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ABSTRACT

Content-Based Image Retrieval has been an active research area for decades. In a CBIR

system, one or more images are used as query to search for similar images. The similarity

is measured on the low level features, such as color, shape, edge, texture. First, each image

is processed and visual features are extract. Therefore each image becomes a point in the

feature space. Then, if two images are close to each other in the feature space, they are

considered similar. That is, the k nearest neighbors are considered the most similar images

to the query image. In this K-Nearest Neighbor (k-NN) model, semantically similar im-

ages are assumed to be clustered together in a single neighborhood in the high-dimensional

feature space. Unfortunately semantically similar images with different appearances are of-

ten clustered into distinct neighborhoods, which might scatter in the feature space. Hence,

confinement of the search results to a single neighborhood is the latent reason of the low

recall rate of typical nearest neighbor techniques. In this dissertation, a new image retrieval

technique - the Query Decomposition (QD) model is introduced. QD facilitates retrieval

of semantically similar images from multiple neighborhoods in the feature space and hence

bridges the semantic gap between the images’ low-level feature and the high-level semantic

meaning. In the QD model, a query may be decomposed into multiple subqueries based on

the user’s relevance feedback to cover multiple image clusters which contain semantically sim-

ilar images. The retrieval results are the k most similar images from multiple discontinuous

relevant clusters.

To apply the benifit from QD study, a mobile client-side relevance feedback study was

conducted. With the proliferation of handheld devices, the demand of multimedia informa-

tion retrieval on mobile devices has attracted more attention. A relevance feedback infor-

mation retrieval process usually includes several rounds of query refinement. Each round

incurs exchange of tens of images between the mobile device and the server. With limited

wireless bandwidth, this process can incur substantial delay making the system unfriendly
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to use. The Relevance Feedback Support (RFS) structure that was designed in QD tech-

nique was adopted for Client-side Relevance Feedback (CRF). Since relevance feedback is

done on client side, system response is instantaneous significantly enhancing system usabil-

ity. Furthermore, since the server is not involved in relevance feedback processing, it is able

to support thousands more users simultaneously.

As the QD technique improves on the accuracy of CBIR systems, another study, which

is called In-Memory relevance feedback is studied in this dissertation. In the study, we im-

proved the efficiency of the CBIR systems. Current methods rely on searching the database,

stored on disks, in each round of relevance feedback. This strategy incurs long delay mak-

ing relevance feedback less friendly to the user, especially for very large databases. Thus,

scalability is a limitation of existing solutions. The proposed in-memory relevance feedback

technique substantially reduce the delay associated with feedback processing, and therefore

improve system usability. A data-independent dimensionality-reduction technique is used to

compress the metadata to build a small in-memory database to support relevance feedback

operations with minimal disk accesses. The performance of this approach is compared with

conventional relevance feedback techniques in terms of computation efficiency and retrieval

accuracy. The results indicate that the new technique substantially reduces response time

for user feedback while maintaining the quality of the retrieval.

In the previous studies, the QD technique relies on a pre-defined Relevance Support

Support structure. As the result and user experience indicated that the structure might

confine the search range and affect the result. In this dissertation, a novel Multiple Direction

Search framework for semi-automatic annotation propagation is studied. In this system,

the user interacts with the system to provide example images and the corresponding anno-

tations during the annotation propagation process. In each iteration, the example images

are dynamically clustered and the corresponding annotations are propagated separately to

each cluster: images in the local neighborhood are annotated. Furthermore, some of those

images are returned to the user for further annotation. As the user marks more images,
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the annotation process goes into multiple directions in the feature space. The query move-

ments can be treated as multiple path navigation. Each path could be further split based

on the user’s input. In this manner, the system provides accurate annotation assistance to

the user - images with the same semantic meaning but different visual characteristics can

be handled effectively. From comprehensive experiments on Corel and U. of Washington

image databases, the proposed technique shows accuracy and efficiency on annotating image

databases.
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CHAPTER 1: INTRODUCTION

1.1 Query Decomposition

Content-based Image retrieval (CBIR) is a core technology for many applications ranging

from image search engines, electronic commerce, and medical diagnosis to computer aided

drug design. Nearest neighbor search [68] is the typical technique for most of today’s CBIR

systems. In this framework, each image is represented by a large number of visual features

(e.g., color layouts, texture, etc.) and managed as points in this multidimensional feature

space. Images are considered similar if they are located ”close” to each other in this high-

dimensional space, according to some distance measure [81]. Query processing is performed

by finding k nearest images to a given example image in this feature space. Because it is

generally impossible for humans to define a query in terms of these feature vectors, example

images and user’s relevance feedback (RF) are usually used as an remedy. Most of the CBIR

techniques focused on finding the optimal result set in a single neighborhood [4, 39–41, 65,

70, 81, 90, 96] with the aid of user’s relevance feedback. A limitation of this approach is due

to the weak correlation between the target objects/concepts and their appearance in images.

A given object type can have various color patterns and diverse shapes. Consequently, the

best-matching images are not necessarily located near each other in any single neighborhood

in the feature space. A better technique should be able to discover all the scattered clusters

which contain relevant images and combine the top ranked images from all these semantically

relevant clusters in order to enhance the overall precision and recall. This motivates the

Query Decomposition (QD) approach described and examined in this chapter. A QD search

is not based on the traditional k nearest neighbors in a single neighborhood, but rather

finding the k best-matching images wherever they might be in the feature space.
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1.1.1 Limitation of Traditional k-NN Model

In CBIR systems, images are represented by their low-level features. Image searching is

then conducted in this feature space. Since it is inconvenient and inherently difficult to

express queries in terms of low-level visual features, Query by Example (QBE) is used in

essentially all CBIR systems today. The popular query processing strategy in today’s CBIR

techniques is known as the k-NN model. It aims to retrieve the images corresponding to

the k data points closest to the query point. This k-NN model confines the search result

to a single neighborhood in the feature space. In reality, however, the k nearest images in

this single neighbor may not include all the semantically similar images. Cars, for example,

come in many different shapes and colors; even the same car may look very different from

different viewpoints. Hence, these images would belong to different clusters in the feature

space; and a simple retrieval of the k nearest images to one query point is not able to

capture all the “car” images. The inherent weak association between the high-level semantic

concepts human perceives in images and the low-level visual features used to characterize

images causes poor recall in today’s CBIR systems. To further illustrate the limitation of

the k-NN model, consider the images of “a white sedan” in a real database. This database is

organized according to a 37-dimensional feature space (see Section 4 for additional details).

Principal Component Analysis (PCA) is applied to project the data set to a 3-dimensional

orthogonal space, as shown in Figure 1.1. In this 3-dimensional space, it can be observed

that four distinct clusters of the “white sedan” images, namely “side-view”, “front-view”,

“back-view”, and “angle-view”. Among the four clusters, there are many irrelevant images

(represented as the triangles). Under this circumstance, retrieval techniques based on the

k-NN model would not be able to find all these semantically identical images because they

are not in any single k-NN neighborhood. This problem causes poor recall. Although this

situation can be improved by using a very large k value to include more “Sedan” images in

2



Side-view

Front-view

back-view

Angle-view

Side-view

Front-view

back-view

Angle-view

 

▲irrelevant image 

Figure 1.1: Four distinct ”white sedan” clusters in a 3-dimensional feature space of an image
database.

the database, it would inevitably also cover many semantically irrelevant images resulting in

poor precision.

1.1.2 Multiple Neighborhoods Approach

To address the limitation of the k-NN model with the single neighborhood confinement,

Query Decomposition (QD) technique is introduced. The idea is to hierarchically decom-

pose an initial query into localized subqueries based on user’s relevance feedback. These

subqueries are processed independently, each to discover a distinct cluster of relevant im-

ages. Their local results are merged to form the final result. This strategy ensures that

all semantically relevant data clusters are considered, even if they are located far apart in

the feature space. A Relevance Feedback Support (RFS) structure was proposed to support

the QD technique. The RFS is constructed by constructing a tree structure on the whole

3



database. The RFS structure stores the image relations of the database. The system de-

composes the query depending on the RFS structure. The user provides relevance feedback

with the help of the RFS structure.

The RFS structure is relatively small compared to the wholde database size so that

it can be stored in a limited size memory. These properties make the QD technique and

RFS structure perfect for a mobile image retrieval environment. Mobile devices with high

resolution built-in camera are becoming ubiquitous. It is desirable to support multimedia

information retrieval using the images taken from the camera. As examples, a student

can use pictures of a plant to search for information of similar species in a remote digital

library. Providing this capability calls for efficient techniques to facilitate Content-Based

Image Retrieval (CBIR) in mobile environment. In a CBIR system, images are characterized

by their low level features such as color, texture, and shape. Since it is difficult to “describe”

a query through those features, RF is widely used and plays an important role [10, 19, 24,

27, 28, 35, 39]. It helps the system to understand the user’s intention. In such a system, the

user interacts with the system as follows: In each round, he helps by identifying the relevant

images within the returned set; the system then utilizes this feedback to modify the query

and thus to improve its retrieval results in the next round. This process can be repeated

until the user is satisfied with the results.

Lots of information retrieval systems in mobile environment have been introduced in

recent years. In those systems, the user’s query is send back to a remote server, then the

result is sent back to the user for refinement. However, this computation model is not suitable

for RF because the wireless bandwidth is limited for exchanging images in each round of

user RF. The long delay in feedback would affect the usability of the mobile system. In this

dissertation, the QD approach was utilized to process the user’s relevance feedback on the

client-side. Only the final query is sent back to the remote server for result.

During the study of relevance feedback in image retrieval, it is noticed that, typically,

multiple rounds of feedback are involved. In each round, the refined query must be processed
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over the database stored on disks. Considering the size of the databases it can be, this is

a lengthy process and may lead to high reneging user rates reducing the advantages of the

RF system. Hence, scalability is a limitation of today’s RF systems that manage large

image collections. In this work, an in-memory RF technique is investigated. The high

dimensionality of image feature vectors residing on disk are reduced to much lower one so

that the compressed database fits in memory for fast RF processing. The main goal is

to minimize the number of accesses to disk, executing similarity computation on the full

feature set only in the final round of the retrieval. Moreover, short turn-around time for RF

processing improves system usability and therefore encourages the user to try more rounds

for higher-quality results.

In the previous studies, the RFS structure was used to process the RF. It is noticed that

this pre-defined structure might confine the search range. So a Multiple Direction Search

with dynamic clustering study was conducted. In this technique, the example images are

dynamically clustered and the queries are decomposed according to the clustering result. In

this dissertation, we used the technique in an image annotation scenario.

Due to the popularity of digital cameras and stronger communication infrastructure,

digital images become widely available around the world. In order to provide better searching

and sharing services of this massive amount of images, detailed and accurate annotations

of images are required. However, manually annotating images is a tedious and expensive

process. Automatic or semi-automatic annotation techniques are highly desirable [5, 11, 17,

22,43,49,52,80,82,85,95].

In this dissertation, a Multiple Directions Search (MDS) technique is investigated. In this

system, a user provides sample images with labels as query for annotation propagation: first,

local clustering is performed on the example images based on their visual features. If the

user’s RF images have very different visual features (shows his intension to annotate groups

of images with diverse visual characteristics), the current query is decomposed into multiple

sub-queries accordingly to better benefit from the feedback information and provide more
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precise annotation. Similar to CBIR, the neighboring images of the multiple sub-queries will

be returned to the user for further RF, and the sub-queries might be decomposed again.

This mechanism enables the proposed technique to explore all relevant neighborhoods in

order to cover the k best matching images wherever they might be, rather than just the top

k ranked images of the single best-matching cluster (while omitting other relevant clusters).

The label of the example images will be propagated to the top-ranked images in the result

set. This iterative process is repeated until the user stops.
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CHAPTER 2: QUERY DECOMPOSITION: A MULTIPLE
NEIGHBORHOOD APPROACH TO RELEVANCE

FEEDBACK IN CBIR

2.1 Related Work

The weak correlation between the retrieval objects and their appearances in images is the

most fundamental issue in CBIR. Although using relevance feedback to tackle this problem

has been an active research area for several years [20, 28, 33, 34, 39–41, 44, 53–55, 73, 83, 84,

90, 96], it still remains a difficult and open problem. Most of the current techniques focus

on finding the single cluster with the largest number of matching images, and modify the

query contour to cover more relevant images. In Query Point Movement [41] (Figure 2.1(a)),

during every round of feedback, the centroid of the relevant images is used as the new query

point in the next iteration. The distance function is weighted such that the query contour,

enclosing the result images, is shaped to optimize the precision and recall. In Multipoint

Query [65] (Figure 2.1(b)), user’s feedback images are grouped into clusters, each represented

by the data point closest to its centroid. These representatives are treated collectively

as a multipoint query. The technique expands the query contour, in accordance with the

distribution of the centroids in the feature space. In Qcluster [39] (Figure 2.1(c)), a quadratic

distance function is used to approximate any contour and only images near the cluster

representatives are considered relevant. Multiple viewpoints approach [23] (Figure 2.1(d))

searches for relevant images using multiple query versions that are derived from the original

query image by changing the color featuers: negative color image, black-white image, and

black-white negative image. As a result, images differing slightly in color (e.g., a blue bus vs.

a green bus) can still be found. But the images with other different features, for example,

shape and texture, are still missing in the result.
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Figure 2.1: Query contours under different k-NN relevance feedback techniques.

The design of the above and some other existing CBIR techniques, e.g., [4, 40, 55, 70,

90, 96], are based on the k-NN model’s assumption, i.e., objects of similar semantics look

similar in many aspects. This strategy fails when the image characterization and similarity

measure do not follow perceptual characteristics. Under this circumstance, images with

similar semantics could scatter to distinct neighborhoods in the feature space. Relevance

feedback techniques based on k-NN would navigate along a single path to select the one with

the best precision and recall among these relevant neighborhoods. Due to the confinement

characteristic of the query model used in the above techniques, some semantically similar

images may never be explored in one relevance feedback session. This is illustrated in Figure

2 with five relevant images in the right-bottom corner not included in the query result. As the

goal of these typical RF techniques is trying to find a locally optimal solution, the irrelevant

images between the explored space and the bottom corner obstruct the discovering of the

corner relevant images. Instead of the aforementioned techniques, machine learning methods

have also been used in relevance feed-back systems [14, 20, 31, 33, 63, 64, 78, 79, 91, 94]. For

exam-ple, Support Vector Machine (SVM) [63, 79, 94] can be ap-plied to find a hyperplane

to seperate the relevant images from the irrelevants. This scheme has proved to improve

retrieval performance. Its limitation is as follow. Although in theory there may exist a kernel

to map the relevant images from different neighborhoods in the original feature space to a

single neighborhood in the transformed high-dimensional space, it is difficult to determine

such a kernel in practice. Furthermore, SVM defines the hyperplane based on a very small
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set of feedback images, not the entire image database. Such limited training examples and

high dimensionality may cause existing machine learning techniques such as SVM fail to

give predictable results. In this chapter, a straight-forward and effective technique, Query

Decomposition, with much less computation complexity is investigated.

2.2 Query Decomposition Approach with RFS Structure

To decompose user query to discover the semantically similar image clusters, Relevance Feed-

back Support (RFS) structure is investigated. The RFS structure is a hierarchical clustering

structure of the database. With this RFS structure, queries can be efficiently decomposed

to find the relevant subclusters according to the user’s re-levance feedbacks.

2.2.1 Relevance Feedback Support Structure

The RFS structure is constructed in two stages: Data Clustering and Representative Images

Selection. In the Data Clustering stage, a hierarchical clustering technique is used to organize

the entire image database into a hierarchical tree structure. Then in the Representative

Images Selection stage, a bottom-up representative-selection procedure is performed in the

tree as follows. At the bottom level of the RFS structure, the images in each leaf node

are clustered into subclusters by an unsupervised k-mean clustering algorithm. For each of

these subclusters, one or more images nearest to its center are selected as the representative

images. For each subsequent cluster in the upper levels of the hierarchy, the representative

images of all its child clusters are again aggregated and clustered by an unsupervised k-

mean clustering algorithm. The images nearest to these k-mean centers are selected as the

repre-sentative images for the current node. The number of representative images for each

cluster is chosen proportional to the number of images in that cluster. Finally, the list of the

representative images and their corresponding cluster identifications to which they belong

to are stored in the RFS structure as a part of the corresponding tree node.
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2.2.2 Decomposition Technique

Given an RFS structure, the relevance feedback is per-formed starting at the root node

as follows: 1. A user identifies initial relevant images (i.e. query images) from the set of

images randomly selected from the representa-tive images corresponding to the root node

in the RFS structure. (This step can be repeated until the user is satisfied with the initial

query). 2. The images marked for the current query identify the relevant clusters in the next

(lower) level of the RFS structure. A cluster in the next level is relevant if one or more of

its representative im-ages match some of the query images. 3. Localized relevance feedback

is processed independently in each relevant cluster. The user chooses query images from the

set of images, randomly selected from the representative images from each relevant cluster.

4. Recursively repeat Steps 2 and 3 until the RF process reaches a relevant cluster at the leaf

level (i.e., a semantically relevant cluster) of the RFS structure. At this time, the localized

nearest neighbor computation is conducted for final image retrieval. At any time, the user

also has the option to submit the final query before the search reaches the leaf level.

2.2.3 Localized Nearest Neighbor Computation

A distinct benefit of the QD approach is that the RFS scheme only needs to do k-NN

computation over the much smaller data subspaces, typically represented by the relevant

leaf nodes in the RFS structures, in the final round of relevance feedback. Existing RF

techniques must perform the k-NN computation over the entire database for each round

of RF. In QD technique, once the subqueries are submitted, they are computed in their

according subclusters. In the situation when some of these local query images are located

near the boundary of the given subcluster, some of their relevant images might actually reside

in the sibling nodes of the RFS. In this case, the system computes the subquery over the

parent node instead, in order to also consider possibly relevant images from the neighboring

clusters. To determine whether a query image is near the boundary of corresponding node,
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the ratio between the distance of this image to the center of the node is computed to compare

with the diameter of the node. If this ratio exceeds a predetermined threshold, the search

area is expanded to the parent node. The same process is repeated in the parent cluster.

The threshold used in this test can be determined empirically based on the database size

and content. If the images in the database are well clustered, this threshold can be set

higher to reduce the probability of expanding the search to the parent cluster. For the later

experiment database with 19,000 images from about 190 categories, the threshold is set to

0.4.

2.2.4 Similarity Ranking

After the localized retrieval process, the Query Decomposition technique obtains relevant

image sets, one from each of the localized multipoint k-NN queries. To combine these

results, the system includes several top-ranked images from each set of local results. The

number of result images selected from each local set is proportional to the number of relevant

images that the user had identified in the corresponding subcluster. To rank the images in

each subcluster, any of the multipoint query processing techniques, discussed in Section 2.1,

can be used. However, to emphasize the effect of query decomposition, Euclidian distance is

used in this study as similarity score.

Various visualization techniques can be considered for displaying the final results on

screen. In the prototype system, the result images are presented in groups as they are from

different clusters. The system first compute the ranking score Sgj
(j = 1, , N) of each image

group as the sum of the similarity scores of its top m images, i.e.,

Sgj
=

∑
Sji (Eq. 2.1)

where Sji is the similarity score of image i in group j; m = k/N , N is the total number

of localized queries, k is the total number of images returned to the user. Then, the system
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present these result groups in the order of their ranking scores Sgj
. Within each group, the

result images are displayed in the order of their Sji.

2.3 Experimental Studies

The dataset, test quires and evaluation protocol are described in Section 2.3.1 and 2.3.2.

The comparison of the QD technique’s performance with the MV technique is presented

in 2.3.3. Then the effect of different clustering approaches on the QD systems is studied

in 2.3.4. In 2.3.5, the performance sensitivity of the QD technique with RFS structure

on various cluster size is investigated. The impact of the localized k-NN search threshold

on performance is shown in Section 2.3.6. Finally, Section 2.3.7 discusses the performance

results for computation efficiency.

2.3.1 Datasets and Test Queries

The first test database includes 15,000 images taken from the Corel image database. In

order to test the performance of the QD system on an application-specific database, another

Corel database which has 1,300 flower images is also used. In addition, a database with

59,900 images is used to test the system computation efficiency. The Corel images have been

classified into distinct categories by domain professionals. Since users search for images based

on high-level semantic concepts (as opposed to low-level image features), the Corel category

information is used as the ground truth. Images from the same and related categories (such

as yellow rose and red rose) are considered relevant.

To test the system’s capability of addressing the semantic gap, it is compared with the

Multiple Viewpoints (MV) approach using the queries listed in Table 1. This query set was

designed to test the capability of bridging the semantic gap when all aspect or some aspects

of the features of the desired images are different. For instance, “roses” have different colors;

“cars” have different shapes and/or colors. Also, some queries are designed to investigate the
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impact on performance under both general (e.g., “finding computers”) and more specific (e.g.,

“finding laptop computers”) queries. Each of these Query Concepts contains 100 images.

In the following experiments, for each round of relevance feedback, the top 50 images are

shown to the user.

Table 2.1: Testing Queries
Query Concept Images in DB
1. A person Hair-model, fitness, Kongfu
2. Airplane single, multiple
3. Bird eagle, owl, sparrow
4. Car modern sedan, antique car
5. Horse wild horse, race
6. Mountain view snow, with water
7. Rose yellow, red
8. Water Sports surfing, sailing
9. Computer server, desktop, laptop
10. Personal computer desktop, laptop
11. Laptop with clear background, with complicated background

2.3.2 Evaluation Metrics

To evaluate the effectiveness of the proposed system, precision and recall are used:

Precision =
|relevantimages| ∩ |retrievedimages|

|retrievedimages| (Eq. 2.2)

Recall =
|relevantimages| ∩ |retrievedimages|

|relevantimages| (Eq. 2.3)

GTIR =
Numofretrievedsubconcepts

Numoftotalsubconceptsingroundtruth
(Eq. 2.4)

To illustrate the GTIR, the query “a person” from Table 2.1 is used as an example. In

this case, the MV technique could only retrieve 1 out of 3 ground truth subcategories, thus

13



resulting in GTIR=1/3; while QD captured all three subcategories achieving a GTIR value

of 1.

2.3.3 QD vs. MV

In this section, QD is compared with a recent technique, MV, to evaluate the capability

of QD in addressing the semantic gap. For the QD approach, the R*-tree [6] method to

hierarchically cluster the database. Then system selected about 80 representative images for

each RFS clusters. The localized k-NN computation threshold was set to 0.4. As relevance

feedback can be user subjective, 20 subjects are invited to test the systems by searching for

the relevant images in the database. Each subjects searched for images 5 times on each of

the test queries. The average is reported in this subsection.

The performance of QD and MV at each of the three rounds of relevance feedback is

presented in Table 5.3. Note that the QD technique did not actually commit any similarity

computation until Round 3 (i.e., the returned images in Round 1 and 2 are representative

images randomly selected from the relevant clusters), so the the precision values are not cal-

culated for Rounds 1 and 2. It can be observed from Table 2 that the QD technique performs

significantly better than MV. MV’s precision, recall and GTIR are not improved much after

the second round of relevance feedback, which is due to the confinement characteristic of the

traditional k-NN model as explained before.

Table 2.2: Image Retrieval Quality Comparison in 3 rounds
MV QD

FeedbackRound Precision Recall GTIR Precision Recall GTIR
1 0.1 0.05 0.51 na na 0.70

2 0.30 0.15 0.56 na na 0.91

3 0.32 0.16 0.51 0.76 0.36 1

To give an overall performance comparison of QD and MV on addressing the semantic

gap, the average precision and GTIR for MV and QD on the 11 test queries are presented in
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Figure 2.2: Precision and GTIR for MV and QD.

Figure 2.2, where P MV and P QD denote the precision for the MV and the QD techniques,

respectively. Similarly, G MV and G QD are the GTIR for the MV and the QD techniques,

respectively.

The result shows the advantage of using separate localized queries in the QD system.

For most cases, the QD approach is able to capture all the semantic subclusters therefore

achieving better precision and GTIR than the MV approach. This confirms that the QD

technique searches all over the feature space using multiple localized queries to cover all the

semantically similar images. On the contrary, the MV only focuses on searching images in

the best neighborhood. On average, the QD systems precision is 0.76, while the precision of

the MV system is 0.32; the QDs GTIR is 1, and the MVs GTIR is only 0.51.

From the results, for some cases, like the “Airplane”, the GTIRs for QD and MV are

the same. The reason is that most of the images with single airplane and the images with

multiple airplanes have similar visual features, i.e., the background is clear. Although the

QD’s GTIR is the same as that of the MV, the precision is quite different. This can be

explained as follows. The visual features of some of the images with multiple airplanes or

single airplane in the sky are quite similar due to the sky background. As a result, a single

neighborhood can cover all these images and capture the different subconcepts giving MV a

GTIR measure comparable to that of QD. Nevertheless, there are still some airplane images

of the aforementioned semantic categories, which do not have the same background and
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therefore are not located in the same neighborhood. Missing these images results in a poor

precision for MV. Moreover, MV approach would bring some unrelated images in the color-

negative, black-white, and black-white negative channels. An extreme case occurs under the

water sports query. In this case, MV returned many unrelated black-white images in the

database. For the case of “mountain view”, the QD approach was not significantly better

than the MV approach due to the fact that the feature selected for this study is not sufficient

to characterize the distant view of these images. As a result, neither technique performs

well under this query, although QD could pick up both the “snow mountain” images and the

“mountain with water” images by exploring the two corresponding subclusters independently

giving it a small performance edge over MV in this case. The limitation of the visual features

should not be viewed as a weakness of either technique as better features would improve

performance using the same two retrieval methods.

Finally, the average results over all 11 test queries are presented in the last group of

columns in Figure 2.2. For all the cases, the QD approach can catch all the semantic

subcategories allowing it to outperform the MV approach in terms of both precision and

GTIR.

To give an intuitive illustration of the advantage of the QD technique, some query results

from QD and MV are presented. The top eight images retrieved for portable computer are

presented in Figures 2.3 for the MV and QD techniques, respectively. Figure 2.3.a shows

that the result images of MV only include one type of the “portable computer” images, i.e.,

“laptop with clear background”. In contrast, it can be observe in Figure 2.3.b that the QD

approach is able to capture all semantically relevant neighborhoods of “portable computer”

scattered in the feature space.

The top 16 images for “personal computer” from MV are presented in Figure 2.4.a, and

for QD in Figure 2.4.b. The personal computer includes “desktop” and “portable computer”.

Under the “personal computer” concept, there are two subcategories: “computer on a table”

and “computer on the floor”. Again, the MV approach can only find one neighborhood.
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2.3.a: MV

2.3.b: QD

Figure 2.3: Retrieval result of “Portable computer from MV and QD”

The feature space that MV covered by using multiple channels can only include one type of

the computers in the ground truth. The set of desktop on the floor images and the set of

desktop on a table images are too far apart in the feature space for the MV technique to

capture them both.

In Figure 2.5.a, the top 24 images of “computer” returned by MV are shown. The top

24 images retrieved by QD are shown in Figure 2.5.b. In the QD approach, both the “Sun

workstation” and “HP workstation” subcategories are covered, in contrast, MV only finds

one subcategory. These experimental results confirm the assertion that the traditional k-NN

model confines the query results to a single neighborhood in the feature space.

2.3.4 Sensitivity of Different Clustering Method to Build RFS Structure

To understand the effects of using different clustering techniques on performance, two well

known and widely used methods, R*-tree and k-mean, are selected to built two different RFS

structures. To use k-mean, the database is hierarchically clustered to form the tree structure.
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2.4.a: MV

2.4.b: QD

Figure 2.4: Retrieval result of “Personal computer from MV and QD”

The representative image selection procedure is the same as using R*-tree as described in

Section 3.1.

The performance comparison is reported in Table 2.3. The RFS structures are built in a

way that the bottom-level subclusters contain approximately 80 images. The RFS structure

has 3 levels with the top level cluster having about 900 representatives. In total, the RFS

has 5% of the database images. In the experiment, 100 random queries are used on both

systems. The average results are presented in Table 3. It indicates that both clustering

techniques yield good performance and R*-tree is slightly better than the other. For the
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2.5.a: MV

2.5.b: QD

Figure 2.5: Retrieval result of “Computer from MV and QD”
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prototype in this work, R*-tree is chosen, since it clusters data significantly faster than the

k-mean technique.

Table 2.3: system performance by using different clustering technique
Criteria R*-tree Kmean
1. Precision 0.76 0.75
2. Recall 0.41 0.40
3. GTIR 1 0.99

2.3.5 Effect of Cluster Size

Recall that there are two stages in constructing an RFS structure: data clustering and

representative image selection. In the first stage, if the size for each RFS node (i.e., the

number of representative images in each cluster) changes, both the total number of clusters

at each level of the RFS structure as well as the depth of the RFS tree change. These changes

may affect the selection of the representative images.

Two databases were used for this study. The first one is relatively large database with

19,000 general images. The second database is smaller application-specific database with

1,300 flower images. For the experiment on each database, the cluster size is changed between

30 and 150 and investigate its impact of the system performance. The results for the large

and small databases are presented in Figure 2.6.a and Figure 2.6.b, respectively. It can be

observed that the performance is the best when the cluster size is 80 for both databases; and

all five curves are reasonably clustered together in both figures. This indicates that QD is

robust with respect to the cluster sizes, i.e., it works well for a wide range of cluster sizes.

This is a desirable property as the user has a lot of leeway to find a good cluster size for a

given database.
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2.6.a: 1,300 database
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2.6.b: 19,000 database

Figure 2.6: Precision and Recall vs. cluster size in 1,300 and 19,000 databases

2.3.6 Local k-NN Searching Threshold vs. Performance

In the last round of the image retrieval process, the system searches the image database

for the final results in distinct neighborhoods. Recall that if the query image is far away

from the cluster center, then the localized k-NN search is taken place in the parent cluster

(Section 3.3). Here the threshold is used to control the searching range. In Figures 2.7.a

and 2.7.b, the precision and recall are reported when the threshold for the localized k-NN

search varies. It can be seen that when the threshold is around 0.4, the system performs

the best on the retrieval accuracy. The systems performance decreases when the threshold

is below 0.3 or above 0.8. When the threshold is set to less than 0.3, it makes the system

expand the searching range to a larger space (i.e., the upper level cluster) too frequently.

When the threshold is set to 0, all the retrievals take place in the whole database as in

standard k-NN search. The larger the search space is, the slower the processing time. When

the threshold becomes larger than 0.8, the system performance also decreases. The reason

is that, when the query image is located near the cluster boundary, there might be some
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2.7.a: Precision vs. Localized k-NN search-
ing threshold

2.7.b: Recall vs. Localized k-NN searching
threshold

Figure 2.7: Precision and Recall vs. cluster size in 1,300 and 19,000 databases

Figure 2.8: localized k-NN processing time vs. localized k-NN searching threshold.

similar images in the sibling clusters. The loose threshold limits the search within one small

cluster. Therefore, the system might miss some relevant images in some sibling clusters.

In Figure 2.8, the computation time of the localized k-NN verses the searching range

threshold is shown. It can be observe that the k-NN processing time is quite long for threshold

less than 0.4. This is due to the fact that the search took place in a larger cluster rather

than the subcluster containing the relevant example. When the threshold is larger than 0.4,

the processing time is almost the same. Combining the result shown in Figure 2.7.a, 2.7.b,

and 2.8, it can be observed that the QD technique is robust with respect to the threshold.

It performs well for a wide range of the threshold values.
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2.3.7 Computation Efficiency

In this subsection, the efficiency of the proposed QD approach under various databases with

different sizes is evaluated. As mentioned before, an important advantage of the QD approach

is the efficiency attained by using the RFS structure. With this structure, expensive k-NN

computation in each round of RF is avoided. If the cluster size is C and the size of a

database is S, the depth of the RFS structure is logCS (For the database of 19,000 images

with about 100 images in each subconcept, the RFS structure has 3 levels.) Therefore, in

general, the user can find the desired images in logCS rounds. The whole RF processing time

is O(logCS ∗ Time(eachround)). To confirm this, the proposed system is tested on different

databases size, the largest one is 59,900 images.

This experiment was performed on a modest 2.5-GHz Pentium IV-based computer with

1GBytes of RAM. 100 initial queries are randomly generated and their average query pro-

cessing time is evaluated (Figure 2.9.a), as well as the average relevance feedback processing

time (Figure 2.9.b) for a single round. For each query, two rounds of relevance feedback are

performed in addition to the initial query processing and the final localized k-NN computa-

tion. According to Figures 2.9.a and 2.9.b, the overall query processing time and the average

iteration processing time increase slowly with database sizes. These results indicate that the

QD approach is time efficient, suitable for very large databases with many concurrent users.

The efficiency of the Query Decomposition approach can also be attributed to low disk

utilization. Since the information required for relevance feedback processing is stored in the

RFS structure, when a representative image is marked by the user, only the corresponding

RFS cluster will be accessed. This I/O cost is even less in the case that multiple relevant

representative images are chosen from the same cluster. The only exception is when the

query image is located far away from the centroid of the cluster. In such case, the searching

of the parent/sibling nodes incurs additional disk accesses. Nevertheless, processing of all
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2.9.a: Overall query processing time for
different database sizes.

2.9.b: Average iteration processing
time for different database

Figure 2.9: Query processing time vs. different database size

the localized k-NN subqueries need to access only a few neighborhoods in the feature space,

which dramatically reduces the load on the storage system.

2.4 Conclusions

Confinement of the search results to a single neighborhood in visual-based feature space is

the latent reason for the low recall/precision rate of typical nearest neighbor techniques.

In this study a new image retrieval paradigm, the Query Decomposition (QD) model, is

investigated. The technique facilitates retrieval of semantically similar images from multiple

neighborhoods in the feature space. In this new model, a query is decomposed into multiple

subqueries based on the users relevance feedbacks, so that multiple image clusters containing

the semantically similar images can be covered. Compared to recent method (MV), the

performance study indicates that the proposed QD technique is able to achieve significantly

better performance.
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The three primary contributions of the work in this chapter are as follows:

Better Query Result: The traditional k-NN image retrieval framework confines query

results to a single neighborhood in the feature space. The QD approach considers multiple

neighborhoods, and therefore can better address the inherent semantic gap problem in CBIR.

More Efficient Query Processing: Unlike traditional relevance feedback processing

which performs k-NN computation on the entire database in each round of relevance feed-

back, the QD approach only performs localized k-NN computation on very small subclusters

in the final round of the relevance feedback process, which dramatically reduces the compu-

tational cost.

More Scalable: Since the relevance feedback mechanism of the QD approach relies on

only a tiny fraction of the database, it can be distributed to the client machines, which

enables the server to focus on the final retrieval tasks. [93] has proved that this wireless

relevance feedback mechanism is practical and effective.
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CHAPTER 3: CLIENT-SIDE RELEVANCE FEEDBACK
APPROACH FOR IMAGE RETRIEVAL IN MOBILE

ENVIRONMENT

3.1 Introduction

Mobile devices with high resolution built-in camera are becoming ubiquitous. It is desirable

to support multimedia information retrieval using the images taken from the camera. As

examples, a student can use pictures of a plant to search for information of similar species

in a remote digital library. Providing this capability calls for efficient techniques to facilitate

Content-Based Image Retrieval (CBIR) in mobile environment. In a CBIR system, images

are characterized by their low level features such as color, texture, and shape. Since it

is difficult to “describe” a query through those features, RF is widely used and plays an

important role [10,19,24,27,28,35,39]. It helps the system to understand the user’s intention.

In such a system, the user interacts with the system as follows: In each round, he helps by

identifying the relevant images within the returned set; the system then utilizes this feedback

to modify the query and thus to improve its retrieval results in the next round. This process

can be repeated until the user is satisfied with the results.

Lots of information retrieval systems in mobile environment have been introduced in

recent years [9, 45, 47, 50, 71, 72, 75]. In [9], a query is composed by visual sub-queries and

keywords. First, the keyword is used as query to an existing search engine. Then the result

images are processed in a query refinement agent based on the visual sub-queries in the client

side. In [45] and [47], visual features are used to search in a large database and the result

is returned to the user for relevance feedback. In summary, in those systems, the user needs

to interact with the server for result. The mobile device works as an interface. However,

this computation model is not suitable for RF because the wireless bandwidth is limited

for exchanging images in each round of user RF. The long delay in feedback would affect
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the usability of the mobile system. Moreover, communication is generally hundreds of times

more demanding on mobile power than computation is [66, 76]. Constantly sending and

receiving queries and results can quickly exhaust mobile device’s battery power. Usually,

CPU requires minimal power compared to sending data over the wireless radio. For instance,

transmitting 1Kb message over a 100 meters distance is around 3 joules. On the other hand,

a general processor with 300 MIPS/W power is able to execute 1 million instructions for

the same amount of energy [66]. Also the storage power for mobile devices is always some

hundred mW [97], which is 20-30% of the communication power consumption. Therefore,

saving the communication power will be more urgent in mobile RF system.

Another issue in the existing image retrieval techniques is the semantic gap between the

high level semantic concept and the low level visual features. In most of the current systems

[39,41], the searching range is always confined in a single neighborhood. This is not consistent

with the reality: a semantic concept can have very different representation (for example, side

view of a sedan and front view of a sedan can be very different). Trying to bridge the gap,

some mobile information management systems use tags generated at the point of picture

was taken: In [21,48,56], location, temporal, and sometimes social contextual metadata are

used as image features instead of the visual features. However, a picture is worth a thousand

words. It is hard and tedious to fully describe an image using concise verbal terms. The

most convenient and common way for a mobile user to express himself is to use the picture

he took as the query [7].

To address the aforementioned issues, a Client-side Relevance Feedback (CRF) technique

is investigated in this study. In this model, all RF except the last round is processed in the

mobile device to avoid the communication cost. To achieve this, the Relevance Feedback

Support (RFS) structure [38,93] is adapted to address the storage and computation limita-

tion of mobile devices. In the CRF system, the initial user query might be decomposed to

cover more semantically relevant images, thus to bridge the semantic gap. The contributions

are listed as below:
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1. The CRF technique is detailed described and investigated.

2. The interface design is taken into consideration. Different interfaces are designed for

different mobile users.

3. Extensive experimental studies are conducted on the CRF system to examine the

mobile device power saving and the accuracy of the system.

3.2 CLIENT-SIDE RELEVANCE FEEDBACK TECHNIQUE

To support client side RF, Query Decomposition technique (QD) [38] is adapted, and RFS

structure is used to facilitate the query processing: The system provides RF retrieval result to

the user based on the RFS structure; Also, to cover more semantically similar image clusters,

user’s query is decomposed based on the RFS structure. In this section, RFS structure and

the CRF retrieval technique is described in details.

3.2.1 RFS Structure

Since low-level visual features are not sufficient to capture the semantics of general images,

semantically identical images may exhibit very different visual characteristics and thus may

be projected to data points lying far apart in the multi-dimensional feature space. Standard

retrieval techniques which are trying to find the cluster with the more relevant images cannot

achieve good recall [38]. QD approach addresses this problem by finding all semantically-

related clusters. To cover those clusters, the system decomposes the user’s query based on

the relevance feedback and the RFS structure.

The RFS structure is constructed in two stages: Data Clustering and Representative

Images Selection. In the Data Clustering stage, a hierarchical clustering technique is used

to organize the entire image database into a tree structure. Then in the Representative

Images Selection stage, a bottom-up representative image selection procedure is performed as
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follows. At the bottom level of the RFS structure, unsupervised k-mean clustering algorithm

is applied to the images in each leaf node. For each of the resulted subclusters, one or more

images nearest to its center are selected as the representative images. For each cluster in the

upper level of the hierarchy, the representative images from its child clusters are aggregated

and clustered again. Then representative images are selected for the current node. The

number of representative images for each cluster is chosen proportional to the number of

images in that cluster (i.e. 5% of the images). Finally, the list of the representative images

and their corresponding subcluster identifications (i.e. to which they belong to) are stored

in the RFS structure in the corresponding tree node. Thus, all of the information needed to

support relevance feedback is self-contained in the RFS structure.

3.2.2 Query Processing with RFS structure

To help the user formulate the initial query, the system displays some randomly selected

representative images from the root node of the RFS structure. From these images, the user

identifies the most relevant ones. If necessary, this process can be repeated. To process the

initial query, the system determines the relevant subclusters to which the selected repre-

sentative images are from. If this process results in more than one relevant subcluster, the

initial query is “split” into separate localized subqueries for RF, one for each relevant sub-

cluster. Because real-world objects can have very different appearances when represented in

2-dimensional images, multiple independent subqueries are better suited for their retrieval.

In Figure 4.2, illustrate the query decomposition process with an example in Figure 1

(only tree nodes and images relevant to the discussion are presented in this figure). In this

example, the RFS structure has three levels, with Node 1 representing the root cluster, which

is the entire image database. Suppose the user wants to find images of cars. In the first

feedback iteration, he found two relevant images in Node 1 - a steamed car and a modern car.

Based on the RFS structure, the system determines that these two images came from Node
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Figure 3.1: A 3 level RFS structure

2 and Node 3 in Level 2, respectively; then the initial query is split into two subqueries as

follows. At the beginning of the second iteration, random representative images from Node

2 and Node 3 are presented to the user for RF. The user can now find more relevant images

according to his interest, say, a steamed car and an antique car in Node 2, plus two modern

cars with different colors in Node 3. With these new relevant images, the system recognizes

the corresponding relevant subclusters to be Nodes 4, 5, 6, and 7 in Level 3. Finally, the user

identifies the relevant images in these subclusters as illustrated in Figure 1. These images

are then used as the final localized k-NN subqueries to search the corresponding subclusters

independently; and their results are merged to form the overall result of car.

3.2.3 Procedures of Client-side Relevance Feedback

Given a RFS structure stored on the mobile device, the user’s relevance feedback can be

processed without any support from the remote server. The client-side relevance feedback is

performed starting at the root node as follows:

1. A user has two ways to formulate the initial query: (1) By identifying initial relevant

images (i.e. query images) from the set of images randomly selected from the represen-

tative images corresponding to the root node in the RFS structure. (This step can be

repeated until the user is satisfied with the initial query.) (2) A set of pictures, taken
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by the user, can be submitted as the initial query. In response to this initial query, the

mobile device presents the top k similar images from the representative images in the

root node; and the user marks the relevant images.

2. The images marked for the current query identify the relevant clusters in the next

(lower) level of the RFS structure. A cluster in the next level is relevant if one or

more of its representative images is selected as query images. With the help of RFS

structure, it only takes O(1) time to determine which subcluster to explore next.

3. Localized relevance feedback is processed independently for each relevant subcluster.

The user chooses query images from the set of images, randomly selected from the

representative images from each relevant subcluster.

• 4. Recursively repeat Steps 2 and 3 until the RF process reaches a relevant cluster

at the leaf level (i.e., a semantically relevant cluster) of the RFS structure. Then the

query is sent to the server for final image retrieval. The user has the option to submit

the final query before the search reaches the leaf level.

The CRF approach requires storing the RFS structure on the mobile device. Although

the capacity of flash memory continues to quadruple each year, it is desirable to keep the

size of this RFS structure small. Typically, the RFS structure contains less than 5image

icons for feedback purposes, this RFS structure is generally very small. For instance, if

each image icon requires 10 KB of storage space, a mobile device with 100MB of available

flash memory can hold an RFS structure that can support an image database with 200,000

images. Considering 1 GB flash memory in a cell phone becomes a standard, the proposed

approach is feasible.
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3.2.4 Final Query Processing on Server

When the final query is sent to the server, localized k-NN queries are performed on the

corresponding leaf cluster to retrieve the semantically relevant images. This time, the server

searches all the images in the relevant cluster, not just the representative images. Finally, the

candidates from different relevant clusters are merged and ranked to form the final result. A

distinct benefit of CRF is that the RFS scheme only needs to do k-NN computation over the

much smaller data subspaces, represented by the relevant leaf nodes in the RFS structure,

in the final round of retrieval. Existing RF techniques must perform the k-NN computation

over the entire database for each round of RF.

3.2.5 Active Learning in RF

According to the basic idea of QD technique, the relevance feedback procedure refines the

initial query by decompose it into subqueries. However, the user might not satisfy with the

images in the chosen subclusters. This might happen when the image’s semantic meaning

is different from the rest of the cluster, but similar on the features; or the selected relevant

image is at the boundary of a cluster, the real relevant images should be in the nearby cluster.

This situation is caused by the semantic gap. The user may not always be able to choose the

right images. In the QD system [38], the system provides a back function to allow user to

go back to the previous step to recover his wrong operation. Also, it is more difficult to use

a mobile interface than a PC interface. Therefore, in order to save the mobile user’s time

and improve the system usability, the QD technique is adapted to learn the user’s activity.

This short term learning knowledge is used to adjust the relevance feedback procedure. In

detail, if the user does not select any images from the returned subclusters, then the system

considers that the user does not interested in any image contained within. Therefore, the

system brings representatives to the user from other clusters that are not explored.
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Figure 3.2: Adaptive search example.

Figure 3.2 shows a multi-level RFS structure. Under the root level, there are n clusters,

which are C1, ...Cn. Each of those clusters contains some subclusters. To simplify the graph,

not all the clusters and subclusters are shown here. In the image retrieval procedure, user

picks images from the representatives as examples. For instance, the user selects some images

from C1 and C2. After a relevance feedback retrieval procedure on the RFS structure, the

searching space is refined to the subclusters contains the selected relevant images. Say, S1i

(1 ≤ i ≤ p), S21, and S2q are the identified subclusters. In the new round, the user does not

further select any representative from S1i. There are two schemes to handle the situation.

Scheme 1: Due to the semantic gap, some unrelated images might be clustered together

based on the similarity in the low-level features. Therefore, the selected subcluster, S1i,

does not contain the images that the user interested in. In this case, the system suggests

representative image from the upper level clusters, which are siblings of S1i’s parent cluster.

Scheme 2: when the selected representative image is near the boundary of S1i, the images

that the user interested in might be in the sibling of S1i. In this case, the system needs to

show images from the nearby subcluster of S1i. The nearby subcluster is determined by

calculating the distance from the selected representative to the centers of the subclusters.

Considering these two cases, the system’s RF result for the next round includes images

from the subclusters containing the selected images and those from the clusters of the nearest

sibling and upper level. After all, the relevance feedback procedure in CRF system can be

summarized as in Algorithm 1.
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Algorithm 3.1 Relevance Feedback in Query Decomposition

INPUT: features F, DB, user’s RF
OUTPUT: Relevant Images as Retrieval Result

(i) CandidateCluster =C1, C2, . . . , Cn;

(ii) E= E1, E2, Ep = representative images randomly picked from CandidateCluster ;

(iii) Do{
(iv) Show E to user for relevance feedback;

(v) User selects relevant images I=I1, I2, . . . , It;

(vi) NewCandidateCluster = φ;

(vii) FOR (each relevant image in I)

(viii) {
(ix) System identifies the corresponding RFS subcluster Si, 0 ≤ i ≤ l;

(x) NewCandidateCluster = NewCandidateCluster
⋃

Si;

(xi) }
(xii) IF ((∃Sj, ∀Ii, ¬ (Ii ∈ Sj)), 0 ≤ j ≤ m, 0 ≤ i ≤ t;)

(xiii) THEN E = images randomly picked from NewCandidateCluster +
⋃

(repre-
sentative images from closest siblings of Sj);

(xiv) CandidateCluster = NewCandidateCluster
⋃

closest siblings of Sj;

(xv) E= E1, E2, Ep = representative images randomly picked from CandidateCluster ;

(xvi) }WHILE(User is not Satisfied)

3.3 3. INTERFACE DESIGN

To better help the user and present more information as possible, the interface design is also

taken into consideration. There have been studies to investigate the design rules [13, 59].

With small screen space, mobile devices can only present limited amount of information at

one time. So thumbnails are used for browsing. Smart phone and cell phone has different

screen sizes. To maximize the screen usage on each device, different interfaces are designed
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Figure 3.3: CRF mobile user interface

 
 
 

Figure 3.4: CRF mobile user interface

as shown in Figure 3.3 (for smart phone) and 3.4 (for cell phone user). The thumbnails

shown in the Result Panel are the retrieval result from last round’s relevance feedback, and

are sorted according to the similarity to the query images. When the user is interested in

one of the images, he can click “Select” to choose it as relevant images, then the image is

added to the Relevant Image Panel. When the user finds enough relevant images, he can

click “Option” from the Control Panel to choose whether to “submit” a query or “exit” the

system.

3.4 EXPERIMENTAL RESULT

To evaluate the proposed CRF system’s performance, it is compared with the existing client-

server techniques. The experiment system interface is sized to fit smart phone and cell phones
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as shown in Figure 3 and 4. the test images are from the Corel image database, which are

classified into categories by domain professionals. There are 100 images under each category

and the category information is used as the ground truth. A 19,200 image database with

about 15,000 Corel images and new images is constructed. 37 features were extracted: 9

color moment features, 10 Wavelet-based Texture features, and 18 edge-based structural

features. There were 100 queries for each experiment from which the average results were

calculated.

3.4.1 Efficiency

The most important contribution of CRF is that it process the RF procedures all on the

client-side mobile device. Therefore, there is no transmission overhead between the server

and the client. The CRF user can get the RF result right after he submits the query.

This advantage makes the system user friendly. To evaluate the efficiency, the amount of

information transferred between server and client is captured in the CRF approach and

the MV approach. 100 queries were randomly selected, each query involves 3 rounds of

relevance feedback and the final round to retrieve the query results. 2 images were selected

as relevant images for the first rounds; 2 more images were selected in the second rounds;

and totally 6 images were selected for the third round. In the final round, 8 images were

selected altogether. Within each round, the systems return 30 images as result.

To further save time for both systems, the system is designed such that if there were

identical images in the previous rounds, the image would not be transmitted again. Fur-

thermore, the system only transfers image icons, rather than the full size images which are

30KB each. The size of each image icon is about 16KB, with a resolution of 64x96 pixels.

The objects in these images are recognizable for RF. For wireless transmission, assumed the

system uses general cellular phone bandwidth, GPRS (General Packet Radio System), which

is 5KBps.
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Recall that processing RF in the CRF system incurs no data transmission. Therefore,

there will be no waiting time in the RF processes. In Table 3.1, the information transferred

between the server and client is listed, and also the time needed for CRF and the traditional

system. To be specific, Total relevance feedback information being transferred, Total rele-

vance feedback time, information transferred in each round, time spent in each round are

computed.

Table 3.1: Table (Efficiency Comparison of CRF and Traditional Systems)
Total RF Info. Total RF Info. per Time per
Trans (KB) Time (s) RF (KB) RF (s)

CRF 0 0 0 0
Traditional 992 198 330 66

From the result, it can seen that averagely, the user need to wait more than 1 minutes

to get the result in each relevance feedback round, resulted in the user in the traditional

server-client system needs 3.3 minutes to refine a query before the final round. However,

there is no waiting time for the user in CRF system for refining a query. In fact, the delay

in MV can be significantly longer since the server needs to multiplex among a large number

of concurrent users to support their relevance feedback.

3.4.2 Interface Satisfaction

To test the interface’s usability, 30 university students were invited to evaluate the proposed

simulated interfaces: the PDA interface and the cell phone interface. They were asked to find

images shown in Table 2.1, and whether they are satisfied with the interface and system’s

performance. The results are listed in Table 3.2, which indicate that the users are satisfied

with the interface on the usability and speed. However, some of the users thought that the

interface is designed for users with certain computer background.
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3.5 Conclusion

The significance of the proposed Client-side Relevance Feedback (CRF) technique is twofold.

First, it leverages distributed mobile computing to significantly reduce server load and there-

fore improve system throughput. Second, since processing of relevance feedback incurs no

communication delay, CRF enhances system usability. The experimental studies indicate

that substantial improvement in retrieval precision and recall can be achieved.

Table 3.2: Table (User’s satisfaction of the CRF System)
Evaluation item Satisfaction (out of 10)

Organization of information 9.1
Sequence of screens 9.1
Position of messages on screen 8.8
Learning to operate the system 8.5
System speed 9.8
System reliability 9.1
Designed for all levels of users 8.3
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CHAPTER 4: AN IN-MEMORY RELEVANCE FEEDBACK
TECHNIQUE FOR HIGH-PERFORMANCE IMAGE

RETRIEVAL SYSTEMS

4.1 Introduction

In typical content-based image retrieval (CBIR) systems, visual features, such as color, tex-

ture, and shape are extracted to facilitate similarity computation. Such low-level features,

however, are not sufficient to capture image semantics. To address this semantic gap, Rel-

evance feedback (RF) has been identified as an effective solution. Allowing users to refine

queries with RF significantly improves retrieval effectiveness, and has been widely adopted

in recent CBIR systems [38, 39, 41, 65]. The effectiveness of the RF model depends on the

efficiency of the feedback mechanism. Typically, multiple rounds of feedback are involved.

In each round, the refined query must be processed over the database stored on disks. This

is a lengthy process, particularly for large image databases, and may lead to high reneging

user rates reducing the advantages of the RF system. Hence, scalability is a limitation of

today’s RF systems that manage large image collections.

To address the aforementioned problem, various data clustering [42] and indexing tech-

niques [6, 8] have been investigated to reduce the number of disk accesses. This chapter

explores an alternative approach by studying an in-memory RF technique, in which the high

dimensionality of image feature vectors residing on disk are reduced to much lower one so

that the compressed database fits in memory for fast RF processing. The main goal is to

minimize the number of accesses to disk, executing similarity computation on the full fea-

ture set only in the final round of the retrieval. Moreover, short turn-around time for RF

processing improves system usability and therefore encourages the user to try more rounds
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for higher-quality results. The experimental results show that the proposed system signif-

icantly reduces response time, and outperforms conventional relevance feedback techniques

by a significant margin. The contributions of this work are as follows:

1. A notion of RF with no false dismissal is introduced. That is, the set of images returned

from the smaller database must include all the images that would be returned by the

conventional RF mechanism on the original databases.

2. To ensure the ’RF with no false dismissal’ property, an efficient retrieval technique is

proposed. To the best of the author’s knowledge, this technique is the first in-memory

RF method in the literature.

3. The efficient configurations for system implementation is investigated. Experimental

results to illustrate the benefits of the proposed in-memory RF approach are also

provided.

The remainder of this chapter is organized as follow. Background and related work

are reviewed in Section 2. The proposed dimensionality reduction technique is presented in

Section 3. Section 4 introduces the proposed RF retrieval algorithm. The system prototype is

presented in Section 5. Experiment results are discussed and some of the desirable properties

of the selected dimensionality-reduction technique are examined in Section 6. Finally, Section

7 concludes this work and discusses possible extensions.

4.2 Background and Related Works

Recent research in CBIR focuses on query model designs. SIMPLIcity [83], SamMatch

[37], and WALRUS [61] split each image into individual regions, and retrieve images with

matching regions to the query image. MARS [65] and QCluster [39] group the relevant

images into clusters, and draw query contours according to the clusters to eliminate as many
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irrelevant images in the final result set as possible. While these techniques attempt to use

a single contour to enclose the entire return set, Query Decomposition [38] decomposes

queries into subqueries, each of which is independently executed. The retrieval set is no

longer limited to a volume surrounding a single location, but a possible union of multiple,

disconnected regions of the search space.

Note that the main objective of these above techniques is to improve the effectiveness

of image retrieval using various similarity measures such as a weighed Euclidean distance

[39]. In fact, they perform very well in terms of effectiveness and efficiency when the (full)

feature set fits in memory. However, since they did not consider the issues of I/O accesses in

response time, these approaches might not scale well for very large datasets that must reside

on disk. One solution to this problem is to reduce the size of the feature file by reducing the

dimensionality of its feature vectors. This solution incurs false matches (with respect to the

similarity measure, such as the Euclidean distance). Consequently, the main criterion for

selecting a dimensionality-reduction technique for this purpose is that it produces few false

hits.

There are many well-known transformations that can be used for dimensionality reduc-

tion, such as Discrete Fourier Transform (DFT) [3] and Discrete Wavelet Transform (DWT)

[51]. In those techniques, the reduction is accomplished by discarding the insignificant di-

mensions while keeping the principal dimensions. False matches could be further reduced by

transforming data according to their distribution. Single Value Decomposition (SVD) [18,46]

or PCA is the most widely used technique. It is optimal in the sense that, among all the

possible linear transformations of a set of data into a lower dimensional space, it minimizes

the mean squared error between reconstructed data and the original data. Unfortunately,

SVD incurs high computation cost and high memory requirements for data analyses. More-

over, SVD is a data-dependent method, meaning that for datasets with frequent insertions

and deletions, the feature set is required to be rebuilt regularly to maintain effectiveness.
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In [81], a high-performance dimensionality reduction technique is proposed, referred as

MS, to enable fast search over high dimensional data. It is based on a non-linear transfor-

mation, and can provide a closed volume around search spheres of arbitrary dimensionality.

Bounded approximation has been proved to improve performance. MS is very competitive

with SVD without data analysis because it is a data-independent technique, thus suitable

for highly dynamic datasets such as image databases. Another advantage of this technique is

that optimization is possible based on the important characteristic of queries (i.e., the stan-

dard deviation). Consequently, in this chapter, above technique is used for dimensionality

reduction, which will be discussed in more detail in the next section.

Dimensionality reduction also has another advantage: the computation time can be re-

duced if main memory can accommodate the full feature set. Consider the Euclidean dis-

tance, which many RF systems use [38, 60, 69]. For a database of 60,000 images, each

with 37 features (dimensions), one scan takes around 36 ms. If the data were reduced to

8 dimensions, it took less than 14 ms. If the complete set resided on disk, this would add

expensive I/O accesses into the processing time. In this case, 2 seconds for scanning the 37

dimensions dataset. The total cost for the entire RF session using the full set would then be

unacceptable.

Compression is an alternative to dimensionality reduction, which is widely used in many

applications [25,58]. A compressed file is typically much smaller than the original file so that

storage media can hold more digital contents. In supporting in-memory RF retrieval, a com-

pressed feature file can be placed in main-memory to prevent expensive I/O. During query

processing, feature vectors that are needed can be decompressed for similarity computation.

As a result, the high cost of decompression must be added to response time. Although this

effect can be avoided by executing comparison in the compressed domain, such a technique

has drawbacks: the process is non-linear and the data structure syntax is rigid [26]. On the

other hand, dimensionality-reduction approximation has a solid foundation (e.g., no false

dismissals) and proven practical applications.
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4.3 Dimensionality Reduction

In this section, the criteria for an effective dimension reduction technique to support RF

is first discussed. Then, the details of how to use MS technique in the proposed system is

discribed. In this work, the Euclidean distance (i.e. L2 norm) is used as the measure of

similarity. The reasons are: it is used widely in image retrieval [30,38,55,60,69], and more

importantly, it has been proved that any finite metric space can be embedded into normed

space L2 [12].

4.3.1 Criteria for Selecting the Dimensionality Reduction Technique

For the in-memory RF purpose, a good dimensionality reduction technique should meet the

following criteria:

1. No False Dismissal. When a reduction technique is applied, the original feature

space G is transformed into G’; the query is also transformed and executed in the

reduced space. The query result from the transformed space should be a superset

of the query result from the original space. In other words, a good dimensionality

reduction technique should be distance preserving.

2. Data Independent. Data deletions and insertions should not affect the current trans-

formed data and the index structure that holds them.

3. Optimization is Possible. The performance characteristics of the technique are well

known so that optimization for RF retrieval can be performed.

As mentioned in the preceding section, a recent technique, MS, satisfies all the above cri-

teria. So, it is utilized in the proposed system. In the next subsection, important properties

of the MS technique are summarized.
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4.3.2 The MS Technique

Let ε be a user-defined threshold, image P (p1, p2, ..., pn) is similar to query image Q(q1, q2, ..., qn),

if P satisfies the following equation (pi and qi, 1 ≤ i ≤ n, are the ith feature of image P and

Q):

Distance(P,Q) = [
n∑

i=1

(pi − qi)
2]1/2 ≤ ε. (Eq. 4.1)

The central idea of MS is to approximate the retrieval set using two important parameters

of data points: the mean µ and the standard deviation σ of data point coordinates. Consider

a subset m of the n dimensions, 1 ≤ m ≤ n. A dimension i belonging to that set, will be

denoted as i ⊆ dim(Sm). µ
(m)
p and σ

(m)
p of Sm are defined as follows.

Definition 1. MEAN:

µ(m)
p =

∑
i⊆dim(Sm) Pi

m
(Eq. 4.2)

Definition 2. STANDARD DEVIATION:

σ(m)
p = [

∑
i⊆dim(Sm) P 2

i

m
− (µ(m)

p )2](1/2) (Eq. 4.3)

When m = n, write µ
(n)
p = µp and σ

(n)
p = σp. The computation of µ and σ are the same

as the conventional mean and deviation. The terms have been adopted to describe these two

important characteristics of points representing objects such as images [37] and time-series

[29].

LEMMA 1. Consider points Q and P satisfying Equation (1) for some search distance

ε. The inequality holds that:

√
(µp − µq)2 + (σp − σq)2 ≤ ε√

n
(Eq. 4.4)

Proof: see [81].
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For implementation, the dimensions are partitioned into l disjoint subsets of equal size

m=n/l, assuming n is divisible by l. Thus there are l pairs of mean and standard deviation:

µ1, σ1, µ2, σ2, ..., µl, and σl. Let d1 = (µp1 − µq1), d2 = (σp1 − σq1), ..., d2l = (σpl − σql). The

following lemma ensures no false dismissals of qualified images for similarity computation

based on the reduced data.

LEMMA 2. Consider points Q and P satisfying Equation (1) for some search distance

ε. The inequality holds that: √
Σ2l

i=1d
2
i ≤

ε√
n

(Eq. 4.5)

Proof: see [81].

Summarizing the properties of the MS technique, Lemma 2 ensures that the MS technique

guarantees no false dismissal; the transformation of MS is data independent; optimization is

possible. The optimization issue is discussed later from the system view.

4.4 Relevance Feedback

According to the description in Section 3, the MS technique is able to approximate the

nearest results based on the reduced dimensionality and the approximate set guarantees to

contain the real result set executed on the original feature set. Therefore, this technique is

utilized in the proposed system to reduce the feature set’s dimensionality. Moreover, an in

memory relevance feedback procedure is proposed.

4.4.1 Relevance Feedback Algorithm

To execute the RF procedure in memory, an reduced file is created to fit into the memory

from the original data, see algorithm 4.1.
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Algorithm 4.1 REDUCEDATA

INPUT: features F, DB, integer l

(i) For(∀P ⊆ Database)

(ii) { group consecutive dimensions to form l disjoint subsets of size m=n/l}
(iii) Compute µ(mi) and σ(mi) for set i. Thus, there are l pairs of µ, σ for each point.

(iv) Store these pairs into file Freduced

Hence, algorithm 4.1 lowers the number of dimensions from n to 2l, 1 ≤ l ≤ n/2. In

implementation, d = 2l is no more than the intrinsic dimensionality of the data. When n is

not divisible by l, zeros are appended to the end to make it to be.

According to the performance study in [81], MS is very effective for queries with small

σ. In fact, when their σ → 0, the precision approaches 100% (i.e., the approximation set

is identical to the exact set). When the σ increases, the approximate set includes more

false hits. Thus, to achieve very high precision for all queries, an σ threshold, σT , is set,

below which the search is performed on the reduced data, whereas a higher value sends the

search to the full set on disk. Algorithm 4.2 describes the details of the RF retrieval, which

interactively searches for images similar to query Q within a user-defined search radius ε.

Algorithm 4.2 SEARCHDATA

INPUT:(features F , reduced features Freduced, query-point Q, radius ε, threshold σT )

(i) repeat
Analyze queries (computing their σ)
Search the in memory Freduced with a window query of range ε centered at Q
if σ > σT then

apply Eq.1 to the full feature vector in F on disk to exclude false hits
end if
User identifies relevant images for next round of retrieval.

(ii) until user select the final relevance set for exact images

(iii) For all query images, apply Eq1 on F to determine final result set.
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According to algorithm 4.2, the proposed RF search can occur both in memory (on

the reduced data by Alg 4.1) or on disk (on the original set). These operations can be

controlled by setting proper σT , to achieve the best tradeoff between precision and response

time (discussed in Sec. 6). The search terminates when the user executes the final search (by

hitting the FinalQuery button on the interface) or when the system detects that there is no

changes in the refined query set. The precision of this step is equal to the highest precision

produced by the conventional RF technique.

4.4.2 Determine the Searching Range

Note that, the system proposed in this chapter does not execute k -NN search directly as

employed in conventional CBIR systems; instead, a spherical range search is used to approx-

imate the k -NN result. Generally, the search radius needs to be sufficiently large so that

the returned set covers at least the k nearest images. As a result, the approximate set may

include some false hits. In other word, it sacrifices the precision to ensure the inclusion of

all the exact images. Therefore, choosing a proper search radius is critical to ensure the

search returns at least the k nearest images of the query, but not too many false hits. Dif-

ferent strategies can be used depending on the applications and the characteristics of their

datasets. Below, three strategies are considered to determine ε and their advantages and

disadvantages are discussed.

4.4.2.1 Exact Range

This strategy precomputes and stores the search range to retrieve the desired k for each

point in the dataset. The calculation of ε is based on the original dataset. For example,

if the system is mostly asked to return 10, 20, 30, and 40 nearest images, the minimum

necessary thresholds to reach the nearest 10th, 20th, 30th, and 40th images are computed.

These values are stored along with other parameters of the images. During query processing,
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these thresholds are used to retrieve the specified number of nearest images. The advantage

of this scheme is the system will return no false hits in the result by applying Eq. 5, then

Eq. 1 on the approximate set. However, this scheme lacks flexibility (e.g., when executing

50 -NN), and insertions or deletions requires recomputation of the thresholds for affected

points. Extra space is needed to store these thresholds.

4.4.2.2 Approximate Range

In this scheme, only the search distance to 10 -NN, and the distance increment var from

10 -NN to 20 -NN are precomputed and stored. When 20 nearest images are needed, search

threshold of (10-NN + var) is used, (10-NN + 2 ∗ var) for 30 images, and so on. Observe

that when the search threshold linearly increases, the search volume expands by many folds.

For instance, in a 3-dimensional space, the volume of a ball with radius r to that of a ball

with radius 2r is

V olumnr

V olumn2r

=
4
3
πr3

4
3
π(2r)3

=
1

8
(Eq. 4.6)

As a result, this approximate scheme includes false hits but does not exclude relevant ones.

In the experiments below, only few false hits are observed and precision is not significantly

affected when the k -NN is close to the 10 -NN. With respect to the preceding scheme, this

strategy also requires less storage, is more flexible, and demands less frequent updates of the

thresholds due to insertions and deletions.

4.4.2.3 Pre-defined Incremental Range

This strategy does not store εs for individual images. Instead, it predetermines εs based on

the entire dataset, and applies them to all search operations for every query. Let’s assume

that users typically expand their search starting with 10 -NN up to 40 -NN. This scheme

works as follows. After collecting the distance information for 40 -NN search as in Scheme 1,

the average ε: εa and the largest ε: εl are calculated to set the reach range of ε: ε ⊆ [εa/2, εl].
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Analysis of the database suggests that 10 εs in that range should be used: εa/2, 3εa/4, εa,

(9εa + εl)/10, (7εa + ε1)/8, (5εa + εl)/6, (3εa + εl)/4, (εa + εl)/2, (εa + 2εl)/3, εl. At the

start, the system uses εa/2 and the next value of ε if there is not enough result using the

previous ε. Observe that the thresholds’ increment is progressively larger toward the end of

the range. This is because starting ε is typically small and a slowly initial increment helps

avoid the inclusion of too many false hits. As the user continues to request for more images,

a more aggressive expansion is needed to speedup the search. The searching range can be

extended for k -NN, k ≥ 40, image retrieval by using the current εa and εl. This scheme

saves storage space, but sometimes, the system has to repeat the search to satisfy the need

of large search. Comparing with the previous schemes, this strategy rarely needs to update

the range provided that the thresholds are properly selected. They can be even used in other

systems whose datasets share similar characteristics, such as image collections.

4.5 System Prototype

This section describes the system prototype. First, the structure of the in-memory index

is defined. Then, the whole RF process is laid out in details. Third, how to optimize

the system’s performance is discussed. Finally, the last subsection presents the system’s

interface.

4.5.1 Structure of the In-Memory Index

The structure of the database is modeled based on the relational database concept - each

image has a unique identification number (Image Identification number - IID). The com-

pressed feature, the original feature, and the image icon are all identified by this IID. There

are two tables:
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1. Object Feature Table for the reduced feature data. Small image icons are stored in

this table for relevance feedback. After the similarity computation, the resulted image

icons are returned for user’s further relevance feedback.

2. Image Feature Table for the original features, which is stored on disks.

4.5.2 Query Processing

The relevance feedback process, according to Alg. 4.2, is depicted in Figure 5.1. Upon

presenting the initial query, the user starts an interactive retrieval session to search for

relevant images. Similarity computation is performed on the reduced data in main memory

and occasionally on the full set on disk. The results are returned for user RF so that the

query is refined for the next round of search. The procedure is repeated until there is no

change detected by the system or the user decides to execute the final query. The query is

then evaluated on the original dataset as in the conventional k -NN processing (marked 2 in

Figure 5.1). The result of this stage is of highest precision and equivalent to that obtained

by k -NN search using the original database.

When there is more than one image in the query, the system will decide whether or not

to decompose it into subqueries for higher retrieval effectiveness. The above procedure will

be applied to each subquery, the results of which will be merged and presented to the user

as the results of the entire query. More details of image retrieval with query decomposition

is discussed in [38].

4.5.3 Optimization

The performance of the approximation technique has been studied in [81], and can be

predicted based on the σ value of the query, or subquery. When σ is small, the approximate

result is nearly identical to the exact set. Therefore, it can be used on the reduced data to
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Final Result 

Figure 4.1: System prototype

determine relevant images. When σ exceeds a certain threshold σT , search based on the full-

dimension set is performed to obtain the exact result, because the approximated set might

be large. Here σT can be set to control how search is being conducted (either in memory or

on disk), and thereby the performance of the system.

Observe that in the proposed system a user might have to examine some false hits in

exchange for much faster response time due to the use of the approximation scheme. After

the user has identified relevant image(s) from the returned images for the next iteration, false

hits are discarded and the system starts in the same state as if k -NN had been executed, i.e.,

processing the same query at the beginning of a round. This implies that false hits in the

proposed system are not accumulated, but are confined within individual rounds. With much

faster response time, this system allows users to retrieve the target images more quickly, or

to execute additional relevance feedback iterations for higher quality results.

4.5.4 Interface Considerations

The system interface based on the ImageGrouper [60] is shown in Figure 4.2. To help a user

formulate the initial query, the system displays certain representative images and/or some

randomly selected ones in the bottom-left panel. Relevant images are drag-dropped into the

right panel, which form the first query. The results of its execution displace the images in

the left panel, and the user then can pick relevant images and places them in the right panel
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Figure 4.2: System Interface

to form a refined query for the next round, and so on. This process continues until the final

query is executed. The final results should be identical to conventional system, but much

faster.

As explained earlier, if a query contains multiple images, then it might be decomposed

into subqueries. The simplest decomposition considers each image as a subquery. Result

images are displayed in groups as follows. First, the ranking score for each set of the results

are calculated as the sum of the similarity scores of the individual result images contained

therein. Then these result groups are sorted in the order of their ranking scores. Within each

group, the images selected for the final result are displayed in the order of their individual

similarity scores. A screenshot given in Figure 4.2 shows how the results are organized.

This system can also presents the images based on their individual similarity to make the

model transparent to the user.

4.6 Experimental Study

This section discusses the results of the performance study, evaluates the effectiveness and

efficiency of above in-memory technique.
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4.6.1 Environment

The test database used in this work includes 59,900 images from Corel data-base. From each

image, 37 features are extracted, which were categorized into three groups: 9 color moment

features [77], 10 Wavelet-based Texture features [74], and 18 edge-based structural features

[98]. These features have been shown to be effective in supporting image retrieval [38, 60].

Since there is no similar in-memory RF system in the literature, the proposed approach is

compared with a technique that performs k -NN search using the full feature set, i.e., scanning

the set and computing detailed similarity calculation. The original features were stored in a

MySQL [2] database to simulate the traditional disk-based CBIR systems. The performance

of such a technique, referred to as the conventional system, establishes the ground-truth in

the following experiments. More than 500 random queries from the dataset were executed

in the experiments. To divide the full feature set dimensions into subsets of equal sizes, zero

elements are appended to some features, so that they can be groupped into 8 pairs (m=5),

4 pairs (m=10), or 2 pairs (m=20). To be specific, one zero is added to the color features,

and two zeros are added to the edge structure features.

4.6.2 Metrics

To evaluate the effectiveness of the proposed system, its performance is compared with that

of the conventional system, under various range selecting schemes. Since the proposed system

ensures the inclusion of the exact k -NN set in the approximate set, it is necessary to show

this system does not overburden the users with many false hits. Since the false hits due

to the use of this approximation method are confined within individual rounds, the average

Relevance Feedback Precision (RF Precision) for all rounds is defined as below to capture

the overall effectiveness:

RF Precision = 1− ApproxResult− kNNResult

ApproxResult
(Eq. 4.7)
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To demonstrate the efficiency of the proposed technique, the response time of above in-

memory relevance feedback system is also measured. Since computation time depends on

hardware configurations, the percentage of sequential scans on the original features is defined

as the base measure of efficiency performance. In order to achieve various performance

objectives, the size of the reduced data is also examined.

4.6.3 Effects of Dimensionality Reduction

The sizes of feature files, at various rates of reduction, are shown as follow. When m = 5,

the size of the reduced set is about 1/2 of the original file. When m = 10, it is 1/4, and when

m = 20, it is about 1/10. This confirms that the MS technique can reduce the feature set for

in-memory storage. Figure 4.3 shows RF Precision versus m; the precision remains almost

unchanged for m = 5, m = 10, or m = 20. This is because the intrinsic dimensionality of the

feature is around 4 (cf. Section 3). Thus, the selected reduction technique remains effective

under very high rate of reduction. For subsequent experiments, m = 20.
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4.6.4 Performance of Search Range Schemes

Figure 4.4 compares the εs determined by Scheme 1, Scheme 2, and Scheme 3 for some

nearest neighbor searches. Recall that the εs in Scheme 1 is the actual distance to retrieve

exactly the required number of nearest neighbors, while it is estimated in Scheme 2, and the

εs in Scheme 3 are predefined based on an analysis of the dataset. This figure shows that the

estimated and the predefined εs are always larger than the actual k -NN distances, indicating

that Scheme 2 and Scheme 3 ensure the retrieval of the k -NN set. For small k -NN search,

the distances in Scheme 2 are almost the same as the actual k -NN distances, while Scheme

3 seems to over-estimate the actual distance.

RF Precisions of the three schemes are compared in Figure 4.5. Specifically, for Scheme

2, its RF Precision improves as the number of requested images decreases. For instance, for

k = 40, the user has to view about 60% more images than normal. When k = 30, there are

only about 20% more, k = 20 about 6% more, and k = 10 there is no false hit. For Scheme

3, its RF Precision is about 30% for all the cases. The performance of Scheme 3 can be

improved by defining more intervals in the range of [εa/2, εl]. However, that would require

the system to expand search more slowly to reach the desired number of relevant images.

Using the current setting, the system performs on average 3 spherical range searches in order

to obtain the required number of images, which is a reasonable number of iterations for most

users.

Note that Scheme 1 and Scheme 2 use more space overhead than Scheme 3, which requires

longer execution time. Thus, which scheme is selected depending on the availability of

memory for storing search radii. Subsequent experiments will focus on the effectiveness
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Figure 4.6: RF Precision versus σT

of similarity computation using the reduced data, therefore, Scheme 1 is chosen for the

implementation.

4.6.5 Effects of deviation threshold

As discussed in Section 4, standard deviation threshold σT can be used to control against

which data set a query is performed, the full set or the reduced set. Figure 4.6 plots

RF Precision for various query images’ σ using the reduced set. This figures shows that the

RF Precision decreases when σT increases. For example, when σT = 0.16, RF Precision is

over 80%. However, when σT = 0.2, the precision is about 40%. To improve the overall

performance, the proposed system forces the similarity measure to be evaluated on the full

set for queries with σ > σT . When a query image’s σ is greater than σT , the system needs

to fetch the required feature vectors from disk for similarity computation, which incurs disk

accesses. Thus, σT should be set so that a good balance between effectiveness and efficiency

of the system is achieved. The next subsection will discuss the effects of σT on system

response time and similarity computation time.

       

     

Figure 4.7: Relevance feedback from the proposed system

To illustrate the effectiveness of the system with σT = 0.2, a sample query and its results

after a round of relevance feedback computation are presented in Figures 4.7 and 4.8. The
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Figure 4.8: k-NN relevance feedback

results are ranked based on the reduced features (see Figure 4.7). Comparing the retrieved

images with the top ten k -NN on original features, shown in Figure 4.8, the result set from

the proposed system is similar to the conventional k -NN result: the k -NN images can be

found at the top of the result set, but might be at the same or some lower ranked places.

For instance, the 1st k -NN image is at the 1st place in the proposed system’s results, the

3rd image at the 4th, the 2nd k -NN image at the 5th, and the 6th image at the 7th. All the

other images in Figure 4.7 can be found in Figure 4.8 at similar ranked places. When the

final query is executed, the results from the proposed system are identical to those from the

conventional system.

4.6.6 Efficiency

In the following experiments, search is executed by sequentially scanning the data files.

Although an index structure such as R*-tree [6] could be used to accelerate the search, it

does not scale linearly with the size of the data set; it favors small data set (e.g. the reduced

data) over the large set (e.g. the full set). The time complexity of sequential scans, on

the other hand, is linearly proportional to the size of datasets, thus giving a more accurate

comparison of response times.

Figure 4.9 plots the response time of query execution under various σT and compares

them with the execution time of the conventional system (with the original features stored

in a MySQL database). As shown in the figure, when σT < 0.16, the proposed system takes

about 80% of the execution time of the conventional system to process the same query. This

indicates that many disk accesses occurred for this setting of σT . On the other hand, when
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σT > 0.22, the execution time of the proposed system is less than 10% of the conventional

system, and it is about 1% when σT > 0.24. Considering the precision performance at

various σT (see Figure 4.6), σT = 0.2 is a good trade-off for the data set: RF Precision is

acceptable, which is 40%, and the execution time is 24% that of the conventional system.

Figure 4.10 compares the response time of various reduction configurations relative to

that of the conventional system, with the assumption that the reduced data fits in memory

while the original set resides on disk. As seen, the response time of the proposed technique is

less than 1% of the conventional disk-based CBIR system. It confirms that for large datasets

which must reside on disk, an efficient in-memory RF technique can ensure good performance

and system usability. Even if the full set can be fully accommodated in memory, the use

of a dimensionality-reduction technique is still beneficial. A scan of the reduced data with

m = 20 takes less than 1/3 that of the full set (m = 1) if they are in memory.

In practice, not all queries in the proposed system are executed in memory: for some

queries, the system needs to access the original set to improve precision. The response time

is therefore longer than the ideal, no-disk-access scenario. However, the increase is expected

to be small since only specific part (determined by IID, see Section 5) of the full dataset

needs to be fetched. With σT = 0.2 and m = 20, the proposed system’s retrieval time is

24.51% of the retrieval time of the traditional system.
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4.7 Conclusion

This chapter presents a novel in-memory relevance feedback technique to address the scala-

bility and usability problems of today’s CBIR systems with relevance feedback. A non-linear

approximation method is utilized to reduce the dimensionality of the feature set so that it fits

in the memory to facilitate efficient feedback processing. The proposed system guarantees

no false dismissals with respect to the similarity measure based on the Euclidean distance.

Experimental results show that this technique significantly reduces response time while main-

taining high precision of retrieval. With the growing interest in Internet-scale image search

applications, it offers an effective solution to support very large image databases.
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CHAPTER 5: A MULTI-DIRECTIONAL SEARCH
TECHNIQUE FOR IMAGE ANNOTATION PROPAGATION

5.1 Introduction

Recently, most of the annotation researches focus on learning the mapping between images

and keywords [5,17]. However, those systems can only learn the correlations between a small

image database and a very limited vacabularies. It is not applicable to the web-scale image

database with potentially unlimited vocabularies.

Another image annotation approach is based on the image labels of an annotated database [53,

95]. The basic idea is to build a initial image database with labels, the labels are from the

images’ bounding text on a web page or a vocabulary. Then the labels are propagated to the

visually similar images. Those images are from a content-based image retrieval or clustering

based on the images’ visual features. A potential weakness of these approaches is that the

bounding text can be incomplete and/or inconsistent compared to the real image content,

especially on the spam pages. From this point of view, the bounding text is not always

reliable.

From the above discussion, it can be observed that to annotate a large scale image

database with unlimited vocabularies, user’s Relevance Feedback (RF) should be utilized as

a trust-worthy source for annotations. At the same time, an accurate CBIR technique with

user’s RF should be utilized for efficient annotation propagation. CBIR with RF has been an

active area of research [27,35,38,79,83] for the last decades. Essentially most of the existing

techniques are based on the kNN (k nearest neighbor) model. Two images are considered

similar if they are near each other in the feature space based on some distance measure.

For each round of RF, the user’s identified relevant images are used to retrieve k nearest

images for the next round of user feedback. Different techniques have been proposed for the

computation of these k nearest images.
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However, the standard kNN model, which is employed by today’s relevance feedback

techniques, has one inherent weakness. Due to the semantic gap, semantically similar images

might have different appearances and are not necessarily located within close proximity to

each other in the feature space. Since traditional CBIR techniques focus on searching for

the single best-matching neighborhood, their performance suffers when the relevant images

are in multiple neighborhoods far apart from each other in the feature space. For instance,

the user provides visually different but semantically identical example images, then those

images should be treated separately in the CBIR process.

To address the aforementioned limitations, A Multi-Directional Search (MDS) technique

is proposed in this chapter. In this system, a user provides sample images with labels as

query for annotation propagation: first, local clustering is performed on the example images

based on their visual features. If the user’s RF images have very different visual features

(shows his intension to annotate groups of images with diverse visual characteristics), the

current query is decomposed into multiple sub-queries accordingly to better benefit from the

feedback information and provide more precise annotation. Similar to CBIR, the neighboring

images of the multiple sub-queries will be returned to the user for further RF, and the sub-

queries might be decomposed again. This mechanism enables the proposed technique to

explore all relevant neighborhoods in order to cover the k best matching images wherever

they might be, rather than just the top k ranked images of the single best-matching cluster

(while omitting other relevant clusters). The label of the example images will be propagated

to the top-ranked images in the result set. This iterative process is repeated until the user

stops.

The primary contributions of this work are as follows:

• The MDS technique leverages user’s RF to annotate images with the same semantic

meanings but different visual characters precisely and efficiently.
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• As the user’s query can be hierarchically split into multiple sub-queries, the annotation

speed increases in the new rounds.

• With the user’s interaction, the annotations are propagated to the retrieved images

near and on the query pathes. In this manner, the proposed technique can handle

uncaptioned database with unlimited vocabularies effectively.

The remainder of this chapter is organized as follows. The related works is discussed in

Section 5.2. Section 5.3 gives a system overview and explains the proposed Multi-Directional

Search technique in detail in Section 5.4. The annotation mechanism is describe in Sec-

tion 5.5. The experimental results are discussed in Section 5.6. Finally, Section 5.7 conclude

the study.

5.2 Related Work

Traditional annotation researches focus on learning the mapping between images and key-

words [5, 17]. For example, in [22] a translation model is proposed to tag image blobs.

In [43], a cross-media relevance model is utilized to predict the probability of generating

a word based on the the image blobs. The basic idea is for a given keyword, learn the

most representative image region. In [36], multiple existing ontologies are used for semantic

annotation and search in a collection of art images. The ontologies include the Art and

Architecture Thesaurus, WordNet, ULAN and Iconclass.

Recent image annotation approaches are based on the image labels of an annotated

database. In [80], a weighted nearest neighbor model is proposed to predict the term

relevance of images by taking a weighted sum of the annotations of the visually most similar

images in an annotated training set. In [53,86], for example, images crawled from the Web

are annotated with keywords extracted from their web page title and surrounding text; and

they are used to build an initial annotated database. To label a new image subsequently, a
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Content Based Image Retrieval (CBIR) mechanism is used. That is, the image to be labeled

is used as a query image to retrieve similar images from the labeled database. The returned

images’ labels can then be used to determine the keywords for the new image. In [85], a

guaranteed accurate keyword is used for text-based search. The result is a set of semantically

similar images. Then a content-based retrieval is conducted on this set for visually similar

images. Finally, annotations are extracted from the image surrounding texts, titles, and

URLs. In [82], a probabilistic model is proposed to model the relationship in the image, its

annotations, and its class label. A new image’s annotation is determined by the classification

result and the existing images’ annotation will be propagated to the new image. In [95], for

a given image, proper words are chosen from a vocabulary as tags. Then the tags are refined

with the help of user’s relevance feedback. For an given image, the user’s feedback on the

tags will be used for correcting the classifiers’ outputs. Then in the next round, the system

recommends more proper tags.

Most recently, near duplicate image search has become a popular research topic in the

image retrieval and annotation community, since the majority of high quality images on the

web may have plenty of (near) duplicates from different web pages. Similar to [53], the

bounding texts of these duplicate images can be propagated to each other, after efficient

filtering and/or clustering. Based on the classic visual vocabulary [62], some works even

embed more spatial information in visual word [16, 87], or focus on semantic clues [57].

Some research studies [15] suggest that the user-generated semantic texts are usually more

reliable than the visual features. Quack et al. [67] propose to leverage the surrounding texts

with Wikipedia knowledge for geographical estimation. Yin et al. [89] further examine the

geographical distribution of different topics in the world map.

To use the user-generated texts as the annotations for image, the the work in this chapter

propose the use of RF when refine/propagate user’s annotations to similar images. So, first

of all, it is crucial to find a RF system that can give reliable result on image search. In [41],

the relevant (feedback) images form a proximity area; and the centroid of this query contour
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is used as the query point. In [65], the relevant images are grouped into clusters, and the

k nearest images are those images closer to all the centroid of these clusters. In [39], a

quadratic function is used to approximate the discontinued query contour. But still, the

result images are in one neighborhood covered by the quadratic function. In [23], the query

image’s negative color image, black and white image, and the negative black and white image

are used as queries in addition to the original query image. Although for technique like [23]

expands the search range by considering multiple versions of the original query image, these

different versions still share most of the visual features (e.g., shapes) and the effective search

range is therefore limited to a single neighborhood.

The MDS technique remedies the above constrains by leveraging user’s RF to annotate

images with the same semantic meanings. As the user’s query can be hierarchically split

into multiple sub-queries, the semantically identical images can have different visual presen-

tations. Also, the annotation speed increases in the new rounds. With the user’s interaction,

the annotations are propagated to the retrieved images near and on the query pathes. In

this manner, the proposed technique can handle uncaptioned database with unlimited vo-

cabularies effectively.

5.3 System Overview

The proposed MDS annotation process is depicted in Figure 5.1. The whole process starts

from an unlabeled database. Upon presenting the randomly selected database images, the

user selects relevant images and annotates them. Then local clustering (Multiple Direction

Search, described in the next section) is performed on the relevant images. If there are more

than one clusters resulted, the initial query is decomposed into multiple sub-queries, each

represents a cluster. And the sub-query points are calculated as below: before retrieving

relevant images to the user, the system will first revise the sub-queries according to the

queries in the previous iteration to integrate the historical navigation information, and then
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Figure 5.1: System Overview - Multi-Directional Search for Annotation Propagation.

check whether some of the sub-query points can be merged. If two query points are close to

each other, they will be merged to form one sub-query. If no query is merged, the revised sub-

queries are conducted separately, the result from those queries are combined and returned

to the user (the details can be found in Section 5.4). Along with the retrieval process, the

user can label different query images. As all the images retrieved during the process are

similar to the corresponding sub-query, the query images’ semantic labels are propagated to

those images. The above procedure is repeated until the user is satisfied with the returned

result. Ideally, all the images with similar semantic meaning will be labeled with the same

annotation even if they are not close to each other in the feature space.

The proposed approach fits the mpeg-7 annotation standard which depends on standard-

ized content-based descriptions: it captures the user’s intention by clustering and decom-

posing the user’s query to cover contents which has the same semantic concept but different

visual features.
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Similar to the works in earlier chapters, following content based image retrieval descrip-

tors are extracted: 9 color moment features, 10 Wavelet-based texture features, and 18

edge-based structural features. While annotating the images, free text was used by users.

Then the annotations are stored in XML files.

5.4 Multi-Directional Search (MDS)

This section describes the detail process of MDS: First, the user provides example images.

Second, the system determines whether the images are diverse and should be process sepa-

rately based on their visual features. If they are diverse, the dynamic directional clustering

mechanism decomposes the user’s initial query into multiple sub-queries, which is to split

the annotation direction into multiple paths. Third, combining the user’s previous behavior

by exploiting the directional information from the previous rounds of relevance feedback, the

multiple direction navigation scheme predicts the query points for the next round. Fourth,

the system retrieves images to show to the user for further annotation. Along the relevance

feedback iteration, the annotation propagation mechanism assigns user specified labels to

the visually similar images.

5.4.1 Dynamic Directional Clustering

Suppose a user selects X = {x1, x2, ..., xt} as relevant images. Usually, the number of images

selected by the user is relatively small compare to the visual features’ high dimensionality.

Therefore, to get stable clustering result, query expansion is conducted on X to get the ex-

tended image set X ′ = {x1, x2, ..., xr}. X ′ includes the example images and their neighboring

images. Then X ′ is clustered based on the image visual features using k-mean clustering.

Each cluster is examined to determine the desired number of clusters. If the data points in

a cluster does not appear Gaussian distributed, then this local cluster is split. The splitter
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continues until all the clusters appear Gaussian [32]. Suppose there are K clusters and the

objective function φ, which is the mapping of each image xt to one of the K clusters:

φ(xt) = arg min
1≤k≤K

d2(ck, xt) (Eq. 5.1)

where d2 is the Euclidean distance for two d-dimensional images xi and xj,

d2(xi, xj) =

√√√√
d∑

m=1

(xim − xjm)2 (Eq. 5.2)

n is the number of features, ck is the center for cluster k, and ckm is the mth feature of ck.

Let πk denotes a set of images that belongs to cluster k, the partitioning of X ′ into K

disjoint clusters satisfies

K⋃
j=1

πj = {x1, x2, ..., xr}; πj ∩ πl = ∅, ifj 6= l (Eq. 5.3)

According to above clustering mechanism, all the K clusters must be Gaussian distributed

or will be split, the cluster number K is based on the relevant images’ distribution in the

feature space. If there are multiple clusters found, then that means the user selected images

have quite different visual appearance. For the accuracy of the annotation, those image clus-

ters should be processed separately. As the proposed system is a semi-automatic annotation

system, it will help the user to annotate images that are similar to his/her example images

in multiple iterations. Section 5.4.2 will discuss how to use the clustering result to navigate

and help users annotate the candidate images.

During multiple iterations, the user’s initial query might be hierarchically decomposed

into multiple direction navigation. An example navigation process of a given relevance

feedback session is shown as in Figure 5.2. The example in Figure 5.2 illustrates that three
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Figure 5.2: An example navigation process of a given relevance feedback session.

semantically similar clusters are discovered and finally three sub-queries are carried out, as

a result of a sequence of relevance feedbacks.

5.4.2 Dynamic Directional Navigation

This section describes how to use the clustering result from the Dynamic Directional Clus-

tering step to help user to propagate annotation to more images efficiently and accurately.

After the clustering, the mean vectors of each cluster are calculated. For each 1 ≤ j ≤ k,

the mean vector of the centroid of πj is

mj =
Σx∈πj

x

nj

(Eq. 5.4)

where nj is the number of image vectors in πj.

In the author’s earlier study [92], this centroid was used to retrieve similar images for

user’s further annotation. Considering the fact that during multiple feedback iterations,

the user is modifying the query implicitly for his/her interest, therefore, the centroid in

the previous rounds should also be taken into consideration. To be specific: After each

feedback session, there is a mean vector for each of the clusters. As the feedback sessions

proceed, a navigation path is formed in the feature space for each of the sub-queries. In
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each navigation step, the user is expressing his/her intention implicitly about where to find

the desired images in the feature space. Therefore, these dynamic directional information

should be used and integrated with the previous session’s information to update the query

points. I.e.,after getting the new centroid of πj, which is mj, the new query points will be

updated as follow:

p
(i)
j = [mj + p

(i−1)
j ]/2 (Eq. 5.5)

where p
(i)
j is the predicted query point for the ith RF round. For the first iteration, p

(1)
j = mj.

Overall, when a query is decomposed, the new sub-queries’ p
(i)
j is calculated based on the

ancestor query:

sub− queriesj1 : p
(i)
j1

= [mj1 + p
(i−1)
j ]/2 (Eq. 5.6a)

... (Eq. 5.6b)

sub− queriesjn : p
(i)
jn

= [mjn + p
(i−1)
j ]/2 (Eq. 5.6c)

The updated query point p
(i)
jr

, 1 ≤ r ≤ n, n is the number of sub-queries in the current

round, reflects its new direction and also the historical direction information.

5.4.3 Sub-query Merge

While the RF processing continues, there will be more and more sub-queries. Some of them

might converge to the same neighborhood. For example, in Figure 5.2, one of the sub-queries

from the query path in the upper left of the figure moves to the nearby place of the sub-query

to the 3rd image cluster. In this case, if the two sub-queries are close enough, they will be

merged to form one sub-query. To be specific, suppose in the current iteration, there are

two sub-queries: q1 and q2. If they are close to each other, that means they are exploring

the same feature space and the system will combine these two queries to one: If
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d2(q1, q2) < ε, (Eq. 5.7)

then qnew = (q1 + q2)/2. Where ε is a small value, qnew is the new query point that replaces

q1 and q2.

If q1 was in a previous session, q2 is in the current iteration, and

d2(q1, q2) < ε, (Eq. 5.8)

then q2 is ignored (the sub-query is not computed and do not return any result).

5.5 Annotation Propagation with MDS

This section describes how the user specified annotations are propagated to images in the

database. By utilizing the MDS technique, the user can navigate into multiple image neigh-

borhood according to his/her interest. Along those navigation paths, the annotations of the

example images are propagated.

5.5.1 Annotation Propagation

At the beginning of each RF session, the user selects images of interests and provide the

annotation of these images. Those images are used as query for image retrieval. After the

query expansion, each image in X ′ gets the same label of the according example image.

Based on the technique described above, the dynamic clustering result is combined with

the history query points to predict the new query points, p
(i)
j . From now on, p

(i)
j works

as a seed to retrieve more similar images. CBIR is conducted on p
(i)
j to retrieve multiple

groups of images. Finally, each images in those sets gets the same label as the according p
(i)
j .

Meanwhile, those retrieved images are shown to the user for further annotation and relevance
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feedback. With the user’s input, the above steps repeats. Therefore, the user specified label

is propagated to the database images.

In the propagation process, one image can be returned to the user in different queries, and

therefore one image can be assigned with many different annotations. For the convenience

of indexing and storage, for each image, a certain number of annotations will be kept. And

those annotations should be the ones that are visually closest to the query images that

propagate the annotation to the image. In specific, following criteria is used to determine

which annotations to keep:

Suppose keeping n annotations for each image in the system, for image xl if there are n

annotations, A
(i−1)
xl = {a1, a2, ..., an}, at round (i-1). In the new query session, xl is retrieved

as result of query xq which has label aq, where aq /∈ A
(i−1)
xl . Define the distance from xq to

xl as Annotation Distance (AnnoDistq) and compare it with AnnoDistr, where 1 ≤ r ≤ n.

AnnoDisti is the distance between xl and the query image that propagates ai to it. If

AnnoDistq < max(AnnoDist1, AnnoDist2, ..., AnnoDistn), then A
(i)
xl = {a1, a2, ..., an} −

as+aq, where as has the largest AnnoDist. Above criteria will keep the “closest” annotations

for each image.

Figure 5.3 shows an example of how the proposed MDS annotation system propagate

user’s example labels. At the first round, a user was looking for “animal” images. This user

selected two images as examples and gave “animal” as the label to those two images. The

system first propagated the annotation “animal” to all the neighboring images (covered by

the big oval in Figure 5.3). Then it clustered those images. As there were two clusters,

the initial query was decomposed into two sub-queries. As the process went on, the user

annotated one of the returned images as “eagle” and another one as “horse”. The system

again propagated those annotations to the sub-queries’ neighboring images separately (as

shown in Figure 5.3: “eagle to the left group of images”, “horse” to the right group of

images).
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Animal

Horse

Eagle

Figure 5.3: An example of MDS with annotation propagation

5.5.2 Annotation Algorithm

Based on the above descriptions of the MDS, the interactive annotation propagation algo-

rithm is presented as below.

Algorithm 5.1 Annotation propagation in MDS

1: INPUT: features F, DB, user’s RF
2: OUTPUT: Annotations on the query’s similar images
3: System presents randomly selected images;
4: while User want to provide more input do
5: User selects relevant images and annotate them with labels L;
6: Cluster the relevant images;
7: if cluster number > 1 then
8: Decompose query into multiple sub-queries;
9: Calculate p

(i)
j as new query point;

10: if Two sub-queries are close then
11: Merge them to form one sub-query;
12: end if
13: if One sub-query is close to a previous sub-query then
14: Ignore the current sub-query;
15: end if
16: end if
17: Retrieve kNN for each of the p

(i)
j ;

18: Assign annotations L to the returned images;
19: Present the top images from each kNN set to the user;
20: end while
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Upon presenting the initial query, the user starts an interactive retrieval session to search

for relevant images. Clustering is performed on the example images. At the same time, the

query images’ annotations are propagated to the retrieved images on the navigation path. If

there are more than one clusters, then the initial query is decomposed into multiple queries

and updated by integrating the predicted query points according to the navigation history;

in the next step, separate queries are conducted, the result from those queries are combined

and returned for user’s relevance feedback; annotations are propagated to those returned

images. The procedure is repeated when the user wants to provide more example images

and annotations. Although MDS has been proposed as an image annotation technique, it is

obvious that it can also be used for CBIR without the annotations.

5.6 Experimental Study

This section discusses the experimental study on the proposed MDS annotation propagation

system. The system’s accuracy is evaluated in terms of precision and recall; the systerm’s

efficiency on propagating annotations is also observed.

5.6.1 Annotation Evaluation Metrics

The following two criteria were used to evaluate the annotation accuracy - annotation pre-

cision (pa) and recall (ra)

pa =
1

n

n∑

k=1

num of correctly annotated words in Ik

num of annotated words in Ik

(Eq. 5.9)

ra =
1

n

n∑

k=1

num of correctly annotated words in Ik

num of ground truth words in Ik

(Eq. 5.10)
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5.6.2 Model Comparison

The proposed MDS annotation technique is compared with two models: the Machine Trans-

lation model (MT) [22] and the Multi-Instance Learning model (MIL) [88]. The same dataset

is used by these models, which is a Corel database including 5,000 images and 371 keywords.

The same features as [22,88] are used so that the three algorithms have the same input. The

experiment used 500 images as query and the remaining 4,500 images as target as if they

had no annotation. The partitioning is consistent with [88]. Because the images are not

available, in MDS, the 4,500 images’ blobs ground truth annotations were returned to the

user for relevance feedback. If an image was selected, the new annotation was assigned to

it as the whole image’s annotation. The average per-word precision and recall is reported

in Table 5.1 for the best 49 keywords as [88] did. Table 5.1 shows that the MDS approach

has higher precision and recall than MT and MIL. The reason is that MDS can propagate

annotations to images with different visual features but identical semantic meanings. That

highly enhanced the annotation accuracy.

Table 5.1: Performance Comparisons
Model MT MIL MDS
Average precision 0.20 0.31 0.32
Average recall 0.34 0.46 0.49

5.6.3 Annotation Accuracy

In the proposed MDS system, the database starts from images without any annotations, as

the relevance feedback interactions proceed, annotations are propagated to the similar images

in the database. The ultimate goal of this technique is to annotate database images and

provide better search service on text queries to users. Therefore, it is important to guarantee

the annotation quality. This section will discuss the proposed system’s annotation accuracy.
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Figure 5.4: Annotation Precision and Recall for the MDS system.

5.6.3.1 Experiment on UW dataset

First, the experiment results on the UW database [1] are presented. These images have

about 5 manually labeled ground truth annotations; not all objects are annotated. The

annotation accuracy is evaluated by comparing the result image labels to the ground truth

annotations provided in the database. To evaluate the proposed system, 10 subjects were

asked to perform the relevance feedback image annotation task on the database as follow:

Firstly, the subject selected images in the UW database and a corresponding label from the

UW annotation list as the initial query. Then the MDS system returned some similar images

for user’s further annotation. At the meantime, the query image’s label were propagated to

these returned images. The RF process continued if the subject was willing to.

Figure 5.4 presents the annotation precision-recall vs. top N annotations for the UW

dataset. Since the annotation methods is based on the relevance feedback image retrieval

model, there might be some images “get less attention” than the others and assigned fewer

annotations. Therefore, in the plot, when N varies, only those images with enough number

of annotations are considered.

It can be seen that when considering the top 5 annotations of the image, pa=0.48, ra=0.43.

Because exact annotation matching is used on calculating pa and ra, some keywords like

“Geneva” and “Switzerland” are considered not matching, so the result could be better.
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Also, with more user using the system, the annotations will be more accurate based on the

mechanism presented in Section 5.5.1. I.e., the most closest annotations are kept.

5.6.3.2 Experiment on Corel database

This experiment study used another Corel image data set to test the proposed system’s

annotation accuracy. This Corel database includes 15,000 images for image annotation. The

images are from 150 categories, the category information is used as ground truth. Again,

from each image, 37 features are extracted and categorized into three groups: 9 color moment

features, 10 Wavelet-based texture features, and 18 edge-based structural features. These

features have been shown to be effective in supporting image retrieval systems [38].

After every image in the database is annotated, image retrieval by text queries is con-

ducted. The retrieved images’ annotations are compared with the ground truth information.

Figure 5.5 reports the average precision and recall rate on 200 queries. Because the Corel

images only have one category name as their annotation, in this test, when calculating pre-

cision and recall, if an image’s annotation describes an object in the image, it is counted as

correct. Figure 5.5 shows that the annotation accuracy of the MDS system is very high on

the top annotations. Note that the recall is not high at the precision and recall by only con-

sidering the first annotation. The reason is that sometimes even two images’ visual features

are similar, but their semantic meaning will be different. Giving an example: an image with

skyscraper can has a ground truth annotation as “New York”. If a user selected this image,

then some other images who has skyscraper could also get the annotation “New York”. But

those images are not New York images. Therefore, the annotation “New York” to those

images will be incorrect.

To show the result of the proposed annotation mechanism, some of the example outputs

(images and their annotations from the experiments) are also presented in Figure 5.6. The
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Figure 5.5: Precision and Recall for Image Retrieval using Text Query in the MDS system.

     

Mountain Rose Fitness Dino art Pyramid
Surf up Flower Kungfu Bird art Ruin
Hairstyle Garden Bird art Plane Horse

Figure 5.6: Some example images with labels in MDS system

keywords in bold are the labels with the highest votes, followed by more labels sorted in

descend order according to their votes.

As MDS is capable of decomposing user’s initial query into multiple sub-queries for better

coverage, the proposed system is able to find the top k images without the confinement of one

neighborhood, therefore, provides the flexibility for the user to provide detail annotations.

An example of annotating “rose” is shown in Figure 5.7. The two rows show the retrieval

result from two sub-queries in the same session. And the user can annotate those images as

“roses” and “rose”.

5.6.4 Annotation Efficiency

Because MDS considers multiple clusters in each query session, so the annotations are prop-

agated to multiple kNNs, which is much faster than just one kNN. Figure 5.8 plots the image

percentage in the database that has at least one label on it vs. the number of user iterations.
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Figure 5.7: “Rose” from the MDS annotation system (result of “single rose” in the top row,
and “multiple roses” in the bottom row)
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Figure 5.8: Annotation propagation speed in MDS system

In each query session, the system propagates image label to 50 and 100 images. In each

iteration, 3 relevant images are annotated. In the first iterations, the number of images

annotated increased faster than in the later iterations. This is because the result converges

at the last iterations, therefore fewer new images will be included in the retrieval set and

hence get annotations. The experiment results indicate that after about 100 independent

queries, each with 4 iterations of RF, 90% of the images in the database are assigned at least

one annotation.

5.6.5 Image Retrieval Performance

Because the proposed system is based on the content based image retrieval schema to find

similar images, so it is important to show that this system is accurate on the image retrieval

task. As describe previously, the current image retrieval models suffer the confinement of

kNN computation, to provide better coverage for annotation propagation, the new image

retrieval technique must be able to handle the case when the semantically similar top k
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images are far apart in the feature space. To test the system’s capability of bridging the

semantic gap in image retrieval, it is compared with the Multiple Viewpoints (MV) [23]

approach. In MV approach, the query image’s negative color image, black and white image,

and the negative black and white image are used as queries in addition to the original query

image. It decomposes query to sub-queries based on color feature and try to cover more

images with the same semantic concept but different color representations. The proposed

approach decomposes query based on the clustering result on all the visual features.

To facilitate a fair comparison, both the MDS and MV techniques were evaluated using

the same queries, and the same image data set with the same features. Both techniques

retrieved the same number of images for each test query. For the MV approach, the images

returned by the four color channels were combined to form the final result set.

5.6.5.1 Bridge the semantic gap

A total of 100 queries are conducted on both systems. The example queries are listed in

Table 5.2. Table 5.3 reports the average. Another metric is used here to evaluate the two

system’s performance on bridging the semantic gap - Ground Truth Inclusion Ratio:

GTIR =
number of retrieved relevant subconcepts

number of relevant subconcepts in the database
(Eq. 5.11)

Table 5.2: Table (Testing Query)
Query Sub-concept
A person Hair-model, fitness, Kongfu
Airplane single, multiple
Bird eagle, owl, sparrow
Car modern sedan, antique car, steamed car
Horse polo, wild horse, race
Mountain snow, with water
Rose single, multiple
Water Sports surfing, sailing
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For most of the queries, MDS is able to capture all the sub-concepts, resulting GTIR=1;

while MV only capture part of the sub-concept(s). For the query “rose”, the MV could also

capture both the sub-concepts. The reason is that in addition to the original query image,

MV also used color negative, black and white, and negative black and white images to query

the database. The dominant feature of rose images is color, so MV could pick the images

from different sub-concepts if they have similar color features. But those additional color

queries also brought irrelevant images which causes a lower precision than the MDS. Overall,

the proposed MDS system better bridges the semantic gap by using multiple sub-queries.

It is able to cover the semantically similar images even they are in multiple clusters in the

feature space. To better illustrate the idea of the query decomposition technique, refer to

Figure 5.7.

5.7 Conclusion

The MDS approach dynamically analyzes the user’s relevance feedback and considers multi-

ple neighborhoods by decomposing initial query into separate sub-queries. As the sub-queries

covers distinct image clusters scattered in the feature space, MDS addresses the inherent

weakness of kNN based RF techniques - confining the search in one neighboring image clus-

ter. Therefore, MDS can simultaneously annotate images with different visual characteristics

but the same semantic concept. The MDS techniques also considers user’s previous query

intention to better exploit the intent of user feedback, which greatly improved the search and

annotation efficiency. The experimental studies showed that the proposed technique helps

user annotate large uncaptioned database efficiently and accurately.

Table 5.3: Image Retrieval Quality Comparison
MV MDS
GTIR Precision GTIR Precision
0.56 0.32 1 0.65
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