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ABSTRACT 

Understanding the nature of genetic variation in natural populations is an underlying theme 

of population genetics. In recent years population genetics has benefited from the incorporation of 

landscape and environmental data into pre-existing models of isolation by distance (IBD) to 

elucidate features influencing spatial genetic variation. Many of these landscape genetics studies have 

focused on populations separated by discrete barriers (e.g., mountain ridges) or species with specific 

habitat requirements (i.e., habitat specialists). One difficulty in using a landscape genetics approach 

for taxa with less stringent habitat requirements (i.e., generalists) is the lack of obvious barriers to 

gene flow and preference for specific habitats. My study attempts to fill this information gap to 

understand mechanisms underlying population subdivision in generalists, using the squirrel treefrog 

(Hyla squirella) and a system for classifying ‗terrestrial ecological systems‘ (i.e. habitat types). I 

evaluate this dataset with microsatellite markers and a recently introduced method based on 

ensemble learning (Random Forest) to identify whether spatial distance, habitat types, or both have 

influenced genetic connectivity among 20 H. squirella populations. Next, I hierarchically subset the 

populations included in the analysis based on (1) genetic assignment tests and (2) Mantel 

correlograms to determine the relative role of spatial distance in shaping landscape genetic patterns.  

Assignment tests show evidence of two genetic clusters that separate populations in Florida‘s 

panhandle (Western cluster) from those in peninsular Florida and southern Georgia (Eastern 

cluster). Mantel correlograms suggest a patch size of approximately 150 km. Landscape genetic 

analyses at all three spatial scales yielded improved model fit relative to isolation by distance when 

including habitat types. A hierarchical effect was identified whereby the importance of spatial 

distance (km) was the strongest predictor of patterns of genetic differentiation above the scale of the 

genetic patch. Below the genetic patch, spatial distance was still an explanatory variable but was only 
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approximately 30% as relevant as mesic flatwoods or upland oak hammocks. Thus, it appears that 

habitat types largely influence patterns of population genetic connectivity at local scales but the 

signal of IBD becomes the dominant driver of regional connectivity.   My results highlight some 

habitats as highly relevant to increased genetic connectivity at all spatial scales (e.g., upland oak 

hammocks) while others show no association (e.g., silviculture) or scale specific associations (e.g., 

pastures only at global scales). Given these results it appears that treating habitat as a binary metric 

(suitable/non-suitable) may be overly simplistic for generalist species in which gene flow probably 

occurs in a spectrum of habitat suitability. The overall pattern of spatial genetic and landscape 

genetic structure identified here provides insight into the evolutionary history and patterns of 

population connectivity for H. squirella and improves our understanding of the role of matrix 

composition for habitat generalists.  
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CHAPTER 1: INTRODUCTION 

Understanding how genetic variation is partitioned among populations is of fundamental 

importance in evolutionary biology. Population genetic studies often infer dispersal among 

populations by correlating pairwise genetic distance (e.g., FST) with straight-line spatial distance (i.e., 

isolation by distance; IBD; Wright 1943) to determine the relationship between genetic and 

geographic distance. Notwithstanding the ubiquity with which IBD is used in studies of population 

structure, the correlation of spatial distance often only weakly explains genetic distance among 

populations (Jenkins et al. 2010), prompting researchers to identify factors other than Euclidean 

distance that may explain patterns of gene flow. Within the past decade there has been a surge of 

research effort aimed at quantifying how extrinsic factors, such as landscape and environmental 

features, facilitate or inhibit genetic connectivity among natural populations. The field of Landscape 

Genetics (Manel et al. 2003; Storfer et al. 2007; Holderegger & Wagner 2008) stems from the 

realization that the classical models of IBD are overly simplistic in their assumption that the inter-

population landscape matrix is homogeneous and does not influence gene flow (Kozak et al. 2008). 

Indeed, previous landscape genetic research has revealed strong correlations between genetic 

distance and ecologically relevant features including habitat gaps (Pierson et al. 2010), cover type and 

river crossings (Spear et al. 2005), species-specific corridors (Banks et al. 2005; Spear & Storfer 2010), 

salinity (Bekkevold et al. 2005), slope (Lowe et al. 2006), anthropogenic versus natural forest cover 

(Pavlacky et al. 2009), conservation-relevant habitats (Emaresi et al. 2009), and spatial scale (Chan et 

al. 2009).  

One pattern that has emerged is that much of landscape genetic research to date has focused 

on the genetic consequences of landscape features for habitat specialist (i.e., species that have 
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specific habitat requirements)(e.g., Stevens et al. 2006; Chan et al. 2009). In contrast, there is a general 

paucity of studies that use a landscape genetics approach for species with less stringent habitat 

requirements (i.e., generalist species). This disparity may be due to publication bias, as studies 

conducted for generalist species may lack adequate genetic structure at the scale under study. Two 

recent studies that have compared genetic structure among related habitat specialist and generalist 

species determined that generalist species tend to have higher genetic connectivity than specialist 

species (Brouat et al. 2003; Vandergast et al. 2004). These studies suggest that habitat specialists 

display a lower propensity to disperse through unsuitable habitat (i.e., higher landscape resistance; 

McRae 2006) owing to two mechanisms, population fragmentation and decreased ability to diffuse 

through the intervening landscape. Subsequently, the magnitude of measurable genetic 

differentiation for habitat specialists is expected to be larger than for generalists (Geffen et al. 2004). 

Nevertheless, a growing number of studies suggest that landscape features can be paramount in 

shaping patterns of gene flow and genetic structure in habitat generalists, even though generalist 

species are often regarded as existing as panmictic populations. As in habitat specialists, discrete 

barriers (e.g., large rivers or highly trafficked roadways) can serve as barriers to gene flow for habitat 

generalists (Frantz et al. 2010). However, constrained movement across the landscape matrix can be 

more difficult to analyze for generalists than specialists. For extreme specialists the landscape can be 

treated as a simple binary matrix: suitable and non-suitable (Chan et al. 2009); forests and non-forest 

(Vandergast et al. 2004); scrub and non-scrub (Hokit et al. 2010). On the other hand, generalists can 

inhabit a range of habitats and it has been suggested that the spectrum of habitat optimality can be 

larger for generalists as compared to habitat specialist (Stewart et al. 2010). 

Amphibians are model organisms for studying how the landscape alters patterns of gene 

flow and genetic structure. Many amphibians are philopatric organisms with low dispersal rates 
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which makes them ideal for detecting fine-scale genetic structure (Duellman & Trueb 1986; 

Blaustein et al. 1994; Blaustein et al. 2003; Funk et al. 2005b; Manier & Arnold 2006; Giordano et al. 

2007). Most amphibians have a biphasic life history and thus experience both aquatic and terrestrial 

habitat degradation and environmental stressors (Duellman & Trueb 1986; Blaustein et al. 2003; 

Steele et al. 2009; Storfer et al. 2009). Moreover, anurans are particularly useful in landscape genetics 

due to the ease of sampling, predictable breeding habitats, and relatively short generation time. Not 

surprisingly, a large portion of the available landscape genetic literature has used this group to 

investigate features that correlate with genetic distance among populations (e.g., Funk et al. 2005a; 

Spear et al. 2005; Stevens et al. 2006; Spear & Storfer 2008; Allentoft et al. 2009; Angelone & 

Holderegger 2009; Chan & Zamudio 2009; Lee-Yaw et al. 2009; Richards-Zawacki 2009; Wang 2009; 

Zhao et al. 2009; Murphy et al. 2010; Spear & Storfer 2010). From these and other studies of anuran 

ecology and population genetics, it is apparent that salient and discrete a priori defined landscape 

features (e.g., mountain ridges or major rivers separating populations of poor dispersing individuals) 

tend to correspond with gene flow patterns up to and in excess of the effects of IBD. For example, 

Funk et al. (2005a) suggested that mountain ridges and elevation were associated with greater genetic 

differentiation among populations of Columbia spotted frogs (Rana luteiventris) based on results of 

simple and partial Mantel tests. 

Several analytic tools have been used to assess the influence of landscape features on gene 

flow (for review see Balkenhol et al. 2009b). Among these, the partial Mantel test (Smouse et al. 

1986) has been used extensively as an extension to the Mantel test (Mantel 1967) whereby three or 

more distance matrices (e.g., genetic, spatial, and environmental) can be used to determine partial 

correlation coefficients for all matrices under investigation. The partial Mantel test is an attractive 

approach in landscape genetics because IBD is often assumed and researchers are interested in the 
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effects of some other variable while holding spatial distance constant. However, the validity of the 

partial Mantel test has been called into question (Raufaste & Rousset 2001; Castellano & Balletto 

2002; Rousset 2002) and simulations have shown this test can yield a high Type-I error rate 

(Balkenhol et al. 2009b). Moreover, assessing all pairwise combinations among populations may not 

be biologically meaningful if, for example, a pairwise vector traverses an absolute barrier to dispersal 

(i.e., ocean separating populations of amphibians). An alternative method to identify the importance 

of variables uses the nonlinear classification and regression tree-like (CART-like) analysis Random 

Forest (hereafter RF; Breiman 2001). RF has been used in other disciplines including bioinformatics 

(Cutler & Stevens 2006), chemoinformatics (Svetnik et al. 2003; Svetnik et al. 2005), ecology (Cutler et 

al. 2007), landscape ecology (Evans & Cushman 2009), and has been recently introduced to 

landscape genetics (Murphy et al. 2010). Briefly, RF is similar to Bagging, or bootstrap aggregation 

(Hastie et al. 2009), whereby an ensemble of classification or regression trees (regression in this 

study) are grown, each on a bootstrap sample of the training data (Svetnik et al. 2005). The 

predictions of each bootstrap tree are then averaged (for regression) to give a final prediction 

(Svetnik et al. 2003). Trees notoriously have high variance; small changes in the data can result in 

different series of splits down the tree. The advantage of averaging the predictions of many 

bootstrapped trees smoothes out this variance (Hastie et al. 2009). RF adds another layer of 

randomness to the Bagging procedure to further reduce the variance by reducing the correlation 

between trees; this reduction is accomplished by randomly selecting only a subset of the total 

predictors (m) as candidates for node splitting (Hastie et al. 2009). RF is an appealing technique in 

landscape genetics as it has the ability to handle wide datasets (i.e., relatively large number of 

predictors, p, compared to number of observations, n), handle redundant and/or irrelevant 

predictors, and provide a type of cross-validation in parallel with the training step, and because 
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variable importance can be used in conjunction with partial dependence plots to aid in biological 

interpretation (Svetnik et al. 2003; Cutler et al. 2007; Hastie et al. 2009; Siroky 2009). 

The overarching goal of this study was to determine the utility of landscape genetics in 

assessing genetic connectivity for an abundant habitat generalist, the squirrel treefrog (Hyla squirella). 

The landscape genetics approach typically involves two steps to investigate landscape and 

environmental influences on patterns of gene flow: (1) identify patterns of genetic discontinuity (e.g., 

clusters, clines and genetic differentiation) and (2) correlate these patterns with landscape and 

environmental features (Manel et al. 2003; Guillot et al. 2005a; Holderegger et al. 2006). My first aim 

was to identify whether incorporating landscape variables into models of IBD increased the 

explanatory power of population connectivity. Thus, IBD served as a null model. If landscape 

information is important, I asked whether all habitat types that were predicted to increase genetic 

connectivity uniformly contributed to model fit or if some habitats were more important than 

others. The former may suggest that habitat can be treated as a binary predictor (suitable/non-

suitable) as with many landscape genetics studies for specialist species; the latter would be expected 

in systems characterized by a spectrum of habitat suitability.  I used RF and the general methodology 

of Murphy et al. (2010) to determine (i) if including habitats explained more of the variation in 

genetic distance among populations than spatial distance alone and (ii) variable importance for each 

habitat. Second, I tested whether there was a hierarchical effect and I predicted that the contribution 

of spatial distance would decrease with decreasing spatial scale. These spatial scales were analyzed 

systematically: the ‗global scale‘ was defined by my sampling scheme; the ‗intermediate scale‘ was 

defined genetically based upon individual assignment tests; and the ‗local scale‘ was identified by 

estimating genetic patch sizes within clusters. Typically, landscape genetics studies focus on range 

restricted species or species with specific habitat requirements. This study uniquely investigates the 
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extent that landscape genetic approaches can determine the influence of ecological features for a 

habitat generalist and how the spatial scale under investigation can affect inferences of population 

connectivity. These data are discussed with regard to how my a priori expectations are met given the 

data and how this study further advances the growing field of landscape genetics.
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CHAPTER 2: METHODS 

Study Species 

Hyla squirella is one of the most abundant treefrogs found along the Atlantic and Gulf 

Coastal Plains of the United States – occurring from Virginia to eastern Texas and south to the 

Florida Keys (Lannoo 2005). There are two reasons why H. squirella provides an ideal model system 

for this study. First, as a terrestrial anuran, it likely exhibits many of the beneficial attributes of 

amphibians in population genetics study (see above); second, it is a habitat generalist. Indeed, Carr 

(1940) described this species as showing little discrimination in terms of suitable habitats. Hyla 

squirella occur in a wide range of habitats including: fields and urbanized areas (Deckert 1915; Wright 

2002); swamps (Lannoo 2005); pine and oak groves (Wright & Wright 1995); and almost anywhere 

adjacent to food, moisture, and shelter (Conant & Collins 1998). Breeding habitats include grassy, 

ephemeral pools free of predatory fish such as road side ditches (Wright & Wright 1995; Babbitt & 

Tanner 1997; Jensen et al. 2008). There are reports of preference for open wooded areas (Carr 1940; 

Wright & Wright 1995) and oviposition usually occurs in open canopy ponds (Binckley & Resetarits 

2007). From the available anuran landscape genetics and H. squirella literature I predicted that 7 

habitat types derived from the 2001 Southeast Gap Analysis Project (SEGAP; Comer & Schulz 

2007) would influence gene flow among H. squirella populations (Table 1). SEGAP consists of 

ecological systems (natural or semi-natural), human-modified land (e.g., pastures and urbanized 

regions), and non-terrestrial land cover type (e.g., lakes). Ecological systems are US National 

Vegetation Classification (US-NVC) plant community associations that tend to co-occur in areas 
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with similar ecological dynamics (e.g., flooding, fire regime) and environmental settings and 

gradients (Comer & Schulz 2007).    
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Table 1: Southeast regional GAP (SEGAP) dataset-derived variables used to assess habitat permeability in this study. Habitats are 
categorized by their type (anthropogenic or (semi)-natural). For each habitat the name, abbreviation, brief description, ecological 
justification, general genetic response, and references are given. A detailed list of these habitats can be found in Appendix A1 

Name  Abbreviation Brief Description Ecological Justification 
Genetic 
Prediction 

Reference 

Type - Anthropogenic†     
      
Urbanization land 
cover 

urban Developed urbanized land of 
varying intensity. 

Houses and buildings 
provide various degrees 
of shelter. 

Complex with 
more connectivity 
at intermediate 
percent cover 

(Wright 2002; 
Jensen et al. 
2008)  

      
Silviculture sil Forests established by 

planting and/or seeding in; 
can include dense forest 
canopy cover. 

Many pond-breeding 
amphibians require 
upland forested 
habitats for foraging 
and overwintering. 

Increase 
connectivity 

(Semlitsch 
1998; Babbitt 
et al. 2006) 

      
      
Pastures and 
Crop land 

pas Agricultural land for 
livestock grazing or the 
production of seed or hay 
crops. 

Pasture land often 
comprises a mosaic of 
ephemeral, open-
canopy ponds suitable 
for breeding H. 
squirella. 

Increase 
connectivity 

(Babbitt & 
Tanner 1997; 
Babbitt & 
Tanner 2000; 
Babbitt et al. 
2006; Binckley 
& Resetarits 
2007) 
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Name  Abbreviation Brief Description Ecological Justification 
Genetic 
Prediction 

Reference 

Type - (semi)-natural     
Mesic Flatwoods flat Forested systems 

characterized by Pinus spp. 
with frequent, low-intensity 
fires and subject to 
seasonally high water 
tables. 

Fire regime in this system 
concomitant with 
hydroperiod allows for 
relatively high 
occurrence of suitable 
breeding habitats. 

Increase 
connectivity 

(Binckley & 
Resetarits 
2007) 

      
Swamp swamp Hardwood/deciduous 

canopy dominants and 
hydrology dominated by 
rainfall and sheetflow. 

Preferred habitat for H. 
squirella  

Increase 
connectivity 

(Jensen et al. 
2008) 

Water and 
Floodplain Forest 

rff Open water and forested 
systems associated with 
lotic environments. 

Flooding (from nearby 
rivers) is a key 
ecological factor in this 
system which can 
increase the density of 
ponds containing 
predatory fish 

Decrease 
connectivity 

(Babbitt & 
Tanner 2000) 

Upland oak 
hammock 

oak Upland oak dominated 
habitat with infrequent fire 
frequency 

Many pond-breeding 
amphibians require 
upland forested 
habitats for foraging 
and overwintering. 

Increase 
connectivity 

(Semlitsch 
1998; Babbitt 
et al. 2006) 

† Descriptions of non-ecological systems provide by T. Earnhardt from the Biodiversity and Spatial Information Center at North Carolina 
State University.
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Sample Collections 

Sampling localities were chosen with the main goal of facilitating a continuum of pairwise 

comparisons needed to correlate landscape composition and genetic differentiation at various spatial 

scales (Guillot et al. 2009). First, I bisected the study domain into 75km2 strata. Second, I randomly 

sampled two points within each stratum. Third, I buffered these points using 5 km radii using 

ArcView 9.2 (ESRI, Inc.). Suitable breeding habitats within these buffered zones were surveyed on 

nights following moderate to heavy rainfall during the summer 2009 breeding season. From these 

surveys I collected 675 tissue samples (toe clips) from 20 georeferenced breeding sites (Table 2).  

Table 2: Spatial information for 20 sampling localities (i.e., populations) used in this study. For each 
locality, abbreviation, latitude, longitude, and number (n) of genotyped Hyla squirella samples are 
given. 

Abbreviation Latitude Longitude n 
AST 29.1605 -81.5535 32 
CHAR 26.9317 -81.7607 32 
CUT 29.5505 -83.1829 30 
DISS 29.2771 -81.3343 32 
EAPP 30.0282 -84.9879 32 
GRAS 29.0147 -82.3232 31 
GULF 28.5390 -82.6171 37 
HIKE 30.3461 -83.3394 33 
LAZY 28.6266 -81.8882 63 
OCK 29.5376 -81.7780 36 
OST 28.8461 -81.0936 22 
PALM 27.9213 -80.5515 19 
PEN 30.3196 -87.2634 37 
PINE 30.0503 -81.3978 30 
SAND 30.2744 -82.2845 32 
SPAR 29.3811 -82.0420 46 
SR2 30.3849 -86.3761 41 
STAR 29.9711 -82.2559 32 
WAPP 30.1358 -85.3702 42 
WAY 31.2089 -82.4494 16 
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Molecular Analysis 

For DNA extraction I used the standard phenol-chloroform method (Sambrook & Russel 

2001). Individuals were genotyped at nine microsatellite loci that were specifically developed for H. 

squirella. Abdoullaye et al. (2010) provides a full description of the primer development protocol and 

accession numbers. Briefly, total genomic DNA was fragmented using a degenerate oligonucleotide-

primed polymerase chain reaction (DOP-PCR) and amplicons were hybridized with 5‘-biotinylated, 

3‘-amino modified (CA)15 or (GATA)8 repeat motifs bound to streptavidin-coated particles (Ardren 

et al. 2002; Hoffman et al. 2003). Hybridization conditions followed Ardren et al. (2002) with slight 

modifications: 1) hybridization temperature profile was 95°C for 5 min, then 52°C for 25 min (ramp 

speed 0.1°C/sec.) and 2) the final two washes were carried out at 72°C. Enriched product 

underwent a second DOP-PCR and cloned using a TOPO TA cloning kit (Invitrogen, Carlsbad, 

CA). Clones containing the repeat motifs were identified using the T3/T7 screening procedure of 

Cabe & Marshall (2001). Primer pairs were designed from positive clones with adequate flanking 

region and checked for polymorphism and deviations from Hardy-Weinberg and linkage equilibria 

(HWLE).  

 Following PCR, amplicons from these nine loci were visualized on a 2% agarose gel to verify 

amplification and genotypes were scored on a Beckman CEQ8000 (Beckman-Coulter, Fullerton, 

CA) following the manufacture‘s protocol. Genotypes were initially checked for high null allele 

frequencies (>0.09), allelic dropout, and scoring errors with MICRO-CHECKER v 2.23 (Van 

Oosterhout et al. 2004). I tested for significant deviations from HWLE (Fisher‘s exact test) using 

GENEPOP v. 4.0.7 (Raymond & Rousset 1995; Rousset 2008). Markov chain parameters for all tests 
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included a dememorization of 10,000 and 500 batches (10,000 iterations per batch). I accounted for 

multiple comparisons by applying a sequential Bonferroni correction (Rice 1989). Recently colonized 

populations may show a noticeable decrease in expected heterozygosity or allelic richness. Such 

recently founded populations may have a low heterozygosity (HE) and allelic richness (AR) compared 

to longer established populations and the permeability of the landscape may not have had sufficient 

time for a detection of a genetic signature. Populations were screened for evidence of recent 

colonization by comparing population specific HE and AR in FSTAT v 1.2 (Goudet 1995).  

 Heterozygosity-based estimates of genetic distance between pairwise populations were 

assessed using SPAGEDI 1.3 (Hardy & Vekemans 2002). Genetic distances based on allele size (i.e., 

RST) are expected to be larger than those based on allelic state (i.e., FST) when loci are at least partially 

stepwise mutation model-like (SSM-like) and have a high mutation rate (e.g., microsatellites) 

compared to the effect of drift or migration (Hardy et al. 2003). Because I sampled at a broad (i.e., 

regional) spatial coverage whereby migration rates between populations may be comparably low 

and/or divergence time long, I tested the null hypothesis that allele sizes do not contribute to the 

observed genetic differentiation (i.e., FST = RST). This hypothesis was tested by randomly permuting 

allele sizes among allelic states and generating a null distribution of RST values. I considered RST to be 

significantly larger than expected under the null hypothesis if the observed RST values fell within the 

5% most extreme of the randomized RST values (one-tailed test) (Hardy et al. 2003).  

 Estimates of genetic distance that are based on allele frequency distributions are expected to 

detect more recent population-level differences due to landscape features than compared to genetic 

distances based on heterozygosity (Murphy et al. 2008). Moreover, in systems containing high 

effective population size (Ne) and measured with highly polymorphic SMM-like loci (e.g., 

microsatellites) genetic distances based on allele frequency distributions are expected to show more 
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pronounced differentiation than those based on reduction of heterozygosity. Therefore, in addition 

to estimating genetic distance based on reduction of heterozygosity (FST or RST) I obtained estimates 

based on the proportion of shared alleles (Dps', herafter Dps;  Bowcock et al. 1994) in the program 

MICROSAT v 1.5b (Minch et al. 1996). 

Spatial Genetic Structure 

Genetic Clusters 

I used two Bayesian model-based approaches to estimate the number of genetic clusters, K, 

and to assign individuals to these clusters. First, I used the program STRUCTURE. The algorithm in 

STRUCTURE probabilistically assigns individuals to groups (‗clusters‘) that maximizes within cluster 

HWE and minimizes among-cluster HWE. It is possible that further substructure can be identified 

by subsequent STRUCTURE analyses within clusters which may provide insight into the degree of 

admixture within larger clusters. My STRUCTURE analysis method was similar to Degner et al. (2010). 

Within each cluster identified in STRUCTURE I repeated the algorithm until no further substructure 

was supported. At the largest level (all 675 individuals representing 20 collecting localities) I 

performed a short pilot run in STRUCTURE v 2.3.1 (Pritchard et al. 2000) for each K = 1-20. 

Likelihood values for each K increased to a point then decreased noticeably after around K = 10 

(data not shown). Therefore, I performed 10 independent runs for each K = 1-10 using the 

admixture model with correlated allele frequencies among subpopulations and allowed the degree of 

admixture, α, to be inferred from the data. I collected data for 5 x 105 iterations (allowing the first 2 

x 105 iteration to be discarded as burnin). All other parameters were set to their default values. I 
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inferred the number of true clusters using the ΔK criterion (Evanno et al. 2005). Because subsequent 

STRUCTURE runs had less genetic content (i.e., fewer individuals) I included location information to 

the model. This modification placed a higher prior weight on clustering outcomes when correlated 

with locality information while still being robust to false detection of genetic structure were none 

exist (Hubisz et al. 2009). All remaining parameters for the higher order STRUCTURE runs were the 

same as full dataset.  

Second, I used the R package Geneland v 3.1.4 (Guillot et al. 2005a; Guillot et al. 2005b; 

Guillot 2008; Guillot et al. 2008) to corroborate the STRUCTURE results and to obtain estimates of 

population membership in a geographic context. Geneland is useful in identifying general areas of 

high landscape resistance or discrete boundaries (e.g., major rivers) where gene flow is reduced. As 

in the STRUCTURE runs, I hierarchically analyzed the genetic data in Geneland to identify multiple 

levels of genetic partitioning. In Geneland, for the largest level of hierarchy, I used the spatial model 

and assumed uncorrelated allele frequencies between subpopulations to estimate genetic clusters. I 

allowed the number of HWLE populations to be an unknown parameter and allowed for joint 

updates of population membership and allele frequencies (Guillot 2008). As above, I considered the 

minimum and maximum number of clusters, K, to range from 1 to 10. The maximum rate of the 

Poisson process was set to the number of individuals (n = 676); the maximum number of nuclei in 

the free Voronoi tessellation was set to three times the number of individuals as recommended by 

the program‘s user manual. The number of MCMC iterations was 3 x 105 (recording every 50 

iterations; post process burnin = 2000 saved iterations). All subsequent Geneland runs were 

performed with similar parameters, adjusting the number of individuals and maximum number of 

clusters for each level accordingly. Unlike other genetic assignment tests to date, Geneland is unique 

in that it can explicitly account for the presence of null alleles. Therefore, for my Geneland analyses 
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I included all nine microsatellite loci; for any locus-population combination that showed evidence of 

high null allele frequencies (see Results; null allele frequency > 0.09) I attempted to filter out null 

alleles (i.e., set filter.NA=TRUE). For each hierarchical level, I preformed 10 independent runs using 

the above parameters and used the mean posterior density to choose the best run given the data.  

Isolation by Distance 

To test for evidence of global IBD in my dataset I performed a Mantel test (Mantel 1967) 

with 9,999 randomizations and used a reduced major axis (RMA) regression to estimate slope and 

intercept of IBD. These two analyses were performed in the program IBDWS v 1.3 (Jensen et al. 

2005). A significant Mantel test determines whether there is a statistical dependence between 

(linearized) genetic distance and (log-transformed) geographic distance. A significant Mantel test 

may be indicative of IBD, of genetic clustering resulting from some dispersal barrier in otherwise 

panmictic subpopulations (Fontaine et al. 2007; Guillot et al. 2009), or both.  

To test whether any pattern of IBD is merely a by-product of genetic clustering I chose to 

perform a series of Mantel tests based on the results of genetic clustering algorithms. That is, within 

genetic clusters identified by STRUCTURE and Geneland I performed subsequent Mantel tests for 

genetic (heterozygosity-based and Dps) versus geographic distance.  

I predicted that below the scale of detectable IBD, population connectivity would be driven 

largely by landscape composition. Therefore, in addition to performing Mantel test within genetic 

clusters I performed a spatial autocorrelation analysis using Mantel‘s r at different distance classes to 

determine the scale at which populations are genetically more similar to one another than at random 

(Sokal & Oden 1978a; Sokal & Oden 1978b; Soares et al. 2008). I used a Mantel correlogram to 

estimate the ‗local‘ scale (i.e., genetic patch size; Soares et al. 2008). The analysis correlates a matrix 
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of genetic distance with a binary matrix representing pairwise observations of genetic distance at a 

given distance class. For this analysis I only considered genetic distances in the Eastern cluster (see 

below). At each distance class (n = 8; 50 km increments) I tested the null hypothesis of absence of 

spatial pattern. I corrected for multiple comparisons using a Bonferroni corrected P-value (α‘ = 

0.05/8 = 0.00625). The size of the genetic patch was estimated by the intercept of the line 

connecting Mantel‘s statistic for each distance class and the expectation under the null hypothesis 

(Soares et al. 2008). The above analyses were carried out for both types of genetic distance 

(heterozygosity-based and Dps) using 9,999 permutations in the R package ecodist v 1.2.2 (Goslee & 

Urban 2007). 

Habitat Permeability 

I took a landscape genetics approach to determine the relative importance of spatial distance 

and to identify which habitat types may have contributed to genetic structuring in this system. Here 

my methodology was adapted from Murphy et al. (2010). This approach can be broken down into 

four general steps: (1) combine genetic and landscape data, (2) run full RF model and calculate 

model improvement ratio (MIR) for each variable, (3) perform model selection algorithm, (4) run 

final RF for chosen sub-model to obtain final variable importance, predicted response, and overall 

model significance.  

Combining Landscape and Genetic Datasets 

First, I constructed a network of pairwise combinations among the 20 populations. Because 

I assumed that the Gulf of Mexico is an absolute barrier to dispersal, I removed all vectors that 
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overlapped this area. The remaining 128 vectors in the network served as the basis for inference. 

Next I combined pairwise estimates of genetic differentiation for these 128 vectors with their 

corresponding pairwise spatial distance (km).  

Landscape data, derived from the SEGAP dataset, consisted of 30 m2 raster cells of habitat 

types. The number of cells for each pairwise combination in the network depends on (1) the spatial 

distance between two populations and (2) the buffer width of the inter-population vector. To help 

alleviate confounding measures of habitat type with these two factors I converted the number of 

raster cells for a measured habitat type to a percentage of the total number of cells. Because reliable 

estimates of dispersal distances for H. squirella are lacking I performed the RF methodology 

described below for three pairwise buffer widths (diameter = 500 m, 2 km, and 10 km). Separate RF 

analyses at these vector buffer widths allowed me to determine the best set of predictors for each 

width separating populations.  

Running the Full RF Model and Calculating MIR Values  

I used the R package randomForest v 4.5-28 (Liaw & Wiener 2002) to run RF with all 

predictors (i.e., the ‗full‘ model) in regression mode with 5000 trees. Measures of the importance I of 

each predictor p (Ip) are generated automatically in RF and were converted to model improvement 

ratios (MIRs) by dividing each Ip by the maximum Ip (MIR = Ip /Imax).  

Model Selection Algorithm 

My model selection criteria differed slightly from Murphy et al. (2010) in two ways. First, I 

created sub-models via iteratively removing each predictor starting with the lowest MIR, until only 

the predictor with the largest MIR was retained. Second, because model fit (in terms of pseudo R-

squared; hereafter pR2) differed somewhat for each RF run for a given sub-model I ran 30 forests for 
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each of these sub-models and obtained 95% confidence intervals around their means. I considered 

two sub-models to have significantly different pR2 values if they had non-overlapping confidence 

intervals. I selected the sub-model with the fewest retained predictors whose mean was not 

significantly different from that of the best fitting sub-model. 

Final RF and Inference 

For the chosen sub-model, I determined overall direction of each predictor while averaging 

out the effects of other predictors using partial dependence plots (Cutler et al. 2007; Hastie et al. 

2009). Finally, significance was estimated by randomizing the response of the chosen sub-model (i.e., 

genetic distance) 9,999 times, obtaining model-fit (pR2) for each iteration, and estimating the tail 

probability of the Monte Carlo null distribution (α = 0.05) as in Murphy et al. (2010). 

Hierarchical Landscape Genetic Structure 

The above landscape genetics analysis examined which habitats correlated with genetic 

distance at the largest hierarchical scale (i.e. for all 20 populations). Populations within distinct 

genetic clusters should be more similar to each other than populations between clusters. 

Consequently, genetic distances should be higher for population pairs that occur between genetic 

clusters. Not surprisingly when landscape features co-vary with regions characterized by this level of 

genetic structure they may be associated with a high variable importance. To test whether features 

identified at the highest level were also important among populations (1) at the intermediate scale 

(i.e., within genetic clusters) and (2) at the local scale (i.e., within a genetic patch), I also performed 

the above RF analyses among populations within these genetic subsets.   
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CHAPTER 3: RESULTS 

Molecular Analysis 

I genotyped 675 H. squirella from 20 localities at all nine loci (Table 1). MICRO-CHECKER 

identified two loci, hsq131 and hsq136, that consistently showed evidence of high frequency null 

alleles. I removed these two loci from all subsequent analyses unless their presence could be 

accounted for (e.g., in Geneland). After applying a sequential Bonferroni correction for the 

remaining seven loci for all populations, eight comparisons remained significantly out of HWE. No 

populations had more than one locus out of HWE with the exception of WAPP, for which two loci 

(hsq103 and hsq107) showed deviation from expectations. Additionally, no loci showed evidence of 

linkage at the 5% nominal level. Therefore, the remaining seven loci were used in all remaining 

analyses, although some loci in some populations may have contained low-frequency null alleles. My 

dataset consisted of a large range of expected heterozygosities (0.00 – 0.95; mean = 0.64 + 0.33 

standard deviation [SD]). Allelic richness per locus, rarified to 14 diploid individuals, ranged from 1 

to 15.2. Despite the large differences in these extreme values, the mean allelic richness (average +SD 

across loci) for each population was similar throughout the study domain (7.2 + 0.8). The allele size 

permutation test indicated that the observed global RST value was significantly larger (P-value < 

0.001) than permuted RST (pRST) based on allelic state, suggesting that mutations have contributed to 

the observed genetic differentiation. Therefore, I report (log-transformed) RST for heterozygosity-

based estimates of genetic differentiation hereafter. Global genetic differentiation (RST = 0.055) was 
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significantly greater than zero (95% CI = 0.042 – 0.067) and suggested moderate genetic structuring 

across all populations.  

Spatial Genetic Structure 

Genetic Clustering 

At the highest hierarchical level (i.e., the ‗global‘ scale) both STRUCTURE and Geneland 

identified two genetic clusters (Figure 1, 2, and 3). Overall, population assignments at this level were 

congruent between these programs and displayed ‗Eastern‘ and ‗Western‘ genetic clusters. Isoclines 

in Figure 4 show the posterior probabilities of genetic cluster membership for the Eastern cluster. 

Qualitatively, the area of inflection between these clusters occurs in Florida‘s panhandle north of the 

Apalachee Bay.  
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Figure 1: Number of population genetic clusters (K) identified using two assignment algorithms at the global scale (n = 20 
populations). Left panel gives the likelihood of the data for a given K (black line; right hand Y-axis) plus (+) and minus (-) one-half 
of the SD across 10 independent runs. Output of the Evanno criterion (see text) is also provided on the left panel (gray line; left 
hand Y-axis. Right panel gives the relative density of the number of populations along the MCMC chain following burnin using the 
Geneland algorithm. 
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Figure 2: Individual assignments at the global scale based on the STRUCTURE algorithm for K=2 genetic clusters. Each individual is 
shown as a column. The proportion of each individual‘s genome that originated in K clusters is shown. Population abbreviations 
are provided and cross-reference to Table 1. Different colors represent different clusters (K), and the length of columns represents 
the proportion of each individual‘s genome that originated from the color-coded K. For instance, PEN (far left) contains 
individuals whose genomes are mostly derived from the black (Western) cluster.  
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Figure 3: Geneland output of Posterior Probability (see legend) of Eastern cluster membership at the global scale (n = 20 
populations). Population abbreviations cross-reference with Table 1. Posterior probability of the Western cluster is defined as 1 
minus the Posterior Probability of the Eastern Cluster. 
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The Western cluster consisted of a relatively small number of sampling localities (n=4). 

Subsequent hierarchical STRUCTURE analyses considering only these four localities showed evidence 

of further substructure in this region. Here, STRUCTURE discriminated among all four localities 

(Figure 4, 5, and 6) whereas Geneland only supported a split between the westernmost locality 

(PEN) and the remaining three localities (SR2, WAPP, and EAPP; Figure 4 and 5). While 

assignment tests were able to identify genetic structure within the Western cluster, the relatively low 

number of localities made it impractical to obtain reliable estimates of landscape genetic patterns. 

Therefore, the Western region was not utilized in any following landscape genetic structure analyses 

(see below). In contrast, the Eastern cluster consisted of 16 collecting localities ranging throughout 

Florida‘s peninsula to southern Georgia (Figure 3). Despite a considerable spatial distance between 

the furthest spanning populations (ca. 480 km), no further substructure within the Eastern cluster 

was supported by either assignment test algorithm (Figure 7).  
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Figure 4: Second-order STRUCTURE analysis showing the number of population genetic clusters (K) identified using two assignment 
algorithms in the Western cluster (n = 4 populations). Left panel gives the likelihood of the data for a given K (black line; right 
hand Y-axis) plus (+) and minus (-) one-half of the SD across 10 independent runs. Output of the Evanno criterion (see text) is 
also provided on the left panel (gray line; left hand Y-axis. Right panel gives the relative density of the number of populations along 
the MCMC chain following burnin using the Geneland algorithm.  
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Figure 5: Third-order STRUCTURE analysis showing the number of population genetic clusters (K) identified using two assignment 
algorithms in the Western cluster but excluding PEN. Left panel gives the likelihood of the data for a given K (black line; right hand 
Y-axis) plus (+) and minus (-) one-half of the SD across 10 independent runs; Output of the Evanno criterion (see text) is also 
provided on the left panel (gray line; left hand Y-axis. Right panel gives the relative density of the number of populations along the 
MCMC chain following burnin using the Geneland algorithm.  
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Figure 6: Individual assignments within Western cluster based on the STRUCTURE algorithm. Each individual is shown as a column. 
The proportion of each individual‘s genome that originated in K clusters is shown. Population abbreviations are provided and 
cross-reference to Table 1. A: all individuals within the Western cluster (K = 2; n = 152 individuals); B: Same as (A) but excluding 
PEN (K = 3; n = 115 individuals). 
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Figure 7: Number of population genetic clusters (K) identified using two assignment algorithms within the Eastern Cluster. Left 
panel gives the likelihood of the data for a given K (black line; right hand Y-axis) plus (+) and minus (-) one-half of the SD across 
10 independent runs; Output of the Evanno criterion (see text) is also provided on the left panel (gray line; left hand Y-axis. Right 
panel gives the relative density of the number of populations along the MCMC chain following burnin using the Geneland 
algorithm.
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Isolation by Distance 

I tested for IBD in my dataset hierarchically based on the genetic clusters identified in 

STRUCTURE and Geneland. First, I tested for IBD at the ‗global‘ scale which consisted of all pairwise 

combinations among 20 populations. Second, I tested for IBD at the ‗intermediate‘ scale; this 

consisted of all pairwise combinations within the Eastern cluster. For both the global and the 

intermediate scales the Mantel tests showed evidence of IBD. These tests where significant for both 

log transformed RST (Table 3; Figure 8) and log transformed Dps values (Table 4; Figure 8). 

However, genetic distance based on Dps values produced overall better model fit compared to RST 

values.  

Genetic Patch Size 

Figure 9 shows the Mantel Correlograms. For RST-based estimates of genetic distance (Figure 

9a), no comparison was significantly different from zero for any distance class after Bonferroni 

correction.  Therefore, no estimate of local scale could be estimated. However, for Dps-based 

estimates (Figure 9b) a spatial gradient is observed with significantly positive autocorrelation at 

shorter distance classes and significantly negative a larger distance classes. The x-intercept occurs 

near 150-200 km. However, for distance class 3 (i.e., populations 100 - 150 km apart) the 95% 

confidence intervals overlap with the Mantel expectation under the null hypothesis. I therefore 

chose all populations in the Eastern cluster below 150 km apart as my conservative estimate of the 

genetic patch size.  
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Table 3: Summary Statistics for Mantel tests at the global and 
intermediate scales for log-transformed RST values on log-transformed 
spatial distance (km). P-value based on 9,999 randomizations. 

Scale R2 Slope    95% CI P-value 

Global 31.3 0.2041 0.1797—0.2284 < 0.0001 
Intermediate 9.3 0.0986 0.0814—0.1157   0.0153 

 

Table 4: Summary Statistics for Mantel tests at the global and 
intermediate scales for log-transformed Dps values on log-transformed 
spatial distance (km). P-value based on 9,999 randomizations. 

Scale R2 Slope    95% CI P-value 

Global 60.2 0.4099 0.3727—0.4471 < 0.0001 
Intermediate 40.2 0.3652 0.2969—0.4335 < 0.0001 
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Figure 8: Genetic distance as a function of geographic distance at the global scale (left plots) and intermediate scale (i.e., within the 
Eastern cluster; right plots) for two response types: genetic distance based on reduction of heterozygosity (top plots) and based on 
allele frequency distribution (bottom plots). Significance is based on Mantel tests with 9,999 randomizations using the program 
IBDWS. 
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Figure 9: Mantel correlogram within the Eastern cluster for log-transformed RST (A) and Dps values 
(B). Mantel r is similar to Pearson‘s product-moment coefficient and ranges from -1 to 1. For each 
distance class (i.e., 50 km interval) the Mantel r + 95% confidence interval is shown. Filled circles 
denote significance at the Bonferroni corrected level α‘ = 0.05/8 = 0.00625.  
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Landscape Genetics at the Global Scale 

For a given response type (Dps or RST), models with different vector buffer widths had 

similar prediction error (MSE), overlapping pR2 confidence intervals, and similar predictors retained. 

Thus, I report only the smallest vector buffer width (see Appendix B for detailed summary of 2 km 

and 10 km models).  

Landscape genetic analyses revealed a strong pattern of model improvement when habitat 

variables were incorporated into models of IBD. Table 5 presents the median pR2 (+ 95% 

confidence intervals), mean squared error (MSE), and model significance for the chosen models. 

Models including habitat types consistently explained more of the variation in genetic distance (pR2) 

than spatial distance alone (Table 5). As with the Mantel tests, genetic distance based on allele 

frequency distribution (Dps) yielded improved model fit (pR2) compared to models with genetic 

distance based on reduction of heterozygosity (RST).  

At the global scale, RF uncovered an increase in genetic distance with increasing spatial 

distance for both RST-based and Dps-based measures of genetic distance. Figures 10 and 11 show the 

partial dependence plots of the individual variables included in the models for RST and Dps. These 

plots show the effect of a given predictor on the model after accounting for the average effects of 

the other retained predictors. From these plots and MIR values it is apparent that the effect of 

spatial distance (km) is large compared to the next most important predictor at the global scale, 

regardless of response type. For instance, percent oak hammock was the most important habitat 

type for the Dps-based model but was only about 54% as relevant as spatial distance. Both models 

show a decrease in genetic distance with increasing percent oak hammock among localities, and a 
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complex association for urban (Table 5, Figure 10 and 11). However, not all predictor variables were 

similar for the two genetic distance models. RST-based RF analyses show a strong predictive function 

for RST and percent cover of mesic flatwoods (flat). In contrast, flat is not a variable that significantly 

explains variation of Dps. Similarly, pas appear to have different effects depending on which genetic 

distance measure is used (Table 5). 
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Table 5. Features associated with genetic connectivity among Hyla squirella populations using Random Forest. Presented here are 
the chosen predictors for following model selection for the 500 m vector buffer width (detailed summary statistics for all vector 
buffer widths can be found in Appendix B). Models are grouped first by hierarchical scale (see text), next by response (RST or Dps), 
and finally by type. pR2 is a pseudo R2; MSE denotes mean squared error. Summary statistics, based on constructing 30 forests for 
each sub-model (see Methods), include median and 95% confidence intervals (95% CI) of pR2 and median MSE. P-value of the 
chosen sub-model is provided (see text). Model denotes the chosen variables (names cross-reference with Table 1) following model 
selection. These variables are ordered starting with the most important variable (in terms of MIR values) to the least important. 
Font style denotes general trend identified using partial dependence plots: standard font, negative association with genetic 
differentiation among populations; Boldface, positive association with genetic differentiation among populations; italic, complex 
association (i.e., nonlinear association whereby genetic differentiation has a minimum at some value of percent cover); and 
underline; weak main effect.  

 

 

 

Scale 
Response 

Type 

Median pR2 95% CI Median MSE P-value Model 

Global      
RST      

km only 0.753 0.333—1.174 2.22E-01 <0.001 km 
landscape genetics 40.48 40.20—40.94 1.42E-03 <0.001 km, flat, oak, urban, swamp 

Dps      
km only 32.29 32.03—32.53 1.89E-01 <0.001 km 
landscape genetics 60.38 60.03—61.46 1.11E-03 <0.001 km, oak, urban, pas 

Intermediate      
RST      

km only -38.03 -38.48— - 37.59 5.02E-02 0.5289 km 
landscape genetics 14.13 13.75—14.38 4.00E-04 <0.001 pas, km, urban, swamp, flat 

Dps      
km only 23.81 23.57—24.06 1.33E-01 <0.001 km 
landscape genetics 47.78 47.53—48.16 9.12E-04 <0.001 km, oak, urban 

Local      
Dps      

km only -31.77 -32.43 — -31.11 1.35E-01 0.3724 km 
landscape genetics 30.24 29.43—30.50 7.13E-04 <0.001 flat oak, km 
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Figure 10: Partial Plots for RST-based RF models. A) global scale, B) intermediate scale. Values above figures denote Model 

Improvement Ratios (MIRs) for retained predictors; that is, the importance of a given predictor relative to the most important 

predictor (far left; MIR=1.00). These plots show the predictive function of (log-transformed) RST on a given predictor while 

accounting for the average effects of other predictors. For example, RST has a nonmonotonic partial dependence on urban; it 

decreases nearly linearly throughout the main body of the data (denoted by rug) until approximately 10% cover before it 

increases.   
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Figure 11: Partial Plots for Dps-based RF models. A) global scale, B) intermediate scale, C) local scale. Values above figures denote 
Model Improvement Ratios (MIRs) for retained predictors; that is, the importance of a given predictor relative to the most 
important predictor (far left; MIR=1.00). These plots show the predictive function of (log-transformed) Dps on a given predictor 
while accounting for the average effects of other predictors. 
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Hierarchical Landscape Genetic Structure 

Landscape Genetic Structure at the Intermediate Scale 

For this analysis, I included only samples in the Eastern cluster and re-ran the RF algorithm. 

The effect of spatial distance (km) was relatively unimportant for RST-based analyses. In this model, 

pasture (pas) was the best predictor and showed a positive association with RST; urban, flat and swamp 

were also retained. The RF analyses based on Dps showed a large improvement over RST-based 

analyses (Table 5). For example, the model fit for Dps is over 3 times that of RST (Table 5). This 

difference is largely due to the strong effect of IBD still present for Dps-based analyses (Figure 10; 

Appendix B). Habitats retained in the Dps-based model at this scale were oak and urban and 

generally showed a positive association with genetic connectivity (Figure 11b).   

Landscape Genetic Structure at the Local Scale 

Spatial distance alone was not significantly associated with Dps at the local scale (RF P-value 

= 0.372; Table 2). However, the inclusion of habitat types explained approximately 30% of the 

variation in pairwise Dps (RF P-value <0.001; Table 2). Here RF identified oak and flat as the two 

most important variables associated with genetic distance. Both of these variables had nearly 

identical MIR values (1.000 and 0.989, respectively). Upland oak hammock had a negative 

association with genetic distance and flat displayed a weak main effect (Figure 11).  
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CHAPTER 4: DISCUSSION 

Landscape Genetics and Habitat Generalists 

The degree of a species‘ habitat specialization can have profound effects on its landscape 

connectivity (With & Crist 1995; With et al. 1997) and population dynamics (Krauss et al. 2003). 

Landscape genetics studies that treat habitat suitability as a binary variable, suitable or non-suitable, 

may be appropriate for habitat specialists but overly simplistic for generalist species that use habitats 

with variable suitability (Stewart et al. 2010). My data support the hypothesis that rates of gene flow 

for a generalist species can depend on a spectrum of habitat suitability. For example, my landscape 

genetics models suggest that some habitats are highly relevant (e.g., oak) while others (e.g., sil) 

appeared not to influence, or have not had adequate time to influence, genetic connectivity at the 

considered scale.  

The conclusions of my study support those of recent studies that investigated how 

landscapes influence genetic structure for generalist species. Vandergast et al. (2004) compared 

genetic structure for three spider species of the genus Tetragnatha, two forest specialists and one 

generalist, within and among fragmented forests of the Island of Hawaii. The matrix separating 

remnant forests consisted mainly of a recent (< 200 year old) lava flow. Data based on mtDNA and 

allozymes showed that restricted habitat has resulted in genetic structure for the two habitat 

specialists whereas no evidence of global genetic differentiation or IBD was present in the generalist. 

Similarly, Brouat et al. (2003) assessed levels of IBD at fine spatial scales (up to 13.6 km) for two 

carabid species (again, one was a forest specialist and one was a generalist). Evidence of IBD based 
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on microsatellite data was apparent for the specialist species but the generalist species only displayed 

a weak pattern of IBD. My study is similar to these studies in that the generalist Hyla squirella can be 

found in a wide range of habitats throughout its range (and has a pattern of IBD as in the carabid 

study). However, I quantified the role of the landscape composition. First, I determined whether 

habitat types are correlated with an increase in gene flow (e.g. upland oak hammocks) or have no 

measured effect (e.g., silviculture or river floodplain forests). Second, my landscape genetics models 

discerned among the effects of superficially similar habitats by partitioning the different effects of 

different forest types (e.g., upland oak hammocks, mesic flatwoods, floodplain forests, and 

silviculture). Therefore, the landscape genetics approach utilized here identified evolutionary 

patterns of dispersal and identified ecological habitats relevant to organism dispersal. 

This study further expands our knowledge of how spatial scale influences genetic patterns. 

While others landscape genetics studies (e.g., Murphy et al. 2010) found that variation in genetic 

distance was better explained at fine scales (i.e., within genetic clusters) my data suggest that 

variation in genetic distance was better explained at broader scales (e.g., Dps models pR2 = 60.38, 

47.78, 30.24 for global, intermediate, and local, respectively). This discrepancy may be due to the 

large effect of spatial distance at broad scales in the current study. Perhaps not surprisingly in 

systems characterized by IBD, a reduced spatial extent (i.e., distance) can decrease explanatory effect 

of spatial distance as well as overall model fit. Regardless of the attenuating explanatory power of 

spatial distance with reduced scale, landscape genetic models identified here show that the inclusion 

of habitat types better explained the variation in genetic distance than spatial distance alone (Table 

5). This was most clear at the local scale (i.e., within a genetic patch), where habitat types explained 

substantially more variation in Dps than spatial distance, for which no effect of IBD was present.  

This result suggests that landscape processes govern genetic structure within genetic patches 
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whereas IBD—either directly by the taxon‘s intrinsic dispersal ability or indirect as acting as a 

surrogate for some unmeasured landscape feature—shapes patterns of genetic structure at larger 

spatial scales.  

This study found that habitats are used differentially and predictably by H. squirella and that 

spatial scale influenced landscape genetic patterns, but this study also revealed three surprising 

patterns. Specifically: (1) changing the vector buffer width among population pairs did not 

meaningfully change which habitats were important; (2) models based on Dps outperformed those 

based on RST; and (3) flat was positively associated with RST. First, previous studies suggest that the 

significance of a particular landscape feature on genetic connectivity can be influenced by the vector 

buffer width analyzed (Emaresi et al. 2009; Murphy et al. 2010). The current study found that 

changing the vector buffer width did not meaningfully change (i) which habitats were important and 

(ii) the order of importance of these habitats (Appendix B). A possible explanation for the lack of 

difference among models is the strong correlation among vector buffer widths for a given habitat 

(Appendix C). The two broader vector buffer widths (2 km and 10 km) always correlated strongly 

with 500 km vector buffer width for any habitat type, suggesting that a narrow (i.e., 500 km) transect 

adequately sampled the surrounding landscape composition. Second, RF models had a better model 

fit and lower prediction error when using genetic distances based on allele frequency distribution 

than when using heterozygosity-based estimates. However, it is important that both frequency-based 

and heterozygosity-based estimates be modeled because they may differ in strength and pattern (Fig. 

10, 11; Table 5). For example, I found that pas showed a positive association with RST but a negative 

association with Dps. In this case, Dps result is more likely accurate because it is (1) not subject to 

equilibrium assumptions (Bowcock et al. 1994) and (2) simulations suggest that Dps can better detect 

more recent landscape genetic signature in systems characterized by high effective population size 
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(Murphy et al. 2008) as may be expected for the abundant H. squirella (Babbitt & Tanner 2000; 

Babbitt et al. 2006). One general conclusion is that when both estimates converge on the same 

pattern, then the confidence in that pattern is strengthened. 

Third, flat was associated with increased genetic differentiation in RST-models. Two 

ecological processes that dominate mesic flatwoods are fire and flooding. The high fire return 

interval (ca. 1 to 4 y) in this system maintains an open canopy while the relatively low slope and poor 

drainage is ideal for generating a mosaic of ephemeral ponds during seasonal rains (NatureServe 

2006). Both of these processes should be ideal for breeding site selection. Indeed, Binckley and 

Resetarits (2007) report H. squirella prefer to oviposit in ponds with open canopy cover. Further, like 

many amphibians, H. squirella effectively avoid breeding in ponds with permanent water and/or 

predatory fish (Babbitt & Tanner 2000). Two hypotheses may explain the positive association 

between RST and mesic flatwoods. First, this species may behaviorally change its degree of philopatry 

with a change in surrounding habitat. Such behaviorally driven mechanisms are not new in the 

literature. For example, Sacks et al. (2008) examined population genetic structure in a wide ranging 

generalist Canis latrans, a species that displays a behavioral preference for dispersing through areas 

which are similar to their natal habitat. Using microsatellite data Sacks et al. (2008) found genetic 

structure in C. latrans concordant with general habitat subdivisions of the heterogeneous California 

Floristic Province. As mesic flatwoods are abundant in the zone of inflection between Eastern and 

Western genetic clusters, this hypothesis predicts that populations of H. squirella in the region 

increase site fidelity and philopatry with increasing open canopy forest with temporary ponds. 

Further, this hypothesis suggests that contemporary habitat may be the causal mechanism for the 

East-West pattern seen in the assignment tests (Figure 1 and 2) and that regional genetic structure of 

this generalist species is flexible through time. Alternatively, this pattern may be due to a historical 
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footprint (Dionne et al. 2008) in which potential phylogenetic-level breaks in this region could have 

caused the observed pattern, and contemporary habitat may simply be a statistical artifact. Thus, the 

discrepancy shown for mesic flatwoods in this study presents a challenge in landscape genetics; to 

reconcile the effects of ecological pattern (i.e., contemporary versus historic landscapes) with 

evolutionary pattern (i.e., recent genetic structure or older divergence). Phylogeographic-level 

analyses in this species, including populations in more westerly states (e.g., Texas and Louisiana), 

may shed light on the importance of contemporary habitats for gene flow patterns at broader spatial 

scales. Further, the fact that Dps-based landscape genetics models did not uncover the same 

importance and trend of flat at the global scale implies that mesic flatwoods may be less important in 

influencing relatively recent genetic connectivity.  

A landscape genetics approach can be used to test our ecological expectations. For example, 

semi-aquatic amphibians spend some part of their life-history in upland habitats surrounding 

breeding ponds; however, the use of these habitats by amphibians remains poorly understood as 

reliable sampling in upland terrestrial environments can be difficult (Dodd & Cade 1998; Semlitsch 

1998; Bulger et al. 2003; Semlitsch & Bodie 2003; Trenham & Shaffer 2005). Using a landscape 

genetics approach, I found evidence that upland oak hammocks were strongly correlated with 

genetic connectivity among H. squirella populations. Moreover, this relationship was evident 

regardless of the spatial scale under consideration (Table 5). This result is consistent with a recent 

mark-recapture study (Windes 2010) that examined landscape features correlated with H. squirella 

survival and recapture rates. Windes (2010) found that H. squirella display strong site fidelity but 

recapture rates generally decreased with increased size of surrounding upland woodlot area. In 

addition, woodlot area was positively associated with H. squirella survival. Taken together, the mark-
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recapture (Windes 2010) and landscape genetics research (this study) underscores the necessity of 

upland terrestrial environments for many amphibians. 

Evolution and Population Connectivity in the Squirrel Treefrog 

  The overall patterns of spatial genetic structure may provide insight into the evolutionary 

history and patterns of population connectivity for H. squirella. Within the Western cluster the two 

assignment test algorithms showed evidence of further substructuring (Figure 4, 5, and 6). Both 

assignment test suggest PEN is genetically differentiated from the other three population (SR2, 

WAPP, and EAPP); STRUCTURE further suggested differentiation among SR2, WAPP, and EAPP 

(Figure 6b). Although the relatively few pairwise observations within the Western cluster made it 

impractical to rigorously quantify the degree to which the landscape may have contributed to the 

genetic structure, these results suggest two areas of further research. First, samples collected in PEN 

occurred approximately 100 km away from the next closest sampled population (SR2; Figure 3). The 

genetic distance between these two populations was 0.147 and 0.393 for RST and Dps, respectively. 

Because HE and AR were similar throughout the study it is unlikely that the genetic diversity within 

PEN or SR2 was a result of a recent founding event. One possible explanation for this relatively 

large pairwise genetic differentiation is the high resistance for H. squirella to move through saline 

habitats (i.e., the Gulf of Mexico or the Santa Rosa Sound). PEN occurs on Santa Rosa Island in the 

Gulf of Mexico; this island, oriented east-west, is generally less than 1 km wide and surrounded by 

salt and brackish water on either side. Assuming populations in this region are in equilibrium—such 

that the loss of alleles due to genetic drift is countered by the gain in alleles due to gene flow— the 
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physical geography creates a one-dimensional stepping stone model that amplifies divergence for a 

given distance relative to other models of gene flow (Wright 1943). Phylogenetic studies in this 

region have identified a similar pattern of genetic differentiation in beach mice (Peromyscus polionotus 

leucocephalus and P. p. allophrys; Van Zant & Wooten 2007); however, the seemingly congruent pattern 

with P. polionotus and H. squirella should be interpreted with caution. Phylogenetic-level analyses in 

this region for H. squirella will aid in determining if this pattern is a result of shared biogeographic 

history or pseudo-congruence (Steele & Storfer 2007).  Second, WAPP and EAPP were sampled ca. 

24 km apart and separated by the Apalachicola River. This river has been invoked to explain genetic 

discontinuities in several terrestrial taxa (reviewed in Soltis et al. 2006). Evidence based on 

assignment tests (Figure 4 and 6b) showed that WAPP and EAPP are genetically differentiated. 

While my landscape genetics analyses did not identify floodplain forest as a general barrier to H. 

squirella gene flow, the Apalachicola River may serve as a partial barrier to gene flow. Large, wide 

rivers (ca. 50 m) were barriers to gene flow for the generalist European Badger (Meles meles) while 

small rivers showed no effect on patterns of population connectivity (Frantz et al. 2010). Additional 

sampling effort west and east of this river will shed light on whether the Apalachicola River is a 

barrier between H. squirella populations.   

Within the eastern cluster, specific habitats used by H. squirella can be better evaluated, 

including the effects of these habitats on population genetic patterns. Landscape genetic patterns 

found here also may be relevant to other generalist amphibians in the southeastern Coastal Plain. 

For example, my landscape genetic data suggest that pastures may increase gene flow among 

populations (Table 5; Figure 11). This correlation is supported in the literature. Many pastures in the 

Coastal Plain consist of a mosaic of grassy wetlands. Tadpoles of H. squirella occur in wetlands 

surround by pastures up to 1.2 km away from the closest woodland (Babbitt & Tanner 2000) 
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suggesting movement through pasture matrix is likely. In addition H. squirella, and the green treefrog 

(H. cinerea), may be expanding their ranges north into the Piedmont presumably due to the 

proliferation of farm ponds in Georgia (Jensen et al. 2008). 

I predicted that floodplain forests (rff) would inhibit gene flow in H. squirella. Floodplain 

forests are periodically inundated and can deliver predatory fish to potential breeding ponds which 

reduces H. squirella abundance (Babbitt & Tanner 2000). Moreover, low dispersing species, such as 

H. squirella (Windes 2010), should be affected by a riverine barrier (Zhao et al. 2009). However, my 

landscape genetic study suggests that (small) rivers and floodplain forests are generally uninformative 

in assessing population connectivity in H. squirella. On one hand, it may be possible that the linear 

geometry of river floodplain forest habitat, as opposed more patchily distributed habitat, may have 

precluded identification of the importance of rivers and floodplain forest in this system. On the 

other hand, floodplain forests may not be a dispersal barrier for H. squirella if a suitable number of 

fish-less breeding ponds are available within these habitats. 

Finally, amphibian populations and communities can be reduced by ultraviolet radiation and 

toxic chemicals (Alford & Richards 1999; Blaustein et al. 2003), but habitat loss and alteration are 

probably the most serious causes of the global amphibian decline (Dodd & Smith 2003). The anuran 

assemblage in urban-rich regions is largely represented by generalist species such as B. terrestris, 

Osteopilus septentrionalis, H. cinerea, and H. squirella (personal observation). For the latter species I 

found that urbanized habitats may not hinder gene flow; rather this habitat may act as a facilitator of 

gene flow (Figure 9 and 10), possibly due to increase in urban-associated temporary ponds (e.g., 

roadside ditches, retention ponds). Further, it appears that H. squirella gene flow is enhanced with 

more upland oak habitat in inter-population matrices. For example, urban land cover within the 

Eastern cluster is associated with increased genetic connectivity and this relationship appears more 
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pronounced with the increased percent upland oak hammocks (Figure 12). Thus, while global trends 

in amphibian declines may be shaped by the conversion of natural to anthropogenic land cover, 

natural selection may favor populations and species, such as H. squirella, that can sufficiently exploit 

their surrounding habitats, some of which are novel in the species history.  

 

 

Figure 12: Bivariate partial dependence plot for Hyla squirella genetic differentiation in the Eastern 
cluster (Dps-based model). Here the partial dependence is the effect of two predictor variables, 
upland oak hammocks (oak) and urban land cover (urban), on the model after accounting for the 
effect of spatial distance (km). Decreasing partial dependence can be inferred as increasing genetic 
connectivity.  
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CHAPTER 5: CONCLUSION 

Overall, this study underscores the broad utility of landscape genetics to better infer factors 

potentially responsible for gene flow and genetic structure among natural populations, including 

generalist species. Furthermore, it contributes to the growing body of literature that suggests 

landscape features strongly influence rates of gene flow among populations (reviewed in Storfer et al. 

2007; Holderegger & Wagner 2008; Balkenhol et al. 2009a); that they are important determinants of 

population genetic connectivity for generalist species (Sacks et al. 2008; Frantz et al. 2010); and that 

different landscape types have specific effects that can be identified as to the magnitude and 

direction of how they influence connectivity. The general methods applied here are useful to 

investigate evolutionary processes, identify potential dispersal pathways for invasive species, 

complement niche-based modeling to identify previously unknown populations, model landscape 

resistance across multiple spatial scales, and aid in corridor design for conservation biology. Many 

population genetics analyses have considered habitat as simply suitable or non-suitable to explain 

genetic differentiation. I suggest this technique should be avoided in the future as superficially 

similar habitats may yield contrasting patterns associated with genetic connectivity; combining all 

―suitable‖ habitats may yield a low signal to noise ratio. Moreover, this study demonstrated that IBD 

and landscape composition have different explanatory power at different spatial scales for the 

evolutionary patterns in H. squirella. Finally, this study indicated landscape features that have 

potentially influenced patterns of genetic structure in a widespread, generalist species.   
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APPENDIX A: PREDICTOS USED TO ASSESS HABITAT 

PERMEABILITY 
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Appendix A. Detailed list of predictors used to assess habitat permeability in this study. Abbreviation, name, and 
SEGAP dataset codes are provided. Variables are sorted by whether they are ―non-ecological‖ systems (i.e., 
anthropogenic land cover types) or semi-natural or natural ecological systems. For each SEGAP dataset code the 
description (non-ecological systems) or a list of their classifiers (ecological systems) is provided. A complete 
description of each ecological system can be found at http://www.basic.ncsu.edu/segap/. 

Abbreviation Name GAP dataset 
code 

Description 

  
Non-ecological system habitat types  
urban Urbanization SEGAP211 Developed open areas such as golf courses and road sides 
  SEGAP220 Low density urbanization; impervious surfaces account for 

20-49% of total cover 
  SEGAP230 Medium density urbanization; impervious surfaces account 

for 50-79% of total cover 
  SEGAP 240 High density urbanization; impervious surfaces account for 

80-100% of total cover 
sil Silviculture SEGAP410 Plantations dominated by deciduous species. 
  SEGAP420 Plantations dominated by evergreen species. 
pas Pastures SEGAP810 Agricultural land cover where pasture/hay vegetation 

accounts for greater than 20% of the total vegetation. 
  SEGAP820 Agricultural land cover used for the production of annual 

crops and woody crops such as orchards and vineyards. 
Crop vegetation accounts for greater than 20 percent of 
total vegetation.  

 
   
(Semi)-natural ecological systems   
   GAP data Classifiers:  
flat Mesic 

Flatwoods 
CES203.536 Land Cover Class……………………. Woody Wetland 

Spatial Scale & Pattern……………… Matrix 
Required Classifiers…………………. Natural/Semi-
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natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... None 
Non-Diagnostic Classifiers………….. Woody-

Herbaceous; 
Extensive Wet 
Flat 

FGDC Crosswalk……………………. Vegetated, Tree-
dominated, Open 
tree canopy, 
Evergreen open 
tree canopy 

  CES203.382 Land Cover Class……………………. Mixed Upland and 
Wetland 

Spatial Scale & Pattern……………… Matrix 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Upland; Wetland 

Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); Woody-
Herbaceous; Short 
Disturbance 
Interval; Needle-
Leaved Tree 

Non-Diagnostic Classifiers………….. None 
FGDC Crosswalk……………………. Vegetated, Tree-

dominated, Open 
tree canopy, 
Evergreen open 
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tree canopy 
  CES203.375a-c Land Cover Class……………………. Vegetated, Tree-

dominated, Open 
tree canopy, 
Evergreen open 
tree canopy 

Spatial Scale & Pattern……………… Matrix 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Upland; Wetland 

Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); Extensive 
Wet Flat; Short 
Disturbance 
Interval; Needle-
Leaved Tree 

Non-Diagnostic Classifiers………….. None 
FGDC Crosswalk……………………. Vegetated, Tree-

dominated, Open 
tree canopy, 
Evergreen open 
tree canopy 

  CES411.381 Land Cover Class……………………. Mixed Upland and 
Wetland 

Spatial Scale & Pattern……………… Matrix 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Upland; Wetland 

Diagnostic Classifiers………………... Needle-Leaved 
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Tree 
Non-Diagnostic Classifiers………….. Woody-

Herbaceous; 
Extensive Wet 
Flat 

FGDC Crosswalk……………………. Vegetated, Tree-
dominated, Open 
tree canopy, 
Evergreen open 
tree canopy 

    
swamp Swamp CES203.304a,b Land Cover Class……………………. Woody Wetland 

Spatial Scale & Pattern……………… Large patch 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); Extensive 
Wet Flat; Needle-
Leaved Tree; 
Broad-Leaved 
Tree 

Non-Diagnostic Classifiers………….. Organic Peat (>40 
cm); Mineral: W/ 
A-Horizon >10 
cm 

FGDC Crosswalk……………………. Vegetated, Tree-
dominated 

  CES203.251 Land Cover Class……………………. Woody Wetland 
Spatial Scale & Pattern……………… Small patch 
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Required Classifiers…………………. Natural/Semi-
natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); 
Depressional; 
Needle-Leaved 
Tree 

Non-Diagnostic Classifiers………….. Isolated Wetland 
[Partially Isolated] 

FGDC Crosswalk……………………. Vegetated, Tree-
dominated, Open 
tree canopy, 
Evergreen open 
tree canopy 

    
rff River 

Floodplain 
Forest 

CES203.247a Land Cover Class……………………. Woody Wetland 
Spatial Scale & Pattern……………… Linear 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Riverine / Alluvial 
[Blackwater] 

Non-Diagnostic Classifiers………….. Forest and 
Woodland (Treed) 

FGDC Crosswalk……………………. None 
  CES203.249 Land Cover Class……………………. Woody Wetland 

Spatial Scale & Pattern……………… Linear 
Required Classifiers…………………. Natural/Semi-
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natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Riverine / Alluvial 
[Blackwater] 

Non-Diagnostic Classifiers………….. Forest and 
Woodland (Treed) 

FGDC Crosswalk……………………. None 
  CES203.489a Land Cover Class……………………. Woody Wetland 

Spatial Scale & Pattern……………… Linear 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); Riverine / 
Alluvial 
[Brownwater] 

Non-Diagnostic Classifiers………….. None 
FGDC Crosswalk……………………. None 

  CES203.493 Land Cover Class……………………. Woody Wetland 
Spatial Scale & Pattern……………… Linear 
Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Wetland 

Diagnostic Classifiers………………... Riverine / Alluvial 
[Blackwater] 

Non-Diagnostic Classifiers………….. Forest and 
Woodland (Treed) 

FGDC Crosswalk……………………. None 
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oak Upland oak 
forest and 
hammock 

CES203.560 Land Cover Class……………………. Forest and 
Woodland 

   Spatial Scale & Pattern……………… Large patch 
   Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Upland 
 

   Diagnostic Classifiers………………... Forest and 
Woodland 
(Treed); Broad-
Leaved Deciduous 
Tree 
 

   Non-Diagnostic Classifiers………….. None 
   FGDC Crosswalk……………………. Vegetated, Tree-

dominated, Closed 
tree canopy, 
Deciduous closed 
tree canopy 
 

  CES203.494 Land Cover Class……………………. Forest and 
Woodland 

   Spatial Scale & Pattern……………… Small patch 
   Required Classifiers…………………. Natural/Semi-

natural; Vegetated 
(>10% vasc.); 
Upland 
 

   Diagnostic Classifiers………………... Forest and 
Woodland 
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(Treed); Long 
Disturbance 
Interval; Broad-
Leaved Evergreen 
Tree 
 

   Non-Diagnostic Classifiers………….. None 
   FGDC Crosswalk……………………. None 

 



53 

 

APPENDIX B: SINGLE-SCALE RF MODELS 
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Appendix B. Summary of features associated with genetic connectivity among Hyla squirella populations using Random Forest. Models 

are grouped first by response variable (I or II); then based on distinct genetic clusters identified by Bayesian cluster techniques (1 or 2); 

hierarchically within the Eastern cluster by (a) all pairwise observations (maximum spatial distance approximately 480 km) and (b) 

within genetic patch (Dps only; see text). Three single-scale models are reported based on inter-population Vector Buffer Width 

(VBW) (i) 500 m; (ii) 2 km; and (iii) 10 km. pR2 is a pseudo R2; MSE denotes mean squared error. Summary statistics, based on 

constructing 30 forests for each sub-model (see Methods), include median and 95% confidence intervals (95% CI) of pR2 and median 

MSE. P-value of the chosen sub-model was assessed by randomizing the response variable (number of iterations = 9,999) and 

calculating the tail probability of the empirical (median) pR2. Model denotes the chosen variables (names cross-reference with Table 1) 

following model selection. These variables are ordered starting with the most important variable (in terms of MIR values) to the least 

important. Font style denotes general trend identified using partial dependence plots: standard font, negative association with genetic 

differentiation among populations; Boldface, positive association with genetic differentiation among populations; italic, complex 

association; and underline; weak main effect.  

Type Median 
pR2 

pR2 95% CI Median MSE P-value Model 

I. Genetic distance based on heterozygosity 
I. 1 Eastern and Western Clusters      

I. 1.i VBW = 500 m 40.48 40.20—40.94 1.42E-03 <0.001 km, flat, oak, urban, swamp 
I. 1.iiVBW = 2 km 40.99 40.32—41.09 1.41E-03 <0.001 km, flat, oak, urban, swamp 
I. 1.iiiVBW = 10 km 40.22 39.73—40.50 1.43E-03 <0.001 km, oak, flat, urban, swamp 

I. 2 Eastern Cluster only 
I. 2.a All East (480 km)      

I. 2.a.i VBW = 500 m 14.13 13.75—14.38 4.00E-04 <0.001 pas, km, urban, swamp, flat 
I. 2.a.iiVBW = 2 km 2.59 2.01—2.99 4.54E-04 0.035 pas, flat, swamp, km 
I. 2.a.iiiVBW = 10 km 13.37 12.90—13.58 4.03E-04 0.001 pas, swamp, flat 

II. Genetic distance based on allele frequency distributions 
II.1 Eastern and Western Clusters      

II. 1.i VBW = 500 m 60.38 60.03—61.46 1.11E-03 <0.001 km, oak, urban, pas 
II. 1.iiVBW = 2 km 61.30 61.09—61.41 1.08E-03 <0.001 km, oak, urban, pas, sil, flat 
II. 1.iiiVBW = 10 km 61.27 60.95—62.62 1.08E-03 <0.001 km, oak, urban, pas  
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II.2 Eastern Cluster only       
II.2.a All East (480 km)      

II. 2.a.i VBW = 500 m 47.78 47.53—48.16 9.12E-04 <0.001 km, oak, urban 
II. 2.a.iiVBW = 2 km 51.19 50.77—51.46 8.53E-04 <0.001 km, oak, urban, sil, flat, rff 
II. 2.a.iiiVBW = 10 km 50.23 49.92—50.56 8.70E-04 <0.001 km, oak, flat 

II.2.b Subset 150 km      
II. 2.b.i VBW = 500 m 30.24 29.43—30.50 7.13E-04 <0.001 oak, flat, km 
II. 2.b.iiVBW = 2 km 34.24 33.63—34.51 6.72E-04 <0.001 flat, oak, km, swamp 
II. 2.b.iiiVBW = 10 km 27.92 27.33—28.28 7.36E-04 <0.001 oak, flat, swamp, km, rff 
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APPENDIX C: CORRELATION AMONG VECTOR BUFFER 

WIDTHS 
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Appendix C: Linear correlation coefficients among habitat types and vector buffer widths at the global 
scale (20 populations). The values after ―.‖ denote vector buffer width. Boldface indicates r > 0.65. 

 
urban.500m sil.500m pas.500m rff.500m flat.500m oak.500m swamp.500m 

urban.2km 0.959 -0.510 0.186 -0.078 -0.112 -0.009 -0.267 

urban.10km 0.933 -0.525 0.172 -0.048 -0.119 -0.013 -0.259 

sil.2km -0.498 0.980 -0.323 -0.024 -0.253 0.151 0.082 

sil.10km -0.539 0.947 -0.302 0.017 -0.284 0.133 0.109 

pas.2km 0.191 -0.338 0.967 -0.244 -0.079 -0.032 -0.075 

pas.10km 0.178 -0.364 0.968 -0.216 -0.057 -0.022 -0.066 

rff.2km -0.042 -0.053 -0.220 0.946 0.074 0.069 -0.141 

rff.10km -0.026 0.019 -0.234 0.918 0.049 0.068 -0.203 

flat.2km -0.113 -0.244 -0.064 0.078 0.997 -0.477 0.608 

flat.10km -0.098 -0.236 -0.041 0.067 0.985 -0.481 0.602 

oak.2km -0.085 0.234 -0.071 0.036 -0.489 0.959 -0.542 

oak.10km -0.020 0.206 -0.065 0.035 -0.505 0.965 -0.565 

swamp.2km -0.261 0.069 -0.043 -0.159 0.602 -0.551 0.987 

swamp.10km -0.267 0.085 -0.039 -0.159 0.606 -0.557 0.963 
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