 -1.295 -1.325 -1.261 -1.492 -1.542 

6 0.039 0.043 0.287 0.394 0.665 0.663 0.755 0.600 0.558 0.497 0.427 

7 -0.129 -0.234 0.104 0.457 0.574 0.318 0.470 0.635 0.317 -0.053 -0.044 

8 0.074 0.116 0.364 0.494 0.697 0.750 0.893 0.732 0.673 0.683 0.640 
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Table  5-4 Standard deviation of the double differences per beam for each month of 2013 

Beam Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

1 0.273 0.350 0.224 0.201 0.243 0.181 0.206 0.156 0.155 0.157 0.152 

2 0.238 0.299 0.170 0.235 0.179 0.180 0.207 0.147 0.139 0.146 0.161 

3 0.297 0.395 0.288 0.235 0.195 0.180 0.201 0.144 0.193 0.180 0.115 

4 0.230 0.280 0.176 0.240 0.228 0.186 0.184 0.147 0.147 0.105 0.125 

5 0.280 0.452 0.255 0.216 0.273 0.207 0.204 0.157 0.164 0.191 0.117 

6 0.132 0.176 0.147 0.158 0.316 0.142 0.140 0.111 0.114 0.099 0.085 

7 0.462 0.528 0.302 0.252 0.332 0.293 0.274 0.165 0.198 0.178 0.158 

8 0.137 0.148 0.162 0.174 0.187 0.106 0.124 0.147 0.122 0.120 0.097 
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Figure  5-9  Five days Average in 5° Lat Zones for 37 GHz V-pol, even beams for the year of 2012. The colors represent the DD. 
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Figure  5-10  Five days Average in 5° Lat Zones for 37 GHz V-pol, odd beams for the year of 2012. The colors represent the DD.
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1  Conclusion 

The main objective of this dissertation is the development of a new MWR counts-to-Tb 

algorithm (V6.0), which corrects all known anomalies and deficiencies observed in the previous 

version V5.0S.  Also, this includes the validation of the Tb’s generated using V6.0, based upon 

more than two years of on-orbit measurements, to determine the accuracy and stability of the 

MWR radiometric calibration individually for all 24 channel/beam combinations for the duration 

of on-orbit operations (~ 2.5 years). 

The research started with the on-orbit evaluation of V5.0S using the inter-satellite 

radiometric calibration (XCAL) with the WindSat satellite radiometer. For this evaluation, which 

started approximately 6 months after launch, MWR and WindSat observations of clear sky ocean 

scenes were collocated in 1° latitude/longitude boxes and within a ± 1 hr time window for 

comparison.  The MWR channels were a subset of the WindSat channels, which matched the 

center frequency and polarizations; but there were significant differences in the earth incidence 

angles (EIA’s).  

Therefore, before comparing the observed radiances of these two radiometers, it was 

necessary to make allowances for the different EIA’s used in the measurements. For this 

purpose, an ocean radiative transfer model (RTM) was run (using environmental parameters 

from NOAA NCEP Global Data Assimilation System) for both MWR and WS; and theoretical 

differences for the ocean Tb’s at different EIA’s were produced. Next, the average difference 

(for the 1° box) between the observed Tb’s were calculated; and then, the radiometric bias was 

set equal to the double difference of the single differences (observed minus simulated).  
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Statistics were calculated on the XCAL set of 1° box biases that were sorted by channels 

and beams and time (5 day averaged time series). Based upon this and other on-orbit 

measurements, the following V5.0S conclusions were reached: 1) the counts to Tb algorithm 

exhibited a compressive non-linearity, which yielded a variable radiometric bias that was a 

function of the scene brightness temperature, 2) there was significant drift in the radiometric 

calibration over monthly periods, and 3) there were large inter-beam biases, with significant time 

variability. 

The V6.0 counts to Tb algorithm developed a rad_counts linearization procedure, which 

removed the V5.0S radiometer system non-linearity. Afterwards, all pre-launch radiometric 

calibration testing was revisited and the analysis performed using linear counts. This resulted in 

an improved forward radiometer transfer function that significantly reduced the test residuals 

(measured minus modeled Tb’s). Next on-orbit XCAL comparisons with WindSat were used to 

develop a robust antenna pattern correction algorithm for V6.0. Finally the new V6.0 algorithm 

was extensively evaluated using about 2.5 years of WindSat XCAL. Based upon this and other 

on-orbit measurements (e.g., deep space calibration), the following conclusions were reached: 1) 

all known anomalies for V5.0S were eliminated, 2) the stability of radiometric calibration was 

improved, but calibration drift for a given beam was not eliminated, 3) there were smaller inter-

beam biases, but there remained systematic calibration drifts (±1 K to ± 2 K) over yearly periods, 

and 4) the dependence of radiometric biases on scene brightness was removed and there were no 

indications of the nonlinearity exhibited in V5.0S. 
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6.2  Future Work 

6.2.1  MWR Anomalies 

For the next counts-to-Tb algorithm, there are several changes recommended, which 

address minor irregularities that were discovered based upon T/V calibration test and on-orbit 

measurements.  

Careful analysis of the T/V calibration test led to the discovery of an inconsistent 

behavior of the noise diode deflection for 37 GHz V-pol for 2 of 8 beams. Since the MWR 

receiver is a time shared between the 8 beams, the noise diode deflection for all the beams should 

be the same. However, the time series of the noise diode deflection during the T/V calibration 

test (Fig 6.1.a), shows that the beams #2 & #4 have an offset of 11 and 15 counts respectively ( 

corresponds to ~ 0.5 K). The cause is unknown, but the ad hoc fix is to subtract 11 and 15 counts 

respectively from these beams. After this adjustment is performed, all beams are grouped within 

a few counts, which are negligible differences. It is recommended that the next version V7.0 

includes this fix.  
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          (a)                 (b) 

Figure  6-1 Time series of the noise diode deflection for 37GHz V-pol during the TV calibration test for a) before adjusting the noise 

diode deflection for beam # 2&4, a) after adjusting the noise diode deflection for beam # 2&4. The time is since 06-sep-2009 19:57:32 

. 
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6.2.2  Development of MWR Tb Dataset  V7 

Since the XCAL DD biases discussed in Chapter 5 are believed to be almost entirely 

caused by changes in the MWR radiometric calibration, it is recommended that the next 

generation counts to Tb algorithm V7.0 be normalized to WindSat to remove the slowly 

changing XCAL 5 day double difference biases of V6.0. To limit the changes to the slowly 

changing mean values, a triangular moving average will be applied on the 5 day average of the 

DD time series to smooth the correction. An example of the time series and the smoothed data 

are presented in Fig 6.2 for 23GHz for 8 beams, where the red color is the time series of the DD, 

and the black color is the smoothed data. The results of this correction (after normalizing to 

WindSat) are shown in Fig. 6.3 as a new time series of the 5 day average DD. From this figure, 

we can see that this technique is very effective in removing the slowly changing biases, and it 

totally eliminates inter-beam biases for all channels. 

Results for channel 37GHz H-pol are presented in Appendix-H.  
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Figure 6-2 V6.0 DD biases (MWR-WS) for 23GHz for time period July 2012 – Nov 2013 
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Figure 6-3 V7 adjusted DD biases (MWR-WS) for 23GHz for time period July 2012 – Nov 2013
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APPENDIX A 

MWR INVERSE MODEL COEFFICIENTS (V5.0S) 

 



 

109 

 

In MWR counts-to-Tb algorithm version 5.0S, the regression model is tuned up using 

collocated WS and MWR observations. Because the MWR and WS have different EIA, a 

Radiative transfer model was used to translate Ws Tb's to corresponding incident angle of 

individual MWR beams. the coefficients in (Eq. 3.1) were derived from the on-orbit XCAL data. 

The WindsSat Tb's adjusted to the MWR EIA’s were used in the equation to obtain the 

regression coefficients b1 through b5 for each channel each horn and are tabulated below: 

 

Table A-1 Channel 36.5 GHz, Vertical polarization 

Horn # B1 B2 B3 B4 B5 

1 -51.632418002728194 2.151260529101236 -9.348280894604559e-04 -0.011960737938107 -0.646326514915267 

2 -5.098274451922471e+02 5.792868675746081 -0.007623334011861 -0.155467385418551 -0.628202957435299 

 

3 -1.617618203245264e+02 2.992715963981955 -0.002668043434178 0.013827018575412 -0.628440406282809 

4 -1.468017059179357e+02 2.882980872823312 -0.001984863634392 -0.078508168267743 -0.683033344756797 

5 -2.434332028131630e+02 3.559590094577231 -0.003952189785950 -0.043761179762434 -0.511039932790668 

6 -2.271820755429545e+02 3.407004642085678 -0.003352775390451 -0.076899801997989 -0.536026973262781 

7 -1.644264635544842e+02 2.937568433972628 -0.002659715213569 -0.184041152366778 -0.393606158218554 

8 -2.433544099976945e+02 3.566165069863248 -0.003651835414043 -0.103285358104578 -0.526141914129374 

 

Table A-2 Channel 36.5 GHz, Horizontal polarization 

Horn # B1 B2 B3 B4 B5 

1 -1.006995204475407e+02 3.242294449131145 -0.004005094589420 0.020727030919678 -0.820386098474569 

2 -1.131137282387518e+02 3.521678723840673 0.004377224544759 -0.216184045189491 -0.681992431814899 

3 -31.085239280190370 2.479377275918045 -0.002155869308547 0.059963878631665 -0.816873735276818 

4 -5.484395957297707 2.476219887621540 -0.002110201106920 -0.192801169106149 -0.669003180435575 

5 -77.651754836155650 2.776836513101550 -0.002874769348302 0.185268211741363 -0.891778052317215 

6 -22.987960915918550 2.588206691902331 -0.002272201898491 -0.289431447995206 -0.583972145369877 

7 -1.442717177271959e+02 3.468538157323713 -0.004289888076808 0.142435796600126 -0.916956306639033 

8 -44.276720850041090 2.744584532012874 -0.002593814665025 -0.261658562575962 -0.607476416583968 
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Table A-3 Channel 23.8 GHz, Horizontal polarization 

Horn 

# 

B1 B2 B3 B4 B5 

1 -1.893790365375965 1.382596373842289 5.416265027122371e-04 0.317503847726502 -0.805407242211549 

2 -76.404219280413670 1.806342217412257 -3.948624500746702e-04 0.063787416324712 -0.439534106963413 

3 -33.628013894112830 1.589936133143321 -1.522831659766910e-04 0.212333613809162 -0.587045971853559 

4 -15.382361138133993 1.362101423029914 1.542278870371555e-04 0.154813856672028 -0.457739132282796 

5 -22.804115269682153 1.589112728412167 -2.184125410002660e-04 0.180359419461031 -0.578004809294857 

6 -14.591737887138047 1.403989251863432 1.209084357883729e-04 0.173833008714543 -0.516842142948622 

7 -99.253149156408850 1.710178715845812 -2.355368320401603e-04 -0.423876139254538 0.144745896538417 

8 -11.493797162854282 1.399323376584104 7.484693118049984e-05 0.184490428741517 -0.520544958758505 
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APPENDIX B 

SMEAR CORRECTION 
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This Appendix is from CONAE and the reference #11.  

 

Mathematical Approach to Beam Coupling 

 

The following equation (Eq. B-1) establishes the relationship between digital counts at 

the output of MWR, C
~

, which are assumed coupled, and the corresponding digital counts 

without coupling (theoretical), C. Both vectors C  and C
~

, represent the information organized in 

a temporarily increasing order, according to the sampling sequence for all the feed-horns. 
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 (B-1) 

where the subscript E defines the 3 MWR states: Antenna, Antenna + Noise and Reference Load. 

The parameter a in Eq. B-1 is the contribution from the preceding count C, with values

 8,..,0 . From the eight analogic measurements (for every single state E) that are later integrated, 

a represents the number of integrations from the previous feed-horn that are “coupled” to the 

present feed-horn. The term coupling is used in this research due to the fact that the system of 

equations that represent the problem are mathematically coupled and can be solved (or de-

coupled) in a recursive way, if only one measurement is not smeared (is not anomalous). In 

summary,    jCjC 
~

 for some value j is needed. But in this problem, all the measurements 
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present the smear effect. Nonetheless, the symmetry of the problem allows a solution to be 

found. 

Equation B-1 can be rewritten in terms of coupling percentage as follows:  
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 (B-2) 

where p represents the coupling percentage, with values  1,..,0 . By simple inspection it can be 

noted that the matrix that is presented in Eq. B-2 is bi-diagonal (lower diagonal), for this reason 

its inverse will also be lower triangular. Only p is unknown, and this is due to the fact that the 

contribution from a previous feed-horn is constant for every feed-horn and channel. This 

assumption is based on the symmetry of the problem. 

Solving the system of equation, leads to: 
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The mathematical series presented in Eq. 3, converges if 
2

1p . 

Error Analysis 

To be able to apply the correction presented in the previous section, a cut off of the series 

is needed, and then analyzed the introduced error. In this way, the truncation error 
n

C , 
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introduced in the estimation of 
C , when only the first n terms of the series are considered, can 

be bounded from above as: 
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The terms 

n

p

p









1
 and 

n

p

p







 1
 in Eq. B-4 are related to the number of n terms needed 

to limit the error, i.e., the greater the coupling (
2

1p ) the greater the number of terms. 

In the case that 
2

1p  the error can’t be limited, since the series do not converge. But 

this is not the case of this problem, as is show in the following section. 

Determining the Coupling Percentage p 

Base on the hypothesis presented in previous sections, and assuming Za  in Eq. B-1, 

the values of p are: 

8,,1con
8

 aap      (B-5) 

where, as it is mention before, a represents the number of numerical integrations from the 

previous feed-horn that are coupled with the a8  numerical integrations of the feed-horn of 

interest. 

Through a qualitative analysis of MWR measurements, it was possible to find the 

possible values, i.e., the possible coupling pairs  aa,8  are: 
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  375.03,5

25.02,6

125.01,7

00,8









p

p

p

p

    (B-6) 

Then the correction presented in Eq. B-3 was applied to the four cases from Eq. B-6 and 

the results found in the previous section were applied to determine the minimum number of 

terms (n) needed. Due to the fact that n is p dependent, the determination of this value will be 

presented after the estimation of p in the following paragraphs. 

By inspection, it was determined that 2a  ( 25.0p ) is not only the best of the four 

possibilities, presented in Eq. B-6, but also the only one that corrects the problem almost 

completely. 

In the following section the results obtained in the estimation of a and p are presented, 

analyzing the MWR measurements. 

Statistical Estimation of the Coupling Percentage, using On Board Measurements 

Before continuing is important to note that, as was expected, the count measurements 

from the reference load do not showed the anomalous smear effect, due to the fact that the 

reference is the same for the 8 feed-horns; but this doesn’t mean that the issue is not present. For 

this reason the measurements from the reference load are not analyzed in this section. 

Figure B-1 presents an example of the Tb anomalous behavior, that also correspond to an 

anomalous behavior of the counts Ca  and Cn . 
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Figure B-1.  

One way to estimate the coupling parameters is focus the analysis in the anomalous 

jumps in Tb, especially in areas close to the coast, and with this pose a relation to be able to 

determine p. 

Let analyze that 2 points that are related to the same anomalous jump in times 
1t  and 

2t , 

with count values 1

~
C  and 2

~
C , respectably. Figure B-2 shows an example of this, where  taC

~
 is 

plotted for beam 2 (green) and 7 (grey, for the 37V channel. 
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Figure B-2.  

If the anomaly wasn’t present, then 
21 CC  , where 

1C  and 
2C  are the corrected counts for 

1

~
C  and 2

~
C  respectively. To estimate the coupling parameter a it can be assumed that 21 CC   

and then apply Eq. B-3 to both sides. Solving this equation:  
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where C
~

 is the same vector that was defined at the beginning of this Appendix in Eq. B-1; and 

for this reason t  represents the time between 2 MWR consecutives measurements, i.e., is the 

0.24 s integration time. It is important to note that the term in brackets represents the jump in C
~

 

between two consecutive measurements for the same feed-horn, for a every i . 

Next it’s necessary to establish a new truncation error for the series, which results in: 



 

118 

 

    1 2max , ,
kk

C i t t        (B-8) 

where  k represents the error introduced by replacing the series for its first k terms (grade 

1k  polynomial) and  21,,
~

ttiC  is the bracket term in Eq. B-7. 

Due to the fact that a jump area is being analyzed, is expected that the   21,,
~

max ttiC  

could be replaced by 






















j

t

t
Cj

t

t
C 12 ~~

 for 1 ij  or ij  , since it was hypothesized 

that the anomalous jump is due to a jump in the previous measurement feed-horn. 

Analyzing several cases, it was established that 9k , and then the estimation of p is 

reduced to solving the root of 0  such that 01 0   , in each of the 8th grade 

polynomials given by the first 9 terms of Eq. B-7 and the corresponding consecutives pair of 

points of an anomalous point. 

Analyzing the behavior of C
~

 near the anomalous jumps, it was determined the relations 

between the numerical derivatives of the feed-horns measurements and its corresponding 

previous measurement feed-horn for the 3 MWR channels. Taking into account this criteria a 

search algorithm was implemented to the 200 orbits, differentiating between channel and feed-

horns. 

Due to the errors introduced in the estimation of p, it is inconvenient to use an arithmetic 

estimator for p, and instead the statistic mode was used. 

The next figures present the results obtained for the coupling percentage p and its 

corresponding a parameter. 
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Figure B-3. 

 

Figure B-4. 
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Figure B-5. 

 

Figure B-6. 
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Figure B-7. 

 

Figure B-8. 



 

122 

 

The results presented a good agreement with the value 25.0p  ( 2a ), establish by 

inspection but justified by the hypothesis. Although the estimation method requires improvement 

or a more efficient way of estimating p, the plots from figures B-3 to B-8 showed a good 

symmetry, substantiated in the similarities between the statistical mode and arithmetic mean. 

In the following figures, results considering the data for all the 8 feed-horns together are 

presented.

 

Figure B-9. 
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Figure B-10. 

In the following section it was assumed a constant p value for each feed-horn and the 3 

channels, and equal to 0.25. 

Truncation Error and its Effect in Tb 

Based on the explanation of the truncation error, presented in previous sections, 

introduced in the implementation of Eq. B-3, it was necessary to determine the minimum number 

of terms (n) to limit this error. It was then an error propagation was implemented, considering the 

calibration equation developed by CFRSL, which relates digital counts and its corresponding 

brightness temperature. 

The next three figures show the worst cases from the 200 orbits of MWR data available at 

the time. 
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Figure B-11. 

 

Figure B-12. 
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Figure B-13. 

From this results it can be noted that it is enough to consider the first 10 terms in the 

series on Eq. B-3, to introduce then a cut off error less than 0.1K, in the decoupling process. 
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APPENDIX C 

MWR COUNTS TO TB ALGORITHM MATLAB CODE
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%% CONAE L1A to CFRSL L1 conversion V5.0S 

  
% sayak k biswas, 08/26/2011 
% sayak.nitc@gmail.com 
% V2 - 09/01/2011 - with new regression based coefficients 
% new coeff file -> MWR_coeff_v2.mat 
% V2.1 - 09/04/2011 - bias correction added (slope offset correction) 
%MWR_bias_v1.mat 
% corrected the length of Lat, Lon and EIA fields - 09/13/2011 
% V2.2 - 10/13/2011 - added new values of slope offset (MWR_bias_v2.mat ) 
% further LAT, LON length correction 

  
%V3.0 - 11/23/2011 - added counts in the structure 
%V4.0 - 01/03/2012 - new calibration based on post-launch regression 
%                  - slope  = 0 ; offset = 0 (MWR_bias_v4.mat) 
%                  - cal files used: MWR_coeff_v4.mat, MWR_bias_v4.mat 
%% V6.0 11/19/13 
% Modified by Zoubair Ghazi 
% Linearition, smoothing average, switch matrix coefficients. and APC 
% coefficients were performed 

  

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   clear all; 
% clc; 
date_start='20130622'; %starting date 
date_stop='20130629';    % stop date 
for m=str2double(date_start):str2double(date_stop) 
%     date_str = '2011112'; % all Oct / 3rd Oct to 7th Oct 
    date_str = num2str(m); 
    l1dir = 'Z:/MWR/MWR_Data/L1A'; 
    l2dir = 'Z:/MWR/MWR_Data/L1B'; 
    opdir = 

'C:\Users\zoubair\Desktop\Research\Dissertation\smear_effect\data\smear'; % 

output directory for matlab files 

  
    s = dir([ l1dir '/EO_' date_str '*_CUSS_SACD_MWR_L1A_SCI*' ]); 
    load MWR_bias_v6_beta3.mat bias;% loading bias coefficients - APC 

Correction 
    load MWR_coeff_v6_beta3.mat coeff;% loading switch matrix coefficients 

     

  
    for k = 1:length(s) 
        l1name = s(k).name; 
        s2 = dir([ l2dir '/' l1name(1:18) '*L1B_SCI*']); % compare all three 

fields hh:mm:ss 
        if isempty(s2)== 0 
            tic            
            l2name = s2.name; 
%             filename = [ l1dir '/' l1name ]; 
%             filenameb = [ l2dir '/' l2name ]; 
            filename = [ l1dir '/' l1name '/data/' l1name ]; 
            filenameb = [ l2dir '/' l2name '/data/' l2name ]; 
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%              filename = [ l1dir '/' l1name '/' l1name ]; 
%             filenameb = [ l2dir '/' l2name '/' l2name ]; 
            date_str = [l1name(4:7) '-' l1name(8:9) '-' l1name(10:11)]; 
            doy = datenum(date_str) - datenum('2014-01-00');% change the 

year(2012) to a new year that needs to be processed(for example datenum(2013-

01-00)) 
            doy_str = num2str(doy,'%.3d'); 
           %% Information about orbits 
            Orbit_Number = double(hdf5read(filename,'/Global 

Metadata/Acquisition/','Orbit Number')); %Orbit Number 
            Cycle_Number = double(hdf5read(filename,'/Global 

Metadata/Acquisition/','Cycle Number')); %Cycle Number 
            %% output directories 

  
            opname = [opdir '/Q' l1name(4:7) doy_str l1name(13:18) '_CN_' 

num2str(Cycle_Number) '_ON_' num2str(Orbit_Number) '_MWR_L1_V6.0_beta3.mat']; 

  
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            %% Reference Load Temperature (from MWR telemetry) 

  
            To36v = double(mean([hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t09') hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t10')],2))+273.15; % ref load 36 v pol 
            %MT_9                                           %MT_10 
            To36h = double(mean([hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t23') hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t24')],2))+273.15; % ref load 36 h pol 
            %MT_23           %MT_24 
            To23h = double(mean([hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t11') hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t12')],2))+273.15; % ref load 23 h pol 
            %MT_11           %MT_12 

  
            %% Read Front-end temperatures 
            % 23H switches 
            T4 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t04')+273.15); %L23-1 
            T5 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t05')+273.15); %L23-2 
            T6 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t06')+273.15); %L23-3 
            T7 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t07')+273.15); %L23-4 (horn#2 & #4) 
            T8 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t08')+273.15); %L23-5 (horn#6 & #8) 
            T33 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t33')+273.15); %L23-6 (horn#1 & #3) 
            T34 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t34')+273.15); %L23-7 (horn#5 & #7) 
            % 36V switches 
            T35 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t35')+273.15); %L36V-1 
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            T36 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t36')+273.15); %L36V-2 
            T37 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t37')+273.15); %L36V-3 
            T38 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t38')+273.15); %L36V-4 (horn#6 & #8) 
            T39 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t39')+273.15); %L36V-5 (horn#2 & #4) 
            T40 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t40')+273.15); %L36V-6 (horn#5 & #7) 
            T41 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t41')+273.15); %L36V-7 (horn#1 & #3) 
            % 36H switches 
            T42 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t42')+273.15); %L36H-1 
            T43 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t43')+273.15); %L36H-2 
            T44 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t44')+273.15); %L36H-3 
            T46 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t46')+273.15); %L36H-5 (horn#6 & #8) 
            T45 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t45')+273.15); %L36H-4 (horn#2 & #4) 
            T48 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t48')+273.15); %L36H-7 (horn#5 & #7) 
            T47 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t47')+273.15); %L36H-6 (horn#1 & #3) 
            % 23H horn plate 
            T21 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t21')+273.15); 
            % 36V & H horn plate 
            T22 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t22')+273.15); 
            %Noise Diode Sensors 
           T13 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t13')+273.15); %NoiseDiode 23Ghz 
           T14 = double(hdf5read(filename,'/Converted 

Telemetry/mwr_hkp_tm_t14')+273.15); %NoiseDiode 36Ghz 

  
            %% time comuptation 
            mwr_time = double(hdf5read(filename,'/Raw MWR Data/mwr_time')); 
            time = datenum(1980,01,06,0,0,mwr_time); % % time in matlab 

datenum 

             
            %% Read Counts 
            % 23H 
            Ca23h = double(hdf5read(filename,'/Raw MWR 

Data/mwr_k_h_antenna')); %sig 
            Cn23h = double(hdf5read(filename,'/Raw MWR 

Data/mwr_k_h_antenna_plus_noise'));   %sig+noise 
            Co23h = double(hdf5read(filename,'/Raw MWR Data/mwr_k_h_load'));   

%ref 
            % 36V          sig                       sig+noise                

ref 
            Ca36v = double(hdf5read(filename,'/Raw MWR 

Data/mwr_ka_v_antenna')); %sig 
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            Cn36v = double(hdf5read(filename,'/Raw MWR 

Data/mwr_ka_v_antenna_plus_noise'));   %sig+noise 
            Co36v = double(hdf5read(filename,'/Raw MWR Data/mwr_ka_v_load'));   

%ref 
            % 36H          sig                       sig+noise                

ref 
            Ca36h = double(hdf5read(filename,'/Raw MWR 

Data/mwr_ka_h_antenna')); %sig 
            Cn36h = double(hdf5read(filename,'/Raw MWR 

Data/mwr_ka_h_antenna_plus_noise'));   %sig+noise 
            Co36h = double(hdf5read(filename,'/Raw MWR Data/mwr_ka_h_load'));   

%ref 

             
            %% Smear Correction 

             
            [Ca23h Cn23h Co23h] = SmearCorrection(Ca23h,Cn23h,Co23h,time); 
            [Ca36h Cn36h Co36h] = SmearCorrection(Ca36h,Cn36h,Co36h,time); 
            [Ca36v Cn36v Co36v] = SmearCorrection(Ca36v,Cn36v,Co36v,time); 

             
            %% Reading  corresponding L1B file for Geolocation data 

  
            %     filenameb = 'EO_20100522_235454_CUSS_SACD_MWR_L1B_SCI.h5'; 
            %Rx23H 
            k_h_lat = double(hdf5read(filenameb,'/Geolocation 

Data/k_h_latitude')); 
            k_h_lon = double(hdf5read(filenameb,'/Geolocation 

Data/k_h_longitude')); 
            k_h_eia = double(hdf5read(filenameb,'/Geolocation 

Data/k_h_zenith_angle_to_spacecraft')); 
            k_h_az  = double(hdf5read(filenameb,'/Geolocation 

Data/k_h_azimuth_angle_to_spacecraft')); 
            %Rx36H 
            ka_h_lat = double(hdf5read(filenameb,'/Geolocation 

Data/ka_h_latitude')); 
            ka_h_lon = double(hdf5read(filenameb,'/Geolocation 

Data/ka_h_longitude')); 
            ka_h_eia = double(hdf5read(filenameb,'/Geolocation 

Data/ka_h_zenith_angle_to_spacecraft')); 
            ka_h_az  = double(hdf5read(filenameb,'/Geolocation 

Data/ka_h_azimuth_angle_to_spacecraft')); 
            %Rx36V 
            ka_v_lat = double(hdf5read(filenameb,'/Geolocation 

Data/ka_v_latitude')); 
            ka_v_lon = double(hdf5read(filenameb,'/Geolocation 

Data/ka_v_longitude')); 
            ka_v_eia = double(hdf5read(filenameb,'/Geolocation 

Data/ka_v_zenith_angle_to_spacecraft')); 
            ka_v_az  = double(hdf5read(filenameb,'/Geolocation 

Data/ka_v_azimuth_angle_to_spacecraft')); 
            % RX37H spares 
            Spare1_36h=NaN(length(Ca36h),1); 
            Spare2_36h=NaN(length(Ca36h),1); 
            Spare3_36h=NaN(length(Ca36h),1); 
            Spare4_36h=NaN(length(Ca36h),1); 
            Spare5_36h=NaN(length(Ca36h),1); 
            % RX23H spares 
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            Spare1_23h=NaN(length(Ca23h),1); 
            Spare2_23h=NaN(length(Ca23h),1); 
            Spare3_23h=NaN(length(Ca23h),1); 
            Spare4_23h=NaN(length(Ca23h),1); 
            Spare5_23h=NaN(length(Ca23h),1); 
            % RX37V spares 
            Spare1_36v=NaN(length(Ca36v),1); 
            Spare2_36v=NaN(length(Ca36v),1); 
            Spare3_36v=NaN(length(Ca36v),1); 
            Spare4_36v=NaN(length(Ca36v),1); 
            Spare5_36v=NaN(length(Ca36v),1); 

  
            %%  Linearization : the output are linearized counts and noide 

diode deflection injected noise Tn 
            

[Ca23h,Cn23h,Co23h,Tn23h]=linearization(Ca23h,Cn23h,Co23h,To23h,390,-2.1708e-

004); 
            

[Ca36h,Cn36h,Co36h,Tn36h]=linearization(Ca36h,Cn36h,Co36h,To36h,270,-6.9064e-

004); 
            

[Ca36v,Cn36v,Co36v,Tn36v]=linearization(Ca36v,Cn36v,Co36v,To36v,274,-7.4677e-

004); 
            %% Remove NEDT using running moving average 
            gain23h = gain_filter_v2((Cn23h-Ca23h)./(Tn23h),191); 
            gain36h = gain_filter_v2((Cn36h-Ca36h)./(Tn36h),159); 
            gain36v = gain_filter_v2((Cn36v-Ca36v)./(Tn36v),191); 
            %% Tin linear  
            Tin23h = (Ca23h-Co23h)./gain23h + To23h; 
            Tin36v = (Ca36v-Co36v)./gain36v + To36v; 
            Tin36h = (Ca36h-Co36h)./gain36h + To36h; 

  
            %% Tap Computation per horn basis 
            horn_id23 = double(hdf5read(filename,'/Raw MWR 

Data/mwr_k_band_horn_id')); %horn numbers 23 GHz 
            horn_id36 = double(hdf5read(filename,'/Raw MWR 

Data/mwr_ka_band_horn_id')); %horn numbers 37 GHz 

  
            for i = 1:8 

  
                ind23 = find(horn_id23 == i); 
                ind36 = find(horn_id36 == i); 

  

                 
                temp.Lat = k_h_lat(i,:)'; 
                temp.Lon = k_h_lon(i,:)'; 
                temp.EIA = k_h_eia(i,:)'; 
                temp.az  = k_h_az(i,:)'; 

  

  
                temp.Lat(temp.Lat == 0) = []; 
                temp.Lon(temp.Lon == 0) = []; 
                temp.EIA(temp.EIA == 0) = []; 
                temp.az(temp.az == 0)   = []; 
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                lim = min(length(temp.Lat),length(ind23)); % choose the min 

length 

  
                temp.Lat = temp.Lat(1:lim); 
                temp.Lon = temp.Lon(1:lim); 
                temp.EIA = temp.EIA(1:lim); 
                temp.az  = temp.az(1:lim); 
                ind23 = ind23(1:lim); 

  

  
                temp.Tin  = Tin23h(ind23); 
                temp.time = time(ind23); 
                temp1.To  = To23h(ind23); 

  
                % counts 
                temp.Ca = Ca23h(ind23); 
                temp.Cn = Cn23h(ind23); 
                temp.Co = Co23h(ind23); 
                temp.Tn = Tn23h(ind23); 
                temp.gain = gain23h(ind23); 
                %Noise Diode Temperature from sensor 
                temp.Nd = T13(ind23); %Noise Diode for 23Gh 
                %spares 

                 
                temp.spare1=Spare1_23h(ind23); 
                temp.spare2=Spare2_23h(ind23); 
                temp.spare3=Spare3_23h(ind23); 
                temp.spare4=Spare4_23h(ind23); 
                temp.spare5=Spare5_23h(ind23); 

  
                eval(['b = coeff.RX23H.B' num2str(i) ';']); 
                eval(['err = bias.RX23H.B',num2str(i) ';']);% load bias 

slope&offset 

  
                switch(i) 
                    case 1 
                        temp1.T1 = T4(ind23);temp1.T2 = T6(ind23);temp1.T3 = 

T33(ind23);temp1.T4 = T21(ind23); 
                    case 2 
                        temp1.T1 = T4(ind23);temp1.T2 = T5(ind23);temp1.T3 = 

T7(ind23);temp1.T4 = T21(ind23); 
                    case 3 
                        temp1.T1 = T4(ind23);temp1.T2 = T6(ind23);temp1.T3 = 

T33(ind23);temp1.T4 = T21(ind23); 
                    case 4 
                        temp1.T1 = T4(ind23);temp1.T2 = T5(ind23);temp1.T3 = 

T7(ind23);temp1.T4 = T21(ind23); 
                    case 5 
                        temp1.T1 = T4(ind23);temp1.T2 = T6(ind23);temp1.T3 = 

T34(ind23);temp1.T4 = T21(ind23); 
                    case 6 
                        temp1.T1 = T4(ind23);temp1.T2 = T5(ind23);temp1.T3 = 

T8(ind23);temp1.T4 = T21(ind23); 
                    case 7 
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                        temp1.T1 = T4(ind23);temp1.T2 = T6(ind23);temp1.T3 = 

T34(ind23);temp1.T4 = T21(ind23); 
                    case 8 
                        temp1.T1 = T4(ind23);temp1.T2 = T5(ind23);temp1.T3 = 

T8(ind23);temp1.T4 = T21(ind23); 
                end 

  
                temp.Tb=(temp.Tin-

((b(2).*temp1.To+b(3).*temp1.T1+b(4).*temp1.T2+b(5).*temp1.T3+b(6).*temp1.T4)

))./b(1);  
                temp.Tb = (temp.Tb - err.offset)./ err.slope;% correct bias 
                temp.calib_coeff = err; 
                temp.calib_coeff.b = b;temp.Telem_Temp = temp1; 
                eval(['data.RX23H.B' num2str(i) ' = temp;']); 
                clear temp temp1 temp2; 
                %% 36 V 
                %      temp.Ta = Ta36(ind36); 

  
                temp.Lat = ka_v_lat(i,:)'; 
                temp.Lon = ka_v_lon(i,:)'; 
                temp.EIA = ka_v_eia(i,:)'; 
                temp.az  = ka_v_az(i,:)'; 

  
                temp.Lat(temp.Lat == 0) = []; 
                temp.Lon(temp.Lon == 0) = []; 
                temp.EIA(temp.EIA == 0) = []; 
                temp.az(temp.az == 0)   = []; 

  
                lim = min(length(temp.Lat),length(ind36)); % choose the min 

length 

  
                temp.Lat = temp.Lat(1:lim); 
                temp.Lon = temp.Lon(1:lim); 
                temp.EIA = temp.EIA(1:lim); 
                temp.az  = temp.az(1:lim); 
                ind36 = ind36(1:lim); 

  
                temp.Tin = Tin36v(ind36); 
                temp.time = time(ind36); 
                temp1.To = To36v(ind36); 

  
                % counts 
                temp.Ca = Ca36v(ind36); 
                temp.Cn = Cn36v(ind36); 
                temp.Co = Co36v(ind36); 
                temp.Tn = Tn36v(ind36); 
                temp.gain = gain36v(ind36); 
                 %Noise Diode Temperature from sensor 
                temp.Nd = T14(ind36); %Noise Diode for 36Gh 
                 %spares 
                temp.spare1=Spare1_36v(ind23); 
                temp.spare2=Spare2_36v(ind23); 
                temp.spare3=Spare3_36v(ind23); 
                temp.spare4=Spare4_36v(ind23); 
                temp.spare5=Spare5_36v(ind23); 
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                eval(['b = coeff.RX37V.B' num2str(i) ';']); 
                eval(['err = bias.RX37V.B',num2str(i) ';']);% load bias 

slope&offset 

  
                switch(i) 
                    case 1 
                        temp1.T1 = T35(ind36);temp1.T2 = T37(ind36);temp1.T3 

= T41(ind36);temp1.T4 = T22(ind36); 
                    case 2 
                        temp1.T1 = T35(ind36);temp1.T2 = T36(ind36);temp1.T3 

= T39(ind36);temp1.T4 = T22(ind36); 
                    case 3 
                        temp1.T1 = T35(ind36);temp1.T2 = T37(ind36);temp1.T3 

= T41(ind36);temp1.T4 = T22(ind36); 
                    case 4 
                        temp1.T1 = T35(ind36);temp1.T2 = T36(ind36);temp1.T3 

= T39(ind36);temp1.T4 = T22(ind36); 
                    case 5 
                        temp1.T1 = T35(ind36);temp1.T2 = T37(ind36);temp1.T3 

= T40(ind36);temp1.T4 = T22(ind36); 
                    case 6 
                        temp1.T1 = T35(ind36);temp1.T2 = T36(ind36);temp1.T3 

= T38(ind36);temp1.T4 = T22(ind36); 
                    case 7 
                        temp1.T1 = T35(ind36);temp1.T2 = T37(ind36);temp1.T3 

= T40(ind36);temp1.T4 = T22(ind36); 
                    case 8 
                        temp1.T1 = T35(ind36);temp1.T2 = T36(ind36);temp1.T3 

= T38(ind36);temp1.T4 = T22(ind36); 
                end 

  
                temp.Tb=(temp.Tin-

((b(2).*temp1.To+b(3).*temp1.T1+b(4).*temp1.T2+b(5).*temp1.T3+b(6).*temp1.T4)

))./b(1);  
                temp.Tb = (temp.Tb - err.offset)./ err.slope;% correct bias 
                temp.calib_coeff = err; 
                temp.calib_coeff.b = b;temp.Telem_Temp = temp1; 
                eval(['data.RX37V.B' num2str(i) ' = temp;']); 
                clear temp temp1 temp2; 
                %% 36 H 
                %      temp.Ta = Ta36(ind36); 

  
                temp.Lat = ka_h_lat(i,:)'; 
                temp.Lon = ka_h_lon(i,:)'; 
                temp.EIA = ka_h_eia(i,:)'; 
                temp.az  = ka_h_az(i,:)'; 

  
                temp.Lat(temp.Lat == 0) = []; 
                temp.Lon(temp.Lon == 0) = []; 
                temp.EIA(temp.EIA == 0) = []; 
                temp.az(temp.az == 0)   = []; 

  
                lim = min(length(temp.Lat),length(ind36)); % choose the min 

length 
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                temp.Lat = temp.Lat(1:lim); 
                temp.Lon = temp.Lon(1:lim); 
                temp.EIA = temp.EIA(1:lim); 
                temp.az  = temp.az(1:lim); 
                ind36 = ind36(1:lim); 

  
                temp.Tin = Tin36h(ind36); 
                temp.time = time(ind36); 
                temp1.To = To36h(ind36); 

  
                % counts 
                temp.Ca = Ca36h(ind36); 
                temp.Cn = Cn36h(ind36); 
                temp.Co = Co36h(ind36); 
                temp.Tn = Tn36h(ind36); 
                temp.gain = gain36h(ind36); 
                 %Noise Diode Temperature from sensor 
                temp.Nd = T14(ind36); %Noise Diode for 36Gh 
                %spares 
                temp.spare1=Spare1_36h(ind23); 
                temp.spare2=Spare2_36h(ind23); 
                temp.spare3=Spare3_36h(ind23); 
                temp.spare4=Spare4_36h(ind23); 
                temp.spare5=Spare5_36h(ind23); 

  
                eval(['b = coeff.RX37H.B' num2str(i) ';']); 
                eval(['err = bias.RX37H.B',num2str(i) ';']);% load bias 

slope&offset 

  
                switch(i) 
                    case 1 
                        temp1.T1 = T42(ind36);temp1.T2 = T44(ind36);temp1.T3 

= T47(ind36);temp1.T4 = T22(ind36); 
                    case 2 
                        temp1.T1 = T42(ind36);temp1.T2 = T43(ind36);temp1.T3 

= T45(ind36);temp1.T4 = T22(ind36); 
                    case 3 
                        temp1.T1 = T42(ind36);temp1.T2 = T44(ind36);temp1.T3 

= T47(ind36);temp1.T4 = T22(ind36); 
                    case 4 
                        temp1.T1 = T42(ind36);temp1.T2 = T43(ind36);temp1.T3 

= T45(ind36);temp1.T4 = T22(ind36); 
                    case 5 
                        temp1.T1 = T42(ind36);temp1.T2 = T44(ind36);temp1.T3 

= T48(ind36);temp1.T4 = T22(ind36); 
                    case 6 
                        temp1.T1 = T42(ind36);temp1.T2 = T43(ind36);temp1.T3 

= T46(ind36);temp1.T4 = T22(ind36); 
                    case 7 
                        temp1.T1 = T42(ind36);temp1.T2 = T44(ind36);temp1.T3 

= T48(ind36);temp1.T4 = T22(ind36); 
                    case 8 
                        temp1.T1 = T42(ind36);temp1.T2 = T43(ind36);temp1.T3 

= T46(ind36);temp1.T4 = T22(ind36); 
                end 
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                temp.Tb=(temp.Tin-

((b(2).*temp1.To+b(3).*temp1.T1+b(4).*temp1.T2+b(5).*temp1.T3+b(6).*temp1.T4)

))./b(1);  
                temp.Tb = (temp.Tb - err.offset)./ err.slope;% correct bias 
                temp.calib_coeff = err; 
                temp.calib_coeff.b = b;temp.Telem_Temp = temp1; 
                eval(['data.RX37H.B' num2str(i) ' = temp;']); 
                clear temp temp1 temp2; 

  
            end 
            % save as matlab file 
            save(opname,'data'); 
toc 
            disp([l1name ' -> ' opname]); 
        else 
            disp(['Missing L1B for ' l1name]); 
        end% end isempty s2 check 

  
    end 
end 
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APPENDIX D 

MWR ANTENNA SWITCH MATRIX COEFFICIENTS
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In this dissertation, the ASM loss coefficients were empirically derived. Using Eq 4.15 

and substituting Tap by the measured blackbody target apparent temperature, the coefficients b1 

through b6 was derived based upon a regression model using the mesured temperatures (To, T1, 

T2, T3, and T4) and calculated (Tin) for each channel and each beam. The derived ASM loss 

coefficients for the three channels are tabulated below: 

 

23GHz H-pol MWR ASM 

Horn # b1 b2 b3 b4 b5 b6 

1 0.67438 -0.54306 1.43576 -2.02254 1.41613 0.03251 

2 0.71399 -0.38018 1.19894 -2.02556 1.64646 -0.15425 

3 0.73130 -0.56172 1.50844 -2.15451 1.46753 0.00058 

4 0.79209 -0.49299 1.41873 -2.55336 2.03659 -0.20091 

5 0.74579 -0.52948 2.11321 -3.13804 1.79694 0.00240 

6 0.74342 -0.23588 0.01956 1.86900 -1.76044 0.35936 

7 0.68216 -0.13980 0.53659 1.08866 -1.43355 0.26851 

8 0.75166 -0.23778 0.06166 1.79479 -1.73166 0.35579 
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37GHz H-pol MWR ASM 

Horn # b1 b2 b3 b4 b5 b6 

1 0.62706 0.21571 -0.86628 -2.41461 3.70535 -0.27382 

2 0.64582 0.10593 0.12055 -0.97760 0.81005 0.28922 

3 0.63798 0.23636 -0.93770 -2.35933 3.71133 -0.29555 

4 0.64071 0.09310 -0.01945 -1.48758 1.52046 0.24706 

5 0.65371 -0.31739 2.38665 -9.27854 7.63594 -0.09648 

6 0.63537 0.05147 0.89528 -1.45818 0.82690 0.03902 

7 0.63853 -0.44092 3.04940 -11.42137 9.30519 -0.14853 

8 0.63082 0.04658 0.94023 -1.53745 0.90415 0.00525 

 

 

37GHz V-pol MWR ASM 

Horn # b1 b2 b3 b4 b5 b6 

1 0.58246 -0.03871 0.57149 -0.32343 0.16234 0.03684 

2 0.55287 -0.05505 0.70932 0.57849 -0.86921 0.08124 

3 0.59368 -0.03642 0.58306 -0.46387 0.28204 0.03149 

4 0.55038 -0.04395 0.67959 0.69870 -0.96413 0.07877 

5 0.59611 -0.05133 1.05905 -1.46945 0.83670 0.02034 

6 0.58967 -0.04422 0.55560 -0.29994 0.15933 0.03340 

7 0.58371 -0.07742 1.52172 -2.55950 1.51364 0.00983 

8 0.58266 -0.04494 0.56892 -0.43875 0.29771 0.02669 
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APPENDIX E 

DOUBLE DIFFERENCE BETWEEN MWR AND WINDSAT 
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The MWR (V6.0) and WS data from 2012 and 2013 was used, to validate the MWR Tb. 

After the gridding and collocating processes of the data for both sensors, CFRSL RTM was used 

to adjust WS Tb's using Eq. 5.1. After applying the APC and other radiometric biases correction 

on the MWR Tb's, a five day average double difference technique was performed to verify the 

results of the MWR counts-to-Tb algorithm (V6.0). The time series of the 5-day average double 

difference and the image of the five day 5º latitude for the are presented in the figures below:  
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Figure E.1 37GHz H-pol 5 day average double difference between MWR and WindSat of 2012 
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Figure E.2 37GHz H-pol 5 day average double difference between MWR and WindSat of 2013 
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Figure E.3 23GHz H-pol 5 day average double difference between MWR and WindSat of 2012 
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Figure E.4 23GHz H-pol 5 day average double difference between MWR and WindSat of 2013 
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Figure E.5 23GHz H-pol 5 Five days Average in 5° Lat Zones  even Beams 
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Figure E.6 23GHz H-pol 5 Five days Average in 5° Lat Zones odd Beams 
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Figure E.7 23GHz H-pol 5 Five days Average in 5° Lat Zones even Beams 
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Figure E.8 23GHz H-pol 5 Five days Average in 5° Lat Zones odd Beams 
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Figure E.9 37GHz H-pol 5 Five days Average in 5° Lat Zones even Beams 
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Figure E.10 37GHz H-pol 5 Five days Average in 5° Lat Zones odd Beams 
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Figure E.11 37GHz H-pol 5 Five days Average in 5° Lat Zones even Beams 
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Figure E.12 37GHz H-pol 5 Five days Average in 5° Lat Zones odd Beams 
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APPENDIX F 

COLD SKY CALIBRATION MEASUREMENTS 
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For the MWR frequencies, space is homogenous isotropic distributed target of a 

brightness temperature 2.73K. This greatly evaluates the radiometric calibration procedure by 

looking at the deep space measurements. A comparison of V5.0S and V6.0 of the deep space 

calibration measurements is shown in the figures below for 37GHz H-pol and 23GHz H-pol. The 

results of the MWR calibration V5.0S shows that the MWR Tb's have a very high biases during 

the deep space calibration measurements, whereas V6.0   demonstrates the perfection of the new 

MWR calibration, where the MWR Tb's are ~2.73K when the main reflector looks at the deep 

space.  
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Figure F.1 37GHz H-pol cold sky calibration measurements, even beams  
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Figure F.2 37GHz H-pol cold sky calibration measurements, odd beams  
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Figure F.3 23GHz H-pol cold sky calibration measurements, even beams  
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Figure F.4 23GHz H-pol cold sky calibration measurements, odd beams 
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APPENDIX G 

MWR TB OVER LAND ANALYSIS 
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During my research, a comparison between MWR and WS Tb's over land was performed.  

No adjustments of the Tb observations over land were made, because the Tb dependence on the 

earth incidence angle is negligible. Despite the fact that MWR and WindSat share some 

similarities, the spatial coverage causes the differences in Tb over land between the two sensors. 

The WindSat has a mean spatial resolution of ~15 Km, whereas MWR has a mean spatial 

resolution of ~50 Km (~ 3 time the WindSat footprint). This causes the MWR and WindSat 

observations to be inconsistent, especially for complex terrain and heterogeneous landscapes. It 

is expected that the higher biases will be over large water bodies, such as coastal areas, Amazon 

River, and Great Lakes. The results of this analysis are presented below: 
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Figure G.1 Global Image of MWR Tb Collocated with WS, color is the scene Tb 
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Figure G.2 37V, MWR Tb @ 52°&  58° compared to WindSat Tb @ 53°Ascending Revs, 

Color is # points 
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Figure G.3 37H, MWR Tb @ 52°&  58° compared to WindSat Tb @ 53° Ascending Revs,  

Color is # points 



 

165 

 

 

 

 

Figure G.4 23H, MWR Tb @ 52°&  58° compared to WindSat Tb @ 53° Ascending Revs,  

Color is # points 
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APPENDIX H 

MWR TB V7 
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New MWR Tb dataset will be produced for tuning and validation of the wind speed 

algorithms. For this analysis, the data from MWR V6.0 from a time period between July 2012 

and November 2013 and were chosen. After performing XCAL 5 day average double difference 

technique, a triangular moving average was applied to derive the smoothed biases that will be 

used to adjust the MWR Tb's. These new V7.0 Tb’s will be normalized to match the WindSat 

Tb’s in the mean to  have zero DD Tb-bias. A comparison of the MWR V7 Tb and the adjusted 

WS are presented below: 
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Figure H.1 37H DD biases (MWR-WS) 
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Figure H.2 37H DD adjusted (MWR-WS) 
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