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ABSTRACT

This paper presents analytic expressions for the wave structure function, frequency spread

of the temporal frequency spectrum, and the temporal frequency spectrum of optical signals

propagating through a random medium, specifically the Earth’s atmosphere. The results are

believed to be valid for all optical turbulence conditions. These expressions are developed

using the Rytov approximation method. Generally, the validity of statistical quantities obtained

via this method is restricted to conditions of weak optical turbulence. However, in this work,

by using a modification of the effective atmospheric spectral model presented by Andrews et

al. for scintillation index, wave structure function expressions have been derived that are valid

in all turbulence conditions as evidenced by comparison to experimental data. Analytic wave

structure function results are developed for plane, spherical, and Gaussian-beam waves for one-way

propagation. For the special case of a spherical wave, comparisons are made with experimental

data. The double pass case is also considered. Analytic expressions for the wave structure

function are given that incorporate reflection from a smooth target for an incident spherical wave.

Additionally, analytic expressions for the frequency spread of the temporal frequency spectrum and

the temporal frequency spectrum itself, after one-way propagation for horizontal and slant paths,

are derived for plane and spherical waves. These results are also based on the Rytov perturbation

method . Expressions that are believed to be valid in all turbulence conditions are also developed

by use of the effective atmospheric spectral model used in the wave structure function development.

Finally, double pass frequency spread expressions are also presented. As in the case of the wave

structure function, reflection from a smooth target with an incident spherical wave is considered.
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1. INTRODUCTION

The invention of the LASER, or Light Amplification by Stimulated Emission of Radiation,

in 1960 generated significant theoretical and experimental interest. Scientists immediately

recognized some of the potential applications of laser systems and the development of new

applications continues even today, some forty years later. These applications include fiber optic

communication systems, medical systems, data storage and retrieval as in computer compact discs

(CD) and digital video discs (DVD), just to name a few. Another area of particular interest is

the study of free space optics (FSO). In an FSO system the optical wave is propagated through

whatever medium is present, i.e. air, water, or space, unlike, say, a fiber optic communication

system where the optical wave is propagated within a fiber optic cable. Potential applications of

free space optics include point-to-point communication systems, laser radar (lidar), remote sensing,

and laser weaponry.

Free space optical systems offer many advantages over their conventional microwave radio

counterparts. For example, potential data rates are significantly higher in the case of optical

communication systems and lidar systems are lighter and require less power, while at the same

time providing a more secure channel. There are, however, significant challenges that hinder the

development of FSO systems. The most severe problems occur when propagation occurs in the

Earth’s atmosphere, water, or any medium that is not free space. When propagation occurs in

any of these environments, the optical wave is subject to many deleterious effects. These effects

are caused by the fact that the propagation medium has an index of refraction that is random

in space and time due mainly to random temperature and pressure distributions in the medium.
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This random index of refraction results in random amplitude and phase fluctuations in the optical

signal. These random fluctuations in phase and amplitude result in effects such as beam wander,

irradiance fluctuations, beam spreading, angle of arrival fluctuations, frequency fluctuations, and

loss of coherence.

In the period shortly after the invention of the laser there were numerous scientific

investigations of the effects of atmospheric laser propagation and possible application

development, particularly for free space optical communication systems. However, owing largely

to the success of fiber optic communication systems and the many challenges associated with free

space optical propagation, interest in such systems waned. Recently, though, there has been a

resurgence of interest in free space optical systems. This interest is a result of practical necessity

in the case of lidar, remote sensing, and laser weaponry and financial considerations in the case of

optical communication systems. The high installation price of fiber optical cable, costing as much

as 100 to 500 thousand dollars per mile in certain urban settings, has restricted direct access to the

nation’s fiber optic backbone. Indeed, it has been estimated that ninety percent of businesses with

at least one hundred employees are located at least one mile from the nearest direct access to the

fiber optic backbone.1 As a result of this factor, it is also estimated that only two to five percent

of the fiber optic backbone is currently utilized.1 Free space optics is viewed by many as the most

viable method to bridge this gap.

Because the optical field propagating in a random medium is subject to random amplitude

and phase fluctuations, it cannot be studied deterministically. Only statistical averages can be

considered. The equation describing the the optical field of a laser beam propagating in a random
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medium is a stochastic differential equation. Many methods have been espoused to solve the

governing equations and develop statistical quantities. Most approaches do not allow analytic

solutions because of their inherent mathematical intractability. A perturbation method known as

the Rytov approximation does allow considerable progress in the development of analytic solutions

due to its relative mathematical ease. However, the validity of statistical quantities obtained via this

method is generally restricted to conditions of weak irradiance fluctuations. There has also been

significant progress in the development of analytic asymptotic results in the asymptotic regime of

strong irradiance fluctuations. There are few analytic results that are valid in all conditions of

optical turbulence, particularly in the moderate regime, between the weak and strong cases. This

is a significant restriction in that most "real-world" systems are likely to operate in this moderate

regime.

The most common statistic studied in atmospheric optics is the scintillation index, or

normalized irradiance variance. Recently, significant progress has been made in modelling the

scintillation index with analytic results in all irradiance fluctuation regimes by using the Rytov

approximation method and applying an effective atmospheric spectrum. This method will be

described in detail in the following chapters. In the work presented here, a modification of

this effective atmospheric spectrum is used to derive analytic expressions for the wave structure

function, the temporal frequency spectrum, and the frequency spread of the temporal frequency

spectrum of an optical wave propagating in the Earth’s atmosphere. It is believed that these

expressions are valid under all optical turbulence conditions. Analytic wave structure function

results are developed for plane, spherical, and Gaussian-beam waves for one-way propagation
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along horizontal paths and double pass propagation along horizontal paths for reflection from

a smooth target assuming a transmitted spherical wave. Analytic expressions for the temporal

frequency spectrum and the frequency spread of the temporal frequency spectrum are developed for

plane and spherical waves for one-way propagation along horizontal and slant paths. Expressions

for the frequency spread of the frequency spectrum for double pass propagation along horizontal

paths for reflection from a smooth target assuming a transmitted spherical wave are also presented.
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2. RANDOM FIELDS

2.1 Introduction

An optical wave propagating through the Earth’s atmosphere is subject to random

fluctuations in amplitude and phase due to random fluctuations in the index of refraction along

the propagation path. Thus, the optical field cannot be described deterministically. However, it is

possible to study the optical field in statistical terms. Before we can proceed, we will need several

concepts from the study of random fields, which are closely related to random processes, also

known as stochastic processes. Note that the work in this chapter closely follows the presentation

given by Andrews and Phillips in [2].

A random process is a set of functions, known as an ensemble, that are time dependent, each

of which is associated with a probability description.2 We can represent any given member of this

set of functions by x (t), which is known as a realization of the random process. Then, for any

fixed value of t, say t1, x (t1) can be interpreted as a random variable. In other words, the value of

x (t) is not deterministic at the time t1, it is random even at this specific time value. So, x (t) is a

random function of time, and the random process is made up of a set of these random functions.

When the random process is a function of time, t, and of a vector spatial variable, R =

(x, y, z), then it is known as a random field and can be denoted as x (R, t). In general, it is

necessary to know the joint probability distributions of all orders of the random field to describe

it completely. However, it is usually impossible to derive the complete family of probability

distributions, and therefore one usually works with only the lower order field moments. In

our applications, we shall assume that the atmosphere does not change appreciably in the time
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it takes the optical wave to propagate through the medium and therefore we shall suppress the time

dependency. That is, we shall consider the random field to be of the form x (R).

2.2 Spatial covariance function

Assuming we have suppressed the time dependency of the random field, we shall define the

mean value, m (R), of the random field, x (R), by2

x (R) = m (R) , (1)

where the brackets denote an ensemble average, i.e. mean value. We can now define the spatial

covariance function, Bx (R1,R2), of the random field, x (R), as2

Bx (R1,R2) = [x (R1)−m (R1)] x∗ (R2)−m∗ (R2) , (2)

where the x∗ denotes the complex conjugate of x . The question still remains as to how we shall

determine these ensemble averages and will be addressed in the following section.

Notice that the mean value of the random field, m (R), is dependent on the spatial position,

R. That is, we see that, analogous to a realization of a random process, the value of the field at any

specific position can be thought of as a random variable. Furthermore, any two positions in the

field, say R1 and R2, may have different mean values, i.e. they are random variables with different

probability descriptions. If, however, the mean value of the field is independent of the spatial

position, R, then the field is said to be statistically homogeneous and its mean value is denoted
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simply by2 m = x (R) . For a statistically homogeneous field, the spatial covariance function

reduces to2

Bx (R) = x (R1) x∗ (R1 +R) − |m|2 , (3)

where R = R2 − R1. We note that homogeneity is the spatial equivalent of a random process

which is stationary in time.2

Finally, if, in addition to being statistically homogeneous, the random field is dependent only

on the scalar distance, R = |R2 −R1|, of the specific positions, R1 and R2, and not the positions

themselves, the field is said to be statistically isotropic. In this case, the spatial covariance function

can be written as a function of the scalar distance R, that is Bx (R) .

2.3 One-dimensional spatial power spectrum

In order to make use of the spatial covariance function definitions given in the previous

section, it is necessary to mathematically define the ensemble average of the random field. We

begin by considering a statistically homogeneous and isotropic random field. Such a field can be

represented by a Riemann-Stieltjes integral of the form2

x (R) =
∞

−∞
eiκRdν (κ) , (4)

where dν (κ) is a random complex amplitude. Furthermore, we shall assume that the mean value

of the random field is zero, i.e. m = 0. We can now use (4) to define the spatial covariance
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function as2

Bx (R) =
∞

−∞
eiκRVx (κ) dκ, (5)

where κ denotes the spatial frequency and Vx (κ) is the one-dimensional spectrum of the random

field x (R). By the inverse Fourier transform, it follows that the one-dimensional spectrum, Vx (κ)

is given by2

Vx (κ) = 1
2π

∞

−∞
e−iκRBx (R) dR. (6)

2.4 Three-dimensional spatial power spectrum

Although the one-dimensional spatial power spectrum is useful in making experimental

measurements, we shall need the three-dimensional spatial power spectrum for our theoretical

development. Here, we assume that the field is statistically homogeneous with a zero mean.

In this case, the field is dependent on the vector R = R2 − R1, and can be represented by the

Riemann-Stieltjes integral given by2

x (R) =
∞

−∞
eiK·Rdν (K) , (7)

where K = κx , κ y, κ z is the vector wave number and dν (K) denotes the random amplitude of

the field, x (R). Note, that so far we have not assumed that the field is statistically isotropic.

Applying the definition given by (2) and equation (7), the spatial covariance function can now be
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written as2

Bx (R) = x (R1) x∗ (R2)

=
∞

−∞
exp i K · R1 −K ·R2 dν (K) dν∗ K . (8)

In order to satisfy the statistical homogeneity conditions, we must have

dν (K) dν K = δ K−K x (K) d3κd3κ , (9)

where δ(x) is the Dirac delta function and x (K) is the three-dimensional spatial power spectrum

of the random field, x (R). Now (8) simplifies to

Bx (R) =
∞

−∞
eiK·R x (K) d3κ. (10)

In a manner analogous to the one-dimensional spatial power spectrum, Vx (κ), the

three-dimensional spatial power spectrum, x (K), can be obtained from the inverse Fourier

transform relation2

x (K) = 1
2π

3 ∞

−∞
e−iK·RBx (R) d3R. (11)
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If we now also assume the random field is statistically homogeneous and isotropic, the

Fourier transform pair, (10) and (11), reduce to2

x (κ) = 1
2π2κ

∞

0
Bx (R) sin (κR) RdR, (12)

Bx (R) = 4π
R

∞

0
x (κ) sin (κR) κdκ, (13)

where κ = |K| is the magnitude of the vector wave number. Using the relations given by (6) and

(13), the three-dimensional spatial power spectrum can be related to the one-dimensional spatial

power spectrum by2

x (κ) = − 1
2πκ

dVx (κ)
dκ

. (14)

2.5 Structure function

One of the main implications of assuming a statistically homogeneous field is that the mean

value of the field is constant over all space. However, in many applications of interest the random

field does not have a constant mean over large spatial distances. In particular, velocity fields in a

turbulent medium do not have a constant mean over large spatial separations. Thus, one cannot

generally assume that the field is strictly homogeneous. However, the velocity difference at two

points in the field usually behaves like a statistically homogeneous field.

Random fields that can be expressed as the sum of a varying mean and a statistically

homogeneous fluctuation are called locally homogeneous. Thus a locally homogeneous random
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field, x (R), can be written in the form2

x (R) = m (R)+ x1 (R) , (15)

where m (R) represents the varying mean and x1 (R) represents the statistically homogeneous

fluctuation with mean value x1 (R) = 0 for all vector positions, R.

It is customary to characterize a locally homogeneous random field by its structure function

rather than its covariance function. The structure function for a locally homogeneous random field,

x (R), of the form (15) is defined by2

Dx (R1,R2) = Dx (R) = [x (R1)− x (R1 +R)]2

≈ [x1 (R1)− x1 (R1 +R)]2 , (16)

and the power spectrum is related to this structure function by

Dx (R) = 2
∞

−∞
n (K) [1− cos (K · R)] d3κ. (17)

If the random field is both locally homogeneous and isotropic, the structure function is a

function of the scalar distance, R = |R2 −R1|, only and can be related to the power spectrum

through the relation2

Dx (R) = 8π
∞

0
κ2

x (κ) 1− sin κR
κR

dκ. (18)
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Finally, the spatial power spectrum can be determined from the inverse Fourier relation in the

locally homogeneous and isotropic case by the relation2

x (κ) = 1
4π2κ2

∞

0

sin κR
κR

d
dR

R2 d
dR
Dx (R) dR. (19)
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3. ATMOSPHERIC TURBULENCE

3.1 Introduction

Most early investigations of turbulence centered around the concepts of velocity

fluctuations in a viscous fluid. These concepts are directly related to atmospheric studies. In

particular, the atmospheric longitudinal wind velocity, which fluctuates randomly about its mean

value, can be studied as a random field using the concepts from the previous chapter. Treating

the atmosphere as a viscous fluid, it can be considered to have laminar and turbulent flow. In the

case of laminar flow, the changes in the velocity field are uniform. However, when the flow is in

a turbulent state the velocity field develops random subfields known as turbulent eddies. In this

case, changes in the velocity field are no longer uniform and do not follow a predictable pattern.

The concept of turbulent eddies can be used to qualitatively describe the turbulent atmosphere.

Essentially, the atmosphere is thought of as being made up of turbulent eddies, each with their own

velocity characteristics. These eddies exist in a continuum of spatial dimensions. In essence, the

larger eddies break-up into continuously smaller eddies and energy is transferred between these

eddies in the form of velocity. There exists a largest eddy size, L0, known as the outer scale

of turbulence, and a smallest eddy size, l0, known as the inner scale of turbulence. Scale sizes

between the inner and outer scale form what is known as the inertial subrange. Scale sizes smaller

than the inner scale belong to the dissipation range where energy is dissipated in the form of heat.

The Reynolds number, Re = Vl/ν, where V is the characteristic velocity, l is the dimension

of the flow, and ν is the kinematic viscosity, can be used to characterize the transition from

laminar to turbulent flow. For Reynolds numbers greater than what is commonly called the critical
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Reynolds number, the flow is considered turbulent. Typical Reynolds numbers for ground level

wind velocity are on the order Re ≈ 105, for which the flow is considered highly turbulent.2

In order to apply these concepts in a meaningful way to the study of optical wave

propagation, it is necessary to relate the atmospheric wind velocity fluctuations to a physical

phenomenon that affects a propagating electromagnetic wave. Random fluctuations in wind

velocity in the presence of atmospheric moisture and temperature gradients manifest themselves as

random index of refraction fluctuations. That is, the atmospheric index of refraction can be treated

as a random field where the index of refraction at any spatial point in the atmosphere at any given

time can be considered a random variable. The main factor causing the randomness in the index of

refraction is small temperature fluctuations in the atmosphere caused by the randomly fluctuating

wind velocity. Although other factors, such as small pressure and humidity changes, contribute to

the refractive index fluctuations they are dominated by the impact of the temperature fluctuations

and are generally ignored in most atmospheric optics studies.

Statistical descriptions of the atmospheric wind velocity field and the relation to the index

of refraction fluctuations have been well formulated. Noting that the index of refraction has a

direct physical effect on a propagating electromagnetic signal, it is now possible to describe the

effects of atmospheric turbulence on a propagating electromagnetic wave in statistical terms. This

chapter provides a brief description of the refractive index fluctuations and the associated index of

refraction spectral models. A more comprehensive treatment, including the development of the

relations between velocity, temperature and refractive index fluctuations is given by Andrews and

Phillips.2
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3.2 Index of refraction fluctuations

It has already been stated that the atmospheric index of refraction can be treated as a random

field. Specifically, the index of refraction is a random function of both space and time. However, in

optical studies the time dependency of the index of refraction is usually suppressed. Furthermore,

we shall assume that the index of refraction field is locally homogeneous and can be expressed in

the form of equation (15). Thus, we can write the index of refraction, n(R), as a random function

of space in the form2

n (R) = n0 + n1 (R) , (20)

where n0 is the mean value and n1 (R) is the statistically homogeneous fluctuation, whose mean

value is taken to be zero, i.e. n1 (R) = 0. The mean value, n0, is typically taken to be one, i.e.

n0 = n (R) ≈ 1, so that the index of refraction, (20), is now

n (R) = 1+ n1 (R) . (21)

Though not presented here, it can be shown that the index of refraction function, (21), can

be directly related to the random atmospheric temperature and pressure functions.2 In turn, this

relation can be used to define the index of refraction structure function. Assuming the index of

refraction field is statistically homogeneous and isotropic, the refractive index structure function

is2

Dn (R) =


C2
n R2/3, l0 R L0

C2
nl
−4/3
0 R2, l0 R L0

, (22)
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where l0 is the inner scale of turbulence and C2
n is the index of refraction structure parameter, which

is essentially a measure of the strength of the refractive index fluctuations. Values of C2
n have been

measured experimentally and typically range between 10−17 m−2/3 and 10−13 m−2/3. The value

of C2
n varies strongly with time of day, season, and environment. However, it can be considered

constant for short time periods for propagation paths that have a constant height above the ground

layer, so called horizontal paths. When the propagation path is a slant path, that is when the height

above the ground layer is changing along the propagation path, the value of C2
n can no longer be

considered constant as it has an altitude dependency. Similar statements are true of the inner scale

of turbulence, l0. For horizontal paths the inner scale is usually taken to be between one and ten

millimeters.

3.3 Refractive index spatial power spectrum

In order to facilitate the work in the remaining chapters it is necessary to present the refractive

index spatial power spectrum. Recall from chapter 2, that for a statistically homogeneous and

isotropic field the spatial power spectrum is a scalar function and can be related to the covariance

function by the Fourier transform as given in equation (12). In this case, the refractive index

spatial power spectrum, n(κ), is given by2

n (κ) = 1
2π2κ

∞

0
Bn (R) sin (κR) RdR, (23)

where κ =|K| is the spatial wave number of the a given turbulent eddy size, i.e. κ = 1/l, where l is

the eddy size, and Bn (R) is the corresponding refractive index covariance function. Kolmogorov
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presented a model for the refractive index spectral model given by2

n (κ) = 0.033C2
nκ
−11/3. (24)

Equation (24) is commonly referred to as the Kolmogorov spectrum. In the development of

this spectrum, Kolmogorov argued that the functional form of the refractive index spatial power

spectrum is the same as that for the temperature spatial power spectrum and that temperature

fluctuations observe the same spectral laws as velocity fluctuations. The validity of these

arguments has been generally accepted and, with some modification, the Kolmogorov spectral

model serves as the foundation of much of the work in the field of atmospheric optics. Note that

the Kolmogorov spectrum assumes and infinite outer scale, L0, and a zero inner scale, l0, which is

not always physically appropriate or mathematically convenient. Thus, it is necessary to modify

the Kolmogorov spectral model when considering the spectrum in the dissipation range, i.e. when

κ > 1/l0. To account for these issues, Tatarskii suggested the spectral model given by2

n (κ) = 0.033C2
nκ
−11/3 exp − κ

2

κ2
m
, (25)

where κm = 5.92/l0. This spectral model, known as the Tatarskii spectral model, essentially

truncates the spectrum at the finite inner scale of turbulence, l0. However this spectral model still

has a singularity at κ = 0, that is as in the limiting case of an infinite outer scale. A finite outer

scale of turbulence can be incorporated to remove the singularity as is done in the von Kármán
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spectrum given by

n (κ) = 0.033C2
nκ
−11/3

exp − κ2

κ2
m

κ2 + κ2
0

11/6 , (26)

where κ0 = 2π/L0. For horizontal path propagation, the outer scale is often assumed to be equal

to one-half the height above the ground level. Although the spectral models, (24)-(26) are useful

in theoretical studies they do not completely represent the actual atmospheric index of refraction

spectrum. In particular, it has been shown2 that there exists a "bump" in the spectrum at high wave

numbers, which none of these models predicts. A numerical model that does predict this bump

has been developed by Hill. Andrews presented an analytic approximation to this spectrum given

by

n (κ) = 0.033C2
n 1+ 1.802

κ

κl
− 0.254

κ

κl

7/6 exp −κ2

κ2
l

κ2 + κ2
0

11/6 , (27)

where κl = 3.3/ l0. The spectral model, (27), shall be referred to as theHill spectrum in this work.

Notice that the spectral models (25)-(27) reduce to the Kolmogorov model, (24), as the inner scale

approaches zero, l0 −→ 0, and the outer scale approaches infinity, L0 →∞.
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4. RYTOV APPROXIMATIONMETHOD

4.1 Introduction

The notion of a random field has been discussed to some extent. The mathematical concepts

of a random field have been used to characterize the random atmosphere, specifically the random

atmospheric refractive index. These concepts can also be directly applied to describe an optical

wave propagating in the atmosphere. In general, optical waves, which are subsets of a broader

class of waves known as electromagnetic waves, are described mathematically through the notion

of an electromagnetic field. In the specific case of electromagnetic waves occupying visible,

or optical, wavelengths, this field is commonly known as an optical field. In the absence of

turbulence, that is in free space, the optical field can be described deterministically. However,

in the presence of optical turbulence in the form of a randomly fluctuating refractive index, the

optical field cannot be described deterministically. Instead, the optical field must be treated as a

random field and is most often characterized in statistical terms. The random optical field, denoted

U (R, t), is a random function of space and time. As was the case for the random atmospheric

index of refraction function, the time dependency of the optical field is generally suppressed and

only spatial fluctuations are considered, thus, the random optical field depends only on position

and is denoted by U(R).

If one assumes that the propagating electromagnetic wave is monochromatic and is

propagating in a medium with a random refractive index, it can be shown that the equation

governing the vector amplitude of the electromagnetic field, E (R), is given by the vector stochastic
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partial differential equation2

∇2E+ k2n2 (R)E+ 2∇ E·∇ log n (R) = 0, (28)

where R = (x, y, z) represents a point in space, k is the optical wave number related to the

wavelength, λ, by the relation k = 2π/λ, n (R) is the random position dependent index of

refraction, and ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian operator. Depending on the

application of interest, certain assumptions can be made to simplify (28). For electromagnetic

waves in the optical band, the wavelength is significantly smaller than the inner scale of turbulence,

λ l0. This results in scattering that is contained in a small cone in the forward direction of

propagation, and as a consequence the last term of (28), which relates to polarization of the wave,

is generally neglected.2 Applying this simplification, one can decompose the resulting vector

equation into three scalar equations each describing one component of the vector field. This leads

to a scalar stochastic partial differential equation of the form

∇2U + k2n2 (R)U = 0, (29)

where U (R) denotes one of the scalar components of the optical field that is transverse to the

propagation direction.

Although the wave equation given in (29) is a significant simplification of that given in (28),

it still has not been solved exactly in closed form. Several solution methods to (29) have been

proposed, including the Rytov approximation method, the extended Huygens-Fresnel principle,
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and the parabolic equation method. Each of these methods has its respective pros and cons and

none has proved to be completely satisfactory. The parabolic equation method is theoretically

applicable under all conditions of optical turbulence for all field moments. The drawback to the

parabolic equation method is that, although it does sometimes allow for analytic solutions, it is

often restricted to numerical analysis because of its inherent mathematical difficulty. Although

numerical results are very useful, analytic results are valuable because they more readily reveal the

dependency of a statistical quantity on given system parameters. The extended Huygens-Fresnel

principle has been shown to agree with the parabolic equation method in all conditions of optical

turbulence for first and second order field moments. However, it has not been shown to be agree

for fourth order field moments. As fourth order field moments are required to describe many

statistical quantities, such as irradiance fluctuations, this is an important restriction. The main

advantage of the Rytov approximation method, as compared to the parabolic equation method, is

that it allows for the development of analytic expressions for many statistical quantities involving

first, second, and fourth order field moments. The downside to the Rytov approximation method is

that, generally, when compared to experimental data the validity of statistical expressions derived

from this method is restricted to weak optical turbulence conditions. This is a significant restriction

in that most real world free space optical systems of practical value are likely to operate in the

moderate to strong turbulence regimes. In the remaining chapters, however, we shall detail a

modification of the Rytov method that is believed to extend the validity of these statistical quantities

into all optical turbulence conditions. The remainder of this chapter provides a background on
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the Rytov method that is intentionally brief as this method has been well documented by several

authors.2,4,5

4.2 Quantifying optical turbulence strength

As stated in the preceding section, the validity of the Rytov method is generally restricted to

the weak optical turbulence regime. It remains to mathematically quantify the notion of turbulence

strength as it relates to atmospheric optics. This is generally done using the Rytov variance,

denoted σ 2
1. The Rytov variance is a measure of the scintillation index, which is the irradiance

variance normalized by the mean irradiance. The Rytov variance is the scintillation index for a

plane wave as determined using the Rytov approximation method where the Kolmogorov spectrum,

(24), is applied. The Rytov variance is given by

σ 2
1 = 1.23C2

nk
7/6L11/6, (30)

where C2
n is the atmospheric index of refraction structure parameter, L is the propagation path

length, and k = 2π
λ is the optical wave number. Optical turbulence is considered weak when

σ 2
1 1, strong when σ 2

1 1, and moderate otherwise. The limiting case, σ 2
1 −→ ∞, defines

the so called saturation regime.

The classification of optical turbulence using only the Rytov variance implies that the

scintillation index is much less than unity through out the wave profile. This is sufficient in the case

of infinite plane and spherical waves where edge effects are not usually considered. However, in
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the case of a finite Gaussian-beam wave, edge effects are significant and optical turbulence cannot

be classified solely based on the Rytov variance. Thus, for the Gaussian-beam wave case, to ensure

that the scintillation index is much less than unity throughout the beam profile, the following two

conditions must be satisfied2

σ 2
1 1 and σ 2

1
2L
kW 2 1, (31)

where W is the free space, i.e. in the absence of turbulence, beam radius after propagating a

distance L. The beam radius is defined as the point at which the field amplitude is e−1 of that

observed on the optical axis, i.e. the beam center. If either of the conditions given by (31) is not

satisfied, the optical turbulence is considered to be in the moderate to strong regime.

4.3 Rytov approximation

The Rytov approximation is a perturbation solution to the wave equation (29) where the

optical field is written in the form2

U (r, L) = U0 (r, L) exp [ (r, L)] , (32)

where U0(R) is the optical field in free space and is a complex phase perturbation due to

turbulence that can be written as

(r, L) = 1 (r, L)+ 2 (r, L)+ . . . (33)
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The terms 1 and 2 are known as the first and second order complex phase perturbations

respectively. Although the Rytov method can be applied directly to (29), it is easier to relate

the phase perturbations to the optical field perturbations obtained in the Born approximation.

The Born approximation is also a perturbation solution to the wave equation, (29), but instead

of assuming a multiplicative perturbation, as in the Rytov method, an additive perturbation is used.

That is, in the Born approximation the optical field is written as a sum of terms given by2

U (R) = U0 (R)+U1 (R)+U2 (R)+ . . . , (34)

where U0 is the optical field in free space and U1 and U2 represent field perturbations due to the

presence of optical turbulence. It is also assumed that the square of the index of refraction, n2 (R),

can be written as

n2 (R) ≈ 1+ 2n1 (R) , (35)

where the relation given by (21) has been used and it has been assumed that n2
1 (R) 1.

Substitution of equations (34) and (35) into the wave equation, (29), yields the system of

differential equations2

∇2U0 + k2U0 = 0 (36)

∇2U1 + k2U1 = −2k2n1 (R)U0 (R) (37)

∇2U2 + k2U2 = −2k2n1 (R)U1 (R) . (38)
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This represents a system of nonhomogeneous equations with constant coefficients, where the

random coefficients have been relegated to the forcing terms, and can be solved by the method

of Green’s function.2 Solving the system up to second order yields the first and second order

perturbations2

U1 (r, L) = k2

2π

L

0
dz

∞

−∞
d2s exp ik (L − z)+ ik |s− r|

2

2 (L − z) U0 (s, z)
n1 (s, z)
L − z , (39)

U2 (r, L) = k2

2π

L

0
dz

∞

−∞
d2s exp ik (L − z)+ ik |s− r|

2

2 (L − z) U1 (s, z)
n1 (s, z)
L − z . (40)

In order to develop the expressions for the phase perturbations of the Rytov method using

the Born approximation field perturbations, it is necessary to introduce the normalized Born

approximations defined by

φm (r, L) = Um (r, L)U0 (r, L)
, m = 1, 2, 3, . . . (41)

where m denotes the order of the perturbation. The first and second order Rytov phase

perturbations can now be related to the first and second order normalized Born approximations

through the relations2

1 (r, L) = ln 1+ φ1 (r, L) ≈ φ1 (r, L) (42)

2 (r, L) ≈ φ2 (r, L)− 1
2
φ2

1 (r, L) , (43)
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where it is assumed that the magnitude of the phase perturbations is small, i.e. φ1 (r, L) 1 and

φ2 (r, L) 1.

4.4 Statistical moments

The remaining chapters will focus on certain statistical descriptions of an optical wave

propagating in the Earth’s atmosphere. To aid in the derivation of the statistical quantities of

interest, it is useful to define the following three second-order statistical moments, En(r1,r2), of

the complex phase perturbations2

E1 (r, r) ≡ 2 (r, L) + 1
2

2
1 (r, L)

E2 (r1, r2) ≡ 1 (r1, L) ∗
1 (r2, L) , (44)

E3 (r1, r2) ≡ 1 (r1, L) 1 (r2, L) ,

where the asterisk * denotes the complex conjugate. Integral expressions for these statistical

moments can be given using equations (39)-(43). However, in order to calculate values for these

statistical moments it is necessary to develop spectral representations of the the complex phase

perturbations, 1 and 2. This can be done by expressing the index of refraction fluctuation in

the form of a Riemann-Stieltjes integral2

n1 (s, z) =
∞

−∞
exp (iK · s) dν (K, z) , (45)
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where dν(K,z) is the random amplitude of the refractive index fluctuations. Substitution of this

expression into the integral definitions of the normalized Born approximations yields integral

expressions for the spectral representations of the Rytov phase perturbations and hence the

second-order statistical moments, (44). Usable integral definitions of the second-order statistical

moments of the phase perturbations can now be derived using further assumptions about the form

of the ensemble average of the random amplitude of the refractive index fluctuations, dν (K, z) ,

the relation of the two dimensional spatial power spectrum and the three dimensional spatial

power spectrum, assuming the atmospheric refractive index field is statistically homogeneous and

isotropic, and applying the method of cumulants These steps are well documented by Andrews

and Phillips2 and are not repeated here. It suffices to state that the resulting statistical moments

are given by2

E1 (r, r) = E1 (0, 0) = 2 (r, L) + 1
2

2
1 (r, L)

= −2π2k2
L

0

∞

0
κ n (κ, z) dκdz, (46)

E2 (r1, r2) = 1 (r1, L) ∗
1 (r2, L)

= 4π2k2
L

0

∞

0
κ n (κ, z) J0 κ γ r1 − γ ∗r2

× exp − iκ
2

2k
γ − γ ∗ (L − z) dκdz, (47)
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E3 (r1, r2) ≡ 1 (r1, L) 1 (r2, L)

= −4π2k2
L

0

∞

0
κ n (κ, z) J0 (γ κ |r1 − r2|) (48)

× exp − iκ
2γ

k
(L − z) dκdz,

where i = √−1, n (κ, z) is the refractive index spectral model, r1 and r2 are any two points

in the plane transverse to the propagation direction at a distance, L, along the propagation path,

J0(x) is the zeroth order Bessel function of the first kind, and γ is the path amplitude ratio for the

path of interest. Given the path amplitude ratio and the refractive index spectral model, equations

(46)-(48) can now be used to develop analytic expressions for various statistical quantities. Note

that the magnitude bars, ||, in the Bessel functions of the second order statistical moments do

not represent the standard usage. They apply only to the vectors and their usage is detailed in

Appendix A.
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5. MODIFIED RYTOVMETHOD

5.1 Introduction

In the last chapter, it was noted that the Rytov perturbation solution to the stochastic wave

equation, (29), can often be used to develop analytic expressions for various statistical quantities

describing an optical field propagating in a turbulent medium. This is a major advantage over

the parabolic equation method, which is often restricted to numerical evaluation. However, it was

also stated that the validity of statistical quantities developed using the Rytov method is generally

restricted to weak optical turbulence conditions when compared to experimental data. Because

most free space optics applications of interest would likely operate in moderate to strong optical

turbulence, it is desirable to develop a method that readily yields analytic results but is also valid

in all optical turbulence regimes. Recently, Andrews et al.6,7,8 were able to develop analytic

expressions for scintillation index that are believed to be valid in all optical turbulence conditions.

Their expressions were derived using a modification of the Rytov method presented in the previous

chapter, which for clarity we shall now refer to as the standard Rytov method. The modified Rytov

method follows the exact same development as the standard Rytov method of the preceding chapter,

except that the atmospheric refractive index spectral model, n (κ, z) , is replaced with an effective

atmospheric refractive index spectral model. In this chapter, we present the background for the

modified Rytov method. In the remaining chapters, this method is applied, with some modification,

to develop wave structure function and temporal frequency spread expressions.
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5.2 Scintillation Index

The scintillation index is the irradiance variance normalized by the mean irradiance.

Denoting the received irradiance by I(r,L), the scintillation index, σ 2
I , can be expressed as

σ 2
I =

I 2 − I 2

I 2 . (49)

The statistical moments (46)-(48) can be used to develop an evaluatable integral definition

of (49). For a one-way horizontal propagation path, the path amplitude ratio, γ , is given by2

γ = 1− ¯ + i 1− z
L
, (50)

where and are beam parameters characterizing the optical wave at the receiver. Beam

parameters describing the optical wave at the transmitter, 0 and 0, are given by

0 = 2z
kW 2

0
, 0 = 1− z

F0
(51)

where W0 is the beam radius at the transmitter, F0 is the phase front radius of curvature at the

transmitter, z is the propagation path length, and k is the optical wave number. These parameters

can be used to define the beam parameters at the receiver as

= 0
2
0 + 2

0
, = 0

2
0 + 2

0
, ¯ = 1− . (52)

30



Note, in the special case of an infinite plane wave 0 = 1 and 0 = 0 and in the special case of a

point source, i.e. a spherical wave, 0 = 0 and 0 = 0. For a collimated Gaussian-beam wave,

the phase front radius of curvature is infinite, so that 0 = 1.

Substituting the path amplitude ratio, γ , given by (50), into the statistical moments (46)-(48),

the resulting integral definition for the scintillation index for horizontal path propagation is given

by2

σ 2
I (r, L) = 4σ 2

r (r, L)+ σ 2
I,l (L) , (53)

where r=1
2 (r1 + r2) is a center of gravity vector. The quantity σ r represents the radial, or off-axis,

component of scintillation and σ I,l represents the longitudinal, or on-axis, component. In the

Rytov approximation, σ r is defined by2

σ 2
r = 1

2
[E2 (r, r)− E2 (0, 0)]

= 2π2k2L
1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
[I0 (2 rξκ)− 1] dκdξ, (54)

where ξ is the normalized path length argument given by ξ = 1 − z
L , r = |r| is the magnitude

of the center of gravity vector, and I0(x) is the zeroth order modified Bessel function of the first

kind. Also note that the refractive index spectral model, n (κ), has been expressed independently

of the path length argument, z. This is because in the horizontal path case it is assumed that the

spectral model is independent of the position along the propagation path. When the slant path

case is considered, it will be necessary to include an altitude dependency for the refractive index
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spectrum. The longitudinal component, σ I,l , is given by2

σ 2
I,l (L) = 2 Re [E2 (0, 0)+ E3 (0, 0)]

= 8π2k2L
1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k

× 1− cos
Lκ2

k
ξ 1− ¯ ξ dκdξ. (55)

5.3 Effective atmospheric spectrum

In the limiting case of an infinite plane wave = 0 and = 1, the integral definition of the

scintillation index reduces to

σ 2
I (L) = 8π2k2L

1

0

∞

0
κ n (κ) 1− cos

Lκ2

k
ξ dκdξ, (56)

where we note that the radial component is zero, σ 2
r = 0, because I0 (0) = 1. Substituting the

Kolmogorov spectrum, (24), into (56) and evaluating yields the standard Rytov expression for the

plane wave scintillation index, also known as the Rytov variance,

σ 2
I = σ 2

1 = 1.23C2
nk

7/6L11/6. (57)

Although (57) is valid in the weak optical turbulence regime, it fails to accurately model

the scintillation index in the moderate to strong optical turbulence regimes. It is known from

asymptotic and experimental results that the scintillation index increases with increasing values of
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the Rytov variance until it reaches a maximum value greater than unity in the regime characterized

by random focusing. With increasing path length, or inhomogeneity strength, multiple scattering

weakens the focusing effect and the irradiance fluctuations slowly begin to decrease, saturating at

a level for which the scintillation index approaches unity from above. Saturation occurs because

multiple scattering causes the optical wave to become increasingly less coherent as it propagates.

However, the scintillation index expression given by the standard Rytov method, (57), increases

without bound as the turbulence strength increases, that is, as L or C2
n increases, indicating that

the Rytov method is valid only in the weak turbulence regime. Similar limitations are found in

the spherical and Gaussian-beam wave cases. Figure 1, taken from [7], presents the plane wave

scintillation index behavior as predicted by the standard Rytov method, (57), and the asymptotic

results. The solid curve approximately represents the actual behavior.
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Figure 1 Scintillation index of a plane wave as a function of turbulence strength. The solid
curve represents the actual behavior. The weak fluctuation theory is the curve obtained
from (57).
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In an effort to develop analytic expressions that accurately model the scintillation index in

all turbulence regimes, Andrews et al.6,7,8 argued that in the absence of both inner and outer scale

effects, the irradiance is mainly affected by refractive index scale sizes described by the spatial

coherence radius, ρ0, the Fresnel zone size,
√
L/k, and the scattering disk, L

kρ0
. They contend

that only two sets of scale sizes contribute significantly to the scintillation index. The first set is a

large scale component that includes only scale sizes larger than the maximum of the Fresnel zone

and the scattering disk. The second set is a small scale component that includes only scale sizes

smaller than the minimum of the Fresnel zone and the spatial coherence radius. Figure 2, taken

from [7], presents curves for the Fresnel zone, the coherence radius, and the scattering disk as a

function of increasing propagation path length, i.e. increasing turbulence strength. From figure 2,

we see that the set of conditions for the scale sizes described above results in the inclusion of all

scale sizes in the weak turbulence regime. However, as the propagation path length increases, the

three curves intersect at roughly the onset of moderate to strong turbulence conditions and the set

of conditions described above implies that the effects of intermediate scale sizes are not significant

as the strength of turbulence increases. This leads to the notion that intermediate refractive index

scale sizes, κ , effectively lose their ability to refract and diffract the optical wave as it propagates

as a result of the continuing loss of transverse spatial coherence of the propagating wave. Thus,

the failure of the standard Rytov approximation to accurately model the scintillation index in the

moderate to strong turbulence regimes results because the standard method does not account for

the decreasing effect of these intermediate scale sizes.
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Figure 2 Relative scale sizes vs. propagation distance for an infinite plane wave. The point of
intersection denotes the onset of strong fluctuations.7
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In order to address this phenomenon mathematically, Andrews et al.6,7,8 constructed an

effective atmospheric spectral model by applying a filter function to the standard atmospheric

spectral model. In effect, this filter function modifies the standard Kolmogorov spectrum by

eliminating intermediate scale sizes that do not contribute to the refractive and diffractive effects

on the optical wave. Specifically, they presented an effective atmospheric spectrum, given by7

n (κ) = 0.033C2
nκ
−11/3 f (κl0) g (κL0)Gx (κ)+ Gy (κ) , (58)

where κ is the refractive index spatial wave number and Gx(κ) and Gy(κ) represent the large and

small scale filter functions, respectively. The filter functions are given by7

Gx (κ) = exp −κ
2

κ2
x
, (59)

Gy (κ) = κ11/3

κ2 + κ2
y

11/6 , (60)

Gy (κ) = κ11/3

κ2 + κ2
y

11/6 exp
L κ2

k
1− z

L
2
, (61)

where κx is the large scale frequency cutoff and κ y is the small scale frequency cutoff. Equation

(59) is applied to plane, spherical and Gaussian-beam waves, equation (60) is used for plane and

spherical waves, and equation (61) is used for Gaussian-beam waves. The frequency filter

functions, Gx and Gy , essentially allow only the effects of scale sizes, κ , satisfying 0 < κ <

κx or κ y < κ < ∞ to contribute to the scintillation index. In other words, the effects of the
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refractive index scales sizes in the region κx < κ < κ y are eliminated. It is important to note that,

unlike l0 and L0 which are assumed to be constant in most horizontal path cases, the values of κx

and κ y are not fixed. They are a function of the turbulence strength, σ 2
1, and of the wave type, i.e.

plane, spherical, or Gaussian-beam wave. This makes sense given the set of curves in figure 2. In

the figure, we see that the region of scale sizes that are significant changes as the propagation path

length increases. Expressions describing the large and small scale frequency cutoffs, κx and κ y, as

a function of σ 2
1 for plane, spherical, and Gaussian-beam waves are given in [7] and are presented

in the following chapters. The functions f (κl0) and g (κL0) are used to incorporate a finite inner

and outer scale of turbulence. For example, setting both f and g equal to one is equivalent to having

a zero inner scale and an infinite outer scale. In this case, the effective atmospheric spectrum, (58),

represents an effective Kolmogorov spectrum. An effective von Kármán spectrum is obtained by

setting

fvk (κl0) = exp − κ
2

κ2
m
, (62)

g (κL0) = 1− exp −κ
2

κ2
0
, (63)

where the "vk" subscript in fvk (κl0) indicates that this is for an effective von Kármán spectrum.

Similarly, an effective Hill spectrum is obtained by taking the function g to be that given by (63)

and setting

fh (κl0) = exp −κ
2

κ2
l

1+ 1.802
κ

κl
− 0.254

κ

κl

7/6
, (64)

where the "h" subscript in fh (κl0) indicates that this is for an effective Hill spectrum.
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In the modified Rytov method, an expression for a given statistical quantity is obtained by

substituting the effective atmospheric spectrum, (58), into the integral definition obtained from the

standard Rytov method for that statistical quantity. For example, to develop scintillation index

expressions, the effective atmospheric spectrum is substituted into the standard Rytov scintillation

index integral definition, (53). Using this method, Andrews et al.6,7,8 showed that the resulting

scintillation index expressions agree with experimental and simulation data in all regimes of optical

turbulence. Figure 3, taken from [7], presents experimental spherical wave scintillation index data

as a function of increasing turbulence strength as given by Consortini et al.9 with comparisons

to the expressions developed using the modified Rytov method. It is seen in figure 3 that the

theoretical curves developed from the modified Rytov method agree with the experimental data

in all turbulence regimes. It should be noted that the model for scintillation index originally

presented by Andrews et al.6 did not include the effects of an outer scale, L0. It was shown that the

original expressions did not agree with the simulation results of Flatte and Gerber.10 However, in

a subsequent paper,8 the effects of a finite outer scale were included, and the resulting scintillation

index expressions were shown to be in good agreement with Flatte and Gerber’s10 simulation data

and Consortini et al’s.9 experimental data.
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Figure 3 Comparison of modified Rytov method scintillation index results to experimental data
for spherical waves. Open circles represent scintillation data for a fixed propagation
distance of 1200 m taken from [9] and replotted here.
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5.4 Modification of the effective atmospheric spectrum

Note that the effective atmospheric spectrum, (58), can be viewed as the sum of a large scale

component, n,x , given by

n,x (κ) = 0.033C2
nκ
−11/3 f (κl0) g (κL0)Gx (κ) , (65)

and a small scale component, n,y , given by

n,y (κ) = 0.033C2
nκ
−11/3Gy (κ) . (66)

The initial intent of this research was to use the effective spectral model, (58), to develop

wave structure function and temporal frequency spread results that would be valid in all optical

turbulence conditions. It was found, however, that when substituting the small scale portion of

the effective spectral model, (66), into the standard Rytov method integrals defining the wave

structure function that the integrals are divergent, even when including a finite inner and outer

scale. This is a result of the fact that the inner scale effect is not included in the small scale

component of the effective spectrum. Thus, to rectify this situation, the effective spectral model

presented by Andrews et al.6,7,8 has been modified in this work by multiplying both the large and

small scale filter functions by the inner and outer scale functions, f (κl0) and g (κL0). Specifically,

the following effective atmospheric spectral model is proposed11

n (κ) = 0.033C2
nκ
−11/3 f (κl0) g (κL0) Gx (κ)+ Gy (κ) , (67)
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where Gx is given by (59) and

Gy (κ) = 1− exp −κ
2

κ2
y
. (68)

The form of the small scale filter function, (68), was chosen for mathematical convenience. It is

tentatively assumed that the same expressions for κx and κ y given in [7] can be applied to (67).

This modification allows for convergence of the integrals defining the wave structure function and

temporal frequency spread as discussed in the remaining chapters. In the chapters that follow,

references to the effective atmospheric spectrum or the modified Rytov method will assume the

use of the effective spectral model given by (67).

Note, in the limit of weak optical turbulence, σ 2
1 1, that κx ≈ κ y = α for some constant

α. Hence, in the limit of weak fluctuations

Gx (κ)− Gy (κ) ≈ 1+ exp −κ
2

α2 − exp −κ
2

α2 = 1. (69)

This implies that in the limit of weak irradiance fluctuations the spectral model given by (67)

effectively reduces to the corresponding standard spectral model and that the modified Rytov

method is equivalent to the standard Rytov method. For example, if f (κl0) = 1 and g (κL0) = 1

or f (κl0) = exp − κ2

κ2
m

and g (κL0) = κ11/3 κ2 + κ2
0
−11/6, (67) reduces to the standard

Kolmogorov or von Kármán spectral model, (24) and (26), respectively. This is significant because

the standard Rytov method is believed to accurately describe the optical field in weak turbulence

conditions.
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It should be noted that the author does not argue that either (58) or (67) represents the actual

shape of the atmospheric index of refraction spectrum. Indeed, the actual shape of the spectrum

can be confirmed experimentally and is approximately modeled by the Kolmogorov spectrum,

(24), and more accurately modeled by the Hill spectrum, (27), as described in [2]. It is believed,

however, that these filter functions can be obtained in a manner physically consistent with the wave

propagation problem by a consideration of the Green’s function of the Rytov formulation where

the angular spectrum of plane waves would be modified. However, this is a nontrivial problem and

is the subject of current research by Andrews, Phillips, Young. Nonetheless, the modified Rytov

method described above does seem to quite accurately capture the behavior of certain statistical

quantities, albeit in a heuristic manner.
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6. HORIZONTAL PATHWAVE STRUCTURE FUNCTION

6.1 Introduction

In this chapter we examine the wave structure function (WSF) when the modified Rytov

method is applied. The wave structure function describes how closely related the optical field is

at any two points in the observation plane. Consider the optical field propagating in a turbulent

medium and assume that the optical field has a given amplitude and phase at the observation point,

r1, at the receiver in the plane transverse to the propagation direction at some fixed point in time,

t0. Now assume that the optical field has a different amplitude and phase at another observation

point at the receiver in the plane transverse to the propagation direction, r2, at the same time, t0.

If it is assumed that the mean value of the amplitude and phase are slowly varying, then the wave

structure function is the sum of the average value of the square of the difference in the phase and

the average value of the square of the difference in the log amplitude at the two observation points.

In the absence of turbulence, the wave structure function would be zero. This is not the case when

propagation is through a turbulent medium and indeed as the turbulence strength increases, it can

be expected that the value of the wave structure function will increase.

In more precise mathematical terms, the wave structure function, D(r1,r2), for an optical

wave propagating in a turbulent atmosphere is defined by

D (r1, r2) = Dχ + DS (70)
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where Dχ is the log-amplitude structure function and DS is the phase structure function. Usually,

one does not develop analytic expressions for the wave structure function as a function of the two

observation points, r1 and r2, but rather as a function of the scalar separation distance between

the observation points, ρ = |r2 − r1| . Using the standard Rytov approximation, one can obtain

analytic expressions for D(ρ) as a function of the propagation distance, L, and the atmospheric

structure parameter, C2
n .

Though most statistical quantities obtained via the standard Rytov method are considered

valid only in the weak turbulence regime, it has been argued that no such restriction exists for the

wave structure function. Tatarskii5,12 indicated that although the validity of amplitude fluctuation

statistics predicted by the standard Rytov method is restricted to the weak turbulence regime, phase

fluctuation statistics should be valid for a wider range of parameters. In particular, for the special

cases of plane and spherical waves, Tatarskii indicated that the phase structure function based

on the standard Rytov method is in fact valid in all turbulence regimes under certain conditions.

Specifically, Tatarskii postulated that if the value of the phase structure function is less than

π , phase structure function results obtained using the standard Rytov method with the standard

Kolmogorov or Tatarskii spectrums should be valid for all regimes of irradiance fluctuations.12 It

is commonly accepted that the effects of phase fluctuations dominate the wave structure function,2

thus indicating that, by Tatarskii’s argument, the wave structure function should be valid in all

fluctuation regimes.

However, experimental data presented by Gurvich13 does not support this conclusion. In

[13], experimental results for the wave structure function are presented as a function of increasing
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optical turbulence strength for a fixed value of scalar separation distance, ρ. The data, which is

normalized (as discussed later), clearly does not follow a linear relation, as is predicted by the

standard Rytov method, regardless of atmospheric spectral model. That is, when normalized in the

manner presented in [13], the standard Rytov method analytic expression of the wave structure

function follows a straight line (on a log-log plot). As will be shown, this is independent of

the atmospheric spectral model used. Though use of the Kolmogorov, von Kármán, or Hill

atmospheric spectrums result in different values for the wave structure function, they all result

in a graph which, when normalized, is a straight line when the wave structure function is plotted

as a function of turbulence strength for a fixed value of scalar separation distance, contradictory to

the data presented in [13]. It will be shown that when applying the modified Rytov method, the

resulting wave structure function does predict the behavior observed experimentally in [13].

Many other experimental measurements of the wave structure function have been

published.14−20 However, all of these works present wave structure function data as a function

of ρ for a fixed value of turbulence strength. It will be shown that for a fixed value of turbulence

strength, the behavior of the wave structure function expression obtained via the modified Rytov

method has the same behavior as that obtained from the standard Rytov method when considered

as a function of scalar separation distance. Thus, even though some of these experiments were

conducted in strong turbulence conditions, the data is not useful when discussing the behavior of

the wave structure function as a function of increasing fluctuation strength for a fixed value of ρ.

46



6.2 Integral definition

In the horizontal path case, the path amplitude ratio, γ , is given by equation (50) and the

second order statistical moments, E1, E2, and E3, given by equations (46)-(48), reduce to2

E1 (0, 0) = −2π2k2L
∞

0
κ n (κ) dκ, (71)

E2 (r1, r2) = 4π2k2L
1

0

∞

0
κ n (κ)

×J0 κ 1− ¯ ξ p− 2i ξr exp − Lκ2ξ2

k
dκdξ, (72)

E3 (r1, r2) = −4π2k2L
1

0

∞

0
κ n (κ) J0 1− ¯ ξ − i ξ κρ

× exp − Lκ2ξ2

k
exp − i Lκ

2

k
ξ 1− ¯ ξ dκdξ, (73)

where r1 and r2 are any to points in the plane transverse to the propagation direction at the distance

L from the transmitter, r is the center of gravity vector given by

r = 1
2
(r1 + r2) , (74)

p is the difference vector given by

p = r1 − r2, (75)
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and and are the beam parameters given by (52).

Applying the standard Rytov method, it can be shown that for the case of a one-way

horizontal path, the wave structure function can be expressed in terms of the second order moments

as2

D (r1, r2) = Re [ (r1, r2, L)] , (76)

where Re (x) denotes the real part of x and

(r1, r2, L) = E2 (r1, r1)+ E2 (r2, r2)− 2E2 (r1, r2)

= 4π2k2L
1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
{I0 (2 r1ξκ)

+I0 (2 r2ξκ)− 2J0 1− ¯ ξ p− 2i ξr κ dκdξ, (77)

where r1 = |r1| and r2 = |r2| .

6.3 Plane wave

In the special case of a transmitted plane wave, the phase front radius of curvature and the

beam radius at the transmitter are infinite, i.e. F0 = W0 = ∞, so that = 0 and = 1. Thus,

substituting = 0 and = 1 into (77) yields the standard Rytov integral definition of the plane

wave structure function2

D (ρ, L) = 8π2k2L
∞

0
κ n (κ) [1− J0 (κρ)] dκ (78)
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where ρ = |p| is the scalar separation distance of r1 and r2.

6.3.1 Standard Rytov plane wave structure function

Plane wave structure function results using the standard Rytov method can now be developed

using the integral definition, (78). Substituting the von Kármán spectrum, (26), into (78),

evaluating, and then restricting l0 ρ L0, we find that the plane wave structure function

is approximately given by2

D (ρ, L) ≈ 2.914C2
nk

2Lρ5/3 l0 ρ L0. (79)

The expression given in (79) is commonly referred to as the five-thirds power law. Substituting the

analytic approximation to the Hill spectrum, (27), into equation (78) yields a plane wave structure

function that incorporates a finite inner scale, l0, and a finite outer scale, L0, given by2

D (ρ, L) = 2.7C2
nk

2Ll−1/3
0 ρ2

 1

1+ 0.632ρ
2

l20

1/6 +
0.438

1+ 0.442ρ
2

l20

2/3

− 0.056

1+ 0.376ρ
2

l20

3/4 − 0.868 (κ0l0)1/3

 , (80)

where κ0 = 2π
L0
.
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6.3.2 Modified Rytov plane wave structure function

The modified Rytov method described previously can now be applied to develop the plane

wave structure function by substituting the effective atmospheric spectrum, (67), into the standard

Rytov integral definition, (78). We are seeking only the basic behavior of the wave structure

function in the inertial subrange, which implies that we should use an effective Kolmogorov

spectrum. However, substituting the effective Kolmogorov spectrum into (78) results in a

divergent integral. Thus it is necessary to use an effective von Kármán spectrum, where we let

f (κl0) = exp − κ2

κ2
m

and g (κL0) = κ11/3 κ2 + κ2
0
−11/6. As in the case of the standard Rytov

wave structure function, (79), we shall make the restriction l0 ρ L0 after completion of the

integration to obtain a wave structure function that is independent of inner and outer scale effects.

Substituting the effective von Kármán spectrum into (78) and evaluating (see Appendix B) yields

the modified Rytov method plane wave structure function11,21

D (ρ, L) = Dx (ρ, L)+ Dy (ρ, L) , (81)

where Dx(ρ,L) and Dy(ρ,L) are the large and small scale components of the wave structure

function, respectively. They are given by

Dx (ρ, L) = 8.7C2
nk

2Lκ−5/3
xm(pl) 1F1 −5

6 ; 1; −ρ
2κ2
xm(pl)
4 − 1 , (82)
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Dy (ρ, L) = 8.7C2
nk

2L κ−5/3
m 1F1 −5

6 ; 1; −ρ2κ2
m

4 − 1

−κ−5/3
ym(pl) 1F1 −5

6 ; 1; −ρ
2κ2
ym(pl)
4 − 1 , (83)

where 1F1 (a; b; x) denotes the confluent hypergeometric function22 and

κ2
xm(pl) =

κ2
x(pl)κ

2
m

κ2
x(pl) + κ2

m
, κ2

ym(pl) =
κ2
y(pl)κ

2
m

κ2
y(pl) + κ2

m
, (84)

incorporate the inner scale wave number parameter κm = 5.92
l0 and the large and small scale plane

wave refractive index spatial frequency cutoffs, κx(pl) and κ y(pl). The "pl" subscript in the large

and small scale frequency cutoffs, κx(pl) and κ y(pl), is used to denote that these are for a plane

wave. Note that this expression assumes the limit of an infinite outer scale. Restricting l0

ρ L0, taking the limit as the inner scale goes to zero, l0 → 0, so that κ2
xm(pl) → κ2

x(pl) and

κ2
ym(pl)→ κ2

y(pl), and making the approximation2

1F1 −5
6 ; 1; −x − 1 ≈ 5x

6
(1+ 0.232x)−1/6 , (85)

we find that the large and small scale components of the wave structure function can be written as

the simpler algebraic expressions

Dx (ρ, L) = 1.47σ 2
1

kρ2η
1/6
x(pl)

L

 1+ 0.058
kρ2ηx(pl)

L

−1/6

, (86)
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Dy (ρ, L) = 2.37σ 2
1
kρ2

L

5/6

− 1.47σ 2
1

kρ2η
1/6
y(pl)

L

 1+ 0.058
kρ2ηy(pl)

L

−1/6

. (87)

The nondimensional parameters, ηx and ηy are used to incorporate the refractive index spatial

frequency cutoffs, κ x and κ y . In the specific case of a plane wave, ηx(pl) and ηy(pl), which

incorporate the plane wave large scale and small scale frequency cutoffs, κx(pl) and κ y(pl), are

given by7

ηx(pl) =
Lκ2

x(pl)

k
= 2.61

1+ 1.11 σ 2
1

6/5 , (88)

ηy(pl) =
Lκ2

y(pl)

k
= 3 1+ 0.69 σ 2

1
6/5

. (89)

6.3.3 Comparisons

In figure 4 the full wave structure function, (81), and the large scale portion of the wave

structure function, (86), are plotted as a function of increasing turbulence strength. It can be seen

in figure 4, that the large scale component dominates the wave structure function. This is expected,

as it is believed that the wave structure function is dominated by the phase structure function and

phase fluctuations are generally considered to be a large scale phenomenon.

It was stated previously that when considered as a function of scalar separation distance, ρ,

that the wave structure function obtained from the modified Rytov method has identical behavior

as that predicted by the standard Rytov method. In figure 5, the standard Rytov plane WSF, (79),

and the modified Rytov plane WSF, (81), are plotted as a function of increasing scalar distance,

ρ, in the weak turbulence regime, σ 2
1 = 0.1, where it is expected that the standard Rytov method
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is valid. The figure indicates that when considered in this manner, the two methods predict an

identical behavior.

Despite the fact that the standard and modified Rytov method wave structure functions

predict identical behavior when considered as a function of ρ, they have very different behavior

when considered as a function of increasing turbulence strength for a fixed value of ρ. We see

in figure 6 that in the weak turbulence regime, σ 2
1 1, the new model, (81), agrees with the

traditional five-thirds power law given by (79). However, the two expressions begin to separate

from each other in moderate fluctuations, σ 2
1 ≈ 1. The separation between the two expressions

increases significantly as the fluctuations move into the strong fluctuation regime, σ 2
1 1. The

most important information contained in figure 6 is that the standard Rytov method models for

the wave structure function, (79) and (80), predict a linear increase of the wave structure function

(on a log-log graph) as a function of increasing turbulence strength, regardless of the spectral

model used. The two lines also have the same slope. This indicates that the ratio of the wave

structure function expression developed with the Kolmogorov spectral model to that developed

with Hill spectral model is constant as a function of increasing turbulence strength for a fixed

value of separation distance, ρ. However, the expression developed using the modified Rytov

method, (81), predicts a non-linear increase, indicating that the ratio between the new model and

any of the standard expressions is not constant as a function of increasing turbulence strength. The

significance of these points is discussed in the comparison to experimental data.
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Figure 4 Modified Rytov method plane wave structure function as a function of turbulence
strength. The solid curve is equation (81) using equations (86) and (87). The dashed
curve is the large scale portion only, equation (86).
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Figure 5 Plane wave structure function as a function of ρ. The solid curve is the standard Rytov
equation, (79). The dashed curve is the modified Rytov equation, (81).
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Figure 6 Plane WSF as a function of increasing turbulence strength. The Kolmogorov curve
represents equation (79), the Hill curve represents equation (80), and the modified
Rytov curve represents equation (81).
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6.4 Spherical wave

In the special case of a transmitted spherical wave, the phase front radius of curvature is

equal to the propagation path length, i.e. F0 = L , and the beam radius approaches zero at the

transmitter, i.e. W0 → 0 as L → 0, so that 0 → ∞ and 0 = 0. Thus, for a spherical wave

→ 0 and = 0. Substituting = 0 and = 0 into (77) yields the standard Rytov integral

definition of the spherical wave structure function2

D (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) [1− J0 (κξρ)] dκdξ . (90)

6.4.1 Standard Rytov spherical wave structure function

Spherical wave structure function results using the standard Rytov method can now be

developed using the integral definition, (90). Substituting the von Kármán spectrum, (26), into

(90), evaluating, and then restricting l0 ρ L0, we find that the spherical wave structure

function is approximately given by2

D (ρ, L) ≈ 1.093C2
nk

2Lρ5/3 l0 ρ L0. (91)

Substituting the analytic approximation to the Hill spectrum, (27), into equation (90) yields

a spherical wave structure function that incorporates a finite inner scale, l0, and a finite outer scale,
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L0, given by2

D (ρ, L) = 0.9C2
nk

2Ll−1/3
0 ρ2

 1

1+ 0.311ρ
2

l20

1/6 +
0.438

1+ 0.183ρ
2

l20

2/3

− 0.056

1+ 0.149ρ
2

l20

3/4 − 0.868 (κ0l0)1/3

 . (92)

6.4.2 Modified Rytov spherical wave structure function

A spherical WSF function can be developed using the modified Rytov method in the same

manner as for the plane wave case by substituting the effective von Kármán spectrum, equation

(67) with f (κl0) = exp − κ2

κ2
m

and g (κL0) = κ11/3 κ2 + κ2
0
−11/6, into (90). As in the plane

wave case, we shall make the restriction l0 ρ L0 after completion of the integration to obtain

a wave structure function that is independent of inner and outer scale effects. Substituting the

effective von Kármán spectrum into (90) and evaluating (see Appendix C) yields the modified

Rytov method spherical wave structure function which is again the sum of a large and small

component, that is11,21

D (ρ, L) = Dx (ρ, L)+ Dy (ρ, L) , (93)

where

Dx (ρ, L) = 8.7C2
nk

2Lκ−5/3
xm(sp) 2F2 −5

6,
1
2 ; 1, 3

2 ; −
ρ2κ2

xm(sp)
4 − 1 , (94)
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Dy (ρ, L) = 8.7C2
nk

2L κ−5/3
m 2F2 −5

6,
1
2 ; 1, 3

2 ; −ρ
2κ2
m

4 − 1

−κ−5/3
ym(sp) 2F2 −5

6,
1
2 ; 1, 3

2 ; −
ρ2κ2

ym(sp)
4 − 1 . (95)

The function 2F2 (a, b; c, d; x) denotes a generalized hypergeometric function22 and

κ2
xm(sp) =

κ2
x(sp)κ

2
m

κ2
x(sp) + κ2

m
, κ2

ym(sp) =
κ2
y(sp)κ

2
m

κ2
y(sp) + κ2

m
(96)

are used to incorporate the large and small scale spherical wave refractive index spatial frequency

cutoffs, κx(sp) and κ y(sp). The "sp" subscript in the large and small scale frequency cutoffs is

used to denote that these are for a spherical wave. Similar to the plane wave case, this expression

assumes the limit of an infinite outer scale. We again restrict l0 ρ L0, take the limit as the

inner scale goes to zero, l0 → 0, so that κ2
xm(sp) → κ2

x(sp) and κ2
ym(sp) → κ2

y(sp), and make the

approximation2

2F2 −5
6,

1
2 ; 1, 3

2 ; −x − 1 ≈ 5x
18
(1+ 0.132x)−1/6 , (97)

so that the large and small scale components of the wave structure function can be written as the

simpler algebraic expressions

Dx (ρ, L) = 0.49σ 2
1

kρ2η
1/6
x(sp)

L

 1+ 0.033
kρ2ηx(sp)

L

−1/6

, (98)

Dy (ρ, L) = 0.89σ 2
1
kρ2

L

5/6

− 0.49σ 2
1

kρ2η
1/6
y(sp)

L

 1+ 0.033
kρ2ηy(sp)

L

−1/6

. (99)
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The spherical wave nondimensional parameters ηx(sp) and ηy(sp) are given by7

ηx(sp) =
Lκ2

x(sp)

k
= 8.56

1+ 0.19 σ 2
1

6/5 , (100)

ηy(sp) =
Lκ2

y(sp)

k
= 9 1+ 0.23 σ 2

1
6/5

. (101)

6.4.3 Comparisons

Comparing the spherical wave structure function obtained via the modified Rytov method,

(93), with the standard Rytov method results, (91) and (92), as a function of increasing turbulence

strength for a fixed valued of scalar separation distance, we find results that are similar to the

plane wave. The new model agrees with the standard Rytov theory models in the limit of weak

turbulence but predicts smaller values in moderate to strong turbulence. These results are presented

in figure 7. As in the case of a plane wave, the key observation for figure 7, is the qualitative

behavior of the three wave structure function models as a function of turbulence strength for a fixed

value of separation distance. On the log-log graph of figure 7, it is seen that the wave structure

functions obtained via the standard Rytov approximation follow a linear behavior with the same

slope, whereas the new model presented here follows a non-linear trend. That is, the new model

has a decreasing slope as irradiance fluctuation strength increases. The significance of this trend

will be discussed further when comparisons are made to experimental data. Though not depicted

graphically, we also find that the spherical wave structure function is dominated by the large scale
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component, Dx (ρ, L). Additionally, we find that the two methods yield identical behavior when

considered as a function of ρ for a fixed value of σ 2
1.
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Figure 7 Spherical WSF as a function of increasing turbulence strength. The Kolmogorov curve
represents equation (91), the Hill curve represents equation (92), and the modified
Rytov curve represents equation (93).
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6.5 Gaussian-beam wave

We now consider the general case of a Gaussian-beam wave where no assumptions can be

made on the beam parameters and . In this case, the wave structure function is described by

the full Rytov integral definition, (76). Notice that when no simplifications are made the wave

structure function, (76), is statistically inhomogeneous in that it depends implicitly on the position

of the two observation points r1 and r2. However, if we consider the special case where the

observation points are symmetrically located about the optical axis, i.e. r1 = − r2, so that r = 0,

we find the wave structure function can be considered statistically homogeneous. Considering this

special case, we find that the Gaussian-beam wave structure function as obtained from the standard

Rytov method is given by2

D (ρ, L) = d (ρ, L)+ 4σ 2
r (ρ, L) , (102)

where d (ρ, L) describes the on-axis, or longitudinal, component and σ 2
r (ρ, L) describes the

transverse, or radial, component of the wave structure function. They are given by

d (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
1− J0 1− ¯ ξ ρκ dκdξ, (103)

σ 2
r (ρ, L) = 2π2k2L

1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
[I0 ( ρξκ)− 1] dκdξ . (104)
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6.5.1 Standard Rytov Gaussian-beam wave structure function

Substituting the Kolmogorov spectrum, (24), into (103) and (104) yields the standard Rytov

method wave structure function for a Gaussian beam wave, approximately given by2

D (ρ, L) = 0.889σ 2
1 A

kρ2

L

5/6

+ 0.618 11/6 kρ2

L
l0 ρ L0, (105)

where

A =


1− 8/3

1− , ≥ 0,

1+ | |8/3
1− , < 0.

(106)

Notice that for the Gaussian-beam wave it is mathematically sufficient to use the Kolmogorov

spectrum and still have convergence of the integrals, unlike the situation for plane and spherical

waves where it was necessary to use the von Kármán spectrum. The reason for this is the

exponential function in equations (103) and (104) allows for convergence of the integrals.

Substituting the analytic approximation to the Hill spectrum, (27), into (103) and (104),

yields a Gaussian-beam wave structure function that includes inner and outer scale effects given
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by2

D (ρ, L) = 0.9C2
nk

2Ll−1/3
0 ρ2

2

(1+ 0.52 Ql)1/6
+ 0.438 ( Ql)1/6

(1+ 0.7 Ql)2/3
− 0.056 ( Ql)1/6

(1+ 0.7 Ql)3/4

−0.868 1+ + 2 + 2 (κ0l0)1/3

+ 1
1−

1

1+ 0.11 Ql + 0.311ρ2/ l20
1/6

−
3

1+ 0.11 Ql + 0.311 2ρ2/l20
1/6

+ 0.438
1−

1

1+ 0.21 Ql + 0.183ρ2/ l20
2/3

−
3

1+ 0.21 Ql + 0.183 2ρ2/l20
2/3

− 0.056
1−

1

1+ 0.38 Ql + 0.149ρ2/ l20
3/4

−
3

1+ 0.38 Ql + 0.149 2ρ2/l20
3/4 , (107)

where Ql= Lκ2
l
k is the nondimensional inner scale parameter related to κl = 3.3/l0.

6.5.2 Modified Rytov Gaussian-beam wave structure function

An expression for the Gaussian-beam wave structure function can be now be developed

using the modified Rytov method by again considering the special case r1 = −r2 and substituting

the effective Kolmogorov spectrum, equation (67) with f (κl0) = 1 and g (κL0) = 1, into (103)

and (104). Let us first consider the longitudinal component, (103), which will now be the sum

of a large scale component, dx (ρ, L), and a small scale component, dy (ρ, L), i.e. d (ρ, L) =
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dx (ρ, L)+ dy (ρ, L) , where11

dx (ρ, L) ≈ 2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − κ2

κ2
x(gb)

exp − Lκ2ξ2

k

× 1− J0 1− ¯ ξ ρκ dκdξ, (108)

dy (ρ, L) ≈ 0.889σ 2
1 A

kρ2

L

5/6

− 2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − κ2

κ2
y(gb)

× exp − Lκ2ξ2

k
1− J0 1− ¯ ξ ρκ dκdξ, (109)

where κx(gb) and κ y(gb) are the Gaussian-beam wave large and small scale refractive index

frequency cutoffs, respectively. In (108) and (109), we make the argument that exp − κ2

κ2
x(gb)

and exp − κ2

κ2
y(gb)

act as low-pass spatial filters, ensuring that under the integral7

exp − Lκ2ξ2

k
≈ 1, (110)

which is the geometric optics approximation. Under this assumption, the integrals (108) and (109)

can be evaluated as (see Appendix D)

dx (ρ, L) ≈ 7.08σ 2
1η
−5/6
x(gb)

1
¯ 2F2 −5

6,
1
2 ; 1, 3

2 ; −
ρ2kηx(gb)

4L

− ¯ 2F2 −5
6,

1
2 ; 1, 3

2 ; −
ρ2k 2ηx(gb)

4L − 1 , (111)
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dy (ρ, L) ≈ 0.889σ 2
1 A

kρ2

L

5/6

− 7.08σ 2
1η
−5/6
y(gb)

1
¯ 2F2 −5

6,
1
2 ; 1, 3

2 ; −
ρ2kηy(gb)

4L

− ¯ 2F2 −5
6,

1
2 ; 1, 3

2 ; −
ρ2k 2ηy(gb)

4L − 1 . (112)

The nondimensional Gaussian-beam wave frequency cutoff parameters, ηx(gb) and ηy(gb), are given

by7

ηx(gb) =
Lκ2

x(gb)

k
= 1

3
− 1

2
¯ + 1

5
¯ 2 σ 1

σ B

−12/7
1+ 0.56σ 12/5

B
−1
, (113)

ηy(gb) =
Lκ2

y(gb)

k
= 3

σ 1

σ B

12/5
+ 2.07σ 12/5

1 . (114)

The Rytov variance for a beam wave, σ 2
B , is given by2,23

σ 2
B = 3.86σ 2

1 0.4 (1+ 2 )2 + 4 2 5/12
cos

5
6

arctan
1+ 2

2
− 11

16
5/6 (115)

Finally, using the binomial approximation for the hypergeometric function, 2F2 (a, b; c, d; −x),

given by (97), we can write

d (ρ, L) = dx (ρ, L)+ dy (ρ, L) , (116)

67



where

dx (ρ, L) = 0.49σ 2
1η

1/6
x(gb)

kρ2

L

 1
¯ 1+ 0.033

kρ2ηx(gb)

L

−1/6

−
3

¯ 1+ 0.033
kρ2 2ηx(gb)

L

−1/6
 , (117)

dy (ρ, L) = 0.889σ 2
1 A

kρ2

L

5/6

− 0.49σ 2
1η

1/6
y(gb)

kρ2

L

 1
¯ 1+ 0.033

kρ2ηy(gb)

L

−1/6

−
3

¯ 1+ 0.033
kρ2 2ηy(gb)

L

−1/6
 . (118)

To find the radial component of the Gaussian-beam wave structure function, we substitute

the effective Kolmogorov spectrum into (104) and evaluate. For the sake of clarity the evaluation

is left to Appendix D. The resulting radial component is the sum of a large scale component, σ 2
r,x ,

and a small scale component, σ 2
r,y. Thus the radial component is given by11

σ 2
r (ρ, L) = σ 2

r,x (ρ, L)+ σ 2
r,y (ρ, L) , (119)

where

σ 2
r,x (ρ, L) = 0.123σ 2

1
kρ2 2

L
η

1/6
x(gb) 1+ 0.547 ηx(gb)

−1/6
, (120)
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σ 2
r,y (ρ, L) = 0.137σ 2

1
11/6 kρ2

L

−0.123σ 2
1
kρ2 2

L
η

1/6
y(gb) 1+ 0.547 ηy(gb)

−1/6
. (121)

Finally, the modified Rytov method model for the Gaussian-beam wave structure function is

given by

D (ρ, L) = dx (ρ, L)+ dy (ρ, L)+ 4 σ 2
r,x (ρ, L)+ σ 2

r,y (ρ, L) , (122)

where dx (ρ, L), dy (ρ, L), σ 2
r,x (ρ, L), and σ 2

r,y (ρ, L) are given by (117), (118), (120), and (121),

respectively.

6.5.3 Comparisons

For the Gaussian-beam wave, Andrews et al.2,23 presented an expression for the wave

structure function in the moderate to strong turbulence regimes that is based on effective beam

parameters, given by

D (ρ, L) = 0.889σ 2
1 Ae

kρ2

L

5/6

+ 0.618 11/6
e

kρ2

L
l0 ρ L0, (123)

where

Ae =


1− 8/3

e

1− e
, ≥ 0,

1+ | e|8/3
1− e

, < 0.

(124)
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The effective beam parameters, e and e, are given by

e = 1+ 4q /3
, (125)

e = − 2q /3
1+ 4q /3

, (126)

where q = 1.22 σ 2
1

6/5 is a measure of the optical turbulence strength.

Let us now compare the modified Rytov method model for the Gaussian beam wave structure

function, (122), to those given by the standard Rytov method, (105) and (107), and that given

by Andrews et al.2,23 using effective beam parameters, (123). The results in figure 8 are for

0 = 1 and 0 = 1 which corresponds to a collimated Gaussian-beam wave. In the weak

turbulence regime, (105), (122), and (123) yield nearly identical results. However, as the Rytov

variance increases into the moderate to strong fluctuation regimes, both (122) and (123) begin to

separate significantly from (105) and (107). These results are similar to those seen for the plane

and spherical wave cases. Again, as a function of increasing turbulence strength for a fixed value of

scalar separation distance, the traditional standard Rytov theory results, (105) and (107), predict a

linear increase in the value of the wave structure function (on a log-log graph). However, the results

based on the effective beam parameters and the modified Rytov method, (122), and (123), predict

a non-linear behavior with a decreasing slope as Rytov variance increases. As in the case of plane

and spherical waves, all three methods yield identical behavior when considered as a function of

separation distance, ρ, for a fixed value of fluctuation strength, all the way out to the beam edge.
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In the case of weak fluctuations, if we set 0 = 1 and let 0 → 0 or 0 → ∞ in (105),

(122) and (123), the results should reduce to those for a plane and spherical wave, respectively.

These results are displayed in figure 9 for σ 2
1 = 0.1, which is considered to be in the weak

fluctuation regime. Indeed, we see the results approach the limiting cases. However, if we

consider a similar graph in the moderate to strong turbulence regime, we find a large disagreement

between the predicted results of the standard Rytov method, the modified Rytov method, and the

effective beam parameters. In particular, we expect that in the moderate fluctuation regime there

is a significant difference in the values predicted by the modified Rytov wave structure function

model and that based on effective beam parameters. This result is expected because the wave

structure function developed using the effective beam parameters is based on the assumption that

the standard Rytov plane and spherical wave structure functions, the five-thirds power laws, are

valid in all fluctuation regimes and tends to reduce to these results in the limiting cases of plane

and spherical waves. However, the expressions presented here for plane and spherical waves based

on the modified Rytov method do not agree with standard Rytov theory in the moderate to strong

fluctuation regimes.
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Figure 8 Gaussian-beam WSF as a function of increasing turbulence strength. The Kolmogorov
curve represents equation (105), the Hill curve represents equation (107), the Eff. Beam
Parameters curve represents equation (123), and the modified Rytov curve represents
equation (122). For the parameters used, the free space beam diameter at the distance
L from the transmitter is approximately 7 cm.
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Figure 9 Gaussian-beam WSF as a function of the Fresnel ratio of the beam at the transmitter,
0. The Kolmogorov curve represents equation (105), the Eff. Beam Parameters curve

represents equation (123), and the modified Rytov curve represents equation (122). The
resulting free space beam diameter at the distance L from the transmitter for the given
parameters ranges from 7 cm to 48 cm. The limiting cases of 0 = 0 and 0 = ∞
correspond to a plane wave and a spherical wave, respectively.
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6.6 Comparison to experimental data

As previously discussed, many authors have presented experimental results of the wave

structure function as a function of separation distance, ρ, for a fixed value of fluctuation

strength.14−20 However, no information can be obtained from these works about the validity of

the modified Rytov method models presented in this paper as compared to the traditional standard

Rytov method models because the qualitative behavior as a function of separation distance is

identical. Though the exact values predicted are quantitatively different in the moderate to strong

turbulence regime, the numerical difference is too insignificant when considering experimental

results. This is due to the fact that the measured values of experimental conditions such as C2
n , l0,

and L0 are too imprecise to conduct an exact comparison.

However, at least one author, Gurvich,13 has presented wave structure function data as a

function of increasing turbulence strength for a fixed value of scalar separation distance. In [13],

fluctuations in the angle of incidence for a spherical wave were measured and used to compute the

mean value of the image "center of gravity". The mean value of the square of the center of gravity

of the image, α2
c , is given as13

α2
c = 0.97

Ds (2R)
(2kR)2

, (127)

where Ds is the spherical wave structure function. For the experiment conducted in [13], R = 6

cm is the radius of the receiving aperture and k = 2π/λ is the wave number with wavelength

λ = 0.55 mm. The experiment was conducted over steppe terrain at a height of 2 m.13 Thus, the

outer scale will be taken to be L0 = 1 m. No values for inner scale were provided, so typical
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values are assumed. Taking the spherical wave structure function, Ds , to be that of the standard

Rytov method, given by (91), we have

α2
c 1
= 1.06C2

n L (2R)
−1/3 . (128)

In [13], the measured value of (127) is presented as a function of (128). This corresponds to

the measured value of the spherical wave structure function as a function of increasing fluctuation

strength for a fixed value of separation distance. The data presented in figure 10 is for L = 1750m

with varying values of the index of refraction structure parameter, C2
n . The measured values of

C2
n are not presented in [13], so reasonable values have been assumed for comparison. The open

circles in figure 10 represent the measured data. It is clear that the data does not follow a straight

line as turbulence strength increases. The standard Rytov theory results, (91) and (92), predict a

straight line, whereas the expression developed using the modified Rytov method, (93), predicts

a nonlinear behavior with decreasing slope as turbulence strength increases which is the same

qualitative behavior observed in the experimental data. Note that the modified Rytov method

model does not fit the measured results exactly from a quantitative perspective. This is most likely

due to the fact that no inner or outer scale has been included.
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Figure 10 A comparison of the spherical wave structure function analytic results with
experimental results of Gurvich. The mean value of the measured value of the image
center of gravity, (127), is plotted as a function of (128). In each of the theoretical
curves, the analytic expression for the wave structure function is substituted into
(127). The Kolmogorov curve represents the use of equation (91), the Hill curve
represents the use of equation (92), and the modified Rytov curve represents the use
of equation (93).

76



Gurvich also presented the measured quantity13

α2
c

α2
c 1

1/2

, (129)

as a function of σ 1, where σ 2
1 = 1.23C2

nk7/6L11/6 is the Rytov variance. The analytical and

experimental results are presented in figure 11. The open circles represent the experimental data.

The data points correspond to different values of the path length, L, and different index of refraction

structure parameter values, C2
n . When we substitute the wave structure functions, (91) and (92),

developed using the standard Rytov method with the Kolmogorov spectrum and the Hill spectrum,

respectively, into (129) the particular values of L and C2
n are irrelevant. This is due to the fact that

the ratio of the two results does not change as a function of turbulence strength. Thus only one

curve is given for the Hill spectrum. The exact value of this ratio does change for the Hill spectrum

for different values of the inner scale, l0, however the change is only minor. For the Kolmogorov

spectrum, the ratio is one. However, for the spherical wave structure function derived using the

modified Rytov method, (129) is explicitly dependent on the turbulence strength, so a curve has

been presented for each value of the propagation path length. The important characteristic of figure

11 is that the data does not follow a straight line as predicted when the standard Rytov method wave

structure functions are used in (129). Indeed, the data indicates a decrease in this ratio. This is

the same qualitative behavior predicted when the modified Rytov method wave structure function

is used in (129).
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Figure 11 Equation (129), which is the ratio of the image center of gravity, (127), to that
predicted using the Kolmogorov spherical wave structure function, (128), as a
function of the square root of the Rytov variance. Curves are given using (92) and
(93) in (127). For the Kolmogorov spectrum, the ratio is one.
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7. HORIZONTAL PATH TEMPORAL FREQUENCY SPREAD AND

SPECTRUM

7.1 Introduction

Random fluctuations are imparted onto the frequency of an optical signal propagating in

the Earth’s atmosphere as a result of the random fluctuations in phase and amplitude of the optical

wave. These random frequency fluctuations result in a spreading of the frequency spectrum around

the line centroid of the spectrum. Furthermore, as noted by several authors,4,24, 25 as the strength of

optical turbulence increases there is also a random wandering of the line centroid of the frequency

spectrum. Thus, to describe the width of the average frequency spectrum, one must account for

not only the frequency spread due to atmospheric turbulence, but the average position of the line

centroid as well.

As described by Ishimaru,4 the average frequency spectrum, accounting for both the

wandering of the line centroid and the atmospheric induced frequency spread, is given by the

Fourier transform of the mutual coherence function, (r1,r2). The mutual coherence function of

the random optical field is given by2

2 (r1, r2, L) = U (r1, L)U∗ (r2, L) , (130)

where U (r, L) is the random optical field, r1 and r2 are points in the receiver plane, L is the

propagation path length, and x denotes the ensemble average of x. Ishimaru examined the

temporal frequency spectrum for a plane wave. From that result, he obtained the angular temporal
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frequency spread, ωc, of the temporal frequency spectrum, W(ω). Specifically, Ishimaru states

that, for a plane wave, ωc = V/ρ pl , where V is the wind velocity transverse to the propagation

direction, or crosswind velocity, and ρ pl is the plane wave coherence radius of the optical wave

at the receiver. This expression can also be obtained via the following simple intuitive argument.

Since the transverse coherence radius is ρ pl , by applying Taylor’s frozen flow hypothesis, the

temporal coherence time, τ c, is given by τ c ≈ ρ pl/V . Therefore the atmospheric induced

frequency spread is approximately ωc ≈ 1/τ c ≈ V/ρ pl .

In general, the coherence radius, ρ0, of an optical wave is the e−1 point of the modulus of

the complex degree of coherence function, DOC, given by2

DOC (r1, r2, L) = | 2 (r1, r2, L)|
[ 2 (r1, r1, L) 2 (r2, r2, L)]1/2

= exp −1
2
D (r1, r2, L) (131)

where D (r1, r2, L) is the wave structure function discussed in the preceding chapter and

2 (r1, r2, L) is the mutual coherence function. In the last chapter, the wave structure function was

expressed in terms of the magnitude of the separation distance between the two observation points

r1 and r2, that is ρ = |r2 − r1|. Thus, the e−1 point of the complex degree of coherence occurs

when the wave structure function is equal to two. The value of ρ such that the wave structure

function is equal to two is denoted as the coherence radius, ρ0; i.e. D ρ0 = 2.

Note that Ishimaru4 defines the angular frequency spread, ωc, in units of rad/sec. We can

express the frequency spread in Hertz through the relation σ f = ωc
2π , where σ f is used to denote
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the frequency spread in Hertz. In this chapter, we compare the value of the plane wave frequency

spread, σ f , using the expression σ f = ωc
2π = V

2πρ pl
, for two different expressions for ρ pl . The

value of the coherence radius obtained using the plane wave structure function derived using the

modified Rytov method is compared with that obtained using the standard five-thirds power law

plane wave structure function found using the standard Rytov approximation. It is shown that

in conditions of moderate to strong optical turbulence, the frequency spread, σ f , given by the

modified Rytov method is significantly less than that predicted using the five-thirds power law.

Furthermore, via a direct analytic approach, independent of the temporal frequency spectrum,

exact expressions are developed that predict the plane wave frequency spread. These expressions

are then compared to the expression, σ f = V
2πρ pl

. Note that these expressions account for the

frequency spread, σ f , only, and not the wandering of the line centroid of the frequency spectrum.

However the advantage of this approach is that the frequency spread can be described for spherical

and Gaussian-beam waves without considering the mutual coherence function. Results for the

spherical wave case are also considered and similar comparisons are presented.

7.2 Plane wave

To conduct our analysis, we will need expressions for the plane wave coherence radius, ρ pl .

Using the standard Rytov method and applying the Kolmogorov spectrum, the plane wave structure

function is given by (79). Setting this equation equal to two and solving for ρ yields an analytic
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expression for the plane wave coherence radius, ρ pl , given by2

ρ pl = 1.46C2
nk

2L
−3/5

, l0 ρ L0. (132)

Additionally, we need to find the plane wave coherence radius as obtained from the plane

wave structure function, (81), derived using the modified Rytov method. Unfortunately, the

coherence radius obtained from this method cannot be expressed exactly in closed form; however,

it can be computed numerically by setting (81) equal to two and solving for ρ. The modified

Rytov method coherence radius results presented here were obtained numerically using a simple

bisection method.

7.2.1 Coherence, frequency spread, and frequency spectrum analysis

In figure 12, we compare the plane wave coherence radius obtained via the standard Rytov

approximation, (132), to that obtained using the modified Rytov approximation, which is obtained

from (81), (86), and (87). It is clear that as turbulence strength increases the coherence radius

decreases as would be expected. However, the results of the modified Rytov method indicate that

the decrease is not as great as that predicted by the standard Rytov approximation.
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Figure 12 The plane wave coherence radius in cm as a function of increasing turbulence
strength. The index of refraction structure parameter, C2

n , is held constant, while the
propagation path length, L, is allowed to vary. The standard Rytov curve is obtained
from (132) and the modified Rytov curve is obtained by setting (81) equal to two and
numerically solving for ρ.
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As stated in the introduction, Ishimaru4 argued that the atmospheric induced temporal

frequency spread, σ f , of the temporal frequency spectrum is given by

σ f = ωc

2π
= V

2πρ pl
, (133)

where V is the crosswind velocity and ρ pl is the plane wave coherence radius. Figure 13 presents

the plane wave atmospheric induced frequency spread where, in the standard Rytov approximation,

ρ pl is given by (132) and, in the modified Rytov approximation, ρ pl is deduced from (81), (86),

and (87). The propagation conditions in figure 13 are the same as those for figure 12. A

moderate crosswind velocity of 10 km/hr has been assumed. We see in figure 13 that the results

are identical in the weak turbulence regime. This is expected because the wave structure functions

of the standard and modified Rytov methods are identical in weak turbulence. However, in

the moderate to strong turbulence regime the predicted frequency spread given by the modified

Rytov approximation is significantly less than that predicted by the standard Rytov approximation.

This is a result of the fact that the modified Rytov approximation predicts a larger value for the

coherence radius than the standard approximation in the moderate to strong turbulence regimes.

Given the comparison of the two wave structure functions to the experimental data of Gurvich

conducted in the preceding chapter, where it was shown that the modified Rytov results agreed

well in all turbulence regimes, it is arguable that the frequency spread predicted by the modified

Rytov method is more accurate.
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As stated previously, (133) accounts for the atmospheric induced frequency spread around

the frequency line centroid but does not account for the wandering of the line centroid. Ishimaru

asserted that the average temporal frequency spectrum, accounting for both the frequency spread

and the wandering of the line centroid, is found via the Fourier transform of the mutual coherence

function. Ishimaru stated that the plane wave spatial mutual coherence function is given by4

2 (ρ, L) = exp −1
2
Dpl (ρ, L) , (134)

where Dpl (ρ, L) is the spatial plane wave structure function. Ishimaru’s result for the temporal

frequency spectrum is based on the assumption that the plane wave structure function obtained

from the standard Rytov approximation is valid in all optical turbulence conditions. Thus,

substituting (79) into (134), using Taylor’s frozen flow hypothesis, ρ = V τ , and taking the Fourier

transform, Ishimaru gives the temporal frequency spectrum, W (ω) as4

W (ω) = 2 exp −1
2
Dpl (V τ, L) exp (−iωτ) dτ

= 2
ωc

exp −t5/3 exp −i ω
ωc
t dt, (135)

where Dpl (V τ, L) is the standard Rytov method temporal plane wave structure function given by

Dpl (V τ, L) ≈ 2.914C2
nk

2L (V τ)5/3 , (136)

and ωc = 2πσ f is obtained from (133) using the plane wave coherence radius given by (132).
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We now compare this result to that obtained by substituting the plane wave structure function

obtained from the modified Rytov method, (81), into (134). Applying Taylor’s frozen flow

hypothesis to (81), the modified Rytov method temporal plane wave structure function is given

by26

Dpl (V τ , L) = Dx (V τ, L)+ Dy (V τ, L) , (137)

where

Dx (V τ, L) = 1.47σ 2
1

k (V τ)2 η1/6
x(pl)

L

 1+ 0.058
k (V τ)2 ηx(pl)

L

−1/6

, (138)

Dy (V τ, L) = 2.37σ 2
1
k (V τ)2

L

5/6

−1.47σ 2
1

k (V τ)2 η1/6
y(pl)

L

 1+ 0.058
k (V τ)2 ηy(pl)

L

−1/6

. (139)

Now, substituting (137) into (134), the modified Rytov method plane wave temporal

frequency spectrum is given by26

W (ω) = 2 exp −1
2
Dx (V τ, L)+ Dy (V τ, L) exp (−iωτ) dτ

= 2
ωc

exp −1
2
Dx tρ pl, L + Dy tρ pl, L exp −i ω

ωc
t dt, (140)

where ωc = 2πσ f is obtained from (133) using the plane wave coherence radius obtained from

modified Rytov method using (81), (86), and (87), and we have made the substitution V τ = tρ pl
so that (140) is notationally consistent with (135).
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The question that naturally arises is what impact does the use of the plane wave structure

function given by modified Rytov method, (81), have on the average temporal frequency spectrum,

that is how (135) compares to (140). In the weak turbulence regime, there is no difference between

the two approaches because the plane wave structure function values predicted by standard Rytov

method are equal to those predicted by the modified Rytov method as seen in figure 6 of the last

chapter. However, if we consider the case of moderate to strong optical turbulence, we find that

the predicted average temporal frequency spectrum is steeper and narrower when using the wave

structure function obtained from the modified Rytov approximation as compared to that obtained

using the standard Rytov approximation.

We consider the case of strong optical turbulence allowing σ 2
1 = 100 with the propagation

parameters used in figures 12 and 13. In this case, from figure 13, we find that the atmospheric

induced angular frequency spread obtained when using the standard Rytov approximation

coherence radius is approximately 1253 rad/s, which we denote as ωc1. Using the modified

Rytov approximation coherence radius, the angular frequency spread under the same conditions

is approximately 651 rad/s, which we denote as ωc2.

In figure 14, we have plotted the average temporal frequency spectrum, W (ω), given by

(135) and (140), in the case of strong optical turbulence, σ 2
1 = 100. W (ω) is plotted as function

of ω/ωc1 in both cases so that the same values of ω are considered for both curves. We see that

the average temporal frequency spectrum, (140), obtained when using the plane wave structure

function derived from the modified Rytov approximation is indeed steeper and narrower than that

predicted when using the standard Rytov approximation. The interpretation of these results is that
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the broadening around the average position of the line centroid, that is the frequency spread of the

frequency spectrum, is not as significant in strong turbulence as predicted by the standard Rytov

approximation.
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Figure 14 The plane wave average temporal frequency spectrum, (135) and (140), as a function
of ω/ωc1 for strong optical turbulence, σ 2

1 = 100. The vertical axis is in arbitrary
units.
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7.2.2 Analytic derivation of plane wave frequency spread

Although (133) provides a simple expression governing the frequency spread, it is derived

from an evaluation of the temporal frequency spectrum, which relies on knowledge of the mutual

coherence function. While evaluating the mutual coherence function for a plane wave is relatively

straightforward, doing so is significantly more difficult in the cases of spherical and Gaussian-beam

waves. Here, we present a derivation for the frequency spread that is independent of an analysis

of the mutual coherence function and compare the result to (133).

The characteristic equation for an electromagnetic signal is given by

ν = Re A (t) ei[2π f0t+φ(t)] , (141)

where A (t) is the amplitude of the signal, f0 is the carrier frequency, φ (t) is the phase shift

associated with propagation, ν is the voltage of the signal at the receiver, and Re (x) denotes the

real part of x.

The instantaneous angular frequency, ω (t), of a signal is given by the derivative of the total

phase of the signal. Therefore,

ω (t) = d
dt

2π f0t + φ (t) . (142)
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In units of cycles per second (Hz), the frequency is therefore given by

f (t) = ω (t)
2π

= f0 + d
dt
φ (t)
2π

. (143)

The phase shift associated with propagation, φ (t), can be separated into two components:

a deterministic component, made up of all known sources of phase, and a non-deterministic

component, made up of all random sources of phase. Hence,

f (t) = f0 + d
dt
φd (t)

2π
+ d
dt
φs (t)

2π
, (144)

where we use φd to denote the deterministic component of phase and φs to denote the

non-deterministic component of phase. The mean value of the frequency, therefore, is given

by

f = f0 + φd (t)2π
+ φs (t)

2π
, (145)

where the prime indicates differentiation with respect to t. Thus, the frequency variance, σ 2
f , is

given by

σ 2
f = f (t)2 − f (t) 2

= φs (t)2

4π2 − φs (t)
2

4π2 (146)
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which is in units Hz2. It can be shown (see Appendix E) that the frequency variance, σ 2
f , is related

to the temporal phase covariance, Bs(τ ), by26

σ 2
f = −

Bs (τ)
4π2

τ=0

, (147)

where the differentiation is with respect to τ .

The spatial phase covariance function, Bs(ρ), of a plane wave is given by2

Bs,pl (ρ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κρ) 1+ cos

Lκ2ξ

k
dκdξ . (148)

From (148), we obtain the temporal phase covariance function by applying Taylor’s frozen flow

hypothesis. Taylor’s frozen flow hypothesis dictates that the time scale for changes in the

characteristics of a given eddy is much longer than that related to the transverse motion of eddies,

i.e. the motion of the eddies in the direction perpendicular to the propagation path. Thus, Taylor’s

theory indicates that temporal fluctuations in the optical wave are directly related to the geometry of

the wave and the wind speed perpendicular to the propagation path, V . This allows spatial statistics

to be directly related to temporal statistics. Assuming the turbulent atmosphere is frozen, i.e. that

the characteristics of individual eddies are not changing, then observation of the optical wave at

two points separated by a distance ρ is equivalent to observing the wave at a single observation

point for a time τ . The relation between τ and ρ is determined by the geometry of the wave.

In the plane wave case, the wave front can be thought of as "flat" so that the relation is given

by ρ = V τ . Thus, making the substitution ρ = V τ, the resulting plane wave temporal phase

93



covariance function is given by

Bs,pl (V τ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κV τ) 1+ cos

Lκ2ξ

k
dκdξ. (149)

Using the relation given by (147), the integral expression for the plane wave frequency

variance is now

σ 2
f,pl = 0.25k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
dκdξ . (150)

In this expression, it is necessary to include a finite inner scale of turbulence, l0, for convergence.

Unlike the case of the wave structure function no appropriate restrictions can be made after

integration in order to eliminate the dependence on the inner scale. We first develop an expression

for the plane wave frequency variance using the standard Rytov method. We, substitute into (150)

an analytic approximation to the Hill spectrum

n (κ) = 0.033C2
nκ
−11/3 exp −κ

2

κ2
l

1+ 1.802
κ

κl
− 0.254

κ

κl

7
6
, (151)

that is identical to (27) except that an infinite outer scale has been assumed. Substituting (151)

into (150) and evaluating yields the standard Rytov method frequency variance given by26 (see
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Appendix F)

σ 2
f,pl,SR = 0.0258σ 2

1
k
L

V 2Q1/6
l

× 1+ 0.7232F1
1
12,

7
12 ; 3

2 ; −Q2
l

+0.3172F1
1
3,

5
6 ; 3

2 ; −Q2
l − 0.042F1

3
8,

7
8 ; 3

2 ; −Q2
l , (152)

where Ql = Lκ2
l
k and the "SR" subscript denotes that this is for the standard Rytov method. The

2F1 (a, b; c, x) hypergeometric functions are approximated by binomial functions as follows2

2F1
1

12,
7
12 ; 3

2 ; −x ≈ [1+ 0.28x]−1/12 , (153)

2F1
1
3,

5
6 ; 3

2 ; −x ≈ [1+ 0.426x]−1/3 , (154)

and

2F1
3
8,

7
8 ; 3

2 ; −x ≈ [1+ 0.4523x]−3/8 . (155)

The approximations (153)-(155) have a maximum relative error on the order of 10% as x

approaches infinity. Replacing the hypergeometric functions in (152) with these approximations,

we obtain a simpler algebraic expression for the standard Rytov plane wave frequency variance
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given by

σ 2
f,pl,SR

∼= 0.0258σ 2
1
k
L

V 2Q1/6
l × 1+ 0.723 1+ 0.28Q2

l
−1/12

+0.317 1+ 0.426Q2
l
−1/3 − 0.04 1+ 0.4523Q2

l
−3/8

. (156)

The plane wave frequency spread, σ f , is the square root of the frequency variance, i.e.

σ f = σ 2
f . (157)

Note that (156)-(157) describe only the frequency spread, σ f , of the frequency spectrum,

and do not account for the wandering position of the frequency spectrum line centroid.

In figure 15, we compare the frequency spread as predicted by (156)-(157) to that predicted

by , σ f = V
2πρ pl

, (133), where the plane wave coherence radius is given by the standard Rytov

approximation, (132). The figure indicates that both expressions have the same qualitative

behavior as a function of turbulence strength and are of the same order numerically. This indicates

that the expression derived here, (156)-(157), provides a good approximation of the frequency

spread without any knowledge of the mutual coherence function.
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Figure 15 The plane wave frequency spread inHz as a function of increasing turbulence strength.
The solid line represents the frequency spread given by (132)-(133). The dashed
curve is the frequency spread given by (156)-(157). The index of refraction structure
parameter, C2

n , is held constant, while the propagation path length, L, is allowed to
vary.
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We note that the frequency variance, (156), was developed using the standard Rytov

approximation method and therefore is expected to be valid in weak turbulence conditions only.

However, a similar expression can be developed that is believed to be valid in all turbulence

conditions by applying the modified Rytov method. As stated earlier, it is necessary to include

a finite inner scale. Thus, we allow

f (κl0) = exp −κ
2

κ2
l

1+ 1.802
κ

κl
− 0.254

κ

κl

7
6

(158)

and g (κL0) = 1 in the effective atmospheric spectrum, (67). Substituting (67) and (158) into

(150) and using the approximations (153)-(155), the resulting plane wave frequency variance is

given by26

σ 2
f,pl,MR = σ 2

f,x + σ 2
f,y (159)

where the "MR" subscript indicates that this is for the modified Rytov method. The large scale

and small scale frequency variance components, σ 2
f,x and σ 2

f,y, are given by (see Appendix F)

σ 2
f,x

∼= 0.0258σ 2
1
k
L

V 2α1/6
x × 1+ 0.723 1+ 0.28α2

x
−1/12

+0.317 1+ 0.426α2
x
−1/3 − 0.04 1+ 0.4523α2

x
−3/8

, (160)

σ 2
f,y

∼= σ 2
f,pl,SR − 0.0258σ 2

1
k
L

V 2α1/6
y × 1+ 0.723 1+ 0.28α2

y
−1/12

+0.317 1+ 0.426α2
y
−1/3 − 0.04 1+ 0.4523α2

y
−3/8

, (161)
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where

αx =
ηx(pl)Ql
ηx(pl)+Ql

, αy =
ηy(pl)Ql
ηy(pl)+Ql

. (162)

Expressions for the non-dimensional parameters ηx(pl) and ηy(pl), that include an inner scale

dependency are given by Andrews et al7 as

ηx(pl) =
2.61

1+ 0.45σ 2
1Q

1/6
l

, (163)

ηy(pl) = 3
σ 1

σ p

12/5
1+ 0.69σ 12/5

p , (164)

where

σ 2
p = 3.86σ 2

1 1+ 1/Q2
l

11/12
sin

11
6

tan−1 Ql + 1.51

1+ Q2
l

1/4 sin
4
3

tan−1 Ql

− 0.27

1+ Q2
l

7/24 sin
5
4

tan−1 Ql − 3.50Q−5/6
l . (165)

In figure 16, the frequency spread, σ f , obtained from (157) and (159), is compared to σ f =
V

2πρ pl
, equation (133), as obtained from the temporal frequency spectrum analysis, where now the

plane wave coherence radius is that obtained from the wave structure function derived using the

modified Rytov approximation, given by (81). The two expressions have the same qualitative

behavior and are of the same order numerically, indicating that the expression derived in (159),

serves as a good approximation to the frequency spread of the frequency spectrum in all turbulence

regimes including the moderate to strong turbulence regimes.
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Figure 16 The plane wave frequency spread inHz as a function of increasing turbulence strength.
The solid line represents the frequency spread given by (81) and (133). The dashed
curve is the frequency spread given by (157) and (159). The index of refraction
structure parameter, C2

n , is held constant, while the propagation path length, L, is
allowed to vary.

100



7.3 Spherical wave

Here, we conduct a similar analysis for a spherical wave. We will need expressions for

the spherical wave coherence radius, ρsp. Using the standard Rytov method and applying the

Kolmogorov spectrum, the spherical wave structure function is given by (91). Setting this equation

equal to two and solving for ρ yields an analytic expression for the spherical wave coherence

radius, ρsp, given by2

ρsp = 0.55C2
nk

2L
−3/5

, l0 ρ L0. (166)

As in the plane wave case, the coherence radius obtained from the modified Rytov method

cannot be expressed exactly in closed form. However, it can be computed numerically, again using

a bisection method, by setting (93) equal to two and solving for ρ.

7.3.1 Coherence, frequency spread, and frequency spectrum analysis

We now compare the spherical wave coherence radius derived from the standard Rytov

approximation, (166), to that obtained from the modified Rytov approximation determined

numerically from (93). The results as a function of increasing turbulence strength are presented

in figure 17. The behavior is the same as that of the plane wave case and we see that the two

results agree in the weak turbulence regime. However, in the moderate to strong turbulence

regime the modified Rytov approximation method predicts larger values for the coherence radius
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as compared to the standard Rytov approximation, consistent with the results observed in the plane

wave analysis.
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In the introduction, a very simple intuitive argument was given that led to an expression for

the angular frequency spread, ωc, of the frequency spectrum for a plane wave. The result for the

angular frequency spread was also derived analytically by Ishimaru4 and is given by ωc = V
ρ pl

.

However, in the case of a spherical wave, the same intuitive argument does not apply because of

the geometry associated with a spherical wave.

As noted by Belen’kiı̃ and Mironov,27 to correctly account for the spherical wave geometry

when applying Taylor’s frozen flow hypothesis, one must make the substitution ρ = V τ/ξ in

the integral definition of the statistical quantity of interest. To see that this is indeed necessary,

consider a turbulent eddy of size l at the point z along the propagation path of length L moving

perpendicular to the propagation path with velocity V . Because the spherical wave front is

expanding as it propagates, unlike the plane wave, the portion of the wave front disturbed by the

eddy is also expanding. An observer at the distance L − z from the turbulent eddy "sees" the eddy

as being of size ldist = l L
z as can be determined from the relation between concentric spherical

wave fronts. Thus, for the observer, the apparent velocity of the disturbance is vdist = V L
z .

Therefore the relation between spatial observation distance, ρ, and the equivalent observation time,

τ , as discussed in plane wave case, is now ρ = vdistτ = V L
z τ . In the substitution ρ = V τ/ξ ,

ξ = z
L is the normalized path length argument and is also the variable of integration. Note that

in the case of the plane wave geometry, the substitution ρ = V τ is independent of the variable of

integration; hence this substitution can be made after the integration is completed. However, in

the case of a spherical wave, the substitution is explicitly dependent on the variable of integration,

ξ , and therefore must be made prior to the completion of the integration. Thus, one cannot use
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the same simple intuitive argument to derive an expression governing the frequency spread of a

spherical wave as was used for the plane wave.

The frequency spread of a spherical wave can be determined from an examination of

the temporal frequency spectrum, i.e. the Fourier transform of the mutual coherence function.

However, as noted by Ishimaru,4 the spherical wave mutual coherence function is statistically

inhomogeneous because it depends explicitly on the location of the two points in the observation

plane. However, if we consider the special case when the observation points are symmetrically

located with respect to the optical axis, i.e. r1 = −r2, then the mutual coherence function is a

function of the separation distance of the two points, ρ, as was the case for a plane wave. In this

case, the spherical wave spatial mutual coherence function is given by2, 4

2 (ρ, L) = exp −1
2
Dsp (ρ, L) , (167)

where Dsp (ρ, L) is the spatial spherical wave structure function whose integral definition is given

by (90). We recall that the average spherical wave temporal frequency spectrum is given by the

Fourier transform of the temporal mutual coherence function. Thus, we must first convert (167)

from a spatial statistic to a temporal one in the manner suggested by Belen’kiı̃ and Mironov27 as

discussed above. This means that in the integral definition of the spatial spherical wave structure

function we must make the substitution ρ = V τ/ξ , which yields

D (V τ , L) = 8π2k2L
∞

0
κ n (κ) [1− J0 (κV τ)] dκ. (168)
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This is the exact result that one obtains for the temporal plane wave structure function. This

indicates the temporal mutual coherence function for a spherical wave is identical to that of a plane

wave when one considers points in the observation plane that are symmetrically located about

the optical axis. Therefore, in turn, this suggests that the temporal frequency spectrum and the

frequency spread of the spectrum are identical in the plane and spherical wave cases.

Although this may seem surprising, we show in the next section, that the spherical wave

frequency spread can also be determined independently of the mutual coherence function as was

done for the plane wave and that the plane and spherical wave results agree. Indeed, although we

do not make the assumption that the observation points are symmetrically located about the optical

axis in the derivation of the next section, we will see that the numerical values of the frequency

spread derived in the manner given are nearly identical to the plane wave case.

7.3.2 Analytic derivation of spherical wave frequency spread

Here, we derive an expression for the spherical wave frequency variance independent of the

mutual coherence function in the same manner as was done in the plane wave case. Recall that

the frequency variance was related to the temporal phase covariance function through the relation

given by (147). The spherical wave spatial phase covariance function is given by2

Bs,sp (ρ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κξρ) 1+ cos

Lκ2ξ

k
(1− ξ) dκdξ . (169)
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Applying Taylor’s frozen flow hypothesis for a spherical wave, we make the substitution

ρ = V τ/ξ , so that the spherical wave temporal phase covariance function is given by

Bs,sp (V τ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κV τ) 1+ cos

Lκ2ξ

k
(1− ξ) dκdξ. (170)

Now applying the relation given by (147), we find that the spherical wave frequency variance is

given by26

σ 2
f,sp = 0.25k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
(1− ξ) dκdξ. (171)

Assuming an infinite outer scale, we substitute the analytic approximation to the Hill

spectrum, (151), into equation (171) to obtain spherical wave frequency variance results based

on the standard Rytov approximation. The resulting spherical wave frequency variance is given

by26 (see Appendix F)

σ 2
f,sp,SR = 0.0258σ 2

1
k
L

V 2Q1/6
l × 1+ 0.723 3F2

1
12,

7
12, 1; 3

4,
5
4 ; −

Q2
l

16

+0.317 3F2
1
3,

5
6, 1; 3

4,
5
4 ; −Q2

l
16 (172)

−0.04 3F2
3
8,

7
8, 1; 3

4,
5
4 ; −Q2

l
16 ,

where the "SR" subscript indicates that this is for the standard Rytov method and 3F2(x) is a

generalized hypergeometric function. We note that because (172) is based on the standard Rytov

approximation, it is believed to be valid only in weak optical turbulence. In figure 18 we compare
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the results for the spherical wave frequency spread, σ f , obtained when (172) is substituted into

(157), to the plane wave frequency spread obtained by substituting (156) into (157). Additionally,

we have plotted the plane wave frequency spread, (133), where the coherence radius is that given

by (132), obtained from an analysis of the Fourier transform of the mutual coherence function.

From the analysis conducted in last section where it was concluded that the plane and spherical

wave frequency spectrums are identical for the case when r1 = −r2, we expect that all three results

should be identical and indeed from figure 18, we see that is approximately the case. As in the

case of a plane wave, this supports the conclusion that (172) serves as a good approximation to

the frequency spread of the frequency spectrum with the advantage of avoiding an analysis of the

mutual coherence function.
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Figure 18 The plane and spherical wave frequency spread in Hz as a function of increasing
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To derive an expression for the spherical wave frequency variance that is believed to be valid

in all optical turbulence conditions we substitute the effective Hill spectrum, (67), where again

f (κl0) is given by (158) and g (κL0) = 1, into (171). The resulting expression for the spherical

wave frequency variance is given by26

σ 2
f,sp,MR = σ 2

f,x + σ 2
f,y, (173)

where the "MR" subscript indicates that this is for the modified Rytov method and (see Appendix

F)

σ 2
f,x = 0.0258σ 2

1
k
L

V 2α1/6
x × 1+ 0.723 3F2

1
12,

7
12, 1; 3

4,
5
4 ; −α

2
x

16

+0.317 3F2
1
3,

5
6, 1; 3

4,
5
4 ; −α

2
x

16 − 0.04 3F2
3
8,

7
8, 1; 3

4,
5
4 ; −α

2
x

16 , (174)

σ 2
f,y = σ 2

f,sp,SR − 0.0258σ 2
1
k
L

V 2α1/6
y × 1+ 0.723 3F2

1
12,

7
12, 1; 3

4,
5
4 ; −

α2
y

16

+0.317 3F2
1
3,

5
6, 1; 3

4,
5
4 ; −

α2
y

16 − 0.04 3F2
3
8,

7
8, 1; 3

4,
5
4 ; −

α2
y

16 . (175)

The remaining parameters in (174) and (175) are given by7

ηx(sp) =
8.56

1+ 0.18σ 2
1Q

1/6
l

, ηy(sp) = 9
0.4σ 2

1
σ 2
s

6/5

1+ 0.69σ 12/5
s , (176)

αx =
ηx(sp)Ql
ηx(sp)+Ql

, αy =
ηy(sp)Ql
ηy(sp)+Ql

, (177)
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where β2
0 = 0.4σ 2

1 and

σ 2
s = 3.86σ 2

1 0.4 1+ 9/Q2
l

11/12
sin

11
6

tan−1 Ql
3

+ 2.61

9+ Q2
l

1/4 sin
4
3

tan−1 Ql
3

− 0.52

9+ Q2
l

7/24 sin
5
4

tan−1 Ql
3

− 3.50Q−5/6
l . (178)

When graphed as a function of increasing turbulence strength, the frequency spread obtained

using (157) where σ 2
f is the modified Rytov method frequency variance, (173), the results are

similar to those presented in figure 18. Indeed, it is found that the modified Rytov method plane

and spherical wave frequency spread are nearly identical. To avoid redundancy, the graph is

intentionally not presented.
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8. SLANT PATH TEMPORAL FREQUENCY SPREAD

8.1 Introduction

Many free space optical systems, such as ground to satellite communication systems,

transmit an optical signal along a slant path. This situation is fundamentally different than

horizontal path transmission because the atmospheric index of refraction structure parameter,C2
n , is

altitude dependent. Furthermore, the uplink case, in which transmission occurs from the ground to

a receiver at some altitude H , yields different results than the downlink case, in which transmission

occurs from a transmitter at an altitude H to the ground. In this chapter, the frequency spread

results for horizontal paths of the last chapter are extended to slant paths. Both the uplink and

downlink scenarios are considered. Integral expressions valid in conditions of weak irradiance

fluctuations are developed using the standard Rytov method. Expressions believed valid under all

conditions of irradiance fluctuations, i.e. all optical turbulence conditions, are derived using the

modified Rytov method.

8.2 Hufnagel-Valley model

In the horizontal path work considered so far, the atmospheric index of refraction structure

parameter, C2
n , has been assumed to be constant along the propagation path. However,

this parameter is altitude dependent. Thus, this dependence must be accounted for in slant

path problems. The Hufnagel-Valley (H-V) model is commonly used to describe the altitude

dependency of the refractive index structure parameter and is given by2
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C2
n (h) = 0.00594

ν

27
2

10−5h
10

exp − h
1000

+2.7× 10−16 exp − h
1500

+ A exp − h
100

, (179)

where h is the altitude in meters (m), ν is the rms windspeed (pseudowind) in meters per second

(m/s), and A is the nominal value of C2
n (0) at the ground in m−2/3. The rms windspeed, ν, is given

by2

ν = 1
15× 103

20×103

5×103
V 2 (h) dh

1/2

, (180)

where V (h) is often described by the Bufton wind model

V (h) = ωsh + νg + 30 exp − h − 9400
4800

2
. (181)

The quantity νg is the ground wind speed and ωs is the slew rate associated with the receiver (i.e.

plane or satellite) moving with respect to an observer on the ground. In the work that follows,

the H-V model will be substituted into the integral definitions of the plane and spherical wave

frequency variance, σ 2
f , developed in the previous chapter, (150) and (171), to develop slant path

temporal frequency spread results.
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It is also necessary to address the differences between the uplink and donwlink scenarios. If

we let h0 be the transmitter height above the ground in meters, H be the receiver altitude in meters,

and ζ be the zenith angle then the transmission path length, L, is given by

L = (H − h0) sec (ζ ) . (182)

In the horizontal path integral formulation the variable of integration, ξ , is a normalized distance,

that is ξ = z
L , where z ranges from 0 to L, so that integration is over the path from the transmitter

to the receiver. For the slant path scenario, integration is over the path from h0 to H for the uplink

scenario (i.e. transmission from the ground) and over the path from H to h0 for the downlink

scenario (i.e. transmission to the ground). Therefore, in order to maintain the integral formulation

for the frequency variance of the transmitted wave, we integrate over the variable of integration, h,

from h0 to H for the uplink, where we set

ξ = 1− h − h0

H − h (183)

and from H to h0 for the downlink, where we set

ξ = h − h0

H − h (184)

in equations (150) and (171) for a transmitted plane wave and spherical wave, respectively.
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8.3 Plane wave

Applying the standard Rytov method, slant path plane wave frequency variance expressions

can be obtained by substituting the Hill spectral model, (151), and the H-V refractive index

structure parameter model for C2
n , (179), into (150). Completing the integration on κ yields

the resulting integral expression for the plane wave frequency variance along a slant path28

σ 2
f,pl,SR = 0.0317κ1/3

l k2V 2 sec (ζ )×
H

h0

C2
n (h)

× 1+ 0.723 2F1
1

12,
7
12 ; 1

2 ; −Q2
l ξ

2 (185)

+0.317 2F1
1
3,

5
6 ; 1

2 ; −Q2
l ξ

2 − 0.04 2F1
3
8,

7
8 ; 1

2 ; −Q2
l ξ

2 dh ,

where the "SR" subscript indicates that this is from the standard Rytov method, ξ is given by (183)

for the uplink case and by (184) for downlink the downlink case. As in the horizontal path case,

the outer scale of turbulence is assumed to be infinite. As equation (185) was derived using the

standard Rytov method, it is expected to be valid only in weak optical turbulence.

The modified Rytov method can be used to derive results that are expected to be valid in all

turbulence conditions. Again assuming an infinite outer scale, the effective Hill spectral model,

(67), with f (κl0) given by (158) and g (κL0) = 1, and the H-V model are substituted into the

integral definition of the plane wave frequency variance, (150). Completing the integration on

κ , the slant path plane wave frequency variance is given by the sum of a large and small scale

component28
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σ 2
f,pl,MR = σ 2

f,x + σ 2
f,y. (186)

where the "MR" subscript denotes that this is for the modified Rytov method. The large and small

scale components are defined by

σ 2
f,x = 0.0317α1/6

x k
2V 2 sec (ζ )×

H

h0

C2
n (h)× 1+ 0.723 2F1

1
12,

7
12 ; 1

2 ; −α2
xξ

2

+0.317 2F1
1
3,

5
6 ; 1

2 ; −α2
xξ

2 − 0.04 2F1
3
8,

7
8 ; 1

2 ; −α2
xξ

2 dh , (187)

σ 2
f,y = σ 2

f,pl,SR − 0.0317α1/6
y k

2V 2 sec (ζ )×
H

h0

C2
n (h)

× 1+ 0.723 2F1
1
12,

7
12 ; 1

2 ; −α2
yξ

2 (188)

+0.317 2F1
1
3,

5
6 ; 1

2 ; −α2
yξ

2 − 0.04 2F1
3
8,

7
8 ; 1

2 ; −α2
yξ

2 dh .

In (188), σ 2
f,pl,SR is the standard Rytov method frequency variance along a slant path given by

(185) and ξ is given by (183) for uplink paths and (184) for downlink paths. The parameters αx

and αy are identical in form to those of the horizontal path case, however an altitude dependency

is built into the nondimensional frequency cutoffs through the Rytov variance. The parameters are

given by

116



ηx(pl) =
Lκ2

x
k
, αx =

ηx(pl)Ql
ηx(pl)+Ql

, ηy(pl) =
Lκ2

y

k
, αy =

ηy(pl)Ql
ηy(pl)+Ql

, (189)

where

ηx = 2.61
1+ 1.11σ 12/5

1

, (190)

ηy = 3 1+ 0.69σ 12/5
1 . (191)

In (190) and (191) the Rytov variance, σ 2
1, is that for a plane wave along a slant path given by2

σ 2
1 = 2.25k7/6 (H − h0)

5/6 sec (ζ )
H

h0

C2
n (h) ξ

5/6dh. (192)

Figure 19 details results for the temporal frequency spread, σ f , of a plane wave for both

uplink and downlink paths for a fixed target altitude as a function of zenith angle, ζ . The software

package Maple was used to numerically evaluate the remaining integrals in expressions (185),

(187) and (188). For convenience, a nominal value of ν = 3 m/s has been assumed. It is seen

in figure 19 that for zenith angles less than about 50o the temporal frequency spread is almost

constant for both the uplink and donwlink scenarios and the standard and modified Rytov methods

predict frequency spread values that are approximately equal. This is expected because for these

angles the majority of the propagation path lies in the upper atmosphere where the value of C2
n
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decreases rapidly corresponding to weak turbulence conditions. However, the two methods predict

different results, particularly for the uplink case, as the zenith angle increases beyond 50o as the

propagation path becomes nearly horizontal and strong turbulence conditions arise.
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Figure 19 Plane wave slant path temporal frequency spread as a function of zenith angle, ζ .
The uplink/downlink standard Rytov curves are given by (185). The uplink/downlink
modified Rytov curves are given by (186).
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In figure 20, the slant path plane wave frequency spread is plotted as a function of the target

altitude, H , for a fixed zenith angle of ζ = 85o. This is effectively a plot of the frequency spread as

a function of propagation path length and represents the worst case scenario for a communication

system because the high zenith angle corresponds to a situation where the optical signal propagates

a great distance through the Earth’s atmosphere at low altitudes where degradation of the optical

signal is most severe. Comparing figure 20 to figure 13 indicates that for large zenith angles, the

results are nearly the same as for a horizontal path as is expected.
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Figure 20 Plane wave slant path temporal frequency spread as a function of altitude, H . The
uplink/downlink standard Rytov curves are given by (185). The uplink/downlink
modified Rytov curves are given by (186).
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8.4 Spherical wave

A similar analysis of the slant path frequency spread can be conducted for a transmitted

spherical wave. The standard Rytov method is considered first. The Hill spectral model, (151),

and the H-V refractive index structure parameter model for C2
n , (179), are substituted into the

integral definition of the spherical wave frequency variance, (171). Completing the integration on

κ , the resulting integral expression for the slant path spherical wave frequency variance is28

σ 2
f,sp,SR = 0.0317κ1/3

l k2V 2 sec (ζ )×
H

h0

C2
n (h)

× 1+ 0.723 2F1
1
12,

7
12 ; 1

2 ; −Q2
l ξ

2 (1− ξ)2

+0.317 2F1
1
3,

5
6 ; 1

2 ; −Q2
l ξ

2 (1− ξ)2

−0.04 2F1
3
8,

7
8 ; 1

2 ; −Q2
l ξ

2 (1− ξ)2 dh , (193)

where either (183) or (184) can be used for ξ because this result is a function of ξ2 (1− ξ)2 which

will have an identical dependency on the integration parameter, h, regardless of which form of ξ is

applied. This indicates that (193) will yield identical results for both uplink and downlink paths.

Because it was derived using the standard Rytov method, equation (193) is expected to be valid in

weak turbulence only.

Slant path spherical wave temporal frequency spread results using the modified Rytov

method are developed in the same manner as in the plane wave case. The effective Hill spectral

model, (67), with f (κl0) given by (158) and g (κL0) = 1, and the H-V model are substituted into
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the integral definition of the spherical wave frequency variance, (171). Completing the integration

on κ , the slant path spherical wave frequency variance is given by the sum of a large and small

scale component28

σ 2
f,sp,MR = σ 2

f,x + σ 2
f,y, (194)

where

σ 2
f,x = 0.0317α1/6

x k
2V 2 sec (ζ )×

H

h0

C2
n (h)

× 1+ 0.723 2F1
1
12,

7
12 ; 1

2 ; −α2
xξ

2 (1− ξ)2 (195)

+0.317 2F1
1
3,

5
6 ; 1

2 ; −α2
xξ

2 (1− ξ)2 − 0.04 2F1
3
8,

7
8 ; 1

2 ; −α2
xξ

2 (1− ξ)2 dh ,

σ 2
f,y = σ 2

f,sp,SR − 0.0317α1/6
y k

2V 2 sec (ζ )×
H

h0

C2
n (h)

× 1+ 0.723 2F1
1

12,
7
12 ; 1

2 ; −α2
yξ

2 (1− ξ)2 (196)

+0.317 2F1
1
3,

5
6 ; 1

2 ; −α2
yξ

2 (1− ξ)2 − 0.04 2F1
3
8,

7
8 ; 1

2 ; −α2
yξ

2 (1− ξ)2 dh .

In (196), σ 2
f,sp,SR is that along a slant path given by (193). The parameters αx and αy again

incorporate an altitude dependency and are given by
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ηx(sp) =
Lκ2

x
k
, αx =

ηx(sp)Ql
ηx(sp)+Ql

, ηy(sp) =
Lκ2

y

k
, αy =

ηy(sp)Ql
ηy(sp)+Ql

, (197)

where

ηx = 8.56
1+ 0.19σ 12/5

1

, (198)

ηy = 9 1+ 0.23σ 12/5
1 . (199)

In (198) and (199), the Rytov variance, σ 2
1, is that along a slant path given by (192).

We now examine the slant path temporal frequency spread, σ f , of a spherical wave for both

uplink and downlink paths. Figure 21 presents the data for a fixed target altitude as a function of

zenith angle, ζ . Again a nominal value of ν = 3 m/s has been used. As previously noted the

frequency variance given by the standard Rytov method, (193), yields identical results for uplink

and downlink due to the functional dependency on ξ . However, the modified Rytov method model,

(194), yields numerically different values for uplink and downlink because the the values of the

nondimensional frequency cutoff parameters, ηx and ηy , are dependent on the slant path Rytov

variance, (192), which has different values for uplink and downlink. It is seen in figure 21 that

for zenith angles less than about 50o the frequency spread is almost constant for both uplink and

donwlink, as was the case for plane waves. Additionally the numerical values are approximately

equal to the values obtained in the plane wave case. This is expected given the analysis of the
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horizontal path frequency spread where it was also observed that the plane and spherical wave

cases were approximately equal.
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Figure 21 Spherical wave slant path temporal frequency spread as a function of zenith angle, ζ .
The uplink/downlink standard Rytov curve is given by (193). The uplink/downlink
modified Rytov curves are given by (194).
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In figure 22, the slant path spherical wave frequency spread is plotted as a function of the

target altitude for a fixed zenith angle of ζ = 85o It is seen that the behavior of the results is the

same as the plane wave case.
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Figure 22 Spherical wave slant path temporal frequency spread as a function of altitude, H .
The uplink/downlink standard Rytov curve is given by (193). The uplink/downlink
modified Rytov curves are given by (194).
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It should be noted that the decrease in the frequency spread observed in figures 20 and

22 at higher altitudes for the modified Rytov method expressions (186) and (194) is most likely

non-physical. Rather, it is expected that the results should level off in the manner of the expressions

for the horizontal path case, (159) and (173). The observed decrease is most likely a result

of the fact that the nondimensional parameters, ηx and ηy , used in the slant path modeling do

not include the effects of a finite inner scale. Parameters including a finite inner scale were

used for the horizontal path development and no such decrease was noted. However, for a slant

path, these parameters would require integral expressions for the scintillation index of a plane or

spherical wave along a slant path using the Hill spectrum and we are not aware, at this time, of

such expressions.

Finally, slant path spherical wave frequency spread values in Hz are provided for fixed path

lengths in table 1. The standard Rytov method results are used, so that the values correspond

to both uplink and downlink scenarios (spherical wave only). Table 1 represents the worst-case

scenario for an optical communication system where the ground level index of refraction structure

parameter is A = C2
n (0) = 10−12, corresponding to very strong atmospheric turbulence. The

receiver altitude, H , is allowed to vary depending on ζ , νg = 10 km/hr , and λ = 1.55 µm. The

values in table 1 are derived from equation (193) for zenith angles, ζ < 90o. Values for horizontal

paths, ζ = 90o, are derived from the horizontal path expression, (172).
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Table 1 Spherical wave slant path temporal frequency spread (Hz).
Zenith Angle (deg) 90 60 30 0
Path Length (km) Frequency Spread, σ f

1 241 136 105 99
10 724 137 107 100
100 N/A 140 108 101
1000 N/A 141 109 102
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9. DOUBLE PASS WAVE STRUCTURE FUNCTION

9.1 Introduction

Recently, there has been increased interest in using laser radar, or lidar, systems to

augment conventional microwave radar systems. Lidar systems offer certain advantages over their

microwave counterparts, such as reduced size and power requirements and more secure channels.

However, there are many challenges associated with the development and implementation of lidar

systems due to the random fluctuations in phase and amplitude of the optical signal propagating

through the Earth’s atmosphere. As compared to one-way propagation systems, such as laser

communications, these atmospheric effects are further complicated in a lidar system. In

particular, the reflected wave often traverses a medium that is statistically correlated with the

medium traversed by the incident wave. Additionally, the effects of reflection from a target

must be considered. Thus, to effectively design a lidar system, it is useful to develop analytic

models describing the atmospheric effects on the propagating signal that incorporate the target

characteristics and the channel statistical correlation effects. Furthermore, any real world lidar

system is likely to operate under conditions of moderate to strong irradiance fluctuations, that

is moderate to strong optical turbulence. Thus, for any analytic model to be of practical value, it

must accurately model the atmospheric turbulence induced effects in the moderate to strong optical

turbulence regimes.

This chapter details the development of analytic wave structure function expressions for

the horizontal double pass scenario for reflection from a smooth target, i.e. a plane mirror or

a retroreflector. Expressions are given for point and finite size targets. It has been shown
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previously2 that in the Rytov approximation the horizontal double pass wave structure function

reduces analytically to the one-way horizontal path spherical wave structure function for incident

plane, spherical and Gaussian-beam waves for the point target case. However, in the finite

target case the double pass wave structure function is dependent on the incident wave type.

Hence, the finite target case is considered only for incident spherical waves. Comparisons are

presented between the standard and modified Rytov approximation results. Further comparisons

are presented between the coherence radius obtained from the wave structure functions and the

strong turbulence asymptotic coherence radius results given by Banakh and Mironov.29

9.2 Integral definitions

In order to develop models describing the wave structure function associated with the

double pass problem, it is necessary to incorporate the effects of reflection from a target and

the statistical correlation effects associated with the double pass propagation of the optical wave.

In the double pass problem, the reflected wave may or may not pass through a medium that is

statistically correlated with the medium traversed by the incident wave. When the incident and

reflected wave travel through statistically dependent atmospheric turbulence, enhanced backscatter

effects may be observed. Thus, two cases must be considered. In the work that follows, the

propagation channel is considered bistatic when the incident wave and reflected wave propagate

through statistically independent atmospheric turbulence. The propagation channel is considered

monostatic when the incident wave and reflected wave propagate through statistically dependent

atmospheric turbulence. Additionally, it is useful to classify the target as a point, unbounded or
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finite target. The target size is classified by its relation to the first Fresnel zone,
√
L/k, through

the Fresnel-target ratio R given by

R = 2L
kW 2

R
(200)

where WR is the reflector radius. The target is considered to be a point target when R 1, an

unbounded target when R 1, and a finite target otherwise.

The statistical moments of the optical field encountered in the double pass problem after

reflection from a smooth target can be derived from the spectral representations of the complex

phase perturbations encountered in this scenario. This approach is well documented by Andrews

and Phillips.2 The spectral representations of the complex phase perturbations arising from

propagation in the atmosphere are derived using ABCD ray matrices that incorporate the effects

of reflection from a smooth target. Additionally, Andrews and Phillips2 have used this ABCD ray

matrix approach to account for the enhanced backscatter effects. Given the spectral representations

of the complex phase perturbations, one can then develop expressions for various statistical

quantities of the optical field by considering the appropriate ensemble averages.

In the special cases of a point target and an unbounded target, the integral definitions of the

wave structure function can be greatly simplified. Andrews and Phillips showed that, applying the

Rytov approximation method, the double pass wave structure function for a point target is defined

by2

Dpoint (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) [1− J0 (κξρ)] dκdξ (201)
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This expression is valid for incident plane, spherical and Gaussian-beam waves in both monostatic

and bistatic channels. We point out that (201) is equivalent to the one-way horizontal path spherical

wave structure function, (90).

When the target is finite, the wave structure function is explicitly dependent on the position

of the points in the observation plane. That is, if r1 and r2 are any two points in the observation

plane, the wave structure function is a function of r1 and r2. However, in the special case when

the observation points are symmetrically located about the optical axis, i.e. r1 = −r2, the wave

structure function is dependent only on the separation distance of the two points, ρ = |r2 − r1|.

It can be shown that, for observation points symmetrically located about the optical axis, applying

the Rytov approximation, the finite target double pass wave structure function is defined by2

D f inite (ρ, 2L) = i (ρ, L)+ R (ρ, L)± Re i R (ρ, L) (202)

where L is the one-way distance from the transmitter to the target, i denotes the incident term, R

denotes the reflected term, and iR denotes the correlation term arising in a monostatic channel.

The upper plus sign in (202) is used for a plane mirror and the lower minus sign is used for a

retroreflector. In the bistatic case, the correlation term, i R (ρ, L), in (202), is taken to be zero.

When the incident wave is a spherical wave, the three terms appearing in (202) are defined by2

i (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) exp − 2Lκ2ξ2

k

[I0 ( 2κξρ)− J0 ( 2κξρ)] dκdξ, (203)
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R (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) exp − 2Lκ2ξ2

k

× I0 ( 2κξρ)− J0 1− ¯ 2ξ κρ dκdξ, (204)

i R (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) exp − 2Lκ2ξ2

k
J0 (1− ξ + 2 j 2ξ)

κρ

2

+J0 (1− ξ − 2 j 2ξ)
κρ

2
− 2J0 (1− ξ + 2 2ξ)

κρ

2
dκdξ, (205)

where j = √−1 and I0 (x) is the zeroth order modified Bessel function of the first kind. The

nondimensional parameters 2, 2, and ¯ 2 are beam parameters characterizing the reflected wave.

Assuming the incident wave is a spherical wave, these beam parameters are defined by2

2 = R

4+ 2
R
, 2 = 2

4+ 2
R
, ¯ 2 = 1− 2. (206)

9.3 Point target

In the special case when the target radius is much smaller than the first Fresnel zone size,

that is, when R 1, the target can be treated as a point target. In this case, the double pass

horizontal path wave structure function is given by (201). As previously stated, this is equivalent

to the one-way horizontal path spherical wave structure function for a wave propagating over a

path length of L. This expression is valid for an incident plane, spherical or Gaussian-beam wave

for both a bistatic and monostatic channel.
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We can derive an analytic expression for the wave structure function using the standard

Rytov approximation by using the Tatarskii spectrum, (25). It is necessary to include a finite inner

scale in the spectral model to allow for convergence of the integrals. However, the dependence of

the wave structure function on the inner scale is removed after integration by assuming appropriate

restrictions on ρ. In this work, we ignore the finite inner and outer scale effects as we are seeking

only the basic behavior of the wave structure function. Substituting the Tatarskii spectrum, (25),

into the integral definition of the point target wave structure function expression, (201), evaluating

the integrals, and then removing the inner scale effects, the resulting expression is2

DSRpoint (ρ, 2L) = 1.093C2
nk

2Lρ5/3, l0 ρ L0, (207)

where L is the one-way distance from the transmitter to the target. This is the previously

describe five-thirds power law expression for the one-way spherical wave structure function, (91).

The "SR" superscript is used to denote that this expression is obtained from the standard Rytov

approximation.

To obtain a wave structure function expression using the modified Rytov method, we allow

f (κl0) = exp − κ2

κ2
m

and g (κL0) = 1 in the effective atmospheric spectrum, (67). This is

equivalent to using an effective Tatarskii spectrum. It was shown in the chapter on the one-way

horizontal path wave structure function, that upon substitution of (67) into the integral definition

of the wave structure function, (201), after evaluation of the integrals and allowing the inner scale
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to go to zero, the resulting wave structure function expression is given by

DMRpoint (ρ, 2L) = Dx (ρ, L)+ Dy (ρ, L) , l0 ρ L0, (208)

where the "MR" superscript denotes that this expression is for the modified Rytov method and

Dx and Dy are approximately given by (98) and (99). The nondimensional parameters ηx(sp)

and ηy(sp) incorporate the large and small scale frequency cutoffs for a spherical wave, κx(sp) and

κ y(sp), and are given by (100) and (101). The comparison of the double pass point target wave

structure function expressions, (207) and (208), is equivalent to the comparison of the one-way

horizontal path spherical wave structure functions given in figure 7.

9.4 Finite target

When the target radius is on the order of the first Fresnel zone, that is when R is close

to one, then the full integral expression for the double pass wave structure function, (202), must

be evaluated. Recall that the integral definition of the finite target double pass wave structure

function given by (202) assumes that the incident, or transmitted, wave is spherical. We can

obtain an analytic expression using the standard Rytov approximation for the finite target case in

the same manner as for the point target case. As was the case for the one-way horizontal path

Gaussian-beam wave structure function, it is mathematically sufficient in the double pass finite

target case to use the Kolmogorov spectrum and still have convergence of the integrals. The

reason for this is that the exponential function in equations (203)-(205) allows for convergence of

the integrals. Substituting the Kolmogorov spectrum, (24), into the three equations (203)-(205)
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defining the finite target double pass wave structure function and evaluating yields2

DSRf inite (ρ, 2L) = 1.093C2
nk

7/6L11/6 | 2|5/3 + a2 ± 1
2

5/3
(a3 − a4)

kρ2

L

5/6

+1.236 11/6
2

kρ2

L
, (209)

where L is the one-way distance from the transmitter to the target, 2 and 2 are given by (206),

and

a2 =


1− 8/3

2
1− 2

, 2 ≥ 0,

1+ | 2|8/3
1− 2

, 2 < 0,

(210)

a3 =


1− (2 2)

8/3

1− 2 2
, 2 ≥ 0,

1+ |2 2|8/3
1− 2 2

, 2 < 0,

(211)

a4 = 1
1+ 4 2

2
− (2 2)

8/3

1+ 4 2
2

1/2 cos tan−1 (2 2)+ 4π
3

. (212)

The wave structure function given by (209) is for the monostatic case. The upper plus sign

is used for a plane mirror target and the lower minus sign is used for a retroreflector target. In the

bistatic case, the terms a3 and a4 are both identically zero. Thus, we see that, in the bistatic case,

the wave structure function for a plane mirror and retroreflector target are identical.

As in the case of a point target, we can develop expressions for the finite target wave structure

function using the modified Rytov method by substituting the effective Kolmogorov spectrum,
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(67), where we let f (κl0) = 1 and g (κL0) = 1, into each of the three integral equations defining

the wave structure function, (203)-(205) and evaluating. For the sake of clarity, the evaluation of

these integrals is presented in Appendix G. The resulting finite target wave structure function for

the modified Rytov approximation is given by30

DMRf inite (ρ, 2L) = i
x (ρ, L)+ i

y (ρ, L)+ R
x (ρ, L)+ R

y (ρ, L)

±Re i R
x (ρ, L)+ i R

y (ρ, L) . (213)

The terms in (213) are defined by30

i
x (ρ, L) = 0.49σ 2

1η
1/6
x(gb)

kρ2

L
2
2 1+ 0.547ηx(gb) 2

−1/6

+ 2
2 1+ 0.033

2
2kρ

2ηx(gb)

L

−1/6
 , (214)

i
y (ρ, L) = 0.89σ 2

1 | 2|5/3 kρ2

L

5/6

+ 0.622 11/6
2

kρ2

L

−0.49σ 2
1η

1/6
y(gb)

kρ2

L
2
2 1+ 0.547ηy(gb) 2

−1/6

+ 2
2 1+ 0.033

2
2kρ

2ηy(gb)

L

−1/6
 , (215)
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R
x (ρ, L) = 0.49σ 2

1η
1/6
x(gb)

kρ2

L
2
2 1+ 0.547ηx(gb) 2

−1/6

+ 1
¯ 2

1+ 0.033
kρ2ηx(gb)

L

−1/6

−
3
2
¯ 2

1+ 0.033
kρ2 2

2ηx(gb)

L

−1/6
 , (216)

R
y (ρ, L) = 0.89σ 2

1 0.622 11/6
2

kρ2

L
+ a2

kρ2

L

5/6

−0.49σ 2
1η

1/6
y(gb)

kρ2

L
2
2 1+ 0.547ηy(gb) 2

−1/6

+ 1
¯ 2

1+ 0.033
kρ2ηy(gb)

L

−1/6

−
3
2
¯ 2

1+ 0.033
kρ2 2

2ηy(gb)

L

−1/6
 , (217)

Re i R
x (ρ, L) = 14.15σ 2

1η
−5/6
x(gb) 1+ (c1) 2F2 −5

6,
1
2 ; 1, 3

2 ; −
kρ2ηx(gb)

16L

− (c2) 2F2 −5
6,

1
2 ; 1, 3

2 ;
kρ2 2

2ηx(gb)
4L

− (c3) 2F2 −5
6,

1
2 ; 1, 3

2 ; −
kρ2 2

2ηx(gb)
4L , (218)
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Re i R
y (ρ, L) = 0.89σ 2

1
1
2

5/3 kρ2

L

5/6

(a3 − a4)

−14.15σ 2
1η
−5/6
y(gb) 1+ (c1) 2F2 −5

6,
1
2 ; 1, 3

2 ; −
kρ2ηy(gb)

16L

− (c2) 2F2 −5
6,

1
2 ; 1, 3

2 ;
kρ2 2

2ηy(gb)
4L

− (c3) 2F2 −5
6,

1
2 ; 1, 3

2 ; −
kρ2 2

2ηy(gb)
4L . (219)

The parameters a2 through a4 are given by (210)-(212), 2F2 (x) is a generalized hypergeometric

function and

c1 = 1
1− 2 2

− 1
1+ 4 2

2
, (220)

c2 = 4 2
2

1+ 4 2
2
, (221)

c3 = 1
1− 2 2

. (222)

Finally, we address the use of the Gaussian-beam wave frequency cutoffs, κx(gb) and κ y(gb), in

(214)-(219). Unlike the point target case where the reflected wave is spherical, the reflected wave

in the finite target case is like a Gaussian-beam wave, thus, it is necessary to use the Gaussian-beam

frequency cutoffs. The nondimensional parameters ηx(gb) and ηy(gb) are of the same form as those

used in the one-way horizontal path Gaussian-beam wave structure function and are given by

ηx(gb) =
Lκ2

x(gb)

k
= 1

3
− 1

2
¯ 2 + 1

5
¯ 2

2

−6/7 σ 2
1
σ 2
B

−6/7

1+ 0.56 σ 2
B

6/5 −1
, (223)

ηy(gb) =
Lκ2

y(gb)

k
= 3

σ 2
1
σ 2
B

6/5

+ 2.07 σ 2
1

6/5
, (224)
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where

σ 2
B = 3.86σ 2

1 0.4 (1+ 2 2)
2 + 4 2

2
5/12

cos
5
6

tan−1 1+ 2 2

2 2
− 11

16
5/6
2 . (225)

We now compare the results of the two finite target wave structure function expressions,

(209) and (213). In figure 23, the results are presented as a function of increasing turbulence

strength for the bistatic scenario. The propagation path length, L, is held constant while the index

of refraction structure parameter, C2
n , is allowed to vary. Varying the Rytov variance, i.e. the

turbulence strength, in this manner allows R to be held constant without changing the target

radius. Recall, that in the bistatic scenario the wave structure function is the same for both a

plane mirror and a retroreflector, so the curves presented in figure 23 are valid for both target

types. The comparative behavior is the same as for that of the point target case. The standard and

modified Rytov methods agree in the weak turbulence regime. However, in the moderate to strong

turbulence regime, the modified Rytov method predicts values smaller than those of the standard

Rytov method.
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Figure 23 The finite target double pass wave structure function as a function of increasing
turbulence strength for a bistatic scenario. The standard Rytov curve is given by
(209). The modified Rytov curve is given by (213). The Rytov variance is increased
by allowing C2

n to vary while L is held constant.
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In figure 24, the wave structure function results are compared as a function of increasing

turbulence for a monostatic scenario for both a plane mirror target and a retroreflector target.

The qualitative behavior is the same as that observed in the bistatic scenario. We see that the

retroreflector target produces wave structure function values that are less than the plane mirror

target. This is a result of the effects of the statistical correlation term in the wave structure function.

Essentially, there are two types of statistical correlations that arise in monostatic propagation

channels as explained in detail by Andrews et al.7 The two types of correlations can be explained

by considering the optical wave in terms of ray optics. The first type of correlation arises from a

"folded path" geometry in which the ray travels along the exact same path in both the incident and

reflected directions. The second type of correlation arises when two rays travel along a "reciprocal

path" geometry in which the rays do not travel along the exact same path in both directions but

the reflected rays do travel back along each other’s incident path. As stated in [7], the folded

path geometry creates a negative correlation that causes a decrease in the mean irradiance, while

the reciprocal path geometry creates a positive correlation that causes an increase in the mean

irradiance. Andrews and Phillips2 showed that the wave structure function is independent of the

reciprocal path terms. Thus, no positive correlation exists for the wave structure function and it

appears that the retroreflector case yields "less" folded paths than the plane mirror, resulting in an

overall decrease in the wave structure function as compared to the plane mirror case.
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Figure 24 The finite target double pass wave structure function as a function of increasing
turbulence strength for a monostatic scenario. The standard Rytov curves are given
by (209). The modified Rytov curves are given by (213). The Rytov variance is
increased by allowing C2

n to vary while L is held constant.
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Finally, in figure 25, we compare the finite target wave structure function of the standard

Rytov method to that of the modified Rytov method as a function of target radius, i.e. as a function

of R, in the weak turbulence regime, σ 2
1 = 0.1. In the weak turbulence regime, we expect

the two results to agree for all target sizes. This is important because it is believed that the

standard Rytov method is valid in the weak turbulence regime. We see in figure 25 that there is

very little numerical difference between the two methods in the weak turbulence regime and that

their qualitative behavior is identical. Further, we see that as R increases the plane mirror and

retroreflector curves approach the same limiting value. This result is expected because, for large

values of R, the target is like a point target, where the value of the wave structure function is

independent of the target type and the channel type. Although we have not presented specific

expressions for an unbounded target, that is where R approaches zero, we can infer from figure

25 that, unlike the point target, an expression for the unbounded target case will depend on the

target type as the plane mirror and retroreflector curves do not approach the same limiting value as

R decreases.
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Figure 25 The finite target double pass wave structure function as a function of R for a
monostatic scenario in weak turbulence, σ 2

1 = 0.1. The standard Rytov curves are
given by (209). The modified Rytov curves are given by (213). The upper set of
curves are for a plane mirror and the lower set of curves are for a retroreflector.
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9.5 Double pass coherence radius

Recall from our earlier work that the spatial coherence radius, ρ0, of an optical wave can

be defined as the e−1 point of the complex degree of coherence function, (131), and that finding

the coherence radius is equivalent to finding the value of ρ such that the wave structure function

is equal to two, i.e. D ρ0, L = 2. Banakh and Mironov29 presented asymptotic results for

the double pass coherence radius for an incident spherical wave in strong turbulence for several

cases. Of relevance to this work is the special case where the observation points, r1 and r2, are

symmetrically located about the optical axis, i.e. r1 = −r2. Banakh and Mironov29 presented

point target and infinite, i.e. unbounded, plane mirror results for this case. Here, we consider the

coherence radius predicted by the double pass wave structure functions found for the standard and

modified Rytov methods in these limiting cases and compare these results to those of Banakh and

Mironov.29 Specifically, for a spherical wave incident on a point target with observation points

symmetrically located about the optical axis, Banakh and Mironov found that the coherence radius

in the asymptotic limit of strong turbulence is given by29

ρ0 = 1.6ρ pl, (226)

where ρ pl is the coherence radius of a plane wave propagating along a path of length L given by

ρ pl = 1.46C2
nk

2L
−3/5

, (227)
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which is the result obtained from the standard Rytov approximation one-way plane wave structure

function. They also found, for a spherical wave incident on an infinite plane mirror in a monostatic

channel with observation points symmetrically located about the optical axis, that the coherence

radius in the asymptotic limit of strong turbulence is given by29

ρ0 = 2.46ρ pl . (228)

In figure 26, we compare the double pass coherence radius for a point target as obtained

from the standard Rytov approximation wave structure function, (207), and that obtained from

the modified Rytov approximation wave structure function, (208), to the asymptotic result, (226).

While the coherence radius derived from the modified Rytov wave structure function, (208), cannot

be expressed analytically it can be found numerically by setting the function equal to two and

solving for ρ. The results presented in figure 26 were found using a standard bisection method.

Figure 26 presents the value of the coherence radius as a function of increasing turbulence strength

in the moderate to strong optical turbulence regimes. We note that the results in this figure are

valid for a bistatic or monostatic channel as the point target wave structure function is independent

of the channel type.
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Figure 26 The double pass point target coherence radius (cm) as a function of increasing
turbulence strength, σ 2

1, in the moderate to strong regime. The standard Rytov curve
is obtained from (207), the modified Rytov curve is obtained from (208), and the
Banakh curve is obtained from (226). The propagation path length, L, is held constant
while C2

n is allowed to vary.
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In figure 27, we compare the double pass coherence radius results for an unbounded target

in a monostatic channel. We determine the coherence radius for an unbounded target as predicted

by the standard Rytov method and the modified Rytov method by setting R = 0.01 in (209) and

(213), respectively, and solving for ρ. For both methods, these results are found numerically using

a bisection method. The results are compared to the asymptotic result given by (228). We note

that the results of figure 27 are valid only for a plane mirror target in a monostatic channel. As

previously noted, unlike the point target case, the limiting case of an unbounded target is dependent

on the channel and target type.

Although the results in figures 26 and 27 are not conclusive, it does appear that the coherence

radii predicted by the modified Rytov method agree with Banakh and Mironov’s29 asymptotic

results better than then the standard Rytov approximation. Particularly, in the strong turbulence

regime, σ 2
1 > 10, where the asymptotic results are expected to be valid, we see in both figures that

the modified Rytov results are nearly identical to the asymptotic results, while the standard Rytov

results seem to underpredict the coherence radius values.
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10. DOUBLE PASS TEMPORAL FREQUENCY SPREAD

10.1 Introduction

As mentioned in the preceding chapter, laser radar, or lidar, systems are directly analogous

to conventional microwave radar systems in the sense that their purpose is to determine target

characteristics such as range and rate. Additionally, by analyzing micro-Doppler shifts in the

received frequency of the echo wave, such systems can determine various target characteristics

such as reflectivity and temperature. This information is particularly valuable for target

identification. However, the random phase fluctuations caused by propagation in a turbulent

atmosphere impart random frequency fluctuations on the optical signal. Thus, in order to use

measurements of the micro-Doppler shift to determine target characteristics, it is first necessary

to understand the impact of atmospheric induced frequency fluctuations on the optical signal.

Furthermore, as most real world systems would operate in conditions of moderate to strong

irradiance fluctuations, i.e. moderate to strong optical turbulence, it is necessary to model

atmospheric frequency fluctuations in these conditions. In this chapter, the previously developed

models for frequency variance along a one-way horizontal path are extended to double pass

horizontal paths with reflection from a smooth target assuming a transmitted spherical wave. As

in the case of the double pass wave structure function, it is necessary to consider both bistatic and

monostatic channels. Point and finite size target expressions are developed using the standard and

modified Rytov methods.
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10.2 Integral definitions

Recall from the earlier chapter on the horizontal path temporal frequency spread, it was

determined that the frequency variance, σ 2
f , is related to the temporal phase covariance function,

Bs (τ ), through the relation

σ 2
f = −

Bs (τ)
4π2

τ=0

. (229)

Assuming that this same relation holds for the double pass frequency variance, it is necessary to

determine expressions for the double pass temporal phase covariance function. This expression

must include the effects of reflection of the optical wave from a target and the statistical correlation

effects that arise when propagation occurs in a monostatic channel. An expression for the double

pass spatial phase covariance function can be developed using ABCD ray matrices in the same

manner as for the double pass wave structure function. Given the double pass spatial phase

covariance function, Taylor’s frozen flow hypothesis can be applied to yield the double pass

temporal phase covariance function.

Recall that in the case of a spherical wave, Taylor’s frozen flow hypothesis dictates that, prior

to integration, we make the substitution ρ = V τ/ξ = V τ L
z , where V is the crosswind velocity.

This substitution will be sufficient in the point target case where the reflected wave is spherical.

However, recall that in the double pass wave structure function work, it was noted that reflection

from a finite target results in a reflected wave that is like a Gaussian-beam wave. In this case, the

geometry is no longer spherical. To arrive at an appropriate substitution in this case, consider the
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horizontal path amplitude ratio

γ = 1− ¯ + i 1− z
L
, (230)

as presented in the horizontal path wave structure function development. Recall that the second

order statistical moments, E1, E2, and E3, given by equations (46)-(48), which have been used

to define the various statistical quantities considered, all involve integration over γ . In their

work on the Gaussian-beam wave temporal covariance of the irradiance fluctuations, Andrews and

Phillips2 suggest that the appropriate substitution for Taylor’s frozen flow is given by replacing γρ

with V τ prior to integration. However, when this substitution is used in the integral definitions

defining the double pass spatial phase covariance function, it is found that the resulting finite target

temporal phase covariance function fails to reduce to the corresponding point target temporal

phase covariance function when the limit of the target size approaching zero is considered.

Furthermore, it is found that this substitution yields plane mirror and retroreflector frequency

variance expressions that are identical in the monostatic case, contrary to the results obtained

for the monostatic wave structure function. However, a substitution can be made that does allow

the finite target expression to reduce to the point target case in the limit and results in differing

expressions for the monostatic case.

Consider the substitution ρ = V τ/γ for one-way horizontal path propagation. In the case

of a plane wave, = 0, ¯ = 0, and γ = 1, so that the substitution ρ = V τ/γ is equivalent

to the previously discussed plane wave substitution, ρ = V τ . In the case of a spherical wave,
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= 0, ¯ = 1, and γ = z
L = ξ , so that the substitution ρ = V τ/γ is equivalent to the

previously discussed spherical wave substitution, ρ = V τ/ξ. Given these results, the substitution,

ρ = V τ/γ 2, where γ 2 is the path amplitude ratio of the reflected wave in the double pass problem,

was attempted. It was found that the resulting finite target temporal phase covariance function

reduces to the corresponding point target temporal phase covariance function in the limit. This

substitution also yields monostatic frequency spread behavior that is consistent with the double

pass wave structure function results. Specifically, when considered as a function of target size,

the observed monostatic frequency spread for a plane mirror and retroreflector differ for finite

targets but approach the same limit for a point target. Additionally, the monostatic and plane

mirror frequency spread do not approach the same limit in the case of an unbounded target. This

behavior is completely consistent with the monostatic wave structure function behavior presented

in figure 25. Thus, in the work that follows the substitution ρ = V τ/γ 2 has been used.

Using the double pass finite target spatial phase covariance function presented in [2] and

applying Taylor’s frozen flow hypothesis in the manner discussed above, it can be shown (see

Appendix H) that the double pass temporal phase covariance function after reflection from a

smooth target is given by31

Bs V τ/γ 2, 2L = 1
2

Re [α1 + α2 + α3 + α4] , (231)

where Re (x) denotes the real part of x and a1 through a4 are defined below. Note that the

expressions for a1 through a4 assume an incident spherical wave and that the observation points
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are symmetrically located about the optical axis and are valid only for that case. For both a plane

mirror and a retroreflector, α1 and α2 are given by31

α1 = 4π2k2L
1

0

∞

0
κ n (κ) J0

2 (1− ξ)
γ 2

κV τ exp −Lκ
2

2

k
(1− ξ)2 dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0

( 2 − j 2) (1− ξ)
γ 2

κV τ

× exp − j Lκ
2

k
(1− ξ) 2 + ¯ 2ξ exp −Lκ

2
2

k
(1− ξ)2 dκdξ, (232)

α2 = 4π2k2L
1

0

∞

0
κ n (κ) J0

2 + ¯ 2ξ

γ 2
κV τ exp −Lκ

2
2

k
(1− ξ)2 dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0

ξ + ( 2 − j 2) (1− ξ)
γ 2

κV τ

× exp − j Lκ
2

k
(1− ξ) 2 + ¯ 2ξ exp −Lκ

2
2

k
(1− ξ)2 dκdξ, (233)

where V is the crosswind velocity, j = √−1, the beam parameters ( 2, 2, and ¯ 2) are given by

(206), and for an incident spherical wave

γ 2 = 1− ¯ 2 + j 2 (1− ξ) . (234)

In the case of a bistatic propagation channel α3 = α4 = 0 for both a plane mirror and a

retroreflector target. However, in the case of a monostatic propagation channel, for reflection from
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a plane mirror, we have31

α3 = 8π2k2L
1

0

∞

0
κ n (κ) J0

[ξ + 2 2 (1− ξ)]
γ 2

κV τ
2

× exp −Lκ
2

2

k
(1− ξ)2 dκdξ, (235)

α4 = 8π2k2L
1

0

∞

0
κ n (κ) J0

ξ + 2 ( 2 − j 2) (1− ξ)
γ 2

κV τ
2

× exp − j Lκ
2

k
(1− ξ) 2 + ¯ 2ξ exp −Lκ

2
2

k
(1− ξ)2 dκdξ . (236)

In the case of a monostatic propagation channel, for reflection from a retroreflector, we have

α3 = 4π2k2L
1

0

∞

0
κ n (κ) J0 − ξ + 2 j 2 (1− ξ)

γ 2

κV τ
2

× exp −Lκ
2

2

k
(1− ξ)2 dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0

ξ − 2 j 2 (1− ξ)
γ 2

κV τ
2

× exp −Lκ
2

2

k
(1− ξ)2 dκdξ, (237)

α4 = 8π2k2L
1

0

∞

0
κ n (κ) J0

ξκV τ
2γ 2

exp −Lκ
2

2

k
(1− ξ)2

× exp − j Lκ
2

k
(1− ξ) 2 + ¯ 2ξ dκdξ . (238)
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10.3 Point target

When the target radius, WR, is much less than the Fresnel zone,
√
L/k, R approaches

infinity so that 2 and 2 both approach zero. In this case, the system behaves as if reflection

occurs from a point target and the resulting frequency variance expressions are significantly

simplified. We note, however, that is a very restrictive case. Indeed, for propagation at

λ = 1.55 µm where the distance from the transmitter to the target is 500 m, the Fresnel zone

is approximately 1 cm. Even when the distance to the target is 2 km, the Fresnel zone is just over

2 cm. However, it is instructive to consider reflection from a point target as a special case.

If we assume a point target with a bistatic propagation channel, we find, after simplifying

α1 and α2 and substituting the resulting temporal phase covariance function into (229), that the

atmospheric induced frequency variance obtained for reflection from either a plane mirror or a

retroreflector is given by

σ 2
f = 0.25k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
(1− ξ) dκdξ, (239)

which is equivalent to (171), the spherical wave frequency variance observed for one-way

propagation. Note, that (239) is independent of the incident wave type, that is, it holds for an

incident plane, spherical or Gaussian-beam wave. This is physically intuitive since reflection from

a point target should result in an echo wave that is spherical and is consistent with the double pass

point target wave structure function.
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In the case where propagation occurs in a monostatic channel for reflection from a point

target, the spherical wave atmospheric induced frequency variance is given by

σ 2
f = 0.375k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
(1− ξ) dκdξ, (240)

which is exactly 3
2 times (239). Thus the standard Rytov method double pass point target frequency

variance is described by (172) in the bistatic case and 3
2 times (172) in the monostatic case. The

modified Rytov method double pass point target frequency variance is described by (173) in the

bistatic case and 3
2 times (173) in the monostatic case.

10.4 Finite target

When the target radius, WR, is of the same order as the first Fresnel zone the system must be

characterized as reflection occurring from a finite target and no simplifications can be made on α1

through α4. Thus, in order to determine the frequency variance in the case of a finite target it is

necessary to evaluate expressions (232), (233), and (235)-(238) without simplification. However,

we do not evaluate these expressions directly. Noting that the frequency variance is given by (229),

we first differentiate the integral expressions for α1 through α4 with respect to τ and evaluate the

resulting expressions at τ = 0, which yields an integral expression for the frequency variance31

σ 2
f = −

1
8π2 β1 + β2 + β3 + β4 (241)
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where the terms β1 through β4 will be defined below. For clarity, the derivation of these

expressions is presented in Appendix H and Appendix I. Note that in the case of a bistatic channel,

β3 = β4 = 0.

We can now apply the standard Rytov method to derive an integral expression for the finite

target frequency variance. Using the analytic approximation of the Hill spectrum, (151), where an

infinite outer scale is assumed, and letting

A = kκ2
l

κ2
l L 2 (1− ξ)2 + k

1/2

, (242)

we find that for both a plane mirror and a retroreflector31 (see Appendix H and Appendix I)

β1 = 2π2k2LV 2 2
2

1

0

I1
D2 (1− ξ)2

× 2
2 − ¯ 2 ξ2 − 2 2 ¯ 2 + 2

2 ξ + 2
2 − 2

2 dξ

+2π2k2LV 2
1

0

I2
D2 (1− ξ)2 2

2 − 2
2 − 2 ¯ 2

2
ξ2

+ 2 2
2 2 2

2 − 2 + 2
2 − 2 3

2 ¯ 2 ξ − 2
2 + 2

2
2
dξ

+4π2k2LV 2
2

1

0

I3
D2 (1− ξ)2 2 ¯ 2 − 2

2 ξ2 + 2
2 + 2

2 ξ dξ, (243)

β2 = 2π2k2LV 2
1

0

I1
D2

¯ 2ξ + 2
2

× 2 + ¯ 2 ξ − 2 + 2 2 − ¯ 2 ξ − 2 − 2 dξ

−2π2k2LV 2
1

0
I2dξ, (244)
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where I1 = Ia (A), I2 = Ib (A), and I3 = Ic (A) are defined below, and

D = ¯ 2
2 + 2

2 ξ2 + 2 2 ¯ 2 − 2
2 ξ + 2

2 + 2
2. (245)

In the case of a monostatic channel for reflection from a plane mirror, we have (see Appendix H

and Appendix I)

β3 = −π2k2LV 2
1

0

I1
D2 [2 2 + (1− 2 2) ξ ]2

× 2 − 2 − 2 + ¯ 2 ξ 2 − ¯ 2 ξ − 2 − 2 dξ, (246)

β4 = −π2k2LV 2
1

0

I2
D2

× 2 2
2 + 2 + 2 2

2 − 3 2 + 1 ξ2

+ 3 2 − 2 − 4 2
2 + 2

2 ξ + 2 2
2 + 2

2

× 2 2
2 + 2

2 − 3 2 − 2 + 1 ξ2

3 2 + 2 − 4 2
2 + 2

2 ξ + 2 2
2 + 2

2 dξ

−2π2k2LV 2
2

1

0

I3
D2 (1− ξ) ξ

× 2 2 ¯ 2 − 2
2 − ¯ 2 ξ2

+ 4 2
2 − 2 ¯ 2 + 2 ξ − 2 2

2 + 2
2 dξ . (247)

162



For the monostatic case, when reflection occurs from a retroreflector, we have (see Appendix H

and Appendix I)

β3 = 0.5π2k2LV 2
1

0

I1
D2 4 2

2
2
2 − 4 2 − 2

2 +
13
4

− ¯ 2
2 ξ4

+ 16 2
2

2
2 − 2

2 + 3 2 − 13
8

− 2 2 ¯ 2 ξ3

+ 24 2
2

2
2 − 2 2 − 2

2 +
24
13

− 2
2 ξ2

+16 2
2 2 ¯ 2 + 2

2 ξ − 4 2
2

2
2 − 2

2 dξ

−0.5π2k2LV 2
1

0

I1
D2

¯ 2 + 4 2
2

2
2 − 2

2 +
3
4

ξ4

+ 16 2
2

2
2 − 2

2 −
3
8
+ 2 2 ¯ 2 ξ3

+ 24 2
2

2
2 − 2

2 + 2
2 + 3 2

2 ξ2

+16 2
2

2
2 − 2

2 ξ + 4 2
2

2
2 − 2

2 dξ, (248)

β4 = π2k2LV 2
1

0

I2
D2 ξ

2 2
2 − ¯ 2

2 ξ2

−2 2
2 + 2 ¯ 2 ξ + 2

2 − 2
2 dξ

+2π2k2LV 2
2

1

0

I3
D2 ξ

2 ¯ 2ξ
2 − (1− 2 2) ξ − 2 dξ . (249)

The functions I1 = Ia (A), I2 = Ib (A), and I3 = Ic (A) are defined by (see Appendix I)

Ia (A) = 0.092C2
nA1/3 1+ 0.44

A
κl
− 0.056

A
κl

7/6
, (250)
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Ib (A) = 0.092C2
nA1/3

2F1
1
12,

7
12 ; 1

2 ; −B2A4

+0.44
A
κl

2F1
1
3,

5
6 ; 1

2 ; −B2A4

−0.056
A
κl

7/6

2F1
3
8,

7
8 ; 1

2 ; −B2A4 , (251)

Ic (A) = 0.015C2
n BA7/3

2F1
7

12,
13
12 ; 3

2 ; −B2A4

+1.75
A
κl

2F1
5
6,

4
3 ; 3

2 ; −B2A4

−0.25
A
κl

7/6

2F1
7
8,

11
8 ; 3

2 ; −B2A4 , (252)

where κl = 3.3
l0 and

B = L
k
(1− ξ) 2 + ¯ 2ξ . (253)

Expressions for the frequency variance can now be obtained using the modified Rytov

method by applying the effective hill spectrum, (67), where f (κl0) is given by (158), so that

an infinite outer scale is assumed, and g (κL0) = 1. Applying this method yields an expression

for the frequency variance that is the sum of a large and small scale component

σ 2
f = σ 2

f,x + σ 2
f,y, (254)

where

σ 2
f,x = −

1
8π2 βx,1 + βx,2 + βx,3 + βx,4 , (255)

164



σ 2
f,y = −

1
8π2 β y,1 + β y,2 + β y,3 + β y,4 (256)

The terms βx,n for n = 1, 2, 3, 4 are defined as follows. Let

Axl = kκ2
xl

κ2
xl L 2 (1− ξ)2 + k

1/2

, (257)

where

κ2
xl =

κ2
l κ

2
x(gb)

κ2
x(gb) + κ2

l
(258)

where κ2
x(gb) is defined by (223). Now the terms βx,n are exactly the same as the βn terms in the

standard Rytov method except that now I1 = Ia (Axl), I2 = Ib (Axl), and I3 = Ic (Axl). Similarly,

the terms β y,n for n = 1, 2, 3, 4 can be defined by letting

Ayl =
kκ2
yl

κ2
yl L 2 (1− ξ)2 + k

1/2

, (259)

where

κ2
yl =

κ2
l κ

2
y(gb)

κ2
y(gb) + κ2

l
, (260)

where κ2
y(gb) is defined by (224). Again the terms β y,n are exactly the same as those in the

standard Rytov method except that now I1 = Ia (A) − Ia Ayl , I2 = Ib (A) − Ib Ayl , and

I3 = Ic (A)− Ic Ayl . Note, in a bistatic channel the terms βx,3, βx,4, β y,3, and β y,4 are taken to

be zero.
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10.5 Comparisons

In this section we compare the frequency spread results predicted by the modified and

standard Rytov methods. In the figures presented the data was obtained by numerically integrating

the remaining integrals in the β terms defining the frequency variance usingMaple.

In figure 28 the finite target frequency spread, σ f , is given as a function of increasing

turbulence strength for R = 1 in a bistatic channel. Recall, that in the bistatic channel the

frequency variance is identical for plane mirror and retroreflector targets, thus the curves in figure

28 are representative of both cases. The qualitative behavior is identical to the horizontal path case

in the sense that in the weak turbulence regime the two methods predict similar values. However,

in the moderate to strong turbulence regime the modified Rytov method predicts frequency spread

values that are less than those predicted by the standard Rytov method.

166



0.1 1 10

σ1
2 = 1.23Cn

2k7/6L11/6

0

100

200

300

400

0

100

200

300

400

σ
f (

H
z)

σf, Standard Rytov
σf, Modified Rytov

ΩR = 1
λ = 1.55 µm
Cn

2 = 5 x 10-15 to 2.5 x 10-12  

V = 10 km/hr
l0 = 3 mm

L = 1 km

Bistatic Channel

Figure 28 The finite target double pass frequency spread, σ f , in a bistatic propagation channel
as a function of increasing turbulence strength. The value of L is held constant while
C2
n is allowed to vary.
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In figure 29 the double pass frequency spread, σ f , is presented as a function of increasing

turbulence strength for R = 1 in a monostatic channel. Recall that in the monostatic channel

the β3 and β4 terms are different for a plane mirror and a retroreflector, hence curves for both

cases are presented. Notice that the frequency spread for the plane mirror is greater than that

of the retroreflector. This is consistent with the argument regarding the two types of statistical

correlation paths discussed in the presentation of the double pass wave structure function (see

figure 24). Note that the frequency variance is also independent of the reciprocal path terms.
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Figure 29 The finite target double pass frequency spread, σ f , in a monostatic propagation
channel as a function of increasing turbulence strength. The value of L is held
constant while C2

n is allowed to vary.
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Figures 30 and 31 present the frequency spread, σ f , as a function of the target ratio

parameter, R, for the bistatic, monostatic plane mirror, and monostatic retroreflector cases. The

figures are for the weak turbulence regime, σ 2
1 = 0.1. Comparing the two figures we see that in

the weak turbulence regime, the standard and modified Rytov methods predict identical frequency

spread results for all target sizes. This is significant because it is expected that the standard Rytov

method is valid in this regime. Notice that for the monostatic case as R increases the plane

mirror and retroreflector curves approach the same limiting value. This result is expected because

for these large values of R the target is like a point target. Recall that it was found that the

monostatic point target frequency variance expression, (240), is independent of the target type, i.e.

plane mirror or retroreflector. Also notice that as R decreases, the monostatic plane mirror and

retroreflector curves do not approach the same limiting value. This indicates that an expression

for the unbounded target frequency variance will be dependent on the target type. We see that

these results are completely consistent with the double pass wave structure function results by

comparing the frequency spread behavior presented in figures 30 and 31 to the double pass wave

structure function behavior as a function of R presented in figure 25.
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11. DISCUSSION

11.1 Research accomplished

The wave structure function and the temporal frequency spread of an optical wave

propagating in the Earth’s atmosphere were the main focus of this research. The modified

Rytov method was used to develop wave structure function results for a horizontal path for plane,

spherical, and Gaussian-beam waves. Comparisons were presented between these new wave

structure function results, the standard Rytov method results, and Gurvich’s13 experimental results.

It was shown that the expressions derived using the modified Rytov method agree with the standard

Rytov method results in the weak turbulence regime, but predict lesser wave structure function

values in the moderate to strong turbulence regime. Furthermore, it was seen that the new results

presented here predict the same qualitative behavior as the experimental data in all turbulence

regimes and that the standard Rytov method expressions fail to agree with the data in the moderate

to strong turbulence regimes. Double pass wave structure function results were also developed

using the modified Rytov method. Recall, that the coherence radius can be obtained from the wave

structure function. It was shown in the double pass scenario that the coherence radius found from

the modified Rytov method seems to agree better with the strong turbulence asymptotic results of

Banakh and Mironov.29 While these comparisons are not conclusive, they do lend confidence to

the results obtained here using the modified Rytov method.

Additionally, analytic expressions for the temporal frequency spread were derived for plane,

spherical and Gaussian-beam waves in the horizontal path case and spherical waves incident on

a smooth target in the double pass case. Both the standard and modified Rytov methods were
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used. In general, it was found that in the moderate to strong turbulence regime, the modified

Rytov method predicted less spreading than the standard Rytov method. In the horizontal path

case, it was shown that these expressions have the same qualitative behavior and nearly identical

quantitative predictions of the frequency spread results found from an analysis of the temporal

frequency spectrum as presented by Ishimaru.4

11.2 Signifincance

The importance of the modified Rytov method wave structure function results beyond their

apparently correct modeling of the wave structure function in all turbulence regimes is that they

indicate that the modified Rytov method can be applied to phase fluctuation related statistics as well

as amplitude fluctuation related statistics. Recall that the modified Rytov method was originally

developed by Andrews et al.6–8 in an effort to model the scintillation index in all turbulence

regimes. The scintillation index is a statistical quantity that is dominated by amplitude fluctuations.

It was not known whether the same method could be used to model statistical quantities that are

dominated by phase fluctuations. Given the results obtained here for the wave structure function

and their favorable comparisons to experimental and asymptotic results, it appears that this method

can indeed be applied to phase fluctuation related statistics.

Thus, this method was also used to derive results for the temporal frequency spread of

the temporal frequency spectrum, which is a phase fluctuation related statistic. It has been

shown previously that the temporal frequency spread can be obtained from the temporal frequency

spectrum. The significant advantage of the derivation presented here is that it can more easily
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be applied in the spherical and Gaussian-beam wave cases for horizontal paths and the double

pass case than the analysis of the temporal frequency spectrum. This is because analyzing the

temporal frequency spectrum directly requires knowledge of the mutual coherence function, which

is difficult to obtain for the cases mentioned.

11.3 Future work

All of the results presented here have direct use in applications. In particular, the results

seem to provide valid estimates in the moderate to strong turbulence regimes. It is in these regimes

that most real world systems of practical value are likely to operate. However, much future work

still remains. Though comparisons to experimental and asymptotic results have been presented,

they are limited. Thus, in order to validate, and, if necessary, modify these results, further

comparisons to experimental data are required, particularly in the moderate to strong turbulence

regimes. Assuming these comparisons prove favorable, certain extensions of the results would

be useful for application to real world systems. In particular, for the double pass wave structure

function and the double pass frequency variance, it is necessary to incorporate a target "roughness"

model. In this work, results were presented for smooth targets only. However, this is a limited

case and many real world targets will not satisfy the conditions of a smooth target. Additionally,

the work presented here in the double pass case only considered an incident spherical wave. As

one of the main advantages to be gained from using a lidar system as compared to a conventional

microwave radar system is security of the channel, which comes from the narrow beam size, it

would be advantageous to further these results by considering a transmitted Gaussian-beam wave.
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APPENDIX A. MAGNITUDE BARS IN SECOND ORDERMOMENTS
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The || notation appearing in the Bessel functions, J0 (x), used in the formulation of the moments

E2 (r1, r2) and E3 (r1, r2), equations (47) and (48) respectively, is not the standard mathematical

vector magnitude notation. Consider the Bessel function J0 (|αr+ βp|), where α and β are some

scalar quantities and r and p are some vector quantities. As used in in the development of the

second order moments, E2 (r1, r2) and E3 (r1, r2) , the operator || refers only to the vectors r and

p and does not act on the scalar quantities α and β. Hence for real scalars α and β we have the

following

|αp| = α |p| , (A1)

|iαp| = iα |p| , (A2)

where i = √−1.

Note that this notation only appears in the Bessel function, J0 (x), which is an even function,

i.e. J0 (x) = J0 (−x). Hence there is no inconsistency if a vector, p, has a negative common factor.

That is, if

p = −γb, (A3)

where, γ < 0, is a real scalar such that

|p| = p = |γ | b = −γ b, (A4)

where

b = |b| , (A5)
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then, because J0 (x) is an even function, we have

J0 (|p|) = J0 (p) = J0 (−γ b) = J0 (γ b) = J0 (|γb|) . (A6)

Additionally, we have the relation

J0 (|−ip|) = J0 (−ip) = I0 (−i p) = I0 (ip) , (A7)

where it is noted that I0 (x) is also an even function, so again there is no inconsistency in the ||

notation.

Generally, we consider only the real part of the integral quantities E2 (r1, r2) and

E3 (r1, r2). In the case where the argument of the Bessel function in E2 (r1, r2) and E3 (r1, r2) is

the sum of two vectors, say p and r and we are considering the real part only, we use the following

relation22

Re [J (|Q|)] = J0 (α |x|) I0 (β |y|)+ 2
∞

n=1
(−1)n J2n (α |x|) I2n (β |y|) cos (2nψ)

≈ J0 (α |x|) I0 (β |y|) (A8)

where Q = αx+ βy, α and β are real scalars, and ψ is the angle between the vectors x and y.
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APPENDIX B. HORIZONTAL PATH PLANEWSF
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For the derivations presented in the appendices, it will be useful to divide the effective atmospheric

spectrum, (67), into a large scale component given by

n,x (κ) = 0.033C2
nκ
−11/3 f (κl0) g (κL0) exp −κ

2

κ2
x

(B1)

and a small scale component given by

n,y (κ) = 0.033C2
nκ
−11/3 f (κl0) g (κL0) 1− exp −κ

2

κ2
y

(B2)

To develop a horizontal path plane wave structure function using the modified Rytov method,

we substitute the large and small scale components of the effective atmospheric spectrum, where

we let f (κl0) = exp − κ2

κ2
m

and g (κL0) = κ11/3 κ2 + κ2
0
−11/6, into the plane wave structure

function integral definition given by (78) and evaluate. Substituting the large scale portion, (B1),

into the integral definition, (78), we have the large scale portion of the plane wave structure function

Dx (ρ, L) ≈ 2.606k2LC2
n

∞

0
κ−8/3 [1− J0 (κρ)] exp − κ2

κ2
xm

dκ, (B3)

where κm = 5.92/ l0 and

κ2
xm =

κ2
mκ

2
x(pl)

κ2
x(pl) + κ2

m
. (B4)

The refractive index spatial frequency cutoff, κx(pl), is defined by (B14). Notice that for the large

scale portion of the wave structure function the outer scale is not required for convergence of the
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integral, so here the limit as the outer scale goes to infinity has already been considered. To

calculate the integral in (B3), it is necessary to replace the Bessel function, J0 (x), by it’s series

representation22

1− J0 (κρ) = −
∞

l=1

−κ2ρ2/4 l

(l!)2
. (B5)

in equation (B3), which yields

Dx (ρ, L) ≈ −2.606k2LC2
n

∞

l=1

−ρ2/4 l

(l!)2
∞

0
κ2l−8/3 exp − κ2

κ2
xm

dκ. (B6)

The integral in (B6) can be evaluated as22

∞

0
κ2l−8/3 exp − κ2

κ2
xm

dκ = 1
2
κ2l−5/3
xm l − 5

6
(B7)

where (x) is the Gamma function. Note that this integral requires that the exponent on κ be

greater than negative one. This condition is satisfied as l ≥ 1 so that 2l − 8/3 ≥ −2/3. Thus, we

now have

Dx (ρ, L) ≈ −1.303k2LC2
nκ
−5/3
xm

∞

l=1

−ρ2κ2
xm/4

l

(l!)2
l − 5

6
(B8)

Note the following Pochhammer relations22

l − 5
6
= −5

6 l
−5

6
≈ −6.68 −5

6 l
, (B9)

(1)l = l!, (B10)
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where (a)l = (a + l) / (a) . Using these relations, the large scale component of the wave

structure function is now given by

Dx (ρ, L) ≈ 8.7k2LC2
nκ
−5/3
xm 1F1 −5

6 ; 1; −ρ2κ2
xm

4 − 1 . (B11)

Now taking the limit as the inner scale goes to zero, so that κ2
xm → κ2

x , and making the

approximation

1F1 −5
6 ; 1; −x − 1 ≈ 5x

6
(1+ 0.232x)−1/6 , (B12)

we obtain

Dx (ρ, L) = 1.47σ 2
1

kρ2η
1/6
x(pl)

L

 1+ 0.058
kρ2ηx(pl)

L

−1/6

, (B13)

where

ηx(pl) =
Lκ2

x(pl)

k
= 2.61

1+ 1.11 σ 2
1

6/5 (B14)

Now substituting the small scale portion, (B2), into (78) we have the small scale portion of

the plane wave structure function

Dy (ρ, L) ≈ 2.606k2LC2
n

∞

0
[1− J0 (κρ)] κ

κ2 + κ2
0
−11/6

× exp − κ
2

κ2
m

− exp − κ2

κ2
ym

dκ, (B15)

where

κ2
ym =

κ2
mκ

2
y(pl)

κ2
y(pl) + κ2

m
. (B16)
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The refractive index spatial frequency cutoff, κ y(pl), is defined by (B22). We can express

Dy (ρ, L) as the sum of the two integrals

I1 = 2.606k2LC2
n

∞

0
[1− J0 (κρ)] κ

κ2 + κ2
0

11/6 exp − κ
2

κ2
m
dκ, (B17)

I2 = −2.606k2LC2
n

∞

0
[1− J0 (κρ)] κ

κ2 + κ2
0

11/6 exp − κ2

κ2
ym

dκ. (B18)

The integral I1 is the standard Rytov plane wave structure function using the von Kármán

spectrum, (26), and it’s solution is presented by Andrews and Phillips.2 It is in this integral that

both the inner and outer scales are required for convergence. However, as shown in [2], after

completion of the integration the dependency on the inner and outer scale can be removed by

applying the restriction l0 ρ L0. This yields

I1 ≈ 2.37σ 2
1
kρ2

L

5/6

, l0 ρ L0 (B19)

The outer scale is not necessary for convergence of the integral I2. So, letting the outer scale

approach infinity, the integral I2 reduces to

I2 = −2.606k2LC2
n

∞

0
κ−8/3 [1− J0 (κρ)] exp − κ2

κ2
ym

dκ, (B20)
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which is of the exact same form as (B3) and can therefore be evaluated in the same manner. Thus,

the small scale component of the plane wave structure function is given by

Dy (ρ, L) = 2.37σ 2
1
kρ2

L

5/6

− 1.47σ 2
1

kρ2η
1/6
y(pl)

L

 1+ 0.058
kρ2ηy(pl)

L

−1/6

, (B21)

where

ηy(pl) =
Lκ2

y(pl)

k
= 3 1+ 0.69 σ 2

1
6/5

. (B22)

The plane wave structure function is now the sum of the large and small scale components, i.e.

D (ρ, L) = Dx (ρ, L)+ Dy (ρ, L) .

184



APPENDIX C. HORIZONTAL PATH SPHERICALWSF
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To develop a horizontal path spherical wave structure function using the modified Rytov method,

we follow the same method as presented in Appendix B. We substitute the large and small scale

components of the effective atmospheric spectrum, where we let f (κl0) = exp − κ2

κ2
m

and

g (κL0) = κ11/3 κ2 + κ2
0
−11/6, into the spherical wave structure function integral definition

given by (90) and evaluate. Substituting the large scale portion of the effective atmospheric

spectrum, (B1), into the integral definition, (90), we have the large scale portion of the spherical

wave structure function

Dx (ρ, L) ≈ 2.606k2LC2
n

1

0

∞

0
κ−8/3 [1− J0 (κξρ)] exp − κ2

κ2
xm

dκdξ, (C1)

where κ2
xm is given by

κ2
xm =

κ2
mκ

2
x(sp)

κ2
x(sp) + κ2

m
. (C2)

The refractive index spatial frequency cutoff, κx(sp), is defined by (C12). As in the plane wave

case, the outer scale is not required for convergence of the integral in the large scale portion of the

wave structure function . Following the calculations in Appendix B, the Bessel function, J0 (x) ,

in (C1) is replaced by it’s series representation22

1− J0 (κρ) = −
∞

l=1

−κ2ξ2ρ2/4 l

(l!)2
. (C3)
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Using (C3) in (C2), we now have

Dx (ρ, L) ≈ −2.606k2LC2
n

∞

l=1

−ρ2/4 l

(l!)2
1

0
ξ2ldξ

×
∞

0
κ2l−8/3 exp − κ2

κ2
xm

dκ (C4)

The first integral in (C4) is evaluated as

1

0
ξ2ldξ = 1

2l + 1
(C5)

Noting the Pochhammer relations22

(2l)! = 22l 1
2 l l!, (C6)

(2l + 1)! = 22l 3
2 l l!, (C7)

(C5) can be expressed as

1
2l + 1

=
1
2 l
3
2 l
. (C8)

The second integral in (C4) is identical to the integral (B7) of the plane wave case and it’s solution

has already been presented. Thus, the large scale portion of the spherical wave structure function

is now given by

Dx (ρ, L) = 8.7C2
nk

2Lκ−5/3
xm 2F2 −5

6,
1
2 ; 1, 3

2 ; −ρ
2κ2
xm

4 − 1 . (C9)

187



Now taking the limit as the inner scale goes to zero, so that κ2
xm → κ2

x , and making the

approximation

2F2 −5
6,

1
2 ; 1, 3

2 ; −x − 1 ≈ 5x
18
(1+ 0.132x)−1/6 , (C10)

we obtain

Dx (ρ, L) = 0.49σ 2
1

kρ2η
1/6
x(sp)

L

 1+ 0.033
kρ2ηx(sp)

L

−1/6

, (C11)

where

ηx(sp) =
Lκ2

x(sp)

k
= 8.56

1+ 0.19 σ 2
1

6/5 . (C12)

Now substituting the small scale portion, (B2), into (90) we have the small scale portion of

the spherical wave structure function

Dy (ρ, L) ≈ 2.606k2LC2
n

∞

0
[1− J0 (κξρ)] κ

κ2 + κ2
0
−11/6

× exp − κ
2

κ2
m

− exp − κ2

κ2
ym

dκ, (C13)

where

κ2
ym =

κ2
mκ

2
y(sp)

κ2
y(sp) + κ2

m
. (C14)

The refractive index spatial frequency cutoff, κ y(sp), is defined by (C20). We can express

Dy (ρ, L) as the sum of the two integrals

I1 = 2.606k2LC2
n

∞

0
[1− J0 (κξρ)] κ

κ2 + κ2
0

11/6 exp − κ
2

κ2
m

dκ, (C15)

188



I2 = −2.606k2LC2
n

∞

0
[1− J0 (κξρ)] κ

κ2 + κ2
0

11/6 exp − κ2

κ2
ym

dκ. (C16)

The integral I1 is the standard Rytov spherical wave structure function using the von Kármán

spectrum, (26), and it’s solution is presented by Andrews and Phillips.2 In this integral, both the

inner and outer scales are required for convergence. However, as in the plane wave case, after

completion of the integration the dependency on the inner and outer scale can be removed by

applying the restriction l0 ρ L0. This yields

I1 ≈ 0.89σ 2
1
kρ2

L

5/6

, l0 ρ L0 (C17)

The outer scale is not necessary for convergence of the integral I2. So, letting the outer scale

approach infinity, the integral I2 reduces to

I2 = −2.606k2LC2
n

∞

0
κ−8/3 [1− J0 (κξρ)] exp − κ2

κ2
ym

dκ, (C18)

which is of the exact same form as (C1) and can therefore be evaluated in the same manner. Thus,

the small scale component of the spherical wave structure function is given by

Dy (ρ, L) = 0.89σ 2
1
kρ2

L

5/6

− 0.49σ 2
1

kρ2η
1/6
y(sp)

L

 1+ 0.033
kρ2ηy(sp)

L

−1/6

, (C19)

where

ηy(sp) =
Lκ2

y(sp)

k
= 9 1+ 0.23 σ 2

1
6/5

. (C20)
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The spherical wave structure function is now the sum of the large and small scale components, i.e.

D (ρ, L) = Dx (ρ, L)+ Dy (ρ, L) .
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APPENDIX D. HORIZONTAL PATH GAUSSIAN-BEAMWSF
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When r1 = −r2, the Gaussian-beam wave structure function, D (ρ), is given by2

D (ρ, L) = d (ρ, L)+ 4σ 2
r (ρ, L) , (D1)

where d (ρ, L) describes the on axis, or longitudinal, component and σ 2
r (ρ, L) describes the

transverse, or radial, component and are given by

d (ρ, L) = 8π2k2L
1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
1− J0 1− ¯ ξ ρκ dκdξ, (D2)

σ 2
r (ρ, L) = 2π2k2L

1

0

∞

0
κ n (κ) exp − Lκ2ξ2

k
[I0 ( ρξκ)− 1] dκdξ . (D3)

We apply the modified Rytov method to develop Gaussian-beam wave structure function

results by substituting the effective atmospheric spectrum, (67), into each of the integrals (D2) and

(D3). Note, in the Gaussian beam case, the exponential functions appearing in (D2) and (D3) allow

for the convergence of the integrals without the inclusion of a finite inner or outer scale. Thus, we

set f (κl0) = g (κL0) = 1. Substituting the large scale portion of the effective spectrum, (B1),

into the longitudinal component, (D2), we obtain

dx (ρ, L) = 2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − κ2

κ2
x(gb)

exp − Lκ2ξ2

k

× 1− J0 1− ¯ ξ ρk dκdξ . (D4)
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In (D4), we make the argument that exp − κ2

κ2
x(gb)

acts as a low-pass spatial filter, ensuring that

under the integral7

exp − Lκ2ξ2

k
≈ 1, (D5)

so that the integral (D4) is approximately given by

dx (ρ, L) = 2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − κ2

κ2
x(gb)

× 1− J0 1− ¯ ξ ρk dκdξ (D6)

Letting η = Lκ2

k and ηx(gb) = Lκ2
x(gb)
k , the integral (D6) becomes

dx (ρ, L) = 1.303C2
nk

7/6L11/6
1

0

∞

0
η−11/6 exp − η

ηx(gb)

×
1− J0

 1− ¯ ξ kηρ2

L

 dηdξ . (D7)

Now, expressing the Bessel function, J0 (x), in its series form

1− J0
 1− ¯ ξ kηρ2

L

 = − ∞

l=1

1− ¯ ξ 2l

(l!)2
−kηρ

2

4L

l

(D8)
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the large scale longitudinal component becomes

dx (ρ, L) ≈ −1.06σ 2
1

∞

l=1

−kρ2

4L
l

(l!)2
1

0
1− ¯ ξ 2l dξ

×
∞

0
ηl−11/6 exp − η

ηx(gb)
dη. (D9)

We can evaluate the two integrals in (D9) as

∞

0
ηl−11/6 exp − η

ηx(gb)
dη

= nl−5/6
x(gb) l − 5

6

= nl−5/6
x(gb) −5

6 l
−5

6

≈ −6.68nl−5/6
x(gb) −5

6 l
, (D10)

1

0
1− ¯ ξ 2l dξ = 1

¯
1

2l + 1
−

2l+1

2l + 1
. (D11)

Substituting (D10) and (D11) into (D9) yields

dx (ρ, L) ≈ 7.08σ 2
1η
−5/6
x(gb)

1
¯ 2F2 −5

6,
1
2 ; 1, 3

2 ; −
ρ2kηx(gb)

4L

− ¯ 2F2 −5
6,

1
2 ; 1, 3

2 ; −
ρ2k 2ηx(gb)

4L − 1 . (D12)
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Finally, applying the approximation for the hypergeometric function given by (C10), the large scale

longitudinal component is given by

dx (ρ, L) = 0.49σ 2
1η

1/6
x(gb)

kρ2

L

 1
¯ 1+ 0.033

kρ2ηx(gb)

L

−1/6

−
3

¯ 1+ 0.033
kρ2 2ηx(gb)

L

−1/6
 , (D13)

where ηx(gb) is defined by (113).

Now, substituting the small scale portion of the effective atmospheric spectrum, (B2), into

(D2), yields the small scale longitudinal component

dy (ρ, L) = 2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − Lκ2ξ2

k

× 1− J0 1− ¯ ξ ρk dκdξ

−2.606C2
nk

2L
1

0

∞

0
κ−8/3 exp − Lκ2ξ2

k
exp − κ2

κ2
y(gb)

× 1− J0 1− ¯ ξ ρk dκdξ (D14)

The first integral in (D14) is equivalent to standard Rytov method longitudinal component

using the Kolmogorov spectrum and it’s solution is presented by Andrews and Phillips.2 The

second integral is of the exact same form as the large scale component, (D4), and can be evaluated

in the same manner. Note that we argue that exp − κ2

κ2
y(gb)

also acts as a low-pass spatial filter so

that the approximation given by (D5) is used in the small scale case as well. In the same manner
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as the large scale component, this yields the small scale longitudinal component

dy (ρ, L) = 0.889σ 2
1 A

kρ2

L

5/6

− 0.49σ 2
1η

1/6
y(gb)

kρ2

L

 1
¯ 1+ 0.033

kρ2ηy(gb)

L

−1/6

−
3

¯ 1+ 0.033
kρ2 2ηy(gb)

L

−1/6
 (D15)

where A is given by (106) and ηy(gb) is given by (114). The longitudinal component is now the

sum of the large and small scale components, i.e. d (ρ, L) = dx (ρ, L)+ dy (ρ, L) .

To evaluate the radial component, we substitute the effective atmospheric spectrum into (D3)

where again we let f (κl0) = g (κL0) = 1. Substituting the large scale component of the effective

spectrum into (D3) yields

σ 2
r,x (ρ, L) = 0.65C2

nk
2L

1

0

∞

0
κ−8/3 exp −κ

2

α2
x
{I0 ( ρξκ)− 1} dκdξ, (D16)

where

α2
x =

kκ2
x

k + κ2
x Lξ2 . (D17)

Notice, in the radial component we do not use the approximation given by (D5). Using this

approximation in the radial component produces large errors that were not observed in the

longitudinal component. Expressing the modified Bessel function, I0 (x) in (D16) by its series
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representation22 and completing the remaining integration, we obtain

σ 2
r,x (ρ, L) = 0.65C2

nk2Lκ−5/3
x

4

×
∞

l=1

0.25 2ρ2κ2
x
l

(l!)2
l− 5

6

l+ 1
2

2F1 l − 5
6, l + 1

2 ; l + 3
2 ; −κ

2
x L
k . (D18)

It can be shown numerically that for the range of parameters under consideration, the series in

(D18) is dominated by the first term. Hence, approximating (D18) by its first term, the large scale

portion of the radial component of the Gaussian-beam wave structure function is given by

σ 2
r,x (ρ, L) ≈ 0.123σ 2

1
k
L

2ρ2η1/6
x 2F1

1
6,

3
2 ; 5

2 ; −η2
x . (D19)

Finally, making the approximation

2F1
1
6,

3
2 ; 5

2 ; −x ≈ [1+ 0.547x]−1/6 , (D20)

we have

σ 2
r,x (ρ, L) ≈ 0.123σ 2

1
kρ2 2

L
η

1/6
x(gb) 1+ 0.547 ηx(gb)

−1/6
. (D21)
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Substituting the small scale component of the effective spectrum into the radial component,

(D3), yields

σ 2
r,y (ρ, L) = 0.65C2

nk
2L

1

0

∞

0
κ−8/3 exp − Lκ2ξ2

k
{I0 ( ρξκ)− 1} dκdξ

−0.65C2
nk

2L
1

0

∞

0
κ−8/3 exp −κ

2

α2
y
{I0 ( ρξκ)− 1} dκdξ, (D22)

where

α2
y =

kκ2
x

k + κ2
x Lξ2 . (D23)

The first integral in (D22) is the standard Rytov equation for the radial component and its solution

is presented by Andrews and Phillips.2 The second integral in (D22) is of the same form as (D16)

and is evaluated in the exact same manner. Thus, the small scale portion of the radial component

is given by

σ 2
r,y (ρ, L) = 0.137σ 2

1
11/6 kρ2

L

−0.123σ 2
1
kρ2 2

L
η

1/6
y(gb) 1+ 0.547 ηy(gb)

−1/6
. (D24)

The radial component is now the sum of the large and small scale components, i.e. σ 2
r (ρ, L) =

σ 2
r,x (ρ, L)+ σ 2

r,y (ρ, L) .
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APPENDIX E. FREQUENCY VARIANCE DEFINITION
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In this appendix, the relation between the phase covariance function and the frequency variance is

derived. To do so, it is necessary to relate the derivative of a random process, namely φs (t), to the

process itself, namely φs (t). We assume that φs (t) is a linear random process, that is32

L φs (t) = L φs (t) , (E1)

where φs (t) is the ensemble average or mean value of φs (t) and L is an operator. In this case,

let L be the differentiation operator, so that

L φs (t) = L φs (t) = φs (t) . (E2)

Let φ1 and φ2 denote the random variables taken from φs (t) at times t1 and t2, respectively.

Let Rs,s (t1, t2) be the correlation function of φs (t), and let L1 and L2 denote the differentiation

operators with respect to t1 and t2, respectively. Then,32

Rs ,s (t1, t2) = L1 Rs,s (t1, t2) = ∂

∂t1
Rs,s (t1, t2) , (E3)

Rs,s (t1, t2) = L2 Rs,s (t1, t2) = ∂

∂t2
Rs,s (t1, t2) , (E4)

so

Rs ,s (t1, t2) = L1L2 Rs,s (t1, t2) = ∂2

∂t1∂t2
Rs,s (t1, t2) . (E5)
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Note that (E5) provides a relation between the phase correlation function, Rs,s (t1, t2), and the

frequency correlation function, Rs ,s (t1, t2) Further assume that φs (t) is wide sense stationary

(wss) with constant mean, m. Hence,

φs (t) = φs (t) = 0 (E6)

Furthermore, letting τ = t1 − t2, we have Rs,s (t1, t2) = Rs,s (τ ) and

∂

∂t1
Rs,s (t1 − t2) = ∂

∂τ
Rs,s (τ) , (E7)

∂

∂t2
Rs,s (t1 − t2) = − ∂

∂τ
Rs,s (τ) , (E8)

so

Rs ,s (τ ) = ∂2

∂t1∂t2
Rs,s (t1 − t2) = − ∂

2

∂τ 2 Rs,s (τ ) = −Rs,s (τ) . (E9)

Additionally, the covariance function Bs,s (τ) of φs (t) is given by

Bs,s (τ) = Rs,s (τ)−m2, (E10)

where m was assumed to be constant, so

Bs,s (τ) =
d2

dτ 2 Bs,s (τ) =
d2

dτ 2 Rs,s (τ)−m2 = Rs,s (τ) . (E11)
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In general, the variance, σ 2
x , of a random variable, x , is obtained by setting τ = 0 in its

corresponding covariance function, Bx (τ). Hence from this definition, we obtain the frequency

variance by

σ 2
f = σ 2

s ,s = Bs ,s (0)

= Rs ,s (0)− φs (t)
2

= Rs ,s (0)

= −Rs,s (τ) τ=0 .

= −Bs,s (τ) τ=0 (E12)

Converting from radians2 to Hertz2, we have

σ 2
f = −

Bs (τ)
4π2

τ=0

, (E13)

where we rewrite Bs,s as Bs for simplicity.
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APPENDIX F. PLANE AND SPHERICALWAVE FREQUENCY

VARIANCE
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In order to develop expressions for the frequency variance, σ 2
f , we note the relation given

previously

σ 2
f = −

Bs (τ)
4π2

τ=0

, (F1)

where Bs (τ) is the temporal phase covariance function and the differentiation is with respect to τ .

The plane wave temporal phase covariance function is given by2

Bs,pl (V τ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κV τ) 1+ cos

Lκ2ξ

k
dκdξ . (F2)

Thus, to apply the relation given by (F1), we first differentiate this expression with respect to τ and

take the limit as τ goes to zero. Thus, noting that

lim
τ−→0

d2

dτ 2 J0 (κV τ) = −
κ2V 2

2
, (F3)

we find that the plane wave frequency variance is given by

σ 2
f,pl = 0.25k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
dκdξ . (F4)

Using the standard Rytov method, the Hill spectrum given by (151) is substituted into (F4) yielding

σ 2
f,pl = 0.00825C2

nk
2LV 2 [I1 + 1.802I2 − 0.254I3] , (F5)
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where I1, I2, and I3 are integral quantities that are evaluated below. The first integral, I1, is given

by

I1 =
1

0

∞

0
κ−2/3 exp −κ

2

κ2
l

1+ cos
Lκ2ξ

k
dκdξ, (F6)

which we treat as the sum of two integrals, Ia and Ib. The first integral is evaluated by letting

t2 = κ2/κ2
l , which yields

Ia =
∞

0
κ−2/3 exp −κ

2

κ2
l
dκ

= κ
1/3
l

∞

0
t−2/3 exp −t2 dt

= 1
2

1
6
κ

1/3
l

≈ 2.78κ1/3
l . (F7)

The second integral is given by

Ib =
1

0

∞

0
κ−2/3 exp −κ

2

κ2
l

cos
Lκ2ξ

k
dκdξ (F8)

Expressing the cosine function in it’s series representation, we now have

Ib =
∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2ndξ

∞

0
κ4n−2/3 exp −κ

2

κ2
l
dκ. (F9)
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Now letting t2 = κ2/κ2
l and completing the integration on ξ we have

Ib =
∞

n=0

−L2/k2 n

(2n)!
1

(2n + 1)
κ

4n+1/3
l

∞

0
t4n−2/3 exp −t2 dκ

= κ
1/3
l
2

∞

n=0

−L2κ4
l /k

2 n

(2n + 1)!
2n + 1

6
(F10)

Using the Pochhammer relations

2n + 1
6

= 1
6 2n

1
6

= 22n 1
12 n

7
12 n

1
6
, (F11)

1
(2n + 1)!

= 1
22n (3/2)n n!

, (F12)

we have

Ib = 1
6
κ

1/3
l
2 2F1

1
12,

7
12 ; 3

2 ; −Q2
l , (F13)

where Ql = Lκ2
l /k. Making the approximation

2F1
1

12,
7
12 ; 3

2 ; −x ≈ [1+ 0.28x]−1/12 , (F14)

we obtain

I1 ≈ 1
6
κ

1/3
l
2

1+ 1+ 0.28Q2
l
−1/12

. (F15)
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The second integral, I2, is given by

I2 =
1

0

∞

0

κ1/3

κl
exp −κ

2

κ2
l

1+ cos
Lκ2ξ

k
dκdξ . (F16)

This integral is evaluated in the same manner as I1. Considering I2 as the sum of the two integrals

Ic and Id, we have

Ic = 1
κl

∞

0
κ1/3 exp

κ2

κ2
l
dκ

= 2
3
κ

1/3
l
2
, (F17)

Id =
1

0

∞

0

κ1/3

κl
exp −κ

2

κ2
l

cos
Lκ2ξ

k
dκdξ

= 1
κl

∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2ndξ

∞

0
κ4n+1/3 exp −κ

2

κ2
l
dκ

= κ
1/3
l
2

∞

n=0

−L2κ4
l /k

2 n

(2n + 1)!
2n + 2

3
. (F18)

Noting the Pochhammer relations given by (F12) and

2n + 2
3

= 2
3

2
3 2n

22n 2
3

1
3 n

5
6 n

, (F19)
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we have

Id = 2
3
κ

1/3
l
2 2F1

1
3,

5
6 ; 3

2 ; −Q2
l . (F20)

Making the approximation

2F1
1
3,

5
6 ; 3

2 ; −x ≈ [1+ 0.426x]−1/3 , (F21)

we have

I2 ≈ 2
3
κ

1/3
l
2

1+ 1+ 0.426Q2
l
−1/3

. (F22)

The third integral, I3, is given by

I3 =
1

0

∞

0

κ1/2

κ
7/6
l

exp −κ
2

κ2
l

1+ cos
Lκ2ξ

k
dκdξ, (F23)

and is also evaluated in the same manner as I1 and I2. Considering I3 as the sum of the two

integrals Ie and I f , we have

Ie = κ
−7/6
l

∞

0
κ1/2 exp

κ2

κ2
l
dκ

= 3
4
κ

1/3
l
2
, (F24)
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I f = κ
−7/6
l

1

0

∞

0
κ1/2 exp −κ

2

κ2
l

cos
Lκ2ξ

k
dκdξ

= κ
−7/6
l

∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2ndξ

∞

0
κ4n+1/2 exp −κ

2

κ2
l
dκ

= κ
1/3
l
2

∞

n=0

−L2κ4
l /k

2 n

(2n + 1)!
2n + 3

4
. (F25)

Noting the Pochhammer relations given by (F12) and

2n + 3
4
= 22n 3

4
3
8 n

7
8 n

, (F26)

we have

I f = 3
4
κ

1/3
l
2 2F1

3
8,

7
8 ; 3

2 ; −Q2
l . (F27)

Making the approximation

2F1
3
8,

7
8 ; 3

2 ; −x ≈ [1+ 0.4523x]−3/8 , (F28)

we have

I3 ≈ 3
4
κ

1/3
l
2

1+ 1+ 0.4523Q2
l
−3/8

. (F29)
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Finally, substituting (F15), (F22), and (F29) for I1, I2, and I3, respectively, into (F5) and

simplifying, we obtain the standard Rytov method plane wave frequency variance

σ 2
f,pl,SR

∼= 0.0258σ 2
1
k
L

V 2Q1/6
l × 1+ 0.723 1+ 0.28Q2

l
−1/12

+0.317 1+ 0.426Q2
l
−1/3 − 0.04 1+ 0.4523Q2

l
−3/8

. (F30)

To obtain an expression for the plane wave frequency variance using the modified Rytov

method, we substitute the effective atmospheric spectrum (67) into (F4). As in Appendix B, we

consider the effective spectrum as the sum of a large scale component, n,x (κ), given by (B1) and

a small scale component, n,y (κ), given by (B2). Thus letting g (κL0) = 1,

f (κl0) = exp −κ
2

κ2
l

1+ 1.802
κ

κl
− 0.254

κ

κl

7
6
, (F31)

and substituting the large scale portion of the effective spectrum into (F4) yields

σ 2
f,x = 0.00825C2

nk
2LV 2 [I1 + 1.802I2 − 0.254I3] . (F32)

The three integrals, I1 through I3, in (F32), are defined by

I1 =
1

0

∞

0
κ−2/3 exp − κ

2

κ2
xl

1+ cos
Lκ2ξ

k
dκdξ, (F33)

I2 =
1

0

∞

0

κ1/3

κl
exp − κ

2

κ2
xl

1+ cos
Lκ2ξ

k
dκdξ, (F34)
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I3 =
1

0

∞

0

κ1/2

κ
7/6
l

exp − κ
2

κ2
xl

1+ cos
Lκ2ξ

k
dκdξ, (F35)

where

κ2
xl =

κ2
xκ

2
l

κ2
x + κ2

l
. (F36)

These integrals are identical in form to those in the standard Rytov derivation and are evaluated in

the exact same manner. Their evaluation yields the equation given by (160). In the same manner,

substituting the small scale portion of the effective spectrum, (B2), into (F4), yields

σ 2
f,y = σ 2

f,pl,SR − 0.00825C2
nk

2LV 2 [I1 + 1.802I2 − 0.254I3] , (F37)

where σ 2
f,pl,SR is given by (F30) and

I1 =
1

0

∞

0
κ−2/3 exp − κ

2

κ2
yl

1+ cos
Lκ2ξ

k
dκdξ, (F38)

I2 =
1

0

∞

0

κ1/3

κl
exp − κ

2

κ2
yl

1+ cos
Lκ2ξ

k
dκdξ, (F39)

I3 =
1

0

∞

0

κ1/2

κ
7/6
l

exp − κ
2

κ2
yl

1+ cos
Lκ2ξ

k
dκdξ, (F40)

where

κ2
yl =

κ2
yκ

2
l

κ2
y + κ2

l
. (F41)
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These integrals are also of the same form as those in the standard Rytov derivation and can be

evaluated in the same manner to yield (161). Finally, the modified Rytov method plane wave

frequency variance is the sum of σ 2
f,x and σ 2

f,y .

The spherical wave temporal phase covariance function is given by2

Bs,sp (V τ) = 2π2k2L
1

0

∞

0
κ n (κ) J0 (κV τ) 1+ cos

Lκ2ξ

k
(1− ξ) dκdξ . (F42)

We can develop the spherical wave frequency variance by applying the relation given by (F1), and

(F3) to obtain

σ 2
f,sp = 0.25k2LV 2

1

0

∞

0
κ3

n (κ) 1+ cos
Lκ2ξ

k
(1− ξ) dκdξ. (F43)

Note that this integral definition is nearly identical to that of the plane wave frequency variance,

(F4), with the only difference being the argument of the cosine function. This fact will greatly

simplify the spherical wave calculations. Using the standard Rytov method, the Hill spectrum

given by (151) is substituted into (F43) yielding

σ 2
f,sp = 0.00825C2

nk
2LV 2 [I1 + 1.802I2 − 0.254I3] , (F44)

where I1, I2, and I3 are each integral quantities that are evaluated below. The first integral, I1, is

given by

I1 =
1

0

∞

0
κ−2/3 exp −κ

2

κ2
l

1+ cos
Lκ2ξ

k
(1− ξ) dκdξ . (F45)
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As in the plane wave case, this integral can be treated as the sum of two integrals, Ia and Ib.

The first integral, Ia, is identical to (F7) and the second integral, Ib, is

Ib =
1

0

∞

0
κ−2/3 exp −κ

2

κ2
l

cos
Lκ2ξ

k
(1− ξ) dκdξ

=
∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2n (1− ξ)2n dξ

∞

0
κ4n−2/3 exp −κ

2

κ2
l
dκ. (F46)

Noting that

1

0
ξ2n (1− ξ)2n dξ = B (2n + 1, 2n + 1)

= (2n + 1) (2n + 1)
(4n + 2)

, (F47)

where B (x, y) is the Beta function, we have

Ib = κ
1/3
l
2

∞

n=0
−L

2κ4
l

k2

n

2n + 1
6

(2n + 1)
(4n + 2)

. (F48)

Using the Pochhammer relations (F11) and

(2n + 1)
(4n + 2)

= 1
16n

1
22n (3/4)n (5/4)n

, (F49)

we have

Ib = 1
6
κ

1/3
l
2 3F2

1
12,

7
12, 1; 3

4,
5
4 −

Q2
l

16 . (F50)
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Thus

I1 = 1
6
κ

1/3
l
2

1+ 3F2
1
12,

7
12, 1; 3

4,
5
4 − Q2

l
16 . (F51)

The second integral, I2, is given by

I2 =
1

0

∞

0

κ1/3

κl
exp −κ

2

κ2
l

1+ cos
Lκ2ξ

k
(1− ξ) dκdξ . (F52)

We treat this integral as the sum of the two integrals Ic, which is identical to (F17), and Id, given

by

Id =
1

0

∞

0

κ1/3

κl
exp −κ

2

κ2
l

cos
Lκ2ξ

k
(1− ξ) dκdξ

= 1
κl

∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2n (1− ξ)2n dξ

∞

0
κ4n+1/3 exp −κ

2

κ2
l
dκ

= κ
1/3
l
2

∞

n=0
−L

2κ4
l

k2 2n + 2
3

(2n + 1)
(4n + 2)

= 2
3
κ

1/3
l
2 3F2

1
3,

5
6, 1; 3

4,
5
4 − Q2

l
16 , (F53)

where we have used the relations (F19) and (F49). Thus we have

I2 = 2
3
κ

1/3
l
2

1+ 3F2
1
3,

5
6, 1; 3

4,
5
4 − Q2

l
16 (F54)
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The third integral, I3 is given by

I3 =
1

0

∞

0

κ1/2

κ
7/6
l

exp −κ
2

κ2
l

1+ cos
Lκ2ξ

k
(1− ξ) dκdξ . (F55)

This integral is also treated as the sum of the two integrals Ie, which is identical to (F24), and I f ,

given by

I f = κ
−7/6
l

1

0

∞

0
exp −κ

2

κ2
l

1+ cos
Lκ2ξ

k
(1− ξ) dκdξ

= κ
−7/6
l

∞

n=0

−L2/k2 n

(2n)!

1

0
ξ2n (1− ξ)2n dξ

∞

0
κ4n+1/2 exp −κ

2

κ2
l
dκ

= κ
1/3
l
2

∞

n=0
−L

2κ4
l

k2 2n + 3
4

(2n + 1)
(4n + 2)

= 3
4
κ

1/3
l
2 3F2

3
8,

7
8, 1; 3

4,
5
4 −

Q2
l

16 . (F56)

Thus we have

I3 = 3
4
κ

1/3
l
2

1+ 3F2
3
8,

7
8, 1; 3

4,
5
4 − Q2

l
16 (F57)

Finally, substituting (F51), (F54), and (F57) for I1, I2, and I3 respectively into (F44) and

simplifying, we obtain the standard Rytov method spherical wave frequency variance

σ 2
f,sp,SR = 0.0258σ 2

1
k
L

V 2Q1/6
l × 1+ 0.723 3F2

1
12,

7
12, 1; 3

4,
5
4 ; −Q2

l
16

+0.317 3F2
1
3,

5
6, 1; 3

4,
5
4 ; −

Q2
l

16

−0.04 3F2
3
8,

7
8, 1; 3

4,
5
4 ; −Q2

l
16 . (F58)
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To develop expressions for the spherical wave frequency variance using the modified Rytov

method, the large and small scale components of the effective spectrum, (B1) and (B2), are

substituted into (F43) where again g (κL0) = 1 and f (κl0) is given by (F31). The resulting

integrals are identical in form to those of the standard Rytov method spherical wave formulation,

(F45), (F52), and (F55). They are evaluated in the same manner by combining the exponential

functions exp −κ2

κ2
l

and exp − κ2

κ2
x

using the term κxl in the large scale calculation, and by

combining the exponential functions exp −κ2

κ2
l

and exp − κ2

κ2
y

using the term κ yl in the small

scale calculation, as was done in the modified Rytov method plane wave frequency variance

calculations. These calculations yield the modified Rytov method spherical wave frequency

variance given by (173)-(175).
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Here we present the derivation of equations (214)-(219). To facilitate the derivation, we shall

divide the effective Kolmogorov atmospheric spectrum, (67), into a large scale portion given by

n (κ) = 0.033C2
nκ
−11/3 exp −κ

2

κ2
x
, (G1)

and a small scale portion given by

n (κ) = 0.033C2
nκ
−11/3 1− exp −κ

2

κ2
y

, (G2)

where we have let f (κl0) = g (κL0) = 1.

Upon substituting the large scale portion, (G1), into (203) we have

i
x (ρ, L) ≈ 2.6k2LC2

n

1

0

∞

0
κ−8/3 exp −κ

2

a2
x

× [I0 ( 2κξρ)− 1+ 1− J0 ( 2κξρ)] dκdξ, (G3)

where

α2
x =

kκ2
x

k + κ2
x 2Lξ2 , (G4)

Now consider the integral

I1 = 2.6k2LC2
n

1

0

∞

0
κ−8/3 exp −κ

2

a2
x

[I0 ( 2κξρ)− 1] dκdξ. (G5)
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Notice that this integral is of the exact same form as (D16). Expressing the Bessel function in

(G5) by it’s series representation and completing the integration we obtain

I1 = 2.6k2LC2
n
κ
−5/3
x

4

×
∞

l=1

2
2ρ

2κ2
x
l

4 (l!)2
l − 5

6

l + 1
2

2F1 l − 5
6, l + 1

2 ; l + 3
2 ; −κ

2
x 2L
k , (G6)

where (x) is the Gamma function and 2F1 (x) is the hypergeometric function. It can be shown

numerically that, for the range of parameters under consideration, the series in (G6) is dominated

by the first term. Hence, we make the approximation

I1 ≈ 0.49σ 2
1
k
L

2
2ρ

2η1/6
x 2F1

1
6,

3
2 ; 5

2 ; −η2
x 2 , (G7)

where ηx = Lκ2
x
k . Using the approximation for the hypergeometric function given by (D20), I1

can be approximated as

I1 ≈ 0.49σ 2
1
k
L

2
2ρ

2η1/6
x 1+ 0.547ηx 2

−1/6 (G8)

We now consider the integral

I2 = 2.6k2LC2
n

1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× [1− J0 ( 2κξρ)] dκdξ . (G9)
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Unlike the integral (G5) which makes up the radial component of the incident wave, (G9) makes

up the longitudinal component. In this case we argue that the filter function exp −κ2/κ2
x acts as

a low-pass spatial filter and use the approximation given by (D5). Making this approximation and

expressing the Bessel function in its series representation, we have

I2 ≈ 2.6k2LC2
n

∞

l=1
−

2
2ρ

2

4

l
1
(l!)2

1

0
ξ2ldξ

∞

0
κ−8/3+2l exp −κ

2

κ2
x
dκ. (G10)

Evaluation of the remaining integrals yields

I2 ≈ 7.07σ 2
1η
−5/6
x 2F2 −5

6,
1
2 ; 1, 3

2 ; −
2
2ρ

2kηx
4L

− 1 . (G11)

Using the approximation for the hypergeometric function given by (C10), I2 is given by

I2 ≈ 0.49σ 2
1η

1/6
x

ρ2 2
2k
L

1+ 0.033
2
2ρ

2kηx
L

−1/6

. (G12)

Thus, i
x (ρ, L) is now given by the sum of (G8) and (G12).
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Substitution of the small scale portion of the effective Kolmogorov spectrum, (G2), into

(203) yields

i
y (ρ, L) = 8π2k2L

1

0

∞

0
κ−8/3 exp − 2Lκ2ξ2

k

× [I0 ( 2κξρ)− 1+ 1− J0 ( 2κξρ)] dκdξ

−8π2k2L
1

0

∞

0
κ−8/3 exp −κ

2

α2
y

× [I0 ( 2κξρ)− 1+ 1− J0 ( 2κξρ)] dκdξ, (G13)

where

α2
y =

kκ2
y

k + κ2
y 2Lξ2 (G14)

The first double integral in (G13), is precisely that obtained for i (ρ, L) in the standard Rytov

method and the solution is presented by Andrews and Phillips.2 The second double integral is

evaluated in the exact same manner as for the evaluation of (G3).

Upon substituting the large scale portion, (G1), into (204) we have

R
x (ρ, L) = 2.6k2L

1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× I0 ( 2κξρ)− 1+ 1− J0 1− ¯ 2ξ κρ dκdξ, (G15)
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which can be expressed as the sum of two integrals, the first of which is identical to (G5), and the

second of which is given by

I3 = 2.6k2LC2
n

1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× 1− J0 1− ¯ 2ξ κρ dκdξ. (G16)

This integral is identical to (G9) except for the argument in the Bessel function. Thus it can be

evaluated in the same manner. We again write the Bessel function using its series definition, use

the approximation given by (D5), and evaluate the remaining integrals, yielding

I3 ≈ 0.49σ 2
1η

1/6
x

kρ2

L
1
¯ 2

1+ 0.033
kρ2ηx
L

−1/6

−
3
2
¯ 2

1+ 0.033
kρ2 2

2ηx
L

−1/6
 , (G17)

where we have also made use of the approximation given by (C10) for the resulting hypergeometric

functions.
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Substitution of the small scale portion of the effective Kolmogorov spectrum, (G2), into

(204) yields

R
y (ρ, L) = 8π2k2L

1

0

∞

0
κ−8/3 exp − 2Lκ2ξ2

k

× I0 ( 2κξρ)− 1+ 1− J0 1− ¯ 2ξ κρ dκdξ

−8π2k2L
1

0

∞

0
κ−8/3 exp −κ

2

κ2
y

exp − 2Lκ2ξ2

k

× I0 ( 2κξρ)− 1+ 1− J0 1− ¯ 2ξ κρ dκdξ . (G18)

The first integral in (G18) is identical to that obtained for R (ρ, L) in the standard Rytov method

and the solution is presented by Andrews and Phillips.2 The second integral is evaluated in the

exact same manner as for the evaluation of (G15).

Finally, upon substituting the large scale portion, (G1), into (205) we have

Re i R
x (ρ, L) = Re 2.6k2L

1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

J0 (1− ξ + 2 j 2ξ)
κρ

2
− 1

+ J0 (1− ξ − 2 j 2ξ)
κρ

2
− 1

−2 J0 (1− ξ + 2 2ξ)
κρ

2
− 1 dκdξ , (G19)

which can be expressed as the sum of three integrals, that is

i R
x (ρ, L) = I4 + I5 − 2I6, (G20)
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where

I4 = −2.6k2L
1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× 1− J0 (1− ξ + 2 j 2ξ)
κρ

2
dκdξ, (G21)

I5 = −2.6k2L
1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× 1− J0 (1− ξ − 2 j 2ξ)
κρ

2
dκdξ, (G22)

I6 = −2.6k2L
1

0

∞

0
κ−8/3 exp −κ

2

κ2
x

exp − 2Lκ2ξ2

k

× 1− J0 (1− ξ + 2 2ξ)
κρ

2
dκdξ. (G23)

Each of the integrals (G21)-(G23) is of the same form as (G9) and can therefore be evaluated in

the same manner. In each integral the Bessel function is replaced by its series representation

and the approximation given by (D5) is used. Evaluating the integrals and taking the real part

yields equation (218). We note that the use of the binomial approximation given by (C10) for

the hypergeometric functions in (218) results in large errors because the argument of the second

hypergeometric function in that expression is positive. Thus, we have left the hypergeometric

functions in the final result. The small scale correlation term, i R
y (ρ, L) is evaluated in the same

manner.
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Here we present the derivation of the terms α1 through α4 given by equations (232), (233), and

(235)-(238) that were used in the double pass finite target frequency variance. Assuming that the

double pass frequency variance is related to the double pass temporal phase covariance function by

the relation given in (229), it is necessary to first derive the double pass temporal phase covariance

function.

Andrews and Phillips2 showed that in the double pass case with reflection from a smooth

target, the Rytov approximation for the optical field can be expressed in the form

U (r, 2L) = U0 (r, 2L) exp [ 1 (r, 2L)+ 2 (r, 2L)]+ . . . , (H1)

where U0 (r, 2L) is the optical field at the receiver in the absence of turbulence and 1 (r, 2L)

and 2 (r, 2L) are the first and second order complex phase perturbations that include the effects

of reflection from a smooth target and the statistical correlation terms that arise in a monostatic

channel. Recalling that the statistical correlations can arise from a folded path geometry and a

reciprocal path geometry, it is necessary to express the complex phase perturbation, 1, as the

sum2

1 (r, 2L) = a (r, 2L)+ b (r, 2L)

= i
a (±r, L)+ R

a (±r, L)+ i∗
b (0, L)+ R

b (r, L) , (H2)
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where a (r, 2L) is the first order complex phase perturbation associated with folded path integrals

and b (r, 2L) is associated with reciprocal paths. The superscripts i and R refer to incident and

reflected waves and the asterisk ∗ denotes the complex conjugate. The upper plus sign is used for

a plane mirror target and the lower minus sign is used for a retroreflector target.

The spatial phase covariance function, BS, can be expressed in terms of ensemble averages

of the complex phase perturbations by2

BS (r1, r2, 2L) = 1
2

Re i
a (r1)

i∗
a (r2) − i

a (r1)
i
a (r2)

+1
2

Re R
a (r1)

R∗
a (r2) − R

a (r1)
R
a (r2)

+1
2

Re i
a (r1)

R∗
a (r2) + R

a (r1)
i∗
a (r2)

−1
2

Re i
a (r1)

R
a (r2) + R

a (r1)
i
a (r2) . (H3)

The ensemble averages in (H3) are given by Andrews and Phillips.2 In terms of the vectors

r = (r1 + r2) /2 and p = r2 − r1 and their magnitudes r = |r| and ρ = |p| , they are given by

α1 = i
a (r1)

i∗
a (r2) − i

a (r1)
i
a (r2)

= 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia r+ p

2
− γ i∗a r− p

2
κ

× exp − jκ
2

2k
γ ia B

i
a (ξ)− γ i∗a Bi∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ iaκρ

× exp − jκ
2

k
γ ia B

i
a (ξ) dκdξ, (H4)
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α2 = R
a (r1)

R∗
a (r2) − R

a (r1)
R
a (r2)

= 4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra r+ p

2
− γ R∗a r− p

2
κ

× exp − jκ
2

2k
γ Ra B

R
a (ξ)− γ R∗a BR∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra κρ

× exp − jκ
2

k
γ Ra B

R
a (ξ) dκdξ, (H5)

α3 = i
a (r1)

R∗
a (r2) + R

a (r1)
i∗
a (r2)

= 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia r+ p

2
∓ γ R∗a r− p

2
κ

× exp − jκ
2

2k
γ ia B

i
a (ξ)− γ R∗a BR∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra r+ p

2
∓ γ i∗a r− p

2
κ

× exp
jκ2

2k
γ i∗a Bi∗a (ξ)− γ Ra BRa (ξ) dκdξ, (H6)

α4 = − i
a (r1)

R
a (r2) − R

a (r1)
i
a (r2)

= 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia r+ p

2
∓ γ Ra r− p

2
κ

× exp − jκ
2

2k
γ ia B

i
a (ξ)+ γ Ra BRa (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra r+ p

2
∓ γ ia r− p

2
κ

× exp − jκ
2

2k
γ ia B

i
a (ξ)+ γ Ra BRa (ξ) dκdξ, (H7)
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where j = √−1. Note that in the bistatic case, α3 and α4 are zero. In the case of an incident

spherical wave, we have the following2

γ ia = ( 2 − j 2) (1− ξ) , (H8)

γ Ra = ξ + γ ia, (H9)

Bia = L (1+ ξ + jξ R) , (H10)

BRa = L (1− ξ) . (H11)

Noting that the use of the magnitude bars, || , in α1 through α4 is the same as presented in

Appendix A and applying the approximation given by (A8), we have

α1 = 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia − γ i∗a rκ J0 γ ia + γ i∗a

ρκ

2

× exp − jκ
2

2k
γ ia B

i
a (ξ)− γ i∗a Bi∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ iaκρ

× exp − jκ
2

k
γ ia B

i
a (ξ) dκdξ, (H12)
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α2 = 4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra − γ R∗a rκ J0 γ Ra + γ R∗a

ρκ

2

× exp − jκ
2

2k
γ Ra B

R
a (ξ)− γ R∗a BR∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra κρ

× exp − jκ
2

k
γ Ra B

R
a (ξ) dκdξ, (H13)

α3 = 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia ∓ γ R∗a rκ J0 γ ia ± γ R∗a

ρκ

2

× exp − jκ
2

2k
γ ia B

i
a (ξ)− γ R∗a BR∗a (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra ∓ γ i∗a rκ J0 γ Ra ± γ i∗a

ρκ

2

× exp
jκ2

2k
γ i∗a Bi∗a (ξ)− γ Ra BRa (ξ) dκdξ, (H14)

α4 = 4π2k2L
1

0

∞

0
κ n (κ) J0 γ ia ∓ γ Ra rκ J0 γ ia ± γ Ra

ρκ

2

× exp − jκ
2

2k
γ ia B

i
a (ξ)+ γ Ra BRa (ξ) dκdξ

+4π2k2L
1

0

∞

0
κ n (κ) J0 γ Ra ∓ γ ia rκ J0 γ Ra ± γ ia

ρκ

2

× exp − jκ
2

2k
γ ia B

i
a (ξ)+ γ Ra BRa (ξ) dκdξ, (H15)

where we note that the upper signs, i.e. ∓ and ±, are associated with reflection from a plane

mirror and the lower signs are associated with a retroreflector. Now note that α1 through α4 are

statistically inhomogeneous in that they depend explicitly on the location of the two observation
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points, r1 and r2. Thus, we consider the case when the observation points are symmetrically

located about the optical axis, i.e. r1 = −r2, so that r = 0. Making this assumption, noting that

J0 (0) = 1, substituting the parameters (H8)-(H11) where we are assuming an incident spherical

wave, and applying Taylor’s frozen flow hypothesis by making the substitution ρ = V τ/γ 2,where

γ 2 is given by (234), we find that the temporal phase covariance function for a finite target with an

incident spherical wave is given by

BS (V τ, 2L) = 1
2

Re [α1 + α2 + α3 + α4] , (H16)

where α1 and α2 are given by (232) and (233), respectively for both a plane mirror and a

retroreflector. For a plane mirror, α3 and α4 are given by (235) and (236), respectively. For

a retroreflector, α3 and α4 are given by (237) and (238), respectively. Again, in the bistatic case,

α3 and α4 are zero.

Using the relation given by (229), we can obtain an expression for the double pass finite

target frequency variance by taking the second derivative with respect to τ of each of the terms α1

through α4 and evaluating at τ = 0. Completing these two operations and simplifying yields

σ 2
f = −

1
8π2 β1 + β2 + β3 + β4 , (H17)
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where in the bistatic case β3 and β4 are both zero. For both a plane mirror and a retroreflector

β1 = Re
d2

dτ 2α1
τ=0

= 2π2k2LV 2 2
2

1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 (1− ξ)2

D2

× 2
2 − ¯ 2 ξ2 − 2 2 ¯ 2 + 2

2 ξ + 2
2 − 2

2 dκdξ

+2π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2

× cos
Lκ2

k
(1− ξ) 2 + ¯ 2ξ

(1− ξ)2
D2

× 2
2 − 2

2 − 2 ¯ 2
2
ξ2

+ 2 2
2 2 2

2 − 2 + 2
2 − 2 3

2 ¯ 2 ξ − 2
2 + 2

2
2
dκdξ

+4π2k2LV 2
2

1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2

× sin
Lκ2

k
(1− ξ) 2 + ¯ 2ξ

(1− ξ)2
D2

× 2 ¯ 2 − 2
2 ξ2 + 2

2 + 2
2 ξ dκdξ, (H18)

β2 = Re
d2

dτ 2α2
τ=0

= 2π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2

¯ 2ξ + 2
2

D2

× 2 + ¯ 2 ξ − 2 + 2 2 − ¯ 2 ξ − 2 − 2 dκdξ

−2π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2

× cos
Lκ2

k
(1− ξ) 2 + ¯ 2ξ dκdξ . (H19)
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In the case of reflection from a plane mirror, we have

β3 = Re
d2

dτ 2α3
τ=0

= −π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 [2 2 + (1− 2 2) ξ ]2

D2

× 2 − 2 − 2 + ¯ 2 ξ 2 − ¯ 2 ξ − 2 − 2 dκdξ, (H20)

β4 = Re
d2

dτ 2α4
τ=0

= −π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 1

D2

× 2 2
2 + 2 + 2 2

2 − 3 2 + 1 ξ2

+ 3 2 − 2 − 4 2
2 + 2

2 ξ + 2 2
2 + 2

2

× 2 2
2 + 2

2 − 3 2 − 2 + 1 ξ2

3 2 + 2 − 4 2
2 + 2

2 ξ + 2 2
2 + 2

2 dκdξ

−2π2k2LV 2
2

1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2

× ξ

D2 (1− ξ) sin
Lκ2

k
(1− ξ) 2 + ¯ 2ξ

× 2 2 ¯ 2 − 2
2 − ¯ 2 ξ2

+ 4 2
2 − 2 ¯ 2 + 2 ξ − 2 2

2 + 2
2 dκdξ . (H21)

233



In the case of reflection from a retroreflector, we have

β3 = 0.5π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 1

D2

× 4 2
2

2
2 − 4 2 − 2

2 +
13
4

− ¯ 2
2 ξ4

+ 16 2
2

2
2 − 2

2 + 3 2 − 13
8

− 2 2 ¯ 2 ξ3

+ 24 2
2

2
2 − 2 2 − 2

2 +
24
13

− 2
2 ξ2

+16 2
2 2 ¯ 2 + 2

2 ξ − 4 2
2

2
2 − 2

2 dκdξ

−0.5π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 1

D2

× ¯ 2 + 4 2
2

2
2 − 2

2 +
3
4

ξ4

+ 16 2
2

2
2 − 2

2 −
3
8
+ 2 2 ¯ 2 ξ3

+ 24 2
2

2
2 − 2

2 + 2
2 + 3 2

2 ξ2

+16 2
2

2
2 − 2

2 ξ + 4 2
2

2
2 − 2

2 dκdξ, (H22)

β4 = π2k2LV 2
1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 ξ2

D2

× cos
Lκ2

k
(1− ξ) 2 + ¯ 2ξ

× 2
2 − ¯ 2

2 ξ2 − 2 2
2 + 2 ¯ 2 ξ + 2

2 − 2
2 dκdξ

+2π2k2LV 2
2

1

0

∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 ξ2

D2

× sin
Lκ2

k
(1− ξ) 2 + ¯ 2ξ ¯ 2ξ

2 − (1− 2 2) ξ − 2 dκdξ . (H23)
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APPENDIX I. FINITE TARGET FREQUENCY VARIANCE
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Here we derive the expression for the finite target double pass frequency variance as given by

equation (241) and (254). Recall that these expressions assume an incident spherical wave. In the

previous appendix, it was determined that the finite target double pass frequency variance is given

by

σ 2
f = −

1
8π2 β1 + β2 + β3 + β4 , (I1)

where the terms β1 through β4 are defined by the integral equations (H18)-(H23). In each of

these integral equations we will complete only the integration on the spatial frequency, κ . The

remaining integration on the path length argument, ξ , is conducted numerically. Considering the

the integral equations (H18)-(H23), we notice that only part of the expressions are dependent on

κ . Thus, we see that the terms β1 through β4 can be expressed as functions of the following three

integrals on κ

I1 =
∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 dκ, (I2)

I2 =
∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 cos

Lκ2

k
(1− ξ) 2 + ¯ 2ξ dκ, (I3)

I3 =
∞

0
κ3

n (κ) exp −Lκ
2

2

k
(1− ξ)2 sin

Lκ2

k
(1− ξ) 2 + ¯ 2ξ dκ. (I4)

We develop an expression for the double pass finite target frequency variance using the

standard Rytov method by evaluating the expressions (I2)-(I4) using the Hill spectrum, (151) and

then expressing β1 through β4 in terms of these results. Thus, substituting the Hill spectrum into

(I2) yields

I1 = Ia1 + Ib1 + Ic1, (I5)
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where

Ia1 = 0.033C2
n

∞

0
κ−2/3 exp − κ

2

A2 dκ

= 0.0165C2
n A

1/3 1
6

(I6)

Ib1 = (1.802) (0.033)C2
n

∞

0

κ1/3

κl
exp − κ

2

A2 dκ

≈ 0.0297C2
n A

4/3κ−1
l

2
3
, (I7)

Ic1 = (0.254) (0.033)C2
n

∞

0

κ1/2

κ
7/6
l

exp − κ
2

A2 dκ

≈ 0.0042C2
n A

3/2κ
−7/6
l

3
4
, (I8)

A2 = kκ2
l

κ2
l L 2 (1− ξ)2 + k

. (I9)

Combining these results and evaluating the Gamma functions yields

I1 = 0.092C2
n A

1/3 1+ 0.44
A
κl
− 0.056

A
κl

7/6
. (I10)

Substituting the Hill spectrum into (I3) yields

I2 = 0.033C2
n Ia2 + 1.802

κl
Ib2 − 0.254

κ
7/6
l

Ic2 , (I11)
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where

Ia2 =
∞

0
κ−2/3 exp − κ

2

A2 cos Bκ2 dκ, (I12)

Ib2 =
∞

0
κ1/3 exp − κ

2

A2 cos Bκ2 dκ, (I13)

Ic2 =
∞

0
κ1/2 exp − κ

2

A2 cos Bκ2 dκ, (I14)

B = L
k
(1− ξ) 2 + ¯ 2ξ . (I15)

Each of the integrals Ia2, Ib2, and Ic2 can be evaluated by expressing the cosine function in its series

representation, interchanging the order of integration and summation, and evaluating. Utilizing

the Pochhammer relations given by (F11) we have

Ia2 =
∞

n=0

−B2 n

(2n)!

∞

0
κ4n−2/3 exp − κ

2

A2 dκ

= A1/3

2

∞

n=0

−B2A4 n

(2n)!
2n + 1

6

= A1/3

2
1
6 2F1

1
12,

7
12 ; 1

2 ; −B2A4 , (I16)
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where we note the Pochhammer relation (2n)! = 22n (1/2)n n!. Utilizing the Pochhammer relation

given by (F19) we have

Ib2 =
∞

n=0

−B2 n

(2n)!

∞

0
κ4n+1/3 exp − κ

2

A2 dκ

= A4/3

2

∞

n=0

−B2A4 n

(2n)!
2n + 2

3

= A4/3

2
2
3 2F1

1
3,

5
6 ; 1

2 ; −B2A4 . (I17)

Utilizing the Pochhammer relation given by (F26) we have

Ic2 =
∞

n=0

−B2 n

(2n)!

∞

0
κ4n+1/2 exp − κ

2

A2 dκ

= A3/2

2

∞

n=0

−B2A4 n

(2n)!
2n + 3

4

= A3/2

2
3
4 2F1

3
8,

7
8 ; 1

2 ; −B2A4 . (I18)

Combining these results and evaluating the Gamma functions yields

I2 = 0.092C2
n A

1/3
2F1

1
12,

7
12 ; 1

2 ; −B2A4

+0.44
A
κl

2F1
1
3,

5
6 ; 1

2 ; −B2A4

−0.056
A
κl

7/6

2F1
3
8,

7
8 ; 1

2 ; −B2A4 . (I19)
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Substituting the Hill spectrum into (I4) yields

I3 = 0.033C2
n Ia3 + 1.802

κl
Ib3 − 0.254

κ
7/6
l

Ic3 , (I20)

where

Ia3 =
∞

0
κ−2/3 exp − κ

2

A2 sin Bκ2 dκ, (I21)

Ib3 =
∞

0
κ1/3 exp − κ

2

A2 sin Bκ2 dκ, (I22)

Ic3 =
∞

0
κ1/2 exp − κ

2

A2 sin Bκ2 dκ. (I23)

Each of the integrals Ia3, Ib3, and Ic3 can be evaluated by expressing the cosine function in its

series representation, interchanging the order of integration and summation, and evaluating. For

Ia3, we have

Ia3 = B
∞

n=0

−B2 n

(2n + 1)!

∞

0
κ4n+4/3 exp − κ

2

A2 dκ

= BA7/3

2

∞

n=0

−B2A4 n

(2n + 1)!
2n + 7

6

= BA7/3

2
7
6 2F1

7
12,

13
12 ; 3

2 ; −B2A4 , (I24)
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where we note the Pochhammer relations (2n + 1)! = 22n (3/2)n n! and

2n + 7
6

= 7
6

7
6 2n

= 22n 7
6

7
12 n

13
12 n

. (I25)

For Ib3, we have

Ib3 = B
∞

n=0

−B2 n

(2n + 1)!

∞

0
κ4n+7/3 exp − κ

2

A2 dκ

= BA10/3

2

∞

n=0

−B2A4 n

(2n + 1)!
2n + 5

3

= BA10/3

2
5
3 2F1

5
6,

4
3 ; 3

2 ; −B2A4 , (I26)

where we note the Pochhammer relation

2n + 5
3

= 5
3

5
3 2n

= 22n 5
3

5
6 n

4
3 n

. (I27)
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For Ic3, we have

Ic3 = B
∞

n=0

−B2 n

(2n + 1)!

∞

0
κ4n+5/2 exp − κ

2

A2 dκ

= BA7/2

2

∞

n=0

−B2A4 n

(2n + 1)!
2n + 7

4

= BA7/2

2
7
4 2F1

7
8,

11
8 ; 3

2 ; −B2A4 , (I28)

where we note the Pochhammer relation

2n + 7
4

= 7
4

7
4 2n

= 22n 7
4

7
8 n

11
8 n

. (I29)

Combining these results and evaluating the Gamma functions yields

I3 = 0.015C2
n BA

7/3
2F1

7
12,

13
12 ; 3

2 ; −B2A4

+1.75
A
κl

2F1
5
6,

4
3 ; 3

2 ; −B2A4

−0.25
A
κl

7/6

2F1
7
8,

11
8 ; 3

2 ; −B2A4 . (I30)

The expressions for I1 through I3 can now be substituted into the terms β1 through β4 as done in

equations (243), (244), and (246)-(249).

To develop expressions for the frequency variance using the modified Rytov method, we

substitute the large and small scale components of the effective atmospheric spectrum, (B1) and
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(B2) respectively, where f (κl0) is given by (F31) and g (κL0) = 1 into the equations for I1

through I3 given by (I2)-(I4). When the large scale component, (B1), is substituted the results for

I1 through I3 are identical to the standard Rytov method except that A is replaced by Axl given

by (257). When the small scale component is substituted the result is the difference between the

standard Rytov method expression and an identical expression where A is replaced by Ayl given

by (259).
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