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ABSTRACT 

This dissertation investigates the hydroclimatic controls on drainage network dynamics and 

characterizes the variation of drainage density in various climate regions.  The methods were 

developed to extract the valley and wet channel networks based on Light Detection and Ranging 

(LiDAR) data including the elevation and intensity of laser returns.  The study watersheds were 

selected based on the availability of streamflow observations and LiDAR data.  Climate aridity 

index was used as a quantitative indicator for climate.         

The climate controls on drainage density were re-visited using watersheds with minimal 

anthropogenic interferences and compared with the U-shape relationship reported in the previous 

studies.  A curvature-based method was developed to extract a valley network from 1-m LiDAR-

based Digital Elevation Models.  The relationship between drainage density and climate aridity 

index showed a monotonic increasing trend and the discrepancy was explained by human 

interventions and underestimated drainage density due to the coarse spatial resolution (30-meter) 

of the topographic maps used in previous research.  

Observations of wet channel networks are limited, especially in headwater catchments in 

comparison with the importance of stream network expansion and contraction.  A systematic 

method was developed to extract wet channel networks based on the signal intensities of LiDAR 

ground returns, which are lower on water surfaces than on dry surfaces.  The frequency 

distributions of intensities associated with wet surface and dry surface returns were constructed.  

With the aid of LiDAR-based ground elevations, signal intensity thresholds were identified for 

extracting wet channels.  The developed method was applied to Lake Tahoe area during recession 
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periods in five watersheds.  A power-law relationship between streamflow and wet channel length 

was obtained and the scaling exponent was consistent with the reported findings from field work 

in other regions. 

Perennial streams flow for the most of the time during normal years and are usually defined 

based on a flow duration threshold.  The streamflow characteristics of perennial streams in this 

research were assessed using the relationship between streamflow exceedance probability and wet 

channel ratio based on wet channel networks extracted from LiDAR data.  Non-dimensional 

analysis based on the relationship between streamflow exceedance probability and wet channel 

ratio showed that results were consistent with previous research about perennial stream definition, 

and provided the possibility to use wet channel ratio to define perennial streams.   

Wetlands are important natural resources and need to be monitored regularly in order to 

understand their inundation dynamics, function and health.  Wetland mapping is a key part of 

monitoring programs.  A framework for detecting wetland was developed based on LiDAR 

elevation and intensity information.  After masking out densely vegetated areas, wet areas were 

identified based on signal intensity of ground returns for barrier islands in East-Central Florida.  

The intensity threshold of wet surface was identified by decomposing composite probability 

distribution functions using a Gamma mixture model and the Expectation-Maximization 

algorithm.  This method showed good potential for wetland mapping. 

The methodology developed in this dissertation demonstrated that incorporating LiDAR 

data into the drainage networks, stream network dynamics and wetlands results in enhanced 

understanding of hydroclimatic controls on stream network dynamics.  LiDAR data provide a rich 
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information source including elevation and intensity, and are of great benefit to hydrologic 

research community.  
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CHAPTER 1: INTRODUCTION  

1.1 Introduction 

The drainage network in a watershed is an important geomorphic and hydrological feature 

exerting significant control on runoff generation, which is vitally important for practical water 

resource management.  A drainage network is comprised of both unchannelized valleys and 

channels [Montgomery and Foufoula‐Georgiou, 1993].  At a valley head, flow changes from 

unconfined sheet flow on hillslope to confined flow in valley.  Localized confined flow dominates 

in valleys as a result of convergent topography with positive contour curvature [Peucker and 

Douglas, 1975; Howard, 1994].  Drainage or valley lines can be identified based on V-shaped 

contours [Pelletier, 2013].  Drainage density (Dd) is defined as the ratio of the total length of valley 

in a watershed to its drainage area [Horton, 1932; 1945].  Drainage density quantitatively shows 

the efficiency of a drainage system.  Watersheds with denser drainage network usually produce 

higher peak flows and sediment loads [Dunne and Leopold, 1978].  Drainage density is controlled 

by various factors including climate, soil, vegetation and topography [Melton, 1957; Carlston, 

1963; Montgomery and Dietrich, 1988] as well as through hydrologic processes such as infiltration, 

soil saturation, runoff, erosion and sediment transport, reflecting the signature of climate, 

geomorphology and hydrology [Moglen et al., 1998].   

Wet channel networks can expand, contract, disconnect and reconnect hydrologically in 

response to rainfall events and land use change [Schumm, 1956; Howard and Kerby, 1983].  

Therefore, channels are categorized as perennial streams, intermittent streams, and ephemeral 
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streams based on flow durations.  Perennial streams flow for the most time during normal years 

and are maintained by groundwater discharge [Meinzer, 1923; NC Division of Water Quality, 

2010].  Hedman and Osterkamp [1982] defined channels with flowing water for more than 80% 

of the time as perennial streams; Hewlett [1982] and Texas Forest Service [2000] used 90% as the 

threshold.  Intermittent streams flow during certain times of the year (i.e. seasonal) receiving water 

from surface sources such as melting snow or from a groundwater source such as a spring 

[Meinzer, 1923; Levick et al., 2008].  Variations in the water table have an effect on the 

characteristics of intermittent streams that are supplied by groundwater sources [Meinzer, 1923].  

Ephemeral streams flow only in direct response to precipitation without continuous surface flow 

[Meinzer, 1923].  The total volume of flow under the annual hydrograph from an ephemeral stream 

watershed is the result of direct runoff from large rainfall events [Chow et al., 1988].  Some 

ephemeral streams flow only for several hours annually [Blasch et al., 2002].  Intermittent and 

ephemeral streams flow with high temporal and spatial variability [Levick et al., 2008] and support 

biodiversity and other important ecosystem processes [Acuña et al., 2014].  

Research on stream network dynamics has attracted attention in recent years [Wigington et 

al., 2005; Godsey and Kirchner, 2014; Goulsbra et al., 2014; Whiting and Godsey, 2016].  Wet 

channel networks expand in response to rainfall events and contract during streamflow recession 

periods.  The temporal and spatial dynamics of wet channel networks are one of the key features 

for understanding the linkage between hydrology and geomorphology driven by climate 

[Abrahams, 1984; Wang and Wu, 2013], mechanisms on individual hydrologic processes [Biswal 

and Marani, 2010], stream ecosystem expansion and contraction [Stanley et al., 1997] , and spatial 

variability in stream chemistry [Zimmer et al., 2013; McGuire et al., 2014].  The drying and 
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wetting dynamics usually occur on temporal streams located in the headwater catchments.  It will 

benefit both hydrologic and ecological research to monitor the short-term changes in wet channel 

networks.  However, streamflow gauges operated by United States Geologic Survey (USGS) are 

generally sited on relatively large perennial streams and rivers.  Observations on the drying and 

wetting dynamics of ephemeral streams are usually obtained through field work [Blyth and Rodda, 

1973].   

The challenge is to accurately identify valley heads and channel heads in order to quantify 

drainage density and channel density in watersheds across climate regions, and further to 

understand the mechanisms of stream dynamics.  Accurate drainage network identification is also 

important to engineering practices such as road design and land development [Swisher, 2002].  The 

identification of channel heads in the field is difficult and time consuming [Clubb et al., 2014].  

Therefore, several methods have been developed to extract drainage networks based on 

topographic data such as a digital elevation model (DEM).  The traditional approach for identifying 

channel heads was to use a unique contributing area threshold [O'Callaghan and Mark, 1984; 

Band, 1986; Tarboton et al., 1991] or slope-area relationship [Montgomery and Dietrich, 1988; 

Willgoose et al., 1991; Dietrich et al., 1992; Dietrich et al., 1993;  Ijjasz-Vasquez and Bras, 1995].  

Recent methods used the tangential curvature from a DEM [Lashermes et al., 2007; Passalacqua 

et al., 2010; Sofia et al., 2011; Pelletier, 2013].  

Recent technology such as airborne Light Detection and Ranging (LiDAR) is able to obtain 

high resolution topographic data that permits direct detection of valleys and channels, and provides 

an opportunity to explore the fundamental questions of geomorphology such as landslides, 

hillslopes and channelization processes [Derron and Jaboyedoff, 2010; Jaboyedoff et al., 2012; 
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Booth et al., 2013].  LiDAR has become an important technique to acquire topographic data at 

sub-meter resolution and accuracy [Marks and Bates, 2000; Bowen and Waltermire, 2002], and 

has been utilized to extract topographic depressions [Le and Kumar, 2014] and drainage networks 

[Passalacqua et al., 2010; Sofia et al., 2011; Pelletier, 2013; Clubb et al., 2014].   

The intensity information of LiDAR data provides an opportunity to identify wet channel 

networks.  LiDAR has been used to retrieve water surface information including flood inundation 

extent [Genc et al., 2005] and water levels and gradients [Magirl et al., 2005; Hopkinson et al., 

2011].  As an active remote sensing technique, the airborne LiDAR sensor emits Near-infrared 

(NIR) laser pulses with a wavelength of 1064 nm that cannot readily penetrate water.  Most of 

infrared laser light is absorbed by the water column or reflected specularly away from the field of 

view of the discrete echo recording system [Wolfe and Zissis, 1985; Brzank et al., 2008].  The 

signal intensity, which is the relative strength measurement of the return pulse by the LiDAR 

sensor, is typically lower from the water surface compared with dry lands.  The intensity 

characteristics of the water surface have previously been used to derive water-land boundaries in 

river segments [Höfle et al., 2009].   

Intensity information from single wavelength topographic LiDAR (i.e., NIR) systems has 

been used to map many types of water surfaces including rivers, wetlands, ponds, and lakes [Höfle 

et al., 2009; Smeeckaert et al., 2013; Wu et al., 2013].  Antonarakis et al. [2008] identified a water 

surface in a river segment when the height range of the returns is less than 0.5 m and an average 

intensity value in a local domain is less than a threshold.  Lang and McCarty [2009] demonstrated 

the ability of LiDAR intensity data to map inundated areas beneath a forest canopy.  Brzank et al. 

[2008] developed a supervised classification method for identifying laser points on the water 
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surface of Wadden Sea using elevation, intensity, and 2D point density.  These studies were 

successful in delineating water-land boundary of large continuous water areas (i.e., geometrical 

assessment of water bodies), including those with canopy issues.   

1.2 Hypothesis and Objectives  

The goal of this research is to evaluate the hydroclimatic controls on drainage network 

dynamics and characterize the variation of drainage density in various climate regions.  A method 

was developed to extract the valley and wet channel networks based on the LiDAR data.  The 

overarching hypothesis of the research is as follows:      

 

The wet channel network can be identified by LiDAR data and the temporal dynamics of drainage 

networks can be linked to hydrologic processes. 

 

The hypothesis is tested in an ensemble of watersheds across a spectrum of climatic and 

topographic gradients based on the hydroclimatic data availability.  The purpose of research is 

addressed through the identification of valley and wet channel networks, using LiDAR data 

acquired in these watersheds.  High spatial resolution LiDAR data including elevation and 

intensity of ground returns provide a unique opportunity to answer the research subjects.  The main 

objectives to be achieved in this research are as follows: 

 

1. Investigate the climate control on drainage density by quantifying the drainage density 

in natural watersheds using LiDAR data. 
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2. Develop a systematic framework for mapping wet channel networks based on the signal 

intensity of near infrared LiDAR ground returns, and construct the relationship between 

wet channel length and streamflow in regions where multiple streamflow gages and 

LiDAR survey data are available. 

3. Evaluate the streamflow characteristics of perennial streams based on the wet channel 

network extracted from LiDAR data.  

4. Develop a detection framework for wet areas to aid in wetland detection using the 

geometric and intensity information of LiDAR data in barrier islands in East-Central 

Florida.   

1.3 Climate Control on Drainage Density 

The drainage network is a fundamental geomorphological and hydrological property in a 

watershed.  Drainage density quantitatively demonstrates the efficiency of a drainage system.  

Climate, soil, vegetation and topography are all factors that control the drainage density [Carlston, 

1963; Melton, 1957; Montgomery and Dietrich, 1988].  Chapter 2 presents the climate control on 

drainage density compared with the U-shape relationship from Melton [1957] and Madduma 

Bandara [1974].  121 study sites with minimum human interferences and various climate regions 

were selected based on the availability of LiDAR data, which were used to generate digital 

elevation models (DEMs) with a spatial resolution of 1-meter.  A curvature-based method, 

incorporating both positive and negative curvature information, was developed to extract a valley 

(drainage) network from LiDAR-based DEMs.   
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1.4 Mapping Wet Channel Networks 

The temporal dynamics of stream network is vitally important for understanding 

hydrologic process including groundwater interactions and hydrograph recessions.  However, in 

situ observations of wet channel networks are limited, especially in headwater catchments.  Near 

infrared LiDAR data provides an opportunity to map the wet channel networks, owing to the fine 

spatial resolution, canopy penetration, and strong absorption of the light energy by the water 

surface.  Chapter 3 presents a systematic method to map wet channel networks based on the signal 

intensity of ground LiDAR return, which is typically lower on water surfaces than on dry surfaces. 

The frequency distributions of wet surface and dry surface returns were constructed.  With the aid 

of LiDAR-based ground elevation, the signal intensity thresholds were identified for mapping wet 

channels.     

1.5 Streamflow Characteristics of Perennial Stream 

Perennial streams flow for the most of the time during normal years and are governed by 

groundwater discharge [Meinzer, 1923; NC Division of Water Quality, 2010].  Perennial streams 

are usually defined based on a certain threshold of flow duration.  However, there are discrepancies 

in the perennial stream definitions in the literature.  Chapter 4 explored the definition of perennial 

streams using a new non-dimensional relationship between streamflow exceedance probability and 

wet channel ratio, defined as the wet channel length over the total valley length.  The valley 

network and wet channels were extracted from the LiDAR topographic data, specifically the signal 

intensity of ground returns with 1-m spatial resolution using the method developed by Hooshyar 
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et al. [2015].  The obtained wet channel ratios of perennial streams in the study watersheds were 

compared with the definitions of perennial streams in the literatures.  

1.6 Detection of Wet Area to Aid in Wetlands Identification 

Wetlands are a very important natural resource related to biological diversity and 

ecosystem processes.  Water levels of wetlands have seasonal variations depending on rainfall 

events and evapotranspiration, and many wetland areas contain standing water for short periods 

[Mitsch and Gosselink, 2007; Tiner, 1999].  Wetland extent and type can vary due to changes in 

topography, land use, climate, and vegetation [Maxa and Bolstad, 2009].  Therefore, wetlands 

need to be monitored regularly in order to understand their inundation dynamics, function and 

health; wetland mapping is a key part of the monitoring program [Lang and McCarty, 2009; Huang 

et al., 2014].  Chapter 5 presents the detection framework for wet areas to aid in wetlands detection 

using the geometric and intensity information in the point cloud generated by LiDAR systems. 

After masking densely vegetated areas out of the study space using LiDAR topographic 

information, wet areas were identified based on the signal intensity of ground returns for barrier 

islands in East-Central Florida.   
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CHAPTER 2: EVALUATING THE DEPENDENCE OF DRAINAGE 
DENSITY ON CLIMATE AND DRAINAGE AREA BY LIDAR DATA  

2.1 Introduction 

The drainage network in a watershed is an important geomorphological and hydrological 

feature with significant control on runoff generation which is vitally important for practical water 

resource management.  A drainage network is composed of unchannelized valleys and channels 

[Montgomery and Foufoula‐Georgiou, 1993].  At a valley head, flow changes from unconfined 

sheet flow on hillslope to confined flow in a valley.  Localized confined flow dominates in valleys 

as a result of convergent topography with positive contour curvature [Howard, 1994; Peucker and 

Douglas, 1975].  Drainage or valley lines can be identified based on V-shaped contours [Pelletier, 

2013].    Drainage density (Dd) is defined as the ratio of the total length of valley in a watershed 

to its drainage area [Horton, 1932; 1945].  Drainage density quantitatively shows the efficiency of 

a drainage system.  Watersheds with denser drainage network usually produce higher peak flow 

and sediment load [Dune and Leopold, 1978].   

Drainage density is controlled by various factors including climate, soil, vegetation and 

topography [Carlston, 1963; Melton, 1957; Montgomery and Dietrich, 1988] as well as through 

hydrologic processes such as infiltration, soil saturation, runoff, erosion and sediment transport 

[Moglen et al., 1998].  By analyzing over 80 watersheds in Arizona, New Mexico, Colorado, and 

Utah, Melton [1957] identified a negative correlation between drainage density and precipitation 

effectiveness (PE) index.  PE index is equal to 10 times the sum of the ratios of monthly 

precipitation and monthly potential evaporation [Thornthwaite, 1931].  Higher PE index is 
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corresponding to more humid climate and more available moisture to vegetation.  Madduma 

Bandara [1974] presented a positive correlation between drainage density and PE index for humid 

watersheds in Sri Lanka.  Combining the data from Melton [1957] and Madduma Bandara [1974], 

a U-shaped relationship between Dd and PE index is shown in Figure 2-1 by Abrahams [1984].  

This pattern is explained by the tradeoff between the resistance force of vegetation and the erosion 

force of runoff [Abrahams, 1984]. 

 

 

Figure 2-1: Drainage density as a function of precipitation effectiveness (PE) index [Abrahams, 
1984]. 

Accurate drainage density quantification, depending on the identification of valley heads 

in watersheds, is important for both hydrology and geomorphology, as well as engineering 

practices including road design and land development [Swisher, 2002].  However, it is a 

challenging task to map drainage network by field work.  Therefore, drainage networks are usually 

extracted from topographic maps or digital elevation models (DEM).  Delineated drainage density 

is dependent on the resolution of topographic maps [Morisawa, 1957; Schneider, 1961].  The data 
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points by Melton [1957] (black dots in Figure 2-1) were based on the topographic maps with a 

scale of 1:24,000, which corresponds to a nominal spatial resolution of 30 m.  Detailed field 

investigations were performed in 22 watersheds in Arizona, New Mexico, Colorado, and Utah, 

where the PE index ranges from 12 to 109.  The drainage density for the 24 watersheds from Sri 

Lanka (circles in Figure 2-1) were obtained from maps with a scale of 1:12,672.  These watersheds 

are located in areas with tea plantation and the natural vegetation has been systematically 

eliminated [Madduma Bandara, 1974].  Therefore, the drainage density for humid watersheds in 

Figure 2-1 is affected by extensive human interferences. 

To re-visit the relationship between drainage density and climate, it is important to extract 

drainage networks in natural watersheds using topographic data with high spatial resolution.  

Recent technology, such as airborne Light Detection and Ranging (LiDAR), is able to obtain high 

spatial resolution topographic data that permits direct detection of valleys and provides an 

opportunity to explore the fundamental questions of geomorphology such as landslides, hillslopes 

and channelization processes [Derron and Jaboyedoff, 2010; Jaboyedoff et al., 2012; Booth et al., 

2013].  LiDAR has become an important technique to acquire topographic data in sub-meter 

resolution and accuracy [Marks and Bates, 2000; Bowen and Waltermire, 2002].  LiDAR has been 

utilized to extract openness [Yokoyama et al., 2002], topographic depressions [Le and Kumar, 

2014],  channel network [Passalacqua et al., 2010; Pelletier, 2013; Clubb et al., 2014], and wet 

channels [Hooshyar et al., 2015]. 

The purpose of this research is to re-visit the drainage density and climate relationship by 

quantifying the drainage density in natural watersheds using LiDAR data.  For this purpose, an 
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automatic procedure was developed to extract valley network based on 1 m resolution DEM 

obtained from LiDAR data. 

2.2 Methodology 

2.2.1 Study Sites and Data Sources 

The Center for LiDAR Information, Coordination and Knowledge (CLICK) distributes 

data tiled by USGS Quarter Quadrangles in LAS and ASCII formats [Stoker et al., 2006].  The 

LiDAR data were acquired through the CLICK website (http://lidar.cr.usgs.gov).  The blue area in 

Figure 2-2 shows the LiDAR data availability.  Red dots show the selected study sites with 

minimum human interference such as land use change, reservoir, and road construction.  The study 

sites were located in 17 states with various climate conditions.  The ground returns of LiDAR data, 

in which vegetation and buildings are removed by the data provider, were used in this study.  The 

point cloud data were processed to derive 1 m DEM and land surface topography using QCoherent 

software LP360 for ArcGIS.   
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Figure 2-2: Location of study sites and available LiDAR data. 

 

Climate aridity index, defined as the ratio of potential evaporation to precipitation (𝐸𝐸𝑃𝑃/𝑃𝑃 ), 

was used as an indicator of the climate [Budyko, 1958; 1974].  This index provided a useful tool 

to differentiate energy-limited or humid regions, (𝐸𝐸𝑃𝑃/𝑃𝑃 < 1) and water-limited or arid regions 

(𝐸𝐸𝑃𝑃/𝑃𝑃 > 1).  Monthly potential evaporation data at 8 km spatial resolution, computed by the 

Priestley-Taylor method [Priestley and Taylor, 1972], were obtained from [Zhang et al., 2010] 

and  aggregated into mean annual values.   The parameter-elevation regressions on independent 

slopes model (PRISM) provided the gridded annual, monthly and event-based precipitation data 

[Daly et al., 1994].  Mean annual precipitation data from PRISM with 4 km spatial resolution for 

each watershed were used for the period of 1981-2010.  Mean annual potential evaporation and 

precipitation data were averaged to the watershed scale values for computing 𝐸𝐸𝑃𝑃/𝑃𝑃.  𝐸𝐸𝑃𝑃/𝑃𝑃 for the 

selected study watersheds ranged from 0.3 (humid) to 10.4 (arid).  The list of all study watershed 

is given in Table 2-1 in Section 2.4.  
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For comparison, the PE index for the watersheds from Melton [1957] and Madduma 

Bandara [1974] were converted to 𝐸𝐸𝑃𝑃/𝑃𝑃.  When exploring the climate control on perennial stream 

density, Wang and Wu [2013] reported the inversely monotonic relationship between PE index 

and 𝐸𝐸𝑃𝑃/𝑃𝑃 based on 160 watersheds with PE < 500.  The relationship between PE index and 𝐸𝐸𝑃𝑃/𝑃𝑃 

was derived after removing the outliers from the data by Wang and Wu [2013] as shown in Figure 

2-3 and is given in Equation (2-1):  

PE = 176.34 𝐸𝐸𝑃𝑃/𝑃𝑃 -1.224         (2-1) 

Lower 𝐸𝐸𝑃𝑃/𝑃𝑃 indices corresponded to higher PE indices.  Abraham’s curve was regenerated by 

converting the x-axis from PE to 𝐸𝐸𝑃𝑃/𝑃𝑃 using Equation (2-1).  The U-shaped trend of original 

Abraham’s curve was still visible after converting PE to 𝐸𝐸𝑃𝑃/𝑃𝑃.  The transition occurred when 

𝐸𝐸𝑃𝑃/𝑃𝑃 is higher than 2.0.  The mean annual rainfall was 640 ~595 mm at the minimum point in  

Figure 2-4. 
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Figure 2-3: The correlation between PE index and climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃).  
 
 

 

Figure 2-4: Drainage density (Dd) as a function of climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃).  
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2.2.2 Extracting Valley Network  

In this study, the valley network was extracted using a curvature-based method by 

incorporating both positive and negative curvature information.  Curvature-based methods for 

valley or channel network delineation usually need filtering to reduce noise and insignificant 

features to obtain a robust curvature grid.  Several filtering techniques have been applied for this 

purpose including Gaussian filter [Lashermes et al., 2007], Perona-Malik filter [Passalacqua et 

al., 2010], and Optimal Weiner filter [Pelletier, 2013].  Considering the robust performance of 

Perona-Malik filter [Passalacqua et al., 2010; Passalacqua et al., 2012; Passalacqua and 

Foufoula-Georgiou, 2015], we chose this filtering technique.  Perona-Malik is a nonlinear 

diffusive filter that efficiently smooths the DEM while preserving the significant features such as 

valleys and banks.  This filter has one parameter called “time of forward diffusion”, which is 

denoted as 𝑇𝑇𝐹𝐹 and was set to 50 for the study.  From the filtered DEM, the curvature was calculated 

using the following equation [Mitášová and Hofierka, 1993]:   

𝜅𝜅 = 𝑧𝑧𝑥𝑥𝑥𝑥𝑧𝑧𝑦𝑦2−2𝑧𝑧𝑥𝑥𝑦𝑦𝑧𝑧𝑥𝑥𝑧𝑧𝑦𝑦+𝑧𝑧𝑦𝑦𝑦𝑦𝑧𝑧𝑥𝑥2

�𝑧𝑧𝑥𝑥2+𝑧𝑧𝑦𝑦2��1+𝑧𝑧𝑥𝑥2+𝑧𝑧𝑦𝑦2
       (2-2) 

where 𝜅𝜅 is the curvature, and 𝑧𝑧𝑥𝑥 and 𝑧𝑧𝑥𝑥𝑥𝑥 (𝑧𝑧𝑦𝑦 and 𝑧𝑧𝑦𝑦𝑦𝑦) denote the first and second derivatives of 

elevation (𝑧𝑧) with respect to 𝑥𝑥 (𝑦𝑦).  𝑧𝑧𝑥𝑥𝑦𝑦 is the first derivative of 𝑧𝑧𝑥𝑥 with respect to 𝑦𝑦.  Figure 2-5 

shows the curvature extracted from original and filtered DEM along with contour lines of a 

tributary in a study site located in New Mexico.  
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Figure 2-5: 1-m contour lines and the curvature grid for (a) the original DEM; and (b) the 
smoothed DEM after applying Perona-Malik filter (𝑇𝑇𝐹𝐹 = 50) on # 88 study site located in New 
Mexico.   

 

Valley network extraction was based on the curvature analysis using positive and negative 

curvature as indicators of the significance of convergence or divergence.  Valleys were defined as 

convergent surfaces which were associated with positive curvature.  Ridges were the segments 

with negative curvature (i.e., divergent surface) which were typically located between the valleys 

and were the signature of flow separation lines between tributaries.   

In order to differentiate valleys, a positive curvature threshold (𝜅𝜅𝑣𝑣) was automatically 

derived which was used to cluster the landscape into, convergent (𝜅𝜅 > 𝜅𝜅𝑣𝑣), divergent (𝜅𝜅 < −𝜅𝜅𝑣𝑣), 

and insignificant (|𝜅𝜅| ≤ 𝜅𝜅𝑣𝑣) pixels.  𝜅𝜅𝑣𝑣 was calculated through connected component analysis on 

the curvature grid.  Figure 2-6 shows the number of connected component (𝑁𝑁𝑐𝑐𝑐𝑐) for any given 

curvature threshold, denoted by 𝜅𝜅𝑇𝑇.  A connected component was a set of connected pixels which 

are all either convergent or divergent.  In order to find 𝑁𝑁𝑐𝑐𝑐𝑐 for each value of 𝜅𝜅𝑇𝑇, the territory was 

25 
 



clustered into convergent (curvature greater than 𝜅𝜅𝑇𝑇 ) and divergent (curvature less than −𝜅𝜅𝑇𝑇 ) 

pixels and then the connected component were counted using a binary labeling algorithm [Suzuki 

et al., 2003].  As shown in Figure 2-6, decreasing 𝜅𝜅𝑇𝑇 initially led to more connected components 

since there were more pixels labeled as convergent or divergent.  However, at some point the 

number of connected components dropped due to the merging process.  In other words, the existing 

components started to merge together resulting in less 𝑁𝑁𝑐𝑐𝑐𝑐.  The peak of the connected component 

curve was considered as the curvature threshold for valley extraction since it produced the most 

separated clusters in the landscape and efficiently identified the local optimums in the curvature 

grid.  

 

Figure 2-6: (a) Examples of valley and ridge connected components (b) Number of valley and 
ridge connected component (𝑁𝑁𝑐𝑐𝑐𝑐) vs. curvature threshold (𝜅𝜅𝑇𝑇) in # 88 study site located in New 
Mexico.  The peak value represents the transition from insignificant to significant 
convergence/divergence features (𝜅𝜅𝑣𝑣 = 0.005 m−1). 

 

Given the obtained 𝜅𝜅𝑣𝑣, the initial valley skeleton was generated by imposing 𝜅𝜅 > 𝜅𝜅𝑣𝑣 on the 

curvature grid.  The skeleton was thinned to form a 1-pixel wide valley line.  Afterwards, any two 
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neighboring valleys were checked for existence and at least one ridge (patches with 𝜅𝜅 < −𝜅𝜅𝑣𝑣 ) 

between them.  Following this step, only valleys with well-defined banks (reflected as negative 

curvature patches in the curvature grid) over at least part of their length were kept and the rest 

were eliminated.  

The resulting valley network was further processed to connect isolated valleys when the 

length of the gap is less than 0.25𝑙𝑙𝑣𝑣, where 𝑙𝑙𝑣𝑣 was the total length of upstream isolated segment. 

Additionally, the valley network was manually edited based on the 1 m contour to get the best 

possible accuracy and minimize the effects of missing data and human-made structures such as 

roads.  Figure 2-7a shows the contour curvature image computed from the filtered DEM and Figure 

2-7b shows the valley networks delineated using the discussed valley extraction method in # 88 

study site located in New Mexico. 

 

 

Figure 2-7: (a) Contour curvature computed from the filtered DEM; (b) Extracted valley network 
based on the curvature threshold in #88 study site located in New Mexico. 
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2.3 Results and Discussion 

2.3.1  Drainage Density versus 𝐸𝐸𝑃𝑃/𝑃𝑃 

The valley networks for all the study watersheds were extracted based on 1 m DEM derived from 

LiDAR data.  Figure 2-8 shows the distribution of 𝐸𝐸𝑃𝑃/𝑃𝑃, drainage area (km2) and drainage density 

(km/km2) for the 121 study watersheds.  The distribution was represented by normalized 

frequency, which was defined as the ratio of the number of watersheds in each bin to the total 

number of watersheds.  The values of 𝐸𝐸𝑃𝑃/𝑃𝑃 varied from 0.3 to 10.4, and there were no study 

watersheds located in the range from 5.2 to 7.6 due to the unavailability of LiDAR data.  The 

drainage area of most watersheds was less than 3 km2, and the average drainage area was 1.31 

km2, with the minimum of 0.04 km2 and the maximum of 8.19 km2.  The range of Dd was from 6.2 

km/km2 to 41.5 km/km2.  The stream order, location, drainage area, 𝐸𝐸𝑃𝑃/𝑃𝑃, stream length and 

drainage density (Dd) for each watershed are listed in Table 2-1.   
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Figure 2-8: Normalized frequency distribution of 𝐸𝐸p/𝑃𝑃, drainage area (km2) and drainage density 
(km/km2) for the study watersheds. 

 

Table 2-1: Index, location, drainage area, climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃), precipitation (P), stream 
order, total drainage length, and drainage density for study sites. 

Index State 
Drainage 

Area 
[km2] 

𝐸𝐸p/𝑃𝑃 P [mm] Stream  
Order 

Total 
Drainage 

Length 
[km] 

Drainage 
Density 

[km/km2] 

1 Arizona 0.36 4.3 299 4 8.2 23.1 
2 Arizona 0.17 4.0 333 4 4.2 24.9 
3 Arizona 0.66 4.3 306 5 16.2 24.7 
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Index State 
Drainage 

Area 
[km2] 

𝐸𝐸p/𝑃𝑃 P [mm] Stream  
Order 

Total 
Drainage 

Length 
[km] 

Drainage 
Density 

[km/km2] 

4 Arizona 0.33 4.4 291 4 4.7 14.0 
5 Arizona 0.45 4.5 285 4 6.5 14.4 
6 Arizona 0.39 4.0 321 3 6.1 15.5 
7 Arizona 0.67 4.1 316 4 10.3 15.4 
8 Arizona 0.61 4.1 316 5 11.2 18.3 
9 Arizona 0.28 4.1 314 4 4.9 17.9 

10 Arizona 0.65 3.0 447 3 8.3 12.8 
11 Arizona 0.58 3.0 447 4 6.7 11.5 
12 Arizona 0.62 3.3 405 4 9.4 15.2 
13 Arizona 2.24 2.6 524 5 44.3 19.8 
14 Arizona 0.13 5.1 244 4 3.8 29.0 
15 Arizona 0.31 5.1 242 4 7.0 22.8 
16 Arizona 0.39 4.6 275 4 8.1 20.7 
17 Arizona 0.29 4.4 292 4 5.8 19.8 
18 Arizona 0.25 2.7 496 3 3.8 15.2 
19 Arkansas 2.43 1.1 1,194 5 25.6 10.6 
20 Arkansas 2.00 1.1 1,187 4 17.4 8.7 
21 California 0.83 3.0 456 4 12.1 14.5 
22 California 1.38 2.4 633 5 19.9 14.4 
23 California 0.53 3.4 428 4 9.9 18.5 
24 California 2.01 1.8 840 4 23.4 11.7 
25 California 2.08 1.8 828 4 24.3 11.7 
26 California 1.27 2.1 722 4 18.4 14.5 
27 California 2.09 2.1 722 4 23.3 11.1 
28 California 2.47 2.1 640 5 27.7 11.2 
29 California 2.10 2.1 634 5 25.6 12.2 
30 California 2.02 2.3 586 5 28.0 13.9 
31 Georgia 2.19 0.8 1,666 4 24.0 11.0 
32 Georgia 2.21 0.7 1,739 4 24.9 11.3 
33 Georgia 7.45 0.7 1,819 5 45.9 6.2 
34 Georgia 5.05 0.8 1,564 5 37.8 7.5 
35 Georgia 4.30 0.8 1,588 5 30.6 7.1 
36 Georgia 8.19 0.7 1,900 5 52.4 6.4 
37 Georgia 1.50 0.7 1,868 3 11.1 7.4 
38 Georgia 0.94 0.9 1,500 4 7.5 8.0 
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Index State 
Drainage 

Area 
[km2] 

𝐸𝐸p/𝑃𝑃 P [mm] Stream  
Order 

Total 
Drainage 

Length 
[km] 

Drainage 
Density 

[km/km2] 

39 Georgia 0.75 0.8 1,588 4 7.9 10.5 
40 Georgia 2.02 0.8 1,673 5 28.6 14.2 
41 Georgia 2.14 0.8 1,657 5 33.0 15.4 
42 Georgia 2.10 0.8 1,631 4 28.4 13.5 
43 Idaho 2.93 0.9 1,028 4 26.0 8.9 
44 Idaho 2.02 1.0 976 4 16.6 8.2 
45 Idaho 2.92 0.7 1,402 4 30.2 10.3 
46 Idaho 2.00 0.7 1,402 4 19.9 9.9 
47 Idaho 2.32 0.7 1,297 4 18.8 8.1 
48 Idaho 2.00 0.8 1,236 4 18.8 9.4 
49 Idaho 1.68 0.8 1,249 4 15.7 9.3 
50 Idaho 2.00 0.7 1,321 4 12.6 6.3 
51 Idaho 2.33 0.6 1,521 5 19.4 8.3 
52 Idaho 2.11 0.7 1,394 4 18.5 8.8 
53 Idaho 1.95 0.7 1,289 4 14.7 7.5 
54 Kansas 2.01 1.3 955 4 14.6 7.3 
55 Kansas 1.88 1.3 974 5 18.7 10.0 
56 Kansas 1.82 1.3 971 4 16.7 9.2 
57 Kansas 1.34 1.3 956 4 13.3 10.0 
58 Maine 0.48 0.8 1,223 4 6.4 13.5 
59 Maine 0.54 0.7 1,352 4 4.3 8.0 
60 Mississippi 0.59 0.9 1,438 4 7.5 12.5 
61 Missouri 2.02 1.1 1,155 5 38.9 19.2 
62 Missouri 0.41 1.1 1,155 4 8.8 21.4 
63 Missouri 0.23 1.1 1,155 4 4.7 21.0 
64 Missouri 1.91 1.0 1,169 5 43.2 22.6 
65 Missouri 1.96 1.1 1,146 5 28.7 14.7 
66 Missouri 1.00 1.1 1,118 4 13.6 13.7 
67 Montana 1.37 2.1 436 4 12.8 9.3 
68 Montana 2.01 2.1 438 4 14.2 7.1 
69 Nevada 0.59 8.1 145 4 10.7 18.1 
70 Nevada 0.20 10.4 120 4 3.7 18.3 
71 Nevada 0.55 9.3 125 4 13.1 23.8 
72 Nevada 0.39 9.2 127 4 7.8 20.1 
73 Nevada 0.49 9.2 127 4 12.7 25.8 
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Index State 
Drainage 

Area 
[km2] 

𝐸𝐸p/𝑃𝑃 P [mm] Stream  
Order 

Total 
Drainage 

Length 
[km] 

Drainage 
Density 

[km/km2] 

74 Nevada 0.90 8.8 132 4 18.9 21.0 
75 Nevada 0.40 8.2 141 4 10.4 26.2 
76 Nevada 2.04 8.8 133 6 38.2 18.7 
77 Nevada 0.30 7.7 155 3 3.3 11.0 
78 Nevada 0.28 7.9 150 4 4.3 15.0 
79 Nevada 0.27 8.8 134 4 4.8 17.7 
80 Nevada 0.08 8.6 138 3 1.3 16.8 
81 Nevada 0.15 8.3 144 4 3.4 23.2 
82 Nevada 0.10 8.3 144 4 3.5 34.5 
83 Nevada 0.23 8.6 138 4 5.5 23.7 
84 Nevada 0.21 8.7 138 4 5.6 26.8 
85 Nevada 0.10 8.3 142 4 3.2 31.3 
86 Nevada 0.04 8.3 142 3 1.2 31.3 
87 Nevada 0.25 9.0 131 4 6.3 25.2 
88 New Mexico 0.24 4.6 271 5 9.8 41.5 
89 New Mexico 1.96 3.6 339 6 40.1 20.5 
90 New Mexico 1.61 3.4 363 5 30.9 19.1 
91 New Mexico 0.26 2.9 425 4 4.7 17.7 
92 New Mexico 0.04 4.7 261 4 1.4 38.2 
93 Oklahoma 0.56 1.4 984 3 6.2 11.1 
94 Oklahoma 0.61 1.7 812 4 8.3 13.5 
95 Oklahoma 0.74 1.7 785 4 8.7 11.7 
96 Oklahoma 2.35 1.4 978 4 31.0 13.2 
97 Oregon 3.01 0.7 1,773 5 27.2 9.0 
98 Oregon 0.21 0.6 1,789 3 2.5 11.5 
99 Oregon 0.38 0.5 2,142 4 3.8 10.1 
100 Oregon 0.13 0.3 3,589 3 1.1 8.4 
101 Oregon 0.39 0.5 1,597 3 4.7 12.3 
102 Oregon 0.41 0.3 3,685 4 4.4 10.7 
103 Oregon 1.16 0.3 3,839 5 9.2 7.9 
104 Oregon 0.97 0.4 2,764 4 12.6 13.0 
105 Oregon 0.79 0.3 3,050 3 8.2 10.4 
106 Oregon 0.91 0.3 2,992 4 11.7 12.8 
107 Oregon 0.84 0.5 1,973 4 12.8 15.1 
108 Oregon 0.98 0.5 1,919 4 12.1 12.3 
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Index State 
Drainage 

Area 
[km2] 

𝐸𝐸p/𝑃𝑃 P [mm] Stream  
Order 

Total 
Drainage 

Length 
[km] 

Drainage 
Density 

[km/km2] 

109 Texas 0.19 1.8 815 3 1.6 8.3 
110 Texas 1.62 2.0 760 4 16.8 10.3 
111 Texas 2.66 2.0 755 4 35.9 13.5 
112 Texas 1.17 2.0 735 4 11.8 10.1 
113 Virginia 2.25 1.0 1,064 4 23.2 10.3 
114 Virginia 1.51 0.9 1,061 5 18.8 12.5 
115 Virginia 2.10 0.6 1,061 5 20.7 9.9 
116 Virginia 2.01 1.0 1,065 4 23.7 11.8 
117 Virginia 1.03 1.0 1,064 4 11.4 11.0 
118 Virginia 2.03 1.0 1,063 4 21.1 10.4 
119 Virginia 2.09 1.0 1,062 4 21.1 10.1 
120 Washington 0.59 0.3 3,308 4 3.8 6.4 
121 Washington 0.26 0.7 1,285 4 3.3 13.0 

 

The relationship between 𝐸𝐸𝑃𝑃/𝑃𝑃  and mean annual precipitation (MAP) for the study 

watersheds is shown in Figure 2-9.  Higher MAP corresponded to lower 𝐸𝐸𝑃𝑃/𝑃𝑃.  The correlation 

coefficient between MAP and 𝐸𝐸𝑃𝑃/𝑃𝑃 was -0.99.   
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Figure 2-9: The correlation between Mean Annual Precipitation (MAP) and 𝐸𝐸𝑃𝑃/𝑃𝑃 for the 121 
study watersheds.  

 

Figure 2-10 shows the comparison between the obtained results from this study and the 

reported data by Melton [1957] and Madduma Bandara [1974].  When 𝐸𝐸𝑃𝑃/𝑃𝑃 was less than 1, the 

data points by Madduma Bandara [1974] showed a decreasing trend for Dd; while such a declining 

trend did not exist for the watersheds in this study.  The decreasing trend by Madduma Bandara 

[1974] continued until 𝐸𝐸𝑃𝑃/𝑃𝑃 reaches ~1.8.  This discrepancy can be explained by the land use in 

Madduma Bandara’s watersheds, in which the natural land cover has been consistently converted 

to tea plantation over the past 100 years.  Thus, the drainage density has been modified by human 

interventions.   

When 𝐸𝐸𝑃𝑃/𝑃𝑃 is between 1 and 6, the drainage densities from both Melton [1957] and this 

study showed increasing trends with 𝐸𝐸𝑃𝑃/𝑃𝑃.  However, the magnitude of Dd was higher than those 

from Melton [1957] due to the resolution of topographic maps.  The topographic maps with scales 
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1:24,000 were used for extracting drainage network by Melton [1957] for watersheds with 𝐸𝐸𝑃𝑃/𝑃𝑃 

less than 6.  These topographic maps with bare-earth contours were equivalent with DEM at a grid 

cell size of 30 m [Kosovich et al., 2008], from which small valleys were not detectable.  Therefore, 

the drainage density was underestimated.  However, 1 m DEM from LiDAR data was used in this 

study.  This discrepancy in map resolution can create significant differences between valleys 

mapped in field and extracted from topographic maps [Morisawa, 1957; Schneider, 1961].  To 

demonstrate the effect of DEM resolution on drainage density, 1 m DEMs for the study watersheds 

were resampled to 30 m DEM for generating drainage network.  20 watersheds with 𝐸𝐸𝑃𝑃/𝑃𝑃 less 

than 6 and drainage area larger than 0.2 km2 were selected.  As shown in Figure 2-11, Dd from 1 

m DEM was higher than that from 30 m DEM.  As a demonstration, Figure 2-12 shows the 

extracted valley lines from 1 m DEM and 30 m DEM for a watershed from New Mexico. 

 

 

Figure 2-10: Comparison of study watersheds and Abrahams curve (1984) of drainage density 
(Dd) as a function of climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃).   
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When 𝐸𝐸𝑃𝑃/P is larger than 7, the drainage densities from Melton [1957] were higher than 

those in this study (Figure 2-10).  These catchments were located in Arizona: two within the Chinle 

watershed in Cameron, and four within Saguaro National Monument in Tucson.  The valley 

network in these 6 catchments were mapped by field survey.  The climate aridity index in the 

Chinle watershed was 9.0 and Dd is over 100 km/km2.  The valleys in this watershed were mapped 

by Schumm [1956].  The drainage area for the two catchments in Chinle watershed, with fully 

developed micro-relief, was about 0.0023 km2 [Melton, 1957].  The climate aridity index in the 

Saguaro National Monument catchments was around 7.5 and the valleys were mapped by Melton 

[1957].  These four catchments were bordered with an average drainage area of 0.013 km2.  The 

small drainage area of these 6 catchments also contributed to the high drainage density. 

 

 

Figure 2-11: Comparison of drainage density (Dd) from 1 m DEM derived by LiDAR data and 
30 m DEM using resampling method.  
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Figure 2-12: Comparison of valley lines from 1 m DEM derived by LiDAR data and 30 m DEM 
by resampling on #88 study site located in New Mexico.  

 

2.3.2 Drainage Density versus Drainage Area   

Besides climate, relationships between drainage area (A) and Dd was also reported.  

Gregory and Walling [1973] showed an inverse relationship between Dd and  A.  Pethick [1975] 

presented 𝐷𝐷𝑑𝑑  = 6.6 𝐴𝐴−0.337 for 228 watersheds over different climates even though the general 

consensus was that Dd is independent of A.   

To demonstrate the influence of drainage area on Dd, Figure 2-13 plots the relationship 

between Dd and drainage area for: a) 124 watersheds in arid climate from Melton [1957]; and b) 

121 watersheds from both humid and arid climates in this study.  There was a strong negative 
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correlation between drainage density and drainage area for both datasets.  The data points in Figure 

2-13b are more scattered due to different climates such as the watersheds from humid regions.  

  

 

Figure 2-13: The relationship between drainage density (Dd) and drainage area: (a) 124 
watersheds in arid climate from Melton [1957]; and (b) 121 watersheds from humid to arid 
climate in this study.    

 

To investigate the climate effect on the relationship between Dd and A, the study watersheds 

were categorized into two groups: 1) humid (𝐸𝐸𝑃𝑃/𝑃𝑃 < 1) and arid (𝐸𝐸𝑃𝑃/𝑃𝑃 ≥ 1).  Figure 2-14 shows 

the relationship between Dd and A for humid regions (Figure 2-14a) and arid regions (Figure 

2-14b).  The relationship in humid region was not clear but showed an inverse pattern in arid 

region.  Based on the result, Dd was related to A in arid regions.  
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Figure 2-14:  The relationship between drainage density (Dd) and drainage area from this study 
watersheds: (a) 42 watersheds for humid region (𝐸𝐸𝑃𝑃/𝑃𝑃 less than 1); and (b) 79 watersheds for 
arid region (𝐸𝐸𝑃𝑃/𝑃𝑃 larger than 1).  

 

To better understand the effect of drainage area on Dd, 30 watersheds were selected in our 

study sites with different climate and each watershed were divided into 3~8 subwatersheds.  

Taking the study site #88 located in New Mexico as an example, three subwatersheds were 

delineated as shown in Figure 2-15.  The maximum stream order of all subwatersheds was larger 

than 3 and the range of subwatershed area was 0.01~2.93 km2.  Figure 2-16 shows the pattern of 

Dd corresponding to 𝐸𝐸𝑃𝑃/𝑃𝑃; Figure 2-16a shows average, minimum and maximum Dd in terms of 

subwatersheds with different watershed areas in the selected 30 study sites.  The variation of Dd 

was small in humid regions but large in arid regions.  Standard deviation of Dd for subwatersheds 

in each study site showed an increase pattern in terms of 𝐸𝐸𝑃𝑃/𝑃𝑃 in Figure 2-16b.  However, the 
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variation of Dd for some watersheds in arid regions was small because Dd is affected by climate as 

well as other controlling factors such as soil, vegetation and topography [Gardiner et al., 1977].  

 

   

Figure 2-15:  Extracted subwatersheds with different watershed areas in the study site #88 
located in New Mexico.   
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Figure 2-16: The relationship between drainage density (Dd) and climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃): 
(a) Average, minimum and maximum Dd in terms of subwatersheds with different watershed 
area in the selected 30 study sites; and (b) Standard deviation of Dd versus 𝐸𝐸𝑃𝑃/𝑃𝑃.  

 

2.4 Conclusion 

The aim of this study was to investigate the climate controls on drainage density.  121 

watersheds with minimal to no anthropogenic intervention were selected based on LiDAR data 

availability.  Climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃) was used as a quantitative indicator for climate.  The 

range of 𝐸𝐸𝑃𝑃/𝑃𝑃 for the study watersheds was from 0.3 (humid) to 10.4 (arid).  Using the topographic 

curvature threshold developed by Hooshyar et al. [2016], valley networks were extracted from 1 

m DEM derived by LiDAR data and drainage density of each watershed was calculated.  The 

relationship between climate and drainage density was also re-visited.   Compared with the U-

shape relationship from Melton [1957] and Madduma Bandara [1974], the results showed a 

monotonic increasing trend.  This discrepancy is explained by two reasons: 1) watersheds from 
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Madduma Bandara [1974], located in humid regions, were modified by extensive human 

interventions because the natural vegetation has been converted to tea plantation; 2) the drainage 

density for watersheds from Melton [1957] was underestimated when the drainage networks were 

extracted from topographic maps with a scale of 1:24,000.  

The relation between Dd and A was also investigated and the results showed a negative 

correlation.  The impact of drainage area on Dd was small in humid regions, but significant in arid 

regions.  However, some watersheds in arid region were not affected by drainage area because 

other environment effects such as soil, rock type, topography and vegetation were also important.  
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CHAPTER 3: WET CHANNEL NETWORK IDENTIFICATION BASED 
ON INTENSITY OF LIDAR RETURNS 

3.1 Introduction 

Wet channel networks expand in response to rainfall events and contract during streamflow 

recession periods.  The temporal and spatial dynamics of wet channel networks are one of the key 

features for revealing the links between hydrology and geomorphology driven by climate 

[Abrahams, 1984; Wang and Wu, 2013], mechanisms on individual hydrologic processes [Biswal 

and Marani, 2010], and stream ecosystem expansion and contraction [Stanley et al., 1997].  

Perennial streams have continuous flow during years of normal rainfall [Meinzer, 1923].  Temporal 

streams, including intermittent and ephemeral streams, are defined as waterways that cease 

flowing at some points in space and time along their course and support high biodiversity and 

important ecosystem processes [Acuña et al., 2014].  The drying and wetting dynamics usually 

occur in temporal streams located in headwater catchments.  Therefore, it will benefit both 

hydrology and stream ecology to understand and monitor these short-time changes in wet channel 

networks.  However, the data availability on wetting and drying dynamics of ephemeral streams 

is limited.  Reliable streamflow gauges operated by United States Geologic Survey (USGS) are 

generally sited on relatively large perennial streams and rivers [EPA, 2010].   

Remotely sensed images from satellites have been used to identify the water surface of 

open water bodies and large rivers.  Near-infrared (NIR) radiation is absorbed by water but 

reflected by vegetation and dry soil.  This characteristic of NIR has been utilized to identify ponds 

and lakes [Work and Gilmer, 1976].  Based on the reflectance of water and vegetation to NIR and 
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green light, the normalized difference water index (NDWI) has been developed and used for 

differentiating water surface features from soil and vegetation [McFeeters, 1996; Xu, 2006].  

Beeson et al. [2011] used night/day temperatures, as a proxy for soil moisture, from advanced 

spaceborne thermal emission and reflection radiometer (ASTER) images with 15 meter resolution 

to identify ephemeral and perennial stream reaches.  Since headwater streams are typically 

narrower, shallower, and heavily vegetated, this presents a challenge in using satellite imagery to 

detect water surfaces due to the relatively low spatial resolution and vegetation interference.   

Airborne light detection and ranging (LiDAR) provides an opportunity to map wet channel 

networks.  LiDAR has become an important technique to acquire topographic data at sub-meter 

resolution and accuracy [Marks and Bates, 2000; Bowen and Waltermire, 2002] and has been 

utilized to extract channel networks [Passalacqua et al., 2010; Pelletier, 2013] and topographic 

depressions [Le and Kumar, 2014] in the past.  LiDAR has also been used to retrieve water surface 

information including flood inundation extent [Genc et al., 2005] and water levels and gradients 

[Magirl et al., 2005; Hopkinson et al., 2011].  As an active remote sensing technique, the airborne 

LiDAR sensor emits NIR laser pulses with a wavelength of 1064 nm which cannot penetrate water.  

Most of the infrared laser light is effectively absorbed in the water column or reflected specularly 

away from the field of view of the discrete echo recording system [Wolfe and Zissis, 1993; Brzank 

et al., 2008].  The signal intensity, which is a relative strength measurement of the return pulse by 

the LiDAR sensor, is lower from the water surface compared with land areas.  The intensity 

characteristics of the water surface have previously been used to derive water-land boundaries in 

river segments [Höfle et al., 2009].  With high airborne LiDAR acquisition altitudes and incidence 

angles, the intensities of water surface returns arriving at the receiver are too small to be detected.  

49 
 



Therefore, laser shot dropouts may occur and the point density is typically lower on water surfaces 

[Höfle et al., 2009].  Even though bathymetric LiDAR using green and infrared spectrums has the 

ability to generate returns at both the water and bottom surfaces, point densities are still lower than 

those of topographic LiDAR over land, affecting the minimum detectable size of water body 

systems [Hilldale and Raff, 2008; Mallet and Bretar, 2009].   

Intensity information from single wavelength topographic LiDAR (i.e., NIR) systems has 

been used to map many types of water surfaces including rivers, wetlands, ponds, and lakes 

[Smeeckaert et al., 2013; Wu et al., 2013; Höfle et al., 2009].  Antonarakis et al. [2008] identified 

a water surface in a river segment when the height range of the returns is less than 0.5 m and an 

average intensity value in a local domain is less than a threshold.  Lang and McCarty [2009] 

demonstrated the ability of LiDAR intensity data for mapping inundated areas beneath a forest 

canopy.  Brzank et al. [2008] developed a supervised classification method for identifying laser 

points on the water surface of Wadden Sea using elevation, intensity, and 2D point density.  These 

studies are successful in delineating water-land boundary of large continuous water areas (i.e., 

geometrical assessment of water bodies), including those with canopy issues.   

The objective of this paper was to map wet channel networks using the elevation and 

intensity information in the point cloud generated by topographic LiDAR systems. Wet channels 

were identified along the channel network based on a statistical detection framework.  Topographic 

LiDAR data with single wavelength NIR were used to identify dry or wet channels in headwater 

catchments, acting as an extension of previous work for water body identification.  This 

topographic LiDAR data is now available to the public in many areas [Stoker et al., 2006].  Lake 

Tahoe area was considered as the case study due to availability of high resolution LiDAR data 
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with intensity information and two data acquisitions (in separate years) in some watersheds.  Based 

on the identified wet channel network, the relationship between streamflow and wet channel length 

was explored and evaluated.  The developed method provides an opportunity to investigate wet 

channel network dynamics. 

3.2 Study Sites and Data Sources 

3.2.1 Study Sites 

Lake Tahoe is located in the high mountain area at the state border of California and 

Nevada.  The lake surface area is 496 km2 and drainage area is 1,310 km2 [Dettinger, 2013].  The 

Lake Tahoe drainage basin was formed by uplift creating the Carson Range on the east and the 

Sierra Nevada on the west with an average surface elevation of 1,897 m above mean sea level.   

The area has cold and wet winters with an average temperature of -1 oC in January, and warm and 

dry summers with an average temperature of 18 oC in June [Taylor and Beaty, 2005].  Mean annual 

precipitation is 1400 mm and 670 mm on the west and east sides of the lake, respectively.  

Precipitation mainly occurs as snow from November and April, and most runoff occurs during the 

spring snowmelt period from April to June [Coats and Goldman, 2001].  

This study focused on five watersheds around Lake Tahoe as shown in Figure 3-1a.  Four 

watersheds, including Blackwood Creek, Ward Creek, General Creek and Trout Creek, are located 

in California; Incline Creek is located in Nevada.  There are two streamflow gages in the Incline 

Creek watershed as shown in Figure 3-1b, and the upstream and downstream gage identification 

numbers are 103366993 and 10336700, respectively.  The human effects such as reservoir 
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operations and urbanization are minimal in these watersheds.  The drainage area of the seven gages 

varies from 7.4 km2 to 28.9 km2 (Table 3-1).  The climate aridity index, defined as the ratio of 

potential evaporation to precipitation, varies from 0.99 to 1.61 in these watersheds.  Most of the 

watersheds are covered by intact forest and shrub area; as an example, the forest land is 70% and 

the shrub land is 28% in Blackwood Creek watershed. 

 

 

Figure 3-1: Map for the study sites: (a) five study watersheds around Lake Tahoe; and (b) six 
streamflow gages and the spatial coverage of LiDAR data sets. 
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Table 3-1: USGS gage identification number, drainage area, streamflow and its variations during 
the LiDAR surveys, and the corresponding exceedance probability for six streamflow gages. 

 

3.2.2 LiDAR and Streamflow Data 

These watersheds were selected for this study based on the availability of simultaneous 

streamflow observations and LiDAR data.  Streamflow observations were obtained from the USGS 

National Water Information System and the gage identification numbers are shown in Figure 3-1b 

and Table 3-1.  The Center for LiDAR Information, Coordination and Knowledge (CLICK) 

provided LiDAR data tiled by USGS Quarter Quadrangles in LAS and ASCII format [Stoker et 

al., 2006].  The LiDAR data were obtained through the CLICK website (http://lidar.cr.usgs.gov, 

Last Accessed July 15, 2014).  The bare earth LiDAR data, with vegetation and buildings removed 

by the data provider, from 2010 and 2012 were used in this study. 

The LiDAR data in 2010 (from August 11 to August 24) were acquired using a Leica 

ALS50-II LiDAR System.  Each return (data point) included a Global Positioning System (GPS) 

time stamp, spatial coordinates (X, Y, Z), intensity representing for the strength of the reflected 

signal, flightline, scan angle, and return number (first/last return).  The data were collected from 

Watershed Gage 
Number 

Drainage 
Area  
[km2] 

LiDAR Acquisition 
Date 

Streamflow 
[m3/s] 

Streamflow 
Exceedance 
Probability 

[%] 

Blackwood Creek, CA 10336660 28.9 8/20/2010-8/23/2010 0.10±0.01 73 
6/20/2012-6/21/2012 0.52±0.01 40 

Ward Creek, CA 10336676 24.9 8/14/2010 0.06 72 
6/20/2012-6/21/2012 0.27±0.01 43 

General Creek, CA 10336645 19.2 8/20/2010-8/23/2010 0.02 95 
Trout Creek, CA 10336770 19.1 8/23/2010 0.16 54 

Incline Creek, NV 10336700 17.3 8/12/2010 0.10 66 
Incline Creek, NV 103366993 7.4 8/12/2010 0.04 74 
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an altitude of approximately 900~1300 m.  The average spacing and average point density of 

irregularly-spaced LiDAR points for ground returns were 0.67 meters and 2.26 points/m2, 

respectively.   The range of scan angle was ± 20° and the vertical accuracy was 16 cm [Romsos, 

2011]. 

The LiDAR data in 2012 (from March 25 to June 29) were acquired by using an Optech 

ALTM Gemini LiDAR system.  The data were collected from an altitude of approximately 915 m.  

The average spacing and average point density of irregularly-spaced LiDAR points for ground 

return were 0.72 meters and 1.94 points/m2, respectively.  The range of scan angle was ± 19° and 

the vertical accuracy was 18 cm [Dewberry, 2012].  The point cloud data were processed to derive 

the 1 m contour lines and intensity raster, and the land surface topography using QCoherent 

software LP360 for ArcGIS.   

As shown in Figure 3-1b, two sets of LiDAR data were available in 2010 and 2012.  There 

was an overlap between these two LiDAR data sets for Blackwood Creek watershed and Ward 

Creek watershed.  Therefore, two snapshots of LiDAR data were available for these two 

watersheds.  Wet channel networks are identified in 2010 and 2012, respectively.  The LiDAR 

acquisition date(s) for each watershed were listed in Table 3-1.  The acquisition dates covered four 

consecutive days for Blackwood Creek and General Creek watersheds in 2010 and one or two days 

in the other snapshots.   

The streamflow and its variation during the LiDAR acquisition dates are listed in Table 

3-1.  All LiDAR data in Table 3-1 were acquired during hydrograph recession periods.  For 

example, the rainfall and hydrograph for Blackwood Creek during the LiDAR acquisition periods 

are plotted in Figure 3-2.  Streamflow declined during the recession period from June to 

54 
 



September.  The LiDAR survey for 2010 was located at the recession stage in August (Figure 3-

2a) and the recession stage in June for 2012 (Figure 3-2b).  Based on 53 years of daily streamflow 

records for Blackwood Creek, the exceedance probability during LiDAR survey was 73% in 2010 

and 40% in 2012, respectively.  As shown in Table 3-1, the exceedance probability of streamflow 

for all the snapshots was more than 40%.  Particularly, the exceedance probability for General 

Creek was 95%, indicating low flows; therefore, dry channels were expected during the LiDAR 

acquisition period.   

 

 

Figure 3-2: Rainfall, hydrograph for Blackwood Creek, and the LiDAR acquisition periods 
during (a) 8/20/2010-8/23/2010; and (b) 6/20/2012-6/21/2012.  
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3.3 Methodology 

The signal intensity of ground returns was the main information used for identifying wet 

and dry channels.  LiDAR intensities on water surfaces are usually lower than those on the dry 

land surface because of the strong absorption of the light energy by the water.  The point cloud 

returns for water surfaces are usually associated with low signal intensities, dropouts, and a high 

relative variation of intensity [Höfle et al., 2009].  The specular reflection from the water surface 

also contributes to low intensity of signal.  When the signal intensity is lower than a threshold, the 

data point is dropout which was processed by the data acquisition provider; therefore, point density 

decreases with more dropouts on water surface.    Figure 3-3a shows the 2010 intensity image for 

a headwater catchment in the Blackwood Creek watershed; Figure 3-3b shows the 2012 intensity 

image of the same area.  The intensity value varied from 1 DN (digital number) to 245 DN for 

2010 LiDAR and from 1 DN to 520 DN for 2012 LiDAR.  As shown in Figure 3-3, the intensity 

in the wet channel was much lower than that on hillslopes and dry channels.  The wet channel 

heads (i.e.  upstream limits of wet channels) were identified visually and marked by blue dots.  In 

this paper, a systematic procedure was developed to map the wet channel network based on the 

LiDAR returns.  The first step was to quantify the intensity characteristics of wet and dry surfaces 

from sample sites; the second step was to filter ground returns by scan angles; third, the intensity 

threshold for differentiating wet and dry channels was identified based on the LiDAR return 

intensities on the sample sites; lastly, wet and dry channels were identified based on the identified 

intensity thresholds. 
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Figure 3-3: LiDAR intensity in the Blackwood Creek watershed:  (a) 2010 LiDAR intensity for 
the zoom-in area; and (b) 2012 LiDAR intensity for the zoom-in area. 

 

3.3.1 Sample Sites 

Multiple sample sites were generated to explore the characteristics of intensity on wet and 

dry surfaces based on the following information 1) triangular irregular network (TIN) for the land 

surface topography; 2) morphologic drainage network (Figure 3-4a) derived from the LiDAR-

based topography by the crenulation method using V-shaped contours [Morisawa, 1957]; 3) 

intensity image generated from point-based data shown in Figure 3-3; 4) 3D point clouds to 

determine channel segments that were not covered by trees; and 5) perennial and temporal streams 
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from National Hydrography Dataset (NHD) shown in Figure 3-4b.  As shown in Figure 3-4, the 

NHD temporal streams were underestimated as reported in other regions [e.g., Elmore et al., 2013].  

The sample sites for wet channels were generated on the perennial streams from NHD (Figure 3-

4b) with a continuous low intensity pattern in the LiDAR returns moving downstream.  The dry 

channel sample sites were generated at the tips of the head channels or on the temporal streams 

with high intensity.  

 

 

Figure 3-4: Blackwood Creek watershed: (a) the location of sample sites; (b) NHD perennial and 
temporal streams. 

 

Polygons were generated for each sample site as shown in Figure 3-5.  The TIN for the 

topography and drainage network was used to constrain the wet and dry channel samples between 

their banks.  The point density in wet channels, particularly the main channel, was generally low 

due to the dropouts when the intensity of return was lower than a threshold (Figure 3-5a).  The 

average area of the generated polygons for sample sites was 16 m2.  Average intensity was 
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computed within each polygon of the sample sites.  546 sample sites (265 on wet channels, 104 on 

dry channels, and 177 on dry hillslopes) were generated for analysis in the Blackwood Creek 

watershed (Figure 3-4a). 

 

 

Figure 3-5: Blackwood Creek watershed: (a) a sample site on a wet channel segment; (b) a 
sample site on a dry channel segment. 

 

3.3.2 Scan Angle Effect on Intensity 

The intensity statistics of the identified wet and dry samples were quantified for each 

LiDAR snapshot.  In general, LiDAR return intensities on water surfaces can be relatively high 

when laser pulses are at the nadir (directly beneath the aircraft and normal to the water surface) 

scan angle.  Such signal saturation has the potential to introduce error into the estimation of wet 

and dry channels.  For Blackwood Creek watershed, the intensities of some returns on water 

surface in 2012 were higher than 200 DN when the scan angles were less than 5°.  This type of 

water surface return with high intensity can increase the average intensity of sample sites.  
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Therefore, for the case of Blackwood Creek watershed LiDAR data in 2012, the returns with scan 

angle less than 5° and intensity higher than 200 DN were removed when computing the average 

intensities of the sample sites. 

3.3.3 Classification of Wet and Dry Channels  

The distribution of intensity over wet channels, dry channels, and dry hillslope samples 

were obtained based on the ground returns within the polygons for sample sites.  The average 

signal intensity within the polygons of each sample site was computed, and the point density for 

each sample site was calculated as the ratio between number of usable returns and the 

corresponding polygon area.  The number of sample sites in each intensity bin was also counted 

for the three types of land surface.  The probability distribution of intensity was represented by the 

normalized frequency, which is defined as the ratio of the number of samples in each bin to the 

total number of samples.  For example, Figure 3-6a shows the normalized frequency histogram for 

intensity from sample sites of wet channels, dry channels, and dry hillslopes based on the 2012 

LiDAR data in the Blackwood Creek watershed.  The intensities in dry channels and hillslopes 

were generally higher than those in wet channels.  The dry channels and dry hillslopes were 

grouped into one dry category as shown in Figure 3-6b where the blue and red histograms represent 

wet channels and dry channel/hillslopes, respectively. 
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Figure 3-6: Normalized frequency distribution of intensity in the Blackwood Creek watershed 
based on the 2012 LiDAR data: (a) wet channel, dry channel and dry hillslope from all the 
samples; (b) wet channel, dry channel & hillslope, and the intensity thresholds for differentiating 
wet and dry channels from all the samples; and (c) wet channel, dry channel & hillslope from 
100 randomly selected samples. 

 

A threshold for wet channel identification was derived from the constructed intensity 

distributions of sample sites.  As shown in Figure 3-6b, the transition threshold (I0) was identified 

as the intensity value where the probability represented by normalized frequency for wet channel 

was equal to the probability for dry channels and hillslopes.  There were two other thresholds 

identified: Iw was the lower bound of intensity for dry channels and hillslopes; Id was the upper 

bound of intensity for wet channels.  Wet channels are identified when intensity was less than I0.  

When the intensity for a channel segment was less than Iw, the wet channel was classified as W1; 
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when the intensity for a channel segment was between Iw and I0, the wet channel segment was 

classified as W2 and an uncertainty was associated with the classification.  Similarly, the identified 

dry channel was classified as D2 for channel segments with intensity between I0 and Id, and D1 for 

channel segments with intensity higher than Id. 

 

3.4 Results and Discussion 

3.4.1 Intensity Thresholds 

The methodology described above was applied to the study watersheds and LiDAR surveys 

shown in Table 3-1.  Table 3-2 shows the three identified thresholds for the Blackwood Creek 

watershed in 2012 and 2010.  The intensity threshold for differentiating wet and dry channels was 

55 DN in 2012 and 35 DN in 2010.  The discrepancy between the thresholds of two surveys in a 

watershed can be attributed to the different LiDAR sensors, variations in path length resulting from 

the elevation changes, scan angle, surface specularity, atmospheric conditions, and the soil 

moisture conditions.  A channel segment was identified as wet channel with high confidence level 

(W1) when the intensity (I) was less than 36 DN, and wet channel with 91% confidence level (W2) 

when I was greater than 36 DN but less than 55 DN.  A channel segment was identified as dry 

channel with high confidence (D1) when I was greater than 80 DN and with 80% confidence (D2) 

when I was greater than 55 DN and less than 80 DN.  These thresholds were obtained from the 

normalized frequency of sample sites in the Blackwood Creek watershed shown in Figure 3-6b.   
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Table 3-2: Thresholds for identifying wet and dry channels and the associated confidence level 
based on the intensity data in Blackwood Creek watershed, CA.  

LiDAR Thresholds [DN] Wet channel 
confidence level 

Dry channel 
confidence level 

Year Iw I0 Id W1: I<Iw  W2: Iw<I<I0 D2: I0<I<Id D1: I>Id 

2012 36 55 80 100 91 80 100 

2010 28 35 39 100 85 64 100 
 

To assess the impact of samples on the identified thresholds, 100 samples were randomly 

selected from the wet channel and dry channel/hillslope sites, respectively.  Figure 3-6c shows the 

distributions of intensity for the randomly selected samples for 2012 LiDAR.  The distributions 

from Figure 3-6c were similar to the corresponding ones from all the samples shown in Figure 3-

6b; the identified thresholds were 38 for 𝐼𝐼𝑤𝑤 , 55 for 𝐼𝐼0 , and 77 for 𝐼𝐼𝑑𝑑 .  For 2010 LiDAR, the 

identified thresholds from randomly selected samples were 33 for 𝐼𝐼𝑤𝑤, 35 for 𝐼𝐼0, and 39 for 𝐼𝐼𝑑𝑑.  

These thresholds were similar to the corresponding values from all the samples shown in Table 3-

2.  Therefore, the identified thresholds were robust with respect to the generated samples.   

The number of wet and dry samples and thresholds of intensity for wet channels (𝐼𝐼0) were 

also identified for other watersheds as shown in Table 3-3.  More than 150 wet or dry channel 

samples were generated for each watershed.  The intensity threshold 𝐼𝐼0  for the Ward Creek 

watershed was 35 DN in 2010 survey and 55 DN in 2012 survey.  The intensity thresholds varied 

from 35 DN to 50 DN over the five watersheds during the survey in 2010; the intensity thresholds 

were 55 DN for the two surveys in 2012.  The impact of samples on thresholds was evaluated 

using randomly selected samples for these watersheds, and no significant variation was observed. 
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Table 3-3: Intensity thresholds for each snapshot, the identified wet channel length and density 
based on the thresholds. 

Watershed Year 
Number 
of wet 

samples 

Number 
of dry 

samples 

Intensity 
Threshold 

 I0 [DN] 

Wet Channel  
Length [km] 

Blackwood Creek, CA 2010 265 281 35 26.5 
2012 265 284 55 53.2 

Ward Creek, CA 2010 167 167 35 23.0 
2012 167 167 55 46.3 

General Creek, CA 2010 200 182 50 12.3 
Trout Creek, CA 2010 178 193 45 31.0 

Incline Creek, NV 2010 155 193 50 33.4 
Incline Creek (Up), NV 2010 155 193 50 18.7 

 

3.4.2 Wet Channel Network 

Wet and dry surfaces were classified based on the point cloud of ground returns and the 

identified thresholds from sample sites.  Intensity images for the study watersheds were generated 

with a spatial resolution of 0.5 m by 0.5 m as shown in Figure 3-7a for a selected area in the 

Blackwood Creek watershed.  The road and the channel segment in the image had lower intensities 

than the surrounding environment.  This intensity image was classified into four categories (W1, 

W2, D1 and D2) based on the intensity thresholds shown in Table 3-2.  Figure 3-7b shows the 

classified land surface based on the intensity image shown in Figure 3-7a: W1 represents wet 

surface; W2 represents wet surface with a confidence level of 91% (Table 3-2); D2 is dry surface 

with a confidence level of 80%; and D1 is dry surface.  Most of the area in Figure 3-7b was 

classified as dry (D1), and some isolated patches were classified as wet (W1) which were likely 

areas under dense canopy, wetlands or surface impoundments.  The channel segment and road 

were classified as W2 although some pixels were classified as W1.   
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Figure 3-7: (a) intensity image for a selected region in the Blackwood Creek watershed based on 
the 2012 LiDAR data; and (b) classified four categories of land surface (W1 is wet surface; W2 is 
wet surface with 91% confidence; D2 is dry surface with 80% confidence; D1 is dry surface). 

 

Channel networks with four categories (W1, W2, D2 and D1) were delineated by combining 

the classified intensity image and LiDAR-based topography.  A triangulated irregular network 

(TIN) and contours with 1 meter interval were generated based on the elevation of LiDAR ground 

returns.  Drainage networks were delineated by the crenulation method using V-shaped contours 

[Morisawa, 1957].  The TIN was also used to identify the channel widths.  Then, the wet or dry 

conditions of the identified channels were determined based on the classified intensity image.  Wet 

channels were exemplified by a continuous low intensity pattern shown in Figure 3-7a, even 

though dry channels may have isolated low intensity segments due to dense vegetation.  Figure 3-

8 shows the classified channel network based on the 2012 LiDAR data in the Blackwood Creek 
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watershed.  The channel lengths for W1, W2, D2, D1 were 22 km, 31 km, 34 km, and 159 km, 

respectively.  The ratio of wet channel length (W1+W2) to total channel length was 0.22. 

 

 

Figure 3-8: The identified wet channels with 100% confidence (W1), wet channels with 91% 
confidence (W2), dry channels with 80% confidence (D2), and dry channels with 100% 
confidence (D1) based on the 2012 LiDAR data in the Blackwood Creek watershed. 

 

Two snapshots of identified wet channel network (W1+W2) were compared for the 

Blackwood Creek watershed (Figure 3-9) and the Ward Creek watershed (Figure 3-10).  As shown 

in Figure 3-9, there were more wet channels during the 2012 survey compared with the 2010 

survey.  The total wet channel length was 53.2 km during the 2012 survey and 26.5 km during the 

2010 survey; the corresponding wet channel density, which is defined as the ratio between wet 

channel length and total drainage area, was 1.84 km/km2 and 0.92 km/km2, respectively.  The total 

wet channel length in the 2012 survey was almost twice that of the 2010 survey.  As shown in 
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Table 3-1, the streamflow during the 2012 survey (0.52 m3/s) was higher compared with the 

streamflow during the 2010 survey (0.10 m3/s); and the streamflow exceedance probability was  

40% and 73% during the 2012 and 2010 LiDAR surveys, respectively.  It should be noted that the 

streamflow during the 2012 survey was about 5 times that of the 2010 survey.  This indicated the 

nonlinear relationship between streamflow and wet channel length.  Similarly for the Ward Creek 

watershed, the identified wet channel length during the 2012 survey (46.3 km) was twice the wet 

channel length (23.0 km) during the 2010 survey (Table 3-3).  Correspondingly, the streamflow 

during the 2012 survey was about 4.5 times the streamflow during the 2010 survey (Table 3-1). 

 

 

Figure 3-9: Blackwood Creek watershed: (a) identified wet channels during the 2010 LiDAR 
survey; and (b) identified wet channels during the 2012 LiDAR survey. 
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Figure 3-10: Ward Creek watershed: (a) identified wet channels during the 2010 LiDAR survey; 
and (b) identified wet channels during the 2012 LiDAR survey. 

 

The identified wet channels (W1+W2) for the other four watersheds during the 2010 survey 

are presented in Figure 3-11: a) General Creek; b) Trout creek; and c) Incline Creek.  These wet 

channel networks were delineated based on the intensity thresholds shown in Table 3-3.  The wet 

channel for the General Creek in Figure 3-11a was only located in the main stream and the total 

wet channel length was 12.3 km.  The corresponding wet channel density was 0.64 km/km2, which 

was the smallest among all the watershed surveys.  This indicated a dry condition during the 

LiDAR survey date as shown by the streamflow exceedance probability of 95% in Table 3-1.  The 

total wet channel length in the Trout Creek watershed shown in Figure 3-11b was 31.0 km and the 

wet channel density was 1.62 km/km2; the streamflow exceedance probability was 54%.  The 

Incline Creek watershed has two main tributaries and there are two streamflow gage stations in the 

watershed (Figure 3-11c).  One gage (#10336700) is located in the watershed outlet with a drainage 

area of 17.3 km2 and the other one (#103366993) is located in one of the main tributaries with a 

drainage area of 7.4 km2.  The wet channel density was 1.93 km/km2 for the gage #10336700 and 

2.53 km/km2 for the gage #103366993.  This discrepancy was due to the different wetness in the 
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two main tributaries as explained by the streamflow exceedance probabilities in the two gages:  

66% for #10336700 and 74% for #103366993.         

 

 

Figure 3-11: Identified wet channels from the 2010 LiDAR survey: (a) General Creek; (b) Trout 
creek; and (c) Incline Creek with two gage stations. 

 

3.4.3 Streamflow and Wet Channel Length Relationship 

As mentioned above, one of the goals of this paper was to investigate the relationship 

between wet channel length and streamflow.  The availability of two LiDAR surveys for 

Blackwood Creek watershed and Ward Creek watershed (Table 3-1) provided the means to study 

wet channel length and streamflow in these two watersheds.  Figure 3-12a shows wet channel 

length from LiDAR data versus streamflow for the Blackwood Creek and Ward Creek watersheds.  

For Blackwood Creek, wet channel length (and streamflow) was 53.2 km (0.52 m3/s) on 6/20/2012 

and 26.5 km (0.10 m3/s) on 8/20/2010, respectively.  For Ward Creek, wet channel length (and 
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streamflow) was 46.3 km (0.27 m3/s) on 6/20/2012 and 23.0 km (0.06 m3/s) on 8/14/2010, 

respectively.  The wet channel length shrunk to half from 2012 to 2010 LiDAR surveys, while 

streamflow decreased to about 20% in both watersheds.  Generally, streamflow is expected to 

decrease with wet channel length for a given watershed.  Also, it was apparent that the rate of 

streamflow decrease was higher than that of wet channel length. 

 

 

Figure 3-12: (a) Identified wet channel length and measured streamflow in the Blackwood Creek 
watershed (red triangle) and Ward Creek watershed (black circle); and (b) Relationship between 
streamflow and wet channel length across all study watersheds in the Lake Tahoe area. 

 

Wet channel lengths are generally correlated with streamflow, and power-law relationships 

are usually identified [Gregory and Walling, 1968; Godsey and Kirchner, 2014].  More than two 

snapshots of wet channel length are required to construct the relationship between streamflow and 

wet channel length for a given watershed.  However, it was reasonable to assume that the wet 

channel and discharge relationships for the five study watersheds are similar since they are around 

the Lake Tahoe with similar hydro-geomorphologic conditions.   The climate aridity index, defined 

as the ratio between mean annual potential evaporation to precipitation [Budyko, 1974], ranged 
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from 1 to 1.6 for the 5 watersheds.  The relation between wet channel length and discharge during 

recession periods for all the six stream gages are plotted in Figure 3-12b.  A power-law 

relationship, 𝐿𝐿 = 76.94𝑄𝑄0.44 (or 𝑄𝑄 ∝ 𝐿𝐿2.3) was the best fit to the data with R2=0.96 as shown in 

Figure 3-12b.  The scaling exponent of the power-law relationship (i.e., 0.44) was within the range 

of reported values from fieldwork in other regions [e.g., Gregory and Walling, 1968].  Godsey and 

Kirchner [2014] re-analyzed the data published in other studies and found the broadly similar 

scaling exponents in catchments with varying geologic, topographic and climatic characteristics.  

It should be noted that the wet channel length and streamflow in a watershed may be not a 

one-to-one relationship due to the spatial heterogeneity of runoff generation.  Stream network 

expansion and contraction are related to the local watershed characteristics including the amount, 

intensity, and spatial distribution of rainfall, antecedent moisture contents, vegetation, rock type, 

and topography [Morgan, 1972; Day, 1978; Gurnell, 1978; Goulsbra et al., 2014].  The exponent 

of the power relationship may also vary with wet/dry seasons [Blyth and Rodda, 1973; Wigington 

et al., 2005] and rising/recession limbs [Roberts and Archibold, 1978].  At a given streamflow, the 

wet channel length during the rising limb can be different from that during the recession limb in 

that the relative contribution from surface runoff and base flow can vary greatly.  The relationship 

shown in Figure 3-12b may be only applicable at the recession limbs through June to August for 

the study watersheds. 

3.5 Summary and Future Research 

The temporal dynamics of stream networks are of great importance to understand the 

hydrologic processes including stream and groundwater interactions, hydrograph recession, and 
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saturation excess runoff generation. The study of stream network dynamics is constrained by lack 

of temporal high-resolution observations on wet channel networks especially in non-perennial 

streams.  The spatial resolution of satellite remote sensing image is currently insufficient to identify 

wet channel heads that are approximately 1 meter-wide.  Moreover, wet channel heads are 

frequently obscured by canopies and not detectable in satellite images.   

LiDAR provides an opportunity for mapping the wet channel network because of the high 

spatial resolution and the signal penetration through the canopy.  To that end, a systematic method 

was developed for mapping the wet channel network based on LiDAR data.  The method was 

based on the strong absorption of the light energy by the water surface and the corresponding 

differences between LiDAR return intensities from water and dry surfaces.  Using selected sample 

sites with known wetness conditions, the signal intensities of ground returns were extracted from 

the LiDAR point data, and the frequency distributions of wet surface and dry surface were 

constructed.  Three signal intensity thresholds were identified for differentiating wet and dry 

surfaces from the frequency distribution plots.  Wet channels and dry channels were mapped 

through the generated intensity image and the identified thresholds, as well as the topographic TIN 

and 1 meter contour for channel identification.  

The regional relationship between streamflow and wet channel length was obtained for the 

Lake Tahoe area based on eight LiDAR surveys in five watersheds.  A power-law relationship 

between the discharge and wet channel length was obtained during the recession periods when 

LiDAR data were acquired.  The scaling exponent was consistent with the reported findings from 

field work in other regions.   
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The proposed method for identifying wet channels can be applied to other watersheds with 

varying climatic and topographic gradients.  Ideally, field surveys on wet channels would proceed 

simultaneously with a LiDAR acquisition flight.  Still, we acknowledge that the NIR LiDAR signal 

is not able to penetrate water to measure the wet channel bed morphology.  Alternatively, green 

LiDAR can penetrate the water surface and the LiDAR returns can provide water depth 

information, which can be combined with the intensity of NIR LiDAR to enhance the accuracy of 

wet channel network mapping. 
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CHAPTER 4: ASSESSING THE STREAMFLOW CHARACTERISTICS OF 
PERENNIAL STREAMS BASED ON A WET CHANNEL NETWORK 

EXTRACTED FROM LIDAR DATA 

4.1 Introduction 

Wet channel networks expand during rainfall events, contract during recession periods, as well as 

disconnect and reconnect hydrologically [Schumm, 1956; Howard and Kerby, 1983].  Channels 

are categorized as perennial, intermittent, and ephemeral streams based on the flow durations.  

Perennial streams flow most of the time during normal years and are maintained by groundwater 

discharge [Meinzer, 1923; NC Division of Water Quality, 2010].  Perennial streams are usually 

defined based on a certain threshold of flow duration.  However, there are discrepancies in the 

perennial stream definitions in the literature.  Hedman and Osterkamp [1982] defined channels 

with flowing water for more than 80% of the time as perennial streams; Hewlett [1982] and Texas 

Forest Service [2000] used 90% as the threshold.  Intermittent (i.e., seasonal) streams flow during 

certain times of the year receiving water from surface sources such as melting snow or from 

groundwater sources such as springs [Meinzer, 1923; Levick et al., 2008].  Variations in water 

table affect the characteristics of intermittent streams that are supplied by groundwater sources 

[Meinzer, 1923].  Ephemeral streams flow only in direct response to precipitation without 

continuous surface flow [Meinzer, 1923].  The total volume of flow under the annual hydrograph 

of an ephemeral stream watershed is the result of direct runoff from large rainfall events [Chow et 

al., 1988].  Some ephemeral streams flow only for several hours annually [Blasch et al., 2002].  
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Intermittent and ephemeral streams flow with temporal and spatial variability [Levick et al., 2008], 

and are generally referred to as “temporary” streams that support high biodiversity and important 

ecosystem processes [Acuña et al., 2014].   

United States Geological Survey (USGS) Quadrangle topographic ‘‘blue line’’ maps 

classify perennial, intermittent and ephemeral streams based on aerial photo interpretation. These 

classifications are confirmed by USGS field surveys when the maps are compiled [Simley, 2003].  

Although USGS monitors perennial streams regularly to generate flood and water supply 

information, they rarely check intermittent or ephemeral streams.  The map delineation between 

perennial-intermittent and intermittent-ephemeral streams is performed with very little 

information and their reliability is uncertain [Svec et al., 2005].  

The introduction of airborne light detection and ranging (LiDAR) provides an opportunity 

to accurately study drainage networks.  LiDAR provides topographic data at sub-meter resolution 

and accuracy [Marks and Bates, 2000; Bowen and Waltermire, 2002] and has been applied to 

extract channel networks [Lashermes et al., 2007; Orlandini and Moretti, 2009; Passalacqua et 

al., 2010; Orlandini et al., 2011; Sofia et al., 2011; Pelletier, 2013; Clubb et al., 2014]. 

In addition to the elevation data, LiDAR provides signal intensity information which is a 

relative measurement of the return strength of the laser pulse.  The intensity return from water 

surfaces is relatively low compared with dry lands.  LiDAR intensity has been utilized to map 

relatively large and continuous water bodies such as flood inundation extent, rivers, wetlands, 

ponds and lakes [Genc et al., 2005; Höfle et al., 2009; Smeeckaert et al., 2013; Wu et al., 2013].  

Hooshyar et al. [2015] developed an extraction method for wet channel network extraction by 
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integrating LiDAR intensity and digital elevation model (DEM) for detecting narrow, 

disconnected and shallow streams located in headwater catchments.  

The objective of this research was to explore the definition of perennial streams using the 

non-dimensional relationship between streamflow exceedance probability and wet channel ratio, 

defined as the wet channel length divided by the total valley length.  The valley network and wet 

channels were extracted from LiDAR topographic data and signal intensity of ground returns with 

1-m spatial resolution using the method developed by Hooshyar et al. [2015].  The obtained wet 

channel ratios of perennial streams in the study watersheds were compared with the definitions of 

perennial streams in the literature.  

4.2 Methodology 

4.2.1 Data 

The total of 30 study watersheds, located across 10 states in the U.S., were selected based 

on the availability of both streamflow observations and LiDAR data as shown in Figure 4-1.  The 

LiDAR data were obtained through the USGS Center for LiDAR Information, Coordination and 

Knowledge (CLICK) website (http://lidar.cr.usgs.gov).  The LiDAR acquisition dates for each 

watershed were obtained from digital flight logs provided by the LiDAR survey companies listed 

in Table 4-1.  The LiDAR survey years for the study watersheds were from 2009 to 2012.  The 

intensity map and the land surface topography were derived by the LiDAR point cloud data using 

the QCoherent LP360 toolbox for ArcGIS.  
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Figure 4-1: Location of study sites and available LiDAR data.  

 

The drainage area, climate aridity index (𝐸𝐸𝑃𝑃/𝑃𝑃), streamflow, variation and streamflow 

exceedance probability (𝐸𝐸𝑄𝑄 ) during the LiDAR acquisition dates are listed in Table 4-1.  

Streamflow observations were acquired from the USGS National Water Information System 

(http://waterdata.usgs.gov/nwis).  𝐸𝐸𝑄𝑄 was defined as the probability that a specific streamflow will 

be exceeded and achieved for each watershed through generating a flow duration curve based on 

the daily streamflow records from USGS gages.  The range of 𝐸𝐸𝑄𝑄 for study watersheds ranged 

from 7% (high flow) to 98% (low flow).  For example, 𝐸𝐸𝑄𝑄 of Shafer Creek and General Creek 

were 98% and 95% respectively, indicating a low flow condition when extensive dry channels 

were expected.  

The climate aridity index, defined as the ratio of potential evaporation to precipitation 

(𝐸𝐸𝑃𝑃/𝑃𝑃), was used as a numerical indicator of the climate in a watershed [Budyko, 1958; 1974].  
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Except for Tucca Creek (0.3), Schafer Creek (0.4) and Pine Creek (2.7), the climate aridity index 

varied from 0.8 to 2.1 for the study watersheds.  

Perennial streams were obtained from the National Hydrograph Dataset (NHD). The 

flowing channel networks corresponding to certain streamflow exceedance probabilities were 

compared with the NHD perennial stream to evaluate the determination of perennial stream.  

Table 4-1: USGS gage identification number, drainage area, climate aridity index, streamflow 
and its exceedance probability during the LiDAR surveys for the study watersheds. 

Watershed USGS  
gage 

Drainage 
Area 
[km2] 

𝐸𝐸𝑃𝑃/𝑃𝑃 
LiDAR  

Acquisition 
Date 

Streamflow 
[m3/s] 

𝐸𝐸𝑄𝑄  
[%] 

Tucca Creek, OR 14303200 6.0 0.3 5/9/2010 
~5/13/2010 0.481±0.11 28 

Schafer Creek, OR 14188610 5.5 0.4 10/9/2012 0.001 98 
Chattahoochee River, GA 02330450 116.2 0.8 3/30/2010 4.474 27 

Ward Creek, CA 
(Upstream) 10336674 12.0 0.9 8/14/2010 0.074 54 

Blue Springs Creek, AL 02449882 31.4 0.9 2/26/2010 0.481 26 
Cedar Creek, KY 03297800 31.2 1.0 3/21/2009 0.136 51 
Brier Creek, KY 03302050 10.5 1.0 3/20/2009 0.037 47 

Blackwood Creek, CA 10336660 28.9 1.0 

8/20/2010 
~8/23/2010 0.103±0.01 73 

6/20/2012 
~6/21/2012 0.524±0.01 40 

Ward Creek, CA 10336676 24.9 1.0 
8/14/2010 0.057 72 
6/20/2012 

~6/21/2012 0.27±0.01 43 

S F Quantico Creek, VA 01658500 19.4 1.0 4/7/2011 
~4/14/2011 0.194±0.03 22 

M Chopawamsic Creek, VA 01659500 11.4 1.1 4/7/2011 0.096 28 
N Chopawamsic Creek, VA 01659000 15.0 1.1 4/7/2011 0.125 26 

S Chopawamsic Creek, VA 01660000 6.5 1.1 4/6/2011 
~4/7/2011 0.057±0.01 45 

General Creek, CA 10336645 19.2 1.1 8/20/2010 
~8/23/2010 0.020 95 

Allison Creek, SC 021457492 104.0 1.1 3/12/2012 0.425 34 
Wildcat Creek, SC 021473428 76.6 1.1 3/8/2011 0.453 20 

Pennington Creek, OK 07331295 85.2 1.3 12/22/2009 
~12/26/2009 0.580±0.04 28 
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Watershed USGS  
gage 

Drainage 
Area 
[km2] 

𝐸𝐸𝑃𝑃/𝑃𝑃 
LiDAR  

Acquisition 
Date 

Streamflow 
[m3/s] 

𝐸𝐸𝑄𝑄  
[%] 

Mill Creek, OK 07331200 120.9 1.3 12/22/2009 0.255 26 
Rock Creek, OK 07329852 114.3 1.3 12/22/2009 0.651 33 

Incline Creek, NV 
(Upstream) 103366993 7.4 1.4 8/12/2010 0.040 74 

North Criner Creek, OK 07328180 18.6 1.5 12/20/2009 0.006 67 
Incline Creek, NV 10336700 17.3 1.5 8/12/2010 0.099 66 
Trout Creek, CA 10336770 19.1 1.6 8/23/2010 0.156 54 

Little Washita River, OK 07327442 36.5 1.6 12/17/2009 0.071 41 
Little Washita River,OK 

(Upstream) 073274406 9.3 1.6 12/17/2009 0.015 45 

Lake Creek, OK 07325840 49.4 1.7 12/13/2009 0.176 18 

Logan House Creek, NV 10336740 5.3 1.9 8/16/2010 
~8/17/2010 0.002 87 

Glenbrook Creek, NV 10336730 10.3 2.1 8/16/2010 
~8/18/2010 0.005 88 

Eagle Rock Creek, NV 103367592 1.5 2.1 8/16/2010 
~8/17/2010 0.014 75 

Pine Creek near Clarno, OR 14046890 336.9 2.7 5/19/2011 
~5/20/2011 0.368 7 

 

4.2.2 LiDAR Data Processing 

The key component of the LiDAR data for identifying wet channels was the signal intensity 

of ground returns.  The signal intensity is a relative measurement of the return strength of laser 

pulse received by the LiDAR sensor.  Generally, LiDAR systems operate in the near-infrared 

(NIR) range and the absorption of NIR by water is significantly higher than that by dry land [Wolfe 

and Zissis, 1989].  This characteristic of NIR leads to the fact that LiDAR return intensities over 

water surfaces are relatively low compared with dry lands such as dry channels and hillslopes.   

Figure 4-2 shows the intensity map for a headwater catchment in Ward Creek. Wet 

channels show consistently lower intensities and a continuous pattern relative to other locations 
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such as hillslopes and dry channels.  Wet channel heads, which are starting points of wet channels, 

are visually detectable and marked by blue dots.    

 

Figure 4-2: Intensity image during 2012 LiDAR survey for a headwater area in Ward Creek 
watershed and the visually identified wet channel heads

Hooshyar et al. [2015] developed a systematic method for wet channel network extraction 

by integrating LiDAR intensity with the digital elevation model (DEM).  In this study, intensity 

maps and DEMs were generated with a spatial resolution of 1-m.  This method was based on 

several major steps.  First, densely vegetated areas in the intensity map were filtered out because 

the return intensity from ground points under canopy is typically low regardless of wetness and 
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their inclusion could lead to false positives.  This was accomplished by filtering out any pixels in 

which the difference between the ground and canopy elevations was more than 2 m.  The second 

step was to extract the valley network and extent from the LiDAR-based 1-m DEM.  Wet channels 

are located within the valley network where individual valleys are associated with positive contour 

curvature.  A small positive curvature threshold (0.025 m-1) was used to generate the valley extent 

from the DEM.  Figure 4-3 shows a contour curvature map and the identified valley extent 

determined by the curvature threshold in a sub-catchment of Ward Creek watershed.  The third 

step was to decompose the composite probability distribution function (PDF) of intensity.  The 

general PDF of intensity consists of several Gaussian distributions and each distribution 

corresponds to a category of ground surface such as wet or dry condition.  The intensity thresholds 

for classifying wet pixels were extracted from the PDF analysis on points within the valley extent 

using a Gaussian mixture model [Rasmussen, 1999].  Figure 4-4 graphically shows the individual 

PDFs and two thresholds, 𝐼𝐼𝑤𝑤  for wet pixels and 𝐼𝐼𝑑𝑑  for dry pixels, that were identified to 

differentiate wet, transition, and dry surfaces.  The forth step was to detect edges corresponding to 

high gradient pixels in the intensity map using Canny’s method [Canny, 1986] to improve the 

identification of small wet channels.  Finally, the wet channel network was generated by 

combining wet pixels based on the intensity thresholds and the detected edges.  Isolated segments 

of the resulting wet channels were manually connected.   

Figure 4-5a shows the identified wet pixels and Figure 4-5b shows the connected wet 

channel network and the valley network after processing isolated wet channel segments in the 

Ward Creek watershed.  The wet channel and valley network of all study watersheds are shown in 

Appendix A.  
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Figure 4-3: (a) Contour curvature and the visible detection of drainage path by blue color pixels. 
(b) The intensity returns within the valley extent determined by the curvature threshold in the 
Ward Creek watershed for 2012 LiDAR survey.  
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Figure 4-4: A schematic illustration of the individual and the composite PDFs of intensity along 
with the wet (𝐼𝐼𝑤𝑤) and dry (𝐼𝐼𝑑𝑑) thresholds. 

 

 

Figure 4-5: (a) The identified wet pixels based on intensity thresholds. (b) The connected wet 
channel network with the valley network after processing isolated wet channel segments for 
based on 2012 LiDAR survey in the Ward Creek watershed. 
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4.3 Results and discussion 

Hooshyar et al. [2015]’s method was applied to all study watersheds using LiDAR-based 

DEM and intensity data in order to extract valley network and identify wet channels.   

4.3.1 L-Q Relationship 

Wet channel length generally increases with streamflow and has been described by an 

empirical power law function based on field observations. This has been proven to be effective in 

quantifying this relationship as reported by Blyth and Rodda [1973], Godsey and Kirchner [2014], 

and Whiting and Godsey [2016].  Hooshyar et al. [2015] also corroborated that the power law 

relationship holds when using wet channels identified by integrating LiDAR intensity and 

elevation data.  The scaling exponent of the power law relationship can be unique to the season 

(e.g., wet or dry) [Blyth and Rodda, 1973; Wigington et al., 2005] and the position in the 

hydrograph (e.g., rising or recession limb) [Roberts and Archibold, 1978].  This is due to the 

dependence of the wet channel network on the local watershed properties such as precipitation, 

soil, vegetation and topography [Morgan, 1972; Day, 1978; Gurnell, 1978; Goulsbra et al., 2014]. 

The relation between wet channel length (𝐿𝐿𝑊𝑊) and streamflow (Q) for study watersheds is 

plotted in Figure 4-6, and total valley length, wet channel length and wet channel ratio are listed 

in Table 4-2.  Three watersheds were excluded from the data for being excessively humid (𝐸𝐸𝑃𝑃/𝑃𝑃: 

0.3~0.4) and arid (𝐸𝐸𝑃𝑃/𝑃𝑃: 2.7) since they displayed uncharacteristic patterns of wet channel length 

and streamflow.  The range of 𝐸𝐸𝑃𝑃/𝑃𝑃 was 0.8 to 2.1 for remaining 27 watersheds with 29 LiDAR 

snapshots and the best fit function was 𝐿𝐿𝑊𝑊 = 161.22Q0.623 with R² = 0.74 shown in Figure 4-6.  The 

scaling exponent of the power-law relationship (i.e., 0.623) was within the range of reported values 
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(i.e., 0.042~0.688) in the literature from fieldwork for 14 watersheds in other regions [Godsey and 

Kirchner, 2014].   

 

 

Figure 4-6: The relationship between streamflow (Q) and wet channel length (𝐿𝐿𝑊𝑊) in study 
watersheds. 

 

Table 4-2: Total valley length, wet channel length and wet channel ratio for the study 
watersheds. 

Watershed 𝐸𝐸𝑃𝑃/𝑃𝑃 Total Valley Length 
[km] 

Wet Channel Length 
[km] 

Wet Channel Ratio 
 (%) 

Tucca Creek, OR 0.3 62.7 19.6 31.3 
Schafer Creek, OR 0.4 87.1 5.0 5.8 

Chattahoochee River, GA 0.8 1241.1 327.1 26.4 
Ward Creek, CA (Upstream) 0.9 164.2 45.6 27.7 

Blue Springs Creek, AL 0.9 188.2 90.6 48.1 
Cedar Creek, KY 1.0 193.1 65.7 34.0 
Brier Creek, KY 1.0 165.9 37.7 22.7 

Blackwood Creek, CA (2010) 1.0 416.8 82.9 19.9 
Blackwood Creek, CA (2012) 1.0 417.4 113.2 27.1 
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4.3.2 Non-dimensional Analysis 

To better understand the definition of perennial streams, relations between two non-

dimensional variables were investigated (Figure 4-7): streamflow exceedance probability (𝐸𝐸𝑄𝑄), 

and wet channel ratio (𝛼𝛼𝑊𝑊), defined as the ratio of wet channel length to the total valley length.  

𝐸𝐸𝑄𝑄 values of 0% and 100% represented the highest and lowest streamflow respectively.  An 𝐸𝐸𝑄𝑄 of 

0% was likely an underestimation since it was evaluated based on limited streamflow data.  Despite 

this fact, it was assumed that all stream networks was flowing (i.e., 𝛼𝛼𝑊𝑊=100%) when the maximum 

Ward Creek, CA (2010) 1.0 257.5 62.8 24.4 
Ward Creek, CA (2012) 1.0 257.5 83.9 32.6 
S F Quantico Creek, VA 1.0 92.6 49.7 53.7 

M Chopawamsic Creek, VA 1.1 52.9 20.9 39.4 
N Chopawamsic Creek, VA 1.1 79.5 35.9 45.2 
S Chopawamsic Creek, VA 1.1 31.2 13.8 44.3 

General Creek, CA 1.1 218.4 21.6 9.9 
Allison Creek, SC 1.1 376.1 158.2 42.1 
Wildcat Creek, SC 1.1 176.7 96.7 54.7 

Pennington Creek, OK 1.3 101.7 57.3 56.3 
Mill Creek, OK 1.3 114.9 89.4 77.8 
Rock Creek, OK 1.3 436.8 252.8 57.9 

Incline Creek, NV (Upstream) 1.4 55.5 14.1 25.4 
North Criner Creek, OK 1.5 84.6 21.4 25.3 

Incline Creek, NV 1.5 134.4 22.1 16.5 
Trout Creek, CA 1.6 208.4 38.4 18.4 

Little Washita River, OK 1.6 62.1 32.3 52.0 
Little Washita River,OK 

(Upstream) 1.6 10.2 6.1 60.4 

Lake Creek, OK 1.7 120.8 57.5 47.6 
Logan House Creek, NV 1.9 22.3 3.3 14.8 

Glenbrook Creek, NV 2.1 51.1 7.2 14.1 
Eagle Rock Creek, NV 2.1 14.9 1.4 9.6 

Pine Creek near Clarno, OR 2.7 1436.0 486.2 33.9 
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streamflow occurred (i.e., 𝐸𝐸𝑄𝑄 =0%).  Under this assumption, the best fit function was an 

exponential function, 𝛼𝛼𝑊𝑊 = 100𝑒𝑒−0.024𝐸𝐸𝑄𝑄   with R² = 0.73 as shown in Figure 4-7. 

From the fitted equation, an 𝐸𝐸𝑄𝑄 of 100% (i.e., minimum streamflow) corresponded to an 

𝛼𝛼𝑊𝑊 of 9.1 %.  Using the definition of perennial stream from the literature, 𝐸𝐸𝑄𝑄 of 90% and 80% 

corresponded to 𝛼𝛼𝑊𝑊 values of 11.4% and 14.7%, respectively.  Wang and Wu [2013] showed that 

perennial stream density declines from around 0.6 km/km2 to 0.2 km/km2 since the minimum 

streamflow decreases when 𝐸𝐸𝑃𝑃/𝑃𝑃  increases from 0.8 to 2.1 (i.e., less rainfall).  The drainage 

density slightly increases (around 9~13 km/km2) for 0.8 ≤ 𝐸𝐸𝑃𝑃/𝑃𝑃 ≤ 2.1 based on the dependence 

of drainage density on climate from Chapter 2.  Therefore, perennial stream ratio (PSR), defined 

as perennial stream length over the total valley length, for perennial stream declines with 𝐸𝐸𝑃𝑃/𝑃𝑃. 

 

 

Figure 4-7: The relationship between streamflow exceedance probability, 𝐸𝐸𝑄𝑄 and wet channel 
ratio (𝛼𝛼𝑊𝑊) in the study watersheds.  
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The perennial stream length of each watershed was obtained from the National 

Hydrography Dataset (NHD); and perennial stream ratio (PSR) was computed.  As shown in Figure 

4-8a, 𝐸𝐸𝑄𝑄 of perennial streamflow for each watershed was calculated using the relationship between 

𝐸𝐸𝑄𝑄 and 𝛼𝛼𝑊𝑊 shown in Figure 4-7.  The range of PSR for study watersheds was 1.2% to 29.4% with 

a mean of 11.0%; the range of 𝐸𝐸𝑄𝑄 corresponding to perennial streamflow was from 49% to 100% 

and the average value was 86%.  Figure 4-8b shows the distribution of perennial streamflow 𝐸𝐸𝑄𝑄 

for the study watersheds.  The distribution was represented by normalized frequency, defined as 

the ratio of the number of watersheds in each bin to the total number of watersheds.  71% of study 

watersheds had 𝐸𝐸𝑄𝑄 values greater than 80% corresponding to perennial streamflow. 

Perennial streamflow for each watershed was directly calculated from perennial stream 

length using the relationship between streamflow (Q) and wet channel length (𝐿𝐿𝑊𝑊) in Figure 4-6.  

Afterward, another 𝐸𝐸𝑄𝑄 of perennial streamflow was computed using the flow duration curve of 

each watershed.  The range of 𝐸𝐸𝑄𝑄 regarding perennial streamflow was from 51% to 100% and 

average value was 88%.   

The range of 𝐸𝐸𝑄𝑄 associated with perennial streamflow was similar using both relationships 

and the mean values were 86% and  88%, respectively, which were in the range of reported values 

(i.e., 80 and 90%) from the literature [Hedman and Osterkamp, 1982; Hewlett, 1982; Texas Forest 

Service, 2000].  However, one should use caution when using the mean 𝐸𝐸𝑄𝑄  value to define 

perennial streams because 𝐸𝐸𝑄𝑄  values associated with perennial streamflow depends on the 

watershed characteristics such as groundwater, land use, soil, vegetation and topography. The 
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NHD perennial stream length, perennial stream ratio, perennial streamflow and 𝐸𝐸𝑄𝑄 of perennial 

streamflow for the study watersheds are listed in Table 4-3.  

 

 

Figure 4-8: (a) Streamflow exceedance probability, 𝐸𝐸𝑄𝑄 of perennial stream in study watersheds 
using the relationship between wet channel ratio (𝛼𝛼𝑊𝑊) and 𝐸𝐸𝑄𝑄 ; and (b) normalized frequency 
distribution of 𝐸𝐸𝑄𝑄 for the all study sites. 

 

Table 4-3: NHD perennial stream length, stream ratio, streamflow and 𝐸𝐸𝑄𝑄 of perennial 
streamflow for the study watersheds. 

Watershed 
NHD Perennial 
Stream Length 

[km] 

Perennial 
Stream Ratio 

[%] 

Perennial 
Streamflow 

[m3/s] 

(i) 𝐸𝐸𝑄𝑄 of 
Perennial 

Streamflow 
[%] 

(ii) 𝐸𝐸𝑄𝑄 of 
Perennial 

Streamflow 
[%] 

Chattahoochee River, GA 167.5 13.50 1.1541 80 90 
Ward Creek, CA (Upstream) 5.5 3.33 0.0037 100 97 

Blue Springs Creek, AL 25.2 13.40 0.0478 80 78 
Cedar Creek, KY 2.3 1.22 0.0009 100 100 
Brier Creek, KY 7.1 4.27 0.0056 100 72 

Blackwood Creek, CA (2010) 24.8 5.96 0.0466 100 95 
Blackwood Creek, CA (2012) 24.8 5.95 0.0466 100 95 

Ward Creek, CA (2010) 15.0 5.81 0.0199 100 90 
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(i) 𝐸𝐸𝑄𝑄 of perennial stream using the relationship between wet channel ratio (𝛼𝛼𝑊𝑊) and streamflow 
exceedance probability, 𝐸𝐸𝑄𝑄. 
(ii) 𝐸𝐸𝑄𝑄 of perennial stream using the relationship between streamflow (Q) and wet channel length (𝐿𝐿𝑊𝑊). 
 

4.4 Conclusion 

The purpose of this study was to assess the streamflow characteristics of perennial streams 

using the relationship between streamflow exceedance probability (𝐸𝐸𝑄𝑄) and wet channel ratio (𝛼𝛼𝑊𝑊) 

based on wet channel networks extracted from LiDAR data.  30 watersheds were selected based 

on the available LiDAR data and streamflow observations. A method developed by Hooshyar et 

al. [2015] was utilized for extracting valley and wet channel networks based on LiDAR 

topographic and intensity information with a spatial resolution of 1-meter. 

Ward Creek, CA (2012) 15.0 5.81 0.0199 100 90 
S F Quantico Creek, VA 13.2 14.27 0.0161 78 80 

M Chopawamsic Creek, VA 8.8 16.69 0.0082 72 90 
N Chopawamsic Creek, VA 9.5 11.95 0.0092 85 87 
S Chopawamsic Creek, VA 3.5 11.18 0.0017 88 99 

General Creek, CA 18.1 8.27 0.0272 100 84 
Allison Creek, SC 68.3 18.16 0.2551 68 51 
Wildcat Creek, SC 31.6 17.87 0.0698 69 72 

Pennington Creek, OK 29.9 29.38 0.0636 49 96 
Mill Creek, OK 17.5 15.25 0.0259 75 96 
Rock Creek, OK 9.9 2.26 0.0099 100 100 

Incline Creek, NV (Upstream) 5.4 9.70 0.0036 93 100 
North Criner Creek, OK 3.8 4.46 0.0020 100 77 

Incline Creek, NV 15.3 11.42 0.0207 87 100 
Trout Creek, CA 18.1 8.68 0.0273 98 100 

Little Washita River, OK 1.6 2.51 0.0004 100 95 
Lake Creek, OK 24.5 20.28 0.0455 64 59 

Logan House Creek, NV 4.7 21.18 0.0028 62 73 
Glenbrook Creek, NV 6.4 12.49 0.0047 83 88 
Eagle Rock Creek, NV 1.8 11.86 0.0005 85 100 
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Using observed streamflows and identified wet channels, the power law relationship 

between wet channel length and streamflow was derived and the scaling exponent of this 

relationship was within the range of reported values in the literature.  This relationship was 

converted into non-dimensional form using 𝐸𝐸𝑄𝑄 and 𝛼𝛼𝑊𝑊 and the previous definition of perennial 

streams using 𝐸𝐸𝑄𝑄  values of 90% and 80% corresponded to 𝛼𝛼𝑊𝑊  values of 11% and 15%, 

respectively.  The perennial stream ratio of each study watershed was computed to validate the 

derived 𝛼𝛼𝑊𝑊 associated with the perennial stream definition and its mean value (i.e., 11%) was 

within the range of the 𝛼𝛼𝑊𝑊 associated with the definition of perennial streams in this study.  Also, 

the 𝐸𝐸𝑄𝑄 of perennial streamflow for each watershed was calculated and its mean value (86%) was 

similar to previous definition values (i.e., 80% and 90%).  

Non-dimensional analysis based on the relationship between 𝐸𝐸𝑄𝑄 and 𝛼𝛼𝑊𝑊 showed results 

that were consistent with previous research on perennial stream definitions, and demonstrated the 

potential to apply the 𝛼𝛼𝑊𝑊 as another parameter to define a perennial stream.  Also, the relationships 

found in this study are likely to be applicable in similar climates (e.g., 𝐸𝐸𝑃𝑃/𝑃𝑃: 0.8~2.1).  Additional 

research is needed to develop specific guidelines, including a consistent definition of perennial 

streams, and how the derived relationships apply to intermittent and ephemeral streams, as well as 

other climates (e.g. humid and arid).  

4.5 References 

Abrahams, A. D. (1984), Channel networks: a geomorphological perspective, Water Resources 

Research, 20(2), 161-188. 

96 
 



Acuña, V., T. Datry, J. Marshall, D. Barceló, C. Dahm, A. Ginebreda, G. McGregor, S. Sabater, 

K. Tockner, and M. Palmer (2014), Why should we care about temporary waterways, 

Science, 343(6175), 1080-1081. 

Blasch, K. W., T. Ferré, A. H. Christensen, and J. P. Hoffmann (2002), New field method to 

determine streamflow timing using electrical resistance sensors, Vadose Zone Journal, 

1(2), 289-299. 

Blyth, K., and J. Rodda (1973), A stream length study, Water Resources Research, 9(5), 1454-

1461. 

Bowen, Z. H., and R. G. Waltermire (2002), Evaluation of light detection and ranging (LIDAR) 

for measuring river corridor topography, Journal of the American Water Resources 

Association, 38(1). 

Budyko, M. I. (1958), The heat balance of the earth's surface, US Department of Commerce, 

Washington, DC. 

Budyko, M. I. (1974), Climate and Life, 508 pp., Academic Press, New York. 

Canny, J. (1986), A computational approach to edge detection, Pattern Analysis and Machine 

Intelligence, IEEE Transactions on(6), 679-698. 

Chow, V. T., D. R. Maidment, and L. W. Mays (1988), Applied hydrology. 

97 
 



Clubb, F. J., S. M. Mudd, D. T. Milodowski, M. D. Hurst, and L. J. Slater (2014), Objective 

extraction of channel heads from high-resolution topographic data, Water Resources 

Research, 50(5), 4283-4304. 

Day, D. (1978), Drainage density changes during rainfall, Earth Surface Processes, 3(3), 319-326. 

Godsey, S., and J. Kirchner (2014), Dynamic, discontinuous stream networks: hydrologically 

driven variations in active drainage density, flowing channels and stream order, 

Hydrological Processes, 28(23), 5791-5803. 

Goulsbra, C., M. Evans, and J. Lindsay (2014), Temporary streams in a peatland catchment: 

pattern, timing, and controls on stream network expansion and contraction, Earth Surface 

Processes and Landforms, 39(6), 790-803. 

Gurnell, A. (1978), The dynamics of a drainage network, Nordic Hydrology, 9(5), 293-306. 

Hedman, E., and W. Osterkamp (1982), Streamflow characteristics related to channel geometry of 

streams in western United States, Water Supply Papers-US Geological Survey (USA). 

Hewlett, J. D. (1982), Principles of forest hydrology, University of Georgia Press. 

Hooshyar, M., S. Kim, D. Wang, and S. C. Medeiros (2015), Wet channel network extraction by 

integrating LiDAR intensity and elevation data, Water Resources Research, 51(12), 10029-

10046. 

Howard, A. D., and G. Kerby (1983), Channel changes in badlands, Geological Society of America 

Bulletin, 94(6), 739-752. 

98 
 



Lashermes, B., E. Foufoula-Georgiou, and W. E. Dietrich (2007), Channel network extraction 

from high resolution topography using wavelets, Geophysical Research Letters, 34(23), 

L23S04. 

Levick, L. R., D. C. Goodrich, M. Hernandez, J. Fonseca, D. J. Semmens, J. C. Stromberg, M. 

Tluczek, R. A. Leidy, M. Scianni, and D. P. Guertin (2008), The ecological and 

hydrological significance of ephemeral and intermittent streams in the arid and semi-arid 

American southwest, US Environmental Protection Agency, Office of Research and 

Development. 

Madduma Bandara, C. M. (1974), Drainage density and effective precipitation, Journal of 

Hydrology, 21(2), 187-190. 

Marks, K., and P. Bates (2000), Integration of high-resolution topographic data with floodplain 

flow models, Hydrological Processes, 14(11-12), 2109-2122. 

Meinzer, O. E. (1923), Outline of ground-water hydrology, with definitions, US Govt. Print. Off. 

Melton, M. A. (1957), An analysis of the relations among elements of climate, surface properties, 

and geomorphology, DTIC Document. 

Morgan, R. (1972), Observations on factors affecting the behaviour of a first-order stream, 

Transactions of the Institute of British Geographers, 171-185. 

99 
 



NC Division of Water Quality (2010), Methodology for Identification of Intermittent and 

Perennial Streams and their Origins, Version 4.11, North Carolina Department of 

Environment and Natural Resources, Division of Water Quality. Raleigh, NC. 

Orlandini, S., and G. Moretti (2009), Determination of surface flow paths from gridded elevation 

data, Water resources research, 45(3). 

Orlandini, S., P. Tarolli, G. Moretti, and G. Dalla Fontana (2011), On the prediction of channel 

heads in a complex alpine terrain using gridded elevation data, Water Resources Research, 

47(2), W02538. 

Passalacqua, P., T. Do Trung, E. Foufoula-Georgiou, G. Sapiro, and W. E. Dietrich (2010), A 

geometric framework for channel network extraction from lidar: Nonlinear diffusion and 

geodesic paths, Journal of Geophysical Research: Earth Surface, 115(F1), F01002. 

Pelletier, J. D. (2013), A robust, two-parameter method for the extraction of drainage networks 

from high-resolution digital elevation models (DEMs): Evaluation using synthetic and real-

world DEMs, Water Resources Research, 49(1), 75-89. 

Rasmussen, C. E. (1999), The infinite Gaussian mixture model, paper presented at NIPS. 

Roberts, M. C., and O. Archibold (1978), Variation of drainage density in a small british columbia 

watershed, edited, Wiley Online Library. 

Schumm, S. A. (1956), Evolution of drainage systems and slopes in badlands at Perth Amboy, 

New Jersey, Geological society of America bulletin, 67(5), 597-646. 

100 
 



Simley, J. (2003), National Hydrography Dataset Newsletter, US Geological Survey Report, Vol. 

2. 

Sofia, G., P. Tarolli, F. Cazorzi, and G. Dalla Fontana (2011), An objective approach for feature 

extraction: distribution analysis and statistical descriptors for scale choice and channel 

network identification, Hydrol. Earth Syst. Sci., 15(5), 1387-1402. 

Svec, J. R., R. Kolka, and J. Stringer (2005), Defining perennial, intermittent, and ephemeral 

channels in eastern Kentucky: application to forestry best management practices, Forest 

Ecology and Management, 214(1), 170-182. 

Texas Forest Service (2000), Texas Forestry Best Management Practices, online report, 

http://txforestservice.tamu.edu/uploadedFiles/Sustainable/bmp/Publications/BMP%20Ma

nual_Aug2010%20-%20web.pdf. 

Whiting, J. A., and S. E. Godsey (2016), Discontinuous headwater stream networks with stable 

flowheads, salmon river basin, Idaho, Hydrological Processes, n/a-n/a. 

Wigington, P., T. Moser, and D. Lindeman (2005), Stream network expansion: a riparian water 

quality factor, Hydrological Processes, 19(8), 1715-1721. 

Wolfe, W. L., and G. J. Zissis (1989), The infrared handbook, ERIM, 1124-1127 pp. 

   

  

101 
 

http://txforestservice.tamu.edu/uploadedFiles/Sustainable/bmp/Publications/BMP%20Manual_Aug2010%20-%20web.pdf
http://txforestservice.tamu.edu/uploadedFiles/Sustainable/bmp/Publications/BMP%20Manual_Aug2010%20-%20web.pdf


CHAPTER 5: WETLAND IDENTIFICATION IN THE BARRIER ISLANDS 
OF EAST-CENTRAL FLORIDA BASED ON THE INTENSITY OF 

LIDAR RETURNS  

5.1 Introduction 

Wetlands are vital natural resources for biological diversity and ecosystem processes.  

Wetlands can recharge groundwater, mitigate flooding, remove pollutants, retain nutrients, and 

provide wildlife habitat and recreational functions [Dugan, 1992].  Wetland hydrology is the most 

significant factor in its ecosystem function and extent [Nestler and Long, 1997].  Small changes in 

water levels can affect the hydrologic regime and lead to significant changes in ecosystem function 

and characteristics [Mitsch and Gosselink, 2007].  Water levels in wetlands have seasonal 

variations depending on rainfall events and evapotranspiration, and many wetland areas contain 

standing water for short periods [Mitsch and Gosselink, 2007; Tiner, 1999].  Wetland extent and 

type can vary with climate, topography, land use, and vegetation [Maxa and Bolstad, 2009].  

Wetlands need to be monitored consistently in order to understand their inundation dynamics, 

function and health, and wetland mapping is a foundational part of any monitoring programs [Lang 

and McCarty, 2009; Huang et al., 2014]. 

Despite the importance of wetlands, there are many poorly mapped or totally unmapped 

wetlands and the minimum area of mapped wetlands are typically 0.5 ha or larger [Kudray and 

Gale, 2000; Hirano et al., 2003].  The U.S. Fish and Wildlife Service began to survey wetlands 

for the first time in 1954 and classified 20 wetland types using the depth of water or frequency of 

inundation [Shaw and Fredine, 1956].  The National Wetland Inventory (NWI) program has been 
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providing geospatial wetland data in 1:24,000 scale since the mid -1970s [Wilen and Bates, 1995; 

Tiner, 2009].  NWI, generated by aerial photographs and field verification, is one of the most 

common U.S. wetland maps [Tiner, 1999].  The mapping method for NWI requires staff trained 

in photointerpretation techniques and extensive fieldwork to meet the acceptable accuracy [Maxa 

and Bolstad, 2009] and requires intensive time and effort [Lang et al., 2013].  The vegetation cover 

is also an important factor in wetland mapping; for instance, palustrine forested wetlands are one 

of the most difficult wetland types to map because the ground surface is obscured by the canopy 

[Tiner, 1990]. 

Recent advances in remote sensing technology provide an opportunity to enhance wetland 

mapping and inventory.  Near-infrared (NIR) radiation is reflected by vegetation and dry soil but 

absorbed by water. Based on the characteristics of NIR and green light, the normalized difference 

water index (NDWI) was proposed by McFeeters [1996] and used for identifying open water 

features [Xu, 2006].  Airborne light detection and ranging (LiDAR) has the potential to improve 

our understanding of the location and characteristics of wetlands, especially in locations where 

wetlands are difficult to identify using optical data (e.g., aerial photography) and field work.  

LiDAR is capable of producing fine spatial resolution data products and its canopy penetration 

ability helps to detect the properties of the underlying surface.  The airborne LiDAR sensor is an 

active remote sensing technique and emits NIR laser pulses, which are absorbed by or specularly 

reflected away from the sensor when they strike the water surface [Wolfe and Zissis, 1993; Brzank 

et al., 2008].  The LiDAR return intensity is the relative strength of the reflected signal and the 

intensity from water surface returns is typically lower than that from dry land surface.   
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There are a number of recent studies for wetland detection using LiDAR data [Hogg and 

Holland, 2008; Julian et al., 2009; Lang and McCarty, 2009; Maxa and Bolstad, 2009; Leonard 

et al., 2012; Lang et al., 2013].  Lang and McCarty [2009] showed the potential of LiDAR intensity 

data for the detection of inundation area beneath a forest canopy.  Maxa and Bolstad [2009] 

demonstrated a method for mapping wetland and identifying wetland types from high resolution 

satellite images and LiDAR-based elevation data.  Leonard et al. [2012] identified isolated small 

wetlands using LiDAR data coupled with local relief models that emphasize curvature.  Lang et 

al. [2013] developed a wetland mapping method based on a threshold of enhanced topographic 

wetness index including relief information.  The previous research has shown that LiDAR data is 

very useful as a preliminary result for wetland determinations [Gillrich and Lichvar, 2014].    

The objective of this paper was to develop a framework to detect wet areas with specific 

application to wetland identification using the geometric and intensity information in the point 

cloud generated by LiDAR systems.  After masking out areas of dense vegetation, wet areas were 

identified based on signal intensity of ground returns in barrier islands in East-Central Florida.  

5.2 Study Site and Data Sources 

5.2.1 Study Site 

The 56 km2 study site is located in northern Merritt Island on the east coast of central 

Florida as shown in Figure 5-1.  Human interventions such as reservoir construction, agriculture, 

and urbanization are minimal in this area and the dominant upland communities are scrub and pine 

flat woods [Provancha et al., 1986; Larson, 1992].  The climate is generally warm and humid; the 
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mean maximum temperature is 33 °C in July and the mean minimum temperature is 10 °C in 

January [Mailander, 1990].  Mean annual precipitation from 1888 to 1987 was 1366 ± 256 mm 

(mean ± SD); the amount of annual rainfall varies broadly from 848 mm to 2075 mm and the wet 

season occurs from May to October [Mailander, 1990].   

 

 

Figure 5-1: The location and aerial image of the study area in barrier islands in East-Central 
Florida. 

 

Merritt Island is a barrier island located in broad and flat lowlands, which generally have 

slow runoff and shallow water tables.  Figure 5-2a shows the elevation range in the area, which is 
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varies between -0.7 m to 7.6 m with an average elevation of 2.3 m relative to sea level datum.  The 

topographic variation in the study area is small and the average slope is 2.2 %.  

Most of study area is covered by wetlands, water and non-forested uplands.  Non-forested 

uplands consist of herbaceous and shrub/scrub lands.  Figure 5-2b shows the spatial distribution 

of land-use and land-cover in the study area.  The undeveloped area (water, wetland, forest, and 

non-forested uplands) and developed area (urban and transportation) cover 95% and 5% of the 

study area, respectively.  Developed area is dominated by the runway for Kennedy Space Center 

(KSC) and roads connected to the runway.  

 

 

Figure 5-2: (a) Elevation in the study area; and (b) land-use and land-cover map in study area. 
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5.2.2 LiDAR Data 

The study area was selected based on the heavy wetland presence and availability of 

LiDAR data.  The LiDAR survey in this area was conducted on September 16, 2007 using an 

Optech 3100EA system at an average altitude of 970 m above ground level.  There was no 

precipitation recorded in the 10 days prior to LiDAR acquisition in the study area as shown in 

Figure 5-3.  The relevant attributes of the LiDAR data points used herein included a Global 

Positioning System (GPS) time stamp, spatial coordinates (X, Y, Z), intensity, scan angle, and 

return number (first/last return).  The average point spacing and average point density of the entire 

LiDAR point cloud were 0.5 m and 4.0 points/m2, respectively.  The total angular coverage was 

±16° and the vertical accuracy was 24 cm [Dewberry, 2009].  The bare earth LiDAR points, in 

which structural components above the Earth’s surface such as vegetation and buildings were 

filtered out by the data provider, were used. The intensity raster and the land surface topography 

in the study area were derived by processing the bare earth point cloud data using the QCoherent 

LP360 toolbox for ArcGIS.  

 

107 
 



 

Figure 5-3: Precipitation and LiDAR acquisition date. 

 

5.3 Methodology 

The main information used for identifying wet and dry areas was the signal intensity of 

LiDAR ground returns.  LiDAR intensities on water surfaces are typically lower than those on the 

dry land surface because of the strong absorption of the light energy by water.  The returns for 

water surfaces are usually associated with low signal intensities, dropouts (laser pulse is sent but 

no or very weak echo is received), and a high relative variation of intensity [Höfle et al., 2009].  

The specular reflection from the water surface also contributes to low signal intensity.  When the 

return signal intensity is lower than a threshold, the data point is classified as a dropout and the 

point density decreases; areas with low point densities are often associated with water surface.  

Intensity is usually encoded as a DN (digital number) which is a dimensionless measure of the 
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amount of the relative energy being radiated by a point on a surface.  Figure 5-4 shows the intensity 

image of ground returns for the study area.  The intensity value varied from 1 DN (digital number) 

to 100 DN.  As shown in Figure 5-4, the intensity in the wetland, river and canal was much lower 

than that on road and dry land.  In this paper, a systematic procedure was developed to map 

wetlands based on the intensity of LiDAR ground returns.  The first step was to evaluate and 

exclude the scan angle effect on intensity (section 5.3.1); in the second step dense vegetation was 

masked out of the intensity maps (section 5.3.2); and the last step was to decompose the composite 

probability distribution function of intensity and identify the wet areas based on the intensity 

threshold [Hooshyar et al., 2015].  

 

Figure 5-4: LiDAR intensity map and zoom-in area for wetland, cannel and river in the study 
area. 
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5.3.1 Scan Angle Effect on Intensity 

LiDAR intensity on water surfaces generally can be relatively high when the scan angle is 

at nadir (directly beneath the aircraft and normal to the water surface).  Such signal saturation has 

the potential to introduce error into the estimation of wet and dry areas.  In order to evaluate the 

scan angle effect on intensity in the study area, multiple sample sites were generated to explore 

the characteristics of intensity on wet and dry surfaces.  Polygons were generated for each sample 

sites as shown in Figure 5-5a.  The sample sites for wet areas were generated on stream and canal 

areas because they exhibit a predictable, continuous low intensity pattern.  The sample sites for 

dry areas were selected on the road, dry ground or places where it was unclear whether the site 

was dry or wet.  Figure 5-5b and Figure 5-5c illustrates the sample site selection methodology.  A 

total 730 sample sites (395 wet and 335 dry) were generated for analysis in this study (Figure 

5-5a). 

 

Figure 5-5: (a) location of total sample sites; (b) sample sites for the zoom-in area; (c) aerial 
image for the zoom-in area. 
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The intensity statistics of the identified wet and dry samples were collected for the LiDAR 

snapshot.  Figure 5-6 shows that the intensity values in wet areas (Figure 5-6a) as a function of 

scan angle on water surface in the study area is more significant than in dry areas (Figure 5-6b).  

The intensities of some returns from the water surface higher than 100 DN when the scan angles 

were less than 3°.  These water surface returns with high intensity will pollute the subsequent 

statistics and must be filtered out.  Therefore, the returns with scan angle less than 3° and intensity 

higher than 100 DN were removed when the intensity map was generated. 

 

 

Figure 5-6: Scan angle effect of signal intensity on wet channels in the study area: (a) wet 
samples; (b) dry samples. 

 

5.3.2 Masking Dense Vegetation in Intensity Maps  

LiDAR point cloud data have multiple returns from co-located surfaces at different 

elevations and each point includes both intensity and elevation information.  At a minimum, there 
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is generally a ground return and canopy return from any laser pulse.  For example, Figure 5-7 

shows an aerial image of vegetated area (Figure 5-7a) in this study site, intensity from top of the 

canopy (Figure 5-7b) and ground surface (Figure 5-7c).  As shown in Figure 5-7c, the intensity of 

ground surface under canopy was relatively low and similar to the intensity of wet surface due to 

the absorption of near-infrared light by vegetation.  Therefore, densely vegetated areas can be 

misleading for classifying wet surfaces and need to be masked from the intensity map to improve 

the performance of wet surface identification.  The densely vegetated areas were classified as such 

when the ground elevation (ℎ𝑔𝑔) was significantly lower than the canopy elevation (ℎ𝑐𝑐), evaluated 

using Equation (5-1) where a pixel 𝑝𝑝 is densely vegetated if the following condition is satisfied: 

ℎ𝑐𝑐(𝑝𝑝) ≥ ℎ𝑔𝑔(𝑝𝑝) + ℎ𝑇𝑇      (5-1) 

where ℎ𝑇𝑇 is a minimum height of canopy and is set to 2 m in this study.  Figure 5-7d shows the 

identified densely vegetated areas that were filtered out from the intensity map and excluded for 

extraction of wet areas.  
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Figure 5-7: (a) Aerial image for a selected space. The intensity of returns from (b) the top of 
canopy and (c) the ground surface. (d) The extent of dense vegetation.   
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5.3.3 Decomposing Composite PDF of Intensity 

The intensity of LiDAR returns from dry surfaces is comparatively higher than wet 

surfaces.  If the intensity from a single type of surface (wet or dry) follows a Gamma distribution, 

the overall probability distribution function (PDF) of intensity represents a multimodal 

distribution.  The overall PDF of intensity shows the variation over the land surface and is derived 

from a frequency analysis of the intensity map.  Each mode of the overall PDF is associated with 

a type of ground surface such as wet or dry.  The overall PDF can be represented by a Gamma 

mixture model which is a generative model for a mixture of several individual Gamma 

distributions.  The general description of a Gamma mixture model is similar to a Gaussian mixture 

model (GMM) and is given by Equation (5-2) [Rasmussen, 1999] :  

𝑓𝑓(𝑥𝑥|𝑘𝑘1, … , 𝑘𝑘𝑁𝑁 ,𝜃𝜃1, … ,𝜃𝜃𝑁𝑁 ,𝑤𝑤1, … ,𝑤𝑤𝑁𝑁  ) = ∑ 𝑤𝑤𝑖𝑖 × G(𝑥𝑥|𝑘𝑘𝑖𝑖,𝜃𝜃𝑖𝑖)𝑁𝑁
𝑖𝑖=1    (5-2) 

where 𝑓𝑓 is the Gamma mixture distribution; G(𝑘𝑘𝑖𝑖,𝜃𝜃𝑖𝑖) is an individual Gamma distribution for the 

mode 𝑖𝑖 with shape parameter 𝑘𝑘𝑖𝑖 and scale parameter 𝜃𝜃𝑖𝑖.  𝑤𝑤𝑖𝑖 represents the corresponding weight 

or proportion of the mixture distribution and 𝑤𝑤𝑖𝑖 sums to unity for all values of 𝑖𝑖.   

The Expectation-Maximization (EM) algorithm [Moon, 1996] was utilized to estimate the 

mean, standard deviation and weight corresponding of the individual Gamma distributions.  The 

number of iterations of the EM algorithm was set to 1.5 × 104 and the tolerance was 1 × 10−8.  

The decomposed intensity PDFs of wet and dry areas were generated and one threshold, 

𝐼𝐼𝑊𝑊, was identified to differentiate wet and dry surfaces.  𝐼𝐼𝑊𝑊 was defined as the intensity at the 

intersection of the wet and dry PDFs.  Figure 5-8a graphically shows the individual PDFs and the 
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threshold for wet pixels.  The membership probability for each pixel was calculated by Equation 

(5-3): 

𝑃𝑃(𝑐𝑐 ∈ 𝑘𝑘|𝐼𝐼𝑐𝑐) = 𝑤𝑤𝑗𝑗×G(x|𝑘𝑘𝑗𝑗,𝜃𝜃𝑗𝑗)
∑ 𝑤𝑤𝑖𝑖×G(𝑘𝑘𝑖𝑖,𝜃𝜃𝑖𝑖)𝑖𝑖=W,D

, 𝑗𝑗 = W, D   (5-3) 

where 𝑃𝑃(𝑐𝑐 ∈ 𝑘𝑘|𝐼𝐼𝑐𝑐) represents the probability of pixel 𝑐𝑐 with intensity value 𝐼𝐼𝑐𝑐 and is a member of 

mode (i.e., cluster) 𝑗𝑗.  𝑗𝑗 can be either of wet (𝑊𝑊) or dry (𝐷𝐷) modes.  The membership probabilities 

of the wet and dry mode are shown in Figure 5-8b.   

 

  

Figure 5-8: (a) A schematic representation of the composite and the individual PDFs of intensity 
return along with the wet (𝐼𝐼𝑊𝑊) threshold.  (b) The membership probability of each mode.  

5.4 Results and Discussion 

Wet and dry surfaces were detected using 1-m DEM and intensity grid generated from the 

ground returns.  By decomposing the overall PDF of intensity using the methodology explained 

above, the intensity PDFs of wet and dry modes were extracted and the threshold 𝐼𝐼𝑊𝑊 was identified 

as 6 DN shown in Figure 5-9.  Figure 5-10a is an aerial image for a selected region in the study 

area with straight channels along the road and vegetation areas.  Figure 5-10b is the corresponding 

115 
 



intensity image and illustrates the low intensity pattern in the channels and parts of vegetation 

areas.  The wet surfaces and wet channel segments in the image had lower intensities than the 

surrounding lands.  This intensity image was classified into three categories; Vegetation, Wet and 

Dry; based on the intensity threshold established after the vegetation masking process.  Figure 

5-10c shows the classified land surface based on the intensity image shown in Figure 5-10b.  Most 

of channel areas, wetlands and surface impoundments in Figure 5-10c were classified as wet, and 

the areas under dense canopy were classified as vegetation. Roads, levees and dry surfaces were 

classified as dry.  

 

 

Figure 5-9:  The multimodal PDF of intensity returns and the extracted individual distributions 
representing wet and dry modes for study area.   
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Figure 5-10: (a) aerial image for a selected space in the study area; (b) intensity image for a 
selected space based on the LiDAR data; (c) classified three categories of land surface 
(Vegetation, Wet and Dry).  

 

Figure 5-12a shows the wetland areas identified by the U.S. Fish and Wildlife Service 

National Wetland Inventory (NWI) in study area.  This NWI map included wetlands as well as 

deeper waters such as ponds, lakes, rivers and creeks.  To investigate the accuracy of the NWI 

map, a sample area with wetlands and deep waters was selected.  Figure 5-11b and Figure 5-11c 

shows the NWI map and the aerial image for the zoom-in area, respectively.  The wetland areas 

identified in the NWI showed poor consistency with the aerial image, mainly because wetland 

extents are generally dynamic in response to hydrologic conditions such as water table elevation 

and prior precipitation; NWI wetlands were identified based on the maximum flooded static areas.  

However, the pattern of ponds, lakes and rivers from the aerial image was similar to NWI map 

because their extents are less dynamic than wetlands.  Therefore, the deep waters from NWI were 

used to validate the LiDAR-derived wet areas.  Figure 5-11d shows the three categories of land 
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surface with LiDAR data using the methodology described above and shows good agreement with 

the aerial image.  However, the wetland areas are dynamic depending on the conditions and NWI 

wetlands are the extreme flooded areas, therefore a simple comparison of both maps will not result 

in meaningful insights. 

The membership probability for each pixel was computed using Equation (5-3) and dense 

vegetation areas were excluded from the calculation.  The membership probabilities of the wet 

area for each pixel are shown in Figure 5-11e.  0% and 100% probabilities corresponded to totally 

dry and wet areas, respectively.  Pixel intensity on wet surfaces was less than or equal to the 

identified wet threshold (𝐼𝐼𝑊𝑊) but there were some edge cases where a dry surface produced an 

intensity below the threshold, typically when the wet membership probability was less than 100%.  

Likewise, pixel intensity on dry surfaces was higher than 𝐼𝐼𝑊𝑊 but they could similarly be wet based 

on their dry membership probability.  Thus, based on the intensity values, pixels could have been 

misclassified due to the inherent uncertainty. 
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Figure 5-11: (a) Wetlands and deep water such as river, channel, lake and pond identified by 
NWI in study area; (b) wetlands and deep water by NWI for the zoom-in area; (c) aerial image; 
(d) classified three categories of land surface (Vegetation, Wet and Dry); (e) membership 
probability for wet area. 

 

Figure 5-12a shows the three categories (Vegetation, Wet and Dry) of land surface and 

Figure 5-12b shows the membership probability for wet area.  Wet areas derived from LiDAR data 

are only valid for the time when the LiDAR survey is performed.  The vegetation areas may be 

wet or dry area but at this time their wet or dry state cannot be reliably predicted using this method.   
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Figure 5-12: (a) classified three categories of land surface in study area (Vegetation, Wet and 
Dry); (b) membership probability for wet area. 

 

The systematic method for mapping wet areas was applied to Merritt Island in East-Central 

Florida with all available 2007 LiDAR data.  Figure 5-13 shows the location of the subject barrier 

islands (Figure 5-13a) and ground return intensity of 2007 LiDAR (Figure 5-13b).  There were no 

LiDAR data available over the water surface associated with of Mosquito lagoon (middle of upper 

area) and Banana river (middle of lower area); however, this did not affect the identification of 

wet/dry area.  The intensity image was classified into three categories (Vegetation, Wet and Dry) 

based on the intensity threshold and elevation data.  Figure 5-13c shows the classified land surface 

based on the intensity image shown in Figure 5-13b.  Rivers, wet channels, and wetlands were all 

included as wet areas.   
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Figure 5-13: Map for Merritt Island with total available LiDAR data; (a) satellite image of 
Merritt Island area; (b) intensity image based on the 2007 LiDAR data; (c) classified three 
categories of land surface (Vegetation, Wet and Dry).  

5.5 Summary and Future Research 

LiDAR provides an interesting opportunity for mapping the wetland because of the high 

spatial resolution and the signal penetration through the canopy.  This study demonstrated the 

potential of LiDAR for wetland mapping.  A systematic method was developed for mapping the 

wet area based on LiDAR elevation and intensity information.  Ground intensity information 

below dense vegetation was not descriptive enough to extract wet areas, thus dense vegetation 

locations were filtered out of the detection areas.  The method exploited the differences between 

LiDAR return intensities from wet and dry surfaces; LiDAR intensities on water surfaces are 

generally lower than those on the dry land surface due to the strong absorption and / or specular 

reflection of the light energy by the water.  The intensity threshold used to identify wet surfaces 
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was identified by decomposing the composite PDF of intensity using a Gamma mixture model and 

the Expectation-Maximization algorithm.  

The proposed method for identifying wet areas is applicable to other regions with varying 

climatic and topographic gradients.  Field and LiDAR surveys can proceed simultaneously to 

validate the developed method.  Also, the more detailed study of wetland dynamics is possible if 

there are the multiple or regular LiDAR acquisitions.  In the future, the water penetration limitation 

of NIR LiDAR can be overcome by incorporating green LiDAR. The green LiDAR signal can 

penetrate water surface and the returns can provide water depth information that can be used to 

track bathymetric morphology.  All of these possibilities stand to enhance the understanding 

wetland characteristics and the accuracy of wetland mapping using readily available LiDAR data.   
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CHAPTER 6: CONCLUSION  

6.1 Conclusion 

The objective of this dissertation was to evaluate the hydroclimatic controls on drainage 

network dynamics and characterize the variation of drainage density in various climate regions.  

To this end, the study watersheds were selected based on the availability of streamflow 

observations and LiDAR data.  LiDAR data were acquired, processed and applied for generating 

intensity maps and land surface topography with a spatial resolution of 1-meter.  Climate aridity 

index (𝐸𝐸𝑃𝑃/𝑃𝑃) was used as a quantitative indicator for climate.   

In the study, methods were developed to extract the valley and wet channel networks using 

LiDAR data.  A curvature-based method, incorporating both positive and negative curvature 

information, was developed to extract a valley (drainage) network from LiDAR-based DEMs; wet 

channel networks were mapped based on a statistical detection framework using the elevation and 

intensity information. 

This research revisited the influence of climate controls on drainage density based on 121 

watersheds with minimal to no anthropogenic intervention across the climate gradient and drainage 

density was calculated by valley networks extracted using the topographic curvature threshold 

from 1-m LiDAR based DEMs.  The relationship between drainage density and climate aridity 

index showed a monotonic increasing trend; while the previous studies from Melton [1957] and 

Madduma Bandara [1974] showed a U-shaped relationship.  This discrepancy was explained by 

two factors: 1) the humid watersheds from Madduma Bandara [1974] were modified by extensive 
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human interferences from a tea plantation; and 2) the drainage densities from Melton [1957] were 

underestimated due to the coarse spatial resolution (30-meter) of the topographic maps.  

Meanwhile, we found that the negative correlation between drainage density and drainage area 

only occurs in arid regions.  

In situ observations of wet channel networks are limited in headwater catchments in 

comparison with the importance of the dynamics of stream network expansion and contraction.  

The systematic method was developed to map wet channel networks by integrating elevation and 

signal intensity of ground returns.  The signal intensity thresholds for identifying wet channels 

were extracted from frequency distributions of intensity return.  The developed method was 

applied to the Lake Tahoe area based on eight LiDAR snapshots during recession periods in five 

watersheds.  A power-law relationship between streamflow and flowing channel length during the 

recession period was derived based on these results.  The scaling exponent was within the range 

of reported values from fieldwork in other regions.  

The streamflow characteristics of perennial streams were assessed using the relationship 

between streamflow exceedance probability (𝐸𝐸𝑄𝑄) and wet channel ratio (𝛼𝛼𝑊𝑊) based on wet channel 

networks extracted from LiDAR data.  Non-dimensional analysis based on the relationship 

between 𝐸𝐸𝑄𝑄  and 𝛼𝛼𝑊𝑊 showed consistent results with previous researches about perennial stream 

definition, and provided the possibility to use 𝛼𝛼𝑊𝑊 as another indicator to define a perennial stream.   

A detection framework for wet area to aid in wetland mapping was developed based on 

LiDAR elevation and intensity information.  The method utilized differences between LiDAR 

return intensities from water and dry surfaces to detect wet areas after masking out densely 

vegetated areas extracted from LiDAR topographic information for barrier islands in East-Central 
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Florida.  The intensity threshold for wet surfaces was identified by decomposing the composite 

PDF of intensity using a Gamma mixture model and the Expectation-Maximization algorithm.  

This method showed the potential for wetland mapping.  

The methodologies in this dissertation demonstrated that incorporating LiDAR data into 

the mapping of drainage networks, stream network dynamics and wetlands will enable a much 

deeper understanding of hydroclimatic controls on steam network dynamics.  LiDAR data provide 

rich, readily available sources of information including elevation and intensity, and are of great 

benefit to the hydrologic research community.  

6.2 Future Research 

As an extension to this research, topographic features such as slope, drainage area, 

topographic curvature, topographic index, and others can be extracted for the valley heads, channel 

heads, perennial stream heads, and wet channel heads.  Properties of the topographic features from 

each head can be quantified and the potential patterns of these properties over time across climate 

gradients will be evaluated.   

In addition, climate controls on perennial and temporal (intermittent and ephemeral) 

streams, and their density can be quantified using the LiDAR-based drainage networks.  Perennial 

and temporal streams can be defined based on the relationship between streamflow exceedance 

probability and wet channel ratio (i.e. wet channel length over total drainage length).  Perennial 

streams reflect a hydrologic response to the climate at the mean annual scale and temporal streams 

depend on the seasonal and event scale. Therefore, the climate seasonality control on intermittent 

streams and the storminess control on ephemeral streams can be quantified.  
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Appendix A: Connected Wet Channel and Valley Network in Study Sites 

        
Figure A- 1: Tucca Creek, OR                                     Figure A- 2: Schafer Creek, OR 

  

Figure A- 3: Chattahoochee River, GA     Figure A- 4: Blue Springs Creek, AL 
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Figure A- 5: Cedar Creek, KY   Figure A- 6: Brier Creek, KY 
 

     

Figure A- 7: Blackwood Creek (2010), CA           Figure A- 8: Blackwood Creek (2012), CA   
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Figure A- 9: Ward Creek (2010), CA   Figure A- 10: Ward Creek (2012), CA 
 

     

Figure A- 11: S F Quantico Creek, VA           Figure A- 12: M Chopawamsic Creek, VA 
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Figure A- 13: N Chopawamsic Creek, VA  Figure A- 14: S Chopawamsic Creek, VA 
 

    

Figure A- 15: General Creek, CA          Figure A- 16: Allison Creek, SC 
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Figure A- 17: Wildcat Creek, SC   Figure A- 18: Pennington Creek, OK 

         

Figure A- 19: Mill Creek, OK    Figure A- 20: Rock Creek, OK 
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Figure A- 21: North Criner Creek, OK  Figure A- 22: Incline Creek, NV 

         

Figure A- 23: Trout Creek, CA   Figure A- 24: Little Washita River, OK 
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Figure A- 25: Lake Creek, OK   Figure A- 26: Logan House Creek, NV 
 

        

Figure A- 27: Glenbrook Creek, NV   Figure A- 28: Eagle Rock Creek, NV 

 

 

137 
 



 

 

        

Figure A- 29: Pine Creek near Clarno, OR 
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