
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2010

Markerless Tracking Using Polar Correlation Of Camera Optical Markerless Tracking Using Polar Correlation Of Camera Optical

Flow Flow

Prince Gupta
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gupta, Prince, "Markerless Tracking Using Polar Correlation Of Camera Optical Flow" (2010). Electronic
Theses and Dissertations, 2004-2019. 4443.
https://stars.library.ucf.edu/etd/4443

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/4443?utm_source=stars.library.ucf.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MARKERLESS TRACKING USING POLAR CORRELATION OF

CAMERA OPTICAL FLOW

by

PRINCE GUPTA

B.Tech. Uttar Pradesh Technical University, 2008

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in the Department of Computer Science
in the School of Electrical Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2010

Major Professor: Niels da Vitoria Lobo

c© Copyright 2010 by Prince Gupta

ii

ABSTRACT

We present a novel, real-time, markerless vision-based tracking system, employing a

rigid orthogonal configuration of two pairs of opposing cameras. Our system uses

optical flow over sparse features to overcome the limitation of vision-based systems

that require markers or a pre-loaded model of the physical environment. We show how

opposing cameras enable cancellation of common components of optical flow leading

to an efficient tracking algorithm that captures five degrees of freedom including

direction of translation and angular velocity. Experiments comparing our device with

an electromagnetic tracker show that its average tracking accuracy is 80% over 185

frames, and it is able to track large range motions even in outdoor settings. We

also present how opposing cameras in vision-based inside-looking-out systems can

be used for gesture recognition. To demonstrate our approach, we discuss three

different algorithms for recovering motion parameters at different levels of complete

recovery. We show how optical flow in opposing cameras can be used to recover motion

parameters of the multi-camera rig. Experimental results show gesture recognition

accuracy of 88.0%, 90.7% and 86.7% for our three techniques, respectively, across a

set of 15 gestures.

iii

ACKNOWLEDGMENTS

I would like to thank my father Rajeev Gupta, my mother Priti Gupta, my sister

Saloni Jain and my uncle and aunt, Sanjeev Gupta and Manisha Gupta for helping

me throughout my numerous years of college. Furthermore, I would like to thank my

faculty advisor, Dr. Nies da Vitoria Lobo, for his guidance and support. I would like

to thank the members of my committee, Dr. Joseph J. LaViola Jr. and Dr. Mubarak

Shah for their direction and guidance. I would also like to thank Daniel Gabriel,

Phillip Napieralski and Jon Harter for their help at various levels in my work.

iv

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES viii

CHAPTER 1 INTRODUCTION 1

SECTION 1.1 Motivation . 4

SECTION 1.2 Thesis Overview . 5

CHAPTER 2 RELATED WORK 6

CHAPTER 3 TRACKING ALGORITHM 12

SECTION 3.1 Direction of Translation . 13

SECTION 3.1.1 Instantaneous Model of Optical Flow 13

SECTION 3.1.2 Instantaneous Model of Optical Flow for Shifted Cameras 14

SECTION 3.1.3 Polar Correlation . 16

SECTION 3.2 Angular Velocity . 20

SECTION 3.3 Tracking 3D Position . 24

CHAPTER 4 RECOVERING MOTION PARAMETERS 26

SECTION 4.1 Pattern Matching Technique 26

SECTION 4.1.1 Displacement Model of Optical Flow for Shifted Cameras 27

SECTION 4.1.2 Algorithm . 28

SECTION 4.2 Antipodal Regions Technique 29

v

SECTION 4.2.1 Antipodal Theory 29

SECTION 4.2.2 Algorithm . 32

SECTION 4.3 Polar Correlation Technique 33

SECTION 4.3.1 Algorithm . 33

CHAPTER 5 IMPLEMENTATION 35

SECTION 5.1 Device Design . 35

SECTION 5.2 Calculating Optical Flow 35

SECTION 5.3 Quadrantization . 37

SECTION 5.4 Procedure . 37

CHAPTER 6 EXPERIMENTS AND RESULTS 40

SECTION 6.1 Motion Reconstruction . 40

SECTION 6.1.1 Experiments . 41

SECTION 6.1.2 Discussion . 43

SECTION 6.2 Gesture Recognition . 44

SECTION 6.2.1 Feature Extraction 44

SECTION 6.2.2 Gesture Classifier . 45

SECTION 6.2.3 Experiments . 45

SECTION 6.2.4 Results and Discussion 46

CHAPTER 7 FUTURE WORK AND CONCLUSION 52

LIST OF REFERENCES 54

vi

LIST OF FIGURES

3.1 Device configuration and schematic diagram 13

3.2 Components of optical flow for a camera shifted from the rig center. . 22

5.1 Quadrantization Process . 36

6.1 Results comparing to EM tracker . 49

6.2 Accuracy over time . 50

6.3 Large range comparison with EM Tracker 50

6.4 Outdoor and hallway experiments . 50

6.5 Gesture Categories. 51

vii

LIST OF TABLES

6.1 Different configuration experiment . 47

6.2 Confusion table for Pattern Matching technique 47

6.3 Confusion table for Antipodal Regions technique 47

6.4 Confusion table for Polar Correlation technique 48

viii

CHAPTER 1: INTRODUCTION

Motion tracking is a critical aspect of many virtual and augmented reality

applications and there is a wide variety of different tracking technologies and

approaches. Current tracking technologies include accelerometers, gyroscopes,

electromagnetic trackers, infra-red trackers, GPS and sonic trackers. Each of these

approaches have limitations: IMU and GPS systems are generally expensive,

electromagnetic trackers have a low range and accelerometers and gyroscopes give

only three dimensional data. As such, hybrid approaches use multiple sensor

modalities to limit the individual sensor weaknesses [46].

One approach that has gained in popularity in recent years is vision-based tracking.

Cameras are inexpensive, have large range, and provide raw images which are rich

in information. Additionally, there are other auxiliary benefits of using cameras,

such as face recognition that could be used to identify a user and personalize a

system using their profile. Vision-based tracking systems can be classified into two

genres: Inside-looking-out, in which the optical sensor is placed on the moving

1

object and the scene is stationary, example [45], and Outside-looking-in, in which

the optical sensor is stationary and observes the moving object, example [11].

Traditionally, vision-based tracking requires markers as reference points or a

pre-loaded model of the physical environment. Unfortunately, markers can clutter

the physical environment and preloaded models can be time-consuming to create.

We present a real-time, markerless, vision-based tracking system employing a rigid

orthogonal configuration of two pairs of opposing cameras. We show how opposing

cameras enable cancellation of common components of optical flow, which leads to

an efficient tracking algorithm. Our prototype is low cost, requires no setup, obtains

high accuracy and has large range span.

Our prototype tracker is an example of inside-looking-out optical tracking system.

Other related approaches [27, 28] use omnidirectional cameras that give a 360◦ view

of the environment. Omnidirectional cameras are generally expensive, whereas our

device prototype is built using inexpensive off-the-shelf webcams. We can extract

tracking information by exploiting cameras placed on two ends of a diameter and

facing away from each other. Our approach is based on polar correlation of optical

flow to calculate egomotion, in this case, the rotation and translation of a camera

between every two frames. Our tracking system can be used in various applications

like 3D spatial interaction, body tracking, and in robotic applications for large

terrain tracking.

2

Handheld devices used in gesture recognition applications are often built using

accelerometers (for example, the Nintendo Wii Remote), gyroscopes or

electromagnetic trackers. A less common, yet promising approach are vision-based

inside-looking-out systems. Markerless inside-looking-out camera systems have to

recover motion parameters. Recovering motion parameters of a moving camera is

similar to the autonomous robotic problem, in the sense that both have to solve for

the egomotion of the camera. It is advantageous to use a multi-camera based

approach to solve this problem (i.e., recovering motion parameters) because it

increases the field of view and also introduces additional constraints that could be

used to recover the motion parameters. In [7, 20, 21, 22, 26], SFM and egomotion

algorithms are developed for multi camera navigation tasks. Other related

approaches [27, 28] use omnidirectional cameras that give a 360◦ view of the

environment. Omnidirectional cameras are generally expensive, whereas our device

prototype is built using inexpensive off-the-shelf webcams. For the limited task of

gesture recognition, where it is not necessary to obtain perfect egomotion, a

multi-camera vision-based device has significant potential.

We present three different techniques for obtaining motion parameters at different

levels of completed recovery using our device. Fully complete recovery is to obtain

rotation (with magnitude) and direction of translation. The first technique, Pattern

Matching, gives an estimate of direction of translation and Euler angles of rotation

by limiting the possible values to a small quantized set of values. The second

3

technique, Antipodal Regions, gives an estimate of the direction of translation and

the axis of rotation of the rig (without magnitude of rotation). In the third

technique, Polar Correlation, we are able to make a fully complete recovery, giving

us the direction of translation and angular velocity of the rig.

SECTION 1.1 Motivation

Importance of a good tracking system in virtual reality and augmented reality

applications can never be overstated. Characteristics of a good tracking system

include:

1. Should give absolute position and orientation.

2. Should run in real-time, with low latency.

3. Should attain good levels of accuracy. Not necessarily the levels of accuracy of

a mechanical tracker, but atleast good enough in the perceptual domain.

4. Should have large range. Though the range requirements really depends on

the application. An applications may need tracking inside a lab setting or in a

building or across a whole city.

5. Should be low cost. As this really limits the affordability of the technology.

6. Should be able to work in both indoor and outdoor environments.

4

7. Should be markerless, as markers can clutter the space.

8. Should not require external installations and setup. Portability and ease of

setup are critical if it is desired for a tracking technology to be able to run in

somebody’s living room someday.

9. It would be good to be small and wireless.

The work presented in this thesis is our first step in realization of a good tracking

system that covers the above characteristics.

SECTION 1.2 Thesis Overview

In CHAPTER 2, we present work related to single camera and multi-camera

vision-based systems. CHAPTER 3 describes the details behind our tracking

algorithm. In CHAPTER 4, we present the three different algorithms for recovering

motion parameters. CHAPTER 5 provides some implementation details and

CHAPTER 6 presents a set of experiments done to evaluate our tracker’s

performance and the experiments done to evaluate the performance of the

techniques on gesture recognition. Finally, CHAPTER 7 concludes the thesis.

5

CHAPTER 2: RELATED WORK

There are two main categories of work related to ours: vision-based

outside-looking-in systems and vision-based inside-looking-out systems.

Outside-looking-in systems

There are many vision-based outside-looking-in user interface systems. In [24],

presents a single camera and a two camera approach for on-screen item selection by

finger pointing, without any 3D inference, rather only by image morphing and and

line intersection. In [37], a hand gesture interface is presented using two cameras.

In [47], a system for hand pointing and gesture recognition is presented. It uses

optical flow techniques to model the motion of the hand. In [48], a system for

tracking the 3D position of a finger using single camera is presented, to be used as a

visualization tool or a user input interface.

For gaming and other applications: In [9], a perceptual user interface for a

responsive dialog-box agent is presented, by recognizing user acknowledgement from

6

head gestures. Sony’s EyeToy, [11], and Microsoft’s NATAL Project are examples of

commercial vision-based outside-looking-in systems in gaming applications. In [13],

several vision algorithms are described for vision controller graphics applications like

vision-based computer games, hand signal recognition system and a television set

controlled by hand gestures. In [12], specialized algorithms tailored for particular

hardware is presented for game interactions. In [15, 17], a computer vision and

hearing based user interface is presented, specifically for children’s games. In [40], a

markerless multi-camera motion caputer system is presented. In [44], theoretical

work on perceptual user interface is presented along with algorithms for head

tracking, hand tracking and full body tracking.

As examples of other approaches, [32] uses multiple stationary cameras to observe

the user’s interaction, [36] utilizes a glove with colored markers that assist in

tracking, [4] tracks faces for enhanced interaction, and [8, 23] are real-time

markerless object tracking systems for augmented reality applications.

The difference in these approaches and our approach is that they employ stationary

cameras and we use a rigid set of moving cameras as a controller. From a Computer

Vision point of view these two approaches are similar because the fundamental

algorithms needed to process the motion in the camera images remain the same. For

example, the same optical flow algorithm is applied to image frames whether only a

scene object is moving or the camera is moving.

7

Inside-looking-out systems

There are fewer inside-looking-out systems for user interface applications, even

though there are many algorithms for structure from motion (SFM) and

simultaneous localization and mapping (SLAM), both used in robotics or general

purpose vision applications.

Single camera SLAM methods include single camera [10] and multiple camera [19]

approaches. In [16], the eight-point algorithm is presented for structure from

motion. In [33], an algorithmic solution to classical five point pose problem is

presented. The algorithm is suited for numerical implementation that also

corresponds to the inherent complexity of the problem. Though due to the heuristic

and ad hoc nature of the procedure it applies, to implement it is not so easy for

non-expert users.In [25], a much easier algorithm based on hidden variable resultant

technique is presented. In [39], a system for interactively browsing and exploring

large unstructured collections of photographs is presented. The underlying solution

for structure from motion is formulated as a minimization problem, as a non-linear

least squares problem and solved with algorithms such as

Levenberg-Marquardt, [34].

Multi camera In [7], a multi-camera 6 DOF motion estimation system is presented.

The approach first calculates 5 DOF using five point algorithm of Nister [33] and

8

then calculates the scale of translation using a multi-camera scale constraint.

In [20], a multi-camera motion estimation algorithm using global optimization

technique is presented. It computes an optimal estimate of the essential matrix by

searching the rotation space and an optimal solution for translation using linear

programming and Branch and Bound algorithm. For multi camera systems [35]

presents the Generalized Camera Model (GCM). In [26], an algorithm is presented

which uses the GCM to formulate the Generalized Epipolar Constraint (GEC) and

then solves it to get rotation and translation. In [21], two algorithms in the context

of GCM are presented and compared, the first with a linear solution and the second

a geometric algorithm. In [22], a multi-camera rig is developed and a motion

estimation algorithm is presented assuming a spherical imaging system for the

multi-camera rig (i.e., the cameras share a common center of projection). An

approach for computing egomotion using optical flow is described in [43], but the

experimental results show that the technique works for only very small motions,

which is not practical for user interface application. A multi-camera 6 DOF pose

tracking algorithm is presented in [41], but tested only on synthetic data.

In [2], a real-time tracking system using a cluster of outward-looking custom

integrated circuits as smart optical sensors is presented. In [45], LED panels in a

room ceiling are used to provide markers for tracking; this cumbersome setup limits

its applicability as a convenient tracking system.

9

In [18], a subspace method for recovering the observer’s motion and the depth

structure of the scene is presented. The algorithm involves splitting the motion

equations into separate equations for translational direction, rotation velocity and

relative depth. It was shown that the resultant equations can be solved successively,

starting with the equations for translational direction. In [42], Simoncelli presents a

linear structure from motion algorithm using spherical cameras. Spherical

projection has the advantage of treating all viewing directions homogeneously, and

it allows writing the optical flow equation in a simple form. In [14], we present an

algorithm to recover motion parameters using the concept of Polar Correlation of

optical flow. The approach presented is similar to [18] and [42]. The primary

difference is that we show that we can cancel rotation terms in opposite cameras in

a multi-camera rig arrangement. In [5], the instantaneous model of optical flow is

presented. And in [30], it was shown that translational optical flow lies in the

direction of the line connecting the point and the focus of expansion. These work

form the theoretical foundation of our work.

In [28], a technique for computing direction of translation and axis of rotation using

the antipodal points, for omnidirectional cameras, is presented. We generalize the

technique for opposing cameras in a multi camera rig, using the instantaneous

model for cameras shifted from the rig center. Our technique is a generalization

of [28] because it is not restricted to using omnidirectional cameras, does not require

the center of projection of each camera to be at the center of the rig and it can also

10

be applied to a pair of opposing cameras which are displaced from the rig center by

different amounts.

For a vision based controller to be adopted in user interface applications it must

function in real-time, have long range, be accurate, be convenient to use and be low

cost. Our approach works in real time and does not require markers, making it a

practical tracking approach for virtual and augmented reality applications.

11

CHAPTER 3: TRACKING ALGORITHM

The schematic design of our device is shown in Figure 3.1 (a). Our device is

designed as a multi camera rig with four cameras Ck (for k = 1 to 4), placed as a

rigid orthogonal configuration of two pairs of opposing cameras. Figure 3.1 (b)

shows the position sk and orientation mk of each camera with respect the rig

coordinate system. Figure 3.1 (c) shows a prototype of the device that we built

using off-the-shelf webcams, for testing purposes. This section presents our

algorithm for conducting five degrees of freedom tracking, by computing the

direction of translation and angular velocity. This information is integrated over

time to get position information of the device at each time instant.

12

Figure 3.1: (a) Schematic diagram of the rig, (b) Position and orientation of each
camera in the rig, (c) Prototype of the device.

SECTION 3.1 Direction of Translation

SECTION 3.1.1 Instantaneous Model of Optical Flow

Given two successive images of a scene, the motion of each pixel in the first image

to the second image is defined as a vector [u, v]T , called Optical Flow, where u and

v are velocity components in x and y direction respectively. Using the instantaneous

model of optical flow [5], for a camera Ck the optical flow vector [uk, vk]T at point

P (x, y) can be written as:

uk = uk
t + uk

r , vk = vkt + vkr , (3.1)

13

uk
t =

−tkx + xtkz
Z

, vkt =
−tky + ytkz

Z
, (3.2)

uk
r = ωk

xxy − ωk
y(x

2 + 1) + ωk
zy, vkr = ωk

x(y
2 + 1)− ωk

yxy − ωk
zx, (3.3)

where [uk
t , v

k
t]

T are the translational components and [uk
r , v

k
r]

T are the rotational

components of optical flow, tk = [tkx, t
k
y, t

k
z]

T is the translation and ωk = [ωk
x, ω

k
y , ω

k
z]

T

is the angular velocity of camera Ck and Z is the z component (depth) of the 3D

point corresponding to the image point P (x, y).

SECTION 3.1.2 Instantaneous Model of Optical Flow for Shifted

Cameras

Figure 3.1 (b) shows the position and orientation of each camera in the rig.

Following [43], for a camera shifted from the origin:

tk = mk[(ω × sk) + T], (3.4)

ωk = mkω, (3.5)

14

where tk is the translation and ωk is the angular velocity of camera Ck, placed at

position sk with orientation mk, and T = [Tx, Ty, Tz]
T is the translation and

ω = [ωx, ωy, ωz]
T is the angular velocity of the rig. As shown in Figure 3.1 (b), for

camera 1:

s1 =

















0

0

1

















, m1 =

















1 0 0

0 1 0

0 0 1

















. (3.6)

Substituting equation (3.6) in equations (3.4) and (3.5), we get:

t1 =

















ωy + Tx

−ωx + Ty

Tz

















, ω1 =

















ωx

ωy

ωz

















. (3.7)

Using equation (3.1), and substituting equation (3.7) in equations (3.2) and (3.3),

we get:

u1 =
−ωy − Tx + xTz

Z
+ ωxxy − ωy(x

2 + 1) + ωzy, (3.8)

v1 =
ωx − Ty + yTz

Z
+ ωx(y

2 + 1)− ωyxy − ωzx. (3.9)

15

Equations (3.8) and (3.9) represent the optical flow in camera 1 in terms of the rig

motion parameters T and ω. Similarly equations for camera 2 can also be derived,

and they are:

u2 =
−ωy + Tx − xTz

Z
− ωxxy − ωy(x

2 + 1)− ωzy, (3.10)

v2 =
−ωx − Ty − yTz

Z
− ωx(y

2 + 1)− ωyxy + ωzx. (3.11)

SECTION 3.1.3 Polar Correlation

Consider four symmetric points of the form Q0(x, y), Q1(−x, y), Q2(−x,−y) and

Q3(x,−y). Let the flow vector at these symmetric points for camera Ck be

[uk
Qi, vkQi]T (for i = 0 to 3). The equations for flow vectors at these symmetric points

in camera 1 and camera 2 can be obtained by substituting the coordinates of these

points in terms of x and y in equations (3.8) and (3.9) for camera 1 and equations

(3.10) and (3.11) for camera 2. The equations for optical flow at these symmetric

points in camera 1 are:

u1

Q0 =
−ωy − Tx + xTz

Z
+ ωxxy − ωy(x

2 + 1) + ωzy, (3.12)

16

v1Q0 =
ωx − Ty + yTz

Z
+ ωx(y

2 + 1)− ωyxy − ωzx, (3.13)

u1

Q1 =
−ωy − Tx − xTz

Z
− ωxxy − ωy(x

2 + 1) + ωzy, (3.14)

v1Q1 =
ωx − Ty + yTz

Z
+ ωx(y

2 + 1) + ωyxy + ωzx, (3.15)

u1

Q2 =
−ωy − Tx − xTz

Z
+ ωxxy − ωy(x

2 + 1)− ωzy, (3.16)

v1Q2 =
ωx − Ty − yTz

Z
+ ωx(y

2 + 1)− ωyxy + ωzx, (3.17)

u1

Q3 =
−ωy − Tx + xTz

Z
− ωxxy − ωy(x

2 + 1)− ωzy, (3.18)

v1Q3 =
ωx − Ty − yTz

Z
+ ωx(y

2 + 1) + ωyxy − ωzx. (3.19)

We compute a quantity [Lk
x, L

k
y] for camera Ck as:

17

Lk
x =

∑

3

i=0
uk
Qi

4
, Lk

y =

∑

3

i=0
vk
Qi

4
. (3.20)

L1

x =
−ωy − Tx

Z
− ωy(x

2 + 1), L1

y =
ωx − Ty

Z
+ ωx(y

2 + 1). (3.21)

Similarly we can derive the equations for [Lk
x, L

k
y] for cameras 2, 3 and 4. For

camera 2:

L2

x =
−ωy + Tx

Z
− ωy(x

2 + 1), L2

y =
−ωx − Ty

Z
− ωx(y

2 + 1). (3.22)

Next we compute a quantity [Gx, Gy, Gz] as:

Gx = [−L1

x + L2

x]/2, (3.23)

Gy = [−L1

y − L2

y − L3

y − L4

y]/4, (3.24)

Gz = [L3

x − L4

x]/2. (3.25)

18

By substituting equations (3.21) and (3.22) in equation (3.23) we get:

Gx = Tx/Z. (3.26)

Note that Gx has reduced to a scaled version of Tx. By substituting [Lk
x, L

k
y] for all

the four cameras in equations (3.24) and (3.25), we get:

Gy = Ty/Z. (3.27)

Gz = Tz/Z. (3.28)

[Gx, Gy, Gz] is the scaled version of translation T = [Tx, Ty, Tz]
T of the rig. The

computation of [Gx, Gy, Gz] cancels all the rotation terms and we are left with only

translation terms. This is the concept of Polar Correlation, which says that

opposing cameras have common component of optical flow, which we show can be

canceled out to get the direction of translation of the rig. It should be noted that

two pairs of opposing cameras are needed because using camera 1 and 2 only Gx

and Gy can be computed, to compute Gz we need another pair of opposing cameras.

19

SECTION 3.2 Angular Velocity

After computing the scaled version of translation of the rig, we can obtain the

translation tk of each camera Ck using

tk = mkT, (3.29)

where mk is the orientation of camera Ck and T is the translation of the rig. Using

the translation of each camera, we can generate a synthetic translational field

[uk
t , vkt] for each camera as

uk
t =

−tkx + xtkz
Z

, vkt =
−tky + ytkz

Z
. (3.30)

We generate a synthetic translational flow vector for all the points where we have

computed the optical flow. In [30], it was shown that the translational component of

optical flow at point P always lie on the line joining the focus of expansion (FOE)

and the point P . Therefore, by using the synthetic translational flow at each point

we can get the direction of the line joining the point P and the FOE. When a

camera Ck is shifted from the rig center, an optical flow vector in that camera has

three components, ~o = ~ot + ~otr + ~or, where ~ot is a translational component due to

20

translation of the rig, ~otr is a translational component due to rotation of the rig,

[(ω × sk) term in equation (3.4)], and ~or is a rotational component due to rotation

of the rig. The component of optical flow perpendicular to the line connecting the

FOE and the point P has projection of the translational component ~otr due to the

rotation of the rig and rotational component ~or due to rotation of rig. This concept

is pictorially represented in Figure 3.2. Let ~F be the vector going from the FOE

(x0, y0) to a point P (x, y) on the image plane. Then,

~F = (x− x0)̂i+ (y − y0)ĵ. (3.31)

Let ~Fp be a vector perpendicular to ~F , obtained by 90◦ rotation. Then,

~Fp = (y0 − y)̂i+ (x− x0)ĵ. (3.32)

Now we normalize the vector ~Fp to obtain

~Fpn =
(y0 − y)

√

(y0 − y)2 + (x− x0)2
î+

(x− x0)
√

(y0 − y)2 + (x− x0)2
ĵ. (3.33)

The translational component of the optical flow always lies on the line connecting

the image point and the FOE. Therefore, ~ot will always lie on the line joining point

21

Figure 3.2: Components of optical flow for a camera shifted from the rig center.

P and the FOE. Now we take the component of (~or + ~otr) perpendicular to ~F , by

taking a dot product between (~or + ~otr) and ~Fpn. The motive behind normalizing ~Fp

is that the component of (~or + ~otr) perpendicular to ~F can be found directly by

computing a dot product between (~or + ~otr) and ~Fpn. Using the computed optical

flow over the image frames from the four cameras, on selected interest points, we

can obtain the numerical value

η = (~or + ~otr). ~Fpn, (3.34)

by taking the projection of the flow vector perpendicular to the direction of the line

connecting the point to the FOE. By extracting the rotational component and

22

translational component due to the rotation of the rig from equations (3.8) and

(3.9) for Camera 1, we get

~or = [ωxxy − ωy(x
2 + 1) + ωzy]̂i+ [ωx(y

2 + 1)− ωyxy − ωzx]ĵ, (3.35)

~otr =
−ωy

Z
î+

ωx

Z
ĵ. (3.36)

Substituting equations (3.33), (3.35) and (3.36) in equation (3.34) we get an

equation of the form:

ωxc1 + ωyc2 + ωzc3 = η, (3.37)

where c1, c2 and c3 are in terms of x0, y0, x, y and Z. Similarly we can also get

equations for cameras 2, 3 and 4. Thus each point in a camera gives us one equation

in 3 unknowns ωx, ωy and ωz. We choose a uniform constant value for depth Z.

Using all the points in all the four cameras we obtain a family of equations of the

form:

PX = Q, (3.38)

23

where X = [ωx, ωy, ωz]
T , P is a N × 3 matrix and Q is a N × 1 vector of known

quantities, for a total of N interest points. Pre-multiplying both sides of equation

(3.38) by P T gives us

P TPX = P TQ. (3.39)

Since P TP is a 3× 3 matrix and P TQ is a 3× 1 vector, we get three linear

equations in three unknowns, which can be easily solved to get ωx, ωy and ωz, which

is the angular velocity of the rig.

SECTION 3.3 Tracking 3D Position

We assume that initially the multi-camera rig is aligned with and placed at the

origin of the world coordinate system. Thus, the multi-camera rig has a starting

position P0 = (0, 0, 0) and orientation Q0 = I (Identity matrix). We obtain a

translation vector Ti from the calculated scaled version of translation and a rotation

matrix Ri from the calculated rotation terms for each time frame i. The rotation

matrix can be obtained from the calculated rotation terms by treating them as

Euler angles [Φ1,Φ2,Φ3] of rotation using the formula:

24

R =

















c3c2 c3s2s1 − s3c1 s3s1 + c3s2c1

s3c2 c3c1 + s3s2s1 s3s2c1 − c3s1

−s2 c2s1 c2c1

















, (3.40)

where cn = cosΦn and sn = sinΦn. The position Pi and the orientation Qi of the

multi-camera rig can be calculated using the formulas:

Pi = Pi−1 +Qi−1 ∗ Ti, (3.41)

Qi = Ri ∗Qi−1. (3.42)

Using equations (3.41) and (3.42) we integrate the calculated relative translation

and rotation to obtain the position of the multi-camera rig at each time frame.

25

CHAPTER 4: RECOVERING MOTION PARAMETERS

In this chapter we present the three different techniques developed for recovering

motion parameters of the rig using computed optical flow from the four cameras.

SECTION 4.1 Pattern Matching Technique

The first technique we developed for computing the rig’s motion is a qualitative

method of pattern matching. This approach matches computed optical flow from

the four cameras of the rig with the synthetic optical flow generated using the

displacement model for cameras shifted from the rig center. Using this technique,

we can recover the rotation angles and the direction of translation, over a

pre-defined small quantized set of values.

26

SECTION 4.1.1 Displacement Model of Optical Flow for Shifted

Cameras

In [29], for a camera Ck, image point displacement [u, v]T is formulated as:

uk =
Rk

1 · (P − tk/Z)

Rk
3 · (P − tk/Z)

− x, (4.1)

vk =
Rk

2 · (P − tk/Z)

Rk
3 · (P − tk/Z)

− y, (4.2)

where tk = [tkx, tky , tkz]
T is the translation, Rk is the rotation matrix, the subscript to

the rotation matrix denotes each row of the rotation matrix, and Z is the z

component (depth) of the 3D point corresponding to the image point P (x, y, 1).

When a camera is shifted from the rig center the motion parameters of the camera

are related to the motion parameters of the rig by the following equations:

Rk = mkRmk
T , (4.3)

tk = mkT +mk(Rsk − sk). (4.4)

27

By substituting values of orientation and position for a camera in equations (4.3)

and (4.4) and then substituting Rk and tk in equations (4.1) and (4.2), we can get

image point displacement equations for a camera shifted from the rig center in

terms of the rig center’s motion parameters.

SECTION 4.1.2 Algorithm

Generating Synthetic Flow In generating a synthetic displacement field, the

most important parameter that governs the representation is the choice of size of

the synthetic image plane. If the size of the image plane is too big, dramatic flow

patterns occur, such as drastic curves on the edges of the plane. While these

patterns may be realistic for some systems, in practice, optical flow appears as a

homogeneous pattern. Such a pattern is achieved by selecting small dimensions for

the image plane, as cameras generally have small field of view. Thus, a coordinate

range of [−0.15, 0.15] is used for the synthetic image plane. A constant value for

depth, Z = 10, is used for all the points. In practice, it was observed that a small

set, {−2, − 1, 0, 1, 2}, of translation and rotation values generates an expressive

set of optical flow patterns consistent with real optical flow. Using this range, we

generated 15, 625 unique optical flow patterns. The generated optical flow is passed

through the quadrantization process to get 16 flow vectors corresponding to each

quadrant of the four cameras. To optimize the search space we cluster the 15, 625

28

cases using the k-means algorithm, with k =
√
15625 = 125.

INPUT: Flow fields for all the four cameras

OUTPUT: Rotation angles and direction of translation of the rig

• Apply quadrantization to the input flow fields to get 16 flow vectors.

• Find the cluster which has the minimum Euclidean distance between the 16

flow vectors of the input flow field and the cluster center.

• Inside that cluster, find the entry which has the minimum Euclidean distance

between it and the 16 flow vectors of the input flow field.

• The motion parameters used to generate that entry is considered to be the

motion parameters of the rig that generated the input flow field.

SECTION 4.2 Antipodal Regions Technique

This technique is an extension to [28], by generalizing the approach to multi-camera

rigs using the instantaneous model for shifted cameras.

SECTION 4.2.1 Antipodal Theory

For a plane P passing through the center of a sphere S, P ∩ S defines a great circle.

Consider a pair of antipodal points and a great circle passing through those points.

29

Following [28], if the projection of optical flow vectors, at the two antipodal points,

on the tangent vector to the great circle are in the same direction, then the

direction of translation is constrained to be parallel to the great circle, in the

direction opposite the direction of the projections of the optical flow. If the

projections are in the opposite direction, then the axis of rotation is constrained to

lie normal to the plane of the great circle with a direction determined by left hand

rule on the projections.

Antipodal Theory for Opposing Cameras Consider two antipodal points,

P (x, y) in Camera 1 and P ′ (x, − y) in Camera 2. The equation of optical flow at

P ′ in Camera 2 can be obtained as we obtained equations (3.8) and (3.9) for

Camera 1. Optical flow vectors at P and P ′ with respect to the rig center can be

obtained using

~orig = mk~ok, (4.5)

where ~orig is the optical flow vector with respect to the rig center, mk is the

orientation of camera Ck, and ~ok is the optical flow vector in camera Ck with

respect to the local camera center. Consider a great circle passing through points P

and P ′ such that the tangent vector ~h to it is

30

~h = 1̂i+ 1ĵ. (4.6)

The projection of optical flow at point P and P ′, with respect to the rig center, on

the tangent to the great circle can be obtained using

proj(~orig) = ~orig · ~h. (4.7)

Thus, the projection of optical flow vectors at P and P ′ can be obtained.

proj(~oprig) = [
−ωy − Tx + xTz

Z
+ ωxxy − ωy(x

2 + 1) + ωzy]

+[
ωx − Ty + yTz

Z
+ ωx(y

2 + 1)− ωyxy − ωzx],

(4.8)

proj(~op
′

rig) = [
ωy − Tx + xTz

Z
− ωxxy + ωy(x

2 + 1)− ωzy]

+[
−ωx − Ty + yTz

Z
− ωx(y

2 + 1) + ωyxy + ωzx].

(4.9)

Note that in equations (4.8) and (4.9) the translation terms have the same sign and the

rotation terms have opposite sign. Following the argument made in [28], if the sign of

proj(~oprig) and proj(~op
′

rig) is the same then there must exist a component of translation

that is parallel and in opposite direction to proj(~oprig) and proj(~op
′

rig). If the sign is

31

different, then a component of rotation must exist, with an axis of rotation perpendicular

to the great circle.

SECTION 4.2.2 Algorithm

Pre-defined Antipodal Regions and Great Circles Two points on a sphere are

antipodal if they are diametrically opposite. That is, if a line can be drawn from a point p

to another point p′ while passing through the center of the sphere then p and p′ are called

antipodal points. We define antipodal regions as two regions such that all points

contained in one region have a corresponding antipodal point in the opposing region. The

center point of an antipodal region is associated with a flow vector, which is the average of

optical flow vectors for all the points in that region. Quadrantization is applied to

partition the image plane into four regions and to get the average flow vector associated

with the center of each region. The antipodal regions are chosen to be the diametrically

opposite quadrants after the quadrantization process. For each pair of antipodal regions

we pre-defined 6 great circles passing through the center of them, such that they are 30◦s

apart in sequence.

Computing DOT and AOR Having pre-defined antipodal regions and great circles,

and given as input the computed flow fields from all the four cameras we can obtain an

estimate of the direction of translation (DOT) and axis of rotation (AOR) using the

following: Loop through all antipodal regions (Ri and R′

i) with flow vectors ~oRi
and ~oR′

i

32

• Loop through all great circles (Cj)

– Take the projection of ~oRi
and ~oR′

i
onto the tangent vector of Cj

– If sign(proj(~oRi
)) = sign(proj(~oR′

i
)) then the DOT is constrained to be

opposite in direction to the projections and parallel to Cj .

– Else if sign(proj(~oRi
)) 6= sign(proj(~oR′

i
)) then the AOR is constrained as the

normal vector to Cj in the direction determined by the left hand rule on the

projections.

– If either projection is zero, no constraint is added.

By constraining the DOT and AOR for all the antipodal regions and corresponding great

circles, we get an estimate of the DOT and AOR as output.

SECTION 4.3 Polar Correlation Technique

We base this technique on the instantaneous model for cameras shifted from the rig center,

and give an estimate of the direction of translation and angular velocity of a moving multi

camera rig. The direction of translation and the angular velocity is calculated using the

concept of polar correlation of optical flow, SECTION 3.1 and SECTION 3.2.

SECTION 4.3.1 Algorithm

Repeat steps 1 through 9 for each set of four frame from all the four cameras.

33

• Step 1: Find interest points of the image frames from all the four cameras, [38].

• Step 2: Calculate optical flow on the interest points, [3].

• Step 3: Estimate the flow at the quadrantization points, SECTION 5.3.

• Step 4: Using the estimated flow at the quadrantization points, calculate [Lk
x, L

k
y],

equation (3.20).

• Step 5: Calculate [Gx, Gy, Gz], using equation (3.23) through (3.25).

• Step 6: Obtain the direction of translation for each camera, using equation (3.29).

• Step 7: Generate synthetic optical flow at interest point from Step 1 using the

direction of translation for each camera from Step 6.

• Step 8: For each interest point, using the direction of line connecting the point and

FOE, and the computed flow at that point, calculate the value of η and construct

equation (3.34).

• Step 9: Solve the family of equations to get angular velocity, equation (3.39).

34

CHAPTER 5: IMPLEMENTATION

SECTION 5.1 Device Design

The configuration of the cameras in the device is shown in Figure 3.1 (a). We used

off-the-shelf Logitech webcams to build the prototype, as shown in Figure 3.1 (c), making

the device low-cost. The cameras are rigidly fixed together and we used a powered usb

hub with an extension cable to connect the cameras to the computer. This configuration

gave us the ability to move around in a large space with no additional setup time.

SECTION 5.2 Calculating Optical Flow

We use Intel’s OpenCV implementation of [3] to compute optical flow, which is a real

time, iterative approach using image pyramids. It gives as output a sparse flow field

because it calculates optical flow only on selected feature points. The feature points are

selected using the approach of [38]. This approach selects points in an image, with specific

characteristics. At point (x, y) in an image I, the image intensity gradients are defined as:

35

Ix(x, y) =
I(x+ 1, y)− I(x− 1, y)

2
, Iy(x, y) =

I(x, y + 1)− I(x, y − 1)

2
. (5.1)

Given

H =

px+wx
∑

x=px−wx

py+wy
∑

y=py−wy









I2x IxIy

IxIy I2y









, (5.2)

a point is selected if the minimum eigenvalue of matrix H for that point is greater than a

threshold. This will give points which are shaped like a corner. These kind of points are

helpful to overcome the aperture problem [1] in computing optical flow and let us utilize a

markerless implementation. Note that other more robust feature point selection methods,

like [31], could also be used, but they are not necessarily real time.

Figure 5.1: Quadrantization Process

36

SECTION 5.3 Quadrantization

After computing optical flow in each camera, flow vectors from each frame are passed

through the Quadrantization step to get an estimate of optical flow at symmetric points

Q0(x, y), Q1(−x, y), Q2(−x,−y) and Q3(x,−y) to use polar correlation. As shown in

Figure 5.1 each frame is divided into 4 quadrants. The center points of each quadrant are

called Quadrantization Points Qi
k (for i = 0 to 3) for camera Ck. Each quadrantization

point is associated with a vector with some uniform constant magnitude λ and angle as

the average of all flow vectors’ angles in that quadrant.

SECTION 5.4 Procedure

This section enumerates the step by step procedure for implementing the system

presented in this work.

1. Build a camera rig with four cameras arranged in a orthogonal configuration of two

pairs of opposing cameras. We used Logitech Quickcam Pro webcams. Any other

cameras can be used, the camera drivers have to be compatible with OpenCV.

2. We used C Sharp (.NET Framework) for implementation of the algorithm. We also

used EmguCV, which is a .NET wrapper for OpenCV. We used XNA Game Studio

3.0 for visualization code, and Bespoke 3DUI Framework for hooking up Nintendo

Wii remote (only used for button pressing tasks).

37

3. The algorithm begins by capturing image from all the four cameras. Then compute

optical flow on the images using Pyramidal implementation of Lucas and Kanade

algorithm in OpenCV.

4. Apply the Quadrantization process to the computed optical flow to get an estimate

of optical flow at the center of the quadrants for all the four cameras.

5. First normalize the estimated optical flow for all the quadrant centers and then give

it some constant and uniform magnitude.

6. Average all the normalized estimate of optical flow at the quadrant centers from all

the four cameras in all the directions (x, y and z) to get the direction of translation.

Multiply this direction of translation with some constant magnitude to get

translation of the rig.

7. After obtaining the translation of the rig, pre-multiply it by the orientation of each

camera to obtain the translation of each camera. Using the translation of each

camera synthetic optical flow can be generated at all the points where we originally

calculated optical flow using Bruss and Horn’s equations for instantaneous model of

optical flow.

8. The generate synthetic optical flow gives the direction of the line connecting the

point and the Focus of Expansion (FOE).

9. Take a component of the computed optical flow perpendicular to the direction of

the line connection the image point and the FOE. Equate this projected component

to the projected equation for rotation.

38

10. This will give a family of equation in 3 unknowns, solve them to get rotation.

11. We assume that the initial position and orientation of the device coincide with the

world coordinate system. After obtaining the translation and rotation of the rig, it

can be easily integrated to get the position of the device at each time instant.

39

CHAPTER 6: EXPERIMENTS AND RESULTS

SECTION 6.1 Motion Reconstruction

To evaluate the accuracy of the device prototype, we compared it to a Polhemus

PATRIOT tracker, an electromagnetic (EM) tracker that has position and orientation

accuracy of 0.1in RMS and 0.75◦ RMS respectively. The readings from the EM tracker

are used as ground truth of the tracked motion. The EM tracker and our device prototype

provide measurements in different units. To overcome this issue, the position data from

the two devices is normalized using a standard normalization technique [6]. For a given

trajectory S = [s1, · · · , sn], Norm(S) is defined as:

[(

s1,x − µx

σx
,
s1,y − µy

σy
,
s1,z − µz

σz

)

, · · · ,
(

sn,x − µx

σx
,
sn,y − µy

σy
,
sn,z − µz

σz

)]

, (6.1)

where si = (si,x, si,y, si,z) is 3D position, µx, µy and µz are the means and σx, σy and σz

are the standard deviations values in x, y and z coordinates respectively. This

40

normalization makes the distance between two trajectories to be compared invariant to

spatial scaling and shifting. For some motion let the trajectory given by the device and

the EM tracker be Sn and En respectively, for n sample points. Note that the sampling

rate of the EM tracker (≈ 60Hz) is faster than that of our device (≈ 16Hz). However, the

trajectory can be recorded with same number of sample points by considering the points

with same time stamps. The accuracy of our device compared to the EM tracker is

computed using the formulation:

A =













1−

n
∑

i=0

di

n













∗ 100, (6.2)

where di is the Euclidean distance between points si and ei for Sn and En respectively,

obtained after normalization using equation (6.1).

SECTION 6.1.1 Experiments

All experiments were done on real images. The EM tracker was attached to our device

and the trajectories formed by both devices were recorded while making motions. The

experiment set consists of small motions (around 2 meters) and large motions (around 20

meters). Note that for large motions, the EM tracker did not have enough range so we

show the recorded trajectories of our device.

41

Experiment Set 1

The first set of experiments consists of random 3D shapes made in a lab setting by moving

the device around in the air. The trajectories formed by the EM tracker and our device

are compared using the formulation of equation (6.2).

Experiment Set 2

The second set of experiments are done on a larger range than the experiments in set 1.

The results are compared with the EM tracker, showing how the EM tracker fails when it

goes out of range but our device still tracks accurately.

Experiment Set 3

The third set of experiments were done in a hallway and in an outdoor environment, with

large range motions to show how the optical device robustly tracks the motion. These open

space settings have extreme lighting conditions and sunlight. The EM Tracker fails in such

large range scenarios. The specific motions used in this experiment set were rectangles.

We chose rectangles in this case to test right angles and how close is the starting point of

the rectangle from the ending point. These measures provide a way to evaluate how the

tracker is performing in the absence of direct comparisons with the EM tracker.

42

SECTION 6.1.2 Discussion

Figure 6.1 shows the trajectories formed by our device in red and the EM Tracker in blue,

with total accuracy obtained in each motion instance. Figure 6.2 shows the change in

accuracy over time for these instances. It can be seen that the average accuracy of the our

device is around 80%, and it is maintained over 185 frames. The frame rate of our device

is ≈ 16 Hz, which means that for motions of about 11 seconds the system attains up to

80% accuracy, making the tracker well suited for gesture recognition applications, as

typically a gesture lasts less than 5 seconds. Figure 6.3 shows how moving out of the

range of the EM tracker cause it to jitter but our device still keeps tracking with good

accuracy. Figure 6.4 shows large range motion instances in the hallway and outdoor

settings. It can be seen that the our device tracks with reasonable accuracy, though a drift

can be seen. The starting and the ending points do not coincide even though the actual

motion was made so that the starting and ending points were approximately the same.

However, the drift is small as compared to the total range of the motion and the device is

able to track the right angles in the rectangles well. Although our experiments show our

device tracks fairly well, we recognize that it is still in the prototype stage and more work

is needed to improve its accuracy.

We do not explicitly computer the depth of the 3D points. Thus, we use a uniform

constant value of Z for all the points. We are only inferring the direction of translation,

rather than with scale, so the chosen value of Z should not have any effect on the

direction of translation. But it might have some effect on the rotation calculation. Thus

43

an analysis of the algorithm by choosing different Z values would be interesting. Not been

able to compute the depth of the 3D points limits the algorithm and results in drift in the

tracked motion.

SECTION 6.2 Gesture Recognition

We used a simple and intuitive classifier to test our motion parameter estimation

techniques in a gesture recognition application.

SECTION 6.2.1 Feature Extraction

Consider that a gesture motion is made using the device, which is n frames long. Using

any one of the three techniques presented, we can get 6 motion parameters for each frame.

Let EG be a n× 6 matrix of all the estimated motion parameters for that given instance

of the gesture, using any one of the three techniques. Using EG we create a 1×m feature

vector. Features are selected based on the criteria that a gesture should be order specific.

In order to preserve the chronology of the gesture motions, EG is divided into i row

blocks. From each row block the signed and unsigned average magnitudes for each column

are calculated. We do this for i = 2, 3, and 4. Thus, the total length of the feature vector

is m = 2× 6× (2 + 3 + 4) = 108.

44

SECTION 6.2.2 Gesture Classifier

Given a set of feature vectors corresponding to a set of training gestures, a linear classifier

calculates an average representation for each gesture class. Specifically, for each class, the

arithmetic mean among all training instances for that class is calculated via element-wise

signed averaging. Thus, for 15 gestures, 15 average feature vectors are calculated. Given

the feature vector that corresponds to a test gesture, the distance from that vector to each

average vector from the training set is calculated. A gesture motion instance is classified

as belonging to the class corresponding to the average vector with the minimum distance

from its feature vector. The distance between a feature vector and an average feature

vector from the training set is calculated using p-norm with p = 3.

SECTION 6.2.3 Experiments

We defined a set of 15 gestures to use in our experiments, as shown in Figure 6.5. All

experiments were done on real data, in a lab setting and a hallway.

Dataset

The training dataset consists of 600 gesture instances. Two participants performed 40

instances for each of the 15 gesture classes, half of the instances were recorded in a lab

setting and the other half in a hallway. The testing dataset consists of 150 gesture

45

instances. One participant, different from the participants who collected the training

dataset, performed 10 instances for each of the 15 gesture classes, half of the instances

were recorded in a lab setting and the other half in a hallway.

SECTION 6.2.4 Results and Discussion

Tables 6.2, 6.3 and 6.4 show the confusion tables obtained after training on all gesture

instances from the training dataset and testing on all gesture instances of the testing

dataset for the Pattern Matching, Antipodal Regions and Polar Correlation techniques,

respectively. The Pattern Matching technique achieves an average accuracy of 88.0%, the

Antipodal Regions technique achieves an average accuracy of 90.7%, and the Antipodal

Regions technique achieves an average accuracy of 86.7%. All three techniques achieve

comparable average accuracy and these levels are well suited for gesture recognition

applications. Table 6.1 shows the average accuracy achieved with the Pattern Matching

technique on different number of cameras and different camera configurations. The results

clearly shows that in the Pattern Matching technique case, a multi-camera system is

superior to a single camera and the highest average accuracy is achieved with an

orthogonal configuration of two pairs of opposing cameras.

46

Cameras Accuracy

1 60.00%
1,4 68.33%
1,2 71.33%
1,2,3 74.33%
1,2,3,4 88.00%

Table 6.1: Average accuracy for different camera configurations and number of cam-
eras, using the Pattern Matching Technique.

B.S. Ca. Ci. F.S. In. L.B. Pi. Re. R.B. S St. Tr. Tw. V Z

Back Slash 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Caret 10 90 0 0 0 0 0 0 0 0 0 0 0 0 0
Circle 0 0 90 0 0 10 0 0 0 0 0 0 0 0 10

Forward Slash 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
Infinity 0 0 0 0 90 0 0 0 10 0 0 0 0 0 0

Left Bracket 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
Pigtail 0 0 0 0 10 0 70 0 0 0 0 0 0 0 20

Rectangle 0 0 0 0 0 0 0 90 0 0 0 10 0 0 0
Right Bracket 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
Stab 0 0 0 0 0 0 10 0 0 0 90 0 0 0 0

Triangle 0 0 0 0 0 0 10 0 0 20 0 70 0 0 0
Twist 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
Z 10 0 0 0 0 0 0 0 10 0 0 0 0 0 80

Table 6.2: Confusion Table for the Pattern Matching Technique; Average Accuracy
= 88%.

B.S. Ca. Ci. F.S. In. L.B. Pi. Re. R.B. S St. Tr. Tw. V Z

Back Slash 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0
Caret 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
Circle 0 0 90 0 0 0 0 0 0 0 0 0 0 0 10

Forward Slash 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
Infinity 0 0 0 0 90 0 0 0 0 0 0 0 0 0 10

Left Bracket 0 0 0 0 0 90 0 0 0 0 0 0 10 0 0
Pigtail 0 0 0 0 0 0 80 0 0 0 0 0 0 0 20

Rectangle 0 0 0 10 0 0 0 90 0 0 0 0 0 0 0
Right Bracket 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
Stab 0 0 0 0 0 0 0 0 0 0 90 0 10 0 0

Triangle 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0
Twist 0 0 0 10 0 0 0 0 0 0 0 0 90 0 0
V 0 0 10 0 0 0 0 0 0 0 0 0 0 90 0
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Table 6.3: Confusion Table for the Antipodal Regions Technique; Average Accuracy
= 90.7%.

47

B.S. Ca. Ci. F.S. In. L.B. Pi. Re. R.B. S St. Tr. Tw. V Z

Back Slash 30 50 0 10 0 0 0 0 0 0 0 0 0 10 0
Caret 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
Circle 0 0 70 0 0 0 0 0 0 0 0 0 0 30 0

Forward Slash 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
Infinity 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

Left Bracket 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
Pigtail 0 0 0 0 0 0 90 0 0 0 0 0 0 0 10

Rectangle 0 0 0 0 0 0 0 90 0 10 0 0 0 0 0
Right Bracket 0 0 0 0 0 0 0 0 70 0 0 0 10 20 0

S 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
Stab 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

Triangle 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0
Twist 0 10 0 0 0 0 0 0 0 0 0 0 90 0 0
V 0 0 10 0 10 0 0 0 10 0 0 0 0 70 0
Z 0 0 0 0 10 0 0 0 0 0 0 0 0 0 90

Table 6.4: Confusion Table for the Polar Correlation Technique; Average Accuracy
= 86.7%.

48

Figure 6.1: Experiments set 1 with accuracy of the optical device as compared to EM
tracker, optical device is shown in red and the EM tracker in blue

49

Figure 6.2: Change in accuracy over time of motions instances from experiment set 1

Figure 6.3: Trajectories from experiment set 2 showing how the optical device tracks
accurately, when we move out of the range of the EM tracker, and the EM tracker
gives jittery data, optical device is shown in red and EM tracker in blue

Figure 6.4: Trajectories of large range motion instances from experiment set 3 in
outdoor and hallway settings

50

Figure 6.5: Gesture Categories.

51

CHAPTER 7: FUTURE WORK AND CONCLUSION

Future work includes improving the tracking accuracy by reducing the drift. A limitation

of the current system is that we are only able to recover 5 degree of freedom, and thus due

to the lack of absolute scale, we can see drift in the tracked motion. This can be overcome

if some loop closing mechanism is employed, like by making a database of feature point

descriptors of the environment and the system be able to recognize that it has returned to

a previously visited location by comparing the input image feature point descriptors to the

database.

Also analyzing the performance of the algorithm by dividing the image plane into more

than 4 regions. Dividing the image plane into 4 regions was a design decision we made.

But it would be interesting to look at the behavior of the algorithm by using more regions.

SFM and egomotion algorithms generally works well for certain motion parameters and

does not work so well for others. It would be interesting to characterize the error behavior

of the algorithm presented over a large range of possible motions.

In conclusion, we presented a markerless, real time, vision-based tracking system that

makes use of the novel concept of Polar Correlation of optical flow. Experiments show

52

that the device has an average accuracy of 80% over 185 frames when compared to an

electromagnetic tracker. The prototype of the device is low cost, requires no setup and has

a large range span. We have also presented three different techniques for recovering

motion parameters at different levels of complete recovery, using optical flow from

opposing cameras. These techniques were applied to a gesture recognition application

using a simple classifier. The results show the Antipodal Regions technique achieved the

highest recognition accuracy level (90.7%) compared with the Pattern Matching and Polar

Correlations techniques. We recognize that their is more work to be done to improve the

gesture recognition accuracy, by examining more sophisticated gesture classification

algorithms and fine tuning our motion parameter recovery techniques. However, we

believe that these results provide a great starting point for using opposing cameras in

vision-based inside-looking-out systems in gesture recognition applications.

53

LIST OF REFERENCES

[1] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM

Computing Surveys, 27(3):433–466, 1995.

[2] Gary Bishop and Henry Fuchs. The self-tracker: A smart optical sensor on silicon.

Proceedings, Conference on Advanced Research in VLSI, 1984.

[3] Jean Y. Bouguet. Pyramidal implementation of the lucas kanade feature tracker:

Description of the algorithm, 2002.

[4] Gary R. Bradski. Computer vision face tracking for use in a perceptual user

interface. Intel Technology Journal, 1998.

[5] Anna R. Bruss and Berthold K. P. Horn. Passive navigation. Computer Vision,

Graphics, and Image Processing, 21(1):3–20, 1983.

[6] Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity search for

moving object trajectories. In In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 491–502. ACM, 2005.

54

[7] Brian Clipp, Jae-Hak Kim, Jan-Michael Frahm, Marc Pollefeys, and Richard Hartley.

Robust 6dof motion estimation for non-overlapping, multi-camera systems.

Applications of Computer Vision, IEEE Workshop on, 0:1–8, 2008.

[8] Andrew I. Comport, Eric Marchand, Muriel Pressigout, and Fran?ois Chaumette.

Real-time markerless tracking for augmented reality: The virtual visual servoing

framework. IEEE Transactions on Visualization and Computer Graphics,

12(4):615–628, 2006.

[9] James W. Davis and Serge Vaks. A perceptual user interface for recognizing head

gesture acknowledgements. In Proceedings of the 2001 Workshop on Perceptive User

Interfaces, pages 1–7, New York, NY, USA, 2001. ACM.

[10] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. Monoslam:

Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(6):1052–1067, 2007.

[11] Geanbry Demming. Sony eyetoy TM : Developing mental models for 3-D interaction

in a 2-D gaming environment. In Computer Human Interaction, volume 3101, pages

575–582. Springer, 2004.

[12] W. T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma. Computer vision for computer

games. Automatic Face and Gesture Recognition, IEEE International Conference on,

0:100, 1996.

[13] William T. Freeman, David B. Anderson, Paul A. Beardsley, Chris N. Dodge, Michal

Roth, Craig D. Weissman, William S. Yerazunis, Hiroshi Kage, Kazuo Kyuma,

55

Yasunari Miyake, and Ken ichi Tanaka. Computer vision for interactive computer

graphics. volume 18, pages 42–53, Los Alamitos, CA, USA, 1998. IEEE Computer

Society.

[14] Prince Gupta, Niels da Vitoria Lobo, and Joseph J. LaViola Jr. Markerless tracking

using polar correlation of camera optical flow. IEEE Virtual Reality Conference, 2010.

[15] Perttu Hämäläinen and Johanna Höysniemi. A computer vision and hearing based

user interface for a computer game for children. In Universal Access Theoretical

Perspectives, Practice, and Experience, pages 299–318. Springer Berlin / Heidelberg,

2003.

[16] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, New York, NY, USA, 2003.

[17] Johanna Höysniemi, Perttu Hämäläinen, Laura Turkki, and Teppo Rouvi. Children’s

intuitive gestures in vision-based action games. Communications of the ACM,

48(1):44–50, 2005.

[18] Allan Jepson and David J. Heeger. Linear subspace methods for recovering

translational direction. pages 39–62, 1992.

[19] M. Kaess and F. Dellaert. Visual slam with a multi-camera rig. Technical Report

GIT-GVU-06-06, Georgia Institute of Technology, Feb 2006.

[20] Jae-Hak Kim, Hongdong Li, and R. Hartley. Motion estimation for multi-camera

systems using global optimization. In Computer Vision and Pattern Recognition,

pages 1–8, 2008.

56

[21] Jae-Hak Kim, Hongdong Li, and Richard Hartley. Motion estimation for

non-overlapping multi-camera rigs: Linear algebraic and l∞ geometric solutions.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 99(1), 2009.

[22] Jun-Sik Kim, Myung Hwangbo, and T. Kanade. Motion estimation using multiple

non-overlapping cameras for small unmanned aerial vehicles. pages 3076–3081, 2008.

[23] Reinhard Koch, Kevin Koeser, Birger Streckel, and Jan-Friso Evers-Senne.

Markerless image-based 3d tracking for real-time augmented reality applications.

Montreux, Switzerland, 2005.

[24] M. S. Lee, D. Weinshall, E. Cohen Solal, A. Colmenarez, and D. M. Lyons. A

computer vision system for on-screen item selection by finger pointing. In Computer

Vision and Pattern Recognition, pages I:1026–1033, 2001.

[25] Hongdong Li and Richard Hartley. Five-point motion estimation made easy. Pattern

Recognition, International Conference on, 1:630–633, 2006.

[26] Hongdong Li, Richard Hartley, and Jae-Hak Kim. A linear approach to motion

estimation using generalized camera models. In Computer Vision and Pattern

Recognition, pages 1–8, 2008.

[27] John Lim and Nick Barnes. Estimation of the epipole using optical flow at antipodal

points. IEEE International Conference on Computer Vision, 0:1–6, 2007.

[28] John Lim and Nick Barnes. Directions of egomotion from antipodal points. In

Computer Vision and Pattern Recognition, pages 1–8, 2008.

57

[29] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two

projections. Nature, 293(5828):133–135, 1981.

[30] H. C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image.

In Proc. Royal Society London. B208, pages 385–397, 1980.

[31] David G. Lowe. Object recognition from local scale-invariant features. In In

Proceedings of the International Conference on Computer Vision, page 1150,

Washington, DC, USA, 1999. IEEE Computer Society.

[32] Thomas Moeslund, Moritz Strring, Moritz St Orring, and Erik Granum. Vision-based

user interface for interacting with a virtual environment, 2000.

[33] David Nistér. An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–777, 2004.

[34] J. Nocedal and S.J. Wright. Numerical Optimization. 1999.

[35] R. Pless. Camera cluster in motion: Motion estimation for generalized camera

designs. In In IEEE Robotics and Automation Magazine, volume 11, pages 39–44,

2004.

[36] A. Rhalibi, M. Merabti, P. Fergus, and Yuanyuan Shen. Perceptual user interface as

games controller. In IEEE Consumer Communications and Networking Conference,

volume 10, pages 1059–1064, 2008.

[37] Jakub Segen and Senthil Kumar. Gesture vr: Vision-based 3d hand interace for

spatial interaction. In In Proceedings of the Sixth ACM International Conference on

Multimedia, pages 455–464, New York, NY, USA, 1998. ACM.

58

[38] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on

Computer Vision and Pattern Recognition, June 1994.

[39] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring

photo collections in 3d. ACM Transactions on Graphics (TOG), 2006.

[40] Aravind Sundaresan and Rama Chellappa. Markerless motion capture using multiple

cameras. Computer Vision for Interactive and Intelligent Environment, 0:15–26, 2005.

[41] Sarah Tariq and Frank Dellaert. A multi-camera 6-dof pose tracker. In In Proceedings

of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality,

pages 296–297, Washington, DC, USA, 2004. IEEE Computer Society.

[42] I. Thomas and E. P. Simoncelli. Linear structure from motion. Institute for Research

in Cognitive Science Technical Report IRCS-94-26, University of Pennsylvania,

December 1994.

[43] An-Ting Tsao, Chiou-Shann Fuh, Yi-Ping Hung, and Yong-Sheng Chen. Ego-motion

estimation using optical flow fields observed from multiple cameras. In Computer

Vision and Pattern Recognition, page 457, Washington, DC, USA, 1997. IEEE

Computer Society.

[44] Matthew Turk and Matthew Turk. Moving from guis to puis. In In Proceedings of

Fourth Symposium on Intelligent Information, 1998.

[45] Greg Welch, Gary Bishop, Leandra Vicci, Stephen Brumback, Kurtis Keller, and

D’nardo Colucci. High-performance wide-area optical tracking: The hiball tracking

system. Presence: Teleoperators and Virtual Environments, 10(1):1–21, 2001.

59

[46] Greg Welch and Eric Foxlin. Motion tracking: No silver bullet, but a respectable

arsenal. IEEE Computer Graphics and Applications, 22(6):24–38, 2002.

[47] Andrew D. Wilson and Edward Cutrell. Flowmouse: A computer vision-based

pointing and gesture input device. In In Interact, 2005.

[48] Andrew Wu, Mubarak Shah, and Niels da Vitoria Lobo. A virtual 3d blackboard: 3d

finger tracking using a single camera. In In Fourth IEEE International Conference

On Automatic Face And Gesture Recognition, pages 536–543, 2000.

60

	Markerless Tracking Using Polar Correlation Of Camera Optical Flow
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	SECTION 1.1 Motivation
	SECTION 1.2 Thesis Overview

	CHAPTER 2: RELATED WORK
	CHAPTER 3: TRACKING ALGORITHM
	SECTION 3.1 Direction of Translation
	SECTION 3.1.1 Instantaneous Model of Optical Flow
	SECTION 3.1.2 Instantaneous Model of Optical Flow for Shifted Cameras
	SECTION 3.1.3 Polar Correlation

	SECTION 3.2 Angular Velocity
	SECTION 3.3 Tracking 3D Position

	CHAPTER 4: RECOVERING MOTION PARAMETERS
	SECTION 4.1 Pattern Matching Technique
	SECTION 4.1.1 Displacement Model of Optical Flow for Shifted Cameras
	SECTION 4.1.2 Algorithm

	SECTION 4.2 Antipodal Regions Technique
	SECTION 4.2.1 Antipodal Theory
	SECTION 4.2.2 Algorithm

	SECTION 4.3 Polar Correlation Technique
	SECTION 4.3.1 Algorithm

	CHAPTER 5: IMPLEMENTATION
	SECTION 5.1 Device Design
	SECTION 5.2 Calculating Optical Flow
	SECTION 5.3 Quadrantization
	SECTION 5.4 Procedure

	CHAPTER 6: EXPERIMENTS AND RESULTS
	SECTION 6.1 Motion Reconstruction
	SECTION 6.1.1 Experiments
	SECTION 6.1.2 Discussion

	SECTION 6.2 Gesture Recognition
	SECTION 6.2.1 Feature Extraction
	SECTION 6.2.2 Gesture Classifier
	SECTION 6.2.3 Experiments
	SECTION 6.2.4 Results and Discussion

	CHAPTER 7: FUTURE WORK AND CONCLUSION
	LIST OF REFERENCES

