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ABSTRACT 

Although it has been more than 20 years since the publication of Curriculum and 

Evaluation Standards for School Mathematics (NCTM, 1989) and 10 years since the second 

version of standards, Principles and Standards for School Mathematics (NCTM, 2000), the 

research underlines the lack of essential practices for standards-based teaching (Franke, Kazemi, 

& Battey, 2007). The literature also emphasizes the importance of planning in standards-based 

teaching, although few studies focus on the direct planning of the teacher (Kilpatrick, Swafford, 

& Findell, 2001). The aim of the current study was to conduct a case study to extract the 

planning and classroom practices of an expert seventh grade mathematics teacher. The extracted 

practices were interpreted using the teaching-in-context theory which is based on the beliefs, 

goals, and knowledge of the teacher. The case study was conducted in a design experiment 

environment where the instructional sequence was revised based on the classroom instruction.  

 The data were collected through different resources including videotapes of classroom 

sessions, teacher notes, students‟ artifacts, audiotapes of daily teacher interviews, weekly teacher 

meetings and classroom small groups in five weeks. Transcripts were used to observe the action 

patterns of the teacher during both planning and classroom practices. By triangulating the data, 

planning practices were separated into five categories: preparation, reflection, anticipation, 

assessment, and revision. These practices were interrelated in an environment of collaboration. 

Classroom practices also were categorized into five groups, namely creating and sustaining 

social norms, facilitating genuine mathematical discourse, supporting the development of 

sociomathematical norms, capitalizing on students‟ imagery to create inscriptions and notation, 

and developing small groups as communities of learners. Similar to the planning practices, these 
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were also highly interrelated with social norms playing a key role in application of all other 

practices. 

The results showed that the expert teacher used a diverse set of practices with each 

practice comprised of multiple actions to create and sustain a standards-based environment. The 

results also indicated that standards-based teaching requires a rich and connected body of 

knowledge about students, curriculum, content, and literature. It was found that the depth of the 

teacher‟s knowledge allowed her to develop practices that were consistent with her beliefs and 

goals. Finally, the planning and classroom practices were found to be highly interrelated. While 

effective planning practices facilitated the application of standards-based teaching, the classroom 

teaching practices equipped the teacher with the data necessary to perform effective planning 

practices. 
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CHAPTER ONE: INTRODUCTION 

A standards-based teaching and learning environment gives students the opportunity to 

develop robust understanding of mathematics by encouraging them to participate in 

mathematical discussions, ask mathematical questions, make conjectures about solving 

problems, and listen to mathematical arguments (National Council of Teachers of Mathematics 

[NCTM], 1989, 2000). Although the Principles and Standards for School Mathematics (NCTM) 

empowers teachers to create classrooms that facilitate students‟ mathematical inquiry, the 

challenges that need to be overcome for its successful implementation are numerous (Hufferd-

Ackles, Fuson, & Sherin, 2004; Smith, 1996; Spillane & Zeuli, 1999). This study was a case 

study investigation of how an expert middle school mathematics teacher sustained effective 

instruction that was consistent with the tenets of NCTM standards documents (1989, 2000). The 

focus of the study was to extract and analyze the planning and classroom practices employed by 

the teacher, which played a crucial role in establishing a productive standards-based 

environment. The integers topic was chosen for analysis as this task and setting might pose 

various challenges both for the teacher and the students such as the concept of negative numbers 

and the arithmetic operations that can be applied on them (Ball, 1993). 

Significance of Study and Research Questions 

The successful implementation of mathematics education reform requires that teachers 

make significant changes in traditional teaching practices and develop a standards-based 

teaching and learning environment (NCTM, 2000). According to the reform movements, the 

student is not seen as a sole recipient that acquires knowledge directly from the teacher without 

questioning but as a learner who makes sense of mathematics by conjecturing, arguing, proving 

and discussing the ideas with his or her peers (Smith, 1996). However, creating and sustaining an 
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effective standards-based environment is not trivial. The teacher needs to behave as a facilitator 

to create an environment that supports students to construct their own mathematical 

understanding rather than act as a knowledge source who only shows the procedures to get to the 

right answer (NCTM, 1991). Providing information by collectively making sense with the 

students rather than through direct instruction is a less clearly known method of instruction for 

many teachers. One of the important reasons for this is their past experience in traditional 

classrooms, which gives them little insight for teaching in a standards-based classroom (Ball, 

1994; Goldsmith & Schifter, 1997; Schoenfeld, 1992).  

Sometimes this kind of environment is mistakenly interpreted as a type of instruction where 

teachers need to withhold information and ideas from students and simply let them explore. 

However, students cannot be expected to discover everything. A teacher may need to show the 

commonly used words and symbols in mathematics, present an alternative method that has not 

been presented by a student, or restate what students explain in an organized and clear language 

(Hiebert, 2003). Teachers may also have misconceptions regarding the proper use of 

manipulatives and collaborative groups. Teachers may incorporate these tools without supporting 

students‟ understanding (NCTM, 2000). For example, many times manipulatives are given to 

students and the teacher tells them how to use the tools. However, students may have difficulty 

connecting or seeing the relationships between the manipulatives and the mathematics they are 

meant to embody since students do not have the same knowledge as the teacher (Cobb, Yackel, 

& Wood, 1992). The teacher needs to develop the mathematical understanding of students as 

they use manipulatives rather than just tell the students a relationship between the tool and the 

mathematics. Similarly, in small groups, students may not know what kind of questions to ask 

their friends or how to work collaboratively. Teachers also need to support students in small 
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groups to create effective conversations and questions rather than just physically create the 

groups and leave students to work (Ball, 1990; Cohen, 1990; Cohen, 1994).  

Even when teachers have an accurate understanding of the goals of the standards-based 

instruction, they often struggle with determining which practices they need to employ for 

successfully implementing them in their classrooms (Hufferd-Ackles, et al., 2004). This study 

aims to shed light on these problems by extracting and analyzing the planning and classroom 

practices of an expert middle school mathematics teacher who teaches consistent with the tenets 

of the NCTM Standards and facilitates students‟ mathematical inquiry. 

Overview of the Study 

Classroom practices can be defined as the pattern of routines and social interactions that 

take place between the teacher and the students and among the students themselves (Saxe, 1999). 

Planning practices, on the other hand, are comprised of the offline activities of the teacher as she 

analyzes the content that will be presented and determines its most important points (Ball, 1993). 

These practices may include the analysis of classroom lessons including planning for how to 

introduce the key ideas, how to choose the appropriate tasks that will achieve the desired 

objectives, and how to create assessments that adequately measure them. The practices that lie at 

the heart of a standards-based mathematical environment can be summarized as tasks, discourse, 

environment and analysis (NCTM, 1991). 

Even when a teacher is knowledgeable about these practices, creating and sustaining a 

standards-based classroom is a difficult task which brings additional responsibilities (Ball, 1993; 

Franke, Kazemi, & Battey, 2007; Lampert, 2001). The teacher has to know how to create a good 

plan, how to revisit the plan and make adjustments based on the realities of the classroom, and 

how to carry out the plan despite the various challenges that may be faced in the classroom. 
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Furthermore, being aware of different types of practices may not be enough for applying them 

effectively. For instance, a teacher might recognize the importance of small group activities to 

create a productive standards-based environment, but she might not know what her role should 

be, or how to meaningfully engage her students in small groups. 

Reform efforts emphasize the teacher‟s role as a facilitator who proactively supports 

students‟ learning (NCTM, 1989, 2000). The teacher is an active orchestrator that supports the 

development of mathematical practices as well as students‟ individual activities (Ball, 1993; 

Cobb, Wood, & Yackel, 1993; Lampert, 1990). The teacher needs to pay attention to the 

mathematical discussion in the classroom and think about how these conversations can be used 

in further mathematical constructions (Ball, 1993).  Cobb et al. (1991) describes the teacher‟s 

role in creating and sustaining an environment that facilitates students‟ mathematical inquiry as: 

highlighting conflicts between alternative interpretations or solutions, helping students   

develop productive small group collaborative relationships, facilitating mathematical 

dialogue between students, implicitly legitimizing selected aspects of contributions to a 

discussion in light of their potential fruitfulness for further mathematical constructions, re-

describing students‟ explanations in more sophisticated terms that are none the less 

comprehensible to students, and guiding the development of taken-as-shared
1
 

interpretations when particular representational systems are established (p. 7). 

Several studies have aimed at understanding the teacher‟s role in standards-based 

mathematics education. These studies can be grouped into three main categories. In the first 

category, the teacher-researcher analyzes her own teaching and shares her experiences that she 

                                                 
1
 Members of the community have no direct access to other‟s understanding but may achieve the sense that some 

aspects of the understanding are shared (Cobb et al., 1992).  
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gained in the course of the study. A prominent example of this type of research was conducted 

by Lampert (2001), where she studied a year-long instruction of a 5
th

 grade mathematics 

classroom and collected her experiences, insights, and ideas in her book “Teaching Problems and 

the Problems of Teaching”. Another example is Simon (1995), where he analyzed specific 

sessions (in which he was the teacher) of a prospective teacher education program aimed to 

increase preservice teachers‟ mathematical knowledge and foster their views of mathematics 

teaching and learning consistent with reform standards. This type of research where one focuses 

on his or her own instruction is also called the first-person perspective (Ball, 2000). 

In the second category, a research team supports and analyzes a teacher as the teacher tries 

to create a standards-based classroom atmosphere. The research team, in collaboration with the 

teacher, tries to identify the challenges faced, and develop strategies that can be useful in 

overcoming those challenges. Constant reflection and discussion of the teaching practice creates 

a supportive environment for the teacher where she can grow and learn (Cobb et al., 1991; 

Dixon, Andreasen, & Stephan, 2009; McClain, 1995). 

In the third category, a third-person observer-researcher examines the teaching practices, 

decision making process, and interactions of the teacher with the students without exerting any 

influence on the teacher. Here, the teacher being examined can either be an expert or a non-

expert teacher depending on the goals of the research (Schoenfeld, 1998; Schoenfeld, Minstrell, 

& van Zee, 2000). This type of research is usually conducted as a case study as the researcher 

merely observes and studies a teacher without affecting her natural teaching style.  

The current study can be considered as a combination of the second and the third categories 

since it attempted to unravel the planning and classroom practices of an expert middle school 

mathematics teacher with the researcher being an observer in the classroom and a participant 
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during the teacher meetings. The key differences of the current study from the earlier studies 

were that: (1) The current study focused on the implementation of a teaching and learning 

environment that supports students‟ mathematical inquiry for middle school whereas the earlier 

work mainly focused on elementary school. (2) The current study attempted to unravel both 

planning and classroom practices, and their relationship to each other, whereas the previous work 

predominantly investigated the classroom practices. (3) The current study investigated how the 

teacher‟s practices were affected by her beliefs, goals, and knowledge during the instruction of 

an entire unit, while the previous studies focused on short teaching intervals such as a part of a 

single classroom session. 

Research Focus 

The framework that guided this study was developed by the Teacher Model Group at 

Berkeley. The aim of this theory is to explain how and why teachers do what they do in the 

classroom. The model describes teachers‟ moment-to-moment decisions and actions based on 

their beliefs, goals, and knowledge (Schoenfeld, 1998).  

This case study was conducted as part of a design research to investigate the expert 

teacher‟s natural teaching style during the planning and classroom practices she employed 

(Merriam, 2009). The analyses of the data were based on the grounded theory approach which 

was designed by Glaser and Strauss (1967). Grounded theory is a method for exploring 

hypotheses, concepts and propositions directly from the data rather than using prior assumptions. 

The current study used the constant comparative method, which involved simultaneously coding 

and analyzing data in order to develop concepts that represent the phenomena (Taylor & Bogdan, 

1984).   
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The literature emphasizes the need for studies that elaborate on the core practices that are 

essential for successful implementation of a mathematical environment consistent with the tenets 

of the NCTM Standards (Franke, Kazemi, & Battey, 2007). This study aimed to address these 

issues through the following research questions: 

1. What are the planning and classroom practices of an expert middle school mathematics 

teacher to sustain a standards-based environment?  

2. What are the teacher‟s beliefs, goals, and knowledge that underlie the development of 

these practices?  

3. What is the nature of the relationship between classroom and planning practices? 

By answering these questions the researcher aimed to provide a detailed perspective into what it 

takes to teach consistent with the NCTM Standards. In the following chapter, studies that 

addressed standards-based teaching and the challenges teachers face when teaching in such an 

environment are explained in detail. Additionally, the importance of teachers‟ decision-making 

processes in order to cope with these challenges and the differences between novice and expert 

teachers‟ practices are summarized. 
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CHAPTER TWO: LITERATURE REVIEW 

A major effort for setting comprehensive goals for students to learn mathematics with 

understanding was undertaken by NCTM in 1989 with the release of Curriculum and Evaluation 

Standards for School Mathematics (NCTM, 1989). The core of the document was the 

development of mathematical power for all students including learning of mathematical value, 

becoming confident in the ability of doing mathematics, becoming problem-solvers, and learning 

to communicate and reason mathematically. Mathematics instruction would no longer focus on 

heavy memorization and drill procedures, but rather on conceptual understanding built on 

students‟ current knowledge (Goldsmith & Shifter, 1997). Since this movement required major 

changes in teachers‟ and students‟ practices, it is also known as the “reform movements” in 

teaching and learning mathematics. The standards documents emphasized the teacher‟s main role 

as a facilitator who develops students‟ mathematical reasoning, rather than a presenter that only 

shows the procedures for solving mathematical problems. NCTM later published Professional 

Standards for Teaching Mathematics (here after referred to as Teaching Standards) in 1991 that 

elaborated the purpose of standards-based teaching as: 

selecting mathematical tasks to engage students‟ interest and intellect; providing 

opportunities to deepen [students‟] understanding of the mathematics being studied and its‟ 

applications, orchestrating classroom discourse in ways that promote the investigation and 

the growth of ideas; seeking and helping students seek, connection to previous and 

developing knowledge; and guiding individual, small group and whole class work (NCTM, 

1991, p. 1). 

Here it is important to note that the reforms do not prescribe a specific way of teaching but 

outline and illustrate the goals of the standards that teachers can use as a guide.  Following the 
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standards for teaching mathematics, NCTM published Assessment Standards for School 

Mathematics in 1995. These three documents (NCTM, 1989, 1991, 1995) were revised and 

resulted in the Principles and Standards for School Mathematics (here after referred to as 

“Principles and Standards”) which was released in April 2000. This document refined the 

curricular aspects of previous documents, emphasizing five content standards (number, algebra, 

geometry, measurement, and data analysis and probability) highly related with five process 

standards: problem solving, reasoning and proof, connections, communications, and 

representations. The document also described the particular features of high quality mathematics 

education under six main categories (equity, curriculum, teaching, learning, assessment, and 

technology).  Additionally, the NCTM Curriculum Focal Points were published as a guideline 

that supports three different big ideas for each grade level in grades Pre-K through 8 with several 

supporting ideas (NCTM, 2006). The intent of the Focal points was to emphasize the importance 

of teaching in a manner where students can explore the mathematical ideas deeply so that the 

same content would not have to be repeated every year. NCTM Standards documents (NCTM, 

1989, 1991, 2000, here after referred as “NCTM Standards”) underlined the importance of 

teaching and learning mathematics with deep and flexible understanding .  

Principles and Standards state that, “Students must learn mathematics with understanding, 

actively building new knowledge from experience and prior knowledge” (NCTM, 2000, p.20). 

School experiences of students should support mathematics by engaging them in exploration of 

mathematical situations, communication of the ideas during this exploration, as well as 

modification and validation of those ideas in the classroom. Mathematics should not be 

understood as a body of knowledge that can be mastered only by some students. All students 

should be given the opportunity to learn mathematics meaningfully. Students need to experience 
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mathematics as an authentic activity (Lampert, 1990). If students see mathematics as an activity 

rather than a series of procedural computations, they will take an active role in making 

conjectures and responding to the others‟ ideas (NCTM, 2000). 

To accomplish these goals, teachers have a central role in changing the ways of teaching 

and learning mathematics (NCTM, 1989, 2000). The standards-based (or reform-based) teaching 

can be described as the kind of teaching that is supported by the NCTM Standards or reform 

movements (NCTM, 1989, 1991, 2000). The core of the standards-based teaching is to believe 

that “learning occurs as students actively assimilate new information and experiences and 

construct their own meanings . . . students do not learn simply a subset of what they have been 

shown” (NCTM, 1991, p. 2). The NCTM Standards endorse that classrooms should be organized 

as mathematical communities where students can work together in order to make sense of 

mathematics; rely on logic and mathematical evidence for verification; connect mathematical 

ideas; and make conjectures, invent, and solve problems. Thus, as Goldsmith and Shifter (1997) 

put it, in order to support the NCTM Standards “teachers, together with their students, [need to] 

create a culture of mathematical inquiry aimed at developing deep and flexible understanding of 

the domain” (p. 20).  

However, many times teaching aligned with the tenets of the NCTM Standards are applied 

superficially only based on supporting the physical environment, giving problem-solving tasks or 

discourse with less attention to students‟ understanding of the mathematical content (NCTM, 

2000). Standards-based teaching is more than only acquiring some instructional techniques. 

Teachers need to reflect on their beliefs about teaching and learning mathematics such as by 

focusing on the ways that students‟ mathematical understandings develop or by analyzing their 

own practice (NCTM, 1991).  
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In accordance with the NCTM Standards, many mathematics educators also argued that 

students should be given the opportunity to actively explore mathematical concepts by focusing 

on reasoning (e.g. why it works) and building on their personal knowledge (Ball, 1993; Cobb et 

al., 1993; Goldsmith & Schifter, 1997; Fennema et al., 1993; Lampert, 1991).  In order to make 

sense of those concepts individually, students should be given opportunities to represent their 

ideas, make conjectures, collaborate with other students, and give explanations and arguments 

(NCTM, 1989; 2000).  Studies show that when students give explanations or make conjectures, 

they elaborate, clarify, and reorganize their thinking. During the disagreements with others, they 

re-think and re-evaluate their ideas to support conceptual understanding (Ball, 1993; Cobb, 1988; 

Lampert, 1990).  

Teachers‟ perspectives about mathematical proficiency also have a profound effect on the 

ways in which they apply the reforms supported by the NCTM Standards. The definition of 

mathematical proficiency presented in the consensus document Adding It Up addresses five 

interrelated strands: conceptual understanding such as comprehension of mathematical concepts; 

procedural fluency such as carrying out procedures flexibly; strategic competence such as the 

ability to formulate mathematics; adaptive reasoning such as explanation and justification; and 

productive disposition such as viewing mathematics as a sensible, useful, and worthwhile subject 

(Kilpartick, Swafford, & Findell, 2001). These strands do not develop in a linear order but with 

an interaction that goes back and forth among them.   

There have been many studies that have provided essential contributions to understanding 

the teacher‟s practices that are aligned with the NCTM Standards. However, while some of the 

descriptions of practices were extracted from a single lesson in a teacher‟s classroom (Arcavi, 

Kessel, Meira, & Smith, 1998; Schoenfeld, Minstrell, & Van Zee, 2000; Silver & Smith, 1996); 
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some of them were derived from longitudinal studies that focused only on the elementary grades 

and were written from the classroom teacher‟s perspective rather than an outside observer (Ball, 

1991; Lampert, 2001). It is also important to note that many of these studies only focused on 

classroom practices. The aim of this study was to identify a middle school expert teacher‟s 

routines of practices from the data that include detailed descriptions of classroom interactions, 

teacher meetings and notes, and one-on-one interviews with the teacher. Thus, the aim was to 

extract the details about the teacher‟s practices such as how she facilitated classroom 

conversations or how she prepared for the classroom. The study not only aimed to extract the 

teacher‟s practices but also her rationale for implementing those practices. 

In the following sections, first practices that are consistent with the NCTM Standards are 

discussed. Second, the challenges that teachers face during the application of these practices are 

described. This is followed by a discussion of teachers‟ decision making processes and a model 

that aims to explain how and why teachers make those decisions. Next, the differences between 

expert and novice teachers‟ practices are investigated. Finally, co-teaching is described since the 

expert teacher collaborated with a special education teacher during the instruction. 

Practices 

In this section, the practices of a teacher who teaches consistent with the tenets of the 

NCTM Standards are organized under four areas: tasks, discourse, environment, and analysis. 

Tasks can be defined as vehicles used in developing students‟ understanding; discourse is the 

way teachers and students participate in the classroom; environment is social and physical 

characteristics within which learning occurs, and analysis means systematic reflection. These are 

the core practices that shape the mathematical classroom addressed in the Teaching Standards 

(NCTM, 1991) and in the Principles and Standards (NCTM, 2000).  
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Classroom practices can be defined as the pattern of routines and social interactions that 

take place between the teacher and the students and among the students themselves (Saxe, 1999).  

Planning practices can be defined as the pattern of routines between the teacher and her 

colleagues or within the teacher herself alone (Clark & Yinger, 1987). Pattern of routines stands 

for the “core activities (within mathematical domain and appropriate grade levels) that could and 

should occur regularly in the teaching of mathematics…such routines could become the central 

hub for teachers‟ practice and should become the study of classroom practice” (Franke et al., 

2007, p. 249).  The roles of teachers during these practices will be defined in the next section.  

Tasks 

Tasks can be defined as “projects, questions, problems, constructions, applications and 

exercises in which students engage… provide the intellectual contexts for students‟ mathematical 

development” (NCTM, 1991, p. 20). In standards-based teaching, teachers should engage 

students with the tasks whose solutions are not known in advance and the tasks that give rise to 

genuine curiosity for the students. These tasks can be connected to the real-world experiences of 

students as well as arise from the contexts of pure mathematics problems. The way a teacher 

presents the task is as important as the task itself. The tasks should not be seen only as practice 

problems that students solve in order to be proficient in applying a set of discrete procedures in 

order; rather they should be seen as activities designed to develop students‟ mathematical 

understanding. In other words, the tasks should be supported with standards-based instruction 

instead of traditional instruction (Goldsmith & Shifter, 1997; Hiebert &Wearne, 1993). Here it is 

important to note that tasks should be aimed at improving both conceptual knowledge and 

procedural skills. However, several previous studies point out that when tasks are primarily 

aimed at improving conceptual understanding, they also help development of procedural skills 
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while the opposite is not always true (Rittle-Johnson & Alibali, 1999; Rittle-Johnson, Siegler & 

Alibali, 2001). 

As emphasized above, the way the tasks are presented in the classroom is very important. 

Even a traditional problem can be set up in a way that supports students‟ abilities to explain their 

answers using different strategies such as pictures or words. In other words, the teacher needs to 

problematize the mathematics with which students engage (Hiebert et al., 1996; Spillane & 

Zeuli, 1999). This means posing problems for which students do not know the answers or 

strategies in advance but are within students‟ reach, and allowing them to struggle with the 

problems to find the solutions and finally to examine the different solution methods in the 

classroom. The research shows that understanding can be best supported by engaging students 

with challenging tasks and allowing them to struggle (Hiebert, 2003). Providing students 

opportunities to struggle does not mean making mathematics extra difficult for them. Instead, it 

means giving them opportunities to see mathematics problems as real life problems that can be 

solved by different methods. Smith (2000) found that although one third of the U.S. teachers 

presented problems that may give students opportunity to develop deep mathematical 

understanding, they generally step in and solve the problems too quickly without giving enough 

time for students to work on the problems.  

Examining different types of solutions is also very important to promote students‟ 

understanding. During the solution of the problem students should be allowed to use their own 

methods but be aware that they need to search for better ones. The discussion of the different 

methods also gives the students opportunity to evaluate the solutions that are different from their 

own. The teacher needs to support a comfortable environment where the students discuss 

different solutions but the solutions that have the greatest mathematical advantage win popularity 
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among the classroom community (Hiebert, 2003). Providing information at the right time is 

another essential point to support students‟ mathematical understanding. While presenting too 

much information can prevent students from engaging in the problems, presenting too little 

information may make them feel frustrated (Dewey, 1933; Hiebert et al., 1996, Hiebert, 2003). 

Using open-ended tasks might help students explore their solutions that are described above and 

also give the teacher opportunity to support mathematical understanding without taking over the 

process of thinking for them.  

The structures of the tasks are very important to support students‟ exploration and 

reinvention of mathematical ideas. Cognitively demanding tasks give the teacher and the 

students an opportunity to share the ideas, compare different strategies, make conjectures and 

generalize (Silver & Smith, 1996). The tasks should be open-ended in design to encourage 

students to find a solution by using strategies and different representations and they should be 

revisited by the teacher to create new activities based on the students‟ performance in the 

previous class (Martino & Maher, 1999). The types of questions as well as timing during the 

applications of the tasks are also crucial for the cognitive development of the students.  

The instruction in this study involved supporting students‟ understanding of integer 

concepts and operations. Although the aim was to focus on teaching rather than the topic, 

integers is one of the topics that plays an important role in algebra, which is seen as a gateway to 

higher mathematics (NAEP, 2008). The concept of integers traditionally has not been an easy 

concept for children or adults. History shows that integers had not been fully comprehended by 

all mathematicians until only a few hundred years ago about the middle of the 18
th

 century 

(Hefendendehl-Hebeker, 1991).  
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Many studies have investigated integer concepts to support students‟ understanding. These 

studies used different models including a micro-world, games, abacuses, charges, and debt and 

assets. The model that used a micro-world included a number line and a turtle aimed at 

conceptualizing of integers as operations, adding of integers as the composition of 

transformations and negation as unary operations upon integers and integers expressions 

(Thompson & Dreyfus, 1988). Some other studies used games as a model in teaching integers 

concept. One of these models was designed to use black (positive) and red (negative) cards in 

order to record students‟ progress during the game. For example, adding one red being 

equivalent to subtracting one black (Liebeck, 1990). Another model used a disco game concept 

with an abacus that had two wires and beads and was designed based on realistic mathematics 

education theory. The aim of the game was to control each disco gate in order to keep track of 

the number of people going in and out by using two wires with yellow beads going out and blue 

beads for going in (Linchevski, 1999).  Similar to the abacus model, Battista (1983) used a 

model based on collections of electromagnetic charges. In this model two colors (positive-

negative) of poker chips and two transparent jars were used. For example, while the white chips 

were used for positive charges, red chips were used as negative charges and the collection of 

charges were to be found by the students. Finally, some researchers used debt (negative) and 

asset (positive) concept to support calculations with integers (Semadeni, 1984). Many of these 

models are discussed by Streefland (1996) in order to show different aspects of teaching and 

learning negative numbers. These models were used to create different tasks to teach integers 

concepts and operations. 

In this study the teacher created an instructional sequence for integers by using the 

Realistic Mathematics Education (RME) theory developed at the Freudenthal Institute 
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(Gravemeijer, 1994; Streefland, 1991). RME considers teaching and learning of mathematics as 

both a social and individual activity, where students not only learn as they work on problems 

individually but also as they engage in fruitful mathematical conversations (Cobb & McClain, 

2001). An essential component of RME is that the instruction should be experientially real where 

students engage in personally meaningful activities (Gravemeijer, 1994). RME is based on the 

idea that mathematics is a human activity. Thus, students should be given opportunity to see the 

world through mathematics, which is also called mathematizing (Freudenthal, 1973). This way, 

students can naturally wonder about problems and find solutions starting from their informal 

knowledge. By supporting the instructional design with appropriate tasks, the teacher can give 

students the opportunity to build new knowledge from their experiences and previous 

knowledge, and help them translate their knowledge from informal to formal. The instructional 

sequence in this study was based on students‟ experiences about assets (positive), debts 

(negative) and net worth concepts where they can make sense of negative numbers and 

operations with them (Stephan, 2009). 

In summary, the instruction can be supported with tasks that are experientially real to 

students where they can use their informal knowledge, use different strategies, and connect those 

strategies with the core mathematical ideas. On the other hand, tasks can be supported by the 

discourse that will direct students‟ attention to different ways of viewing the tasks and their 

explanations during the discussion of problems (Franke et. al., 2007; Hiebert & Wearne, 1993). 

Discourse 

 Supporting a productive discourse is another important element of standards-based 

teaching. Discourse can be defined as “…the ways of representing, thinking, talking, agreeing 

and disagreeing that teachers and students use to engage in tasks” (NCTM, 1991, p. 20). 
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Traditionally, the discourse in U.S classrooms mainly includes emphasis on algorithms and the 

right answers; talking about mathematics is not common in many classrooms (Kilpatrick et al., 

2001). The discourse in traditional mathematics classes is shaped by an Initiation-Response-

Evaluation (IRE) sequence. The teacher initiates the conversation by asking questions that reveal 

the answer rather than guiding the students‟ reasoning to find a solution. Then the teacher 

focuses only on the answer of the problem instead of discussing the different strategies the 

students used and evaluating whether and why they are correct or not (Franke et al., 2007; 

Spillane & Zeuli, 1999). In contrast, standards-based teaching emphasizes the teacher‟s role in 

discourse as a facilitator that develops students‟ mathematical understanding rather than just an 

instructor that delivers information. The NCTM Standards emphasize the teachers‟ essential role 

in the discourse by stating that “teachers must [also] decide what aspects of a task to highlight, 

how to organize and orchestrate the work of students, what questions to ask to challenge those 

with varied levels of expertise, and how to support students without taking over the process of 

thinking for them and thus eliminating the challenge” (NCTM, 2000, p.19).  

Silver and Smith (1996) also define the role of the teacher in discourse that supports 

standards-based teaching as posing questions and tasks that elicit students‟ reasoning, making 

students challenge their thinking; listening to the students‟ ideas carefully; asking students to 

explain and justify their answers; deciding how to connect students‟ ideas with mathematical 

notations; deciding when to clarify an issue, when to make students struggle with that issue, or 

when to provide information; monitoring students‟ participation and deciding when to make each 

student participate in the classroom discourse. 

Discourse can be categorized in two groups: univocal and dialogic discourse (Knuth & 

Pressini, 2001). Univocal discourse can be characterized as a way the speaker intends to convey 
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the ideas without considering the listener‟s ideas; once the intended meaning is conveyed, the 

goal is achieved. In this situation, the teacher focuses on whether the students understood her 

ideas rather than trying to understand the students‟ ideas. However, in the dialogic discourse the 

conversation occurs as a give and take between the speaker and the listener. Here, the teacher 

intends to incorporate the students‟ ideas into the discourse in order to use them as a tool to 

support a meaningful conversation. The dialogic discourse is the type of discourse that is 

supported by standards-based teaching since the core of the reforms is to teach mathematical 

tasks with intellectual integrity and give value to students‟ ideas (NCTM, 1989, 2000). 

In standards-based teaching, students also need to know how to talk about mathematical 

ideas as well as think and act mathematically in different contexts (Rittenhouse, 1998). This way 

they can develop their mathematical literacy and fluency. The teacher‟s main role is to support a 

productive discourse environment. Since the students are not familiar with this environment, the 

teacher can be seen as the bridge between the expert and the novice. The teacher as an expert can 

“slow down the action” so that the novices can have a chance to better understand what is 

happening. Rittenhouse (1998) defines the expert teacher‟s role as to “step into and out” during 

the discourse. For example, a teacher may step into a conversation with students by listening to 

them and asking questions related to their answers and step out to talk about the classroom norms 

that the teacher wishes the classroom community to establish. Lampert (1990) defines the 

arguments‟ path during the discourse as a zig-zag that starts from making conjectures and results 

in proving or disproving them with different examinations. Since the mathematics develops with 

going back and forth between conscious guessing and proving, the path is zig-zag rather than 

linear.  
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Another important role of the teacher during discourse is “revoicing someone‟s talk” 

(Franke et. al., 2007). The teacher has an important role in making students‟ thinking clear to 

other students. The teacher needs to repeat, expand, rephrase or report what students say in order 

to clarify and advance the ideas by using mathematical vocabulary (O‟Connor, 1998). Revoicing 

is also important to encourage students to develop mathematical terms and appreciate their 

activities that contribute to mathematical discourse.  

Revoicing also can be used to shift the level of the classroom discourse by the teacher. For 

example, the teacher can restate students‟ words clearly in order to help all students to 

understand mathematical ideas and reflect on them. As the students reflect on the mathematical 

ideas the level of the conversation may change. Here it is important to note that individual 

students have an important role in the development of the discourse that supports the shift of 

activity from individual to collective. As individual students participate in classroom social 

norms
2
, students adapt to each other‟s and the teacher‟s mathematical activity and vice versa. 

However, mathematical understanding of others can only be taken-as-shared as the members of 

the community have no direct access to other‟s understanding but may achieve the sense that 

some aspects of the understanding are shared (Cobb, Yackel, & Wood, 1992). This shift from 

individual activity to collective activity that occurs during discourse can be called reflective 

discourse or mathematizing discourse. During reflective discourse, actions and processes are 

transformed into conceptual mathematical objects. For example, when students are asked to find 

the different ways of writing five by adding two numbers, they can first individually come up 

with different solutions. They can then reflect on their solutions to discover why only some pairs 

                                                 
2
 Social norms can be briefly defined as the patterns and routines that are established by the classroom community. 

It will be explained in greater detail in the following section. 
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of numbers work (Cobb, Boufi, McClain, & Whitenack, 1997). Thus, reflective discourse can be 

supported by giving students the opportunity to reflect on and objectify their prior activity.  

Reflective discourse is very important in developing students‟ mathematical understanding 

consistent with standards-based teaching, since it supports the relationship between classroom 

discourse and mathematical development. There are different ways of creating an environment 

that supports reflective discourse (Cobb et al., 1997). For example, the teacher‟s questions have 

an essential role in supporting the shift of the conversation level based on the students‟ answers 

and reorganizing what has been done up to that point. Another way to support reflective 

discourse is to symbolize students‟ thinking in order to make students‟ ideas clear to the other 

students. By supporting communication of students‟ mathematical ideas with symbolization, the 

teacher may help students understand each other and be able to continue the discourse in an 

effective way.  

A good instructional design may also help teachers to be successful in promoting reflective 

discourse. For example, RME instructional theory supports symbolizations starting off from 

students‟ informal knowledge and moving to more formal as the instructional sequences 

progresses (Gravemeijer, 1994). Here it is important to note that the symbolizations used by the 

teacher do not have to be brought up by the students; they can be presented by the teacher to 

capture students‟ ideas. For example, in one of the studies that aimed to help students understand 

double-based thinking strategies (e.g., 4+4=8 to find 4+6), the teacher introduced a story where 

each twin has a set of markers with 10 markers in each set. When she asked students to find the 

total when each twin has nine markers, by internalizing the imagery, a student could find the 

answer by stating that he knew ten plus ten was twenty thus nine plus nine could not be nineteen 

since there were two missing. Next, the teacher folded back to context in order to make his 
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explanation clear to other students. Thus, it showed that using a real context where students can 

imagine helped them mathematize the context and allowed the teacher to fold back to the context 

as necessary (McClain & Cobb, 1998). 

In order to create a discourse where mathematical ideas are explored, the teacher also 

needs to create a productive environment where ideas can be discussed freely. The following 

section describes environment that the teacher needs to support in order to teach aligned with the 

NCTM Standards. 

Environment 

NCTM (1991) defines environment as a setting for learning and states that “it is the unique 

interplay of intellectual, social and physical characteristics that shape the ways of knowing and 

working that are encouraged and expected in the classroom” (p. 20). Standards-based teaching 

does not only support the change in the physical environment of the classroom such as creating 

small groups or using of manipulatives but it also supports a socio-intellectual environment. 

Teachers have an essential role in creating a risk-free environment that gives students 

opportunities to share their ideas, make conjectures, and challenge and evaluate other students‟ 

ideas in the classroom. Social norms create a risk-free environment where the students and the 

teacher focus on reasoning rather than just answer (Stephan & Whitenack, 2003).   

Social norms which are a crucial component of standards-based classrooms can be defined 

as patterns and routines that are established by the classroom community where the patterns 

become hidden-regularities that guide the classroom members‟ actions and are taken-for-granted 

during the interaction in the classroom culture (Wood, 1998). For example, social norms for 

whole classroom discussion may consist of explaining and justifying solutions, understanding 

other students‟ explanations, stating agreement and disagreement, and questioning different 
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solutions in a situation where conflicts can occur (Cobb et al., 1991). The teacher‟s role is to 

establish the norms by leading the negotiation and renegotiation of them with her students. Many 

times students do not explain their ideas or try to make justifications on their own which may 

cause difficulty in supporting the ongoing discourse in the classroom. Especially the students 

who are in middle and high schools and have a background with traditional school experiences 

may pose difficulties in creating such a classroom culture (Silver & Smith, 1996). Thus, the 

teacher‟s role in creating and sustaining this environment is even more important in upper 

grades. 

The teacher also needs to guide the students to help them understand what counts as 

mathematically different in their explanation, what counts as an efficient mathematical solution, 

what counts as a sophisticated solution or what counts as an acceptable mathematical solution, 

which collectively can be named as socio-mathematical norms (Yackel & Cobb, 1996). Socio-

mathematical norms can also support students‟ development of intellectual autonomy, the belief 

that students are responsible for creating their own solution and meaning for mathematics, not 

relying on an authority to tell them what to do (Kamii, 1982). Mathematical activity in the 

classroom occurs within the mathematical practices that are established by the community 

members and they are taken-as-shared by its members. Here classroom mathematical practices 

refer to content specific ways of reasoning and arguing that become normative through 

interactions (Stephan & Cobb, 2003). Tools have an important role in establishing classroom 

mathematical practices as the students‟ activity with tools support conceptual and symbolic 

meanings (Stephan, 2003). Tools can be separated into two categories namely signs or semiotic 

systems such as inscriptions on paper, and technical or instrumental tools such as computers and 

calculators (Meira, 1998, 2002). These tools can be used to scaffold students‟ internalization 
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process or reorganize their understanding. The tools become meaningful when students reason 

using these tools. Here it is important to note that the inscription (symbolization) becomes a 

signifier when it is used for reasoning. Gravemeijer (2002) explains the difference between 

inscription and signifier by giving an example that the inscription refers to the actual mark on the 

paper while the signifier refers to what the person perceives from that mark. Thus, what the mark 

signifies for the students can be thought as students “imagery” (Gravemeijer, 2002).  

Pirie and Kieren (1989) emphasize the importance of supporting imagery with a recursive 

theory where the effective actions function with the initiation of imagery. The first level of the 

theory includes images that are based on situation-specific activity which constitutes the initial 

step for abstraction. The researchers state that “it is the learner who makes this abstraction by 

recursively building on images based in action” (p. 8). The initial development of students‟ 

thinking starts with taking the images that they created before (without creating a new one each 

time) and directing their thinking in order to make sense of the subsequent task. For example, if 

students have the image of multiplication as making copy of the given number as many times as 

the first number (e.g., 4 x 5 as four copies of five), then they can make sense of fractions in the 

same way; they can imagine 3 ½ x 2/3 as a sum of three copies of 2/3 and a half copy of it. 

Mathematical development continues as students reason by using or adapting the images‟ 

properties and as they engage in more instructional tasks that start to formalize these properties 

(McClain & Cobb, 1998). By folding back to the initial image students can create new meaning 

for the objects they are working with and move to more sophisticated levels of thinking. Here it 

is important to note that students use or transform their initial images to make sense of more 

complicated ideas. Thus, when those images are imposed from outside or given ready-made to 

students without regard for students‟ own images, this may not contribute to the development of 
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their mathematical reasoning (Pirie & Kieran, 1989). Development of imagery helps students 

create meaning for mathematical activities and adds richness to their mathematical reasoning and 

understanding (Thompson, 1996). Thus, the teacher has an important responsibility in creating 

an environment that supports students‟ imagery. 

 Studies showed that teachers may consider that they teach consistent with the standards 

since the students use manipulatives and work in small groups in the classroom. However, the 

researchers that observed these teachers stated that those teachers‟ teaching methods were far 

from the standards (Ball, 1990; Cohen, 1990). One of the reasons for this discrepancy is that 

many times the manipulatives are given directly to the students and they are asked to make sense 

of them according to the context. Cobb, Yackel and Wood (1992) describe this situation as a 

learning paradox where “the assumption that students will inevitably construct the correct 

internal representation from the materials presented implies that their learning is triggered by the 

mathematical relationship they are to construct before they have constructed them.” (p. 5). For 

example, Dienes blocks reflect the base-ten number system according to teachers‟ knowledge but 

for the students they are just wooden blocks. When students have difficulties seeing what the 

teachers want them to see, the teachers generally tell them the relationship between the 

manipulative and the algorithm. But mapping the steps during instruction does not result in 

understanding or proficiency since the relationship between the algorithm and the blocks is not 

clear to the students. One way to solve this problem is to create an instructional design that 

develops a bottom-up approach (e.g., RME) where students‟ make sense of the tools as they 

build on their informal knowledge to gain formal knowledge (Gravemeijer & Stephan, 2002; 

Gravemeijer, 2007).  
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Small groups can also help create an environment where students make sense of 

mathematics collaboratively. However, the teacher has an important role in supporting the small 

groups. Although there have been many studies that investigate students‟ learning in small 

groups, there are only a few studies that identify the teacher‟s role in small groups. Blunk (1998) 

investigated Lampert‟s role, who is an expert teacher, in supporting a small group environment. 

She describes the teacher‟s role as the following: first, the teacher needs to explain why working 

in small groups can be useful for the students; second, the teacher should emphasize to the 

students the importance of practicing their own skills to work with other people. Finally, the 

teacher should convince the students that she is not the sole resource of knowledge in the 

classroom.  

Yackel, Cobb, and Wood (1991) state that the teacher needs to create cognitive activities 

that will stimulate small group discussions. This type of activity can result in discussion in the 

small groups that may create conflicts if the answers of the students do not match. This 

disequilibrium requires the students to reorganize their activities in order to reach an agreement, 

which helps them to gain a better conceptual understanding of the task. Here it is important to 

note that students should have enough time to work on the questions before they interact with 

other students or the teacher. This time is important for students to conjecture; later they can 

check their answers with the group members and follow up with the other members of the 

community during the classroom discussion.  

The teacher‟s role during the classroom practice, which includes supporting the appropriate 

use of tasks and discourse and establishing and maintaining a positive environment plays an 

essential role in standards-based mathematics teaching. However, successful implementation of 
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classroom practices also requires the teacher to plan, reflect on and refine her instructional 

practice. These are explained in the following section.  

Analysis 

NCTM (1991) defines analysis as “[a] systematic reflection in which teachers engage [in] 

ongoing monitoring of classroom life [such as] how well the tasks, discourse, and environment 

foster the development of every student‟s mathematical literacy and power” (p. 20). Teachers 

need to reflect on and refine what they and their students are doing during classroom instruction 

and how their actions impact students‟ learning (NCTM, 2000). Standards-based teaching also 

empowers teachers to do analysis not only individually but also by coming together with their 

colleagues and creating a community of teachers.  The importance of collaboration with the other 

teachers is emphasized by the study of Stigler and Hiebert (1999): “Collaborating with 

colleagues regularly to observe, analyze, and discuss teaching and students‟ thinking or to do 

„lesson study‟ is a powerful, yet neglected, form of professional development in American 

Schools” (as cited in NCTM, 2000, p. 19). In order to observe the process of collaboration, one 

of the aims of the current study was to extract the practices of the expert teacher‟s analysis not 

only when she was working individually but also while she was collaborating with other 

teachers.  

Teacher planning has a significant influence on creating opportunities for students to learn 

with understanding, covering the content, managing transition from one activity to another, and 

the general focus of classroom processes (Clark & Yinger, 1987). Studies show that many 

teachers see planning mainly as the selection of students‟ learning activities and preparation of 

the content that will be taught, and rarely the specification of learning objectives (Fuchs, Fuchs, 

Hamlett, & Stecker, 1991; Peterson, Marx, & Clark, 1978). Reform movements also encourage 
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an essential shift in teacher planning that includes ensuring that students learn mathematics and 

have a positive disposition toward mathematics; creating tasks that challenge and extend 

students‟ ideas; adapting and modifying the activities as they are applied in the classroom; and 

including both short and long term plans and commenting on students‟ learning (NCTM, 1991). 

The importance of designing a lesson plan that elaborates ones‟ content goals and focuses on the 

students‟ anticipated learning is highlighted in Adding It Up which reflects the ideas consistent 

with the tenets of standards-based teaching. The authors also stated that “Planning can profitably 

be seen as a detailed form of instructional design aimed at reducing the uncertainties of one‟s 

practice, centered on the continual adjustment, improvement of instruction, and informed by a 

close scrutiny of what happens as the lesson unfolds” (Kilpatrick et al., 2001, p. 337). 

Simon‟s (1995) model provides a foundation for the practices that support standards-based 

teaching. The social-constructivist learning theory guides the model he created. The social 

constructivist theory, which is also known as the emergent perspective, combines a constructivist 

psychological perspective with an interactionist social perspective (Cobb & Yackel, 1996). This 

perspective abandons the idea that teachers can give ready-made knowledge to students and 

supports that students learn only when they construct the ideas. However, it is not enough to say 

that students will construct the ideas themselves. The teacher needs to plan in order to support 

the students‟ construction of the mathematical ideas that took thousands of years to develop in 

history and the teacher needs to modify the plan constantly after interaction with students. Simon 

(1997) examined the teacher‟s role aligned with this perspective using a cognitive and social 

theoretical framework. The teacher‟s role from a cognitive view can be summarized in two parts 

as identifying student tasks that pose appropriate challenges for students and should result in re-

organization of students‟ ideas and constructing more sophisticated mathematics. The second 
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role of the teacher is to generate reflective tasks that support generalization, abstraction and 

organization of classroom activities. From the social view, the teacher‟s role is to see the 

classroom as a mathematics learning community and support the community to create and 

sustain the norms and mathematical practices that are taken-as-shared by all community 

members as well as to orchestrate discussions. Simon‟s (1995) schematic model explains the 

critical role of a teacher in developing the students‟ understanding of mathematics. This model, 

referred to as the mathematics teaching cycle (MTC) addresses the relationship between the 

teacher‟s knowledge, the hypothetical learning trajectory (HLT), and the interactions with 

students.  

An HLT can be defined as the teacher‟s anticipated path by which students‟ learning might 

occur. The generation of an HLT prior to classroom instruction is the main part of planning for 

the mathematics lessons. As the teacher interacts with the students, both the teacher and students 

have different experiences. These experiences may lead to the modification of the teacher‟s goals 

and knowledge. One characteristic of the MTC is that the teacher predicts how students‟ thinking 

and understanding will evolve during the classroom activities. Teachers need to make decisions 

about the possible mathematical knowledge of their students by using their own knowledge to 

interpret students‟ actions and language (Steffe & D'Ambrosio, 1995). 

Three aspects of teachers‟ knowledge can support the creation of an HLT. These are the 

teacher‟s sense of students‟ learning, the teacher‟s understanding of learning a particular 

mathematical topic, and the teacher‟s perspective of the role of a mathematics teacher (Simon, 

1997). Although an HLT consists of goals for student learning and the mathematical tasks that 

will be used to support them, it does not describe a framework for thinking about the learning 

process, the selection of mathematical tasks, and the role of the tasks in students‟ learning. To 
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this end, the instructional sequence designed according to the tenets of RME theory can support 

teachers since it does not provide a ready-made script but offers additional resources for teachers 

so that they can make their own adaptations according to their students (Gravemeijer, 2007). 

Revising the tasks based on the classroom and making adaptations is a highly emphasized 

but yet neglected practice of the teachers in the United States (Stigler & Hiebert, 1999). When 

the planning of teachers in the United States was compared with the planning of teachers in 

Japan (one of the countries where students have the top scores on international assessments), the 

researchers found significant differences (Stigler, Fernandez, & Yoshida, 1996). For example, 

while student thinking played an important role in the planning activities of Japanese teachers, 

American teachers mainly listed the objectives that they planned to address during instruction. 

The plans of Japanese teachers included four main categories: learning activities on which the 

teacher expected students to work, expected student reactions during these activities including 

different solution ways, the time that is planned to apply for each activity, and the guidance that 

the teacher provided to support students to understand the activities (Stigler et al., 1996). In other 

words, the teacher‟s planning can be defined as the teacher‟s lesson image for the class. A lesson 

image is the teachers‟ envisioning of the possibilities related to the lesson that includes the 

students‟ knowledge, the anticipated reaction of the students to the planned lesson, students‟ 

difficulties, and more (Schoenfeld, 1998). Another important planning difference was that 

Japanese teachers came together more often to make a trial of the lesson images and to work 

collaboratively to improve them. This practice is highly recommended by the NCTM Standards.  

Students‟ thinking also became the core of many important projects in United States 

(Carpenter et al., 1989; Franke et al., 1996; Schifter & Fosnot, 1993; Schifter, 1998). The 

Cognitively Guided Instruction Project (CGI) was one of those projects that bought teachers 
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together and gave them the opportunity to explore about the students‟ thinking in a specific 

context (Carpenter et al., 1989; Franke et al., 1996). Another study known as Developing 

Mathematical Ideas (DMI) also provided different experiences for teachers to develop skills that 

were consistent with standards-based teaching such as focusing on students‟ thinking, assessing 

the mathematical validity of students‟ ideas, listening to students‟ mathematical ideas and trying 

to make sense of them (Schifter & Fosnot, 1993; Schifter, 1998). Thus, using student thinking 

was one of the most important elements of analysis in the teacher‟s planning emphasized by 

researchers as well as the teachers whose students performed top in international evaluations. In 

order to teach aligned with the NCTM Standards, the practice of analyzing the class based on 

students‟ understanding and revising it as necessary needs to be an important part of the 

teacher‟s practices.  

Up to now, the roles of teachers during the practices are summarized in order to achieve the 

successful implementation of standards-based teaching. These practices are grouped under four 

categories: tasks, discourse, environment, and analysis. For each group, the teacher‟s role is 

described to teach aligned with the NCTM Standards. However, it is important to note that 

applying these practices is not trivial; they pose several challenges for novice as well as expert 

teachers (Chazan & Ball, 1999). The next section describes some of the most important 

challenges. 

Challenges in Practice 

Studies such as Trends in International Mathematics and Science Study (TIMSS) shows 

that most teachers‟ instructions in the U.S. reflect the core of traditional practices although 

teachers believe that they are changing the way they teach. (Hiebert & Stigler, 2000; Hiebert et 

al., 2005; Stigler & Hiebert, 1997). Many classrooms include Initiation-Response-Evaluation 
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(IRE) patterns and the teachers focus on the correct answers rather than discussing different 

strategies. The type of questions teachers generally ask include a single correct answer where the 

teacher knows the answer and the students are responsible for finding this answer. Students have 

little opportunity to discuss their ideas and students‟ incorrect answers are generally left alone 

without focusing on them while, in fact, discussing those misconceptions can have an important 

effect on students‟ conceptual development (Franke et al., 2007). However, changing existing 

practices has been found to be challenging, it not only requires understanding the new practices 

supported by the reform movement but also requires actively engaging students with those 

practices. For example, many times teachers who want to promote student thinking and enhance 

understanding put students in cooperative groups and use manipulatives (Stigler et al., 1996). 

However, the studies showed that although the teachers created small groups, they did not 

change the very essence of their practice (Ball, 1990; Cohen, 1990; Webb, Nember, & Ing, 

2006).  

In order to create an environment consistent with the NCTM Standards, the classroom 

community needs to establish the norms for expected student behavior, the teacher needs to 

focus on students‟ thinking and use different strategies to reflect on students‟ ideas. Cobb, Wood, 

Yackel, and McNeal (1992) give an example of a teacher who learned to overcome these 

challenges as she changed her practice. First, the teacher learned that children may have their 

own methods; she encouraged children to explain their mathematical ideas and respected 

students‟ answers even when they were not correct. However, accepting wrong answers also 

created another fundamental confliction that she had to overcome. She resolved this conflict by 

realizing that students actually learn when they understand why their solutions were incorrect 

rather than when simply presented with the correct solution.  
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The challenge of applying the practices consistent with standards is not only difficult for 

novice teachers but also for expert teachers. Chazan and Ball (1999) discussed the challenges 

that they had while trying not to “tell” when they taught in a high school and elementary school 

respectively. During the discussion of an algebra task, Chazan had encouraged students to 

explain their ideas and feel confident during the solution of the problem. But he had wondered if 

students could reach a common ground, and hesitated about how he should intervene if they 

could not. During a lesson taught by Ball, students seemed to agree on an incorrect solution 

although she attempted to induce disequilibrium. She was concerned about students not being 

able to resolve an unproductive agreement. They address three factors with which the teacher 

needs to be careful during the discussion: the mathematics under discussion (e.g., if students 

reach the task meaningfully with some help), the nature and direction of class discussion (e.g., 

engaging pace), and the social and emotional climate of the class (e.g., discussion can become 

personally unpleasant).  

Chazan and Ball (1999) also discuss what it means for a teacher to “tell”. Many teachers 

believe that they should not give any information to students in order to be consistent with the 

reform movements. However, the researchers emphasize that there are other types of telling such 

as restating a comment that is given by a student, stating in clear language the conclusion that 

students agreed upon; asking students to make themselves clearer; controlling the focus of 

discussion; and asking students to sit down, come to the board, etc. In order to resolve some of 

the concerns with teaching by telling, the researchers also reformulated telling by emphasizing 

the importance of  teacher‟s actions where initiating and eliciting goes hand in hand, in terms of 

relationship of these actions within each other and in terms of exploiting telling to promote 

conceptual growth (Lobato, Clarke, & Ellis, 2005). For example, the teacher can open classroom 
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discussion by initiating (e. g. she can summarize students‟ work in an advance level by inserting 

new information) and then follow this by eliciting (e.g. arrange situations so that students can 

reflect upon their understanding), and these two actions might form a cyclic pattern.  

Smith (1996) states that beliefs such as “telling” or providing the steps clearly with the 

procedures step-by-step or considering that students only learn from the teacher‟s demonstration 

support teachers‟ sense of efficacy. According to this, students cannot be expected to find the 

solutions themselves and thus their achievement of mathematics can be attributed to the teacher. 

They face a dilemma as the teachers feel a sense of reduction in their efficacy as they try to teach 

without “telling”. 

Studies showed that many teachers find it challenging to open up their classrooms to 

mathematical ideas since it is difficult to manage the direction of instruction with students‟ 

wrong answers and anticipate where a lesson will go as well as to create instructions for this type 

of lesson (Sherin, 2002; Silver & Smith, 1996). Finally, the researchers also found that only 

around 15% of teachers in a study could manage to teach consistent with the reform movement. 

The rest of them either had difficulty supporting discourse norms although they created tasks to 

promote problem solving (around 40%), or they could not create effective tasks nor support 

discourse (around 45%) (Spillane & Zeuli, 1999).   

The challenges that are described above, changing existing practices, teaching without 

telling, anticipating students‟ answers, adapting the lesson based on students‟ interaction, can be 

overcome with a productive decision making process. In the following section the decision 

making process which is mainly based on teachers‟ beliefs, goals, and knowledge is elaborated.  
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Decision Making 

 Decision making is the basic skill of teaching (Shavelson, 1973). Teachers make a large 

number of important decisions that can be categorized in two groups: planning (preactive) and 

teaching (interactive). During planning or the preactive decision making process, teachers decide 

“what to teach, how they are going to teach, how to organize the classroom, what routines to use, 

and how to adapt instruction for individuals” (Fennema & Franke, 1992, p. 156). During 

preactive decision making, teachers also select the materials that they will use, how to assess 

students‟ written work, and other activities to reflect on and use as part of their decision making 

for subsequent classes (Fennema & Franke, 1992; Grouws, 1991).  

The process of decision making includes interactive decisions that are made during 

instruction as the teacher interacts with the whole class, small groups, or individuals. Among 

many of the choices teachers make decisions “…to modify their plans, to respond to a child in a 

particular way, to call on a given child for an answer, to reward or reject certain answers, to 

discipline an unruly child, to encourage a shy child, and to speed up or slow down a lesson” 

(Fennema & Franke, 1992, p.156). Interactive decisions must generally be made faster and with 

less information and resources than the decisions that are made during planning. Teachers also 

need to make decisions for classroom management, classroom organization, time allocation, and 

previous instruction both during preactive and interactive decision making processes.  

One of the teachers‟ challenges is to make productive decisions in a short time. They may 

have difficulties making decisions about how to start the discussion and how to support students‟ 

thinking once the task is introduced (Schifter, 1996). Another difficulty teachers may have is 

how to decide on the task selection. Simon (1995) examined his decision making during task 

selection and revision of the task during his teaching of preservice teachers. He used the 
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mathematics teaching cycle model that includes teacher‟s knowledge, student assessment and an 

HLT to explain his decision making process in a classroom that is consistent with the tenets of 

reform movements. The model emphasizes the importance of the relationship between planning 

and classroom instruction in order to be effective during the selection and enactment of the task.  

There have been many studies that focus on teachers‟ decision-making processes in 

traditional classroom settings. In their study, Peterson and Clark (1978), considered a decision as 

a choice between two or more alternatives. In these decisions the only input was student‟s 

behavior. If the student behavior was within tolerance, then the teacher continued. Otherwise, if 

the teacher had an alternative strategy, she applied it; if not, the teacher continued to do her 

planned activity. The results of the study showed that many teachers do not have alternative 

strategies, thus they followed the path as if the student behavior was in tolerance. Following this 

study, Shavelson and Stern (1981) created an alternative model by including the research based 

on teacher planning and routines. Similar to the former study, if the students‟ behavior was in 

tolerance the teacher continued along her path. If not, the teacher evaluated if there was a routine 

that could be applied. She applied the routine if she knew of a routine for that particular 

situation, otherwise she continued with her original route and stored the information for future 

use. Many of these studies were content-independent where the researchers only focused on the 

teacher‟s decisions based on students‟ behavior rather than students‟ learning of specific context. 

Another study that provides insight into teachers‟ decision-making processes was 

conducted by Leinhardt and Greeno (1986). Their study mainly focused on describing the mental 

structures of skilled teachers and comparing the behaviors of expert and novice teachers. The 

model specified the skill according to the subject matter knowledge and lesson structure 

knowledge such as agendas, scripts, and routines. An agenda was described as a dynamic plan 
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that includes overall goals and the lesson activities that can be modified. A script was defined as 

the teacher‟s goals and actions for a particular topic, and routines were described as activities 

that are performed by the teacher and the students frequently. The model emphasized that the 

teacher starts the class with the goals and related routines that will help her to move smoothly. 

Additionally, the study showed the importance of teacher‟s subject matter knowledge in 

supporting agendas and scripts. However, this model mainly focused on teacher‟s subject matter 

and the lesson structure knowledge and gave less attention to teacher‟s pedagogical knowledge 

and beliefs in analyzing the decision making process. 

Another model was developed by the Teacher Model Group at Berkeley and became 

known as the teaching-in-context theory after having been applied many times on different 

teachers that had different teaching styles. This model describes teachers‟ moment to moment 

decisions and actions based on their beliefs, goals and, knowledge (Schoenfeld, 1998). In order 

to understand the teacher‟s beliefs, goals, and knowledge, one needs to have the teacher‟s lesson 

images which include a series of action plans. Action plans can be described as “… a set of 

actions intended to be taken in order to work toward the achievement of a constellation of 

currently high priority goals” (Schoenfeld, 1998, p.28). Action plans can typically be found in 

forms such as scripts, routines, and mini-lectures. The action plans are the backbone of the lesson 

image and the lesson image is an important component used in the teaching-in-context model. As 

described earlier, lesson images can be defined as the teacher‟s envisioned path that is planned to 

be taken during the related lesson. The teacher‟s lesson image may include aspects related to her 

knowledge of the students, the anticipation of students‟ reactions (e.g. answers, misconceptions, 

difficulties), and how she will deal with these reactions. As the current study also used this 
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model in explaining the teacher‟s decisions and practices, the individual components of this 

model; knowledge, beliefs, and goals, are described in greater detail in the following sections.  

Knowledge 

 A teacher‟s knowledge is comprised of multiple components. Shulman (1986) 

distinguishes between subject matter knowledge, pedagogical knowledge and curriculum 

knowledge. Subject matter knowledge refers to both the content and the structure of the subject. 

The teacher needs to know what is true as well as why it is true. Pedagogical content knowledge 

goes beyond the subject matter knowledge by addressing how to teach the subject matter. This 

includes knowledge of students‟ mathematical thinking and learning, being able to provide 

multiple representations of mathematical ideas in ways that students can grasp, and being aware 

of common student errors and misconceptions. Curriculum knowledge involves awareness of 

curriculum materials and the knowledge of how topics are arranged within the years. Studies 

show that in order to teach effectively, teachers need to combine these different types of 

knowledge together (Ball & Cohen, 1999; Hill, Rowen & Ball, 2005).  

Recently, researchers also conceptualized and developed measures of teachers‟ combined 

knowledge of content and students (Hill, Ball, & Schiling, 2008). They re-defined mathematical 

knowledge for teaching and illustrated how it is related to knowledge of content and students. 

According to this model, mathematical knowledge for teaching is categorized in two groups: 

subject matter knowledge and pedagogical knowledge. While subject matter knowledge includes 

common content knowledge, knowledge at the mathematical horizon (i.e. a broad view of 

mathematical ideas and practices), and specialized content knowledge; pedagogical knowledge 

includes knowledge of content and students, knowledge of content and teaching, and knowledge 

of curriculum.  
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Ernest (1989) also elaborated the categories of the teacher‟s knowledge in detail such as 

knowledge of mathematics, knowledge of other subject matter, knowledge of teaching 

mathematics, knowledge of organization for teaching mathematics (e.g. management and 

classroom routines), knowledge of the context of teaching (e.g. knowledge of students in the 

classroom) and knowledge of education (e.g. knowledge acquired from the research).  

Despite the variety of knowledge definitions, these knowledge types cannot be separated 

from each other. A teacher needs to have a “knowledge package” that combines knowing key 

ideas, sequences for developing these ideas, and connecting them efficiently. In order to use the 

knowledge package, teachers also need to decompose or “unpack” the knowledge to apply them 

in the classroom to support students‟ conceptual understanding (Ma, 1999). Many studies have 

showed the relationship between teachers‟ knowledge and their practices. Many of them 

illustrated the teachers‟ difficulties during instruction because of the teachers‟ lack of rich and 

connected mathematical knowledge (Ball, 1990; Borko et al., 1992; Thompson & Thompson, 

1996).  

Besides knowledge, teachers‟ beliefs have an important effect on teachers‟ practice (Ernest, 

1989; Fennema & Franke, 1992). For example, it is possible for teachers to have the same 

knowledge but teach differently because of their different beliefs about teaching and learning. 

Next, the effects of beliefs on teachers‟ practice are discussed. 

Beliefs  

 Beliefs can be defined as the understandings, premises or propositions that are held and 

thought to be true. Beliefs also can be thought of as one‟s perspective related with some aspect of 

the world or as dispositions toward a behavior (Philipp, 2007). Teacher‟s beliefs can be 

categorized as mathematics, teaching, and learning beliefs (Ernest, 1989; Thompson, 1992).  
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Studies show that one of the challenges to applying reform practices is teachers‟ beliefs about 

how to do mathematics that are acquired from their school experience through the years of 

watching, listening to and practicing teaching (Lampert, 1991). 

In order to understand a teacher‟s practice, it is important to know her beliefs and goals as 

well as her relevant knowledge (Schoenfeld, 1998). Studies show that teacher‟s actions are 

highly related with these concepts. For example, although a preservice teacher believed in 

teaching mathematics with understanding, she could not apply the practice aligned with her 

beliefs because her lack of a conceptual understanding (Borko et al., 1992). The researchers also 

showed that practice affects knowledge and beliefs. That is, as a teacher continues to apply new 

practices her knowledge and beliefs about teaching and learning may change. As such, the 

relationship is dialectical (Cobb, Yackel & Wood, 1991).  

Studies show that there is a strong relationship between beliefs and practice (Thompson, 

1992). However, the relationship is not always consistent in that teachers sometimes carry out 

practices that are not aligned with their beliefs (Cooney, 1985; Thompson, 1984). For example, 

in a study even though the teacher believed in making mathematics meaningful to students, and 

thus wanted to teach division of fractions in a way that students can make sense of it, she failed 

to achieve this because of her lack of a conceptual knowledge base (Borko et al., 1992).  These 

inconsistencies are explained by different studies. One of the important reasons is not having the 

required knowledge as given in the example above. Raymond (1997) also addresses two points 

that account for such inconsistencies. First, teachers‟ beliefs are mostly aligned with their 

mathematical beliefs rather than teaching and learning beliefs. Second, time constraints, 

resources, standardized tests, and student behavior can cause teachers‟ to conduct practices that 

are discrepant from their beliefs. The inconsistency of the beliefs can also be explained with the 
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levels of beliefs which can be categorized in two groups: surface beliefs and deep beliefs 

(Kaplan, 1991). While surface beliefs can be more consistent with superficial practices (e.g. 

tasks and organization planned by the teacher such as creating small groups, using 

manipulatives), deep beliefs are consistent with pervasive behaviors (e.g. the way the teacher 

actually communicates with students).  

It is important to understand how the beliefs are structured and held in order to explain the 

teacher‟s action with the beliefs. Green (1971) structured the beliefs based on the role of 

evidence in the analysis. According to this, if the beliefs are held without evidence, then it is 

difficult to modify them with new evidences since the teacher has already made up her mind. 

However, if the beliefs are held by the evidences, they can be modified and criticized with 

different reasoning. The study also defined the three different aspects of the belief structure: 

quasi-logical relationship (e.g. primary and derivative belief), psychological strength (e.g. 

teacher‟s commitment to use of tools), and the beliefs isolated from the others (e.g. belief only 

about mathematics). Build on this study and the other schemes that are used by researchers, 

Cooney, Shealy and Arvold (1998) categorized the teachers for supporting professional 

development. In the study, the preservice teachers reflected on their teaching including how they 

thought about the content as well as how they pedagogically supported students during the 

course of a four-quarter sequence. At the end of the study, the researchers categorized the 

teachers into four groups: isolationist, naïve idealist, naïve connectionist, and reflective 

connectionist. The isolationist refers to the group of teachers whose beliefs are structured in a 

way that remain separated from the others and are held without evidence. The naïve idealists are 

the people who absorb what others believe but fail to analyze their own beliefs. Naïve 

connectionist and reflective connectionist pay attention not only to other peoples‟ reflection and 
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beliefs but also compare them to their own beliefs. Although, the former struggles to resolve the 

conflict or differences in beliefs the latter is adept in integrating others‟ beliefs into his or her 

own belief system. Cooney (1999) also points out that categorizing teachers based on their belief 

structures might help to understand the foundation for conceptualizing teachers‟ ways of 

knowing which is essential for professional development. For example, by using the 

conceptualized differences, a facilitator can decide how to encourage reflection and adaptability. 

Based on the different categories she can find a way to influence and stimulate teachers‟ 

reflective thinking about their own beliefs on mathematics, teaching and learning. 

The beliefs used in the teaching-in-context model stand for attributed beliefs rather than 

professed beliefs. Attributed beliefs are extracted from the teacher‟s actions. These attributions 

may or may not reveal teacher‟s professed beliefs. Thus, it would not be correct to claim that 

these beliefs are exactly the same as the teacher‟s actual beliefs. However, by collecting as much 

data as possible and triangulating within it, the attributed beliefs can be very close to the 

teacher‟s real beliefs (Schoenfeld, 1998, 2000). 

The attributed beliefs or belief bundles are important factors in explaining the teacher‟s 

actions. A belief bundle can be described as a collection of beliefs and has two main 

characteristics: it connects a particular belief with the entire body of beliefs, and the levels of 

certain beliefs are used to explain the new goals of instruction as well as emergent goals (Aguirre 

& Steer, 2000).  The bundle also connects the different beliefs of the teacher in order to analyze 

the teacher‟s actions. For example, a bundle may be composed of beliefs such as mathematics as 

making-sense, students learn working in groups, and the teacher is not the only source of 

knowledge in the class and each belief may also create a new bundle with other beliefs such as 

mathematics as making-sense and students learn by constructing their own understanding.   
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It is also important to consider teachers‟ beliefs with the circumstances and constraints in 

the setting. Many times beliefs are affected by educational priorities such as classroom 

management or building students‟ confidence (Hoyle, 1992; Skott, 2001). They are also affected 

by teachers‟ goals that change for particular activities or students (Skott, 2001). Next, the effects 

of goals on practice are described together with their relationship to beliefs. 

Goals 

 Goals can be defined as cognitive constructs that explain what the teacher wants to 

achieve for the class (Aguirre & Speer, 2000). Often teachers are expected to accomplish 

complex and even conflicting goals (Clark & Lampert, 1986). For example, although a teacher 

may want to teach the task with conceptual understanding, the necessity to finish it on time may 

result in developing a conflicting goal.   

As with beliefs and knowledge, goals have an important effect on the prediction of 

teachers‟ actions. Different from beliefs, goals are more specialized and targeted to accomplish 

certain outcomes for different situations. In order to determine one‟s goals from her actions, one 

has to have the set of beliefs of that person (Schank & Abelson, 1977). A change in the goals can 

help researchers to observe the beliefs and investigate the effect of these beliefs on new goals. 

The formulation of goals can be explained by belief bundles (Aguirre & Speer, 2000). For 

example; a belief such as “mathematics as making-sense” can be associated with another belief 

such as “students learn by working in groups” and these two beliefs can be used to explain the 

formation of a new goal “give enough time for students to work on activity sheet”.  

The goals of a teacher can be very useful in predicting her actions. However, it is important 

to note that the goals cannot be considered as fixed ideals that stand without being influenced by 
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the teacher‟s day- to-day experiences. In fact, the goals are continually modified during 

interactions with the students (Simon, 1994; Steffe, 1991).  

Emergent goals can arise due to unforeseen incidents within or outside of the classroom. 

Saxe (1991) defined four parameters that have an effect on the emergence of individuals‟ goals: 

cultural activities (e.g., mathematical goals that emerge in exchange may be guided by an 

economic motive); social interactions (e.g., through negotiation and assistance); prior 

understanding (e.g., the understanding that one brings to bear on practice); and particular sign 

forms (e.g., the body-parts counting system developed by some tribes) and cultural artifacts (e.g., 

historically elaborated sign forms).  

Similar to the beliefs, the goals used in the teaching-in-context model stand for the 

attributed goals based on the teacher‟s actions. Thus, it cannot be claimed that the goals that were 

stated in the study were exactly the teacher‟s goals. However, by member checking and 

triangulating within the data, the attributed goals can be very close to the teacher‟s real goals.  

This study used the teaching-in-context model in order to explain an expert teacher‟s 

planning and classroom practices. However, it is also important to know how expert and novice 

teachers‟ practices may differ from each other. The next section elaborates this difference in 

greater detail.  

Teaching with Experience 

 There have been many studies that investigate the differences between expert teachers‟ 

and novice teachers‟ practices (Leinhardt & Greeno, 1986; Livingston & Borko, 1989, 1990) and 

decision making (Westerman, 1991). In these studies, the expert teacher is defined based on 

cognitive aspects such as teachers‟ knowledge and skills. Experts‟ knowledge is defined as better 

integrated, more accessible, and organized in specific ways such as ideas are connected and the 
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relationship between the ideas can be clearly specified. Studies also show that expert teachers‟ 

knowledge has a more refined hierarchical structure that includes not only the procedural rules 

but also the interrelationship of the procedures (Leinhardt & Smith, 1985).  Experts also build 

upon the instructional topics that are introduced in previous lessons and display considerable 

sophistication of the subject matter during instruction. 

The essential elements that create expert mathematics lessons are defined in three parts: 

“rich agendas (lesson images), consistent but flexible lesson structures, and explanations that 

meet the goals of clarifying concepts and procedures and having students learn and understand 

them” (Leinhardt, 1989, p.52). Expert teachers have complex cognitive skills that allow creating 

plans and making quick online decisions. In other words they have organized actions which are 

called schemata. They also have a large list of actions that they apply fluently. These activities 

are referred to as routines and they are developed by the teacher as a result of the organization of 

schemata for the action that is performed (Leinhardt & Greeno, 1986). Another difference 

between novice and expert teachers are the latter‟s use of well-practiced routines. The routines 

help the teacher to collect information and use that information during the instruction (e.g., 

focusing on problems that students had difficulties with in their homework assignments). Expert 

teachers‟ routines are also very flexible in that they can be adapted to different situations.  

The act of reflection has a central place in the practices of an expert teacher. Schon (1983, 

1987) defines reflection in two categories: reflection-in-action and reflection-on-action. While 

the former refers to thinking about the action while it is performed, the latter refers to reflecting 

on the action after it is performed. These concepts emphasize the idea of reflective thinking that 

might lead to an adaptive teacher who pays attention to the context. This way, the teacher can 

transform her knowledge and apply it in dynamic situations. Schon (1983) argues that over time 
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as the person reflects on the actions that she performed, she acquires knowledge and starts to be 

able to reflect in the action by asking herself what she is doing at that point and what her purpose 

in doing that is. In other words, the experience of reflecting on action allows the teacher to 

become adept at reflecting in action. Although experience is very important to reflect-in-action, 

knowing about more about students‟ thinking as well as the mathematical content are also crucial 

components of reflecting in action (Cooney et al., 1998). 

There are also some studies that define an expert teacher only based on the number of years 

the teacher has spent in the classroom (Burden, 1981). These studies show that teacher‟s level of 

teaching characteristics tends to improve over the years.  

The teacher analyzed in this study is considered to be an expert teacher primarily based on 

her cognitive aspects of teaching. The teacher‟s students have shown consistent growth scores 

over time, and she has been teaching for more than five years using standards-based practices. 

Although the time in service was not a main requirement, the assumption that the expert teacher 

had developed effective routines in the teaching and planning practices during this time was an 

important factor in choosing the teacher. Another important consideration was the teacher‟s 

active involvement in research related with supporting students‟ thinking during the 

mathematical instruction. 

Co-teaching 

Although the aim of the current study was not to investigate the effect of co-teaching in a 

standards-based classroom, it is important to note that the expert teacher collaborated with a 

special education resource teacher since three students in the classroom had mild learning 

disabilities. The two teachers used the method of co-teaching in their instruction. The origin of 

the term co-teaching is based on cooperative teaching where the general and special educator 
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provide direct educational programming to all students within a general setting (Bauwens, 

Hourcade, & Friend, 1989). Cook and Friend (1995) defined co-teaching as “two or more 

professionals deliver substantive instruction to a diverse or blended group of students in a single 

physical space” (p. 2). 

Three essential elements of co-teaching consist of cooperating in the planning, the 

instruction of students and assessment (Murawski & Dieker, 2004). For example, during 

planning the teachers need to come together and talk about the instructional methods that might 

be efficient and effective in helping all of the students meet the academic standards. During these 

meetings while the special education teacher can provide goals and objectives for any 

individualized education program (IEP), the general teacher can describe the content goals. The 

teachers, then together can plan for how to introduce the content in order to help all students in 

learning. Second, during the instruction both of the teachers need to actively engage with 

students. The studies showed that peer tutoring and cooperative learning (e.g., small groups) can 

be very effective when used with co-teaching, since the co-teacher can perform similar practices 

as the general teacher such as effective observing and data collection (Dieker & Murawski, 

2003). Finally, the teachers need to come together to assess the students‟ progress and 

development to revise the instruction and decide whether some students need more individual 

accommodations.  

The practices outlined above were followed by the expert teacher and the co-teacher in the 

current study. Prior to the beginning of the instruction they held meetings together with other 

teachers who were to teach the same unit to define the instructional sequence, the goals of 

instruction and the projected learning route. During the instruction, the expert teacher took a 

leading role while the co-teacher provided the necessary support through collecting data and 
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moving around the classroom to ensure that the lesson was meeting the needs of all students. For 

the current study, the actions of the co-teacher were consistent with the actions of the expert 

teacher in managing a standards-based classroom. In other words, both teachers adhered to the 

core practices that are required to teach in a standards-based environment. It is important to note 

that the current study focused only on the expert teacher‟s practices; finding the co-teacher‟s 

practices were outside the scope of this study.  

Summary   

 In summary, it is important to understand the key practices of standards-based teaching in 

order to use them effectively. Although, there have been many studies that describe the goals of 

standards and the teacher‟s role in the class, the studies that investigate both classroom and 

planning practice for a specific context are rare. Moreover, many of the existing studies only 

observed the classroom interactions without interviewing the teacher for long periods to 

understand the purpose of the teacher‟s actions. The current study not only investigated the 

expert teacher practices inside the classroom but also the teacher‟s role during the planning stage 

while she interacted with other teachers. 
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CHAPTER THREE: METHODOLOGY 

In this chapter, first the characteristics of design research and case study are discussed and 

the rationale for applying the case study methodology to investigate an expert teacher‟s practices 

is provided. Then the sampling methods for selecting the teacher and the instructional sequence 

are outlined. This is followed by a discussion of the data sources used and the methods for 

collecting them. In the subsequent sections, the interpretive framework and the procedures that 

were used for data analysis are explained. Finally, trustworthiness of the study are discussed.  

Design Research  

The main characteristic of design research can be defined as testing and revising the 

conjectures inherent in initial designs in order to develop theories within the context the 

phenomena occurs (Cobb, 2003). Design research is highly interventionist in that it allows the 

researcher to develop improvements in a natural setting. It also has both prospective and 

reflective characteristics that create a cyclic process. It is prospective, as it is implemented with a 

hypothetical learning trajectory considering potential pathways of learning and development, and 

it is reflective since during the experiment the conjectures are tested and if these are refuted new 

ones are generated and tested again (Cobb et al., 2003).  

In fact, this cyclic process is compatible with Simon‟s (1995) mathematics teaching cycle 

(Cobb, 2000). As defined earlier, a mathematics teaching cycle includes learning goals for 

students, planned instructional activities, and an envisioned learning process in which the teacher 

anticipates students‟ reasoning during the enactment of the activities. The teacher revises her 

trajectory based on students‟ current understanding in the class. Thus, the cycle emphasizes the 

importance of anticipation as well as revision in teaching practice aligned with design research. 
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Design experiments can be conducted in different settings such as classroom experiments, 

preservice teacher development experiences, inservice developmental studies, one-to-one 

experiments, and school district restructuring experiments (Cobb et al., 2003). The design 

experiment in the current study was a classroom experiment in which an instructional design was 

tested and revised on a daily basis. Typically, this type of experiment is conducted by a research 

team that collaborates with a teacher whose primary responsibility is implementing the 

instruction (Cobb, 2000).  

Different from many of the other design-based research studies, the aim of the research 

team in this study was to improve teaching practice rather than to test a theory. The design 

research team included the expert teacher (Dr. Stephan), the co-teacher (Mrs. Taylor), two other 

seventh grade teachers (Mr. Jones and Mrs. Wilson) that were teaching the same unit and the 

researcher of this study. The research team met three times before the instruction began and 

every week after the beginning of the instruction. Additionally, the expert teacher and the 

researcher met after every classroom session. The expert teacher who had previous experience in 

conducting design research served as the team leader during these meetings. The teacher created 

a hypothetical learning trajectory (HLT) and based on that she also designed an instructional 

sequence on integer concepts and operations (Stephan, 2009). In the meetings, the expert teacher 

led discussions on the HLT as well as the activities and also encouraged the teachers to make 

decisions based on students‟ understanding. The HLT played an important role during the 

conversation about students‟ understanding and the big ideas for the integers topic. 

The main focus of the teachers and the researcher during these meetings was student 

learning. The team anticipated the different strategies students might invent, talk about the 

imagery and inscriptions that might support students‟ understanding, and conjectured about the 
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possible topics that might evolve during the enactment of the activities in the classroom. The 

team also worked through the tasks of the sequence to anticipate how students might reason and 

to clarify the intent of the activities. These teacher meetings where the team anticipated and 

revised the conjectures became an important part of the current study. Thus, the design research 

supported an environment where the researcher could conduct a case study to investigate the 

cyclic process that consists of classroom and planning practices. 

Case Study 

Case studies have been commonly used in education research where the aim is to 

examine a specific phenomenon in a bounded system (Merriam, 2009). Case studies are 

generally preferred when the research focus is to extract the holistic and meaningful 

characteristics of real-life events (Yin, 1984). If the researcher selects the case because it is 

intrinsically interesting and the researcher wants to have a full understanding of the phenomena, 

then these studies can also be characterized as particularistic or intrinsic case studies (Merriam, 

2009; Stake, 1995). In this situation, the investigator studies the case to learn more about the case 

itself rather than learning about a general problem. This study can be characterized as a 

particularistic case study since the aim is to investigate an expert teacher‟s planning and 

classroom practices rather than investigating it for general understanding. 

The overall intent of this study can be defined as an interpretive case study. An 

interpretive case study includes thick and rich description of a phenomenon similar to a 

descriptive case study. However, in an interpretive case study, the data can be used to develop 

conceptual categories or to test the theoretical assumptions that were held before the data 

collection (Merriam, 2009).  In this study, the data were analyzed by taking apart observations, 

interviews, and field notes in order to describe the teacher‟s practices and interpret them based 
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on her beliefs, goals, and knowledge. The coding process was guided by two main analytic 

processes namely making comparisons and asking questions. This analytic procedure is called 

the constant comparative method which constitutes an integral part of the grounded theory. In 

grounded theory, hypotheses, concepts, and propositions are directly derived from the data rather 

than using prior assumptions (Glaser & Strauss, 1967).  Although grounded theory research aims 

to discover categories among the variables and find relationships by solely using the data itself, 

ignoring theories related to the study can result in undesirable results. However, it is important to 

note that, depending too much on the existing theories may constrain the researcher‟s creativity 

and her ability to find new categories from the data. One way to use the literature is to extend an 

existing theory and investigate how it can be applied to new or different situations (Strauss & 

Corbin, 1990).  

In this study, the analysis primarily used the teaching-in-context theory (Schoenfeld, 

1998). This theory, developed by the Teacher Model Group at Berkley, attempts to understand a 

teacher‟s decisions based on beliefs, goals, and knowledge. The current study applied the general 

framework of teaching-in-context but extended it over a period of an entire instructional unit 

rather than applying it to a single lesson.  

Case studies may include different disciplinary perspectives. A study that focuses on the 

culture of a classroom or a group of students can be described as an ethnographic case study. 

Merriam (2009) states that, “While the culture has been variously defined, [ethnographic study] 

essentially refers to beliefs, values, and attitudes that structure the behavior patterns of a specific 

group of people” (p. 27). An ethnographic study can help readers to understand how to behave in 

a cultural setting appropriately (Bogdan & Biklen, 1982). This study can be considered as an 

ethnographic case study, since it aimed to extract an expert teacher‟s practices based on her 
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beliefs, goals, and knowledge in a standards-based classroom culture. Thus, ethnographic tools 

were used to collect data such as classroom observations, interviews, and field notes. Although 

ethnographic research can be analyzed in many ways, the analytic approach of grounded theory 

is particularly suitable for ethnographic studies (Charmaz & Mitchell, 2001).   

In summary, this study was part of a larger design research and in order to understand the 

nature of the expert teacher‟s practices, a particularistic and interpretative ethnographic case 

study was conducted. The data were analyzed by using grounded theory to test and extend the 

teaching-in-context theory.  

Sampling 

Teacher selection 

The expert teacher, Stephan, holds a doctorate degree in Mathematics Education from 

Vanderbilt University, and she actively continues to carry out research on student learning. She 

has been successfully designing instruction that is consistent with the tenets of the NCTM 

Standards and that facilitates students‟ mathematical inquiry. The effectiveness of her instruction 

is reflected by the high achievements of her students on standardized tests and on the teaching 

awards she has received.  

The researcher of the current study observed Stephan for one full academic year as she 

taught a seventh grade mathematics class in a public middle school in Central Florida. During 

this period, many visitors including teachers of different levels, principals, and district 

coordinators visited her class to observe how she created and maintained a standards-based, 

effective teaching and learning environment.  

Stephan follows an instructional theory that is based on Realistic Mathematics Education 

(RME) developed at the Freudenthal Institute (Gravemeijer, 1994; Streefland, 1991). RME 
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considers teaching and learning of mathematics as both a social and individual activity, where 

students not only learn as they individually work on problems but also as they engage in fruitful 

mathematical conversations (Cobb & McClain, 2001). 

Stephan believes in a socio-constructivist learning theory also known as the emergent 

perspective. The emergent perspective combines the social and psychological aspects of 

students‟ learning (Cobb & Yackel, 1996). While the social perspective is an interactionist view 

of communal and collective processes (Bauersfeld, Krummheuer, & Voigt, 1988), the 

psychological perspective is a constructivist view of the individual student‟s (or the teacher‟s) 

activity as they participate in and contribute to the development of these communal processes 

(von Glasersfeld, 1992). Stephan‟s belief in the socio-constructivist learning theory has a 

profound effect on her teaching. She is not the only authority in the classroom; she considers the 

classroom as a community where everyone has an opportunity to learn and share. Thus, one of 

the important reasons for observing Stephan was to understand what it means to teach every day 

in a way that is described in the socio-constructivist learning theory.  

Instructional sampling 

This study focused on the practices of an expert teacher as she prepared and carried out her 

instruction on integers. The concept of Integers were chosen as a suitable setting that poses 

various challenges both for the teacher and the students such as the concept of negative numbers 

and the arithmetic operations that can be applied on them (Ball, 1993).  

Linchevski and Williams (1999) state that “traditionally negative numbers introduce a new 

aspect into the study of mathematics: for the first time reasoning in an algebraic frame of 

reference seems to be required. While counting numbers are constructed as abstracted from real 

objects and quantities…. negative numbers and properties of these numbers are traditionally 
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given meaning through formal mathematical reasoning” (p. 134). The obstacles of understanding 

integers had continued approximately 1500 years in mathematics history (Hefendendehl-

Hebeker, 1991). Similarly students generally have difficulties in understanding integers and the 

operations on them.  

The expert teacher also faced challenges to find an appropriate context within which to 

teach integers in her seventh grade classroom (Stephan, 2009). Prior to this study there were 

many models including number lines, temperature, and two colored chips that were introduced in 

the textbooks. Although these models seemed to help students remember how to perform the 

mathematical operations, the reasoning behind them might not always have been clear. In order 

to support her instruction, and help students to reinvent the rules of integer operations, the expert 

teacher designed an instructional sequence by using realistic mathematics education theory 

(Gravemeijer, 1994; Stephan et al., 2003).  

Thus the reasons to focus on the integers topic can be summarized as: 1) Integers has been 

a challenging task during the history of mathematics that present unique difficulties. 2) It may be 

difficult to make sense of negative numbers and the operations on them using real life examples, 

as opposed to other topics such as natural numbers. 3) The teacher being examined designed the 

instructional sequence using RME, and it has been used to teach integers for the past two years. 

This gave the researcher a unique opportunity to observe how an instructional sequence 

consistent with the NCTM Standards is implemented, how it can be revised as needed, and how 

it can be effectively applied in a real classroom environment.   
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Setting 

Classroom setting 

This study was conducted in a public middle school (grades 6-8) in Central Florida. Among 

the approximately 1500 total students, the percent of students eligible for free lunch was around 

10% while the percent of students eligible for reduced lunch was 7%. When the experiment was 

conducted, the teacher was teaching two seventh grade classrooms during the second and third 

periods. Among these, the third period was chosen because the teacher was available right after 

the class period to reflect on the classroom session.  

The classroom environment was designed by Stephan to support students‟ learning during 

instruction. The class had a white board, projector, and one computer. Thus the teacher was able 

to project the activity sheets on the board and the students could directly work on the activity 

projected on the white-board as they explained the solutions of problems. This was a useful time 

saver for the teacher.  

There were twenty one students in the classroom including fourteen boys and seven girls. 

Three of the boys had identified learning disabilities. Only one student did not want to participate 

in the audio and video recordings. There was also an experienced co-teacher, Taylor, who 

specialized in special education to support Stephan during the instruction. Taylor was also a 

teacher with 10 years of teaching special education experience. Stephan and Taylor had co-

taught in an inclusion setting for three years.  

The desks were arranged in groups of three to allow the students to work collaboratively. 

The students had different responsibilities that changed every day in the small groups: 

policeman, author, and leader. The leader‟s job was to tell other students in the group how they 

need to share the task that was given by the teacher. The policeman‟s job was to make sure that 
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everyone participated in the solution of the task. The author‟s job was to write down the results 

that were found by the group members before submitting the paper to the teacher. The 

responsibilities of the students in each small group were rotated every day by the teacher.  

At the back of the class there were two big labels on the wall: conjectures and theories. 

Under these labels the students‟ conjectures that were made during the class were posted. Once 

the students proved the conjectures and all the community members agreed, these conjectures 

were moved to the theories section of the wall.  

Next to the white board, the teacher kept a word wall where she posted the words that were 

discussed in the classroom related to the tasks such as “positive”, “negative”, “asset”, and “debt”. 

Also the teacher had a list that included the norms that she expected the classroom community to 

establish such as “listening to each other” and “explain your solutions”. She also had many 

books related to the reforms that support students‟ learning and manipulatives such as unifix 

cubes and geometric shapes.  

Realistic mathematics education 

In this study, the teacher used an instructional theory based on Realistic Mathematics 

Education (RME) developed at the Freudenthal Institute (Gravemeijer, 1994; Streefland, 1991) 

to design the integer unit. The roots of RME are based on Freudenthal‟s idea of mathematics as a 

human activity (Freudenthal, 1973). He stated that people need to see mathematics “not as a 

closed system, but rather as an activity, the process of mathematizing reality and if possible even 

that of mathematizing mathematics” (Freudenthal, 1968, p. 7). In order to mathematize, “one 

sees, or organizes and interprets the world through and with mathematical models. Like 

language, these models often begin simply as representations of situations, or problems, by 

learners” (Fosnot & Dolk, 2005, p. 189).   
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RME suggests three design heuristics that must be considered in designing a conjectured 

learning path with a set of activities that will support this learning path (Gravemeijer, 2004). 

These heuristics are: guided reinvention, didactical phenomenology, and emergent model which 

are aligned with the heuristics used by Stephan in designing the instructional sequence. These 

heuristics are defined in the following sections.  

Reinforcing with a real context  

One of the important heuristics of RME is that the instructional sequence should start with 

an experientially real context (Gravemeijer, 1994). Students do not necessarily have to 

experience the activity themselves but they should be able to imagine the activity.  This 

experience allows students to use their informal knowledge of mathematics as a starting point in 

developing progressively more formal mathematical reasoning and supports reinventing formal 

mathematical activities. Thus, the learning route should be designed in a way that allows students 

to invent the intended mathematics. For example, the instructional sequence in this study started 

with a context that involves determining a person‟s financial net worth. The focus of the 

beginning activities was to understand how debts and assets were quantitatively composed in a 

net worth statement and how integer operations worked in this context (Stephan, 2009). In other 

words, the students were given an opportunity to mathematize the net worth statements in order 

to understand integers and the operations on them. These operations were primarily comprised of 

addition and subtraction, but the sequence involved multiplication toward the end as well. 

Accounting in the abstract  

The instructional design should support the students‟ reasoning from concrete to abstract. 

In order to develop this type of instructional design, the designer needs to envision a path that the 

class may follow (Gravemeijer, 2004). The instructional sequence can be supported with the 
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knowledge of history of mathematics and the prior research that illustrate how students‟ may 

develop their thinking for that topic. Based on these, the teacher can create a hypothetical 

learning path. This path should be based on didactical phenomenology which emphasizes the 

importance of progressive mathematization. Rather than concretizing abstract mathematical 

knowledge, didactical phenomenology gives students opportunity to create mental objects in 

order to mathematize the phenomena that is introduced as a starting point. For example, students 

can symbolize taking away a debt of $300 as –(-$300) and explain their reasoning as the 

transaction which is the minus sign stands for take away actions and the negative sign in the 

parenthesis refer to debt (Stephan, 2009). 

Using symbols 

The third heuristic focuses on transitioning students‟ informal activity to a more formal 

one. To achieve this transition instructional activities should be designed to encourage students 

to model their informal mathematical activity and more progressively to modeling their formal 

mathematical activity which is also called emergent modeling (Gravemeijer, 2004). Gravemeijer 

and Stephan (2002) state that, “The students are expected to develop formal mathematics by way 

of mathematizing their informal mathematical activities” (p.148). During the transition from 

informal to formal, the designer should support students‟ reasoning with certain tools such as 

physical devices, inscriptions, and symbols that can be shared by students to explain their 

mathematical reasoning. For example, as students reasoned with the vertical number line as a 

model of their operations with assets and debts, the model evolved to become a model for formal 

integer operations. Students were encouraged to write the word problem, Linda has a net worth 

of $1500 and she adds a debt of $600, in terms of symbols such as $1500 + (-$600). Later as the 
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instructional sequence progressively moved to promote more abstract reasoning, students were 

only given numbers and symbols such as -3 + (-7) - (-5) (Stephan, 2009). 

These three heuristics, reinforcing with a real context, accounting in the abstract, and using 

symbols, of RME were used by the expert teacher to develop an HLT and instructional sequence 

as explained in the following sections.  

Hypothetical learning trajectory 

Simon (1995) used the term Hypothetical Learning Trajectory (HLT) as a theoretical 

construct that refers to “the teacher‟s prediction as the path by which learning might proceed” (p. 

135). An HLT has three main properties: a learning goal, learning activities, and a hypothetical 

learning process. A teaching cycle is developed from the combination of an HLT, students‟ 

interactions, and the teacher‟s knowledge. According to Simon‟s model, the teacher anticipates 

what kind of mental activities students may engage in during participation in the envisioned 

instructional activities and considers how the activities align with the teacher‟s end goals. Since 

the teacher envisions these activities, she can assess the actual learning of the students and 

compare it with the HLT only in the classroom environment. In this process, the co-teacher can 

play an important role by sharing experiences from the previous years and observing to what 

extent the envisioned learning route is materialized by the current instruction. The new 

experience and the insight that the teacher gains in the classroom result in the modification of the 

HLT for subsequent activities. The modification of the HLT, its application, and the ensuing 

revision as a result of the change in the teacher‟s knowledge creates a teaching cycle (Simon, 

1995). The HLT is consistent with the emergent perspective in that it offers a basis for 

elaboration of the teaching cycle from a socio-constructivist perspective (Clement & Sarama, 

2004; Gravemeijer, 2007).   
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The teacher‟s role is to help students transform their current mathematical activity to a 

more sophisticated one and in order to achieve this she can use an HLT as part of planning. RME 

theory can be used to create HLTs for longer term tasks (Gravemeijer & Stephan, 2002). 

However, designing long-term learning trajectories can be more difficult than designing short-

term trajectories.  

The expert teacher created the HLT by using a task that was designed according to the 

RME theory. The HLT was separated into five categories: tools, imagery, activity/taken-as-

shared interest, possible topics of mathematical discourse and possible gestures (Rasmussen, 

Stephan, & Allen, 2004). Tools were created to support students‟ cognitive development. They 

can be categorized under two groups: signs or semiotic systems such as inscriptions on paper and 

technical tools or instrumental tools such as computers or calculators (Meira, 1998, 2002).  In 

this study, tools refer to inscriptions. Although the term inscription primarily means marks on the 

paper, it is generally used to indicate any sign that is on the computer screen, paper, or other 

materials. When the tools are used in order to make sense of a context, they often stand for a 

signifier rather than an inscription. The difference between a signifier and an inscription is that 

the former refers to a person‟s perception of a mark, which can also be thought as the students‟ 

“imagery” (Gravemeijer, 2002). The important point is to make sure that the symbolizations 

(inscriptions) emerge from students‟ reasoning and have significance for them. In other words, 

mathematical symbols and models should be developed in a bottom-up manner. RME theory is 

one way of supporting the new tools in order to help students reinvent mathematics. Thus, the 

tools in the HLT help students solve the problems by using their informal knowledge and the 

knowledge from the preceding activities (Gravemeijer & Stephan, 2002).  
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The word “taken-as-shared” in the HLT indicates that the members of the classroom 

community achieve a sense of some aspect of the knowledge is shared but one never knows that 

this knowledge is exactly the same for everybody since they do not have direct access to each 

other‟s understanding. For example, as the students found the net worth of two people they 

began to understand that debts reduce the net worth while assets increase it. Thus, the meaning of 

assets and debts as having positive effect and negative effect were taken-as-shared by the 

students. That is, members of the community had no direct access to other‟s understanding but 

achieved the sense that some aspects of the knowledge were shared (Cobb et al., 1992). The 

category named “taken-as-shared interests” stands for the hypothetical interests (e.g. students 

might be interested in which famous person has more net worth) that can emerge as students‟ 

reason with tools and imagery. 

The teacher also included possible topics of mathematical discourse that might emerge 

during the use of the tools. For example, during the comparison of the two people‟s net worth, 

Stephan focused on different solutions of the comparison methods. Finally, possible gesturing 

was also an important part of the HLT since gestures, which are often externalization of mental 

imagery may support students‟ development of imagery. For example, illustrating going up and 

down with arms might help students visualize actions on the vertical number line in their mind. 

The HLT became a guide for the teacher in designing the instructional sequence. As the 

instructional sequence was applied in the classroom, the teacher first revised the HLT based on 

students‟ learning and then the activities that composed the instructional sequence. 

Data Collection 

The data collected during the instruction of the integers topic included interviews with the 

teacher, audio and video tapes of the classroom sessions, field notes, teacher notes, research 
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meetings, and a collection of students‟ work. The university‟s Institutional Review Board (IRB) 

approved all aspects of this study (see Appendix A). The teachers in the study as well as the 

students are referred to by pseudonyms. Since the expert teacher was also a researcher in this 

study, she is referred to by her real name. 

Schedule 

Data collection started approximately two weeks before teaching of the integers topic with 

meetings that included Stephan, three other seventh grade mathematics teachers, and the 

researcher of the current study. One of the teachers was a co-teacher (specialized in special 

education) who assisted Stephan during the instruction and the other two teachers had been 

preparing to teach integers using the same instructional sequence with their own classes. In the 

first meeting, Stephan introduced the HLT and explained how it could be used to help them 

during the instruction. She also explained the difficulties that emerged during the development of 

integers in the history of mathematics based on the related research she studied. The main aims 

of the meeting were to understand the big ideas of the unit, share experiences from the previous 

year, and talk about the following week‟s classroom practices based on students‟ envisioned 

thinking and potential misconceptions. The teachers and the researcher met once a week formally 

and then informally throughout the week. All teacher meetings were audio taped in order to 

document any changes in the plan of instruction together with the rationale for such changes. 

These meetings continued to take place on a weekly basis until the end of the study. 

Once the integer instruction started in March, 2009, the data collection continued for five 

weeks with the class observations through video and audio tapes, field notes taken by the 

researcher, daily interviews with the teacher, and the weekly meetings discussed above. The 

advisor of the researcher also observed several of the classroom sessions to take field notes and 
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extracted questions regarding the teacher‟s decisions. Additionally, the researcher watched each 

day‟s video on the same day to extract any remaining questions pertaining to Stephan‟s 

decisions. The researcher then asked Stephan the questions during the interviews. The interviews 

were not time constrained, which allowed the teacher to explain her thoughts and comments 

thoroughly regarding the observed class and the next day‟s plan. For example, if the teacher 

introduced a novel way of symbolizing students‟ thinking on the board, the teacher was asked 

how she decided to introduce the particular inscription. 

Classroom sessions 

Data from the classroom sessions were collected in four ways: video recordings, field 

notes, audio recordings of the students in small groups, and students‟ work. All sessions were 

videotaped by using two cameras: one camera was placed at the back of the classroom and 

focused mainly on the teacher, and the other was placed in the front to record both the teacher‟s 

and students‟ activities.  

All small groups were audio taped during their activities in order to observe how the 

teacher interacted with the students in small groups. Additionally, each student‟s work was 

collected every day at the end of the class. These data were later used to analyze the effects of 

students‟ verbal and written activities on the teacher‟s decision making processes. Field notes 

were taken by the researcher in each session (and once a week by the researcher‟s advisor) to 

document the teacher‟s practices and extract questions to be asked in the subsequent interviews. 

Formal and informal meetings 

Stephan, the other three teachers, and the researcher met every week to discuss that week‟s 

experiences and make plans for the following weeks. This formed a small learning community 

where the teachers shared the difficulties faced by their students and reflected on what they could 
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do to address them. The teachers also discussed the progress they made in the instructional 

sequence and any challenges they faced in applying the sequence. These meetings generally 

resulted in plans to address these problems. In addition to these formal meetings, informal 

discussions took place between the teachers as questions arose related to the instructional 

sequence. These meetings were used to describe Stephan‟s planning practices, and document 

their relationship with the classroom practices. 

Formal and informal interviews 

After each classroom session, Stephan was interviewed and these interviews were audio 

taped. During the interviews, she was asked to interpret the lesson that she had just taught. She 

also explained her plan and the big ideas for the following day. Additionally, the researcher 

asked questions about how some of her specific decisions contributed to an environment that 

supported students‟ mathematical understanding. The intent here was to understand the teacher‟s 

beliefs, goals, and knowledge and connect them with the specific events from the planning and 

classroom. Since the teacher also explained her plan for the following day in these interviews, 

the data were used to extract the planning practices. Finally, the teacher and the researcher had 

informal meetings before the class if the teacher decided to make some changes in her plans. 

However, these meetings occurred rarely, as the teacher generally applied the plan from the 

previous day.   

The data collected through the classroom interactions, interviews, field notes and teacher 

meetings were used to describe the nature of the expert teacher‟s planning and classroom 

practices, explore the relationship between them based on the teacher‟s beliefs, goals, and 

knowledge. Table 1 below summarizes the relationship between the data and the research 

questions. 
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Table 1: The research questions and the related data set 

Research Questions Related Data Set 

What are the planning and classroom practices of an 

expert middle school mathematics teacher to sustain a 

standards-based environment?  

 

Classroom Sessions/ Field Notes 

Teachers‟ Meetings 

Teacher Interviews 

What are the teacher‟s beliefs, goals, and knowledge 

that underlie the development of these practices?  

 

Teacher Interviews/ Notes, HLT,  Instructional Sequence 

Classroom Sessions/ Teachers‟ Meetings 

What is the nature of the relationship between 

classroom and planning practices? 

 

Classroom Sessions/ Teachers‟ Meetings, Teacher, 

Interviews/ Notes, HLT,  Instructional Sequence 

 

Interpretative Framework 

Theory of teaching-in-context 

The main framework that guided this study was developed by the Teacher Model Group at 

Berkeley (Schoenfeld, 1998). The aim of this theory is to explain how and why teachers do what 

they do in the classroom. The model describes teachers‟ moment-to-moment decisions and 

actions based on their knowledge, beliefs, and goals. When a teacher enters a classroom, she 

carries a substantial body of knowledge which may include knowledge about the students, the 

school environment, and the content. She also carries a set of beliefs about how teaching should 

be done. Based on these, the teacher develops goals that she wants to achieve through executing 

a series of actions. It is these actions and decisions that the theory of teaching-in-contexts 

attempts to explain using the teacher‟s knowledge, beliefs, and goals (Schoenfeld, 1998, Aguirre 

& Speer, 2000). 

Knowledge can be defined as the set of intellectual resources that the teacher uses in any 

given situation. This includes knowledge of the students, of the context, and of the content. 

Shulman (1986) categorizes the knowledge under three categories, namely subject matter 

knowledge, pedagogical content knowledge, and curricular knowledge. Subject matter content 
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knowledge refers to both the content of the subject and the structure of the subject. Teachers 

need to know what is true as well as why it is true. Pedagogical content knowledge includes 

having different representations available for specific topics, understanding the difficulties that 

students can have, and being aware of misconceptions, preconceptions, and conceptions of 

students. Curricular knowledge includes the knowledge of how topics are arranged within the 

years and the knowledge of curriculum materials for specific topics. Teachers need to have 

multiple types of knowledge in order to deal with the complexity of the classroom.  

A teacher‟s beliefs play an important role in determining the levels of priorities of her goals. 

There have been different definitions of beliefs. In this study, beliefs refer to personal 

philosophies that include conceptions and values that reflect one‟s world view (often implicitly 

held) such as students learn by listening or students learn by constructing their own 

understanding (Ernest, 1989; Thompson, 1992; Aguirre & Speer, 2000). Beliefs can encompass 

several areas such as beliefs about students‟ understanding and learning, beliefs about the 

individual or group work for the class to engage in, and the beliefs about the importance of 

formulas and explanations. However, they can be described mainly under three categories: 

beliefs about teaching, beliefs about learning, and beliefs about mathematics. Teachers‟ beliefs 

can be shaped by the goals that they want to achieve as well as the knowledge that they bring to 

support those beliefs. The effect of knowledge on beliefs, however, depends on the structure of 

the beliefs as well as whether they are held with evidence (Cooney, 1999). The structure of the 

beliefs illustrate how the beliefs are held: whether they are shaped the results of people‟s telling 

or rooted in rationality.  For example, one can have a belief because an authority stated it to be so 

or because of rational evidence based on one‟s own experiences or logical deductions. 
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The beliefs used in the teaching-in-context model stand for the attributed beliefs rather 

than professed beliefs (Aguirre & Speer, 2000). Attributed beliefs are inferred from the teacher‟s 

actions. These attributions may or may not reveal a teacher‟s professed beliefs. Thus, it would 

not be correct to claim that these beliefs are exactly the same as the teacher‟s actual beliefs. 

However, by triangulating as much as possible within the data using the interviews, teacher‟s 

notes, teacher meetings and class sessions the attributed beliefs can be very close to the teacher‟s 

real beliefs (Schoenfeld, 1998). 

Goals are “cognitive constructs that describe what the teacher wants to accomplish” 

(Aguirre & Steer, 2000, p. 332). Decisions are also shaped by the goals of the teacher that are 

held at a high level at any given moment. Similar to beliefs, the goals are attributed to the 

teacher‟s actions as it is often not possible to know the goals and beliefs precisely. Goals can be 

classified as overarching goals as well as content specific goals or student related goals. Goals 

may be pre-determined or emergent (Schoenfeld, 1998).  Pre-determined goals are set by the 

teacher as a result of her current knowledge and beliefs, whereas emergent goals can arise due to 

unforeseen incidents within or outside of the classroom. For example, a teacher might decide to 

introduce a new mathematical vocabulary based on the students‟ answers that are discussed in 

the classroom even though she did not plan it before the classroom. 

 As with beliefs and knowledge, goals are an important factor in explaining the teacher‟s 

practices. Many times the goals can be explained with belief bundles. For example, a belief can 

be associated with another belief in the formation of a new goal. Although it is impossible to 

observe all the beliefs that the teacher has during her decision making, a shift in goals may be 

helpful in understanding the teacher‟s beliefs (Aguirre & Speer, 2000). For example, in one of 

the studies the teacher‟s goal at the beginning of the class was to allow students to make 
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presentations on their own since she believed that students learn by presenting their ideas. 

During the instruction since the students could not present correctly, the teacher decided to 

directly guide the students since she thought that some students might get confused during this 

process. To this end, the shift in the teacher‟s goal from asking students to present their ideas to 

directly presenting the solution herself revealed that her belief that students learn by presenting 

their ideas was superficial (Aguirre & Speer, 2000). 

Thus, the theory brings together several pieces from the literature including teacher 

knowledge (Fennema & Franke, 1992; Shulman, 1986), beliefs (Calderhead, 1996; Thompson, 

1992), goals (Clark & Peterson, 1986; Saxe, 1991; Schank & Abelson) and a descriptive model 

of the teaching process (Borko & Putnam, 1996). It is important to note that the theory mainly 

explains the reasoning behind the actions from the teacher‟s perspective since it is based on the 

teacher‟s knowledge, beliefs, and goals.     

Data Analysis 

In this study, data analyses were performed using the constant comparative method of 

grounded theory (Glaser & Strauss, 1967). Grounded theory can be described as detecting 

relationships, discovering theories and concepts, and drawing conclusions directly from the data. 

Grounded theory can be used to verify, amend, and extend the existing theories in light of new 

situations and data (Strauss & Corbin, 1990). 

A grounded theory includes categories, hypotheses, and the conceptual links among the 

categories. The main strategy of grounded theory is the constant comparative analysis which 

starts with a particular incidence from the interviews, field notes, and documents that can be 

compared with other incidents from the data. These comparisons help to create tentative 

categories and later on these categories are compared within themselves. Finally, a theory can be 
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generated by the constant comparison of data within and between other categories, and 

reformulating hypotheses by constantly confronting the theory with negative cases (Glaser, 

1965).  

The data analysis of this study was categorized under two parts: planning and classroom 

practices. Planning practices are comprised of the offline activities of the teacher as she carefully 

analyzes the content that will be presented and determines its most important points (Ball, 1993). 

Classroom practices, on the other hand, can be defined as the patterns of routines and social 

interactions that take place between the teacher and the students and among the students 

themselves (Saxe, 1999). 

Prior to analyzing the teacher‟s planning and classroom practices, an initial list of the 

teacher‟s relevant knowledge, beliefs, and goals were extracted by using interviews with the 

teacher, the teacher notes, the HLT, and the teacher meetings. This list was expanded during the 

analysis in light of new data supporting different knowledge, beliefs, and goals. 

Planning practices were extracted from the teacher‟s actions during the teacher meetings 

and the daily planning sessions. Classroom practices, on the other hand, were extracted from the 

teacher‟s actions in the classroom using the transcripts of the videotapes as well as audiotapes 

from small groups. Both planning and classroom practices were interpreted using the teacher‟s 

knowledge, beliefs, and goals.  

In summary, during the analysis of the data first the teaching-in-context theory was used in 

order to interpret the teacher‟s actions based on her beliefs, goals, and knowledge. These 

elements were extracted from the teacher meetings, interviews, classroom sessions, and teacher 

notes using the constant comparative method. During the grouping of data into sub-categories 

(i.e. beliefs into learning, teaching, and mathematics; goals into overarching, content, and local; 
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knowledge into content, pedagogical, and curriculum) the teaching-in-context theory as well as 

the literature was used. To identify the teacher‟s actions that are part of her planning and 

classroom practices, grounded theory was used to compare and contrast the teacher‟s behaviors 

during planning and teaching. Once the actions were extracted, they were grouped under 

different practices which themselves are created from the logical relationship between the 

actions, the teacher notes and the literature. Finally, all of the identified actions are interpreted 

using the teaching-in-context theory. The table below illustrates the summary of analyses that 

were applied in this study: 

Table 2: Phases of the analysis and the methods and data sources for each phase 

Phase  Source/Method 

Determination of using beliefs, goals, and knowledge as 

the fundamental element of the analysis 

Teaching-in-context theory 

Finding belief, goals, and knowledge of the teacher Constant-comparative method of ground theory using 

data from teacher meetings, interviews, classroom 

sessions, and teacher notes 

Creation of subcategories for beliefs, goals, and 

knowledge  

Teaching-in-context theory and the literature 

Identifying actions for planning and classroom practices Constant-comparative method of ground theory using 

data from planning and classroom sessions 

Grouping actions under different practices Logical relationship between the actions, teacher notes, 

and the literature 

Interpretation of actions Teaching-in-context theory 

 

Extraction of beliefs, goals, and knowledge 

To explore the planning and classroom practices of the expert teacher, first an initial list of 

beliefs, goals, and knowledge was created using the transcripts of daily interviews with the 

teacher and the teacher meetings. This list was augmented by the teacher notes that gave an 

overview of the teacher‟s overall philosophy about teaching and learning mathematics. 

Additionally, the HLT was used to derive the teacher‟s goals for the integers topic. Beliefs were 

derived from the daily interviews and the teacher meetings only if the teacher revealed her 
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general views about teaching, learning, and mathematics. If the teacher specifically talked about 

the events that occurred (or the events she expected to occur) in the class and the actions that she 

was planning to take, these were included in the teacher‟s goals. 

The beliefs were categorized under three groups: beliefs pertaining to teaching, beliefs 

pertaining to learning, and beliefs pertaining to mathematics (Ernest, 1989; Thompson, 1992). 

For example, a belief such as “students learn mathematics with understanding” was placed under 

the learning beliefs while “the teacher is not sole source of knowledge” was categorized under 

teaching beliefs, and “mathematics is a sense-making activity” was put under the mathematics 

beliefs. 

The goals were also categorized under three groups as overarching goals, content goals, 

and local goals (Schoenfeld, 2000). For example a general goal such as “focusing on the big idea 

of the lesson” was included in overarching goals, whereas a goal that depends on the current 

content such as “thinking of net worth as intangible quantity” was considered as a content goal. 

The goals that occur based on the needs of the current situation (which usually occur in response 

to students‟ actions) such as “bringing a student‟s idea from another period to classroom” were 

considered as local goals. 

The teacher‟s relevant knowledge was also categorized under three groups namely the 

subject matter, the pedagogical, and the curriculum knowledge (Shulman, 1986). Although 

determining the entire body of a teacher‟s knowledge is not a straightforward task, the current 

study attempted to describe it from the teacher‟s belief, goals, and actions. For example, the 

teacher‟s belief that an environment that nurtures respect and a sense of community plays an 

essential role in students‟ learning was considered as an indicator of the teacher‟s knowledge 

about the environment aspect of the NCTM Standards. 
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Analysis of planning practices 

To analyze the expert teacher‟s planning practices, first the teacher meetings prior to the 

beginning of the study, the weekly teacher meetings that were held during the study, as well as 

the daily interviews with the teacher were transcribed. These transcripts were studied to find the 

patterns of actions that the teacher regularly employed during planning sessions. Using the 

constant comparative method, the observed actions were put under investigation to determine if 

they repeated sufficiently throughout the data set to warrant them a practice status. 

Once the initial list of the actions was created, the actions were studied to find the logical 

relationships between them. Based on this, the actions were categorized into five practices 

namely preparation, reflection, anticipation, assessment and revision. This grouping was 

performed for the purpose of facilitating the analysis by collecting similar actions together.  

After the grouping, each action was interpreted using the selected dialogues from the data 

set that epitomized the main features of that action. The interpretation was based on the teaching-

in-context theory which uses the teacher‟s beliefs, goals, and knowledge to explain the teacher‟s 

practices. During the interpretation, the emphasis was put on the highest priority beliefs and 

goals and the most relevant knowledge of the teacher regarding the action in question.  

Analysis of classroom teaching practices 

Similar to the analysis of planning practices, first the videotapes of classroom sessions as 

well as the audio recordings of small groups were transcribed. Using the constant comparative 

method, these transcripts were used to find the regularly occurring patterns of actions that the 

teacher exhibited during the instruction. 

The extracted actions were categorized into five different practices based on the logical 

relationships among them as well as the teacher notes, interviews with the teacher, and the 
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literature. These practices were creating and sustaining social norms, facilitating genuine 

mathematical discourse, supporting the development of sociomathematical norms, capitalizing 

on students‟ imagery to create inscriptions and notation, and developing small groups as 

communities of learners. After grouping the actions, the classroom dialogues that illustrated the 

main features of each action were interpreted based on the teacher‟s beliefs, goals, and 

knowledge. 

Trustworthiness 

An essential component of a qualitative study is the supporting evidence for its 

trustworthiness (Lincoln & Guba, 1986). In order to ensure the trustworthiness of the current 

study multiple methods were used. These included observations, interviews, meetings, field 

notes, and documents. Triangulation among these multiple data sources was an important 

element in reducing the limitations of the study (Mathison, 1988). Interviews enabled the 

researcher to learn the expert teacher‟s perspective, how she made decisions, what she believed 

about teaching and learning in a standards based environment, her comments related to the 

observed classroom and how the instruction proceeded compared to her expectations and plans. 

The teacher meetings were used to understand Stephan‟s perspective more clearly as she 

expressed her ideas related to the instructional sequence, students‟ work, and the classroom 

environment. All the data that were extracted from the interviews, teacher meetings, teacher 

notes, and classroom sessions were checked for consistency by comparing the same lesson 

within itself as well as between different lessons whenever possible.  

Member checking was also used to enhance the trustworthiness of the study. Member 

checking can be described as taking the data and interpretations to the people who participated in 

the study during the analysis and asking if the results are plausible (Guba & Lincoln, 1981). The 
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practices as well as the beliefs, goals, and knowledge extracted by the researcher were shown to 

the expert teacher to get her opinion. 

The study was conducted over a five-week-long period. This allowed the researcher to see 

the patterns in the data more clearly and accurately. Comparing the data within itself during the 

same day and across different days permitted the use of the constant comparative method and 

allowed for the creation of more reliable categories. 

Being a participant in the study can also enhance the trustworthiness as it gives an insiders‟ 

perspective to the researcher (Merriam, 2009). In this study, the researcher attended all of the 

teachers‟ meetings as a participant rather than an observer. This gave the researcher an 

opportunity to put herself in the role of a teacher and acquire a better understanding of what is 

perceived from that perspective. Additionally, high level of detail and data provided by the study 

such as the list of the teacher‟s practices, beliefs, goals, and knowledge as well as the HLT and 

the instructional sequence provide further support for the reproducibility of the study. To this 

end, by using the same instructional sequence and investigating the same expert teacher‟s 

practices, it is expected that one can find results that are consistent with those of the current 

study. Additionally, one can use the same methodology to research another teacher‟s practices 

and compare it with the findings of the current study.  
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CHAPTER FOUR: INTERPRETATIVE FRAMEWORK 

The aim of this chapter is to give a detailed description of the interpretative framework 

by using specific examples from the data set as well as to describe the process by which the 

teacher‟s beliefs, goals and knowledge were extracted. During the analysis, teaching-in-context 

theory was used to explain the expert teacher‟s actions and practices. For the purposes of the 

current analysis, the term action is used to indicate a repeating way of behavior adopted by the 

teacher, while practice stands for a collection of related actions. 

Teaching-in-Context 

The intent of the analysis was to extract the teacher‟s practices and explain how and why 

she applied them. The study used the theory of teaching-in-context as a framework to explain the 

teacher‟s decision making process and actions based on the teacher‟s beliefs, goals, and 

knowledge (Schoenfeld, 1998). The framework supports that one can provide a detailed 

explanation of what the teacher does and why she does it with a good understanding of the 

teacher‟s beliefs, goals, and knowledge. The beliefs serve as a background for the goals that the 

teacher wants to accomplish and the teacher accesses different types of knowledge to achieve 

those goals. To determine the teacher‟s beliefs, goals, and knowledge one needs to have the 

teacher‟s lesson image which can be obtained by interviewing the teacher. Lesson images 

include the teacher‟s knowledge about the students, the ways that they are likely to think in 

certain scenarios, and how she might react to those strategies. Lesson images also contain the 

action plans where the teacher defines the set of actions that she needs to go through in order to 

achieve the goals. It is also important to note that, in any given moment, beliefs, goals, and 

knowledge may have different activation levels (e.g. a particular goal may have a higher priority 

than other goals in that moment). An unexpected situation in the classroom can cause a change in 
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the activation levels. Although the analysis of the planning and teaching practices included all of 

the beliefs, goals, and knowledge during the interpretation, in the following, each component of 

the model is shown individually using examples from the data for illustration purposes. 

Beliefs 

Beliefs are “mental constructs that represent the codifications of people‟s experiences and 

understandings” (Schoenfeld, 1998, p. 23). The teacher may have different kinds of beliefs such 

as beliefs about learning, teaching, and mathematics. Beliefs shape what the teacher considers 

about the appropriate behaviors in different circumstances based on her goals that she wants to 

accomplish and the knowledge that she brings to those circumstances. The framework considers 

attributed beliefs rather than professed beliefs. The attributed beliefs are those that are extracted 

from the interviews with the teacher, teacher meetings, and teacher notes. Although one cannot 

assume that attributed beliefs are exactly the same as the teacher‟s real beliefs, they can be made 

as close as possible by triangulating among multiple data sources as well as member checking.  

The teacher‟s beliefs have an important role not only in understanding the teacher‟s goals, but 

also in assessing her relevant knowledge. 

The following excerpt is taken from the first day of the experiment where the teacher re-

emphasized the way the students need to behave in the classroom: 

T: Let‟s remind ourselves how we act in here. How do we participate in here?  

 

Seth: Respectful. 

 

T: You are respectful to each other. That means I do not want to hear the “s” word. What is the “s” word? 

 

Sts: Shut up, stupid. 

 

Seth: You can say “please be quiet”. 

 

T: Yes you can say “please be quiet”. Do it respectfully. I am starting to hear you guys getting disrespectful 

to each other, I want it to stop. We need to argue in productive ways. Right, Mark? 
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This discussion took place at the beginning of the instructional sequence as the teacher wanted to 

make sure early on that students did not behave in disrespectful ways toward each other. 

Although, arguing respectfully was an already negotiated norm at this point in the semester, the 

teacher started to hear some undesirable words, and therefore reminded students that it is not 

appropriate in this classroom. The teacher‟s practice here is to renegotiate the norms about how 

to behave in the classroom. Her practice can be explained by her belief that students learn better 

in an environment where they respect each other. This environment allows them to explain their 

ideas without worrying that they will be criticized by the other students disrespectfully. 

Goals 

A goal can be described succinctly as “something you want to accomplish” (Schoenfeld, 

1998, p. 25). The teacher may have different goals such as overarching, content, and local goals 

(Schoenfeld, 2008). Overarching goals are the general goals of the teacher that she wants to 

accomplish in her planning and instruction. For example, teaching in a way that supports a 

discourse that stays alive and interesting can be considered as an overarching goal. Content 

goals, on the other hand, are those that capture the teacher‟s aims for a given instructional 

context. For instance, students‟ understanding of net worth as an abstract (intangible) quantity 

can be counted as a content goal for the integers topic. Local goals are more limited in their 

scope; they may remain valid only for a short duration such as one classroom session. As an 

example, the teacher may want to bring a student‟s idea into the discussion since it might be 

useful to other students. Additionally, emergent goals might arise in response to unexpected 

situations. For instance, a student may ask an interesting question or offer an alternative 

explanation to a question, which may result in the creation of a new goal to respond to those 

situations. 
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Goals may play different roles in the teacher‟s decision making process. Similar to 

beliefs, they are also attributed to the teacher by triangulating within the data as much as 

possible. Often goals can be extracted from the teacher‟s lesson images. However, in reaction to 

unexpected situations, new goals may emerge and these may have higher priority than the 

planned goals. Teacher‟s decisions are primarily shaped by the set of currently active high 

priority goals. The excerpt below is taken from a classroom discussion in the first episode where 

the focus of the discussion was on understanding the meaning of net worth: 

T: What does it mean to be worth 2.7 billion dollars? What does it mean when we say someone is worth 

that much money? Do you have any idea? 

 

Dusty: Like [pause]. No.  

 

T: All right. Who has not gone today?  

 

Gage: That means like if someone like Oprah sold all she had that is how much money she would get. 

 

T: That is a pretty neat idea. Isn‟t it? If she were to sell everything that is how much she would be worth. 

Brad? 

 

Brad: How much she made over her life time. 

 

T: Anything else? 

 

Tisha: I think if she is sponsored or something like that, that it is how much they would pay for her. 

 

T: All right. You know how somebody described it from the last period. Do you guys know Danny? 

 

Sts: Yes. 

 

T: He described it as if she was kidnapped, that is how much money they would ask for her.  

 

During the discussion of the net worth of a famous person, the teacher first asked students 

meaning of the net worth. Gage explained that it is how much money a person would get back 

during her life time if she were to sell everything. Then the teacher asked different students to 

explain the meaning of net worth. Brad explained it similar to Gage by stating that it would be 

the money that she made over her life. Tisha also claimed that it would be the money that a 

sponsor would pay to her. Finally, the teacher brought up one of the student‟s idea from another 
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class period to the discussion by stating that it would be the amount of money that would be 

asked if she were to be kidnapped.  

 The content goal of the teacher during this discussion was to emphasize net worth as an 

abstract quantity. In order to achieve this goal, she first asked students to explain the meaning of 

net worth and capitalized on some students ideas in order to emphasize the big idea of the 

activity. An active overarching goal of the teacher was to support a discourse that stays alive and 

interesting. Thus she connected the context with a famous person‟s financial transactions. Once 

the students produced different explanations in the discussion, she concluded it by giving a 

further example from a previous period which emphasized the idea of net worth as an abstract 

quantity. 

Knowledge 

Schoenfeld (1998) considers teacher‟s knowledge as not only what she knows about 

subject matter, pedagogy, and curriculum, but also how this knowledge is organized and 

accessed. Teacher‟s knowledge includes abstractions of the real life experiences that are 

encountered on a day-to-day basis. The teacher uses those abstractions in order to perceive and 

interact with new situations. Despite that the teacher may have a large body of knowledge, she 

may only use a small and fundamental subset of it when making decisions (Schoenfeld, 1998). 

Knowledge may be considered as the point of reference upon which beliefs and goals are 

based. For instance, in order for a teacher to believe that mathematical inquiry is important for 

students‟ learning, she needs to know what mathematical inquiry is as well as why it is important 

for learning. Knowledge may be acquired through multiple sources such as books, journals, 

communicating with others, and by simply observing. Similar to the beliefs and goals, the 

teacher‟s knowledge was also extracted from the data corpus. 
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The following excerpt taken from the second day serves to illustrate how the teacher‟s 

knowledge affected her practice during the instruction. In this discussion, the teacher asked 

students to find Brad‟s net worth when his assets were $600,000 and his debts were $790,000. 

After a classroom discussion most of the students agreed that the net worth was negative 

$190,000. At this point the students encountered negative net worth for the first time: 

T: If he sells all the stuff he has, he would get cash and pay off his debt but he would still be in debt. 

Everybody okay with that … I have one last question for you. Somebody told me Brad is worth nothing. Is 

that true? [She gives students time to think] I heard “nothing” and “less than nothing”. 

 

T: All right. Adam which one do you think it is?  

 

Adam: Less than nothing. 

 

T: What do you think Gage? 

 

Gage: Like less than nothing. 

 

T: Charlie? 

 

Charlie: Less than nothing. 

 

In this discussion, the teacher first summarized students‟ findings that Brad will still be in debt 

after selling all his belongings and using the money towards paying off his debts. She then 

wanted to determine if students considered this situation as Brad‟s net worth being nothing or 

less than nothing. At this point many students correctly identified that the answer should be less 

than nothing. The teacher‟s knowledge based on her previous experiences showed that many 

times students have misconceptions in understanding the negative numbers and their relationship 

to zero due to their abstract nature. In questions that require subtracting a bigger number from a 

smaller one, students may mistakenly find the answer as zero because, like the history of 

integers, many students have difficulty conceptualizing that there exist quantities below zero. 

The teacher‟s knowledge about this misconception might have been the driving factor for the 

teacher‟s inquiry in this discussion. 
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In this section, the teacher‟s beliefs, goals, and knowledge are considered in isolation to 

interpret the teacher‟s actions for illustration purposes. In reality, all of these sources are likely to 

come into play when shaping the teacher‟s decisions. However, in different situations, certain 

beliefs, goals, or knowledge can have higher priority than others. Thus when interpreting the 

teacher‟s actions the focus was placed on those high priority ones. In the following section, the 

researcher‟s methods of extracting the teacher‟s beliefs, goals, and knowledge from the 

collection of data sources is described. 

Extraction of the Teacher’s Beliefs, Goals and Knowledge 

 Extraction of the teacher‟s beliefs, goals, and knowledge began by transcribing the 

multiple sources which were comprised of teacher notes, audio tapes of teacher interviews, and 

teacher meetings as well as audio and video tapes of classroom sessions. Once the transcripts 

were completed, the researcher examined each source to find repeating patterns of behaviors and 

statements made by the teacher. When a certain type of behavior which may indicate a belief, 

goal, or knowledge was encountered, the researcher made a note of it and kept it under 

investigation to determine if the same behavior would be observed multiple times and across 

multiple data sources. In other words, the researcher triangulated across multiple data sources to 

make sure that a belief, goal, or knowledge that was attributed to the teacher was actually in the 

teacher‟s repertoire.  When it was necessary, the researcher directly asked the teacher in the 

interviews to explain why she behaved in a certain way, which revealed more information about 

the teacher‟s beliefs, goals, and knowledge. As the majority of beliefs, goals, and knowledge 

were extracted in this way, they can be called attributed as they were attributed to the teacher by 

the researcher. However, sometimes the teacher directly revealed her beliefs, goals, and 

knowledge (although this happened predominantly for goals rather than beliefs and knowledge). 
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These types of professed statements were also included among the teacher‟s beliefs, goals, and 

knowledge (Aguirre & Speer, 2000). 

Once the initial list of beliefs, goals, and knowledge was extracted as outlined above each 

of them was organized into sub-categories using the categories in the literature (Schoenfeld, 

2008). Beliefs were categorized into beliefs about learning, beliefs about teaching, and beliefs 

about mathematics. Goals were organized as overarching goals, contents goals, and local goals. 

Knowledge was partitioned as subject matter knowledge, pedagogical knowledge, and curricular 

knowledge. To facilitate the analysis, the teacher‟s beliefs, goals, and knowledge were coded in 

the following fashion. Beliefs are represented with the capital letter B followed by the subscript 

L for learning beliefs, T for teaching beliefs, and M for beliefs about mathematics. For example, 

BL1 represents the teacher‟s first belief related with learning in the order extraction (thus the 

number does not indicate priority). For goals, G is used to represent the general category while, 

the subscripts O, C, and L are used to represent overarching, content, and local goals. Similarly, 

knowledge is indicated by K with subject matter, pedagogical, and curriculum knowledge 

distinguished by subscripts S, P, and C respectively (see Table 3). All of these abbreviations are 

given in Appendix B. 

Table 3: Coding of beliefs, goals, and knowledge 

Beliefs Goals Knowledge 

Learning (BL) Overarching (GO) Subject matter (KS) 

Teaching (BT) Content (GC) Pedagogical  (KP) 

Mathematics (BM) Local (GL) Curriculum (KC) 

 

After the teacher‟s beliefs, goals, and knowledge were coded, the actions that she 

commonly applied during the planning and classroom sessions were also extracted from the data 

set. To determine whether an action was part of the teacher‟s practice, rather than being an 
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isolated occurrence, the researcher investigated how consistently this action was being repeated 

by the teacher. This action was judged by whether the teacher exhibited this action consistently 

when faced with similar situations. After the extraction of the teacher‟s actions, the actions that 

are related to each other were collected under a practice that defines the overall aims of those 

actions. In naming these practices the literature as well as the teacher notes were used. The 

following examples are given to illustrate how a belief, a goal, and knowledge went through this 

process. 

In one of the interviews the teacher stated that, “I have in my mind all the time. Are they 

explaining? Are they asking questions? ”. The researcher took a note of these behaviors and kept 

them under observation to understand whether the statement indicates one of the beliefs of the 

teacher. Later in the interview, the teacher stated that “Those norms [explaining one‟s reasoning, 

asking questions to understand others, etc.] are what make an inquiry classroom drive.” Based on 

these and other occurrences of similar statements in teacher meetings and the teacher‟s behaviors 

in classroom sessions, the researcher attributed a belief to the teacher that “the teacher is 

responsible for creating and supporting an environment where ideas can be discussed freely and 

respectfully.” This belief was then categorized into beliefs about teaching as it is the teacher‟s 

responsibility to support creation and sustainment of social norms. 

In the first teacher meeting, the teacher defined the intent of the net worth statement 

template activity as “The imagery we are trying to develop initially is assets and debts are the 

quantities that have opposite effect on the net worth statement. One of the big ideas of the 

template is conceptualizing asset as something owned, debt as something owed and net worth as 

an abstract quantity ”. Based on this statement in the teacher meeting, other sources such as the 

HLT (the table given in the next session), teacher interviews, and classroom sessions were 
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examined. Since similar statements and behaviors that support this view were seen in other data 

sources, the researcher attributed several content goals such as “developing the imagery where 

assets and debts have the opposite effect on net worth”, “defining asset as something owned and 

debt as something owed” and “conceptualizing net worth as an abstract quantity”.  

In another meeting, the teacher anticipated the students‟ answers and how she might react 

to them: “if they [students] do not say that the net worth is the amount of money left over, they 

will say, especially our procedural kids, that it is what you get when you subtract those two 

[assets and debts]” and then she emphasized that “it is not clear to me what they mean by money, 

they mean physical money and coins?” and then she stated that she would focus on it during the 

discussion of net worth problems. The teacher made similar statements during an interview by 

stating that “I am not exactly sure how he was conceptualizing the net worth at that point … 

perhaps they were just trying to perform some procedure to be successful, not necessarily 

thinking through what those quantities stand for”. The classroom sessions also illustrated actions 

consistent with these statements where the teacher focused on students‟ understanding of net 

worth. As evidenced by these actions, the teacher had knowledge about the students‟ possible 

misinterpretations of net worth. This information was recorded under the pedagogical knowledge 

of the teacher as it relates to anticipating students‟ misconceptions. 

The following example is given to illustrate how the teacher‟s actions were interpreted 

based on her beliefs, goals, and knowledge. Here, the action that is interpreted is the teacher‟s 

encouragement of the students to express agreement or disagreement, and explain why they 

agree or disagree during a mathematical discussion. This action was observed to be consistently 

repeated by the teacher throughout the instructional sequence. It was categorized under the 

practice of establishing and sustaining the social norms as it contributed to creation of a 
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productive discussion environment. The following dialogue is taken from the discussion of a net 

worth problem: 

Dusty: The negative $190,000 is how much Brad is in debt. 

 

T: Dusty says it is how much Brad is in debt [she writes this on the board]. You all agree with that?  

 

Sts: Yes. 

 

T: Who doesn‟t agree with that? Nathan? 

 

Nathan: I think it is how much net worth Brad has.  

 

T: It is the net worth [the teacher writes on the board]. Why don‟t you think it is his debt?  Hold on… 

[Another student wants to answer].  

 

Nathan: Because [he pauses]. I do not know. I just don‟t get it. 

 

T: If you disagree with Dusty than you need to explain why you do not think it is right. Sally what do you 

think?  

 

In the discussion above, the teacher‟s decisions were primarily shaped by the goal that she 

should renegotiate the social norms as necessary during the instruction (GO1). This decision was 

emphasized by the teacher‟s last statement that if students disagree, they need to explain the 

reasons for their disagreement. This overarching goal was actually general goal of the teacher 

that she wanted to accomplish throughout her instruction. When Nathan could not explain why 

he disagreed with Dusty‟s argument, consistent with her goal, she reminded students that they 

should try to explain their reasoning. This goal might be linked to the teacher‟s belief about 

learning that students reorganize their ideas when they explain (BL9). This belief enabled her to 

try to elicit an explanation from the students instead of merely accepting their statements. 

Additionally, an important reason for the teacher to engage the students in a discussion about the 

meaning of negative net worth seemed to be based on her pedagogical knowledge of students‟ 

difficulties in conceptualizing negative net worth (KP2). 
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 In the following two chapters, the teacher‟s planning and classroom practices are 

analyzed in detail using the interpretative framework discussed above. 
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CHAPTER FIVE: ANALYSIS OF PLANNING PRACTICES 

 The aim of this chapter is to document and explain the expert teacher‟s planning 

practices, both prior to the beginning of the instruction as well as during the instruction, with 

respect to the teacher‟s beliefs, goals, and knowledge. The planning practices of the teacher were 

extracted by looking for the common patterns in the teacher meetings as well as in the daily 

planning sessions. The extracted practices were grouped under five main categories: preparation, 

reflection, anticipation, assessment, and revision. It is important to note that the teacher‟s actions 

in these practices were not mutually exclusive; an action that belonged to assessment necessarily 

required reflection on the classroom interactions as well. Furthermore, most of the actions that 

comprised these practices were conducted in an environment of collaboration with two other 

teachers who were teaching the same topic, the co-teacher, and the researcher. Although the 

expert teacher acted as the team leader, any one of the teachers could, and did, call for formal or 

informal meetings where everyone‟s participation was equally valued. Together, they created a 

community of learners who shared experiences, reflections, and anticipations.   

Practice One: Preparation  

 Preparation prior to the beginning of the instruction had a central place in the teacher‟s 

planning. It included practices such as creating a hypothetical learning trajectory, designing an 

instructional sequence, studying the relevant literature, and contemplating on the big ideas of the 

unit.  

Action 1: Creating a hypothetical learning trajectory 

A Hypothetical Learning Trajectory (HLT) is a route that the teacher imagines that her 

classroom will go through during the instruction. It is called hypothetical because the teacher is 

anticipating what she expects to happen; whether deviations from it will occur or the route will 
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be entirely different from the one planned will not be known until the instruction occurs. The 

HLT gives the intent of the instructional sequence by including various elements of the 

instruction such as the big ideas of the lessons, the tools that will be used, the imagery that will 

be developed, and the potential gesturing that may aid students in developing that imagery. 

The HLT created by the teacher in the current study, which is shown in Table 3, was 

based on a financial context where the main interest was determining a person‟s net worth. The 

progression of the rows from top to bottom was in the order of their appearance in the 

instructional sequence. As can be seen from the table, it included separate columns for tools, 

imagery, taken-as-shared interests, topic for mathematical discourse, and possible gesturing 

which is often an externalization of mental imagery that might support students‟ development of 

imagery. The tools column represented the inscriptions and notations
3
 that would be used to 

develop students‟ imagery. In general, this column would include notations, inscriptions (e.g. 

graphs), and physical devices, such as calculators. In order to give students opportunities to 

explore integer concepts and operations, calculator use was relegated to the end of the unit and 

outside the confines of the sequence. 

To illustrate what an entry in the tool column would mean, the net worth template can be 

used as an example (see Table 4). The net worth statement template was an inscriptional device 

that was used to develop the imagery of assets and debts as quantities that have an opposite 

effect on net worth. The imagery column included the list of the images that the teacher 

anticipated students to develop during the instructional sequence. The purpose of the images was 

to serve as a reference point the students could fold back to as they were trying to make sense of 

                                                 
3
 While inscriptions are considered as any form of mathematical writing, notations refer to specialized forms of 

written mathematics that can be used to generate new mathematical objects and define mathematical objects 

uniquely (Lehrer, Storm & Confrey, 2002).  
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more complicated tasks. The purpose of the taken-as-shared interests was to anticipate the 

motivation that students would have to generate conversations as they worked on the tasks. For 

example, as shown in the second row of the HLT, students might be motivated to calculate the 

net worth if their taken-as-shared goal was to compare net worths of two celebrities or their 

friends from class. This was motivational for students if they were interested in determining 

which of their friends had a higher net worth. Possible topics for mathematical discourse 

included a set of topics, the discussion of which as a whole class could be instructive and 

illustrative for the students to understand the big ideas of the lessons. An example of a discourse 

topic is in the second row of the table where the topic for mathematical discourse is discussing 

the different strategies for finding the net worth. During this discussion, students could achieve a 

better sense of what the net worth is and in which ways it can be computed with some ways 

being more efficient or simpler than others. Finally, possible gesturing contained certain body 

movements which can support tactile imagery and could allow students to connect movement to 

the mathematics of integer operations. Here, the tactile imagery refers to mental images that 

students might develop by the sense of seeing the body movements related with the context. For 

example, the teacher‟s movement of her arms up and down during the discussion of net worth 

problems (e.g. adding assets make net worth to go up with the arm movements) might help 

students to develop imagery where + indicates increases in net worth and - indicates decreases. 
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Table 4: Hypothetical Learning Trajectory 

Tool Imagery Activity/Taken-as-

shared Interests 

Possible Topics of 

Mathematical Discourse 

Possible 

gesturing 

Net Worth Statement 

Template 

Assets and debts 

are quantities that 

have opposite effect 

on net worth 

 Conceptualizing an asset 

as something owned, a 

debt as something owed 

 

Conceptualizing a net 

worth as an abstract 

quantity (not tangible) 

 

Net Worth Notations  Differences in 

Collections of 

assets & 

Collections of debts 

Determining a 

person‟s  net worth 

 

Comparing net worth 

Different strategies for 

finding net worth 

 

Symbols (+ and -) + indicates an asset 

and – indicates a 

debt 

 

 

Determining net worth 

 

Transactions 

Different strategies for 

finding net worth 

 

Creating additive inverses 

as objects 

 

How do various 

transactions affect net 

worth 

Arms moving 

up and down 

to indicate 

positive or 

negative 

affects 

Net Worth Tracker 

(vertical number line) 

Empty number line 

to express  (+ and -) 

movements 

Reasoning with 

number line to find a 

net worth after a 

transaction has 

occurred 

Determining 

difference between net 

worth 

Going through zero 

 

The affect of different 

transactions 

 

Different strategies for 

finding net worth 

Up and down 

movement 

with arms 

 

It is important to note that the HLT is not static; it can be revised after the beginning of 

the instruction based on the interaction with the students. For instance, the teacher may find that 

more activities are needed to support the desired imagery which may result in the addition of a 

new row to the HLT table. The initial HLT shown above had actually undergone modifications 

by the teacher in the current study in order to better support students‟ understanding of integers. 

One of these modifications was to add a red-black number line as a tool before the introduction 

of + and – symbols. This tool served to support the image of a structured space of positive and 
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negative integers. A second change was the addition of an activity where students matched the 

result of a transaction with operations (e.g., -2(-25)) into a single transaction (e.g., +50). 

The motivation for Stephan to create the HLT can be explained by different knowledge, 

beliefs, and goals. Her knowledge of the mathematics education literature, particularly design 

research, and HLT (KP8) as well as her knowledge of integers (KS1) appeared to be two of the 

important reasons for creating the HLT. Also her belief that effective teaching requires careful 

planning (BT5) seemed to be another affecting factor. 

Action 2: Creating instructional sequence (Choosing tasks that will achieve objectives) 

The instructional sequence was designed by the teacher prior to the beginning of the 

study (the entire instructional sequence is given in Appendix C). The primary goal of the 

sequence was to help students reinvent the rules of integer operations while developing imagery 

that they could use to make sense of these operations. To achieve this goal, the teacher created an 

instructional sequence within the context of determining a person‟s net worth. The instructional 

sequence exhibited three important characteristics of the RME theory which can be named as 

reinforcing with a real context, accounting in the abstract, and using symbols (Stephan, 2009). 

Reinforcing with a real context 

The experientially real context that served as the anchoring context for the instructional 

sequence was based on determining a person‟s financial net worth. To make it interesting for the 

students, the instructional sequence started with a whole class discussion about what might be 

the net worth of a famous person such as Oprah. At this point, the students did not know what 

was meant by net worth, but the teacher warmed them up to the idea by saying: “I Googled 

Oprah this morning before you came to class and found that her net worth is $1.5 billion. Can 

you imagine that? How many zeroes are in that number? What does it mean to say that she is 
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worth $1.5 billion?” (Stephan, 2009, p. 19). The students responded to this by enumerating the 

things she owns such as cars, boats, magazines, etc. The teacher then asked them what kind of 

things she might owe money on. Students gave examples such as mortgages and loans. After 

this, the teacher split the board into two parts and wrote students‟ guesses about what she owns 

to one side and what she owes to the other. Then, she asked them if they knew the financial 

terms for these two ideas, and then introduced the terms assets and debts. Stephan‟s strong belief 

that students learn better with an instruction that relates to their informal knowledge (BL5) had an 

essential role in creating an instructional sequence based on the financial context. She thought 

that this would help students connect the subsequent tasks with their informal knowledge. Her 

belief that problem solving is important to explore mathematical ideas also seemed to motivate 

her to create an instructional sequence that included different problem solving tasks within the 

financial context (BM3). 

In order to engage students in meaningful activities, the teacher asked students to 

describe their own assets and debts. Next, the teacher asked students to define net worth and 

challenged them to describe it in terms of assets and debts. The instructional sequence continued 

with another example where the teacher told students that she was trying to save money for her 

son‟s college payments and therefore her financial advisor gave her a net worth statement to fill 

out. The class went over this statement and discussed the terms that were not known by the 

students. This activity was the underpinning of the instructional sequence where the students 

could develop imagery to support that assets and debts are quantities that affect net worth in 

opposite directions, one positively and one negatively. The following activities continued with 

determining a person‟s financial net worth using the net worth statement and comparing net 

worths of two or more people. Many of the students tried to solve them by adding up the assets 
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and debts and finding their difference. The intention of the instructional design at this point was 

for the students to understand the ideas that (1) assets increase net worth while debts decrease it; 

that is they have opposite effect on a person‟s net worth and (2) net worth is an abstract quantity 

that may be described by both positive and negative values.  Because these were crucial ideas to 

grasp to be able to work with integer operations within this context, the teacher continued with 

more activities that use net worth statements to assess students‟ understanding of these ideas. 

Accounting in the abstract 

Once the students were comfortable with the ideas of assets, debts, and net worth, the 

instructional sequence progressively moved to a more integer-like form where assets and debts 

were represented with + and – signs respectively. This introduction happened during an activity 

called the dating game where students were asked to determine and compare the net worths of 

three bachelors. Different from the previous activities, this activity did not explicitly use the 

words asset and debt but involved numbers such as a bank balance of +$1000 and a car loan of   

-$15,000
4
. Students solved this activity in different ways; some totaled the assets and debts and 

found their difference while others sequentially worked through the list of numbers. Some 

students also noticed that some numbers cancel out each other so they did not have to operate on 

them redundantly. 

The instructional sequence continued with transaction activities where students take an 

already computed net worth and alter it by using a transaction. To make sense of this activity, the 

students needed to understand that net worth itself is a quantity which can directly be worked on. 

To emphasize this, the teacher gave a net worth statement (see Appendix C, “Don‟t Cry Over 

                                                 
4
 Although some activities included the debt as well as the minus sign, this did not mean double negation. The 

meaning of it as a debt was taken-as-shared.  
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Spilled Milk”) which is largely covered by what was to represent milk stains that prevented 

students from seeing the individual items (they could still see the total net worth). The activity 

asked students what would be the new net worth if they took away some assets. Although some 

students argued that they needed to see the individual quantities that make up the net worth, by 

discussing it in small groups they realized that it would reduce the total net worth as taking away 

an asset is a bad transaction. 

This introductory activity served as a basis for another activity called good and bad 

decisions where students were asked to judge the nature of various transactions. The students 

went through the list of the transactions and marked each one as a good or bad decision. During 

the classroom discussion, the teacher introduced a symbolization to represent different types of 

transactions – for instance adding a debt of $650 was written as +(-$650). The sign outside the 

parenthesis indicated the type of the transaction (here “add”), while the sign inside represented 

what type of quantity that is “debt”. Once students were comfortable with converting a verbal 

description to a numerical form using this symbolization, the ensuing activity asked them to do 

the opposite. The students were then given number sentences such as –(-$8250) and asked to 

verbally describe them by using the words add, take away, asset, and debt. 

To help students model their reasoning and support their imagery, a vertical number line
5
 

was introduced in this part of the instructional sequence. Using this tool, students could more 

easily record the effects of various operations especially those that involve crossing zero. The 

choice of a vertical number line (as opposed to the horizontal number line) was motivated by the 

following: (1) it better fit to the supported imagery that net worth goes up by adding assets and 

                                                 
5
 All the number lines used in the instructional sequence were open number lines where proportionality was not 

required. 
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down by adding debts; and (2) it avoided students‟ potential misconception of placing negatives 

to the right of zero on a horizontal number line. Stephan did not introduce the number line as 

ready-made but brought it up to support students‟ reasoning. This appeared to be based on her 

belief that introducing tools as ready-made might cause difficulty for students as the relationship 

between the tool and the task would not be clear (BT15). 

Using symbols 

The next step in the instructional sequence was to move progressively from word 

problems to number sentences. To this end, students were first given a word problem such as 

“Monica has a net worth of -$7400. An asset of $3000 is taken away. Is this good or bad? What 

is her net worth?” (Stephan, 2009, p. 22). This procedure was followed by problems that 

progressively used symbols such as, (1) Net worth: $1500: transaction adds a debt of $600; (2) 

$45: add an asset of +$5; (3) 360: add -160; (4) -$90 – (-$100); (5) -50 – (-50); (6) -3 + 4 – (-23) 

– 10 (Stephan, 2009, p. 22). As illustrated by this example at this stage of the instructional 

sequence students started working on textbook-like integer problems. Thus the instructional 

sequence gradually transitioned the students from concrete to abstract reasoning. The teacher‟s 

belief that students learn better with an instruction that moves from concrete to abstract gradually 

had an important effect to create this type of instructional design (BL6). 

The following tasks in the instructional sequence focused on students‟ meaningful 

understanding of transactions such as why double negatives result in a positive number while 

opposite signs result in a negative one. At this point, students could relate to the imagery of good 

and bad decisions and argued that a double negative is like taking away debt which is a good 

decision so it should result in the net worth going up. Similarly, opposite signs indicate either 

adding debt or taking away asset both of which are bad decisions that result in the net worth 



97 

 

going down. To emphasize the equivalence of different types of transactions, an activity was 

created where the original (e.g., $10,000) and the new net worth (e.g., $12,000) were given and 

students were asked to list the possible transactions. Here students came up with answers such as 

+ (+$2000), - (-$2000), or multiple transactions such as +$3000 - $1000 (Stephan, 2009). Here it 

is important to note that the sequence mainly focused on addition and subtraction of integers. 

However, the teacher also introduced multiplication toward the end of the sequence. For 

example, the teacher introduced that -2(25) can be defined as taking away two sets of $25 assets 

and -2(-25) can be thought as taking away two sets of $25 debts. The instruction did not include 

the division operation. 

The instructional sequence was designed to move the students from concrete reasoning 

with assets and debts to a progressively more abstract one that solely uses symbols. In doing so, 

it supported various images and tools that help students reinvent the rules of integers and make 

sense of integer concepts and operations. The teacher‟s knowledge of RME (Kp9) as well as her 

knowledge related with content (Ks1) and the state standards (Kc2) that elaborate the objectives 

of the integers unit was essential in creating the instructional sequence. 

Action 3: Reading and adapting relevant research into classroom 

Another important practice that emerged during the planning was to talk about the 

difficulties that students might have for a given activity. Based on her previous knowledge, 

Stephan anticipated that students might initially struggle in activities where debts overwhelm 

assets resulting in negative net worths (KP4). She conjectured that it may be difficult for the 

students to grasp the idea of negative numbers unless they think of net worth as an abstract 

quantity. She pointed out that going under zero has historically been a difficult concept for 

people (KP6) as demonstrated by the following excerpt taken from a teacher meeting:  
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Stephan: In history people said you cannot take something from nothing so if you think about these things 

as physical, concrete things you are right. You cannot take 790,000 things from 600,000 things; you do not 

have enough things to take away from. So what do these numbers mean?  You can only go down to zero, if 

you think of these as physical concrete things. You cannot go under zero. So that is why it is so important 

to think about these are not things, this is what you‟re worth, this is what you‟re worth negatively and if 

you go under zero you are in debt. Debt is an abstract quantity. So how does it look for kids?  

 

Why it is so important for me is because historically that is where they got stuck, too. You might hear kids 

saying something like this “how can he be negative 190,000 instead of zero?”…I heard kids saying “he is 

worth nothing” instead of worth negative, because they were thinking such as if you have $100 and you add 

debt of $200, you will be at zero. 

 

As she knew that the mathematics community struggled with the idea of going under zero for 

concrete objects, the instructional sequence involved an abstract quantity. However, the teacher 

recognized that the students may not readily think of net worth as an abstract quantity and 

therefore it is crucial for them to help students develop that understanding.  The teacher‟s belief 

that students learn mathematics when they understand (BL1) seemed to have played an important 

role in her emphasis for understanding net worth as an abstract quantity. Additionally, her 

subject matter knowledge about integers (KS1) seemed to have an essential role in her actions, 

which was revealed by her questioning of what it means to be in the negative.  

Action 4: Unpacking big ideas of the tasks 

One of the advantages of knowing the possible discourse was to decide whether the 

teacher should focus on the ideas that students bring into the discussion. In the first meeting, one 

of the teachers was not sure about focusing on transactions in the first days. Since the expert 

teacher created the instructional sequence she knew the aims of the activities as well as the 

subsequent tasks in the sequence (KC1). She explained the difference between finding the net 

worth from the given assets and debts and the following transaction problems as: 

Stephan: Negative numbers and positive numbers are not actions. We won‟t get to actions until 

transactions. That will take a little while…  

 

Jones: We are formally doing transactions. 
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Stephan: But, they are not doing integer operations. Generally, what I see on these pages is to add assets 

and add debts and find the difference…We are not concentrating on meaning of those actions per se. The 

main goal on these pages are understanding the meaning of net worth, the integer operations are not main 

intent but they are doing some operations… 

 

The conversation above shows that the teacher was planning to introduce the transactions in 

another activity after the students understood the concepts of asset, debt, and net worth. In the 

beginning activities where students found the total assets and debts, the teacher‟s aim was to 

focus on the meaning of the net worth which most students find by adding up all the assets and 

adding up all the debts then finding the difference between them. The teacher‟s goal to tackle 

one big idea at a time (GO4) seemed to be the driving factor in her separation of transactions 

from assets and debts. Her careful planning (BT5) and knowledge of the instructional sequence 

(KC1) also played an important role in these decisions as the teacher had a clear idea of when the 

transactions would be introduced.  

The teachers continued to talk about the big ideas of the activities and the questions that 

teachers might ask during the discourse as well as the possible gestures that might support 

students‟ images:  

Jones: The big question here is to ask the students “who is worth more?” One of them gives the negative 

net worth… 

 
Stephan: You said in the Angelina and Brad problem, one gives you the negative net worth that might be 

worth talking more about (See Figure 1). What does the negative net worth mean? I think it is important to 

put possible topics of discourse here under the second net worth statements right here “What does a 

negative net worth mean?” [she writes it down on the HLT]. I am trying to guess possible gestures that you 

can use here. I think those are important to develop images. It would not hurt to start talking about 

Angelina‟s way up here [gesturing with her arm up] and Brad is way down here [gesturing with her arm 

down]. Some of our kids are very gestural in our class… 

 

Taylor: I think we can do gestures up and down. 
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Figure 1: Net worth statement 

In this excerpt, Jones stated that they need to ask questions about who is worth more to 

understand whether students can see the difference between negative and positive net worths. 

Stephan acknowledged that it would be valuable to do a formative assessment at this point to 

determine what students understand by a negative net worth. Her beliefs that formative 

assessments are an essential element of effective teaching (BT8) might have helped her to decide 

to ask students what they understand about negative net worth. Therefore, the teachers added the 

meaning of negative net worth under the possible discourse in the HLT. Next, the gestures, 

which are very important for supporting the imagery, were also discussed and the teachers 

decided that they could move their arms up and down to emphasize the difference between 

positive and negative net worths. The teacher‟s goal of supporting tactile imagery (GO5) 

appeared to be the driving factor for using gestures containing certain body movements.  
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 In summary, the practice of preparation included important actions such as creating an 

HLT, creating an instructional sequence, reading and adapting relevant literature, and unpacking 

the big ideas in order to be prepared for the classroom instruction. Although each action was 

based on the teacher‟s different beliefs, goals, and knowledge, it was observed that the teacher‟s 

knowledge of content as well as her knowledge of curriculum and related literature had an 

essential role in her preparation. Additionally, her belief about teaching that it requires careful 

planning and students learn mathematics with understanding were important factors to prepare an 

instructional sequence where students can explore mathematical ideas. Finally, her overarching 

goals of tackling one big idea at a time and supporting students‟ ideas with the tools when they 

have the reasoning seemed to have shaped her preparation to achieve these goals during the 

instruction. 

Practice Two: Reflection 

 Reflection involved contemplating on the classroom interactions of the current as well as 

the previous years to evaluate if the instruction was happening as planned. It also included 

evaluating whether the teachers were faced with unexpected situations, what misconceptions 

students developed, and, in general, what could be done to make the instruction more effective. 

Action 1: Reflecting on previous year’s instruction 

 After Stephan introduced the HLT, the teachers started to talk about how they introduced 

the beginning activity in the previous year and the difficulties that they had during the 

instruction. Since the task was to start with a discussion of a famous person‟s net worth, the 

teachers tried to remember how they facilitated the introduction in order to help students to 

understand the words asset and debt. The following excerpt shows how the expert teacher and 
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the co-teacher together tried to remember and talked about the previous year‟s instruction to help 

the others imagine what the beginning discussions might look like:  

Stephan: So their conception of somebody‟s net worth is initially to name up all the things that they owned 

and the teacher has to suggest “do you think that they might have any debts or any loans?” Then kids say 

“oh yes, she probably may have loans for her million dollar house...”. We did not introduce them as assets 

and debts. We did put categories on the board and when kids name the things that we know as assets, we 

put them on one side of the board intentionally so that when we ask them about “Does she owe anything?” 

then we could start to list those things on the other side, it was almost like having two columns on the 

board.   

 

Taylor: I think we put owe for the things she kinds of pay for it. And then somebody said that she has to 

pay for the car loan, pay for the studio… 

 

Stephan: And then I think we put the title of each column, say “what you owe” and “what you own” and 

then we introduced the vocabulary words [debts and assets]. This helped them to make sense of this net 

worth statement... The intent of this discussion is to get them familiar, bring out their knowledge of these 

owes and owns thing. 

 

The aim of this conversation was to decide on a possible discourse that could be used during the 

introduction. The teacher‟s knowledge from the previous year (KP4) helped her to anticipate 

students‟ possible answers during the discussion. Another aim of the discussion was to talk about 

the big ideas of the activity and to determine the supportive conversations that the teachers 

wanted to engage in with their students. Her goal of focusing on the big idea of the lesson (GO3) 

seemed to have shaped her suggestions for the opening discourse where students could explore 

the asset and debt concepts. The teacher‟s belief that students learn better with an instruction that 

relates to their informal knowledge (BL5) also served as a fundamental reason to start the 

instruction with a discussion where students could guess what a famous person might own and 

owe.   

Action 2: Making sense of students’ solutions  

During the teacher meetings, many times the teachers discussed what kind of solutions 

the students came up with in the classroom and tried to make sense of those solutions and 

identify the students‟ misconceptions.  One of the misconceptions that the teachers encountered 
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was the use of faulty algorithms that students used such as reverse subtraction. The following 

excerpt illustrates the teachers‟ discussion of how the students might have found the answer as    

-$1250 to the question where assets were $3750 and debts were $4500. Here it is important to 

note that the faulty algorithm refers to writing 3750 on the top and 4500 on the bottom, and 

subtracting the greater digits from the lesser ones: 

Stephan: Can we try to make sense of what they are doing, the algorithm that is wrong? 

 

Jones: They follow the rule for subtraction until the final one.  

 

Stephan: But why isn‟t that working? That is my question, mathematically why is it not that? 

 

Jones: Because there is…I do not know the answer. 

 

Stephan: I do not know the answer either. I am trying to figure out myself. Pretend that is 3500 [instead of 

3750] for a second than it would work. 

 

Jones: Yes, there are lots of numbers that work. One of my students told me yesterday “I have been doing 

this every time and it works”. 

 

Stephan: It is until… 

 

Jones: The numbers cannot be the same. Last three digits cannot be the same. 

 

Stephan: What about 2150 (instead of 3750)? 

 

Jones: No, it is 100 more. 

 

Stephan: Are you also getting this reverse algorithm? 

 

Wilson: Yes. 

 

As it was seen in the excerpt above, the teachers first tried to make sense of a faulty subtraction 

algorithm that sometimes gave correct answers. They tried it with different numbers that would 

result in both correct and incorrect answers to see the pattern in the algorithm. After 

experimenting with a few numbers, they decided that the algorithm might work if the last three 

digits of the numbers are the same, otherwise it usually does not. The teacher‟s practice of 

making sense of students‟ misconceptions was an essential part of her planning together with the 

other teachers. Her belief that students learn from their misconceptions (BL8) is also likely to 
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have had an important role in her spending time to understand the misconceptions and creating 

tasks in order to address them in the class discussion.   

 The teacher‟s belief about valuing students‟ ideas in the classroom as well as during the 

planning (BT4) and her belief in mathematics as a sense making activity (BM1) seemed to be the 

reason for bringing students‟ solutions to the planning meetings. This helped the teachers to 

think about and understand the flaws of these algorithms and prepare questions that include the 

types of numbers for which the algorithms would fail. Creating questions where students can 

explore their misconceptions was an important practice since by doing this the students could 

learn from their mistakes and reorganize their ideas. In the rest of the discussion, the teachers 

talked about how they could help students to make sense of the computations and prevent them 

from using the reverse subtraction algorithms: 

Stephan: [Based on Jones‟s statement that he has a student that believes his faulty algorithms work all the 

time, Stephan makes some suggestions] You can have two different solutions up there by contrasting... 

Seeing the other ways up there can make him think about it [his solution].  

 

Jones: What makes him to see the other way makes more sense? 

 

Stephan: I do not know. All I did is to take Sienna‟s idea of number line. So I stole from the third period I 

said do you guys know Sienna? When they talked about the pay back and I introduced the number line that 

helped some kids. That is what I have done. Introduce the number line model during this pay back 

discussion. 

 

Jones: Finding the net worth? 

 

Stephan: Yes, or to make sense of why-750 is right and the other one is wrong. 

 

Jones: Which is essentially finding the correct net worth? A reasonable way to explain it.  

 

The expert teacher suggested that writing different solutions on the board might help the students 

who had correct solutions by using the reverse algorithms analyze the other solutions. She also 

added that modeling students‟ solutions on the vertical number line might help students make 

sense of their computations. She stated that this way students could see why -750 was correct 

and -1250 was not. These statements of the teacher seemed to be connected to her belief that 



105 

 

students need to analyze different solutions in order to make sense of mathematics (BM1).This 

way students could see their mistakes and also think about others‟ solutions. 

 Although introducing the number line in the classroom was not the goal of the teacher in 

that particular class, she introduced it as a student reasoned with the pay off idea during the 

discussion of a net worth problem. The number line actually seemed to help many students 

visualize the pay off idea as well as communicate with each other during their explanations since 

many of them explained their reasoning using the number line. Stephan‟s extensive knowledge 

related to students‟ imagery and use of tools was essential in enabling her to connect the 

student‟s reasoning with the number line to remediate students‟ misconceptions (Kp7). 

Action 3: Thinking about the big ideas of the following day’s classroom  

After the first day‟s lesson the teacher noticed some students saying in their small groups 

that a person is worth nothing when the net worth is negative. Therefore, she decided to discuss 

the meaning of the negative net worth to evaluate how students conceptualized the difference 

when the debts were bigger than the assets during the daily planning session: 

Stephan: On the Brad/Angelina page, that was our first time getting a negative net worth and not everyone 

had a way to deal with that. Some students added Brad's total assets (TA) and total debts (TD), others found 

the difference and said he was worth a positive amount; others found the difference and said he was in debt 

$190,000 and others said he was worth nothing. I think I will lead off tomorrow's class with the Brad 

problem and ask questions about his net worth (NW). Some big ideas involved in tomorrow are how to deal 

with someone's net worth when his debts outweigh his assets. How do students conceive of this "gap" 

between TA and TD, especially when the TD is bigger? What does it mean to have a negative net worth? 

What does it mean to have no worth? Then, I will have them create their own NW statement for others to 

solve.  

 

As it was seen in the excerpt, the teacher first reflected on students‟ solutions that they came up 

with during class, which led her to decide what she would do the following day. In order to 

elucidate the difference between negative net worth and no worth she also planned to ask 

specific questions that focus on the difference. Her knowledge of students‟ common difficulties 
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was an important factor in deciding which misconceptions she needed to focus on more and 

discuss with the whole class (KP2).  

Stephan‟s goal of focusing on the big idea of the lesson (GO3) might have driven her to 

reflect on the big ideas of the following day in her daily planning. Since Stephan valued 

students‟ ideas in the classroom as well as planning she reflected on and used both to make 

decisions for the following day‟s class (BT4). For example she stated that she wanted to clarify 

the meaning of negative net worth and zero since some students seemed to have difficulty 

discerning the difference between them. 

Action 4: Analyzing students’ works to initiate discourse with different solutions   

To initiate the following day‟s discussion, the teacher often analyzed students‟ solutions 

from the current day and selected the important and different ones that were related to the big 

idea of the lesson. Her knowledge of Teaching Standards (NCTM, 1991) where the analysis of 

teaching and learning was emphasized had an important role in motivating her reflection after 

each class and on how she analyzed the instructions as well as the homework that she collected 

from the students (KC4). The excerpt below demonstrates the teacher‟s practice as she was trying 

to choose students‟ solutions in the daily planning to highlight during the following day‟s 

instruction from the students‟ work. The question was to find out the difference between two net 

worths when one person has -$2000 and the other $3000: 

Stephan: This one, he is thinking about going down, I don‟t know if I would do this one, it is similar. But 

we might need to encourage Danny a little bit, because he has been so out of the class before this unit. 

Alice: “1,000 more because the positive number is greater than the negative number”. I might put that one 

up there. Anyway I will probably look across these and pick some out in order to contrast solutions and 

strategies as well. 

 

As it is seen in the excerpt, during her selection she not only considered the right answers but 

also some misconceptions such as Alice‟s answer. She wanted students to compare and contrast 



107 

 

the different solutions in order to make sense of them (BM4).  The reason for selecting the wrong 

answer besides the right ones seemed to be based on her belief that students‟ learn from their 

mistakes (BL8). By discussing them in the classroom students would have an opportunity to 

understand why they were not correct. The teacher also chose multiple correct solutions to 

present to the students. By doing that she valued students‟ ideas and gave credit to them for 

coming up with different ways (BT4). Emphasizing the different solutions was an essential 

practice of the teacher since it encouraged students to think in different ways. 

 Additionally, she also evaluated students‟ participation in the classroom and decided to 

encourage those that tend to be passive in the classroom. Her belief that the teacher should be 

fair and provide equal opportunities for all students might have motivated her to think about the 

student participation in the classroom (BT6). Reflecting on the students‟ participation was an 

essential practice of the teacher, since the standards-based environment could only be created in 

a productive way when all students had equal opportunities to explain their ideas. 

Action 5: Reflecting on the classroom environment 

 As it was stated above, during planning the teacher was reflecting on the current day‟s 

lesson and using her reflections to plan for the following day. Different goals took priority in this 

process. Although the goals were mainly related to the content, sometimes they also included 

goals such as renegotiating social norms (GO1) to support a classroom environment where 

students can discuss their ideas freely and respectfully. The teacher‟s knowledge about the 

standards-based environment defined in Principles and Standards as well as in Teaching 

Standards (KC3, KC4) had an important role in including the classroom environment in her 

reflection: 
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Stephan: Alice and Tisha were stuck in the symbol world without understanding their meaning. I love being 

in the symbol world only if it has meaning and it does not. I am trying to force them through putting their 

work into public like I did for Tisha at the end. Making meaning of some quantities other than just rules 

and memorizing. So it is why I picked Tisha at the end but she didn‟t want to be wrong in front of anybody. 

I do not know that is the case for everybody in here, it might be the case for the girls accept for Marsha; she 

is strong enough to take on the boys. I also told Stuart at the end if he comes about all cocky he is going to 

embarrass himself. But if he comes up with humility then we are all okay with that. I might have this 

discussion tomorrow more out and open for the difference between being arrogant and being humble. So 

that we can get some more girls feeling free, I have to call on the girls. I do not have to call boys.  

 

In the excerpt above the teacher first reflected on the students‟ solutions in the class. She stated 

that Tisha and Alice were using the symbols + and - without making sense. Thus, she added that 

in order to encourage Tisha to defend her ideas and learn from her mistakes she invited her to 

explain her solution. The behaviors of Tisha seemed to indicate to the teacher that she did not 

want to be wrong in front of the classroom. This also made the teacher conjecture that whether 

most girls in the classroom might be feeling in a similar way because of the active participation 

of boys. Stephan‟s belief that the teacher is responsible for creating and sustaining an 

environment where ideas can be discussed freely and respectfully (BT2) motivated her to plan on 

talking about the norms in the following day‟s classroom. Thinking about participation in the 

classroom and deciding to encourage especially the quiet students was an important part of her 

planning. Based on the events of the last class, she decided to focus on talking about how 

students need to behave in class on the following day.  

 In summary, the practice of reflection included actions of contemplating on the previous 

year‟s instruction, working on the problems before the instruction, making sense of students‟ 

solutions, thinking about the big ideas of the following class, analyzing students‟ works to 

initiate discourse, and reflecting on the classroom environment. During the reflection it was 

observed that the teacher‟s knowledge of curriculum, in particular the instructional sequence, had 

an important role on the teacher‟s actions. This allowed her to recognize whether an issue that 

students struggled with would be the big idea of later activities, or it would not come back later 
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and therefore needs to be remediated in the next classroom session. Additionally, her 

pedagogical knowledge about students‟ possible solution strategies and misconceptions were 

helpful to understand students‟ ideas. Her knowledge about the tools and how students can 

reason with them also helped her to reflect on the different uses of the tools, recognize their 

incorrect uses, and create more activities to remediate those misconceptions. Her belief about 

teaching that valuing students‟ ideas and explanations empowers them to participate in the 

classroom and her belief of mathematics as a sense-making activity were also essential in her 

practice. These beliefs enabled her to contemplate on different solutions proposed by the students 

and bring the ones that she thought would help other students to the class discussion. 

Practice Three: Anticipation 

 Anticipation was closely related to reflection, but it went one step further, by trying to 

conjecture what potential actions could take place in the classroom, so that when they happened 

the teacher was not caught by surprise and was prepared to respond effectively. In other words, 

while reflection involved looking back on the past events, anticipation involved looking forward 

to what might happen in the subsequent classes. 

Action 1: Anticipating possible discourse during the introduction of the tasks 

In the planning meetings, the teachers also talked about how to introduce shifts in 

symbolization. At this point they were talking about how to introduce a net worth statement 

activity that left off the words such as asset, debt, bank balance, car loan, etc. Until this point, all 

activities made explicit use of these terms such as the example shown on the left side of Figure 2. 
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Figure 2: Shift in symbolization 

However, from this point on the intent of the teachers was to drop the words and just use 

the symbols and the numbers as shown on the right side of the same figure. The excerpt below is 

taken from this discussion: 

Researcher: So here not only do we add the zero and negative net worths but also we remove the words 

[such as assets, debts, bank balance, car loan, etc.] 

 

Stephan: Yes, that is a shift in symbolization and it is very intentional here from the designers‟ point of 

view. I don‟t think I‟ve ever had a classroom discussion about no names being there such as bank balance, 

car, etc. 

 

Jones: I think somebody in the other class said “Oh, make up your own [example]”. Because once you did 

this blank page [referring to net worth statement problem], they kind of get the idea. 

 

Stephan: I don‟t know if it is so much of a discussion topic in class, but we‟ll see. I usually introduce this as 

“Is that going to throw you off guys if I just don‟t put these?” 

 

Jones: Or you can say people forgot to tell what that asset is for or what that debt is for. 

 

Stephan: I think I will introduce it by saying that “Guys, I am so tired of writing these up and I just left 

them all out. Is it ok if I just put + for assets and – for debts?” That is what I do. I always make up a story 

like this and say “Is that going to give you trouble?” 

 

As illustrated by this excerpt, the teachers talked about how to introduce shifts in symbolization, 

how students might react to these shifts, and what the teacher can do to make these shifts as 

natural as possible for the students. The teacher‟s knowledge of the previous year‟s instruction 

had an important role in anticipating the possible discourse that might occur during the 

instruction (KP4). Here the expert teacher revealed that she usually introduces this shift in 

symbolization by asking students if it is okay for them to not keep using the words for assets and 

debts as she is getting tired of writing them all the time.  However, it is important to note that 
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even though the numbers were standing without context in the activity, students could easily 

make up a story that might correspond to the numbers given by the teacher.  

Stephan‟s belief that students learn better with an instruction that moves progressively 

from concrete to abstract (BL6) activated her goal of supporting the development of meaningful 

imagery (GO5). By thinking about the shift in the symbolization, the teacher showed that smooth 

transitions from context to symbols are important for her to give students opportunities to 

develop meaningful imagery. This way, the students could connect the symbols with the 

previous images that they developed and she could fold back to those images when necessary.  

Action 2: Working on the problems before the instruction 

One of the teachers‟ practices during the planning was to solve the problems themselves 

before starting the discussion to see the different strategies they developed. This action allowed 

them to anticipate the solutions that students might come up with and the images they might 

develop during the solution of the problems. This practice was likely rooted in the teacher‟s 

knowledge of the importance of anticipating students‟ answers (KP1). The following excerpts 

were taken from the teachers‟ discussion after they solved the task individually that asked for 

two different people‟s net worth where one of them was in the positive and the other one was in 

the negative (this was the first time the students from the previous years encountered negative 

net worth): 

Taylor: [During the explanation of the problem last year] someone said for Angelina [who has positive net 

worth] you cash all her assets, you pay it off and this money is left [see Appendix C, “Angelina and Brad 

Net Worth Problem”].  

 

Stephan: That is right, somebody showed all those things[e.g. bank accounts, mutual funds…] and said she 

can pay off her debts but Brad cannot. 

 

Jones: That makes perfect sense “paying it off”.  I am trying to figure out what is the mathematical sense of 

paying it off?  Is there any value to bringing it in that we can use later on? 
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Stephan: Two things I can come up with. One is when we get to integer operations and let‟s say we got 

$600,000 and pretend this is a transaction she goes in the debt of $790,000 and pay it off, you got more 

debt left. 

 

Jones: So when you put it on the number line you only have enough to get going to zero but there is still 

more left over. That is the whole number line idea that we want to develop. 

 

Taylor: You only have this much to pay off [$600,000] but you still owe this [$190,000]. 

 

Stephan: That is the idea of going under zero that took the math community so long to get. [Secondly] 

students also get some kind of sense of interpreting a negative net worth of $190,000. 

 

Jones: The only thing I do not know is if they need a tool to model it. 

 

Stephan: Not on the number line yet. This will be the long term benefit of having someone in class to 

contribute by saying that you can pay that much and you still have debt because it is the imagery for later 

on.  

 

During the discussion both of the general education teachers anticipated the solutions as well as 

the images that students might bring into the classroom discourse such as the pay off idea and 

number line. The expert teacher suggested that it might be too early to introduce the number line 

unless the students bring it up, since the aim of these activities is not the transactions themselves 

but the meaning of net worth. This can be explained by the teacher‟s goal of focusing on the big 

idea of the lesson (GO3) as well as introducing a tool when most students have developed the 

related reasoning (GO6). The knowledge of the instructional sequence (KC1) also helped the 

teacher to assess an appropriate time when introducing a tool. 

Action 3: Anticipating students’ thinking 

When the teachers were talking about the activities that they would use in the classroom, 

they also anticipated students‟ possible solutions to the questions in the activity.  The teacher‟s 

knowledge about students‟ possible answers (KP1) based on the previous years of instruction was 

effective in anticipating students‟ solutions. The following excerpt shows the teacher‟s 

discussion for the question that asks for a new net worth when original net worth was -$5000 and 

$3000 debt is taken away:  
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Stephan: I have got both -8000 and -2000. They could also put 2000. 

 

Jones: I tried to do what my students are going to do, I think. Everyone is going to put -5000 that is clear 

but some of them are going to put -3000 and then come up with -8000. Some of them are going to put          

-5000 and take away a debt of 3000 and I believe they are going to put 2000, but they may not know what 

to put as a sign. Somebody is going to do -5000 plus 3000 and get -2000 by writing the bigger number on 

top subtracting that and putting the sign of the bigger number. 

 

Researcher: For the second one if they subtract the small number from the bigger and put the sign it won‟t 

work [the second one was: Meagan has a net worth of -$4300. A debt of $3000 is added. Is this good or 

bad? What is her net worth now?] 

 

Stephan: That is right; they have to add in this case. Here is my thought for why we would go here [this 

page] first. It is because you want the number line up there now (see Appendix C, “Net Worth Problems”). 

 

Jones: It is going to support these things. Because some kids at this point still struggle and this will become 

a useful tool. 

 

Stephan:  And the teacher may reintroduce the concept if they need.  

 

Jones: If students need it, you have to highlight it. 

 

Stephan: But they probably won‟t. As they struggle through this, I will say “okay since you are struggling 

with this I am going to put it on the number line. So where do we start?  -5000. I have been labeling the 

number line [i.e. writing the original net worth, transaction and the new net worth], I don‟t know if you 

have been doing this and I ask “what does it stands for? That is the original net worth” so I write original 

net worth, and then they will say “okay that is debt of $3000 taken away” and then I say what do I do here? 

How do I symbolize that on the number line? 

 

After the teachers had worked on the problem for a few minutes, they came up with the possible 

strategies that students may create to solve transaction tasks. Stephan suggested that students 

might come up with answers such as -8000 and -2000 as well as 2000. Jones also anticipated 

similar types of answers and also stated that some students might find the answers by just 

making a computation such as subtracting the smaller number from the bigger one and writing 

the bigger number‟s sign. Next, the researcher stated that even though the students might find the 

correct answer by just using the computation without making sense, this would not work for the 

second problem. In the rest of the discussion Stephan suggested to use the number line to make 

sense of those problems. The reason that she suggested the use of the number line can be 

explained with her belief that mathematics is a sense-making activity where students analyze 

their solutions (BM4). Since she noticed that students had difficulty deciding whether they need 
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to add or subtract the given numbers in the context, she decided that putting a number line on the 

board and visualizing their solutions on the number line might help students to make sense of the 

problems. Stephan‟s knowledge about the possible students‟ solutions and the ways of 

supporting those solutions by using the tools were critical in her decision of how she could use 

the number line to make sense of their solutions for all students in the class and also to encourage 

them to use a number line in their explanations.  

In another teacher meeting, in order to help make sense of numbers with one sign (such 

as -50) instead of two signs such as –(+50) or +(-50), Stephan added an activity to the sequence 

and brought it to the teacher meeting (see Figure 3). The activity involved matching different 

transactions with +50 and -50 (e.g. -2(-25) or -25+75). In the excerpt below, the teachers were 

talking about the activity and anticipated students‟ answers as well as the difficulties students 

might have: 

 

            Figure 3: Net worth story problem 
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Wilson: Some of them may want to put the transaction on the number line. I am afraid for this one [the 

activity] because it is going to be hard for them to make that transaction as this is not a number sentence 

[e.g. 75-25] original net worth and transaction equal new net worth. 

 

Researcher: If you say like go up 75 and down 25 with the gestures and totally it goes up 50 then they 

might understand better. 

 

Stephan: You know what, why we won‟t do this? Because of this conversation [the teachers were talking 

on the same question for a while] when you introduce this task, we will introduce it like this. Story one, it 

has -50, what that means is Nigel had some net worth and this is in the introduction of the task and all we 

know is what happened to the net worth is it went down by 50. Which one of these transactions could have 

made his net worth go down by 50? Over here he started with some net worth and this time he goes up by 

50. Which one of these transactions would you put over here to match that? What do you think about that? 

(See Figure 3) 

 

Researcher: I think it is a good idea because they always refer to up and down and then they may say 25 

down and 75 up and 50 up. 

 

Wilson: I think so. 

  

Jones: It might also help too if we do that on the overhead projector where they can write[their thinking on 

the picture of the number line] and when they go to the board say he is taking away two 25 dollar debts and 

they can see how it fits versus what somebody says. 

  

Stephan: They can say “we go down this much and come back 75”. 

  

During the discussion of the task one of the teachers stated that students might think of the given 

transactions as number sentences that include the original net worth and transactions. Because 

they wanted to avoid this interpretation, Stephan suggested using two different stories where in 

the first one the net worth went down by some amount and up in the second. Her belief that the 

teacher is responsible for clarifying the tasks that students work on might have been influential in 

her thinking about the introduction of the task in detail (BT12). Additionally, putting those 

increments and decrements on the number line and projecting it during the class, would help 

students visualize the amount of change on the net worth. The reason for including the number 

line might be to continue supporting students‟ understanding with the imagery that they already 

developed (GO5). By giving students opportunity to connect the problem with the number line 

imagery where they used going up and down concepts, the teachers also wanted students to make 

sense of how a transaction can be interpreted with one sign. It was important for students to 
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understand the equivalence of those expressions since many textbooks include examples that use 

only one sign such as -25 - 40 instead of -25 + (-40).  

 To summarize, the practice of anticipation included anticipating possible discourse 

during the introduction of the tasks as well as anticipating students‟ thinking. This practice was 

different from reflection in that it involved looking forward to what might happen next, while 

reflection involved looked back to what happened. The teacher‟s pedagogical knowledge 

particularly knowledge of students‟ possible answers and knowledge from the previous years of 

instruction played an important role in anticipation. Her belief that not all mathematical solutions 

are equal seemed to be activated in her anticipation of different solutions. Based on this belief, 

she not only thought about the most likely solution that students might come up with, but also 

other more or less efficient solutions. Her goal of supporting students‟ ideas with tools was also 

essential in anticipating students‟ reasoning with the tools.  

Practice Four: Assessment 

 Using effective assessment practices was crucial for the teacher to understand the 

students‟ progress and identify their misconceptions and difficulties. These practices included 

creating effective formative and summative assessment tasks as described below.      

Action 1: Creating formative assessment tasks 

One of the advantages of holding teacher meetings after the class was that the teacher had 

a chance to think more about the difficulties that students had or might have based on their 

interactions with the students and create new tasks that would help students to overcome those 

difficulties. The following excerpt shows the teacher‟s assessment of a class interaction and her 

decision-making process to create new tasks based on her reflection: 
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Stephan: For that first dating game hardly anything came up differently than I thought. Most of the students 

put the assets together and put the debts together and found the difference. There was no negative net 

worth, it was not that complicated. The second one that we spent a lot more class time on and I saw some 

mistakes in calculations. Flora and some others put the lower number on the top and said it is supposed to 

be always assets on the top and debts on the bottom. Nobody said that and nobody made that rule. So I 

think I need to come up with a special page for that using net worth on the number line like the Sam, Sue 

problem [i.e. contrast different solutions].   
 

While she was reflecting on the class, she stated that it went in the way that she expected. 

However, she also emphasized that in the second part of the activity while students were finding 

the total net worth, some students tried to subtract the smaller numbers from the bigger one 

regardless of which one was asset and which one was debt. Thus, she planned to create a new 

activity to get feedback from the students and help them remediate their mistakes by analyzing 

different solutions.  In the lesson that the teacher reflected on above, since focusing on the 

computation was not the big idea, she did not want to spend too much time on the computations 

(GO3). However, she knew from the HLT that she would encounter students‟ computational 

errors in the following lessons where the focus would be on integer operations (KC1). Thus, she 

planned to create an activity where students could see their mistakes and make sense of why their 

solutions did not work. 

In the weekly meetings the teachers continued to talk about the formative assessment 

tasks that might inform them about students‟ understanding. Since the students started to use the 

number line often in finding solutions to the problems and proving their solutions on the board, 

the teachers talked about the ways students used the number line in the classroom and also some 

students‟ misconceptions in using it. They decided to create a new task to assess informally 

students‟ understanding of the number line and help those who were struggling to make sense of 

it. The task that was created by the teachers included a different representation of the problem 

where the net worth was $4000 and the transaction was +(-$8000): 

Jones: Is there any task focusing on these things [number line]? 
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Stephan: Maybe like the Sam, Sue problem. Three different students‟ solutions, who do you agree with and 

why? And focus on those gaps there. 

  

Jones: Especially after coming from spring break.  

 

Stephan: I am right here on page 21 (see Appendix C, “Alice‟s Net Worth”). 

 

Jones: I have not started that one yet.  

 

Stephan: Are you all in net worth problems? 

 

Wilson: Yes. 

 

Stephan: So we are all around the same place. Maybe on Monday we can give a bell work problem, you all 

help. [Bell work activities are the activities that are given to the students as soon as class begins. These 

activities particularly aim to a review the material from the previous day].   

 

Taylor: Sam and Sue problem for bell work? 

 

Stephan: Something like that [Everyone tries to prepare a bell work question for a few minutes]. 

 

Jones: What if, we had a couple of number lines with the stuff on it incorrectly and had a story and say 

“which number line tells the story?” It is what you did? 

 

Stephan: Pretty much. Here is the story, which number line tells the story? So mine is adding debt and I 

made one of them go up 12,000 on purpose, one goes down to -12,000 and I purposely did not do two 

jumps not to give it away. And then you can defend which one you agree with, somebody will hopefully go 

through zero to defend this one (see Figure 4).  

 

Jones and Taylor: I like that. 

 

Wilson: So you kind of picked one right answer and two incorrect ones. 

 

Stephan: I do not always pick one answer. Sometimes I have two right answers. I do not want to put the 

other right answer that goes through zero because I want that to come back from them, it is too leading for 

me.  

 

Once the teachers talked about where they were in the instructional sequences, they first worked 

on the bell work problems individually and then collectively. They decided to create an activity 

that represented a given transaction with multiple number lines with only one representation 

being correct (Figure 4)
6
. The teacher‟s belief that formative assessment plays a crucial role in 

effective teaching (BT8) might have motivated her to create a task together with the other 

teachers to evaluate students‟ understanding of integer operations and whether they could use the 

                                                 
6
 The number lines were red and black in the original activity. Here they are shown in monochrome for printing 

purposes. 
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number line in a correct manner. Another reason to create formative assessment tasks seemed to 

stem from her goal that the teacher should ensure that students understand the mathematical 

solutions that are discussed in the classroom (GO7).  

 

Figure 4: The formative assessment task 

During the discussion, Stephan also suggested that the number lines given in the solutions 

should not include two arrows (going down to zero and the left over) since it might be too 

leading for the students. The reason that the teacher did not want to include too much detail on 

the number line might have stemmed from her goal that students should use the tools the way 

they reason with them (GO6). For example, in this problem although some students solved the 

problem by going first to zero and then the left over, some of them symbolized their solutions by 

only one arrow without stopping on the zero. Creating problem solving tasks was an important 

action of the teacher since she believed that those tasks might help students to understand 

mathematical ideas (BM3) as well as give the teacher more accurate feedback about students‟ 

thinking.   
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Action 2: Summative assessment 

Stephan created a quiz two weeks after the instructional sequence started and shared it 

with the other teachers that were present in the teacher meetings. Once they agreed on the 

questions, all the teachers applied the quiz to assess their students‟ development. The questions 

in the quiz were similar to the tasks that were solved in class. For example she included the tasks 

where students were asked to find the total net worth such as with the Angelina-Brad problem, 

comparing net worths and some transaction problems. Additionally, the word problems included 

a supportive vertical number line for the students who might need it in the solution of the 

problems (see Figure 5).  

 

Figure 5: Example from quiz 

The quiz was important for the teacher to understand how students were solving the tasks 

and if they understood the problems that were discussed in class. It also gave insight about the 

students‟ difficulties as well as the strategies that they used during the solutions to the problems. 

Based on the assessment, the teacher revised her planning and discussed more problems similar 

to the ones with which the students had the most difficulty. During the instructional sequence, 

the teacher continued to create formative assessment tasks almost every day such as bell work 

that students solved at the beginning of the lesson. 

One of the teacher‟s practices related to assessment was to create a notebook quiz every 

Thursday and apply it on Friday. The aim of the notebook quiz was to ask questions from the 

activity sheets in order to encourage students to keep their activities organized and also write the 
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answers on it in the classroom. The time for the quiz was only five minutes which was more than 

enough for a student who had their papers with the answers as they did not have to explain the 

answers. During these quizzes the students were not allowed to talk or use each other‟s paper. 

The preparation of these notebook quizzes seemed to be motivated by the teacher‟s belief that 

taking responsibility is crucial for one‟s learning (BL3). As the teacher continued to apply the 

notebook quizzes, the students started to become more responsible to learn the tasks that they 

missed when they were out of school and to take notes during the discussion of the problems in 

the classroom without the teacher reminding them. 

To prepare a comprehensive assessment task at the end of the instructional sequence, 

each teacher took one or two big ideas of the integers units and created (or adapted from the 

textbook) problems to evaluate those ideas. Once the teachers selected the problems, they came 

together in a meeting and discussed the problems that they chose. During the selection of the 

problems, they considered students‟ anticipated answers and misconceptions related with those 

tasks from different perspectives. Stephan‟s belief that collaborating with other teachers is 

essential in improving one‟s instruction and assessment seemed to have an important role in 

coming together with other teachers to create a comprehensive test that included different types 

of problems (BT14). The teachers together created problems that evaluated conceptual 

understanding of integers as well as computational skills. In the unit test, the teachers included 

problems with a financial context as well as different contexts such as filling the spaces in a 

given temperature table and bare number problems. The teacher‟s knowledge of content and 

students‟ possible misconceptions allowed her to create assessment tasks that would evaluate 

students‟ understanding of mathematics effectively (KS1, KP2).  By planning together all 
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teachers applied the same unit test in their classrooms and had a chance to evaluate and compare 

the students‟ achievement after the test. 

In summary, the practice of assessment included actions of creating summative as well as 

formative assessment tasks. The teacher‟s knowledge of content and curriculum, in particular the 

instructional sequence, was crucial in preparing both procedural and conceptual assessment tasks 

that would help her understand and evaluate the students‟ mathematical thinking. Additionally 

her pedagogical knowledge particularly the knowledge of students‟ misconceptions was 

important to create formative assessment tasks that would remediate students‟ difficulties. Since 

she believed that problem solving is important to understand mathematical ideas, she created 

assessment tasks that would help her understand students‟ thinking in the solutions of the 

problems. Her goal of ensuring that students understand the mathematical ideas that were 

discussed in the classroom also seemed to be highly activated during the planning of her 

formative assessment to get feedback from the students. 

Practice Five: Revision 

Revision was a key part of planning where teachers improved the instructional sequence 

and their methods of teaching based on the feedback acquired through reflection, anticipation, 

and assessment. It involved adding new tasks to the instructional sequence, changing the order of 

the existing tasks, and making changes to the HLT to include new images, gestures, tools and 

possible discourse. 

Action 1: Revising the instructional sequence 

One of the main practices that emerged during the teacher meetings was to revise the 

instructional sequence by adding new tasks or changing the order of the activities. In one of the 

meetings the teachers stated that they needed a task to evaluate students‟ understanding related to 
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ordering the numbers. Thus, they talked about how they could assess students‟ understanding of 

correctly ordering integers, negative numbers in particular. The expert teacher suggested after the 

activity which includes positive, negative, and zero net worths, that they might ask a problem 

that contained two negative net worths. The teacher‟s practice of talking about the objectives of 

tasks and how they are related to the following tasks played an essential role in helping the 

teachers see the route of the instruction and make decisions accordingly: 

Jones: Why do you want to use more than one negative net worth in here? 

 

Stephan: Because to me it is the same idea and they work on integers not integer operations so we want to 

confront integer values before we are going to start with integer operations. 

 

Wilson: Is it coming later in the sequence? 

 

Stephan: It will come up later in operations with addition and subtraction rather than before. But then there 

are multiple ideas we are going to have to deal with. They are going to have to talk about “how do I take 

away an asset?” That is a big conceptual step to do, just to be able to do that operation.  All of a sudden 

they will also talk about this negative 500 and negative 600. Which one is bigger or smaller is another huge 

idea and I do not want those two to happen at the same time. Integer concepts and operations, there are two 

parts of that. There is a concept of integer, the values of integers how one integer is related with another 

one, for example in our mind 100 is bigger than zero and negative 100 is in our mind clearly bigger than 

negative 200. But it is just related to understanding integers then you start operating with them and doing 

some adding and subtracting. So we will work on the concept part first, so I think we need to introduce it 

here. 

 

As it is seen in the excerpt above, Stephan stated that ordering of negative numbers is an 

important conceptual step where the teacher needs to make an assessment about whether the 

students are comfortable with it. She emphasized that it might not be appropriate to assess 

students‟ thinking about this during the transaction tasks since those tasks themselves are also 

big ideas. She added that it might be difficult for students to tackle two important ideas at the 

same time. The teacher‟s goal of tackling one big idea at a time (GO4) seemed to have shaped the 

teacher‟s decision about the timing of evaluating students‟ understanding of ordering negative 

numbers. Her knowledge about the tasks that would follow as well as their purposes (KC1) also 

motivated her to deal with the order of integers before operating on them. To her, the integers 
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were composed of two different parts: concepts and operations. While ordering of the numbers 

belonged to the concepts, transactions were part of the operations. In the following discussion the 

teachers decided to create a task that satisfied the objective of ordering negative numbers as well 

as comparing them: 

Jones: I want to be sure that when I put bell work up there… all the kids realize that zero is not same as 

negative numbers. Then they understand the abstract value; you can go below zero and it makes you go in 

more debt. 

 

Researcher: Are you going to make them to compare negative numbers also? 

 

Jones: Yes… I think you cannot compare negative numbers until they conceptualize it as abstract value. 

 

Stephan: Because you cannot conceptualize anything below zero you have difficulty on that…I am really 

rethinking the order of sequence now. I think the page after this (see Appendix C, “In the red”). I think we 

need a number line here. I really think so because even with concept of integer forget operation right now, 

it is a big deal to order those numbers on the number line. 

 

Wilson: I want to see order on the number line. I want to see that negative 4000 is below negative 1000 and 

I want them to see that, too. 

 

Stephan: I think we need a zero on that, then we have a page asking to order a bunch of positive and 

negative numbers. And we may ask how much Juli‟s worth more than Didem? And then operations. This 

way, they can start making objects out of distances from zero and they might also start thinking about those 

pay off ideas. 

 

During the discussion Jones stated that he wanted to know if his students were able to understand 

the difference between negative numbers and zero as well as other negative numbers. He stated 

that he wanted the students to be able to conceptualize the negatives as an abstract idea. The 

expert teacher emphasized that the number line can be helpful in ordering the numbers. Another 

teacher, Wilson, also agreed and stated that she wanted to know if her students were correctly 

able to order the negative numbers on the number line. The discussion motivated the expert 

teacher to create a new task where students could show whether they were comfortable with 

ordering the numbers on the number line and also whether they could see the gap between two 

numbers. She used a vertical number line since it is consistent with the idea of “the more debt 

you have, the deeper you go financially”. This way the activity would be connected with the 
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students‟ previous images (e.g. assets, debts) and it would also support development of 

meaningful imagery where students can relate the ordering of integers with asset and debt 

concepts (GO5). The teacher‟s knowledge of the instructional sequence as well as the imagery 

had a crucial role in creating this activity (KC1, KP7). Since she knew the overall sequence she 

could connect the previous tasks with the subsequent tasks and recognize what was missing. Her 

knowledge of imagery also allowed her to create activities that included the number line, which 

students could use as a supportive reasoning device and develop images that would help them 

understand the subsequent tasks. Additionally, her belief that mathematics is a sense-making 

activity (BM1) allowed her to create new tasks to give students opportunities to explore 

mathematical ideas and realize their potential misconceptions. 

In the meetings, the teachers also changed the order of the instructional sequence as 

necessary based on the interactions with the students. After the “good and bad decision” where 

the students decided whether a given transaction was good or bad, the instructional sequence was 

followed with the net worth trackers that included vertical number lines and the transactions 

below them without linking them to the context (see Figure 6).  

 

Figure 6: Net worth trackers 
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The teachers decided to give this activity to the students in the following class since they wanted 

students to think of using the number lines themselves when working on the problems related to 

the situation-specific imagery. Instead of the activity above they decided to use the activity that 

included word problems such as “Donald has a net worth of -$5000. A debt of $3000 is taken 

away. Is this good or bad? What is his net worth now?” The following excerpt shows the practice 

of teachers‟ revising the sequence: 

Stephan: I am going to make a suggestion. Because of the fact that students are not naturally using the net 

worth tracker or the number line to reason with, this page is premature [net worth tracker activity] I think. I 

want to go to the page 20 (see Appendix C, “Net Worth Problems”) first, have them do it themselves just 

with context like it used to be in the sequence. This was a logical next page, and then my strategy is going 

to be, let‟s pretend everybody gets the same answer on that number one for Donald… I am going to work it 

out real quick [teachers work on the problem for a few minutes].  

 

As it was seen in the excerpt the teacher suggested changing the order of the instruction since the 

students were not using the number line naturally. Thus, instead of giving the activity illustrated 

in the figure, she argued that it would make more sense to continue with a context where students 

might themselves prefer to use the number line to find the solutions. The teacher‟s goal of 

supporting development of meaningful imagery (GO5) as well as supporting students‟ ideas with 

tools when they have the reasoning (GO6) might have motivated her to change the order of the 

activities. This way, the students would be given more opportunities to use the number line in 

their solutions since they needed it rather than giving it to them ready-made. Once they felt more 

comfortable using the tool, they were given the net worth trackers. This allowed students to draw 

back to their previous images that they developed during the solution of the problems similar to 

the one above.  

The practice of revision mainly included revising the instructional sequence. The 

teacher‟s knowledge of the sequence allowed her to notice what was missing and whether the 

activities in the sequence were in the right order to support students‟ mathematical development. 
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Her knowledge related with the use of tools also had an important role, as this knowledge 

allowed her to create new activities to remediate incorrect reasoning with the tools. The teacher‟s 

belief that mathematics is a sense-making activity was also central in her revising the sequence 

by adding new tasks or changing the orders of the problems in order to help students explore 

mathematical ideas. Her goals of supporting the development of imagery and supporting 

students‟ ideas with the tools were also highly activated in the application of this practice. 

Summary 

Planning is an essential part of standards-based teaching (NCTM, 2000). Teachers need 

to prepare for what they teach before they actually teach it. During this study, the expert teacher 

exhibited important planning practices. Before starting the integers sequence, she studied the 

relevant literature to learn more about the different methods of teaching integers as well as the 

history of mathematics related to how the mathematicians developed the integer concepts and 

operations. She adapted the knowledge she derived from the literature into the instructional 

sequence to determine the ideas that she needed to emphasize and anticipated the difficulties her 

class might encounter during instruction.  

The teacher arranged meetings to come together with the other teachers to co-plan the 

instructional sequence. This created an environment of sharing and learning where the teachers 

shared their ideas about the activities and organized their thinking before instruction. During the 

meetings, they talked about the previous year‟s instruction such as what kind of ideas students 

brought to the class during whole class discussions. It was helpful for the teachers to remember 

the previous year and reflect on and also change some parts of their instructions based on their 

sharing of experiences. They also talked about each activity to unpack their big ideas, objectives, 

and their relationships with each other. During the discussion of the big ideas, they also talked 
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about what kind of questions they could ask to the students to assess their understanding of these 

big ideas. These questions served as formative assessments where the teachers could get 

feedback from the students and revise the instructional sequence based on their interaction.  

In order to facilitate an effective discourse, the teachers also talked about the different 

ways of introducing various activities. They first individually worked on the problems of the 

activities to come up with different solution strategies and then compared them with each other 

to anticipate students‟ solutions. This helped them to not be caught by surprise when the ideas 

were later brought up by the students. The planning meetings gave the teachers opportunities to 

review the objectives of the instruction. During this review, if they noticed that the current set of 

activities did not cover all the objectives they created new activities to fill in those gaps 

In the analysis, the planning actions of the teacher were divided into five practices named 

preparation, reflection, anticipation, assessment, and revision. These categories were not isolated 

from each other; in fact they belonged to a planning cycle as depicted in Figure 7. 
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                  Figure 7: Planning cycle 

In this figure, all practices are shown within the circle of collaboration, which supported 

and enriched all of the practices. The cycle started with the teacher‟s initial preparation, which 

also included reflection, anticipation, and assessment (arrows not shown). This stage was 

performed before the beginning of the instruction. After the classroom interaction, the teacher 

performed planning practices that involved reflection, anticipation, and assessment. These 

practices resulted in the revision of the instructional sequence which was done during the 

preparation for the next day thus completing the cycle. All of these practices were conducted 

within the learning community created by the participation of several teachers and the researcher. 
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CHAPTER SIX: ANALYSIS OF CLASSROOM TEACHING PRACTICES 

To find the general categories of teaching practices employed by the expert teacher, the 

classroom data were analyzed to identify the actions that she performed during the classroom 

instruction. Using the relationships between these actions, interviews with the teacher, teacher 

notes, and the literature, these actions were then grouped into five practices: (1) creating and 

sustaining social norms, (2) facilitating genuine mathematical discourse, (3) supporting the 

development of sociomathematical norms, (4) capitalizing on students‟ imagery to create 

inscriptions and notation, and (5) developing small groups as communities of learners. The 

classroom dialogues that illustrate the teacher‟s practices were selected from the entire 

instructional sequence by triangulating among the data to make sure that the selected examples 

actually represent the teacher‟s practices rather than being outliers. The extracted practices were 

then analyzed using the teacher‟s beliefs, goals, and knowledge. 

Practice One: Creating and Sustaining Social Norms 

 Social norms are the structures of classroom participation that are established by the 

teacher and students (Cobb & Yackel, 1996). The teacher has an important role in creating and 

sustaining the norms that become taken-as-shared by the classroom community. Since the study 

was conducted in the second semester, the data did not include the teacher‟s role in establishing 

the norms but included how she re-established and sustained them during the integer sequence. 

Action 1: Encouraging students to express agreement and disagreement 

  As it was explained in Chapter 5, the instructional sequence started with introducing the 

context of assets and debts and continued with net worth problems. The following excerpt is 

taken from the second day during the discussion of a problem asking students to compare 

Angelina‟s net worth ($90,000) to Brad‟s (-$190,000):  



131 

 

Dusty: The negative $190,000 is how much Brad is in debt. 

T: Dusty says it is how much Brad is in debt [she writes this on the board]. You all agree with that?  

 

Sts: Yes. 

 

T: Who doesn‟t agree with that? Nathan? 

 

Nathan: I think it is how much net worth Brad has.  

 

T: It is the net worth [the teacher writes on the board]. Why don‟t you think it is his debt?  Hold on… 

[Another student wants to answer].  

 

Nathan: Because [he pauses]. I do not know. I just don‟t get it. 

 

T: If you disagree with Dusty than you need to explain why you do not think it is right. Sally what do you 

think?  

 

During the discussion, Dusty stated that the total net worth was negative because it showed how 

much debt Brad had. The teacher restated his words and asked if students agreed with Dusty. At 

this point, although many students seemed to agree, Nathan stated that the number shows the net 

worth not the debt. The teacher asked him to explain why he did not agree that it was debt as 

Dusty had suggested. Nathan answered that he did not know the reason and he had difficulty 

understanding. The teacher used this opportunity to remind students that it is important to 

explain their reasoning when they disagree with an argument. Her decision was primarily shaped 

by a goal, namely that the teacher should remind students of the expectations as necessary during 

the instruction (GO1). When Nathan could not explain why he disagreed with Dusty‟s argument, 

consistent with her goal, she reminded students that they should try to explain their reasoning.  

Another goal in this episode was to make sure that all students could understand negative 

net worth as an abstract (intangible) quantity (GC3). Her knowledge of students‟ difficulties in 

explaining negative net worth (KP2) prompted her to discuss its meaning and ask students to 

state their agreement or disagreement during the discussion. Also her knowledge of the 
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instructional sequence (KC1), where understanding the meaning of net worth was an essential 

element, seemed to allow her to focus on the idea of negative net worth. 

Action 2: Encouraging students to understand others’ solutions  

During the third day students continued to solve problems where they worked on finding 

different net worths and comparing them with each other. In these activities one of the goals of 

the teacher was to support students to discover the additive inverse method of integer addition 

and subtraction (GC4). Although some students could see the additive inverse and cancel out the 

numbers that are inverses, many students continued to find the net worth by finding the 

difference between assets and debts. In the whole class discussion some students insisted that 

their methods were easier, and did not want to pay attention to other students‟ methods. At this 

point the teacher reminded them of the importance of understanding others‟ solutions: 

T: How many people came up with the strategy where they added all the assets and all the debts and find 

the difference? Raise your hand [Many students raise their hands].  

 

Tisha: That is easier for me. 

 

T: That is easier for you, isn‟t it? Gage you did not do that? All right listen to Gage he says he has a quicker 

way than you. Let‟s see.  

 

Gage: Does everyone see? [He goes to the board and asks whether everyone sees what he writes on the 

board] 

 

T: It is a great question. Does everyone see? I expect all of you to listen to Gage and make sense of what he 

is saying and if you have a question Brad what are you supposed to do?  

 

Brad: Ask him. 

 

T: You better ask him. Go ahead Gage. 

In this discussion, Tisha stated that the way she computed the net worth, which is finding the 

differences between assets and debts, was easier for her. At this point, the teacher asked Gage 

who solved the problem by using the “cancel out” method to explain his solution on the board. 

She also reminded students to listen to Gage and try to make sense of his reasoning, and ask 
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questions if they do not understand. This seemed to be motivated by her belief that the teacher is 

responsible for giving students opportunities to see efficient and different ways of solving 

problems during the class discussion (BT9). Asking Gage to explain his solution and encouraging 

students to carefully listen and ask questions was also motivated by the teacher‟s knowledge 

about students‟ tendency (KP3) to stick with their own ways even when they are not efficient.  

Action 3: Encouraging students to explain their solutions  

During the explanation of the “cancel out” method in day three, Mark stated that he had 

difficulty understanding when students explain by just using words:  

T: Mark, any questions for him?  

 

Mark: I just don‟t like when people explain. I just know it is working out.  

 

Gage: You can also … [he is trying to explain the problem] 

 

T: Wait, what are you talking about? [she is asking Mark] 

 

Mark: I get more confused when people explain. If they just show what they do, it is enough for me.  

 

T: You can get it just by symbols. 

 

Mark: I do not need them to explain. 

 

T: It is a good point Mark now you can see why writing down really helps. Because Mark is not really good 

at processing with what you say but he is really good at processing what he sees so it would help him to 

write something down. But for some of us who do not get it only with symbols, it really helps to hear 

something doesn‟t it Nathan? Since you are saying “say it again because I did not catch you the first time”. 

So both of them are pretty important: writing them down and speaking it out loud. Brad do you want to say 

something else?  

 

When this discussion took place, Brad was explaining his method but Mark interrupted by saying 

that he gets confused when someone explains by just using the words and he would rather see the 

symbols. He insisted that he would rather not hear the solution as it makes him more confused. 

Although this was a negative reaction that the teacher did not anticipate, she managed to turn this 

into a constructive argument by first acknowledging that Mark has a point. The teacher 

converted a negative reaction by a student to an opportunity to remind the students of the norms 
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again (GO1). If she had not encouraged Mark by acknowledging his point, he could have been 

discouraged to openly express his disagreement in further discussions.  

She then explained to the students that some people are better at understanding what they 

see and some are better at understanding what they hear, therefore they should do both when 

explaining their solutions. She also reminded students that during a verbal explanation, they have 

the opportunity to ask if they miss some parts of the explanation. The belief that each student 

may learn differently (BL2) had an important effect on the teacher‟s decision-making process. 

This belief seemed to be activated by her knowledge that some people are better at processing 

auditory information while others may feel more comfortable with visual information (KP10).  

Action 4: Asking students to repeat other students’ solutions 

In the same day (day 3), students were given an activity where they were asked to find 

out the total net worth of a person. Since the net worth was negative, the teacher asked students 

explain what a negative net worth might mean:  

T: What does it mean? Marsha what does his net worth mean? 

 

Marsha: If he uses all his assets and pays off his debts that is how much he would need more.  

 

T: Stuart what did she just say? 

 

Stuart: If he paid off all his assets to … [inaudible]  

 

T: He pays off. Say it again Stuart, real loud. 

 

Stuart: He pays off debts by using assets. 

 

T: So he uses his assets to pay off his debts. 

 

Stuart: Yes. 

 

T: Can you tell them, what happens? Brad, finish that. 

 

Brad: He actually has assets but his debts overwhelmed his assets 

 

T: Norman, say what Brad just said? 

 

Norman: When he pays off debts from his assets that is how much he had left. 
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The teacher‟s goal in this discussion was for the students to understand what it means to have a 

negative net worth (GC3). During the discussion, the teacher first asked Marsha to explain the 

meaning of negative net worth. She stated that it would be the money he needs to pay after he 

paid off his debts by using all his assets. The teacher asked Stuart to repeat what Marsha said. 

However, since his voice was not loud enough for everyone to hear the teacher asked Stuart to 

tell it “real loud”. He stated that he would use his assets to pay off his debts.  

Next, the teacher asked Brad to finish what Stuart just said. He said that his debts 

overwhelmed his assets and then the teacher asked Norman to say what Brad said. He stated that 

it would be the money left over once he paid off his debts from his assets. From the point of view 

of sustaining social norms, asking students to repeat what they have heard was done to help them 

understand their obligation to listen to and understand each other. Thus, the practice of asking 

students to repeat each other‟s solutions seemed to be underpinned by the teacher‟s goal of 

reminding students the expectations (Go1) and ensuring that students understand each other 

(GO7).  

Action 5: Encouraging students to behave respectfully 

During day five, the students were given an activity where they were asked to compare 

two people‟s net worths on a vertical number line. The question was to find how much more 

Gilligan‟s net worth of $3000 was than Marry Ann‟s net worth of -$2000: 

T: Let‟s hear from Stuart. This might sort this out. All right Stuart you are up.  

 

Stuart: I will restate the question for the people that do not understand what the correct answer is 

 

T: All right please state what 1000 is [which as Stuart‟s answer] 

 

Stuart: How many more, more is even in bold letters, is Gilligan worth than Mary Ann and show on net 

worth line. That is net worth line, correct? More which means basically you have $2000 in debt and you got 

3000 here, we are trying to find how much….wait a second, now I understand, never mind. 
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T: Never mind, what? You were sure before. All right time out. Thank you. I think what we just saw, I 

know you are ambitious to prove the other one but listen for a second. Stuart should not walk away 

embarrassed, too, because he changed his mind when he is up there. Is that okay to do? 

 

Sts: Yes. 

 

T: Maybe why he is a little embarrassed is he was so cocky before, right? He was talking about like you all 

did not know what you are talking about. So may be when you come up here you should not be so cocky 

but it is okay to change your mind. Exactly, what he did is okay to do , all right? 

 

In the classroom discussion of the problem although many people argued that the answer was 

5000, Stuart and his group stated that the answer should be 1000. The teacher asked Stuart to 

explain why it was 1000. The fact that she did not immediately dismiss an incorrect answer but 

asked the student to explain his reasoning stemmed from her belief that students learn better 

when they discover their own mistakes. This behavior was also consistent with her belief that 

mistakes can be used as learning opportunities (BL8).  

In his explanation Stuart started his argument by stating that he would repeat the question 

to the students who did not understand. He did this in an over-confident manner. After that, 

during his explanation, he noticed that his answer was incorrect and went back to his place 

without saying anything. The teacher commented that Stuart should not be embarrassed because 

he did it incorrectly. However, she also emphasized that had he not been so cocky when he came 

to the board, he would not have been embarrassed upon realizing his mistake. She reminded 

students to be more humble but at the same time not to be shy to admit when they make a 

mistake. Stephan‟s belief that an environment that nurtures respect and a sense of community 

plays an essential role in students‟ learning (BL7) had an important role in the conversation 

emphasizing the importance of being humble during their explanations. Her knowledge of 

standards-based environments which supports a sense of community where students can express 

their ideas honestly and openly without fear of ridicule also seemed to have an essential role on 

her actions (KC3). 
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Action 6: Encouraging students to use mistakes as learning opportunities  

During the same day (day five) the teacher asked students similar types of problems 

where they could work on finding the difference between two net worths. The following excerpt 

is taken from the discussion of a problem where students were asked to find who is worth more if 

Paris has -$20,000 and Nicole has -$22,000:  

T: We have a lot of things to talk about. Nathan, have you figured it out? [he shakes his head, meaning no] 

Come on up. Nathan says I cannot come to grips with this problem. He is looking at us to present because 

he does not have any answer to this one. He needs some help. He is going to tell you what he is thinking so 

far and write up there what he is thinking so far and when he gets stuck he will say “here‟s where I am 

stuck guys, help me out” Let‟s hear from him first. Nathan tell everybody what you did and why you did it 

and then we will start helping [Nathan puts the numbers on the number line in a wrong order where -22,000 

is closer to zero than -20,000]. 

 

Nathan: I do not know, I just put the numbers. 

 

Gage: I just want to show quickly. 

 

T: Wait do not help him, so he knows what he has done. 

 

T: Tell us why you put Nicole there and why you put Paris there? Is that logical question to ask?  

 

Sts: Yes. 

 

Nathan: I do not know. 

 

T: He says that he does not know. Sit Gage, I appreciate it. We want to hear from new people. All right, 

Flora help him out. 

 

In this episode, Nathan was explaining his solution on the board but he seemed to get stuck and 

asked for help. The teacher‟s belief that students learn from their mistakes (BL8) motivated her to 

invite Nathan to the board to explain his reasoning even though his solution was incorrect. At 

this point, Gage, who was very active in the classroom, wanted to come to the board and show 

his mistakes. The teacher did not want Gage to interfere immediately because she first wanted 

Nathan to try to explain where he had difficulty. She asked Nathan why he wrote the numbers in 

that order. Since he said he did not know why he wrote it like that the teacher asked the other 
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students to help out. This decision was consistent with the teacher‟s belief that a sense of 

community plays an essential role in students‟ learning (BL7).  

At this point, Gage immediately went to the board to explain without asking for 

permission, which caused the teacher to say that while she appreciated his enthusiasm, she 

wanted to give other students an opportunity to explain as well (since Gage had already 

contributed to the discussion several times). This seemed to be motivated by her belief that the 

teacher should be fair and provide equal opportunities for all students (BT6). Here it is important 

to note that the teacher was careful about doing this without making Gage feel upset, which 

might have caused him to shut himself down in the following discussions. 

Action 7: Renegotiating the social norms 

Since some students started to behave disrespectfully to each other during the classroom 

discussion, the teacher needed to have a conversation with the class on day six to remind 

students how they should behave in the classroom:  

T: That is exactly what I was thinking. When I announced that some people have a hard time with this, 

what was the natural response I got from you? About 4 or 5 people said oh that is so easy. What does it 

imply? 

 

Sts: Cocky. 

 

T: How does it make people feel? 

 

Sts: Sad. 

 

T: Do you think they want to contribute to our class now? 

 

Sts: No. 

 

T: I would not either, if I were them. Norman, what would you like to say about humility? 

 

Norman: I do not know. 

 

T: Humility sort of relates to humiliating somebody but it is positive. When you come here I want you to 

act with humility and be humble. You guys ever heard the word humble? Be humble, do not act like you all 

figured it out, because as soon as you do Stuart what happens?  

 

Stuart: You get proven wrong. 
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T: How does that make you feel? Some people with good self-confidence are okay after that. Do not come 

to class thinking you figured it all out. Also think about how it makes other people feel. I do not want to 

hear anyone say “this was easy, what is the problem?” It is not nice. 

 

This discussion was triggered when some students claimed that it was “so easy” for a question 

for which other students had difficulty understanding. The teacher asked students what this kind 

of behavior implies and how it makes other people feel. She connected the situations with her 

knowledge of what happened in the classroom in the previous days (KP11) to students who were 

cocky and used it to remind them of the importance of being humble.  

She reminded students that when some students feel that their ideas are not valued by 

others, they might not want to contribute to the classroom discussions anymore. Stephan‟s 

beliefs that the teacher is responsible for creating and sustaining an environment where ideas can 

be discussed freely and respectfully (BT2) allowed her to talk about the ways students need to 

behave.  She explained the difference between humiliate and humility, and asked them to behave 

with humility and humbleness in the classroom. This way they would not feel shy and 

embarrassed when they realize their mistakes, and other people would not be offended by their 

behavior.  

Action 8: Encouraging students to take responsibility/ownership for their learning 

On the following day, just before the spring break the teacher made an activity named 

“chalk-talks” where students wrote their ideas about the classroom on the board: 

T: I have new activity for you today. We have been hearing some positive comments and some negative 

comments around the room lately. It might be fun to get that frustration out and get some enjoyment out. 

Here is what we are going to do. This is a silent activity. You cannot talk. If you talk during the game, you 

have to sit. Each person gets a marker and on this side of the board we will right some joys like I heard in 

the second period “we like arguing and arguing is fun in this class” if it is what you think then you will put 

“arguing is fun in this classroom”. It is called chalk-talk by the way or marker-talk now. A concern in one 

of my classroom was they said “the teacher does not teach us”. Write that, I am not going to be offended. 

Or you can write “Mrs. Taylor  does not help me”; write that only if you believe it. Everybody will have a 

chance to write something. Do not write anything about other people. We are not going to be negative and 

attack each other. You can respond to someone who writes such as “the teacher does not help me”, you can 

response “but that is help”. You can say “I agree” or “I don‟t agree.” 
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After the introduction of the activity she separated the board into two parts for the things students 

liked to do in the class and those that they did not. Once the students finished writing their ideas, 

she started a conversation about them (see Figure 8). The following excerpt is taken from the 

discussion of the idea “figuring out the things on their own first in the classroom” for which 

some students indicated dislike: 

 

Figure 8: Example from "chalk-talk" activity 

T: “Having the teacher not help you”. What do you think about that? 

 

Marsha: You say that you need to figure it out on your own. 

 

T: Why do you think we do that? 

 

Charlie: So that we can learn ourselves. 

 

Nathan: You can ask people at your table. 

 

T: What if they do not know? What do you do? Ask somebody else. Has that happened to you, nobody in 

this room knew the answer? That might happen once or twice but not very often. Usually around the room 

you can find someone that may help you. And if it occurs once or twice, don‟t we always talk about it in 

the class? I am interested in the idea why you think we do not help you. It is not a traditional help, is it? 
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Usually the teacher comes up and answers for you, when you get stuck. When you get stuck what do we 

do? 

 

Charlie: Tell us to talk to our group.  

 

Seth: Or to a friend. 

 

T: I know some of you do not like talking with your groups. 

 

Anthony: If I cannot figure out something alone I should come and knock another door to find the answer. 

 

T: It is one of the ideas. When you come to 8
th

 grade, high school or adult, you get a job and you have to 

work with people, even those we do not like. I know you like your group mates but you also have to work 

with people that you do not like. How do you do that? That is the key. Also we learn a lot from each other. 

And we do not give you the answer immediately on purpose because like Charlie said we want you to 

figure it out. We know you got the brain for it. So if you figure it out yourself it is much more meaningful 

than if I show you how to do it. You do not need to memorize it, right? So we feel like we are helping you 

but it is a different kind of help. We are helping you become good thinkers instead of relying on me for 

how to do that or rely on Mrs. Taylor. If I were you and if the teacher didn‟t tell me how to do things, I 

would get frustrated, too. We are trying to help you in a different way. So just try to get comfortable with 

that, if you have not.  

 

Here, the teacher selected a negative idea, which stated that the teacher does not help them. The 

reason this idea appeared was most likely due to students being used to the traditional style of 

teaching in which students are given ready-made knowledge by the teacher. Stephan asked them 

why they think they do not do it in this classroom. Some students suggested that this gives them 

an opportunity to learn on their own and to learn how to find answers by communicating with 

other people. Based on these, the teacher explained that taking responsibility for their own 

learning is a crucial part of life that they will need even more in the future. She reminded them 

that they will have to work with people even if they may not like them, and doing it properly is a 

key for being successful. She told them that it is more meaningful if they try to figure things out 

on their own rather than the teacher just telling them the answers. This way they wouldn‟t have 

to memorize but rather learn with understanding. She also explained that both teachers in the 

classroom are helping them but it is a different kind of help than they are used to. She advised 

them try to get comfortable with this kind of environment if they had not already. 
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This communication was primarily based on the teacher‟s belief that students should take 

responsibility and ownership for their learning (BL3). This belief seemed to originate from her 

belief that when people figure things out on their own or through asking questions, they learn it 

with understanding (BL1). She also knew that when students get to higher grades or graduate, 

there won‟t always be someone to give them the answers they need, so they would be more 

successful if they learned to figure things out by themselves from the early ages. Through this 

approach she emphasized the importance of learning how to learn rather than learning just the 

correct answers. This type of thinking is essential in standards-based teaching as the Principles 

and Standards emphasize the need for instruction that enables students to fulfill personal 

ambitions and career goals in an ever-changing world (Kc3). 

In summary, the practice of creating and sustaining social norms included encouraging 

students to express their agreement and disagreement, understand as well as repeat other‟s 

solutions, behave respectfully, use their mistakes as learning opportunities, take responsibility for 

their learning, and renegotiate social norms as necessary. It was observed that in order to execute 

all of these actions effectively the teacher had a diverse combination of beliefs, goals and 

knowledge. Particularly for this practice, it was noticed that the teacher‟s knowledge related with 

the NCTM Standards as well as her pedagogical knowledge about the students‟ behavior and her 

current students seemed to help her sustain social norms. The other motivating factor in 

supporting social norms seemed to be her beliefs related to learning: she believed that an 

environment that nurtures respect and a sense of community plays an essential role in students‟ 

learning. Also, her belief that students learn from their mistakes and taking responsibility is 

crucial for one‟s learning seemed to be highly activated in this practice. Finally, her overarching 
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goal of renegotiating the social norms as necessary seemed to have a central part in applying this 

practice. 

Practice Two: Facilitating Genuine Mathematical Discourse 

The NCTM Standards emphasize that teachers need to facilitate discourse to support 

students‟ mathematical understanding rather than just deliver information. The teacher has an 

essential role in discourse such as asking questions that promote higher-level thinking, restating 

students‟ explanations in clearer language, introducing vocabulary and using students‟ solutions 

effectively to promote discourse.  

Action 1: Introducing mathematical vocabulary when students have invented an idea 

The following excerpt was taken from the first day where the students were guessing the 

things that a famous person might own and owe. The reason that the teacher initiated the 

discussion based on a famous person‟s net worth was to keep the discourse interesting and alive 

(GO2). The teacher wrote the guesses related to own to the left of the board, while she wrote the 

guesses related to owe to the right. After students came up with various items some tangible such 

as cars, money, and boats and some intangible such as stocks, mortgages, and loans. The teacher 

asked students how they might name each part:   

Mark: That list on the left is how much money she gets or how much she has (T writes at the top of the list 

“how much she owns”) and the right side is how much money she loses (T writes “how much she owes”). 

 

T: Someone used the word “debts” 

 

Sts: Danny used it.  

 

T: You do not have to write this list down. The title of this list is Danny‟s title “Debts”. Those are debts 

right? Anybody here in debt? (Marsha raises her hand.) Marsha how much money are you in debt? 

 

… 

 

T: You probably do not know the title for this column [T shows the column named “how much owns”] but 

you might have heard it, it is actually called assets. Actually, these two words are used in finance. You are 

going to learn a little bit about the finance. How much people are worth? Are you curious how much are 

you worth?  
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During the discussion the teacher first asked students to guess the possible name of each part on 

the board. One of the students suggested that one part was for how much money she has and the 

other for how much money she loses. The teacher reworded this and wrote on the board how 

much money she owns and how much money she owes. Both own and owe were words that were 

easily recognized by the students. Her goal was to support students‟ understanding of the 

financial terms assets and debts based on their informal knowledge of owning and owing (GC1). 

This goal seemed to be activated by her belief that students learn better when they can connect 

the newly introduced concepts with their informal knowledge (BL5).  

Next, the teacher capitalized on Danny‟s answer where he used the term “debts”. She said 

they would use the term debt to represent the items on the right side of the board. She asked if 

any of the students were in debt. Then she introduced the word “asset” as the counterpart of debt 

and explained to students that these two words were commonly used in finance. The teacher‟s 

belief that she should introduce new vocabulary when students invent an idea allowed her to 

introduce the term asset (BT10). Introducing the new mathematical terms once students 

understood the mathematical ideas seemed to help discourse to move smoothly since students did 

not have difficulty understanding the meaning of those new words. In order to promote the 

discourse, the teacher also considered the students‟ taken-as-shared interests that would motivate 

them to generate conversations as they worked on the tasks related with net worth. Thus, at the 

end of the conversation she asked students if they would be curious about how much they were 

worth as well as the other people. Next, she distributed the new activity that asked students to 

find famous people‟s net worth (see Appendix C, “Angelina and Brad”).  
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Similar to the situation described above, in day three, the teacher gave students an 

activity where they could use additive inverses. Once the students explored the idea and talked 

about their method where they named it as the “cancel out” method, the teacher introduced the 

mathematical vocabulary for those numbers in the activity: 

T: Any other ideas, you want to name these two things? The name you might think of is opposites but the 

technical term is called inverses [she writes opposites and inverses]. You should write these terms down, it 

means they are opposite of each other. Do you know what does it mean? 

 

Dusty: One is positive and the other one is negative such as +$1000 and -$1000. 

 

T: What else here are inverses? [she shows the numbers on the activity] 

 

Dusty: They should be the same. 

 

T: Yes, opposites and inverses are the same numbers. Help me with the definition. How do you know if the 

numbers are inverses? 

 

Marsha: The same number with different symbols 

 

T: The same numbers with different symbols (+,-). Another way you might say it is canceling each other 

out [writes on the board]. That was Seth‟s contribution.  

 

During this activity that included positive and negative numbers, the teacher introduced the 

vocabulary “inverses”. Before she defined the meaning of the word inverse, she asked students if 

they could guess what it means. Dusty gave an example from the activity by showing that 

numbers such as 1000 and -1000 are inverses. Then the teacher asked them to define what makes 

two numbers inverses. Marsha responded by saying that the numbers should be the same but 

have different signs. The teacher capitalized on her ideas and wrote the definition of the inverse 

on the board. Her belief that the teacher is responsible for introducing mathematical vocabulary 

seemed to motivate her to introduce the mathematical word „inverse” at this point. (BT10). She 

also stated that inverses cancel each other out as Seth stated before. She first connected the more 

technical term inverse to opposite, which was part of the students‟ informal knowledge. She then 

helped students develop the idea of additive inverse through examples. Once the students 
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invented the idea, she formally defined the mathematical term. Introducing the term “inverse” 

after students explored the relationship between the numbers had an important role in facilitating 

the discourse.  As the students understood the meaning of the word, they started to use it during 

their explanation of solutions and this carried the discourse to a more advanced level.  The 

teacher‟s knowledge of content had an essential role in deciding which mathematical word she 

needs to introduce and when she introduces them (KS1). 

Action 2: Asking questions that promote higher level thinking  

During the discussion of a problem in day six about finding the gap between -10,000 and 

+8000, Seth stated that he noticed a pattern when two numbers have different signs; they just 

need to add those two numbers together. The following is taken from that discussion, where the 

teacher helped students to generalize their ideas:  

Seth: This works when one number is positive [8000] and the other one is negative [-10,000]. 

 

T: What is the “this” part of this works? 

 

Seth: 10,000 plus 8000. 

 

Anthony: It is even easier when they are both the same. 

 

T: Anthony, can you give an example of what you mean? Go ahead make it up. 

 

Anthony: For example if she did not owe money, she had 5000 [instead of -10,000] then all you need to do 

is add 3000.  

 

Sts: That is the difference. 

 

T: So did you hear what he said? If she has 5000 instead of way down here, she would only have 3000 

more. How did you get 3000? 

 

Anthony: Use your common sense. 

 

T: Remember what we said [she reminds the students about how they need to behave] 

 

Anthony: You have 5000 and you want to get 8000, it is how much more you need to get 8000. 

 

Seth: You have to subtract 5000 from 8000. 
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T: I think what you mean by common sense was most people can see it is 3000 without doing any 

calculation. Seth made a good point if you did not just see this is 3000. Here is how you can teach 

somebody to get it. You just find the difference [she writes 8000-5000=3000].  

 

Seth: That only works when both numbers have the same signs.  

 

T: So if they are both positive you‟re just going to find the difference. Seth says if they are both negative 

let‟s try it out. Let‟s do a different one. How about -8000? How much more is this person‟s net worth? 

Brad? [T asks students to compare -8000 and -10,000]. 

 

Brad: I did it a little different than this.  

 

T: Back to this, remember Seth‟s idea what is happening when they are both negative?  

 

Sts: $2000.  

 

Tisha: Positive or negative? 

 

T: We are not going to worry about the signs right now.  

 

Sts: If the numbers are in different sections [positive and negative sections of the number line] you add 

them; if the numbers are in the same section you subtract them [the teacher writes it on the board]. 

 

After Seth‟s conjecture about defining the structured gap between two different net worths, the 

teacher wanted to continue the discussion by restating Anthony‟s words where he said that it 

would be easier to find the gap when both numbers have the same sign. The teacher‟s goal in this 

activity was to help students understand how they could find out the difference between any two 

net worths (GC5). She asked Anthony if he could give an example that supports his conjecture. 

Anthony replaced -10,000 with 5000 in the given question and stated that the difference in net 

worth between 8000 and 5000 would be 3000. The teacher asked if he could explain why it was 

$3000, but he had difficulty explaining his reasoning and said that he used common sense. At 

this point, Seth stated that it could be found by subtraction, which was supported by the teacher 

by showing it on the board. Next, the teacher wanted to make students think about a case where 

both numbers were negative with the intention of helping students generalize the pattern. 

Stephan‟s belief that the teacher should pursue the students‟ ideas when appropriate might have 

motivated her to ask students to think about a situation when both numbers are negative (BT16).  
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The question this time was how much more would a person‟s net worth be who has -$8000 than 

a person‟s net worth who has -$10,000. Most students agreed that it should be $2000. As can be 

seen from the excerpt above the teacher avoided talking about the sign of the difference since it 

was a big idea of later activities. Her goal was for students to understand and internalize the 

distance between these numbers on the vertical number line.  

At the end of this discussion, many students arrived at the conclusion that to find the 

difference between two integers, they have to add them up if they are in different sections on the 

number line, and subtract them if they are in the same section. Thus, capitalizing on Anthony‟s 

conjecture about a different case where both numbers were positive and asking students to 

consider the case where both numbers were negative helped them see all of the possible cases 

and engineer a general rule to find the difference between any two integers. The teacher‟s 

extensive knowledge of content allowed her to use students‟ solutions to initiate higher-level 

questions where students could explore mathematical ideas (KS1). By asking higher-level 

questions, the teacher supported a discourse where students came up with different ideas and 

reflected on the ideas that were stated by their friends. This way the discourse stayed alive as the 

teacher asked them to think about different mathematical ideas rather than the ones that they 

already knew. 

Action 3: Restating students’ explanation in a clearer/advanced language 

In the next class students were given a net worth problem where the question included 

multiple positive and negative numbers, and students were asked to find the net worth of the 

person. Although some students solved the problem by finding total assets and total debts and 

then finding the difference, the teacher wanted to focus on the “cancel out” method. The teacher 

asked Brad to explain his solution since he found the answer by canceling out the inverse 
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numbers and added the remaining ones. Although many students seemed to understand his 

method, Tisha stated that she was confused. As Brad had already repeated his explanation twice 

and many students understood him, the teacher summarized Brad‟s solution: 

Brad: I canceled those and added the ones that are left. 

 

Tisha: I am confused. Do you add all debts together? 

 

T: Do we need to start over? I will quickly go over it again for the people who missed it for the first time. 

Because I don‟t want him to go all over again. He started by looking at the asset of $9000 and debt of 

$9000 and he says why even worry about those. They cancel each other out (she shows it for the other pairs 

that cancel out each other). Whose cancel out method was it? Seth‟s, Gage‟s from our class. He gets rid of 

those; I do not have to worry about them now. You okay with that Tisha? 

 

Tisha: Yes. 

 

During the classroom discussion, Brad explained his cancel out method twice since some 

students had difficulty understanding. This caused some loss of time for the next part of the 

problem, which the teacher wanted to focus on as well. However, Tisha stated that she got 

confused by Brad‟s explanation and wanted him to explain again. At this point, the teacher 

intervened and said that she would summarize Brad‟s ideas quickly for the people who missed it 

for the first time. After her explanation, she asked Tisha if it now made sense to her.  

Here, almost all the students seemed to understand Brad‟s reasoning except Tisha. This 

seemed to activate the teacher‟s belief that she is responsible for efficiently managing the time 

(BT13). Therefore she rephrased Brad‟s main points more quickly. This illustrated the teacher‟s 

practice of restating students‟ explanations in a clear language to make it understandable to 

everybody as necessary in order to focus on the big idea of the current lesson (GO3). 

Action 4: Using solutions effectively to engineer the teacher’s summary 

The teacher continued to present different types of problems in the following days. 

During the discussion of a problem on day sixteen, which was  - (-7000) = 2000, the students 
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agreed that the answer was -5000. At this point Anthony asked if switching the place of the first 

and the second numbers would affect the result: 

Anthony: They are both debt. Does it matter to change the order of numbers? 

 

T: Let‟s see does it matter? Can you have this -7000 - (-5000) = 2000, is this going to get you the same 

result? [Students talk in their small groups for a few minutes]. 

 

Sts: No, it is negative 2000. 

 

T: I think we all agreed that -5000 is the beginning net worth. Anthony asked a good question. Can we just 

change the order of these? [She also asked if they can switch the numbers in the first question where the 

operation was addition and students said they can do it in that one]. 

 

T: -5000 - (-7000) does not seem to work when you switch the numbers. What was this one 2000 and this 

one was -2000. This does not work. Why is it not working with subtraction but working with addition? 

 

Tisha: It works for addition because it does not matter how you switch the numbers. Like you can do 7+5 

and 5+7, and you get the same answer. But when you are doing subtracting and you have a lower number 

or bigger number you cannot switch them because if you did 7-5 you get 2 but if you do 5-7 you totally get 

different answer 

 

T: What would you get? 

 

Tisha: -2. 

 

T: But in addition it does not make a difference. Why? 

 

Brad: For the subtraction you take away the small number in the first one and the bigger number in the 

second one. 

 

T: Yes but does it make a difference in addition? 

 

Sts: No… 

 

T: This is called the commutative law. Do you know that? You guys just discovered the commutative law 

of addition. In this example, when adding two negatives, the commutative law holds, doesn‟t it? You can 

switch these two with an adding symbol and get the same answer. Seth is asking does the commutative law 

hold when you use negative and positive such as -7000 + (+5000). Can you switch them and get the same 

answer? I am not going to explore that in the class but if you want to get extra credit you can investigate the 

commutative law with two different signs with addition. Does it hold if you switch these two numbers and 

it is an addition? Okay? If you want to write that down I will leave it for you. 

 

For Anthony, it seemed like switching the numbers would not affect the answer of the problem. 

The teacher asked Anthony‟s question to all students and gave them some time to think about it. 

The students found that changing the order resulted in a different answer. The teacher then asked 

what would have happened if they changed the order in the earlier question where the operation 



151 

 

was addition instead of subtraction. All students agreed that changing the order did not matter for 

that question. Based on this, the teacher asked if anybody could explain why changing the order 

matters for subtraction but not for addition. Tisha gave an example using smaller numbers and 

stated that changing the order for subtraction might result in subtracting the bigger number from 

the smaller one, when the original question was the other way around. Brad restated this by using 

take away instead of subtraction. At this point, the teacher told the students that they have just 

discovered a law called the Commutative Law of Addition, which states that the order of the 

terms does not matter for addition. Seth asked if this law would hold when one of terms was 

negative and the other was positive (in the previous question they solved, both terms were 

negative). The teacher left the exploration of this question as an exercise to the students.  

The teacher had an essential role in engineering the discourse effectively by giving 

students opportunities to explore the mathematical ideas by using the students‟ questions (i.e. 

whether it differs to change the order of numbers in the subtraction) that came up in the solution 

of the problem.  Finding the answers of the questions that were raised in the classroom made 

students more enthusiastic about the exploration and explaining their ideas during the discourse. 

Secondly, the teacher also engineered the discourse by introducing the mathematical concept 

after students explored the mathematical ideas. Finally, learning these new ideas encouraged 

students to raise more questions in the discourse (e.g. whether commutative law of addition holds 

when both numbers have different signs).  

This episode illustrates several of the teacher‟s beliefs, goals, and knowledge related to 

discourse. When Anthony asked whether the order of the numbers was important, the teacher 

gave students a few minutes to think about the question since she believed that having sufficient 

time was important before discussing the ideas (BT7). Thus, rather than asking for a quick 



152 

 

response from the students or answering the question herself, she waited for other students to 

analyze the question. This allowed students to absorb what was being asked and be able to 

contribute to the classroom discussion. This can also be related to the teacher‟s goal of involving 

as many students as possible in the classroom discourse to support the discourse staying alive 

and interesting (GO2).  If the teacher expected an immediate response, it is likely that only a few 

students would have been able to contribute to the discussion. 

When students found that changing the order matters for subtraction, the teacher asked 

them to try another example that involved addition. This was based on her practice of asking 

questions that promote higher level thinking by creating opportunities for analyzing, comparing, 

and synthesizing. This practice seemed to stem from her belief that mathematics is a sense-

making activity (BM1). The teacher then inquired if the students could explain why the order 

mattered for subtraction but not for addition. After students developed some explanations, the 

teacher introduced the mathematical terminology for the commutative law and restated students‟ 

explanations in a more advanced way. These actions illustrate her practice of introducing new 

vocabulary when students have invented an idea, and that she should restate students‟ 

explanations in a more sophisticated way. The main reason that shaped her practice might be 

explained with her belief that students learn better with instruction that relates to their informal 

knowledge (BL5).  Discussing about the commutative law was not a planned goal of the teacher  

at that point in the discussion; it became an emergent goal with the questions of the students. 

Although they made an exploration into the commutative law, the teacher did not want to spend 

too much time on it in order to continue with the big idea of the current lesson. Therefore, she 

assigned the further questions of the students about the commutative law as an exercise. This 
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could be explained by the teacher‟s goal of focusing on the big idea of the lesson while allowing 

room for useful explorations (GO3).    

In summary, the practice of facilitating genuine mathematical discourse included 

introducing mathematical vocabulary when students invented an idea, asking questions that 

promote higher level thinking, restating students‟ explanation in a clearer/advanced language, 

and using students‟ solutions effectively to engineer a summary. During this practice it was 

observed that the teacher‟s subject-matter knowledge had an essential role in facilitating genuine 

mathematical discourse as this allowed her to pursue students‟ ideas comfortably. Her belief that 

students learn better with  instruction that relates to their informal knowledge and students learn 

mathematics with understanding seemed to be highly activated during this practice. Her 

overarching goal of supporting a discourse that stays alive and interesting appeared to be a 

driving factor in the application of this practice. Finally, focusing on the big idea of the lesson 

was highly influential as this allowed her to prevent the discussion from straying away from the 

big ideas of the current class. 

Practice Three: Supporting the Development of Sociomathematical Norms 

 One of the important roles of the teacher in standards-based instruction is to support 

sociomathematical norms which refer to understanding what counts as a different, efficient, 

sophisticated, and acceptable mathematical solution (Cobb & Yackel, 1996). The teacher also 

needs to encourage students to make and investigate mathematical conjectures and recognize 

reasoning and proof as fundamental aspects of mathematics (NCTM, 2000). Since in this study 

the expert teacher co-taught with a special education teacher, the co-teacher also supported her to 

sustain the social norms. 
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Action 1: Encouraging students to give conceptual explanations  

As explained in the earlier sections, the instructional sequence started with different net 

worth problems. On the second day of the sequence students were working on one of the 

problems that asked for finding two different net worths, students were faced with a predicament 

since one of the person‟s total debts was overwhelming the assets (i.e. the total asset was 

$600,000 and total debt was $790,000). The teacher‟s main goals in this episode was for the 

students to be able to correctly determine the net worth (GC2) when debts are bigger than the 

assets (i.e. when the net worth is negative) as well as to understand what it means to have a 

negative net worth (GC3). Until this point, all the net worths had been positive and the students 

were used to finding the net worth by subtracting the debts from the assets. In other words, they 

were performing a vertical subtraction operation by writing the bigger number above the smaller 

number then subtracting. However, writing the numbers in this order did not make sense to some 

of the students in this problem as shown by the following excerpt: 

Anthony: Angelina is worth more because his [Brad‟s] asset is $600,000 so his debt is more than his asset 

so it is a problem like this [he writes on the board 600,000-790,000 = -$190,000 in vertical order as shown 

on the left of Figure 9) 

 

T: Say something about this Anthony. I have not seen a subtraction problem something like that before. 

 

Sts: Me neither [some of them]. 

 

T: Have you guys seen subtraction like that before? 

 

Sts: Yes, I have [some of them]. 

 

T: Some of you did like that [subtracting lesser number from the greater number] but we want to hear what 

you are doing [T wants students a mathematical explanation for the calculation on the left of Figure 9]. 

 

Anthony: See if you put this [$790,000] on top I tried to do this at home, since the bottom is bigger you put 

it on top of this one [$600,000] but then it does not make sense. 

 

T: Show us, how you did. 

Anthony: If you did this 790,000- 600,000 [writing this in vertical form, see the middle of Figure 9] than 

that [$790,000]one would be positive and this [$600,000] one is negative. 
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Here, Anthony seemed to be confused by the fact that he needed to do a subtraction operation but 

for the first time the subtrahend was greater than the minuend. He sensed that something was 

wrong by doing a digit-by-digit vertical subtraction in this case, but at the same time he realized 

that reversing the order of the numbers would not make sense as it would result in a positive net 

worth (he recognized that the result should be negative but did not know how to get there). His 

attempts are shown on the left and middle of Figure 9. The teacher wanted him to clarify how he 

performed the operation shown on the left, but he explained why the middle one, where the 

greater number was on the top, did not make sense due to the net worth being positive. During 

the discussion, Mark came to the board and revised Anthony‟s attempt (right image in Figure 9) 

by subtracting from bottom to top as shown on the right of Figure 9. 

 

Figure 9: Different solutions 

 Next the teacher asked if anybody found the net worth as in the middle example. Norman 

said that he did it that way and initially left the result as positive but then realized that the debts 

were larger so he changed his mind: 

Norman: I put positive but then I changed my mind. 

 

T: You changed your mind. Norman says I put as positive but then I changed my mind. What did you 

change your mind to? 

 

Norman: Negative. 

 

T: You changed your mind to negative. Do you want to explain that? You get the same number but the sign 

is different tell us about that.  
 
Norman: That is like how much money you own like the total asset like and the debts are more than what 

you owe. 
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T: Norman says that debts are more than what you have so what? 

 

Norman: It will be like owing. 

 

T: So you are gonna be owing $190,000. Can Norman do it in this way?  

 

Sts: Yes. 

 

T: What do you guys need to remember? 

 

Sts: Negative. 

 

As can be seen in the excerpt above, the teacher asked Norman if he could explain why he 

changed his mind. Norman, stated that because the debts were larger than the assets the result 

should be negative. The teacher then asked the class if this would be an acceptable solution, a 

question to which the students agreed. She emphasized that they could do it this way but they 

would have to remember to use the correct sign at the end of the operation. The teacher 

concluded this discussion by making the following comment: 

T: Whatever order you put it if you put this [pointing to lesser number] on top and this [greater number] on 

bottom or you put this [lesser number] on bottom and this [greater number] on top you did seven minus six 

and you got one. So was he right? This way you have to remember like Norman said this number is debt. I 

like how Anthony said. He said your debt overwhelmed your assets so you are going to end up with debt. 

All right, no more different ways, let‟s just go on. We‟re gonna come back to this later. 

 

This episode primarily highlights the teacher‟s practices of emphasizing what counts as an 

acceptable mathematical solution. When Anthony presented a solution where he vertically 

subtracted the bigger number from the smaller one, the teacher said that she had not seen  

subtraction done in that way and asked Anthony to explain his method. By capitalizing on the 

comments of the other students, they established a sociomathematical norm as the classroom 

community agreed that in these kinds of situations they can subtract the lesser number from the 

greater one as long as they remember that the greater number represents debts, and therefore the 

result should be negative. Her beliefs that not all mathematical solutions are equal (BM6) and the 
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teacher is responsible for giving opportunities to students to see efficient and different ways 

during the classroom (BT9) seemed to have an essential role in this discussion. 

After students felt comfortable with finding a person‟s net worth in different ways, the 

teacher gave an activity where the students needed to compare two people‟s net worth. The 

question was comparing Paris‟s net worth, which was -$20,000 to Nicole‟s net worth of -$22,000 

and finding the gap between them. During the discussion, some students had difficulty in 

ordering the numbers on the vertical number line. Nathan was one of the students who had 

difficulty. The teacher encouraged him to come to the board and explain what he was thinking 

and asked students to help him once he presented his ideas. Her knowledge about students‟ 

possible misconceptions (KP2) enabled her to capitalize on Nathan‟s mistakes. Nathan placed the 

two net worths on the number line in opposite order, -22,000 being above -20,000, and could not 

explain why he did that. At this point one of the students stated that the order of the numbers 

should be reversed: 

Adam: -20,000 is supposed to be before -22,000. Paris is a little more closer to zero. 

 

T: Adam says Paris is a little bit closer to zero. What do you want to say Charlie? 

 

Charlie: Because Nicole owes more so she has to be in red more 

 

T: She has to be in red more he says, because Nicole owes more than Paris. How do you know she owes 

more?  

 

Charlie: Because the question already says one of them is negative 22,000 and the other one is negative 

20,000. 

 

The teacher‟s goal in the discussion above was to support students‟ to be able to order the 

numbers on the vertical number line in a meaningful way (GC5). During the discussion, Adam 

stated that Paris is closer to zero so she should be before (above) Nicole. Charlie also replied by 
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arguing that Nicole is more in red since she owes more
7
. When the teacher asked him if he could 

explain why she owes more, he stated that it was given in the example. Therefore, the teacher 

continued to ask questions to bring out a logical explanation. She asked students how they knew 

that they would put the numbers in that order. Students continued to say that negative 20,000 was 

closer to zero. However, the teacher persisted by asking them how they knew it was closer. The 

teacher‟s belief that students learn mathematics with understanding (BL1) motivated her to ask 

students why -20,000 was closer to zero than -22,000. Marsha stated that the negative part of the 

vertical number line could be thought of as a reflection of the positive part. She added that since 

20,000 is closer to zero the reflection of it, -20,000, also would also be closer to zero. At this 

point the teacher noticed that several students could not visualize and make sense of Marsha‟s 

reflection analogy even when Marsha tried to draw a reflected line on the board. Therefore, the 

teacher decided to focus more on Charlie‟s idea: 

T: Charlie you had an idea that you were relating it to debt how much people are worth. Why this number 

is below this number. Can you say it again? Perhaps that might help Nathan, too. 

 

Charlie: Because negative 20,000 is being closer to out of debt than negative 22,000.  

 

T: Did you hear that?  

 

T: 20,000 is closer to being out of debt than 22,000. 

 

T: Anybody state it differently? 

 

Marsha: It is closer to zero. 

 

T: Without close to zero I think we got that idea out there. Talk about debts and negatives. 

 

Brad: The reason 22,000 should be farther down because she is further down the hole.  

 

T: Do you know what he is talking about? What do you mean by further down in the hole? 

 

Brad: Like you owe more money than the other person.  

 

                                                 
7
 The imagery of black-red number line will be explained in more detail in the next practice. For now, it is sufficient 

to assume that black represents the positive parts of the number line whereas red represents the negative.  
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T: So are you saying Brad the further down you are going in the hole [T makes a gesture by pointing down] 

the worse your debts get. What do you think about that idea?  

 

Nathan: I agree with that idea. 

 

During the discussion the teacher decided to go back to Charlie‟s idea to connect the numbers 

with assets and debts as Marsha‟s reflection idea seemed too sophisticated for some students as 

expressed by the teacher during the interview.  Another important reason for why she focused on 

Charlie‟s idea seemed to be her belief that students learn better with an instruction that relates to 

their informal knowledge (BL5), rather than an abstract idea. In other words, by using Charlie‟s 

explanation she folded back to the context.  

In the following discussion, she capitalized on Charlie‟s ideas by asking him if he could 

define why -20,000 is closer to zero than -22,000. He explained his reasoning by stating that       

-20,000 would be closer to the zero since it is closer to being out of debt. The teacher then asked 

how it could have been explained differently by using the assets and debts concepts. Brad stated 

that the person who has -22,000 would be much further in the hole, which means he would owe 

more than the person who has a net worth of -20,000. The teacher concluded the discussion by 

restating his reasoning in a clear language and continued with a similar question. 

Action 2: Encouraging efficient solutions 

During day sixth, the students were given activities that included finding a person‟s net 

worth and then applying the given transaction to the original net worth that they found. The net 

worth statement that the student worked on is shown in Figure 10. In solving this problem, most 

of the students continued to use their original strategy of adding up assets and debts and finding 

their difference. Stephan‟s primary goal in this first part of the activity was for the students to 

explore the idea of additive inverse (GC4).  Thus, she encouraged students to think of more 

efficient solutions. 
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               Figure 10: James's net worth statement 

T: Danny tell us your way. 

 

Danny: I just added all the positives and got $1695 that is total asset [T writes on the board]. I got 900 for 

total debts. And then I got $795 [the teacher writes on the board 1695-900=795]. 

 

T: Anybody have quicker way? If you have to add, how many things do you have to add together? [T 

shows the positive numbers in Figure 10]. 

 

Tisha: It is not harder. 

 

T: Okay, if you think that is quick, it is fine. Does anyone have a way that is quicker than that?  

 

Brad: Me.  

 

T: You have a quicker way?  

 

Brad: Here is +$200 and debt of $200 cross that off.  And then $650 and -$650, cross that off, too [T 

crosses through those numbers on the board]. And then I added 700 plus 145 and got $845 [T combines 

those two numbers with arrows and write $845].  

 

T: Where did you go next? 

 

Brad: Subtract 50 and got 795 [T writes 845-50=795] 

 

T: Which one is quicker to you?  

 

Sts: I like Brad‟s way. 
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In this discussion, Danny explained his solution by stating that first he added the positives to find 

the total assets and then he found the total debts and computed the difference to find the answer. 

When the teacher asked them if they could think of a more efficient way, Brad stated that his 

method was easier since he did not need to add all those numbers but crossed out ones that were 

the same but had opposite signs. To make the idea clear to the students, the teacher crossed the 

numbers that are inverses of each other as Brad described his solution. She then asked which 

way was quicker and most students agreed that Brad‟s way was a quicker and a better solution.  

Here, the teacher‟s practice of encouraging students to use efficient solutions helped 

students to see the advantage of the cancel out method which was a big idea of the lesson. 

Stephan‟s belief that the teacher is responsible for giving opportunities to students to discover 

efficient and different ways during the classroom discussion (BT9) seemed to be the driving 

factor in her practice. Her belief that students should be able to analyze the different methods in 

order to make sense of mathematics (BM4) might also have encouraged her to ask students which 

method was quicker.  

Action 3: Encouraging students to make conjectures 

On the ninth day, the teacher gave students an activity that included verbal descriptions 

of transactions and asked them to write if each transaction is stupid or smart. For example, one of 

the statements was “Christian: He took away an asset of (+$50) from his net worth statement”. 

Students could easily decide that this decision was bad since he took away an asset. Once the 

students decided whether the given transactions were good or bad decisions, the teacher 

introduced the symbolization that would be used in the rest of the unit such as taking away 

would be shown with a minus sign and debt would be shown with a negative sign. Then, the 

teacher asked students to write all the statements by using the symbols. For instance, the students 
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wrote the example given above as –(+50). The excerpt below is taken from the classroom where 

the students were discussing the problem of whether the situation “Donnie takes away a debt of 

$500” was good or bad. At this point Stuart came up with a conjecture on which the teacher 

capitalized: 

Stuart: I think we should make a class conjecture
8
 about this. If we have the signs both inside and outside 

the parenthesis that are the same then you are making money; if they are like negative sign and negative 

sign. 

 

T: I am not going to make this a class conjecture this is you talking, here. Stuart‟s conjecture [she writes on 

the board]. 

 

Sts: I came up with the same [students start to talk at the same time]. 

 

T: Wait, wait one person at a time. 

 

Stuart: If the negative sign is outside the parenthesis and inside the parenthesis you are making money. You 

are making money because you are taking away debt and it is the same if you have both positive signs 

inside and outside [The teacher writes on the board –(-), +(+), you are making money, smart].   

 

T: Do you want to finish, Stuart? Is it the only part of your conjecture? 

 

Stuart: If you have positive outside and negative inside it is not smart, it is stupid and you have a negative 

outside and positive inside, it is stupid too [The teacher writes on the board  +(-), -(+) stupid]. 

 

T: Do you think you can defend this conjecture? I am going to leave it up there right now and I know some 

of you may already have figured it out. And Stuart is just the first person to get it out. Do not let it bother 

you that you knew it already; my name is not going up there. So we are going to call it as Stuart‟s 

conjecture right now. At lunch time we are going to write it on the poster board put it under conjecture 

perhaps during lunch you can talk about it [this was a block period split by the lunch break].  

 

Stuart argued that he noticed a pattern and he also included his friends in the conjecture since he 

saw that many of them also noticed the same pattern. The teacher capitalized on Stuart‟s ideas 

and gave his name to the conjecture since he was the first one to say it out loud. Her belief that 

valuing students‟ ideas and explanations empowers them to participate in the classroom 

discussion (BT4) might have played an important role in naming the conjecture after Stuart and 

putting it up on the poster board. Stuart continued his conjecture by stating that if the signs are 

                                                 
8
 The teacher separated the wall at the back of the classroom as conjectures and theories. When students made a 

conjecture it was written under the conjectures section with the name of the student making the conjecture. It stayed 

there until it was proved, then it was moved to the theories section. 
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the same such as –(-) and +(+) the person is making money. He added that if they are different 

such as –(+) and +(-), it is a bad decision because you are taking away asset or adding debt. Thus 

the first two make the net worth go up and the last two make it go down. Next, the teacher 

encouraged students to prove it. Here it is important to note that since many students at that point 

noticed the pattern, the teacher reminded students not to get upset because their names were not 

written on the board. She encouraged them to be the one to tell the conjecture next time. The 

teacher‟s belief that an environment that nurtures a sense of community (BL7) plays an essential 

role in students‟ learning might have affected her to say to the students to not get upset because 

their names were not up there.  She emphasized that she wrote Stuart‟s name since he was the 

first one to say it out loud in the community even though many of them also discovered the same 

ideas. Following this, she told students that she would write the conjecture on the poster board 

and asked the students to prove it when they came back after the lunch. Two of the reasons for 

the teacher to leave the proof of the conjecture to the second part of the lesson might have been 

to give sufficient time to think (BT7) and to support her goal of not disrupting the flow of the 

activity (GC6).  

After the break, the students could easily prove it using the vertical number line. The 

teacher‟s practice of encouraging students to conjecture and prove their solutions supported 

students to think at a more sophisticated level and analyze the problems that were solved in the 

classroom. The teacher‟s belief that mathematics is a sense-making activity that includes making 

conjectures and proving arguments (BM2, BM5) might have motivated her to focus on Stuart‟s 

conjecture and cement his ideas on the board to help other students notice the same pattern.  
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Action 4: Encouraging students to express their reasoning and proof 

In the following class sessions, the teacher continued to provide more questions that 

included finding the new net worth after applying a transaction. In order to save time, the teacher 

listed six questions‟ answers (as found by students) on the board without individually discussing 

each. She then asked if there were any answers with which that they did not agree. One of the 

students, Nathan, stated that he had a question related to the fifth one where it asked for the new 

net worth with the original net worth being -$7400 and the transaction taking away an asset of 

$3000 (see Figure 11): 

 

          Figure 11: Dusty's number line 

Nathan: Number five. 

 

T: Thank you for saying that. I also saw different answers on number five, too. Can you do it? [Asks Dusty 

and he nods his head]. Dusty did many of them on the number line. Do you want me to put a number line 

for you? 

 

Dusty: [He draws the number line] The original net worth is negative $7400 and the asset $3000 is taken 

away, so you have to go down since it is taking away and you get $10,400 [he draws Figure 11]. 

 

T: Nathan is it enough for you to change your solution or do you have any question? 

 

Nathan: Aren‟t you subtracting 3000 from 7400? 

 

Sts: No you are adding. 

 

T: Why are you adding? Tisha can you explain? 

 

Tisha: Because you are adding more debt to your net worth.  
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T : You are adding more debt to your net worth. It says taking away assets, we are not adding any debts. 

 

Tisha: But since you said the net worth is already in debt and when you take away asset that makes your net 

worth go even more down [Tisha seems to have understood that taking away asset is the same as adding 

debt]. 

 

T:  What do you think about that? [T asks Nathan] 

 

Nathan: I agree, I thought it in a different way. 

 

T: If we put the number line on there you say ooh I understand. What I recommend to you is to use the 

number line. And that also goes for other people who struggle with it. Use number line to help you and it 

really helps defend the answer. So if you are up here and you say the answer is -2000, when people say 

“what are you talking about?” you might use the number line to defend it to just help people to see. 

 

The teacher‟s belief that she is responsible for sustaining an environment where ideas can be 

discussed freely (BT2) might have motivated her to show an appreciation to Nathan when he 

stated that he did not understand one of the questions. This way she might also have wanted to 

demonstrate to the other students that they can share their difficulties without being shy.  

The teacher‟s practice of encouraging students to give conceptual explanations when appropriate 

shaped the discussion above. At the end of the conversation, the teacher reminded the class that 

some students who had difficulty solving those problems could have used the number line to 

make it easier to see the effect of a transaction. Additionally, she suggested that students could 

use the number line to prove their solutions. Stephan‟s belief that students might learn differently 

(BL2) encouraged her to bring up the number line solution to the classroom discussion to help 

those who could not solve it without visual representation. One of the important reasons for the 

teacher‟s suggestion of using the tool might have stemmed from her knowledge that students 

perform better when they reason with the number line (KP11). Here it is important to note that in 

proving similar problems in the following sessions most students adopted this strategy - when a 

student went to the board to explain the solution, he or she used the number line to convince the 

other people and when that did not happen the community members asked him to show the 
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solution on the number line. Thus, using the number line to test conjectures and prove solutions 

of net worth problems became a sociomathematical norm as it became the accepted method of 

explanation by the classroom community. 

In the following days, students continued to solve the transaction problems and many 

times they used the number line in their proofs. The following excerpt is taken from the 

classroom discussion (day 10) during Norman‟s explanation of the question where the original 

net worth was -$5000 and the transaction was –(-$1750). His original solution is shown on the 

left and middle parts of Figure 12. 

 

Figure 12: Norman's solution    

T: What do you think about his number line symbolization? 

 

Sts: I agree with the answer but not the number line. 

 

T: Give him some advice. Dusty? You agree with the answer but not the symbolization? 

 

Dusty: You take away a debt of $1750, it should be the opposite way. 

 

Norman: [Erases his symbols. This time he just switches the places of -5000 and -1750]  

 

T: Is that right? 

 

Dusty: 1750 should not be on the line, put an up arrow from -5000 and then you put 1750 on the side way 

 

T: Then, where do you land? 
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Norman: [He writes -3250 on the number line as shown on the right of Figure 12] 

 

T: Let‟s make sure how we all know how to use the number line so that we all use the number line in the 

same way, right? We always start with the original net worth and then Dusty said what do you put on the 

arrow? 

 

Dusty: Transaction. 

 

T: You always put the transaction on the arrow. Dusty said do not put1750 on the number line. That is the 

transaction that is what happens to the person. You go up 1750 and where does it land? It is the new net 

worth. We are always going to do that in this way in the class so that we do not confuse each other.  

 

During the explanation of the problem, Norman first showed his computation and then inserted 

the numbers on the number line as shown in the middle of Figure 12. The teacher‟s belief that 

mathematics is a sense-making activity (BM1) and that students learn from their own mistakes 

(BL8) motivated her to ask students if they agreed with Norman‟s symbolization.  At this point 

many students stated that they agreed with his answer but not with the symbolization on the 

number line.  

Many students wanted to explain but the teacher asked Dusty to state why he did not 

agree since he was the first one to say it out loud. Since she also believed that students learn in 

an environment that nurtures community (BL7), she asked other students to give advice to him 

with using the number line. Dusty asked Norman to erase 1750 and put it on the arrow and write 

the final answer above of 5000. Actually, this was how the teacher and many students used the 

number line up to this point in their proofs. The teacher restated Dusty‟s explanation in order to 

emphasize the acceptable way of using the number line and to support the conceptual 

explanation of proofs in transaction problems. The teacher‟s practice of encouraging students to 

use the number line in a correct and acceptable way led to the establishment of a 

sociomathematical norm. Her goal of establishing sociomathematical norms as necessary during 

the instruction (GO1) allowed her to discuss the acceptable ways of using the number line by the 
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classroom community. The teacher‟s behaviors showed that she views reasoning as an integral 

part of mathematics as it was emphasized in the process standards in Principles and Standards 

(NCTM, 2000). Her extensive knowledge of content as well as tools also allowed her to pursue 

the views that are highlighted in the standards (KS1, KP7).   

In the following days the teacher gave students bare number problems that included 

missing terms. The goal of the episode given below was to help students to understand missing 

addend tasks (GC7). The excerpt is taken from the whole class discussion for the problem 

 -7000 -  = -5000. While some students argued that the answer was -2000, some others stated 

that it should be 2000: 

 

               Figure 13: Gage's number line 

Gage: The reason I thought it is +$2000 is because this person right here has -$7000 and his friends have 

$5000 debt. So this person [shows -7000] owes more than that person has. So in order for him to get as 

much as this person‟s net worth he had to pay 2000 already. So if he has - $7000 and he pays $2000 to 

others than he will get worse than his friend [shows -5000] 

 

Brad: Do it on the number line [Gage shows on the number line as in Figure 13]. 

 

T: Yes, it is helpful to see things, isn‟t it? 

 

T: What I want all to do is analyze what he has written, analyze his thinking and see if you agree with him. 

Make sure I have got this right. You said you are starting with a debt of $7000. You have to get up to             

-$5000 that is how much the friend owes he says, so to do that you add an asset of $2000[T shows this on 

Gage‟s number line]. Is that your argument? You are adding an asset of $2000 [writes + (+2000) on the 

number line].  
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At this point Stuart stated that he wants to point out something on the board and the teacher 

encouraged him to do so: 

 

     Figure 14: Teacher's symbolization on the number line 

Stuart: I just thought this [the box] is like parenthesis 

 

T: The box you mean? 

 

Stuart: Yes, and we are trying to do – (+2000) and it is almost I would say you are taking away an asset 

thus it will get you down to -9000 [he shows this on the number line, see      Figure 14].  

 

Seth: Stuart is true. 

 

Gage: Wouldn‟t it be 11,000 if the answer is 5000? 

 

T: No, he is saying you started here Gage [shows -7000] but you are actually taking away an asset of $2000 

 

Stuart: You guys do not look at the part here [he shows the – sign in the middle] 

 

T: Do you understand the difference?  Let me make sure I can say it right, Stuart. You said this is a take 

away sign and that is fixed so you cannot change that. The only option you have is to change is what is in 

the box. Has Gage got rid of that sign? [Students say “yes”] He turned it into positive, didn‟t he?  You 

turned it to add. You took away my minus sign and turned it into an add sign. I want to see what you have 

to take away from that [-7000] to get to -5000. Do you think you should take away asset of $2000? Will it 

get to there? Stuart said no. What do you think? Do you change it? Let me make sure you got the idea [she 

draws      Figure 14] I think we are evenly split, some of you thought it will be taking away asset of $2000, 

and some of you thought it will be taking away debt of $2000. Let‟s figure out which one is it? Which one 

is the smart decision? Taking away asset of $2000 and think parenthesis as the box [she writes – (+2000)] 

or taking away debt of $2000[she writes –(-2000)]. We cannot change this take away sign because it is not 

in the box that is what Stuart said right?  All we can change it what is inside the box. And there are two 

choices either asset or debt? Gage which one are you with right now? 

 

Gage: Debt. 

 

The discussion started with Gage‟s argument that the answer should be +2000 since the person 

who had -$7000 was already more in debt and to match the other person who had -$5000 he had 
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to add $2000 more. As he explained verbally at the beginning, some students had difficulty 

understanding his ideas. As it was a previously established sociomathematical norm, they asked 

him to prove it on the number line. The teacher also supported students‟ ideas and emphasized 

that it might be helpful for most of the people to see his solution visually. Once he drew his 

number line, the teacher asked students to analyze it and explain whether it is an acceptable 

solution. At this point, Stuart stated that Gage did not notice the operation sign in the middle and 

therefore +$2000 would not be the correct answer. Although some students noticed why the 

positive answer was not correct, the teacher wanted to make sure that everyone understood 

Stuart‟s argument. Thus, she restated Stuart‟s language clearly and at the same time provided a 

visual representation for both solutions on the board to help students see why +$2000 did not 

make sense while -$2000 did. The teacher‟s practice of clarifying the acceptable solutions and 

encouraging students to give conceptual explanations was essential in establishing the 

sociomathematical norms of paying attention to the operation sign before finding the unknown 

number inside the box. After the teacher‟s clarification, many students agreed that they should be 

careful about the given operations and what they change and what is fixed when they work on 

these types of problems.  

 Since the students were given missing addend number sentences for the first time in this 

episode, some of them had difficulty finding the correct answer. One of the reasons was that 

students ignored the operation sign in the middle. When Stuart pointed this out, the teacher 

capitalized on it in order to help students to see why Gage‟s solution was not acceptable. The 

teacher emphasized Stuart‟s argument of “changing the operation sign in the middle is not 

allowed, you can only change what is in the box”. The teacher‟s knowledge of students‟ 
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misconceptions (KP2) about ignoring the operation sign might have had an important effect on 

her decision to focus on the acceptable solution. 

Action 5: Encouraging different solutions 

As the sequence moved forward, students were given activities (day 13) that asked for 

writing the same transaction in different ways. During these activities, the teacher employed the 

practice of emphasizing efficient and alternative solutions. The excerpt below was taken from the 

classroom discussion where the teacher asked the students to find the possible answers for 

Fantasia‟s missing transaction that represents a coffee spill (see Figure 15). First, the teacher 

asked the students the easier ones (an answer that includes only one transaction) and one of the 

students stated that the transaction was +(+$2000): 

 

                     Figure 15: Coffee Spill Problem 

T: What is the other easy one?  

 

 Charlie: That is not easy but… 

 

T: Hold on then.  

 

Dusty: Minusing debt of 2000 [T writes –(-2000)] 
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T: Anybody else got that one on the paper?  Do you agree with this one Brad or did you just put it because 

Dusty said?  

 

Brad: I agree. 

 

Charlie: I do not agree. 

 

T: You do not agree? Okay, talk about it Charlie.  

 

Charlie: Because you are minusing…never mind I agree.  

 

T: You do. You just changed your mind. Why do you agree now? 

 

Charlie: Minusing debt is like she owed $2000 and then she did not have to pay it so she went up. 

 

T: So it will be a good thing. Like we did in our stupid and smart decision thing it would be a good decision 

so you go up $2000.  

 

As it can be seen from the excerpt, the teacher first asked students to find out the easier (quicker, 

or more efficient) ways that were discussed in the previous sessions. By asking the students to 

start with the more efficient solutions, the teacher reminded them of the sociomathematical norm 

that transactions that include one component (i.e. +(+2000) or –(-2000)) are quicker. After Dusty 

stated that –(-2000) would also be a quick solution, the teacher asked students whether it was on 

their paper and also whether they agreed or disagreed. At this point Charlie stated he did not 

agree without analyzing the answer. When the teacher asked him to explain his reasoning, he 

changed his mind. The teacher this time asked him the reason for changing his mind. Charlie 

explained it by using the context where he stated that the net worth would go up since her debt 

was taken away. It is important to note that explaining one‟s reasoning using take away, add, 

assets and debt was already established as an acceptable way of reasoning by the classroom 

community. By capitalizing on his words the teacher folded back to the good and bad decisions 

and rephrased Charlie‟s explanation. 

 As the discussion continued, students also came up with the answers that included two 

transactions such as –(+3000) + (+5000). For each different answer, the teacher asked the 
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students to analyze the transaction on the board and state their reasoning for whether they agreed 

or not. During the explanations of their ideas students used the context, the number line, and 

previously proven conjectures such as –(-) and +(+) are good decisions. After the teacher brought 

up different transactions in the classroom discussion and received students‟ ideas about them, she 

introduced an alternative way that was suggested in her previous period:   

T: Let me share with you what one student in our last class period did. It is very similar to Cody‟s. Start off 

with 10,000 and added plus 500 plus another 500… [she writes on the board 10,000 + (+500) + (+500) + 

(+500) + (+500)]. Is that possible for Fantasia?  

 

Sts: Yes. 

 

T: It equals to 12,000. It is doable isn‟t it? He just thought about breaking 2000 as 500, 500, … Let me 

show you the cool way of writing this, instead of writing 500, 500... I do not want to do it every time [she 

writes on the board 10,000 + 4(+500)]. What do you think that means?  

 

Sts: Four five hundreds. 

 

T: Four $500 asset are being added. All right? Do you see that? This is going to be a short cut. $10,000 net 

worth and you add four sets of $500 asset, and then you will get $12,000 at the end. If you ever see 

something like that with the multiplication, you‟ll know that is how many sets of asset or debts that you are 

doing in the transaction.  

 

Once the students came up with the different answers the teacher introduced a solution from the 

previous period to share a sophisticated way of writing the same expression. As it can be seen in 

the excerpt above, she introduced a different symbolization and supported how students might 

make sense of it. The teacher‟s encouragement of using sophisticated solutions motivated 

students to use multiplication in writing the transaction in different ways in the following 

classrooms. Since some students were not very comfortable with the expressions that include 

multiplication, each time a student brought up a solution that involving multiplication the teacher 

asked students to explain what it means.  

In the episode above the teacher‟s goal was to focus on the activities that aim to 

investigate equivalent transactions (GC6). During the first part of the discussion, the teacher‟s 

belief that students should know what counts as efficient and different solutions (BM6) was 
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highly activated. Thus, the teacher encouraged the students first to look for the efficient solutions 

and then the different ones. Additionally, her belief that the teacher should remind students of the 

socimathematical norms (GO1) might have played a role in her folding back to the reasoning that 

students used in the good and bad decision activity for acceptable solutions. The reason for the 

teacher to bring up a sophisticated solution that includes multiplication might have resulted from 

her belief that the teacher is responsible for introducing the different and efficient methods if 

students cannot come up with them (BT9). Another reason might be her local goal of bringing a 

student‟s idea from the previous period (GL1), since she might have thought that the idea could 

be useful for other students as well. 

Action 6: Encouraging sophisticated solutions 

Next, students were given the problem,  + (-5000) = +5000. Although many students 

argued that the answer was 10,000, Brad argued that the answer should be zero. At that point the 

teacher asked Marsha if she could show her solution on the board using the number line (see 

Figure 16) 

 

 
Figure 16: Teacher's symbolization during restatement 

Marsha: I will show it on the number line [She put 10,000 on the number line. Made a downward arrow 

and wrote +(-5000) to land at 5000]. So I added negative 5000 and then got 5000. 
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T: Thank you. Is that enough? Can you see why he [referring to Brad] might say zero? 

 

Sts: Yes. 

 

T: I can see why he might say zero. Here is the question I have for you guys.  Marsha did not know where 

she starts, because that is the blank.  How did you guys get 10,000? She proved 10,000 is the answer but 

that is only if you knew that. How did you get it? Mark?  

 

Mark: I did up like backwards, I started from the answer 5000 

 

T: You started plus 5000 because that was the new net worth [she shows on the number line].  

 

Mark: I knew that I had to work backwards so I did 5000 as my original net worth and I changed the sign in 

minus 5000 and made it plus, I just like added 5000 to the other 5000 and I got10,000. 

 

T: He knows that this transaction does not make him to go up, does he? He is saying I have to work 

backwards. He knew he had to be higher so he says what number started with get me going down 5000 to 

that number. So he says he worked backwards on that. 5000 plus 5000 has to start with 10,000. And then 

you can double check yourself right? 10,000 add a debt of 5000, yes it is 5000 the new net worth. Do you 

understand that working backwards thing? He said I started here, and I know I had to start top because it is 

a bad transaction it is going to bring me down so to find the original he said he worked backwards, he 

added to get up there.  

 

During the discussion Marsha proved that the answer is 10,000 rather than zero on the number 

line. This helped Brad to see that his solution was incorrect. The teacher and other students also 

stated that they understand why Brad might have said zero. At this point the teacher stated that 

although Marsha proved 10,000 is correct, she did not show how she found 10,000 in the first 

place. Thus, she asked how would a person, who did not know the answer was 10,000 find the 

answer. Stephan‟s beliefs related to mathematics that not all mathematical solutions are equal 

(BM6) seemed to have shaped her to ask students if they could find the answer in another way. 

This way, she encouraged students to think about a more sophisticated solution instead of the 

guess-and-check method. Mark then explained his method of working backwards, which was 

restated by the teacher in clear language.  

Her belief related to teaching that the teacher is responsible to provide opportunities to 

students to see sophisticated ways of solving problems during the classroom discussion (BT9) 

seemed to have affected her decisions. This belief also activated the goal of clarifying the ideas 
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by restating Mark‟s solution since sometimes students had difficulty expressing their ideas and 

thus the other students might not understand the mathematical ideas stated by their classmates 

(GO7). 

Close to the end of the instructional sequence (day 17), the teacher provided students 

problems that included only one sign. The following excerpt was taken from a discussion of the 

problem -7 – 9 = ?: 

Anthony: There is a positive sign in front of 9, isn‟t there? [Before Anthony‟s question some students state 

there is no parenthesis] 

 

T: Some of you say there is no parenthesis here and there is no sign whether it is asset or debt. 

 

Brad: I did not know what it was. 

 

T: You did not know what it was. A bunch of people in the second period did not know what it was either. 

Remember yesterday we worked so hard on the problems like this, you take away asset of 9 [she writes      

–(+9)] what is another way of rewriting this? 

 
Sts: Minus 9 [she writes -9] 

 

T: Can you write it like that (-9)?  

 

Tisha: Yes, but it would be negative 9.  

 

T: Whatever word you want to use, can you rewrite these two? Do they mean the same thing?  

 

Sts: Yes 

 

T: That is what we worked on yesterday. Anthony says you can put parenthesis in and he said it is kind of 

like -7 - (+9), as in taking away asset of 9. Did I get you right Anthony? 

 

Anthony: Yes. 

 

T: All right if you do not see the parenthesis, feel free to put them in. Or if you recognize it as taking away 

9 is the same thing as taking away an asset of 9, it is okay too. Many of you did not have trouble with these 

questions as I thought. 

 

During the discussion the teacher capitalized on one of the student‟s sophisticated solutions 

related with the symbolization, which might also help other students with solutions to integer 

problems that include only one sign. Thus, she asked students what would be another way to 

rewrite –(+9) and students recognized it as -9 without much difficulty. The teacher reminded 
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students that they could put the parenthesis and add another sign if they felt more comfortable 

with that representation. The teacher‟s goal in this activity was to help students to be comfortable 

with the problems that include only one sign (GC7). Since she knew that students would run into 

those types of problems in the following classes as well as in the textbooks, she wanted to 

emphasize the equivalence of those expressions.  

 In summary, the practice of supporting the development of sociomathematical norms 

included encouraging students to give conceptual explanations; seek efficient, different and 

sophisticated solutions; make conjectures; and express their reasoning. During this practice the 

teacher‟s content knowledge as well as her pedagogical knowledge, in particular the knowledge 

of students‟ misconceptions and current students were essential. This body of knowledge 

allowed her to establish what counts as mathematically acceptable, different, and sophisticated 

solutions. Her beliefs related with mathematics particularly that mathematics is a sense making 

activity and making conjectures is important to understand mathematical ideas seemed to have 

played an important role in this practice. Additionally, her content goals such as ensuring that 

students understand net worth as an abstract quantity and overarching goals such as renegotiating 

sociomathematical norms as necessary during the instruction were highly activated in this 

practice. 

Practice Four: Capitalizing on Students’ Imagery to Create Inscriptions and Notation 

The reform movement supports that all students should be given opportunity to learn 

mathematics meaningfully (NCTM, 2000). Students need to see mathematics as an authentic 

activity where they take active roles in making conjectures and responding to others‟ ideas. 

Imagery helps students give meaning to mathematical activities, which adds richness to their 

mathematical reasoning and understanding.  Imagery can encompass various forms such as 
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personal images, background images, notational images, and situation specific images 

(Thompson, 1996). In this study the teacher‟s role in supporting students‟ development of both 

situation-specific and notational imagery were investigated. While the former refers to mental 

representations conjured up in a person‟s mind within a given situation or context, the latter 

refers to what a person perceives from the given tools. 

The context constitutes a setting where students can ground their mathematical activity to 

develop situation-specific imagery (McClain & Cobb, 1998). Tools, on the other hand, serve as a 

resource that students can use to construct and communicate their mathematical reasoning and 

develop notational imagery (Confrey, 1990). Imagery helps students ground their mathematical 

activity with meaningful “anchors” that serve as the basis for more sophisticated, abstract 

mathematical reasoning. Focusing on students‟ imagery can create opportunities for class 

discussion in which students can develop meaningful solution procedures, which are likely to be 

remembered and productively used by them in future activities.  

Action 1: Building the sequence on a context that students can imagine 

 In the beginning of the sequence, the teacher asked students to determine a famous 

person‟s properties that she may own and owe. During the classroom discussion, students 

guessed different things that she may own such as houses, boats, and loans as well the things that 

she may owe such as car loans, credit cards, and mortgages. The teacher intentionally listed the 

things related with the assets on the left side of the board and the things related with the debts on 

the right side of the board. Next, she asked students if anyone knew the mathematical terms for 

each list. Since Danny used the word debt during the discussion, the teacher capitalized on it and 

stated the title of the list as Danny‟s title “debts” and then asked students if anyone in the 

classroom had any debts. After the students talked about debts and related it to their own 
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experiences, this time the teacher introduced the word asset by stating that “You probably do not 

know the title for this column but you might have heard it, it is actually called assets” and added 

that they would learn a little bit about finance in this unit.  In order to engage students in 

personally meaningful activities, the teacher asked them to describe their own assets and debts.  

Next, the teacher asked students the meaning of net worth and whether they could 

describe it in terms of assets and debts. The aim of starting the unit with a situation where 

students could imagine assets, debts, and the effect of them on net worth was to develop a 

situation-specific imagery. Her belief that students learn better with instruction that relates to 

their informal knowledge (BL5) seemed to encourage the teacher to create an instructional 

sequence based on a familiar financial context. Rather than introducing the ideas as ready-made 

she tried to support students to develop the ideas gradually from concrete to abstract. This also 

gave her the opportunity to fold back to those ideas in order to support more complex ones. 

Thus, starting a task with an experientially-real context and moving gradually to more abstract 

ideas was an important practice of the teacher. Here it is important to note that experientially real 

does not mean that students have to experience the event but they should be able to imagine the 

given scenario told by the teacher (Gravemeijer, Bowers, & Stephan, 2003).  

Once the students became familiar with the words assets and debts, the teacher provided 

an activity that included a net worth statement. During the introduction of this activity, she told 

the students that her accountant asked her to fill out the net worth statement (an example is 

shown in Figure 17) in order to help her to show how to save enough money for her son‟s 

college payment.  
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Figure 17: Net worth statement 

Students reviewed the statement and found the words that were familiar and unfamiliar to them. 

The goal of this activity was to make students familiar with words such as loans, stocks, and 

mortgage and to develop the idea that net worth is an intangible quantity (GC3) - not the money 

that a person has in his or her pocket. She introduced the task as follows:  

T: Maybe you can figure it out in your own time. Let me tell you the story, four years ago I found that I 

was pregnant with my son and I freaked out. You know why I freaked out? Because I thought, all right I am 

going to have this baby. 18 years from now, what I am thinking with 18 years? 

 

Sts: College. 

 

T: You guys have any family members in college; you know how expensive it is. By the time you get 18 it 

is gonna be at least twice what it is now probably or more than that. So I freaked out about how I am going 

to pay for his college money in 18 years. 

 

Adam: Scholarship. 

 

T: So what I did Adam, I hope he can get scholarship but if it is not I don‟t want to go in debt myself. So 

Seth what I did was I went to a financial advisor. Do you know what that is Norman? 

 

Norman: Someone that gives you advice for money.  

 

T: Something like that. He advises on guess what? 

 

Sts: Your finances. 
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T: I asked him to help me. How in the world will I pay for this kid in 18 years for his college. It is what he 

said. He sent me on this[see Figure 17]by email called net worth statement, you see the client name so I put 

my name and he said to fill this out so that you can find out what your net worth is. He needed a starting 

place to be able to advise me and he said he needs to know what I have and what I owe. So he sent me this 

and asked me to fill it out. I am going to give you a copy of it and I want you to go through this net worth 

statement. Do not fill it out because you probably do not have a lot of these things but I want you to look 

through this and pick out the words that you do not know what it means. Let‟s take one minute to do it 

quietly. Put a little star to the words that you do not know. Put your name on it, you can be a client. Do not 

fill out the money part just look at the words that you do not know [students take few minutes to mark the 

words that they do not know].  

 

T: Okay. Were there any words that you guys did not know in the statement?  

 

As it can be seen from the excerpt, the teacher introduced the net worth statement by connecting 

it with real life where she stated it was the document that was given to her by the financial 

advisor. In order to familiarize the students with the words on the list she discussed the ones that 

they do not know the meanings to in the classroom. This activity was the underpinning of the 

instructional sequence where the students could develop situation-specific imagery where assets 

and debts are quantities that affect net worth in opposite directions (GC1). By providing this 

activity she helped students to develop meaning for the words assets and debts so she could draw 

back to those images to support subsequent activities. This way, she started to support the 

development of meaningful imagery (GO5). In the following class sessions students folded back 

to this activity to make sense of the given numbers. The teacher‟s knowledge of the mathematics 

education literature, in particular the RME instructional design, and her content knowledge had 

an essential role in creating a sequence based on the idea of a familiar financial context (KP9, 

KS1). 

Action 2: Modeling students’ informal thinking 

In the following days (beginning with day 3) students continued to solve problems related 

to net worth. At this point when students brought up the idea of pay off, the teacher capitalized 

on it and modeled students‟ thinking with the vertical number line: 
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T: Brad, can you tell them, what happens? 

 

Brad: He actually has assets but his debts overwhelmed his assets. 

 

T: Nathan, say it again what Brad just said? 

 

Nathan: When he pays off his debts from his assets that is how much he has left. 

 

T: All right. What is his pay off amount? How much is the pay off?  

 

Sts: 8400. 

 

T: 8400?  If he pays that off, he is… 

 

Sts: In the negative 400.  

 

Nathan: He still has to pay. 

 

T: So he still has to pay, all right. Do you know Sienna in my second class? She said this in really cool 

ways. If he had $8000 [the teacher writes it on the board], she kind of modeled it on the up and down 

vertical number line. If he has $8000 and pays it off as much as he can, what would it take him to (See 

Figure 18)?  

 

Dusty: Zero. 

 

T: What do you think about it Betty? [She agrees] Tisha, you do not agree with that? 

 

Tisha: No, I do.  

 

T: What are you agreeing with? 

 

Tisha: That is when he pays it off, he will go down to zero [the teacher writes zero on the number line]. 

 

T: If he paid it off, he would go down to zero. Can he pay off all his debt? [Students say “no”] She said no. 

What is left? [T shows arrows 8000 to 0 on the vertical number line] 

 

Seth: Negative 400. 

 

T: So she said negative 400. She called this a pay off [the teacher writes “pay off” next to 8000]. That will 

take him $8000 to pay off and then he is still in debt, right? 
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Figure 18: Demonstration of pay off idea on the vertical number line 

During the argumentation, the students claimed that the person could use his assets to pay off his 

debts. But they also recognized that he had more debts than assets so he could not pay off all his 

debts. To emphasize the pay off idea, the teacher asked how much he could actually pay off. 

Nathan responded that he could pay off $8000 if he used all his assets, which would leave him 

$400 in debt. Next, the teacher stated that one of her students from the last period modeled this 

pay off idea with the vertical number line. She asked students that if he pays off 8000 where 

would this take him. Students said that it would take him to zero and the teacher provided a 

visual representation for it on the number line with the down arrow. Then, she asked if he could 

pay off all his debt when he paid $8000. Seth stated that it would leave negative $400. The 

teacher showed the money that was left over by going down to -400 on the number line.  

As it was seen above, in this episode the teacher introduced the notational imagery, 

which was the vertical number line (and arrows) in this case to make students‟ thinking visible. 

However, it is important to note that the teacher did not introduce the number line as ready-made 

but introduced it in a way that captured students‟ ideas and reasoning. She knew that the number 

line would connect with students‟ reasoning because Sienna, a student in another 7
th

 grade class, 

created it. Introducing tools based on and to facilitate students‟ reasoning was an important part 
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of the teacher‟s practice. This allowed students to better understand why that tool was needed 

and how it could be used to develop and communicate their ideas. Stephan‟s overarching goal 

that the teacher supports students‟ ideas with tools when they have the reasoning that can be 

modeled easily with that tool (GO6) shaped the discussion above. Once the students started to 

explain the pay off concept the teacher decided to bring another student‟s solution into the 

classroom (GL1). This way, she could model students‟ thinking on the board, which helped many 

students to understand the ideas that were presented by their friends. The practice of capturing 

students‟ ideas with a model was effective during the instruction since it facilitated the 

communication of students with each other as well as the teacher.  

Using the vertical number line helped students make sense of computations. Especially at 

the beginning of the instructional sequence many students tried to find the answers by always 

subtracting the lesser number from the greater one, and using the sign of the greater number. By 

capitalizing on students‟ imagery of paying off and left over, the vertical number line became an 

inscriptional device that made students‟ imagery visible. In the example above, the teacher 

capitalized on the idea that the students subtracted one number from the other because they 

wanted to know what was left over after paying off their debts. For example in this problem he 

had to pay $8400 but he only had $8000. Thus after paying $8000 he went down to zero and he 

was left with $400 in debt. Thus, the pay off image made visible by the number line also 

supported students‟ understanding of why and when to subtract. Helping students to make sense 

of their computations by using imagery of paying off was an important part of the teacher‟s 

practice. Her knowledge about the literature (KP7) that the tools are useful when they are used to 

support students‟ reasoning had an essential role in deciding when to introduce the vertical 

number line. In these activities the number line served as a tool to help students visualize the 
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positive and negative net worths. Using the number line as a computational device was later 

introduced in the transaction activities. 

Action 3: Introducing a tool as a supportive reasoning device 

In the following lesson, the teacher gave an activity that supported students‟ notational 

imagery but with different reasoning. The aim of the teacher in these activities was to help 

students compare two different net worths and find the difference between them. For this reason, 

the teacher introduced a black and red number line where the positive parts of the number line 

were shown in black and the negative parts were shown in red. Defining a new number line in 

this way built on the financial context as well as on students‟ reasoning; the teacher also 

connected this idea with the financial concept of “being in the black” and “being in the red” as 

shown in the following excerpt (see Figure 19): 

          

Figure 19: Red and black number line 

T: Has anyone heard the names in the black or red? Have you ever heard it?  

 

Charlie: I heard in the red before. 

 

T: Do you know what it means? 

 

Flora: In the black something to do with assets and in the red something to do with debts. 

 

T: Dusty what do you want to say? 

 

Dusty: In the black you get stuff and in the red you lose stuff. 
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T: Something like that. I think we all know that black has something to do with assets and red has 

something to do with debts. So honestly I am not making this up when accountants say a person‟s net worth 

is above zero that means they are in the black and when a person‟s net worth drops below zero, they are in 

the red. Where do you want to be, if you are that person?  

 

Here, the teacher first asked if the students knew what it means to be in the black and to be in the 

red. Some students conjectured that being in the black is associated with having assets and being 

in the red is associated with having debts. The teacher capitalized on these thoughts and 

supported students in developing both the situation specific imagery of being in the red and black 

and a notational image where black and red colors are associated with positive and negative parts 

of the vertical number line. 

The teacher‟s goal in introducing the black and red number line (GC5) was to support the 

students‟ notational imagery where they could make sense of ordering the net worths as well as 

finding the difference between them. Here it is important to note that the same vertical number 

line where the teacher captured students‟ ideas related to the pay off idea served to support 

reasoning related with ordering the numbers and finding the difference between them. Thus, 

although the tool remained the same, the reasoning with the tool shifted. The teacher introduced 

a black and red number line where the positive parts of the number line were shown in black and 

the negative parts were shown in red. To build on the context, she also connected this idea with 

the financial concept of “being in the black” and “being in the red”. Her goal that the teacher 

should support tools that will help students visualize their reasoning (GO6) motivated her to 

create this activity. Additionally, the teacher‟s knowledge about students‟ difficulties in 

understanding zero and negative numbers might have encouraged her to introduce the black and 

red number line (KP2). Another important point is that this activity was not a part of the 

instructional design at the beginning of the instruction. The teacher felt it necessary to support 
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students‟ reasoning in ordering numbers on the number line as it was discussed in Chapter 5 

under the “revision” practice. 

Action 4: Discussing correct and incorrect uses of a tool 

During the solution to the problem above (see Figure 19) the students came up with 

different strategies. The teacher collected students‟ solutions at the end of the class and planned 

to discuss some of them on the following day. During the selection of the solutions, she focused 

on the ones that include common misconceptions and different correct approaches. Figure 20, 

shows some of the students‟ solutions: 

 

Figure 20: Students' solutions 

After projecting different solutions on the board, the teacher asked students to analyze 

each solution and explain whether they thought it made sense. The teacher‟s belief that 

mathematics is a sense-making activity that involves analyzing solutions (BM4) might have 

motivated her to project the different answers so students could compare and contrast those 

solutions. During the discussion, some students claimed that the answer should be 1000 by 
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subtracting 2000 from 3000. However, some other students challenged this solution and argued 

that the correct answer was 5000 since they first had to go up by 2000 to reach zero and then go 

up another 3000. Another student found the answer as -5000 by first going down from 3000 to 

zero and from zero to -2000. The teacher accepted both of the latter two solutions as legitimate 

since her intent was for the students to structure the gap between the two net worths 

quantitatively, not based on the actual sign of the result. Here, the number line served as a tool 

for the students to see the gap between two given numbers; going up or down was not the focal 

point at this point in the sequence. After projecting the solutions on the board the teacher asked 

students to state if they agreed or disagreed with each one. The reason for including not only the 

correct solutions but also the erroneous solutions seemed to have stemmed from her belief that 

students can learn from their mistakes (BL8). The action of the teacher that is discussing both 

right and wrong solutions helped students to notice their mistakes and why they did not make 

sense.  

Additionally, the teacher‟s action of illustrating different correct answers could be 

explained by her belief of valuing students‟ ideas (BT4) and her goal of supporting the previously 

established practice of exploring multiple solutions (GO1). She not only showed Dusty‟s 

solution, but also Sally‟s solution as well since they both could be accepted as correct solutions 

depending on who they took as reference. At this point students‟ reasoning with notational 

imagery was based on defining the gap between two net worths. The teacher‟s role in supporting 

discussions of uses of a tool was essential in students‟ development of useful imagery. The class 

discussion seemed to help many students to make sense of the answer of the problem as well as 

the ways that would help them to solve the problems by using the number line. 
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Action 5: Encouraging students to draw on previous images 

In the following class sessions (beginning with day 5), the teacher continued to support 

the use of notational imagery with the problems where she gave the black and red vertical 

number line and asked students to order the numbers on it. The excerpt below was taken from the 

discussion of ordering two negative net worths, one of them was -$20,000 while the other one 

was -$22,000. Since some students had difficulty ordering those numbers correctly, the teacher 

encouraged students to remember their previous images: 

T: Have you guys ever heard about an expression climbing your way out of debt?  

 

Sts: Yes [some of them say “no”]. 

 

T: If you have heard that expression, why do they say you are climbing your way out of debt?  Alice why 

do they say that?  

 

Alice: Mmmm. I don‟t know. 

 

T: What about Sally, do you have an idea?  

 

Sally: Like you are climbing higher and higher. 

 

T: Yes, if you are climbing usually you go higher and higher and you are getting out of the hole. I like the 

idea of hole down there. Charlie? 

 

Charlie: It is like you are digging yourself into a hole. 

 

T: You heard that before, digging yourself into the hole? That is the idea. The more you charged on the 

credit card, the deeper you are going in debt - digging yourself into a deeper hole [she makes a gesture of 

pointing down]. You get worse in debt.  

 

The teacher initiated the discussion by asking students if they had heard of the expression 

“climbing your way out of debt”. The goal of the teacher during this discussion was to support 

the development of situation-specific imagery (GO5) in order to make sense of the order of 

negative numbers. Sally stated that it is like climbing higher and higher and the teacher 

emphasized her words and said it is like climbing higher as in trying to get out of a hole.  At this 

point Charlie stated that if one‟s debt increases, it can be considered as digging oneself into a 
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hole. Finally, the teacher focused on his ideas with an example such as if they get charged more 

on the credit card, they go more into debt and it would be like digging themselves a deeper hole.  

 Stephan included the number line in the activity and connected it with the context (assets 

and debts) to fold back to students‟ previous imagery. Supporting development of students‟ 

imagery helped them make sense of why negative numbers that have greater absolute value are 

under the others that have lesser absolute values. The teacher related this to the more debt they 

have, the deeper the hole they go into. The teacher‟s belief that students should make sense of 

mathematics (BM1) might have been influential in creating this activity to connect the notational 

imagery with the situation-specific imagery. Here it is important to note that the teacher‟s 

knowledge related to students‟ misconception in ordering the numbers (KP2), especially negative 

numbers, motivated her to talk about these kinds of activities in the teacher meetings and make 

them part of the instructional sequence.   

As the instructional sequence moved forward, the teacher continued to draw back to 

students‟ previous images in the given tasks. One of the tasks that the teacher gave students was 

related to the effect of actions on the net worth (e.g., taking away debt is a good thing). Students 

used this later when making sense of integer operations. The teacher‟s goal of the episode below 

was to support students to find the effect of transactions on the net worth (GC6). Thus the activity 

included the action words such as taking away and adding besides asset and debt with which the 

students were already familiar. The following excerpt shows how the teacher introduced the 

activity to support the imagery:  

T: Ann here, she says [in the activity] that she took away an asset of $200 from her net worth statement 

[see Appendix C “Smart or Stupid Decision”]. Do not say the answer. But do you think Ann‟s decision is a 

smart decision or a stupid decision? That is what I want you to write down. What is her decision, stupid or 

smart?   

 

Charlie: This is easy. 
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T: Is Bradley‟s decision stupid or smart? [She shows the rest of the decisions in the activity] I want you to 

write it down for all and check with your partner. Take just two minutes. Charlie said it is too easy I can do 

it in one minute? 

 

Charlie: One second [T goes around the class]. 

 

T: How many smart decisions did you get? [Whole classroom discussion] 

 

Sts: Two. 

 

T: Anybody get more or less than two smart? Who were the smartest?  

 

Sts: Ernie and Bradley. 

 

T: I have a lot of students in the past that said stupid decision for Ernie. Do you know why? [Ernie: He took 

away a debt of (-$5400) from his net worth statement]. 

 

Dusty: Because it says debt. 

 

T: Yes it is debt and automatically people think debt is a stupid decision.  

 

Sts: I put smart. 

 

T: That is good. If you just look at the fact that it is a debt you might say that it is stupid, what makes it a 

smart decision? 

 

Danny: Taking away debt. 

 

After the teacher introduced the task, she asked students if they could find whether transactions 

in the given activity were good or bad. In order to make the problem clear Stephan elaborated the 

first one and asked students to write the effect of each transaction next to the given verbal 

statement. She encouraged students to fold back to the concept of assets and debts and decide 

whether it was a good or bad decision to add or take them away. Since the students already had 

the image of assets increasing the net worth, while the debts decrease it, they were able to find 

the effects of the actions easily. She continued to support situation-specific imagery where this 

time students could imagine the effects of transactions, since her goal was to develop meaningful 

imagery (GO5). 

Then, she gave the students a few minutes to work on the statements. At this point many 

students stated that it was an easy activity. Once the students finished all of them the teacher 
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started from Ernie‟s decision since in the previous years some students thought that his decision 

was bad when they saw the word debt. However, many students in the class stated that it was a 

good decision because it represented taking away a debt. During the introduction of the activity 

the teacher used words “stupid and smart”, since those words were likely to appeal to students‟ 

attention and therefore keep the discourse alive (GO2). 

Action 6: Introducing mathematical symbolizations 

Once the students decided whether the transactions were good or bad, and each 

transaction‟s result was discussed in the classroom, the teacher continued by introducing how 

students could rewrite each sentence by using mathematical symbolization. The following 

excerpt shows the teacher‟s introduction of symbols: 

T: Here is a very important part. Everybody take page 15 (see Appendix C, “Smart or Stupid Decisions”) 

out and I want you to start taking notes. Because I will introduce the way we are going to symbolize these 

things. These decisions people are making are affecting people‟s net worth aren‟t they? When you make a 

decision that affects your net worth either good or bad we will call that a transaction. Something happens, 

some transaction happens and it changes your net worth. You guys said this was a smart or stupid 

transaction?  

 

Sts: Stupid. 

 

T: It is a stupid transaction because what happens to his net worth, Brad?  

 

Brad: It goes down. 

 

T: Whatever it is, it is going to go down, isn‟t it? All right, so we need a way to start symbolizing these so 

that we do not have to write all these words. Here‟s how we are going to symbolize that. So I did not let 

you go out [one student wanted permission from teacher to temporarily leave the class before she started], 

because I knew if you miss it, you miss a lot. As much as possible we are going to always use these two 

symbols. The first symbol is going to stand for the action that takes place like Tisha said it is take away. So 

if it is take away the action is we are going to take away something from the net worth statement. That is 

going to be what symbol? 

 

Sts: Down arrow. 

 

T: You can have a down symbol, couldn‟t you? What mathematical symbol you think they use? 

 

Sts: Minus. 

 

T: Minus right? I like that idea down symbol, but we will use the mathematical symbol that is the minus 

sign. So you can think of this as the action, the take away action, subtract or minusing [she writes these on 

the board]. 
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Charlie: Adding... 

 

T: Well, that is another transaction, that could happen, isn‟t it? You could add somebody‟s net worth. We 

will get to that one in a minute. But just for this one we take away, we‟re always going to put parenthesis, 

what we‟re taken away Marsha? You guys taking note? So what is it taken from Ann here?  

 

Sts: Money. 

 

T: What kind of money?  

 

Sts: An asset. 

 

T: So guess this sign what is it going to be? Plus [she writes on the board -(+200)].  That is how I am going 

to start symbolizing this. We do not have to write any word at all. This sign [she points to the sign inside 

the parenthesis] is either going to be asset which is the case here, isn‟t it? What else could it be? 

  

Sts: Debt. 

 

Tisha: How? Ohh, adding a debt? 

 

T: Yes you can add a debt, could you not? So I am saying in general Tisha this second sign either going to 

be an asset as in this example, it was an asset, wasn‟t it? Or it could be a debt sign. What sign do you think 

we use for debt?  

 

Sts: Minus [some of them say negative] 

 

T: Here since it is taking away an asset, what is another action we could have done? Charlie you said that 

 

Charlie: Add. 

 

T: So you might see plus or minus here [outside the parenthesis] or plus and minus here [inside the 

parenthesis]. The first sign always stands for the action that takes place. Taking away or adding 

somebody‟s net worth. The second sign and always put in parenthesis stands for whether that number is 

asset or debt. That is a lot of me talking so I„d rather stop talking, what I would like you to do is symbolize 

Bradley and the others [one student symbolizes Bradley and she writes it down on the board and students 

start to work on it for the rest of them].  

 

In this episode, the teacher introduced symbolizations for the transactions. She stated that in 

order to symbolize the transaction they would use two signs, where the first one outside the 

parenthesis shows the action. The second one inside the parenthesis indicates whether the 

quantity is an asset or a debt. During the introduction, she asked students to guess the sign that 

they would use for take away. Many students stated that it should be the minus sign. The teacher 

then pointed out that although it is the minus sign for this problem, it could be the plus sign if the 

transaction was addition. Similar to the actions she asked students what sign they would use for 
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debts and assets. Finally, she summarized how they could write the given transactions by using 

mathematical symbols and asked the students to symbolize the other problems given in the 

activity. 

The teacher‟s goal in the discussion above was to introduce the mathematical 

symbolization (BT10). Since the teacher believes that students should make sense of the symbols 

(BM7), instead of introducing them ready-made, she introduced them gradually by connecting 

them with students‟ situation-specific imagery.  This allowed the students to fold back to their 

images if they had difficulty deciding what those symbols meant in the given problems. 

Moreover, they were able to see the patterns in the given transactions and could discover rules 

for integer operations. As an example, Stuart‟s conjecture given in the previous section (i.e. –(-) 

and +(+) are good decisions whereas –(+) and +(-) are bad decisions) emerged on the following 

day during the discussion of symbolizing transactions. By connecting the mathematical symbols 

that were introduced by the teacher and the “good and bad decision” imagery many students 

could come up with the conjecture of –(-) and +(+) have the same effect on the net worth which 

is good and +(-) and -(+) have the same effect on the net worth which is bad. Students were able 

to come up with these ideas that lie at the heart of the integers topic as a result of the 

instructional design that gradually moved them from concrete to abstract relating concepts with 

their informal knowledge (BL6). Here it is important to note that the teacher‟s knowledge 

pertaining to students learning from the relevant literature might have also played a role in 

forming her beliefs about the characteristics of instruction that would be most effective (KP5).  

Action 7: Encouraging students to record their thinking 

During the following sessions the teacher continued to support using the number line as 

an acceptable explanation. She asked students which number lines would match the question 
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where the original net worth was $4000 and the transaction was +(-$8000). The reason for the 

teacher to bring up this activity was to assess whether students were using the tool with 

understanding. In order to achieve this she included possible number lines that students could use 

in their solutions. Next, she asked them to compare and contrast the solutions on the board and 

find which one (or ones) might belong to the question given in Figure 21. During students‟ 

explanations the teacher encouraged them to record their thinking on the number line. 

 

Figure 21: Bell work problem 

Although many students chose the representation of Mo, some students stated that 

Curly‟s number line was correct. At that point, the teacher asked the students in this latter group 

to defend their reasoning. However, none of them were able to provide any explanation. As 

Stephan believes that students learn from their mistakes (BL8), she encouraged them to come to 

the board and explain their reasoning but none of those students were comfortable enough to 

explain their solutions. Since Stephan also believes that the teacher needs to support a sense of 

community where ideas can be discussed freely with a mutual trust (BT2), she did not want to 

force those students but continued to encourage them to explain their ideas. The teacher‟s 
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encouragement allowed those students who were shy to participate to become more open in the 

subsequent classroom sessions. 

Since no one wanted to prove Curly‟s solution, the teacher asked the students to prove 

Mo‟s number line. Norman was one of the students who argued that Mo‟s number line was 

correct. The teacher encouraged him to show his solution on the number line: 

Norman: Since it is adding a debt he goes down 4000 and then 4000 more to get 8000 in total (See Figure 

22) 

 

T: Dusty what did he say? 

 

Dusty: He goes down from 4000 to zero and then from zero to another 4000. So if you add 4000 plus 4000 

you get 8000. Is that what you said?  

 

Norman: Yes. 

 

T: Mariana, Alice do you want to talk about this? [Mariana and Alice agreed with Curly‟s number line at 

the beginning] What do you want to reject about what Norman said? What did you add? 

 

T: What did you add?  

 

Mariana: I did not use two jumps. 

 

T: Is it necessary to use two jumps? If you can see it a little easier, use two jumps. Does anyone want to add 

that? You liked what Norman said? 

 

Sts: Yes. 

 

T: His symbols were really helpful aren‟t they? [T shows the image in Figure 22] 

 

 

Figure 22: Norman's solution 
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Norman showed his solution on the number line by first going down from 4000 to zero and from 

zero to -4000. He then added 4000 to 4000 and got 8000 (see Figure 22). His symbols were 

helpful to all students, thus they did not ask any questions regarding the solution. The reason 

why the teacher asked Norman to symbolize his thinking seemed to be her goal of clarifying the 

mathematical ideas that are presented by the students and supporting the use of tools with 

reasoning (GO6, GO7). 

Next, the teacher encouraged Mariana and the others to use the number line to solve the 

problem, since she observed that when they use the number line they could make sense of the 

problem and find the correct answer. In the following of the same session, the teacher asked the 

students if they could prove why Curly‟s number line was not correct. At this point Brad started 

explaining verbally rather than using symbols. The teacher encouraged him to record his thinking 

on the number line and to draw on the previous images: 

T: My next question is you know how Charlie rejected Larry‟s and he said why, who can point out why 

Curly is not working? Because I think Mariana is now convinced with this one, so Mariana my tip to you is 

start using the number line to figure out this kind of stuff, okay? Alice, are you convinced? Brad can you 

tell the basis for rejecting this one?  

 

Brad: What I did is same thing here [points out Norman‟s solution]. I went 4000 to 0.  

 

T: Can you write it down so everybody can see what you are saying? 

 

Brad: Then I added 4000 to 12,000. 

 

T: What does that 16,000 stand for Sally? 

 

Sts: It is the total of two jumps.  

 

T: What does it stand for in the money world? What does this 16,000 stand for? Why is 16,000 important? 

 

Brad: Because it shows what debt he [Curly] added on 

 

T: How much was added Mariana? 

 

Mariana: 16,000. 

 

T: 4000 Brad said to get to zero and 12,000 to get here. You added on $16,000 that is not very nice is it? 

How much were we supposed to add on? 
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Sts: 8000. 

 

T: You doubled the debt that you were supposed to add on. 

 

Brad disproved Curly‟s solution on the number line similar to Norman‟s proof. He first went 

down from 4000 to zero and then from zero to 12,000. Next, he added 4000 and 12,000 which 

resulted with a total 16,000 debt. He stated that the solution was not correct since the total debt 

given in the problem was 12,000. The teacher‟s belief that mathematics is a sense-making 

activity where students analyze the mathematical solutions might have encouraged her to ask 

students to disprove the wrong answers (BM4). 

Recall in a previous example (imagery-action 4), the teacher orchestrated a similar type 

of discourse by asking students to compare and contrast the number lines that she chose from 

their artifacts. The difference between these two examples from the point of imagery is that, in 

the first one the teacher provided the activity to support students‟ understanding of comparing 

two different numbers and seeing the gap between them, in the second one the aim was first to 

find the direction to go on the number line and then to arrive at the correct number. Thus, 

although in the first one the direction, operation, and the landing point was not an issue, in the 

second one they were the main points of the discussion. In other words, the teacher supported 

different reasoning by using the same tool (shift in reasoning). Her goal of remediating the 

possible incorrect images (GO5) that the students might have developed was also important in 

asking this problem in the classroom. The teacher‟s knowledge of her current students‟ 

misconceptions (KP11) as well as her knowledge about the importance of using the tools with 

understanding (KP7) had a crucial place in her practices. 
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Action 8: Recording students’ ideas on the board 

One of the teacher‟s important actions was to record students‟ thinking during their 

verbal explanations as well as during her restatement of those explanations. The excerpt below 

was taken from the discussion of a question which asked the new net worth when the original net 

worth was 298 and the transaction was +(-427). After Mark explained his solution, the teacher 

restated his answer to make it clear to the other students. During her restatement of Mark‟s 

explanation, she also recorded his ideas clearly on the number line since his symbolization was 

not clear (see Figure 23): 

 

 
Figure 23: Teacher's symbolization of Mark's solution on the number line 

T: Where did he get 129 from? I need you to try to make sense of this. He starts off, here is the original net 

worth, is it good or bad?  

 

Sts: Good. 

 

T:  He is in the black, I will actually make this red so you can see [she colors red the negative part of the 

number line]. And then what will his first jump be, Norman? 

 

Norman: 298. 

 

T: Has he added all his debts so far?  

 

Sts: No 

 

T: How much debt has he added so far? [students have difficulty answering this] 

 

T: Does Mark start here, all the way down to 427? In one big jump?  
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Sts: No. 

 

T: How many jumps Anthony does it take? [The teacher asks students to analyze Mark‟s graph] 

 

Anthony: Two. 

 

T: What is his first jump? 

 

Anthony: Going down to zero.  

 

T: How much? 

 

Anthony: Going down 298 

 

T: Norman is that the whole jump he needed to go? No, he is a little bit more. The question is how much is 

that little bit more, pretend we did not know what it was. How much is that little bit more? He has already 

gone down 298. How much he had to go altogether? [students say 427] He had to go 427, he went down a 

little bit, how much he has left? He cannot count his fingers, can he? 298, 299. What is the quick way 

Sally? 

 

Sally: He subtracts 298. 

 

T: 298 from what?  

 

Sts: 427 

 

T: That is how much he had left to jump. He has to go 129 more. Where is that going to land him? (see 

Figure 23) 

 

Sts: -129. 

 

After Mark explained his reasoning, the teacher felt it necessary to restate the students‟ words in 

a clear language to help all the classroom members understand his solution (GO7). During her 

restatement she used the number line that was drawn by Mark. While she was restating, she first 

folded back to the imagery of good and bad decisions from the previous class sessions. Once 

students could find the effect of the transaction thus identifying the direction that they needed to 

go, the teacher asked them what might be the first jump they might do. At this point the students 

stated that they would need to do two jumps, the first one down to zero and the second one could 

be found by subtracting the original net worth from the given number.  
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 The teacher‟s goal in this discussion was also to support developing the notational 

imagery of the vertical number line to help students solve integer operation problems with 

understanding (GO5). However, it is important to note that although the tool, the vertical number 

line, was the same as the tool they used in ordering and comparing the numbers, the reasoning 

with the tool was different. Here, the students integrated the tool with the imagery of good and 

bad decisions which helped them to determine whether to go up or down on the vertical number 

line. Additionally, the teacher tried to develop the image of using zero as a break point, which 

could be used to split up a large transaction that goes through zero into two smaller transactions.  

To support the imagery of good and bad decisions, as well as the previous images, the 

teacher continued to engage students in various activities where they could use these images 

collectively. The following example demonstrates how the teacher recorded students‟ thinking in 

the discussion of an activity which involved finding the original net worth given the new net 

worth and the transaction. The task was to find what the box should contain to satisfy  – (-30) 

= 10. Mark explained his answer of -20 but it was mostly verbal and his notation did not make 

sense to students. Therefore, the teacher attempted to summarize Mark‟s solution while notating 

his reasoning on a number line. 

T: I will summarize it to make sure Mark I got you right. I think Mark said you start on the number line by 

putting your new net worth, the answer you called it [she writes “10 new net worth” on the number line]. 

That is where I want to end my jump at +10 that is my new net worth. He said, I have got to figure out 

where it started, what was the beginning net worth so that when I jump I will get at 10. He said I look at the 

transaction and the transaction says take away a debt of 30. Is that stupid or smart? 

 

Sts: Smart. 

 

T: Which way would we go? Up or down? 

 

Sts: Up. 

 

T: So which way do we have to go to get 10? We had to go up to get 10. So which arrow is it? It is really 

this arrow, isn‟t it [showing the arrow pointing up]? He said I want to land at 10 and I want to go up to get 

there. Because take away debt of 30 means he went up 30 to land at10. So where do I need to start? So he 

says well to get there since I do not know what this number is [the original net worth] I have to go 
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backwards to find that, I wanted to start here add 30 to get 10. He said I have to work backward. What is 

the first jump that you make?  

 

Sts: 10 [she writes on the number line, see Figure 24] 

 

T: And then what? 

 

Sts: 20. 

 

T: So he says that it‟s got to be -20. How did I do in summarizing? 

 

 
Figure 24: Finding the original net worth from the new net worth and transaction 

The teacher initiated this discussion by elaborating the explanation of the students to make sure 

that the explanation could be clearly understood by everyone (GO7). During her statement she 

also re-symbolized the student‟s solution on the number line since it was not clear before (see 

Figure 24).  She first wanted students to determine whether taking away a debt of 30 was a good 

or bad decision. Students had no difficulty in identifying it as a good decision as this was already 

taken-as-shared. The teacher then asked students whether this transaction would move the net 

worth up or down. It was also established that a good decision moves the net worth up. However, 

because the original net worth was unknown, they had to work backwards starting from 10 and 

going down to first 0 and then to -20 to complete the total transaction. By going from a positive 

number to a negative one in two steps, the teacher also emphasized the image of structured 

space.  
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The teacher‟s belief that students can make sense of the problems by developing 

meaningful imagery (GO5) might have prompted her to explain the problems on the number line 

and also connect them with the previous images such as good and bad decisions. Using images 

of good and bad decisions helped students to develop another image that was going up or down 

on the number line and finding the point where they needed to land. As it was stated before 

during the solution of those problems students also used the zero as a break point and they 

stopped at zero first if they needed to go through it. The situation specific imagery (e.g. good and 

bad decision) helped students to make sense of the notational imagery (e.g. going up and down 

arrows and where to land on the number line). The teacher‟s extensive knowledge of content and 

different solution ways allowed her to understand the students‟ ideas easily and record them on 

the board during her statement (KS1, KP1).  

Action 9: Continuing to support more abstract ideas with imagery 

After students became comfortable with the transaction problems, the teacher gave 

students a new activity (day 14) in order to help them to be comfortable with the problems that 

included only one sign. The following excerpt is taken from a discussion of the problem where 

the teacher asked students to match different transactions to either +50 or -50. During the 

introduction of the problem the teacher stated that -50 and+50 are the changes in two different 

people‟s net worths. After students worked on the problems, they stated the transactions that they 

matched. If there was anyone who disagreed with a given matching then those solutions were 

either proved or disproved. One of the expressions that the students did not agree on was -2(-25). 

Brad and some other students stated that it is same thing as going down 50: 
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Figure 25: Teacher's visualization of symbolization 

T: Brad says it goes down.  

 

Stuart: Aren‟t you taking away a debt? 

 

Brad: Ohh, yes. 

 

T: He left out a sign [she shows the sign outside of –2(-25)]. Taking away two debts of 25; is that stupid or 

smart? 

 

Sts: Smart. 

 

T: Taking away 2 debts of 25 not just one debt but two of them we have to take it away. That is going to 

make us go up [she shows on the number line, see Figure 25]. 

 

Sts: A lot. 

 

T: See the two 25 jumps there [T shows the image in Figure 25].  

 

After Brad stated that -2(-25) would be the same as going down 50, Stuart challenged him by 

stating that the number sentence meant taking away two debts of 25. At that point, Brad 

understood his mistake. In order to emphasize the mathematical idea that was presented by 

Nathan, the teacher restated his words and folded back to the image of good and bad decisions as 

it might have helped students to understand why the answer was positive rather than negative. 

The goal of the teacher in this question was to support students to make sense of equivalent 

transactions especially when one term had only one sign (GC6).  
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Since the students would investigate the effect of different number sentences in the 

following tasks (e.g. -25-50), the teacher wanted to give this activity to help students see why -50 

might be equal to -(+50) or +(-50) or other transactions such as those given in the activity. The 

teacher‟s goal was to support meaningful imagery (GO5) by folding back to good and bad 

decision where students could visualize that -50 means going down independent of how many 

smaller transactions it might involve. This way, if students did not feel comfortable dealing with 

one sign they could translate the question to have two signs such as rewriting -25 - 50 as -25 – 

(+50). The teacher‟s belief that students should make sense of the symbols (BM7) also might 

have motivated her to create a task where students could develop meaning for the numbers that 

include only one sign. 

The teacher‟s practice of recording the equality of different transactions on the number 

line also supported students‟ notational imagery, which included the vertical number line with up 

and down arrows (see Figure 25). Here it is important to note that this time an arrow did not 

show a single transaction as it was used previously, but it corresponded to a set of transactions 

with their net effects being the same (i.e. taking away a debt of -50 was shown by the same 

arrow as adding an asset of 50). 

After the activity above the students were given different bare number sentences. During 

the solution of the problem, 5 –(-3 – 2) = ?, the teacher first reminded the students to pay 

attention to the parenthesis to be careful about the order of operations and then encouraged them 

to draw on their previous images to make sense of the mathematical symbols that were given in 

the question (see Figure 26). The excerpt below was taken from the discussion during the 

restatement of Mark‟s explanation by the teacher since some students had difficulty 

understanding his explanation: 
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                  Figure 26: Teacher's record of students' solutions on the number line 

T: I think a lot of people‟s minds changed. Mark I am going to repeat what you said and see if you agree. I 

know Charlie and some of you said you do not agree and I appreciate that. I am talking to everybody but I 

will check with you guys to see if you agree with what Mark says. Mark agreed with you guys that you do 

parenthesis first, and he said if you rewrite that it will end up like this 5-(-5). Is everybody okay with that? I 

am checking with three of you guys [the students who said they did not agree]. Because you also wrote this. 

Danny wrote the same thing horizontally. Tisha are you okay with that?  

 

Tisha: I changed my mind. 

 

T:  Mark, you said if we talk about money situation, what does this stand for [shows 5]? 

 

Mark: 5 bucks, net worth. 

 

T: What does this stand for? 

 

Sts: Take away debt of 5. 

 

T: [T writes on the board under the numbers] Mark said when you take away debt of 5 it is a good thing. 

Would you like someone to take away your debt of 5? 

 

Sts: Yes. 

 

T: Which direction are we gonna go? 

 

Sts: Up.  

 

T: That is what Mark says. He said it is like starting here at 5.[she shows on the number line] and take away 

debt he says makes you go up. Let‟s put yours on the number line Danny. You started at 5 and what is the 

transaction for you? 

 

Danny: Take away.  

 

T: Take away 5 like that? [She shows on the number line, writes -5 on the arrow] Which one is correct? 

 

Brad: Mark‟s.  

 

T: How come you changed your mind?   

 

Brad: Because when you take away a debt you go up. 

 

T: What is Danny doing here? 

 

Sts: He is adding a debt. 

 

T: You forgot the other negative sign Danny [she writes –(-5) on his number line, see Figure 26].  
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During the discussion of the problem many students agreed that the answer should be zero 

without thinking. Next, the teacher asked Mark to explain his reasoning and she restated what he 

said in a clear language. She first asked students if it is okay to write the question as 5 – (-5). 

Many students agreed that it is okay to write it like that. At this point some students already 

changed their minds. The teacher asked what that number sentence means in terms of money and 

Mark stated that it is taking away a debt of $5. The teacher then asked students if they would like 

their debt to be taken away. All students agreed and stated that the net worth would go up in that 

situation. She asked Danny to put his answer on the number line and compare it with Mark‟s to 

find out which one made more sense to him. Danny also stated that he changed his mind and 

now agreed with Mark‟s solution.  

The goal of the teacher in this episode was to support students to solve different types of 

bare number problems (GC7), especially the ones that included only one sign as the 

symbolization for them was different than the problems that students solved in the previous class 

sessions. The teacher‟s belief that students learn better when they can make sense of the symbols 

seemed to have motivated her to encourage students to connect those new symbols with their 

previous images and make sense of the given number sentences (BM7). This way even when 

students forgot the rules for integer operations, they could make sense of the number sentences 

using their imagery. Actually, in the classroom many times she observed that students who could 

not find the answer could solve the problems if they drew the number line and folded back to 

their previous images. This way the teacher could support students‟ learning of mathematics with 

understanding rather than just memorizing, which is a fundamental idea emphasized in the 

NCTM Standards. 
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The practice of capitalizing on students’ imagery to create inscriptions and notation 

contained building the context on a sequence that students can imagine modeling students‟ 

thinking, introducing the vertical number line as a supportive reasoning device, discussing 

correct and incorrect uses of the number line, encouraging students to draw on previous images 

and record their thinking, introducing mathematical symbolizations, recording students‟ ideas on 

the board, and continuing to support more abstract ideas with imagery. During this practice the 

teacher‟s content knowledge, knowledge of possible misconceptions, tools, and imagery seemed 

to have an essential role in the teacher‟s practice. Her belief about mathematics that analyzing 

solutions is important to understand the mathematical ideas and students should use symbols 

with understanding were highly activated. This was evidenced by the teacher‟s gradual 

transitioning to symbolic notation by capitalizing on the students‟ imagery. Her goals during this 

practice were to support the development of meaningful imagery by folding back to previous 

images and using students‟ informal knowledge, supporting students‟ ideas with tools when they 

have the reasoning, and ensuring that students understand the mathematical ideas that are 

discussed in the classroom. 

Practice Five: Developing Small Groups as Communities of Learners 

Teachers need to support students in small groups to create effective conversations where 

they can develop their mathematical understanding (NCTM, 2000). Although, the teacher may 

know that a collaborative working environment can be useful for students, she might not know 

what to do to facilitate discussions in these environments. The teacher has essential roles in 

supporting the small groups such as encouraging students to explain their results to each other, 

collecting data for the whole class discussion, and asking students to explain their solutions. 
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The expert teacher in this study formed the small groups heterogeneously. During the 

formation of the small groups, she tried to bring together the students who have different 

academic success. She also considered the students‟ personalities and placed the ones that would 

be more likely to collaborate with each other in the same group. Although the groups 

occasionally changed within the academic year, they stayed constant during the instruction of the 

integers topic. Additionally, sometimes the teacher used different strategies such as asking 

students to form a pair in the classroom and discuss their solutions with their partner to keep the 

discussions interesting. 

Action 1: Encouraging students to explain to each other 

In the current study, one of the teacher‟s small group actions was to encourage students to 

compare their answers and explain their solutions to each other as illustrated by the following 

excerpt. Here, the students were asked to find the net worth of a person who had of the following 

debts: a -$1000 bank loan, a -$15,000 car loan, a boat loan of -$45,000, and an asset of $60,000 

retirement fund. The teacher first encouraged the students to find the net worth on their own and 

then to check their answers in their small groups: 

T: When you get done you can start talking to your partners and see if you got the same answers or 

different answers. If you got different answers, check your calculations. 

 

T: Did you get $121,000 for this one? 

 

Tisha: Yes. 

 

T: You all need to talk. Charlie, you got way less than her. You got -1000, right?  

 

Charlie: Yes. 

 

T: Tisha talk to him. How did he get that?  

 

Charlie: You add the positives and you subtract negatives that is how much she‟s worth. 

 

Tisha: That is what I did. Ohh, yes, I did not see the signs, I got it.  
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After the introduction of the task, the teacher encouraged students to check their answers with 

their partners and if they got different answers she wanted them to go over their calculations. 

Comparing the answers with their partners was useful in different ways. First of all, it gave the 

students a chance to see their mistakes before the classroom discussion and to try to think about 

if it was a conceptual error or a computational error. This way, the different answers that were 

openly discussed in the class did not include many computational mistakes but the mistakes that 

stemmed from students‟ conceptual difficulties about that task.  

However, sometimes students were apprehensive about explaining their ideas within their 

groups. As it was seen in the excerpt below, although Tisha and Charlie were in the same group 

and had totally different answers, they did not talk to each other. Actually, they even did not 

know what the other‟s answer was. In these situations, the teacher facilitated the discussion by 

asking what Charlie‟s answer was and telling him Tisha‟s answer. After she encouraged them to 

explain to each other she left the group and the students started to talk about their answers and 

solution methods. In this particular example, Tisha saw her mistake where she forgot the signs in 

the question. The teacher‟s belief that learning is both an individual and a social process (BL4) 

and explaining answers to each other helps students to reorganize their ideas (BL9) seemed to 

motivate her to first ask students to work on the activity individually and then share their answers 

with their friends. These beliefs also activated the goal of reminding students of the social norms 

as necessary (GO1). Here, consistent with the NCTM Standards, the teacher‟s knowledge about 

student learning that students organize their mathematical thinking through communication 

appeared to have a crucial role in her practice (KC3). 
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Action 2: Asking students about their solution methods 

On the following days students were given problems where they were asked to compare 

net worths and find the differences between them. Once the students started working in small 

groups, the teacher walked around the classroom and stated that she saw $1000 and $5000 as 

answers (the question asked for the difference in net worth between asset of $3000 and debt of    

-$2000) and reminded students to prove which one they agree with and be ready to defend it for 

the classroom discussions: 

T: I keep seeing around the room. Some of you said he is worth $1000 more and some of you said he is 

worth $5000 more. Show on your paper which one you agree with and defend it by writing an explanation, 

why you believe [she goes around the classroom]. 

 

Gage: I already got it. 

 

T: I do not see any words.  

 

Gage: It is the same thing with this [he shows some calculations]. 

 

T: Say out loud what you did? 

 

Gage: I got -2000 plus 2000 to get to zero. 

 

T: Okay. 

 

Gage: And then I added 3000 to get up there [pointing to 3000]. 

 

T: Why did you do all that? You did not say why? 

While she was walking around the small groups, Gage stated that he already got the answer. At 

this point the teacher encouraged him to write down his explanation on the paper. However, 

instead of writing his explanation he showed his calculations and stated his answer. The teacher 

then asked him to explain why he did those calculations. One of the teacher‟s practices was to 

ask students to explain their reasoning of the answers while she was walking around the room 

and then to bring those answers to the whole class discussions. In doing so she was collecting 

data for the discourse. However, since there was not enough time for this activity to make a 
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classroom discussion, the teacher encouraged students to write down those explanations on their 

papers. This way at the end of the class when she collected the students‟ papers she could 

analyze their solutions and decide on the following day‟s classroom conversations based on 

them.  

The teacher‟s belief that being able to explain shows students‟ understanding (BT11) 

seemed to motivate her to ask students to write their explanations to defend their answers. As she 

walked around the room, she noticed that some students just wrote the answer and thought that 

they were finished.  In order to encourage those students to think more on the question, first the 

teacher asked them to explain what they did on their paper then if they just wrote the answer she 

asked them why they did it.  

As was seen in the excerpt above, after the student showed his answer the teacher noticed 

that he did not explain his solution. By inquiring more about his reasoning she motivated him to 

find a conceptual explanation that he could defend. After, the teacher left Gage‟s group, he went 

back to study the question and tried to explain his reasoning. The teacher‟s knowledge of content 

as well as her knowledge of students‟ possible solutions for the given task allowed her to 

encourage students to think deeper and make sense of their solutions rather than just doing 

calculations (KS1, KP7).  

Action 3: Encouraging students to draw on their previous images  

Another action of the teacher was to encourage students to draw on their previous 

images. The following excerpt was taken from the classroom discussion where students solved 

transaction problems. The problem asked for the new net worth when a person had a starting net 

worth of -$10,000 and lost $8000 worth of coins. The teacher asked students to work on the 

problem in their small groups and started to circulate around different groups: 
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T: How did you find that? 

 

Charlie: She lost an asset and I put negative so now she owes $18,000 because she lost $8000 which was an 

asset. 

 

T: Can you show it on the number line? Work on the number line. I need someone to help me in that [she 

walks away from the group]. 

 

Charlie: How did you do it? [He asks Tisha since she used the number line in her solution and they talk 

about it]. 

 

Tisha: They are both negative and you have to add on the number line. 

 

T: [She comes back after few minutes] Tisha you have the same number line as him. Is this your writing? 

Tell me what you have written? 

 

Tisha: Isn‟t this positive [she shows 8000]? 

 

T: It is $8000 how much the coin is [she walks away from the group, this time Charlie explains to Tisha] 

 

Charlie: And then she lost it. That means her asset is lost, it is like taking away asset. 

 

While the students worked on the problems first individually and then with their friends, the 

teacher walked around the classroom to examine their solutions. In the example above, she first 

asked Charlie how he solved the problem. After he explained his answer, the teacher encouraged 

him to prove his solution by using the number line and then left the groups to visit the other 

groups. The reason that the teacher was stopping by the small groups and asking questions might 

have stemmed from her knowledge about the students‟ behavior (e.g. some students were shy) 

and her belief that the teacher needs to help students to become comfortable with this 

environment (KP3, BT2). Additionally, the teacher‟s practice of not spending too much time in 

one group and visiting all groups appeared to be a result of her belief that the teacher should be 

fair in the classroom and provide equal opportunities for all students (BT6).  

After the teacher left from the group, her statement caused Charlie to think more about 

the problem and ask the other members if they used the number line in their solutions. Since 

Tisha used it in her solution, they started to talk about how the answer could be proved by using 

the number line. When the teacher returned to the group she saw that Tisha had a number line on 
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her paper. Thus, she asked her to explain how she used the number line. During her explanation 

Tisha hesitated about the meaning of losing 8000 coins and asked the teacher. This started 

another conversation between Tisha and Charlie after the teacher left. Since Stephan believed 

that being able to explain helps students realize their mistakes (BT11), she asked Tisha to explain 

her number line but at that point she noticed that she did something wrong with “losing 8000 

coins” so she started to work on it again and started to talk to her partner. Here, the teacher‟s 

questions helped the students to start talking to each other. 

The teacher‟s goal of supporting the development of imagery (GO5) might have 

encouraged her to ask Charlie to explain his solution by using the previous images. One of the 

reasons the teacher asked Charlie to use the number line might have been to bring the number 

line idea to the classroom in order to help students who struggle with the computations. Another 

reason is that she might have noticed different uses of the number line where students used it 

without making sense. This gave the teacher an opportunity to remind students of acceptable 

ways of using the number line. 

Action 4: Collecting data  

As the teacher walked around the classroom during the small group discussions, she 

learned more about the different kinds of solutions that students came up with. Often, she used 

this action to help her engineer whole class discussions both for the current class and subsequent 

classes by incorporating this data into her planning. The solutions that she focused on changed 

with her goals about the big ideas of the classroom. For example, while sometimes she focused 

on the misconceptions at other times she focused on the solutions that included conceptual 

explanations. The following excerpt shows the teacher‟s practice of collecting data during the 

small group discussions and bringing it up in the whole class discussion. In this episode, the 
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students were asked to determine the outcome when the original net worth was $298 and the 

transaction was +(-$427). During the small group discussion, the teacher first asked Marsha to 

explain her work to the small group and then asked Marsha if she would share what she said with 

the entire class later: 

T: Why do you subtract? Talk about these jumps?  

 

Marsha: Because when you add a debt you have to take away part of your asset so that is why you subtract 

 

T: But how do you know 129, the second jump? [Marsha has number line on her paper that goes from 298 

to zero and zero to -129. The teacher shows the second arrow on her number line that goes from 0 to 

129].That is what I am asking about. 

 

Marsha: Because to get to zero he has to minus 298 and he subtracts 298 from the four hundred number[she 

means 427]. 

 

T: Why? 

 

Marsha: Just to know how much he has to jump up. 

 

T: Can you say it in whole class?  

 

Marsha: Yes. 

 

T: [T starts whole classroom discussion] Marsha is going to explain that. All right Marsha we‟ll count on 

you. Why don‟t you listen to Marsha and ask her questions if you do not get what she says? 

 

During the small group discussion, the teacher asked Marsha why she did two jumps on her 

number line. Marsha explained that she subtracted 427 since it was adding a debt. However, the 

teacher did not seem satisfied with this answer and asked her how she knew that she had to go 

from 0 to -129 on her number line in the second jump. She stated that she found that by 

subtracting 298 from 427. This time the teacher asked her if she could explain the reasoning 

behind her computation. As Marsha could explain it the teacher wanted to bring it to the class 

discussion and encouraged other students to listen to her and ask questions if they do not 

understand. Thus, circulating around the classroom and learning as much information as possible 

(i.e. collecting data) about students‟ solutions by asking them questions and highlighting ones 
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that she thought might further her agenda was an essential action of the teacher in the small 

groups. 

The teacher‟s practice of asking students how they solved the problems as well as asking 

them to explain their reasoning was prominent in the dialogue above. This was primarily rooted 

in her belief that students learn mathematics by making sense (BM1). The teacher‟s goal in this 

problem was to help students understand how to solve the transaction problems especially by 

using the number line (GC6). Since the teacher saw that Marsha used the number line in her 

solution and also she could explain her reasoning, she wanted to focus on her solution in order to 

help other students to make sense of the subtraction by using the number line. The reason the 

teacher might ask students to listen to her and ask questions might be based on her goal of 

reminding students of the norms (GO1). One of the reasons she asked Marsha if she would like to 

share her solution in the whole classroom discussion might be due to her belief in supporting an 

environment where students represent their ideas willingly (BT3).  

Action 5: Clarifying the task before students start to work in their small groups 

When students worked in small groups, they had different roles in the group namely the 

leader, the policeman, and the author. Since the small groups included three students, the teacher 

categorized each student‟s place as windows, wall, and door based on their proximities to those 

parts of the physical arrangement of the classroom and then posted the role of each place on the 

board (e.g. windows: leader, wall: policeman, door: author). The role assigned to each place 

changed everyday allowing students to take on different roles. The leader‟s role was to decide 

the group members‟ jobs such as how they should share the workload of the activity. The authors 

were supposed to write the final answers that the group members agreed on and give them to the 

teacher at the end of the class if the teacher asked for them. The policeman‟s job, on the other 
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hand, was to check if everyone shared the work equally. The reason that the teacher gave 

different jobs to the students seemed to have originated from her belief that taking responsibility 

is important for learning (BL3) and the teacher should be fair in the classroom and provide equal 

opportunities (BT6). The teacher‟s knowledge of students‟ behavior such as the tendency of not 

sharing the jobs equally seemed to have an important role in giving different assignments to the 

students in collaborative groups (KP3). Additionally, in order to keep the discourse alive and 

interesting in small groups (GO2), sometimes the teacher used different strategies such as asking 

students to form a pair in the classroom and discuss their solutions with their partner. 

The excerpt below shows how the teacher introduced the task and addressed students‟ 

roles in their small groups. Here the students were asked to translate several statements to 

number sentences and find the net worths. An example statement from the activity is “net worth: 

$1500 and transaction: adds a debt of $600” (see Appendix C, “Alice‟s Net Worth”): 

T: Here is what I would like you to do. You will get an activity page. Leaders, I want you to decide if you 

want to work on them individually and talk later or start talking on all the questions. Leaders are in charge 

of that. But each person needs to put answers on their paper. Here are the directions: It says write number 

sentences for the following changes that occur to Alice‟s net worth and use the net worth tracker if you 

want to. I am telling you some of you need to. I tell you this, if you get an answer let‟s say Mark and 

Norman gets different answers, one way to prove it will be the net worth number line. That is a good proof 

because Dusty just showed a proof on the number line. If you get stuck, go to the number line. What does it 

mean to write a number sentence? What it means is start with the original net worth that will be 1500 the 

transaction Tisha said and then 

 

Tisha: You add debt of 600. 

 

T: How about write it with symbols? 

 

Tisha: 1500 + (-600). 

 

T: Equals whatever your answer is, you find what the answer is. Do not tell it now. Consider it as a practice 

test; we will have the unit exam soon. Practice writing these in number sentences with the answer. If you 

get stuck and don‟t know how to find it, the net worth number line [she draws one on the board] is a good 

idea to use. Who has questions about this? 

 

During the introduction, the teacher first reminded the leaders of their role and clarified what the 

“number sentence” meant in the problem since some students had difficulty understanding. Thus, 
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for the first problem she asked Tisha was what the statement was and then she asked her how she 

could write it with symbols. After Tisha described it, the teacher wrote it on the board. She also 

clarified that the students needed to complete the number sentences that they wrote and 

encouraged students to use the number line if they got stuck or to prove their solutions.  Once the 

students understood the aim of the activity the teacher distributed the papers and started to walk 

around. Stephan‟s belief that the teacher is responsible for clarifying students‟ roles and the tasks 

that they will work on in their small groups (BT12) seemed to have shaped her practice of 

introducing the task before the students started to work on it. As the teacher‟s goal in this activity 

was to continue supporting the development of images related with situation-specific imagery as 

well as notational imagery (GO5), she gave the statements verbally and asked students to write 

them with the symbols and find the answers of them based on that. She also supported the use of 

the number line as she observed that many students who had difficulty could solve the problems 

by using the number line.   

Action 6: Encouraging students to ask each other for help 

Once the students were given the net worth activity that asked for applying different 

transactions to the original net worth (Appendix C, “Alice‟s Net Worth”), they started to solve 

the problems and the teacher circulated around the small groups. There were around 10 problems 

in the activity, and the students first started to work on them individually within their small 

groups. While the teacher was walking around the room, she noticed that Gage seemed not to 

help his group friends even though he solved many of the problems confidently and his group 

mates had some difficulties in some of the problems. The following excerpt is taken during the 

students‟ working of the number sentence problems:  

T: Are you done with the whole page? 
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Gage: This is so easy. 

 

Mark: I do not understand this, number seven [net worth $800, transaction: take away debt of $200].  

 

T: Talk to your partner, he thinks it is so easy.  

 

Mark: He does not help. 

 

T: That is not acceptable Gage, even though you might not have finished, you can still help. 

 

Gage: Okay [He starts to work with Mark].  

 

While the teacher circulated around the classroom observing how students were dealing with the 

activity, she asked Gage if he had finished all of the problems. He stated that the problems in the 

activity were very easy for him. At this point, the teacher saw that Mark was struggling on one of 

the problems on the page and he stated that he did not understand number seven. The teacher 

encouraged him to ask his partner to get help and Mark stated that he did not help him. The 

teacher emphasized that it was not an acceptable behavior and encouraged Gage to help his 

partner. Stephan‟s belief that the teacher is not the only source of knowledge in the classroom 

(BT1) as well as her belief that an environment that nurtures a sense of community plays an 

essential role in learning (BL7) seemed to have been the reason for her encouragement of the 

students to ask each other for help. After the teacher left, they talked about the problem and 

agreed the answer was 1000 by talking to each other and then they started to work on the rest of 

the problems. 

Action 7: Encouraging students to come to an agreement  

As the instructional sequence moved forward, students continued to solve the problems 

related with transactions. The excerpt below is taken from the discussion of a problem where the 

teacher asked students to find the different ways of writing +50 and -50 with multiple 

transactions. She asked them to share their solutions with their group members and decide 
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whether they agree or not for the each different way. She also added that during the classroom 

discussion she would ask each group to state one transaction that they all agreed on  thus 

agreement within a group was important: 

T: If you got the first one (+50) start the second one (-50). What are the different ways to write the second 

one? 

 

Brad: We got the first one altogether. But I think mine is wrong. 

 

T: Which one is yours? [Since there are three different ones, the teacher asks which one is his]. 

 

Brad: This one.  

 

T: You do not like that one? You guys like the first one? When I mean “like”, I do not mean whether you 

like it or not. Do you think it works mathematically? 

 

Danny: Yes [he thinks Brad‟s solution is right]. 

 

T: If you all figure out the first one, start the second one.  
 

While students were working in small groups, the teacher walked around the room to see the 

different solutions.  She encouraged students to start working on the second one if they solved 

the first one. At this point, Brad stated that although each member of the group including himself 

found one transaction equivalent to +50, he stated that he was not sure about his solution. The 

teacher encouraged the group members to work on it together and decide whether each 

expression was mathematically correct and then move on to the next one. After the teacher left 

the group, the students continued to work on the expressions to come to an agreement on each 

representation.  

One of the reasons that the teacher asked them to come to an agreement regarding the 

solutions seemed to stem from her belief that analyzing solutions is important to understand 

mathematical ideas (BM4). By analyzing the different ways, students would have opportunities to 

make sense of mathematical expressions and also would have the idea that there could be 

different correct answers for the same mathematical problem. The teacher‟s belief that taking 
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responsibility is important in learning (BL3) might also have encouraged her to ask all group 

members to decide whether each solution was correct or not. Because when the teacher asked 

each group to give one answer, it was important that all students agreed with and shared the 

responsibility for that answer. Since the teacher believed that mathematics is a sense-making 

activity (BM1), during her instruction she included the problems that have multiple answers. For 

example, in this question all members found a different solution and they had to analyze each of 

them. These types of problems allowed the students to first work on multiple solutions within 

their groups and then discuss the solutions of the other groups efficiently. 

Here it is important to note that the routine of the teacher in small groups was to first 

introduce the task and then ask students to work on it individually for a few minutes, and then 

share their answers with the group members. However, in order to make the small group 

discussions alive, she used different strategies such as asking the leader to decide how the groups 

need to work or asking students to find a partner to work together instead of their group 

members. In one of the activities toward the end of instruction (see Figure 27), the teacher asked 

the students to work on each box for two minutes individually. She set the clock and asked 

students to switch to the next box every two minutes. 
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Figure 27: The activity in the small group 

Once the students, recorded their answers for each box, the teacher gave them new directions for 

how they should work in their small groups during the next six minutes: 

T: Now you got 2 minutes to talk about box 1. For example, in your group, person number one will say I 

think I agree with Sam, person two says I agree with Sue, and then person three will agree with Sam. So 

quickly state your conclusion and then spend the rest of the two minutes to see if you can come to an 

agreement about the answer. Because when it is all over, we are going to have a discussion and I am going 

to select with the random selector the team that will present, so be ready to explain. Then I will give you 

another two minutes for box 2 and then  another 2 minutes to do box 3. Two minutes for each box, start 

with your conclusion around the table and then debate. Any question? Do box 1, right now.  

 

As it was seen in the excerpt, once the students finished working individually on each box, the 

teacher asked them to state own position first and then explain their reasoning to each other and 

come to an agreement at the end of two minutes for each box. The reason that the teacher wanted 

students to agree on one answer was based on her goal of supporting the social norms (i.e. state 

disagreement and its reasoning) as necessary during the instruction (GO1). Thus she encouraged 

students to defend their answers to promote their mathematical reasoning in a social setting.  

In the classroom discussion, she used random selector to choose one of the groups and then one 

person from the group would reflect the group‟s decision. 
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The teacher‟s belief that students should have sufficient time to think individually and 

work with the group members before starting to discuss their ideas with the whole class (BT7) 

played an important role in her introduction of the task above. Also her belief that the teacher is 

responsible for efficiently managing the time (BT13) seemed to be the reason for restricting the 

time. The teacher wanted the students to spend no more than two minutes for each question, 

since she knew that students had a tendency to get stuck on one question and not even have a 

chance to work on the others (KP3). However, it is important to note that, restricting the time in 

this manner was not a typical practice of the teacher – she seemed to use this strategy when she 

wanted to leave more time for the whole class discussion.   

Action 8: Not correcting students’ mistakes immediately 

Towards the end of the instruction, the students were given problems that included only 

one sign such as 5 – (-3 – 2) =? After the teacher asked the question, she started to walk around 

the classroom: 

T: You got some proof? Show me your proof. 

 

Gage: Here [He shows the answer on his paper]. 

 

T: It is your answer, where is your proof? 

 

Gage: I can prove it. It is like negative 3 minus positive 2 equals to negative 1. 

 

T: Prove that to me.  

 

Gage: Because if you have a debt of $3 and you‟re paying $2 of it you can have still one dollar to owe. 

  

T: Why are you paying $2? 

 

Gage: I said if you have a debt of like $3 and you pay off $2. 

 

T: Why are you paying? I do not get that [she encourages Gage to use asset and debt concepts to help him 

make sense of “pay off” idea is not correct here as -2 indicates going more in debt instead of paying off 

debt].  

 

Gage: Pay some of your debt. 

 

T: All right, we will see. Do you have some proof? [to Mark who is in the same group with Gage] 
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Mark: Yes, I do.  

 

T: Explain to me how that part is on the number line.  

 

Mark: It is first negative 3. 

 

T: So you put it first. 

 

Mark: Yes, and then I saw the next symbol is negative and there will be also a positive sign in front of 

2[Marks seems to think -2 as -(+2)]. 

 

T: How do you say that? 

 

Mark: Taking away asset and I knew that it is bad. 

 

T: So you went up? [She shows Mark‟s number line] 

 

Mark: So negative 3 minus asset of $2 so you will go up, you are confusing me! 

 

T: I am confused by what you are saying. You start with -3 and then taking away asset and you go up, is it 

what you said? 

 

Mark: I think, I need to go down. 

 

While the teacher was circulating the small groups, one of her practices was to ask students to 

prove their solutions. When she asked Gage to prove his solution, he just showed his answer but 

had difficulty proving it. Here it is important to note that although Gage‟s answer was incorrect, 

the teacher did not try to correct him at this point. She encouraged him to use the previous 

images of assets and debts, but when he still had difficulty she continued with Mark who was in 

the same group. Mark‟s solution was different than Gage‟s, rather than a computation there was 

a number line on his paper. While Mark was explaining his solution, he stated that he first went 

down 3 and then stated that -2 is the same thing as taking away asset which is bad. However, in 

his paper the arrow was going up 2 instead of going down. Thus, the teacher asked him whether 

he must be going up or down. At that point Mark stated that he was confused since probably his 

words contradicted with his number line. After the teacher left the group, Mark continued to 

work on the problem and decided that he needed to go down.  
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The teacher‟s belief that students learn from their mistakes (BL8) might have motivated 

her to not to immediately correct the mistakes but let students think more on their own and 

discuss with their group members. This was an important practice of the teacher. She knew that 

the mistakes would be discussed in the whole class discussion and would play an important role 

in contrasting different solutions. She also thought that if all mistakes were corrected on the spot, 

then the students might not absorb what was wrong and there wouldn‟t be much to discuss in the 

whole class discussion. The teacher‟s belief that students reorganize their thoughts when they 

explain (BL9) seemed to be the reason for why she asked Mark to explain his solution. During 

his explanation he noticed that he was supposed to go down two instead of up. The teacher‟s 

practice of encouraging students to draw on previous images when they had difficulty had been 

helpful to the students to discover and remediate their own mistakes. Her knowledge of students‟ 

misconceptions and possible answers also seemed to help her grasp students‟ solutions during 

their statement and ask questions that would support them to solve the contradictions that they 

had instead of correcting them directly (KP1, KP2). 

The practice of developing small groups as communities of learners consisted of 

encouraging students to explain to each other and ask each other for help when needed, draw on 

their previous images, reach an agreement for the solution of problems, asking students how they 

solved the problems, collecting data, clarifying tasks before students start to work in small 

groups, and not immediately fixing students‟ mistakes (i.e. use these as opportunities for class 

discussion). During this practice the teacher‟s knowledge of the NCTM Standards, her content 

knowledge, her pedagogical knowledge about students‟ possible answers and behaviors had an 

important role on teacher‟s practice. Her beliefs that mathematics is a sense-making activity, the 

teacher is not the sole source of knowledge, and students reorganize their ideas when they 
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explain seemed to be highly active in the teacher‟s small group practice. Her primary goals 

during this practice was to remind students the expectations, their roles in the small groups, and 

collect data to support class discussion  that stay alive and interesting.  

Summary 

In this section, the teacher‟s roles in the classroom instruction were identified and 

analyzed under five practices namely creating and sustaining social norms, facilitating genuine 

mathematical discourse, supporting the development of sociomathematical norms, capitalizing 

on students‟ imagery to create inscriptions and notation, and developing small groups as 

communities of learners. The teacher performed several actions in each practice to sustain a 

standards-based classroom instruction (see Chapter 7 for the full list). However, the teacher‟s 

actions in each category should not be thought of in isolation from the actions in other practices. 

Often, effective action in one category allowed the teacher to support the actions in other 

practices as well. For example, it would not have been possible to maintain a productive 

discourse without establishing and sustaining social norms. Similarly, without developing 

students‟ imagery and establishing sociomathematical norms, the discourse as well as small 

group discussions would be bland and ineffective as the norms support students to express their 

mathematical arguments and rationales honestly and openly (NCTM, 2000) and imagery creates 

meaning for mathematical activities and adds richness to their understanding (Thompson, 1996). 

To this end, the actions in these five practices should be considered as highly interrelated. In 

particular, social norms appeared to be the glue that held together all the actions as standards-

based teaching can only be applied effectively in an environment where ideas can be discussed 

freely and respectfully (NCTM, 2000). 
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The teacher had an essential role in supporting the social norms to create an environment 

where students could discuss their ideas freely and respectfully. Since many students in the 

classroom had different experiences in their past academic lives, during the beginning of the 

semester the teacher worked with the students to establish the norms to create an environment 

where students could learn mathematics meaningfully. Since the current study was conducted in 

the second semester, the teacher‟s establishment of the social norms was not covered by the data 

set. However, the current study documented how the teacher sustained that environment.  

In order to help students to learn mathematics with understanding she asked students to 

explain their answers. She also encouraged them to express their agreement or disagreement with 

the given explanations. This way, the students had a chance to discuss the mathematical ideas 

that were brought up by different students. It helped students not only learn the answers but also 

understand why some solutions worked and others didn‟t. In the whole class discussions, the 

teacher encouraged the students to explain their answers even when they solved the problems 

incorrectly and asked the other students to help out their friends. This strengthened the sense of 

community where students help each other and share ideas without being shy.  

As the students were seventh graders, they sometimes did not behave appropriately. At 

these points, the teacher reminded them of how they needed to behave in the classroom and 

encouraged them to discuss in productive ways. This caused those students who did not behave 

appropriately to change their behaviors, which resulted in the creation of a comfortable 

discussion environment. As Stephan knew that students not only needed to learn mathematics but 

also how to take responsibility, she often encouraged them to be responsible for their learning 

through asking questions when they did not understand or finding out the necessary works that 

were done in the classroom when they were absent.  
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Another important role of the teacher was to facilitate a genuine mathematical discourse 

where the students could explore the mathematical ideas. In order to improve the communication 

of ideas, the teacher often restated students‟ solutions in a clear (or sophisticated) way to help the 

other students understand those ideas. Additionally, in order to help them stay focused on each 

other‟s solutions, she asked them to restate their friends‟ explanations. This helped them to grasp 

the ideas that they had not thought of themselves. During the discourse the teacher also 

introduced the mathematical vocabulary that the students needed to know when they invented 

new ideas. This was helpful for students to increase the sophistication of their explanations and 

to learn about the mathematics terminology. Stephan also asked questions that promoted higher-

level thinking, which the students could answer after comparing and contrasting multiple 

solutions. These types of questions not only helped the students to develop a deeper 

understanding but also allowed for lively discussions.  

One of the teacher‟s practices was to support the development of sociomathematical 

norms in order to facilitate the mathematical communication among the community members. 

To this end, the teacher encouraged the students to give conceptual explanations with their 

answers. In the classroom during the discussion of the solutions of the problems, Stephan 

encouraged the students to come up with mathematically efficient and/or sophisticated ways as 

well as different ways. The aim of the teacher was to help students see the different possible 

answers of the problems and give them opportunity to select the ones that made more sense to 

them during the discussion. She also organized the tasks such that the students could notice a 

pattern, make conjectures, and then prove them. This way, the students discovered the important 

rules themselves rather than being given them ready-made. It also helped the students to 

remember the rules easily by folding back to the images that they developed. In order to help 
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students make conjectures and prove their solutions, the teacher also introduced tools as 

supportive reasoning devices.  

Capitalizing on students‟ imagery to create inscription and notation was also an essential 

classroom practice of the teacher. To support imagery, the teacher first created an instructional 

sequence grounded in a financial context where students made sense of positive and negative 

numbers as well as the integer operations. During the classroom instruction the teacher supported 

the students to develop situation-specific imagery with a discourse where the students could 

imagine the situation given in the problems. These situation-specific images were used as a 

resource to fold back to in the subsequence tasks. As the students explained their solutions using 

the financial context, the teacher introduced tools in order to support students‟ reasoning. The 

tools helped students to explain their reasoning to others and to organize students‟ ideas. The 

most important of these tools was the vertical number line and it supported notational imagery. 

By using both situation specific and notational imagery, the students could make sense of integer 

operations and even reinvent some of the rules of integers. 

Finally, the teacher also had an important role in developing small groups as communities 

of learners. In order to keep the small group discourse alive and give equal responsibilities to the 

students the teacher applied several strategies. In general the teacher‟s practice was to ask 

students to think about the problems first individually and then share their answers with their 

friends in the small group. To keep the discussions interesting and allow students to interact with 

their friends other than those in their small groups, the teacher also sometimes asked the students 

to find themselves a partner to discuss their solutions. If she asked them to submit one work from 

each group, she gave each student a different role and switched them every day in order to give 

equal opportunity for all students. Before asking students to work in their small groups, she 
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always explained the task as well as the students‟ role very clearly. During the discussion in 

small groups, she walked around the classroom to collect data rather than fixing students‟ 

answers. In order to understand students‟ solutions, she also asked them to explain their answers. 

This helped her to understand their reasoning and decide whether she needs to bring those ideas 

to the whole classroom discussions. When she was walking around the classroom, as she noticed 

that students had difficulties solving the problems, she encouraged them to talk to their group 

members and compare their answers. 

 In summary, all the practices discussed in this chapter were interrelated to each other. 

The teacher created and sustained a productive standards-based teaching environment by 

applying all those practices without abandoning one for other. For example, since students 

explained their solutions (social norms), the teacher could understand their ideas and posed 

higher-level questions to support discourse. This gave the students opportunities to clarify their 

ideas and generalize them by making and proving conjectures (sociomathematical norms).  Since 

the teacher supported the development of imagery, the students could prove those conjectures by 

using the images that they developed. Finally, the small groups allowed mini discussion 

environments where students cooperated and organized their ideas before the whole class 

discussions.  
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CHAPTER SEVEN: CONCLUSION 

In this study, the planning and classroom practices of an expert middle school 

mathematics teacher were analyzed in order to shed light on what the teacher does and why she 

does them for a successful implementation of a mathematical environment consistent with the 

tenets of the NCTM Standards (NCTM, 1989, 1991, 2000). While the answers to these questions 

are given in the analysis, this chapter reflects on the findings and draws overall conclusions. The 

main conclusions that emerged from the current study are: 

1) The teacher used a diverse set of practices with each practice comprised of multiple 

actions to create and sustain a standards-based environment  

2) Teaching in line with the NCTM Standards require a rich and connected body of 

knowledge about students, curriculum, content, and literature 

3) The depth of the teacher‟s knowledge allowed her to develop practices that are 

consistent with her beliefs and goals; and 

4) Planning and classroom practices are highly interrelated 

Each of these conclusions is elaborated in the following sections by using examples and 

reflections from the literature and the analysis. 

Practices 

The planning practices of the teacher included preparation, reflection, anticipation, 

assessment, and revision. Preparation prior to the beginning of instruction had a central place in 

planning. Preparation included actions such as creating an HLT, designing an instructional 

sequence that would achieve objectives and contemplating on the big ideas of the unit. 

Reflection involved thinking about the classroom interactions of the current year as well as the 

previous years to evaluate if the instruction was taking place as planned. Anticipation was highly 
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related to reflection but it went one step further by trying to conjecture what potential actions 

may transpire in the classroom. While reflection involved looking back to on the past events, 

anticipation involved looking forward to what might happen next. Assessment was another 

important practice of the expert teacher and was comprised of both summative and formative 

assessment. It helped the teacher understand the students‟ progress and identify their 

misconceptions and difficulties. During the revision the teacher improved her instructional 

sequence and her methods of teaching based on the feedback acquired through reflection, 

anticipation, and assessment. All these practices were conducted in learning communities. In the 

teacher meetings the teachers applied all those practices. Thus, although collaboration was not 

considered as a separate practice it empowered the other practices. Each of these practices was 

comprised of multiple actions which were discussed in detail in Chapter 5. Table 5 given below 

summarizes these actions and indicates which beliefs, goals, and knowledge drove the formation 

of these actions. 

Table 5: Planning practices (refer to Appendix B for the codes) 

PRACTICE 1: PREPARATION 

Actions Knowledge Beliefs Goals 

Creating HLT KS1, KP8 BT5  

Creating Instructional Sequence KP9, KS1, KC2 
BL5, BT15, 

BM3 
 

Reading and adapting relevant literature KP4,  KP6, KS1 BL1  

Unpacking big ideas KC1 BT5,BT8 GO4, GO5 

PRACTICE 2: REFLECTION 

Reflecting on previous year‟s instruction KP4 BL5 GO3 

Making sense of students‟ solutions KP7 BT4, BM1  

Thinking about the big ideas of the following day‟s classroom KP2 BT4 GO3 

Analyzing students‟ works to initiate discourse for the 

following day 
KC4 

BM4, BL8, 

BT4,BT6 
 

Reflecting on the classroom environment KC3, KC4 BT2 GO1 

PRACTICE 3: ANTICIPATION 

Anticipating possible discourse during the introduction of the 

task 
KP4 BL6 GO5 
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Working on the problems before the instruction KP1, KC1  GO3, GO6 

Anticipating students‟ thinking KP1 BM4, BT12 GO5 

PRACTICE 4: ASSESSMENT 

Creating formative assessment tasks KC1 BT8, BM3 GO3,GO6,GO7 

Summative assessment KS1, KP2 BL3, BT14  

PRACTICE 5: REVISION 

Revising the instructional sequence KC1, KP7 BM1 
GO4, GO5, 

GO6 

  

Classroom practices included creating and sustaining social norms, facilitating genuine 

mathematical discourse, supporting the development of sociomathematical norms, capitalizing 

on students‟ imagery to create inscriptions and notation, and developing small groups as 

communities of learners. The expert teacher had an essential role in sustaining the norms such as 

encouraging students to explain their reasoning, stating their agreement and disagreement and 

encouraging them to take responsibility. During the discourse the teacher supported students‟ 

mathematical understanding by asking higher-level questions, restating students‟ words in a clear 

language and introducing the vocabulary. The expert teacher supported the sociomathematical 

norms by several actions such as encouraging students to give conceptual explanations, and seek 

efficient and different solutions. Imagery helps students give meaning to mathematical activities 

which adds richness to their mathematical reasoning and understanding. The teacher supported 

students‟ imagery by creating inscriptions and notation based on students‟ reasoning. For 

example, the teacher introduced the vertical number line after the students brought the “pay off” 

idea. Finally, the teacher also supported development of small groups as communities of learners 

by encouraging students to help each other, discuss their solution and come to an agreement. 

Table 6 illustrates the actions that the expert teacher performed during the execution of the 
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classroom practices together with the highly activated beliefs, goals, and knowledge that underlie 

these actions.  

Table 6: Classroom practices (refer to Appendix B for the codes) 

PRACTICE 1: CREATING AND SUSTAINING SOCIAL NORMS 

Actions Knowledge Beliefs Goals 

Encouraging students to express agreement or 

disagreement 
KC1, KP2  GO1, GC3 

Encouraging students to understand others‟ solutions KP3 BT9 GC4 

Encouraging students to explain their solutions KP10 BL2 GO1 

Asking students to repeat other students‟ solutions   
GC3, GO1, 

GO7 

Encouraging students to behave respectfully KC3 BL7, BL8  

Encouraging students to use mistakes as learning 

opportunities 
 BL7, BL8, BT6  

Renegotiating social norms KP11 BT2  

Encouraging students to take responsibility/ownership 

for their learning 
KC3 BL1, BL3  

PRACTICE 2: FACILITATING GENUINE MATHEMATICAL DISCOURSE 

Introducing mathematical vocabulary when students 

have invented an idea 
KS1 BL5, BT10 GO2, GC1,  

Asking questions that promote higher level thinking KS1 BT16 GC5 

Restating students‟ explanation in a clearer/advanced 

language 
 BT13 GO3 

Using solutions effectively to engineer the teacher‟s 

summary 
 BT7,BM1, BL5 GO2, GO3 

PRACTICE 3: SUPPORTING THE DEVELOPMENT OF SOCIOMATHEMATICAL NORMS 

Encouraging students to give conceptual explanations KP2 
BM6, BT9, BL1, 

BL5 

GC2, GC3, 

GC5 

Encouraging efficient solutions  BT9, BM4 GC4 

Encouraging students to make conjectures  
BM2, BM5, BL7, 

BT7 
GC6 

Encouraging students to express their reasoning and 

proof 
Kp2, KP11,KS1, KP7 

BM1, BL2, BT2, 

BL7, BL8 

GO1 

GC7 

Encouraging different solutions  BM2, BT9 GC6,GO1,GL1 

Encouraging sophisticated solutions  BM2,BT9  GO7, GC7 

PRACTICE 4: CAPITALIZING ON STUDENTS’ IMAGERY TO CREATE INSCRIPTIONS AND 

NOTATION 

Building the sequence on a context that students can 

imagine 
KP7, KS1 BL5 

Gc1, Gc3, 

GO5 

Modeling students‟ informal thinking KP9  GO6, GL1 
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Introducing a tool as a supportive reasoning device Kp2  GC5, GO6 

Discussing correct and incorrect uses of a tool  BM4,  BL8, BT4 GO1 

Encouraging students to draw on previous images KP2 BM1 
GO2, GO5, 

GC6 

Introducing mathematical symbolizations KP5 BM7, BL6, BT10  

Encouraging students to record their thinking KP7, KP11 BL8, BT2, BM4 
GO6, GO7, 

GO5 

Recording students‟ ideas on the board KS1, KP1  GO7, GO5 

Continuing to support more abstract ideas with 

imagery 
 BM7 

GO5, GC6, 

GC7 

PRACTICE 5: DEVELOPING SMALL GROUPS AS COMMUNITIES OF LEARNERS 

Encouraging students to explain to each other KC3 BL4, BL9 GO1 

Asking students about their solution methods KS1, KP1 BT11  

Encouraging students to draw on their previous 

images 
KP3 BT11, BT2,BT6 GO5 

Collecting data  BM1, BT3 GO1, GC6 

Clarifying the task before students start to work in 

small groups 
KP7 

BT12, BL3, BT6, 

BM4 

GO1, GO2, 

GO5 

Encouraging students to ask each other for help  BL7, BT1  

Encouraging students to come to an agreement  KP3 
BL3, BM1, BT7, 

BT13 
 

Not correcting students‟ answers immediately 

 
KP1, KP2 BL8, BL9  

 

Knowledge and Standards-Based Teaching 

 The analysis illustrated that the teacher‟s various types of knowledge played key roles in 

her successful implementation of a standards-based classroom. In particular, the teacher‟s 

knowledge about content, students, curriculum, and literature shaped her practice of establishing 

a productive teaching and learning environment. In the following, the effects of each type of 

knowledge on the teacher‟s practice are discussed and supported with examples from the 

analysis. 
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Content knowledge 

The content knowledge of the teacher provided the necessary foundation upon which the 

instructional sequence was built. It included knowledge about positive and negative numbers, 

comparing and ordering them; operations such as addition, subtraction, multiplication, and their 

relationships; the properties of operations such as distribution and association properties; 

additive inverses; and the mathematical symbols and notations. 

The teacher‟s rich knowledge of content helped her think flexibly during the discussion 

and ask higher level questions when she found the opportunity. This helped students explore 

important mathematical ideas and come up with conjectures. For instance, in one of the class 

sessions after the teacher gave a task where the aim was comparing the given net worths and 

finding the difference using a supportive number line, one student stated that he found a pattern 

when two numbers were in different sections (when one number was positive and the other was 

negative). Another student added that he also noticed a pattern when both numbers were positive. 

In order to encourage students to make sense of what those patterns suggested and to reach a 

general consensus the teacher asked students to analyze the two negative numbers. The teacher‟s 

content knowledge of the positive and negative numbers, the relationship with each other, the 

effect of operations applied on them, and the use of the number line helped her understand the 

students‟ conjectures and ask question that led students to discover a general pattern. When this 

happened, the teacher was not expecting students to put forward these conjectures but her 

content knowledge allowed her to easily understand what students said and facilitate the 

discourse with higher-level questions where students could analyze different situations and arrive 

at a conclusion.  
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Knowledge about students 

The teacher‟s knowledge about students was accumulated through various sources such 

as her experiences from previous years, studying of literature about student learning, interaction 

with other teachers and direct communication with her current students. This body of knowledge 

allowed her to anticipate students‟ behaviors, solution strategies, difficulties and misconceptions 

as well as the potential images that they might develop. 

The teacher‟s knowledge about students‟ difficulties and misconceptions helped her 

decide what to focus on during the instruction to help students overcome those misconceptions. 

For instance in one of the planning sessions, she anticipated that students might have difficulty in 

ordering the numbers especially the negative ones on the number line. Thus, she suggested 

creating a task that would focus on comparing two different net worths and finding the difference 

between them. In order to help students make sense of the numbers she supported it with a 

vertical number line that students could use for reasoning. The class sessions showed that some 

students had misconceptions related with ordering the numbers and using the vertical number 

line together with the context helped them to make sense of why the numbers that have greater 

absolute value are below the numbers that have lesser absolute value. 

Having knowledge of students from previous years also helped the teacher to decide how 

to orchestrate the classroom discourse to bring out students‟ ideas. For instance, in the first 

teacher meetings Stephan together with the other teachers reflected on how their students 

interacted with the sequence in the previous year. This enabled them to come up with effective 

ways to introduce the instructional sequence. Once the instruction started they used both the 

knowledge of previous years as well as the current students to decide on different ways of 

introducing tasks. For instance, in one of the daily planning sessions the teacher stated that 
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during the small groups she observed that some students equated negative net worth to no net 

worth. Based on this knowledge, she included questions in her plan that involved both negative 

and zero net worth and encouraged students to compare them in classroom discussions. The 

teacher often gathered her knowledge about the students from the classroom discussions, small 

groups and homework assignments and used this knowledge to plan for the following day‟s 

instruction. 

The teacher also acquired knowledge about students by reading the relevant literature 

pertaining to how they learn mathematics in general as well as how they learn particular topics 

and their difficulties with these topics. She utilized these difficulties in planning sessions. For 

example, in the teacher meetings she expressed the difficulties of understanding negative 

numbers in the history of mathematics and used this knowledge to create activities to help 

students conceptualize the net worth as an abstract quantity. Her general knowledge about 

learning theories also had an important effect on her practice. Since from the literature, her past 

teaching experiences, and her previous research she knew that learning is both a social and 

individual activity, she tried to create and sustain that kind of environment in her instruction. For 

example, after introducing tasks to the students, she gave them time to think on them 

individually and then talk with their partners and share their ideas. Additionally, her knowledge 

about students‟ possible behavior such as being reluctant to explain their ideas and ask for help 

played a key role in her small group practices. 

Knowledge of curriculum and standards 

The teacher‟s curriculum knowledge included the knowledge of state standards, 

knowledge of standards for Teaching Standards (NCTM, 1991) and the NCTM Standards 

(NCTM, 1989, 2000). She incorporated this knowledge into the creation of the instructional 
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sequence as well as her planning and classroom practices. For example, during the creation of 

the instructional sequence she checked whether she covered the objectives that were supported 

by the state standards (e.g. whether it supports students to use and justify the rules of integers).   

The knowledge of Teaching Standards, which emphasizes the importance of creating 

worthwhile mathematical tasks, teacher and students‟ roles in discourse, tools for enhancing the 

discourse, and analysis of teaching and learning had an essential impact on the teacher‟s practice. 

During the selection and creation of the tasks, she considered whether the task would give 

students opportunity to make sense of mathematics. For example, the first activities that were 

given to the students included a financial context including assets, debts, and net worth where 

students could connect it with their own lives and fold back to it in the activities that followed if 

they had difficulties. In the planning the teachers also talked about how to initiate a discourse 

after giving an activity or how they could support the shift in symbolization with effective 

discourse. For instance, in one of the early planning sessions, Stephan stated that she would 

initiate the discussion by asking students about a famous person‟s net worth and then continue by 

asking them to list the things the person might own and owe and stated that she would write them 

on the board. To keep the discourse alive she supported students to understand each other by 

restating their explanations herself in a clear language. Knowing about her role and the students‟ 

role in the discourse was helpful for Stephan to facilitate the discourse.  

The teacher‟s knowledge about the tools enhancing the students‟ understanding and 

discourse was important in her planning as well as classroom practices. She planned to introduce 

the vertical number line which became an inscriptional device that made students‟ imagery 

visible. The reason she selected the vertical number line over the horizontal number line was that 

it fit better to the supported situation specific imagery where the net worth went up by adding 
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assets and down by adding debts. Once she introduced the tools in the classroom based on 

students‟ reasoning, during her classroom instruction she also supported their use as the students 

needed. 

After each class session, the teacher reflected on the lesson and analyzed students‟ 

solutions and behaviors as well as her instruction. For example, in one of the reflections she 

stated she planned to talk about students‟ behavior since she noticed that during the whole class 

discussion some students started to behave without respect to each other. The analysis of 

teaching and learning during the planning was essential in her actions in the classroom.  

During the planning as well as in the classroom the teacher‟s knowledge of process 

standards were also effective in her decisions (NCTM, 2000). The process standards include 

problem solving, reasoning and proof, communication, connections, and representations. In the 

planning the teacher created tasks that would give students opportunities to inquire, develop, and 

deepen their understanding of mathematical ideas. For example she created tasks that asked 

students to find whether a given situation (e.g. taking away debt) was good or bad and to find the 

new net worth after they applied the given transactions. During the solutions to these activities 

students made conjectures related to the integer rules and proved them in the classroom. 

Additionally, in the classroom when students came up with conjectures, the teacher encouraged 

them by writing these conjectures on the poster board and asking to prove them.  

In the planning Stephan also considered the questions she might ask during the discourse 

that mainly focused on explanations of the reasoning such as asking the meaning of negative net 

worth or the difference between having no net worth and negative net worth. In the classroom, 

when the result of a problem was found to be negative she asked students to explain what it 

meant to be negative. Another example is that in one of the classroom sessions a student came up 
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with an additive inverse method during the solution of a net worth problem. The teacher 

capitalized on it and gave all students the opportunity to see this efficient method. The 

knowledge of communication where the community members feel confident to express their 

ideas and analyze the different strategies as well as the different answers had an important role in 

her actions. 

Additionally her knowledge about connections and representations was essential in her 

planning and classroom practices. In the instructional sequence each task was connected to the 

next one and the students built on one another to develop a coherent understanding. For example, 

in the beginning of the instruction the students developed the concepts of assets, debts and net 

worths. Then the teacher provided activities to help students understand comparing two numbers 

and finding the difference between them using these concepts. Also posing questions on the 

vertical number line as a supportive reasoning device where the positive and negative parts were 

shown in black and red color was a very helpful visual tool for students to make sense of their 

answers. In their reasoning, the students could connect this tool with the activities that they 

solved before by associating being in the black with having assets and being in the red with 

having debts. The students seemed to develop an imagery that as they go down on the number 

line they go more into debt (get into a deeper hole) and if they go up on the number line they 

climb out of debt (out of the hole). Thus, at the end of the discussion they stated that the numbers 

that are “more” negative should be below the numbers that are “less” negative. Thus the 

teacher‟s knowledge about the importance of connection as well as representation had played an 

essential role in her creation of the tasks that were connected to each other and supported with 

visual representation. 
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Knowledge of literature 

 The knowledge of literature that Stephan obtained by reading articles and books related 

to mathematics educations as well as the research she conducted during and after her doctoral 

studies had important effects on her practices. Before the study started she created an 

instructional sequence designed using the Realistic Mathematics Education theory. By using 

RME, she created an instructional sequence grounded in an experientially real context, which in 

this case was determining a person‟s financial net worth. She intentionally designed the sequence 

to gradually move from concrete to abstract. In order to achieve this, she supported tools to 

reinforce students‟ imagery.  

 The teacher‟s knowledge about the importance of a hypothetical learning trajectory 

played a vital role in her planning and instruction. During the planning, she used the HLT that 

she created to define the taken-as-shared interests, possible topics of discourse, tools, imagery, 

and gestures for the next class sessions. For example, in the HLT for the first activity the tool 

was the net worth statement template and the possible topic of discourse was conceptualizing the 

net worth as an abstract quantity. Thus, during the instruction most of the decisions the teacher 

gave were aligned with supporting this idea. For instance, she intentionally did not focus on 

students‟ difficulties about the signs since she knew from the HLT that they would be the focus 

of later activities.   

Practices Consistent with Beliefs and Goals 

 Previous studies point out that teachers‟ practices are not always consistent with their 

beliefs and goals (Thompson, 1992).  Although many teachers believe that they apply the 

practices that are essential for a standards-based classroom, they do not change the very essence 

of their practice (Stigler & Hiebert, 1997; Hiebert & Stigler, 2000; Hiebert et al., 2005). For 
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instance, even though teachers physically support the environment that standards suggest such as 

creating small groups or using manipulatives, they do not use this environment effectively to 

promote students‟ understanding. This is ascribed to several reasons such as not having the 

required knowledge (Borko et al., 1992), having superficial beliefs (Kaplan, 1991), relying too 

much on mathematical beliefs while undermining teaching and learning beliefs, time constraints, 

and the pressures of standardized tests (Raymond, 1997). 

 In the current study, however, the teacher‟s practices were found to be consistent with her 

beliefs and goals. One reason for that could be the rich and connected body of knowledge she 

brought to both classroom and planning pertaining to knowledge about students, mathematics, 

curriculum and standards, and literature. This knowledge helped her overcome the various 

difficulties that are outlined in the literature. For example, due to her knowledge of the big idea 

and goals of each class session from the HLT and the instructional sequence, she did not let the 

discussion stray away from them, which allowed her to better cope with time constraints. She did 

not remediate all the misconceptions or address all the questions that the students came up with 

in the class but rather focused on the ones related to the big ideas and the current goals. She 

knew from the HLT that dealing with those misconceptions and questions would be the focal 

points of future class sessions. 

Secondly, the teacher‟s knowledge allowed her to develop deep beliefs rather than 

surface beliefs which also supported her practice of being consistent with her beliefs and goals. 

In the literature, surface beliefs are found to give rise to practices that support the physical 

environment suggested by the standards such as creating small groups or giving tasks that might 

support conceptual understanding. However, these environments are not supported by the 

necessary communication and teacher behaviors that actually render those environments useful 
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(Kaplan, 1991). In the current study, it was observed that the teacher‟s knowledge helped her not 

only create these environments but also orchestrate effective communication within these 

environments. For example, during small group activities she circulated the room and 

encouraged students to draw on their previous images and explain their reasoning rather than 

simply correcting their mistakes. This empowered students to come up with their own methods 

and identify the problems in their own reasoning. In the whole class discussions, she knew 

through her knowledge of the literature and experience that social norms are crucial for a 

productive discussion environment. Thus she first established these norms and renegotiated them 

as necessary to support an effective and respectful classroom environment. These practices 

illustrated that the teacher in the current study had deep beliefs rather than surface beliefs, which 

allowed her practice to be aligned with her goals and beliefs. 

Another reason shown in the literature for inconsistency of beliefs and practices is the 

demands of standardized tests, which primarily assess the procedural skills rather than 

conceptual understanding (Raymond, 1997). This creates a dilemma for teachers as they think 

that spending too much time to develop conceptual understanding might not leave enough time 

to practice procedural skills. In this study, the teacher created an instructional sequence that 

included activities to develop not only imagery to support making sense of integers and integer 

operations but also the activities that included various textbook-like bare number problems 

where students could improve their procedural skills. Because the teacher knew from the 

beginning that these procedural activities were part of the instructional sequence, and students 

would be more successful in them once they develop the supportive imagery, she did not have to 

change her practice due to the pressures of standardized tests. 
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 Previous studies also cite the inconsistency between teachers‟ beliefs about the nature of 

mathematics and their teaching and learning beliefs as a reason for the conflict between practice 

and beliefs. Raymond (1997) found that when teachers‟ beliefs about the nature of mathematics 

are primarily traditional despite having non-traditional beliefs about teaching and learning of 

mathematics, their practice also tends to be traditional. This creates a conflict with their non-

traditional beliefs about how mathematic should be taught and how students learn mathematics. 

In the current study, the teacher‟s mathematics beliefs were consistent with her teaching and 

learning beliefs. In fact, her most fundamental belief about mathematics, which is that 

mathematics is a sense making activity that involves problem solving, making conjectures, 

analyzing solutions, and proving arguments was supported by her learning and teaching beliefs. 

For example, her belief that students learn mathematics when they understand was in direct 

support of her belief that mathematics is a sense making activity. This fundamental mathematical 

belief was also supported by her teaching beliefs such as valuing students ideas and explanations 

empowers them to participate in classroom discussions through making conjectures and 

analyzing solutions. This coherency between the teacher‟s beliefs about mathematics, teaching, 

and learning appeared to be an important factor in her practice to be consistent with her beliefs 

and goals. 

Relationship between Planning and Classroom Practices 

Although many teachers consider planning at the heart of effective teaching, studies 

involving American teachers show that during planning most of the emphasis is put on the 

activities that students will go through rather than the goals of these activities as well as how 

students will interact with them (Shavelson & Stern, 1981; Clark & Yinger, 1987; Kilpatrick et 

al., 2001). The research also suggests that inflexible lesson plans may prevent teachers from 
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adapting to the inevitable changes that come up during instruction. Despite these challenges, 

planning has an ever more central place to be successful in a standards-based teaching and 

learning environment. However, planning to teach in line with the NCTM Standards as well as 

its relationship with classroom practices have rarely been explored in literature (Kilpatrick et al., 

2001). Shedding more light into this area has been one of the goals of the current study. In this 

section, examples from the analysis are used to illustrate how the teacher‟s planning practices 

affected her classroom practices as well as how the classroom practices helped the teacher to 

revise her planning. 

In the study, it was observed that the teacher performed effective planning practices that 

facilitated her instruction in the classroom. First, she created an HLT that outlined the possible 

route of students‟ learning by including the tools, supported imagery and gestures, taken-as-

shared interests, and possible discourse topics (i.e. big ideas). Based on the HLT, she created an 

instructional sequence, which was reinforced with a financial context. The instructional sequence 

was designed to connect the students‟ informal knowledge with progressively more abstract 

mathematical ideas. The creation of the HLT and the instructional sequence were crucial for the 

teacher in different ways. Based on them, she knew what the students needed to learn during the 

entire course of the unit from the beginning, which allowed her to organize the big ideas that she 

wanted to emphasize during the sequence. As she knew the big ideas of each class and what 

comes next, she could make better decisions during her instruction about what to focus on in the 

classroom and what could be deferred to later sessions. For example, during the initial part of the 

instruction some students had difficulty in their calculations when finding the net worth. Since at 

this point the teacher‟s aim was to develop the big idea that the assets and debts are intangible 

quantities that affect the net worth in opposite directions, she did not focus on those calculational 
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mistakes. She knew that performing calculations correctly and efficiently were the big ideas of 

later activities related to transactions. 

The teacher meetings that were held before and during the instruction gave the teachers 

opportunities to talk about each activity in detail. In these meetings, the teachers worked on the 

activities individually and collaboratively to anticipate students‟ possible solutions. For example, 

the teachers anticipated that students might have difficulty in understanding the negative net 

worth. To help students overcome this difficulty, they talked about how they could introduce this 

concept, what kind of tools and imagery might support students‟ understanding of negative net 

worth and what types of questions they could ask to assess students‟ understanding. In these 

meetings, the teachers decided to introduce the vertical number line as a supportive reasoning 

device and thought that it would match well with the “pay-off” idea that students were likely 

develop. These anticipations actually materialized in Stephan‟s class and the work they did 

during the planning allowed her to effectively deal with students‟ misconceptions. 

The teacher‟s reflection after each day‟s class was also an essential part of her planning 

practice. During this reflection, she analyzed the events of the class session to evaluate if a 

renegotiation of social norms was necessary, what kinds of misconceptions and difficulties the 

students experienced, whether she was able to achieve her goals, and whether she was on-track 

with regards to the instructional sequence. She used this self-analysis to revise her plan for the 

following day‟s class session. In one of the class sessions, she noticed that some students started 

to behave in arrogant ways, which was unacceptable according to the social norms that they had 

established. The teacher was worried that this type of behavior could affect the quality of the 

whole class discussions as it might cause the other students to be timid about sharing their ideas. 

Although she talked to the students about the inappropriateness of this behavior during the class 
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session in which it occurred, in her daily reflection she decided to talk more about the 

importance of humility and being respectful the following day. 

The teacher‟s planning practices facilitated and gave direction to the class instruction. 

The teacher‟s classroom practices, on the other hand, equipped her to do more effective 

planning; thus the relationship between them was found to be mutual as shown in Figure 28. 

During the class sessions the teacher collected data and used this data to revise her plan. For 

example, at the beginning of the instructional sequence after the teacher gave students some 

problems that included different types of net worths such as positive, negative, and zero, she 

started to walk around the small groups. One of her practices was to ask students to explain their 

solutions. She noticed that some students had difficulty distinguishing between negative and zero 

net worth. Based on this observation she decided during the planning to include more questions 

in the next day‟s activity that emphasize the difference of these two types of net worths. She also 

sometimes collected students‟ works from the class activities and made plans according to them 

such as creating bell work questions that would help students to focus on some of their 

misconceptions.   

Another example of the teacher‟s classroom practices affecting her planning was from the 

classroom discourse where the teacher encouraged students to use the vertical number line in 

solving the problems with integer operations. Although the vertical number line helped many 

students make sense of the operations and correctly solve the problems, the teacher noticed that 

in the whole class discussion that some students used it in ineffective ways. She brought this into 

the planning meetings held with the other teachers and they decided to create a task to resolve 

this problem. The task showed different solutions of an integer operations problem on the 

number line and asked students which solution was correct and why. During the discussion of 
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this task, the students who had problems with using the number line effectively realized the 

appropriate ways of using this tool.  

In the class sessions, the teacher also encouraged students to conjecture related to the 

mathematical ideas that they noticed in the solution of the problems. When the teacher noticed in 

the class discussion that some students were close to detecting a pattern or a general rule but 

needed more support, she prepared tasks in the planning to help students discover these patterns 

or rules.  For example, in order to support the students‟ imagery in one of the class sessions, the 

teacher gave a task that asked students to find out whether a person‟s decision was good or bad 

based on the given statement and then she introduced the mathematical symbols + and -. During 

the solution of the problems that were given in the classroom some students noticed a pattern, 

but they could not generalize it (i.e. they observed that taking away debt was a good decision but 

they did not think of the other combinations). The teacher used this in her plan for the next day 

and created a bell work activity that includes the other combinations such as adding debt and 

taking away asset during which students discovered that +(-) and –(+) are bad decisions while  –

(-) and +(+) are good decisions with the same effect.  
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Figure 28: Planning and teaching cycle 

As illustrated by the examples above, the teacher collected data during her classroom 

practices and used them to support her planning. Thus while her planning practices facilitated the 

classroom instruction, her classroom practices equipped her with the knowledge to refine her 

plans. 

Implications 

This study analyzed an expert teacher‟s planning and classroom practices and extracted 

the beliefs, goals, and knowledge that underlay the development of those practices. It was found 

that the teacher‟s rich and connected body of knowledge as well as her wide set of beliefs and 

goals were essential to teach consistent with the NCTM Standards. During planning, it was 

observed that effective collaboration within a learning community of teachers resulted in more 



251 

 

effective planning. This highlights the importance of giving teachers sufficient collaborative 

planning time as part of their regular schedule. 

In this study, the teaching-in-context theory was used to explain the expert teacher‟s 

practices during a five week long period. Therefore, different from earlier studies which used the 

theory in explaining the teacher‟s decision making process in short periods (e.g. one classroom 

session), this study showed that the theory can be used to interpret the teacher‟s behaviors in a 

longer period. 

The findings of this study can be used by teacher educators to create an environment in 

professional development as well as pre-service teacher courses to help teachers understand the 

dynamics of a standards-based environment and what it takes for them to teach consistently with 

NCTM Standards. Educators might create similar types of environments to those described in 

this study and observe which practices and actions the teachers have difficulty to apply, and give 

them opportunities to improve on those actions. Additionally, the lists of practices and actions 

that are found by this study might help educators to evaluate whether pre-service teachers teach 

aligned with standards during their internship. 

In future studies, the sources of difficulties that hinder teachers from performing effective 

practices might be investigated based on their beliefs, goals, and knowledge. An important 

question might be whether difficulties arise primarily due to teachers‟ lack of knowledge or 

beliefs and goals that are inconsistent with standards-based teaching. Once the reasons are 

determined, future studies may investigate how to help teachers change their beliefs, goals, and 

knowledge to make them aligned with standards-based teaching. 

Another future investigation may involve evaluating the student achievement between the 

teachers who took professional development courses that include the application of the practices 
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that were found in this study and those teachers who teach traditionally. Finally, the effect of the 

co-teacher in supporting a standards-based teaching environment can also be investigated. 

Conclusion 

 This study investigated an expert middle school mathematics teacher who teaches 

consistent with the tenets of the NCTM Standards during the instruction of a seventh grade 

mathematics class on integers with the purpose of documenting her planning and classroom 

practices; understanding their relationship; and explaining them based on the teacher‟s beliefs, 

goals, and knowledge. The analysis demonstrated that the teacher draws from a rich and 

connected body of knowledge of content, students, curriculum, and standards as well as literature 

in her planning and teaching. This knowledge allowed her to develop practices that are consistent 

with her beliefs and goals. It was found that planning and classroom practices were highly 

interrelated with one another in that, they often provided the necessary means of subsistence to 

each other. For example, the collection of data by the teacher through various classroom 

practices provided her the material needed for planning, and the plan in turn, facilitated the 

application of classroom practices. This relationship created a planning and teaching cycle that 

lies in the heart of a productive inquiry and standards-based classroom.  
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APPENDIX A: IRB APPROVAL 
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APPENDIX B: BELIEFS, GOALS, AND KNOWLEDGE 
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Beliefs 

Beliefs about learning 

 BL1: To learn mathematics with understanding 

 BL2: Each student may learn differently 

 BL3: Taking responsibility is important in learning 

 BL4: Learning is both an individual and social process 

 BL5: Students learn better with an instruction that relates to their informal knowledge 

 BL6: Students learn better with an instruction that moves from concrete to abstract 

gradually 

 BL7: An environment that nurtures respect and a sense of community plays an essential 

role in students‟ learning 

 BL8: Students learn from their mistakes 

 BL9: Students reorganize their ideas when they explain 

Beliefs about teaching 

 BT1: The teacher is not sole source of knowledge 

 BT2: The teacher is responsible for creating and sustaining an environment where ideas 

can be discussed freely and respectfully 

 BT3: Teacher needs to support an environment where mutual trust is important and 

students represent their ideas willingly 

 BT4: Valuing students ideas and explanations empowers them to participate in class 

discussions  

 BT5: Effective teaching requires careful planning  



257 

 

 BT6: The teacher should be fair in the class and provide equal opportunities for all 

students to participate 

 BT7: Having sufficient time to think (and talk to group members) is important before 

discussing solutions (or proving conjectures) 

 BT8: Formative and summative assessments play a crucial role in effective teaching. 

 BT9: Teacher is responsible to provide opportunity to students to see efficient, different 

and sophisticated ways during the class discussion 

 BT10:  The teacher is responsible to introduce mathematical symbolization(words) 

 BT11:  Being able to explain shows students‟ understanding and notice their mistakes  

 BT12:  The teacher is responsible to clarify students‟ role and the task that they will work 

on in their groups 

 BT13: The teacher is responsible for efficiently managing the time 

 BT14: Collaborating with other teachers essential to improve instruction and assessment 

 BT15: Introducing tools as ready-made might cause difficulty as the relationship between 

the tool and the task would not be clear 

 BT16: The teacher should pursue the ideas in the students comments when appropriate 

Beliefs about mathematics 

 BM1: Mathematics is a sense-making activity 

 BM2:  Making conjectures is important to understand mathematical ideas 

 BM3:   Problem solving is important to understand mathematical ideas 

 BM4  Analyzing solutions (compare-contrast) is important to understand mathematical 

ideas 



258 

 

 BM5:  Proving arguments is important to understand mathematical ideas 

 BM6: Not all mathematical solutions are equal. Students should know what counts as an 

acceptable, sophisticated, different and efficient solution 

 BM7: Students should make sense of the symbols 

Goals 

Overarching goals 

 GO1: Renegotiate expectations (social and sociomathematical norms) as necessary during 

the instruction  

 GO2: Support a discourse that stays alive and interesting 

 GO3: Focus on(support) the big idea of the lesson/ following lesson 

 GO4: Tackle one big idea at a time  

 GO5: Support development of meaningful imagery by folding back to previous images 

 GO6:  Support students‟ ideas with tools when they have the reasoning 

 GO7: Ensuring that students understand the mathematical ideas that are discussed in the 

class 

Content goals  

 GC1: Define the terms assets as what you own, and debts as what you owe 

 GC2: Define the net worth as difference between assets and debts  

 GC3: Think of net worth as intangible quantity 

 GC4: Explore additive inverse 

 GC5: Model structured gap using black-red number line 

 GC6: Explore transactions 
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 GC7: Solve bare number sentences with integer operations  

Local goals  

 GL1: Bring a student‟s idea from another period to the class 

Knowledge 

Pedagogical knowledge 

 KP1: Knowledge of possible students‟ answers (including possible images) 

 KP2: Knowledge of possible misconceptions (difficulties) 

 KP3: Knowledge of possible behavior (tendency) 

 KP4: Knowledge from the previous years of instruction 

 KP5: Knowledge of relevant literature related to integers sequence 

 KP6: Knowledge of history of mathematics 

 KP7: Knowledge of tools and imagery 

 KP8: Knowledge of design research and HLT 

 KP9: Knowledge of RME 

 KP10: Knowledge of different representations 

 KP11: Knowledge of current students(or events) in the class 

Subject-matter knowledge 

 KS1:  Knowledge of integers   (knowledge of net worth, knowledge of additive inverses, 

knowledge of integer rules etc.) 
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Curriculum knowledge 

 KC1: Knowledge of the instructional sequence (e.g. goal of each activity)  

 KC2: Knowledge of state standards 

 KC3:  Knowledge of national Principles and standards  

o Content standards (number and operations, algebra, geometry, measurement…) 

o Process standards (problem solving, reasoning and proof, communication, 

connection, and representation) 

o Principles (equity, curriculum, teaching. learning, assessment, technology) 

 KC4: Knowledge of Professional Standards for Teaching Mathematics (referred as 

Teaching Standards) 

o Tasks 

o Discourse 

o Environment 

o Analysis of teaching and learning 
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Net Worth Statement 

 

Client Name 
 
 
Cash Assets Current Value 
 
Cash Bank Accounts 
Money Market Accounts 
Other Cash 
 

Investments 
 
Bonds 
Stocks 
Mutual Funds 
Annuities 
IRA’s 
Retirement Plans 
Real Estate 
Other Investments 

Personal Assets 
 
Household Contents 
Primary Residence 
Automobiles 
Other 
 

Total Assets 
 

Debts 
 
Mortgages 
Personal or Business Loans 
Automobile Loans 
Credit Cards/Charge Accounts 
Other Debts 

Total Debts 
 

Net Worth  
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Who is worth more, Cindy or Bobby?  Explain your conclusion in complete 

sentences. 

Net Worth Statement 
 

Client Name  Cindy 

 

Cash Assets  
Checking Account $110 
Money Market Accounts 
Savings Account $55 
Investments 
Bonds 
Mutual Funds 
Real Estate 
Other 
Personal Assets 
Income for tutoring  
 Bobby in math $80 

Received check for 

Babysitting Marsha’s kids $60 

 
Total Assets 
 
 
Debts 
 
Credit card charge for clothes $75 
Charge on Target card  $115 
 
 
 
Total Debts 
 
 
NET WORTH 

Net Worth Statement 

 

Client Name  Bobby 

 

Cash Assets  
Cash Bank Accounts $100 
Money Market Accounts 
Savings Account $105 
Other 
 
Investments 
Bonds 
Motorcycle $600 
Mutual Funds 
Real Estate 
Other 
Personal Assets 
Received check from Greg    $900 
 for fixing his car  
Other 
Total Assets 
 

Debts 
Mortgages 
UCF Loan for Books $1500 
Auto Loans 
Purchased surfboard $200 
 
Total Debts 
 

NET WORTH 
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Who is worth more money when Brad and Angeline get married? Explain in 

complete sentence.

Net Worth Statement 

 

Client Name  Angelina 

 

Cash Assets  
Checking Account  
Money Market Accounts 
Savings Account $100,000 
 
 
Investments 
Restaurant  $500,000 
Owns a movie production 
 company $250,000 
Owns Land in Namibia   $90,000 
Other 
 
Personal Assets 
 
Total Assets 
 
 
 
Debts 
Boat Loan $200,000 
Penalty for pulling out 
 of a movie deal $650,000 
 
Total Debts 
 
 
 
 
NET WORTH 

Net Worth Statement 

 

Client Name  Brad 

 

Cash Assets  
Cash Bank Accounts $150,000 
Money Market Accounts 
Savings Account  
Other 
 
Investments 
Owns a Planet Hollywood $450,000  
Mutual Funds 
Real Estate 
Other 
 
Personal Assets 
Car  
Other 
 
Total Assets 
 
 
Debts 
Owes David Clooney 
 in gambling debts   $90,000 
Auto Loans $175,000 
Owes Emily Anniston 
 a divorce settlement $525,000 
  
Total Debts 
 
 
NET WORTH 
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Make up a story and at least five statements for each person you choose above. Make sure you 

write a question below that has to be solved, then trade your paper with another group so they 

can solve your story problem. 

 

Net Worth Statement 

 

 

Client Name   

 

Cash Assets  
 
Investments 
 
 
 
Personal Assets 
 

 

 

Total Assets 

 
Debts 
 
 
 

Total Debts 

 

 

 

NET WORTH 

Net Worth Statement 

 

 
Client Name   

 

Cash Assets  
 
 
Investments 
 
 
 
Personal Assets 
 
 
 
 
 
Total Assets 
 
 
 

Debts 
 
 

Total Debts 

 

 

 

NET WORTH 
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The Dating 

Game 
 

If you were making a decision based upon financial 

worth only, who would you choose to date, bachelor 

number one, two or three? A positive sign indicates an 

asset, a negative sign indicates a debt. 

 

Bachelor Number One’s Worth Statement: 

 

 

 

 

 

 

 

Bachelor Number Two’s Worth Statement: 

 

 

 

 

 

 

 

Bachelor Number Three’s Worth Statement: 

 

 

 

 

 

 

 

Explanation 

Bank Balance: +$1000 

Car Loan: -$15,000 

Boat Loan: -$45,000 

Retirement Fund: +$60,000 

Net Worth:$ 

 

Bank Balance: +$10,000 

Investment in Offshore Oil: +$25,000 

Loss in Stock Market: -$50,000 

Retirement Fund: +$20,000 

    Net Worth:$ 

Bank Balance: -$100 

Investment in Energy Efficient Fuel: +$20,000 

Organic Sweet Potato Farm: +$5000 

Stock Market Loss on Mushrooms that power cars: -$20,000 

     Net Worth:$ 
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The Dating 

Game 
 

If you were making a decision based upon financial 

worth only, who would you choose to date, bachelorette 

number one, two or three? A positive sign indicates an 

asset, a negative sign indicates a debt. 

 

Bachelorette Number One’s Worth Statement: 

 

 

 

 

 

 

 

 

Bachelorette Number Two’s Worth Statement: 

 

 

 

 

 

 

 

Bachelorette Number Three’s Worth Statement: 

 

 

 

 

 

 

 

Explanation 

+$5900 

- $1700 

-$2000 

+$800 

     Net Worth: $ 

-$2900 

-$3700 

-$1800 

+$8000 

     Net Worth: $ 

-$13,000 

+$2000 

+$18,000 

-$7000 

     Net Worth: 
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Who’s Worth More? 

 

Paula Randy Simon 

 

 

 

 

 

 

 

 

 

 

Show your work and/or state your strategy: 

 

 

 

+$2000 

+100 

-$2000 

+3500 

-3500 

 

 

 

Net Worth 

+$1000 

-$1000 

+2000 

+500 

-2000 

-500 

+$60 

 

Net Worth 

 

+$20000 

-20000 

+7000 

-$2000 

-5000 

 

 

 

Net Worth 

 

   

+$20000 

-20000 

+7000 

-$2000 

-5000 

 

 

 

Net Worth 
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In the Red!!! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gilligan’s Net Worth is in the BLACK +$3000.  

 

Mary Ann’s Net Worth is in the RED -$2000. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

How much MORE is 

Gilligan worth than 

Mary Ann? Show this 

on the Net Worth 

Line. 

Accountants say that when a person’s net 

worth is above zero, they are said to be  

 

“in the black” 

 

When a person’s net worth drops below 

zero, they are said to be 

 

“in the red” 

 

$3000 

-$2000 
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Who is worth more?  

 

How much more?  

 

Show this on the Net Worth 

Line. 

Who is worth more?  

 

How much more?  

 

Show this on the Net Worth 

Line. 

Paris’ Net Worth is in the red -$20,000.  

 

Nicole’s Net Worth is in the red -$22,000. 

 

M. C. Hammer’s Net Worth is in the red -$100,000.  

 

Michael Jackson’s Net Worth is in the black +$220,000. 
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Net Worth Comparisons 

Use a Net Worth Number Line, if necessary, to solve each of the following problems. 

 

1. Sally is worth +$200 and Melissa is worth -$200. Who is worth more and how 

much more? 

 

 

2. Betty is worth -$1000 and Maria is worth -$1500. Who is worth more and how 

much more? 

 

 

3. Charlie is worth $500 and Brandon is worth -$700. Who is worth more and how 

much more? 

 

 

4. Gage is worth $900 and Nicholas is worth -$200. Who is worth more and how 

much more? 

 

 

5. Danny is worth -$50 and Andrew is worth -$250. Who is worth more and how 

much more? 

 

 

6. Stuart is worth $450 and Sergio is worth -$40. Who is worth more and how 

much more? 

 

 

7. Tisha is worth -$5000 and Anastasia is worth $1000. Who is worth more and 

how much more? 
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!!Don’t Cry Over Spilled Milk!! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Abigail lost an asset (a valuable coin) worth $8000. She wanted 

to figure out what she was worth now that the asset was taken 

away from her net worth statement. BUT the only copy of her 

net worth statement she could find has milk stains on it. Can you 

help her figure out her net worth now? 

Abigail’s Worth Statement 

 
 

 

Asset: $2,000 

Asset: $1,500 

Asset: $4,000 

Asset: $90,000 

 

Total Assets: $97,500 

 

 

Debt: $34,000 

Debt: $60,000 

Debt: $500 

Debt: $10,000 

Debt: $3,000 

 

Total Debts: $107,500 

 

Net Worth: - $10,000 
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James has the following Worth Statement: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Find his net worth: 

 

 

 

 

 

 

 

2. If he added another asset ($500) to his statement, how would that 

affect his net worth?  

 

 

 

 

 

3. What would be his net worth now? 

James’ Worth Statement 

 
1. Asset 1: +$200 

 

2. Asset 2: +$145 

 

3. Debt 1: -$200 

 

4. Debt 2: -$650 

 

5. Asset 3: +$650 

 

6. Asset 4: +700 

 

7. Debt 3: -$50 

 

8.  
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Frank has the following Worth Statement: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Find his net worth: 

 

 

 

 

 

 

 

 

 

2. Seminole County Bank sent him a letter saying that their computer made 

an error. They will be taking away that $650 asset (asset number 3 above). 

If the bank removes the $650 asset, how will that affect his net worth?  

 

 

 

 

 

3. What would be his net worth now? 

Frank’s Worth Statement 

 
1. Asset 1: +$1000 

 

2. Debt 1: -$1000 

 

3. Asset 2: +$2000 

 

4. Debt 2: -$650 

 

5. Asset 3: +$650 

 

6. Debt 3: -500 

 

7. Debt 4: -$500 
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Kim has the following Worth Statement: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Find her net worth: 

 

 

 

 

 

 

 

2. Debt 4 was a loan that Kim took out from her dad. However, Kim’s dad 

decided to be nice (WAY nice!) and told her that she didn’t ever have to 

pay him back. Therefore, we can take away the $3000 debt from Kim’s 

worth statement. If we remove the 3000 debt, how would that affect her 

net worth?  

 

 

 

 

 

3. What would be her net worth now? 

Kim’s Worth Statement 

1. Debt 1: -$1000 

 

2. Asset 1: +$2500 

 

3. Debt 2: -$6000 

 

4. Asset 2: +$9000 

 

5. Asset 3: +$7000 

 

6. Debt 3: -9000 

 

7. Debt 4: -$3000 
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!!??Smart or Stupid 

Decision??!! 
 

Which of the following students made bad 

decisions about their finances? 

 

Ann: She took away an asset of (+$200) from her 

net worth statement 

 

 

Bradley: He added an asset of (+$3000) to his 

net worth statement 

 

 

Christian: He took away an asset of (+$50) from 

his net worth statement 

 

 

Devon: He added a debt of (-$650) to his net 

worth statement 

 

Ernie: He took away a debt of (-$5400) from his 

net worth statement 

 

Fran: She took away an asset of (+$201) from her 

net worth statement 

 

Gracie: She added a debt of (-$67) to her net 

worth statement 

 

Herbert: He took away an asset of (+$450) from 

his net worth statement 
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Writing Money Transactions with Symbols 
 

TO SHOW A TRANSACTION TAKING PLACE WE WILL USE TWO SIGNS: 
 
The first sign will stand for the transaction (adding or taking away)  

and 
The second sign will stand for whether the amount is an asset or a debt. 
 
 
 
 
 
 
 
 
 
 
 
Jake takes away an asset of $4500. This can be written as:   - (+4500) 
  
Try the following, then check your answers. 
 

A. Frank adds a debt of $530. 
B. David adds an asset of $783 
C. Diane takes away an asset of $3420 
D. Michelle adds a debt of $624 
E. Deborah takes away a debt of $352 
 
ANSWERS: 
A. + (-530) 
B. + (+783) 
C. – (+3420) 
D. + (- 624) 
E. – (- 352) 

EXAMPLE: John ADDS a DEBT of $300 would be written as follows 
 

+ (-300) 

EXAMPLE: Sal TAKES AWAY a DEBT of $400 would be written as 
follows 

- (- 400) 
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Using the words ADD, TAKE AWAY, DEBT and ASSET, describe each 
transaction below: 
 
1. – (+300) 

 
 

2. + (-340) 
 
 
3. + (+534) 

 
 

4. + (342) 
 
 

5. – (-7344) 
 
 

6. – (+1200) 
 
 

7. – (890) 
 
 

8. + (- 6832) 
 
 

9. – (- 566) 
 
 

10. – (-1) 
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NET WORTH PROBLEMS 
Nancy has a net worth of $5000! A debt of $3000 is TAKEN AWAY. Is this good or bad? 
What is her net worth now! Draw your own Net Worth Trackers to help you figure these 
out, if you need them. 
 
 

1. Donald has a net worth of -$5000! A debt of $3000 is TAKEN AWAY. Is this 
good or bad? What is his net worth now! 

 
 
 
 

2. Meagan has a net worth of -$4300! A debt of $3000 is ADDED. Is this good or 
bad? What is her net worth now? 

 
 
 
 

3. Melanie has a net worth of +$600! A debt of $1000 is ADDED. Is this good or bad? 
What is her net worth now! 
 

 
 
 

4. Todd has a net worth of +$10,000! An asset of $3000 is ADDED. Is this good or 
bad? What is his net worth now! 

 
 
 
 
5. Monica has a net worth of -$7400! An asset of $3000 is TAKEN AWAY. Is this 

good or bad? What is her net worth now! 
 
 
 
 
6. Andrea has a net worth of +$2200! A debt of $3000 is ADDED. Is this good or bad? 

What is her net worth now! 
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 Net Worth Trackers 
For each of the problems below, use the Tracker to show whether each person 

is in the black, in the red, or breaking even. 

-$500 

$5000 

$500 

-$1500 

$500 

Transaction: 

+ ( - 4000) 

Transaction: 

- ( + 1000) 

Transaction: 

+ ( - 1000) 

Transaction: 

- ( - 2000) 

Transaction: 

- ( + 4000) 
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Net Worth Trackers 
For each of the problems below, use the Tracker to show whether each person 

is in the black, in the red, or breaking even. 

 

 

 

 

 

 

-$3000 

$500 

$1500 

-$500 

Transaction: 

- ( - 6000) 

Transaction: 

+ ( + 1000) 

Transaction: 

+ ( - 7000) 

Transaction: 

- ( + 2000) 

Transaction: 

- ( - 500) 

$500 
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Alice’s Net Worth 
Write number sentences for the following changes that occur to Alice’s net worth 

(Use a net worth tracker if you need to): 

1. Net Worth: $1500 

Transaction: Adds a debt of $600 

 

2. Net Worth: $600 

Transaction: Adds a debt of $1100 

 

3. Net Worth: - $400 

Transaction: Adds a debt of $450 

 

4. Net Worth: - $550 

Transaction: Adds an asset of $1900 

 

5. Net Worth: $1250 

Transaction: Adds an asset of $350 

 

6. Net Worth: $1600 

Transaction: Adds a debt of $400 

 

7. Net Worth: $800 

Transaction: Takes away a debt of $200 

Write number sentences for the following changes that occur to Alice’s net worth 

(Use a net worth tracker if you need to): 
 

8. Net Worth: - $2000 

Transaction: Adds an asset of $600 

 

9. Net Worth: - $1800 

Transaction: Adds a debt of $1200 

 

10. Net Worth: - $2600 

Transaction: Takes away a debt of $300 

11. Net Worth: - $2000 

Transaction: Takes away a debt of $500 
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After each transaction below, record the new NET WORTH (Use a net worth 

tracker if you need to): 

1. $45 adds an asset of (+$5) 

 

2. $50 adds an asset of (+$70) 

 

3. $100 adds a debt of (-$75) 

 

4. $200 adds a debt of (-$225) 

 

5. -$200 adds a debt of (-$105) 

 

 

A. $255 adds a debt of (-$200) 

 

B. $155 adds an asset of (+$50) 

 

C. $110 adds an asset of (+$15) 

 

D. $125 adds a debt of (-$325) 

 

E. -$100 adds a debt of (-$150) 

 

a) $255 adds (-80) 

 

b) $300 takes away (+100) 

 

c) $500 adds (-500) 

 

d)  -$100 adds (-300) 

 

e) -$400 takes away (+200) 

 

f) -$800 takes away (-100) 

 

g) -$200 takes away (-200) 
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After each transaction below, record the new NET WORTH: 

 

1. 95 add (+15) 

 

2. 150 add (+250) 

 

3. 360 add (-160) 

 

4. 225 add (-125) 

 

5. 75 add (-175) 

 

A. $600 + (- $250) 

 

B. $1200 + (+ $150) 

 

C. $500 - (+$105) 

 

D. $605 + (- $305) 

 

E. $700 + (- $100) 

 

 

I. - $250 + (+$60) 

 

II.  - $1900 - (- $100) 

 

II. - $90 + (+$100) 

 

IV.  $100 + (+$235) 

 

V.  $245 + (-$145) 

 

VI.  $100 + (-$180) 

 

VII. $ 80 + (-$180)
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Oops! Coffee Spill! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Somebody spilled coffee on Ruben’s Net Worth Statement. He is trying to 

figure out what transaction took place to give him a new net worth of $7000. 

What could it have been? List as many as you can think of.

Ruben’s Worth Statement 

 

Net Worth: $10,000 

 

 

 

 

Transaction: 

 

 

 

Net Worth:   $7,000 
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Oops! Coffee Spill! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Somebody spilled coffee on Fantasia’s Net Worth Statement. She is 
trying to figure out what transaction took place to give her a new 
net worth of $12,000. What could it have been? List as many as 
you can. 

Fantasia’s Worth Statement 

 

Net Worth: $10,000 

 

 

 

 

Transaction: 

 

 

 

Net Worth:   $12,000 
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Oops! Coffee Spill! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Somebody spilled coffee on Clay’s Net Worth Statement. He is trying to figure out 

what transaction took place to give him a new net worth of $7000. What could it 

have been? List as many as you can think of. 
 

 

 

Clay’s Worth Statement 

 

Net Worth: -$10,000 

 

 

 

 

Transaction: 

 

 

 

Net Worth:   $7,000 
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Determine which of the following transactions belong to story One or story Two. 

 

     +(-50) -(-50) -2(-25) -(+50) 

 

 

   +(+50) +25 + (+25) +2(+25) -25 -25 

 

 

-2(+25) -25 + 75 75 – 25 +2(-25) 

NW 

Story Two:   +50 
Robin‟s Net Worth went UP by 

 $50 

 

 

 

+50 

NW 

Story One:   -50 
Nigel‟s Net Worth went DOWN by 

$50 

 

-50 
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For each problem below, state the person’s beginning NET WORTH, whether 

the change is a good or bad change, and their new NET WORTH. 

 

a. 17 + (-5) 

 

 

b. -23 + (+11) 

 

 

c. 250 + (-250) 

 

 

d. 325 – (-100) 

 

 

e. -117 + (-23) 

 

 

f. -50 – (-50) 

 

 

g. -154 + (-26) 

 

 

h. 153 + (524) 

 

 

i. 619 – (235) 
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Solve the following problems: 

 

1. -45 + (-16) 

 

2. -4 + 2 + (-5) 

 

3. -5 + (-5) 

 

4. 10 + 24 + (-12) 

 

5. 22 – (-10) 

 

6. -3 + 4 – (-23) –10 

 
 

Solve the following problems: 

 

1. 20 – 5 

 

2. 18 + 7 

 

3. -17 + 7 

 

4. -20 + (-3) 

 

5. 25 – (-10) 

 

6. -25 – (-20) 

 

7. -100 – 50 

 

8. -45 + 70 

 

9. 20 + (-35) 

 

10. -45 + (-20) 
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Sam said, “I think that adding a debt is the same thing as taking away an asset.” 
Sue said, “Adding a debt is totally different than taking away an asset.” 
 

Who do you agree with and why? 

 

 

Dave said, “I think that taking away a debt is the same as adding an asset.” 
Donna said, “I think that taking away a debt is like subtracting a debt.” 
Drake said, “I think that two minuses make a plus.” 

 

Who do you agree with and why? 

 

 

Mrs. Robinson’s class was given the following problem to solve: -2 - 7. 

 

Chuck said, “This problem doesn’t make sense. You don’t know if that – sign in front 
of the 7 is a subtraction sign or a negative sign.” 

Cherry said, “I don’t think there’s a difference between a subtraction sign and a 
negative sign. They’re the same thing.” 

 

Who do you agree with and why? 

 

Ryan’s Rules 

 

 +(-) means that your net worth goes down so +(-) is a -. 

 -(+) means that your net worth goes down so -(+) is a -. 

 -(-) means that your net worth goes up so -(-) is a +. 

 +(+) means that your net worth goes up so +(+) is a +. 

 

What do Ryan’s Rules mean? Do you agree? Explain. 
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