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ABSTRACT

Computing advances and component miniaturization in circuits coupled with stagnating battery

technology have fueled growth in the development of high efficiency energy harvesters. Vibration-

to-electricity energy harvesting techniques have been investigated extensively for use in sensors

embedded in structures or in hard-to-reach locations like turbomachinery, surgical implants, and

GPS animal trackers. Piezoelectric materials are commonly used in harvesters as they possess the

ability to convert strain energy directly into electrical energy and can work concurrently as actua-

tors for damping applications. The prototypical harvesting system places two piezoelectric patches

on both sides of the location of maximum strain on a cantilever beam. While efficient around res-

onance, performance drops dramatically should the driving frequency drift away from the beam’s

fundamental frequency. To date, researchers have worked to improve harvesting capability by mod-

ifying material properties, using alternative geometries, creating more efficient harvesting circuits,

and inducing nonlinearities. These techniques have partially mitigated the resonance excitation

dependence for vibration-based harvesting, but much work remains.

In this dissertation, an induced nonlinearity destabilizes a central equilibrium point, resulting in a

bistable potential function governing the cantilever beam system. Depending on the environment,

multiple stable solutions are possible and can coexist. Typically, researchers neglect chaos and

assume that with enough energy in the ambient environment, large displacement trajectories can

exist uniquely. When subjected to disturbances a system can fall to coexistent lower energy solu-

tions including aperiodic, chaotic oscillations. Treating chaotic motion as a desirable behavior of

the system allows frequency content away from resonance to produce motion about a theoretically

infinite number of unstable periodic orbits that can be stabilized through control. The extreme

sensitivity to initial conditions exhibited by chaotic systems paired with a pole placement control

strategy pioneered by Ott, Grebogi, and Yorke permits small perturbations to an accessible system
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parameter to alter the system response dramatically. Periodic perturbation of the system trajec-

tories in the vicinity of isolated unstable orbit points can therefore stabilize low-energy chaotic

oscillations onto larger trajectory orbits more suitable for energy harvesting.

The periodic perturbation-based control method rids the need of a system model. It only requires

discrete displacement, velocity, or voltage time series data of the chaotic system driven by har-

monic excitation. While the analysis techniques are not fundamentally limited to harmonic exci-

tation, this condition permits the use of standard discrete mapping techniques to isolate periodic

orbits of interest. Local linear model fits characterize the orbit and admit the necessary control

perturbation calculations from the time series data.

This work discusses the feasibility of such a method for vibration energy harvesting, displays stable

solutions under various control algorithms, and implements a hybrid bench-top experiment using

MATLAB and LabVIEW FPGA. In conclusion, this work discusses the limitations for wide-scale

use and addresses areas of further work; both with respect to chaotic energy harvesting and parallel

advances required within the field as a whole.
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CHAPTER 1: INTRODUCTION

Component miniaturization and reduced power requirements in modern electronics have spurred

significant developments in new sensing equipment and applications. Health monitoring devices

have been designed that detect changes in the structural integrity of buildings, bridges, and cars.

Tracking devices have been deployed to monitor wildlife and assist in research efforts studying

the behavior of various animal species. Pacemakers have been implanted in patients with heart

conditions in efforts to regulate blood flow and extend life expectancy. These technologies are all

driven by the advances in computing performance, but all require some type of on-board power

source for operation [1].

To date batteries have been the primary solution for wireless power applications, but their low

power density often results in large, costly devices not ideal for small-scale applications. In ad-

dition, charging and replacing batteries requires hazardous maintenance and inhibits use beyond

easily accessible locations. Conversely, ideal health monitoring usually requires sensors to be em-

bedded within a structure. Disturbing wildlife creates safety concerns and can interfere with the

natural behavior of the species being tracked. Undergoing routine open heart surgery at significant

risk to a patients’ health all help to prove why alternative powering methods are highly desirable

to mitigate the shortcomings of battery-based technologies. The influx of applications using small-

scale electronics can all benefit from the scavenging of power from the ambient environment itself.

1.1 Energy Harvesting

Ambient sources of energy generally fall into four categories: light, radio frequency (RF) electro-

magnetic radiation, thermal gradients, and motion [2]. Successful implementation of all four meth-
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ods has been achieved and selection of an “ideal” technique is both dependent on the application

itself and the expertise of the designer. Large-scale power generation from wind and solar energy

have successfully supplemented power grid demands from traditional coal-based sources, but are

not the subject of this work. The end goal of the harvesting method developed in this disserta-

tion relates specifically to small-scale sensor networks incorporating thousands of nodes operating

across a wide band of frequency content from the ambient environment. Common application en-

vironments may not receive enough light and temperature differences could potentially be small

across the surface of the harvesting element [3, 4]. In line with the device’s small physical size,

efficient RF extraction from devices smaller than the radiation wavelength poses a problem [5].

Therefore, small-scale distributed sensor networks more readily lend themselves to motion-based

energy harvesting.

1.1.1 Vibration Energy Harvesting

Ambient environments produce vibration either directly through an object’s motion, or through

motion imparted on a structure from external sources (e.g. a car driving over a bridge) illustrated

in Figure 1.1. To benefit from these small scale motions, efficient transduction mechanisms are

needed to extract usable levels of power for each node in the sensor network. In these applications,

electromagnetic induction [6], electrostatic generation [7], dielectric elastomers [8], and piezo-

electric materials [9] have all been investigated for extracting usable amounts of ambient vibration

energy.

Electromagnetic induction uses the relative motion between a conductor and a magnetic field to

generate electricity according to Faraday’s Law. The magnetic field strength, number of coil turns,

and relative velocity between the coil and the magnet all affect the potential power output of the

device. The absence of a bias voltage is a benefit of an electromagnetic design, but a rectifier and
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DC converter are required to charge a storage component. Additionally, electromagnetic gener-

ators are low-voltage, high-current devices due to a low optimal circuit resistance and require a

voltage multiplier to reach the voltage minimums of conventional storage components. A typi-

cal configuration for an electromagnetic harvester shown in Figure 1.2 uses a permanent magnet

attached at the free end of a base-excited cantilever beam to pass through a fixed coil [1].

Figure 1.1: A rendering of a wireless sensor network on a suspension bridge [10]

Contrary to an electromagnetic generator, electrostatic transduction uses ambient vibrations to

move plates of a variable capacitor separated by a dielectric material against the electrostatic forces

between electrodes. The dielectric material is used to increase harvested energy and prevent the

capacitor plates from making contact during excitation. To keep the capacitive plates oppositely
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charged, a constant DC voltage is required, usually applied through an on-board battery. For

each operating cycle the capacitance is varied from a minimum to a maximum value, with energy

transfer dependent on the ratio of minimum to maximum capacitance. Two in-plane configurations

exist with displacement either closing the gap or causing an overlap between the capacitor plates.

A third configuration uses out-of-plane vibrations to move one capacitor plate relative to the other.

The in-plane gap closing layout is preferred as it minimizes relative rotation between the plates

under asymmetrical excitation and generates comparable power to the other configurations with

less displacement [1, 11]. Figure 1.3 depicts a traditional in-plane electrostatic transducer.

Figure 1.2: An electromagnetic induction-based vibration energy harvester [1]

Electroactive polymers for energy harvesting exist in two forms; dielectric elastomers (EAPs), or

ionic polymer metal composites (IPMCs). EAPs exhibit polarization-based electromechanical cou-

pling and work similarly to electrostatic transducers. A dielectric material, typically a soft rubber,

is placed between two oppositely charged capacitive plates (bias voltage) and exhibits a four stage

harvesting cycle. First, a supplemental battery is used to stretch the dielectric elastomer increasing

capacitance of the system. Second, the system is switched to an open-circuit configuration and

the dielectric elastomer thickens under a fixed high-charge state. Third, the system is switched to

the storage device and system capacitance is reduced as tension in the dielectric elastomer is lost
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under further thickening. Lastly, switching back to open-circuit at the low-charge state increases

tension and reduces thickness in the dielectric elastomer and completes the harvesting cycle. Max-

imum energy conversation of an EAP is determined by the electromechanical characteristics of the

polymer, electrical breakdown, electromechanical instability, loss and tension, and rupture of the

polymer [1].

Figure 1.3: In-plane configurations of an electrostatic generator-based vibration energy harvester [12]

IPMCs exhibit electromechanical coupling through diffusion or conduction of charged species in

the polymer network. The ionic polymers are composed of Nafion or Flemion and coated by

conductive electrodes typically made of gold or platinum. As the ionic polymer is deformed, a

charge concentration gradient results as the free cations travel from high-density to low-density

regions forcing a potential difference across the electrodes. While similar to piezoelectric har-

vesters, significantly lower power densities prohibit wide scale usage of this technique [1]. Figure

1.4 illustrates configurations of both a dielectric elastomer harvester and an electroactive polymer

harvester.
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Figure 1.4: A dielectric elastomer and electroactive polymer based vibration energy harvester [1]

Piezoelectric materials are more commonly considered for vibration based energy harvesting due

to their direct ability to convert strain energy into electrical energy. The high-voltage, low-current

nature of piezoelectric-based harvesters eliminate the need of a voltage multiplier circuit, and bias

voltages are not needed for ideal operation. As such, piezoelectric materials can be implemented

more readily than other vibrations transduction methods and have received considerably more

attention by the research community [9, 13].

1.1.2 Piezoelectric-based Energy Harvesting

Energy harvesting with piezoelectric materials takes advantage of the direct piezoelectric effect,

where an applied mechanical force generates internal electric charge. An induced dynamic strain

from the environment generates an alternating voltage output across the electrodes of the piezoelec-

tric material. To amplify the displacement and strains of the piezoelectric elements, the patches are

typically coupled to a base-excited cantilever beam at maximum strain locations. An ideal beam

would possess low mechanical damping and thus well-separated modes with respect to the struc-

ture’s primary resonance. As a direct result, the cantilever-based harvester has a narrow operating

bandwidth where maximum displacement is only attained when the primary resonance frequency

is tuned to a dominant frequency existing in the ambient environment. Unfortunately, the operating
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requirements of the harvester are often not consistent with the energy spectra of the ambient envi-

ronment. Using harvesters dependent on a single resonance frequency in environments that do not

possess strong dominant frequencies limits their potential power harvesting capability and warrants

a solution. Figure 1.5 illustrates the piezoelectric-based cantilever harvester and the narrow-band

frequency response functions using various proof masses.

Figure 1.5: A linear cantilevered piezoelectric energy harvester and frequency response [11]

1.1.3 Improved Vibration Energy Harvesting through Nonlinearity

A common technique to increase the bandwidth of vibration energy harvesters is to introduce a

nonlinearity and benefit from the rich set of dynamic responses therein. While various methods of

introducing nonlinearity exist, the most common creates a typical Duffing oscillator with coexist-

ing attractors that can exhibit widely different dynamic responses [14–16]. Such solutions allow for

small-amplitude periodic responses, large-amplitude periodic responses, and an aperiodic chaotic

response. All realizable dynamic responses exist away from the system’s fundamental frequency,

mitigating the resonance limitation. The different system responses can also exist concurrently

dependent on the initial conditions.
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Figure 1.6: A Duffing oscillator-based nonlinear vibration energy harvester

It is implied that a larger displacement periodic solution correlates to greater energy output of the

system both due to higher strain in the piezoelectric element and periodicity expected by the har-

vesting circuitry. To date significant work has been performed in optimizing the large displacement

periodic response. Parallel research efforts have focused to better understand the nonlinear dynam-
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ics and reduce the frequency range where alternative responses can concurrently exist. The large

amplitude response is also often assumed to be maintained indefinitely through proper choice of

initial conditions and subsequent perturbation [17–19]. However, improving the frequency range

where large amplitude responses exist uniquely only minimally improves operating bandwidth.

Unplanned environmental disturbances can cause the system to transition into the lower-energy

chaotic attractor, and arbitrary perturbations can significantly reduce the net positive power output

of the harvesting system. Rather than avoid chaos, the inherent sensitivity to initial conditions

can be considered an advantage when operating in conjunction with a low-power controller devel-

oped by Ott, Grebogi, and Yorke (OGY)for maintaining large displacement orbits across a range

of excitation frequencies [20].

1.2 Chaotification and Subsequent Control for Improved Harvester Operation

Inducing chaotic motion requires the system to operate within a specific range of forcing parame-

ters and initial conditions. Fortunately, chaotic motion is present through a wide band of excitation

frequencies and exists more readily than the optimal large displacement solution in low energy

environments. Once induced, a number of steps are required before successful control onto a de-

sirable periodic orbit can be achieved. First, the chaotic attractor must be mapped by sampling

system states timed with the excitation period. A recurrence detection algorithm can then be used

to isolate the unstable orbit points within the system. A strength of the discretized methods allow

the recurrence detection to be completed either in real time, or calculated a priori for known en-

vironments. Since the control effort is based on small perturbations, locally linear system models

can be fit to each isolated orbit point for subsequent control.

A piezoelectric energy harvester dependent on chaotic motion is inherently a robust system. Whereas

linear cantilevered configurations are tuned in the design phase before implementation, nonlinear
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chaotic harvesters can be optimized in real time, dependent on the operating environment. The ex-

istence of chaos creates an infinite number of unstable orbits embedded within the chaotic attractor.

Should the operating environment shift in frequency, or a different periodic orbit be desired, the

temporal programming of the small control effort can be changed on-line. Expanding on the idea

of real-time control updates, learning algorithms can be implemented so that identical harvesters

placed throughout a networked environment can learn the optimal control law for efficient har-

vesting during operation. Learning harvesters can save large amounts of money over redesigning

a system every time a change is detected in the ambient vibration frequency spectrum or a new

environment is targeted. Introducing learning harvesters into vibration-rich environments can lead

to new applications of remote power sources. Since the devices may already be networked for data

sharing, power can be harvested from a few devices in vibration-rich areas of an environment and

transfered wirelessly to other devices either in low-vibration areas of an environment or to devices

that do not possess an on-board harvester.

1.3 Objectives of this Dissertation

Increasing both the operating bandwidth and the potential power output of a piezoelectric en-

ergy harvester can positively impact their application in distributed sensor networks. Micro-scale

sensors can be implemented in hard to reach locations without the need for cabling or battery

maintenance. These sensors can act independently or as part of a larger array while exhibiting a

longer life cycle than the current state of the art. In addition, the use of piezoelectric materials will

not only enable health monitoring, process monitoring, and feedback control, but will also allow

simultaneous sensing and actuation, further reducing the number of components in a full-scale

system [21].

The novelty of the proposed harvester stems from the use of an active controller in stabilizing
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periodic orbits within a chaotic attractor. While an active component utilizes some of the gener-

ated energy, the extreme sensitivity to initial conditions limits the expended power requirements.

Current harvesting systems also do not show an ability to adapt on their own should the operating

environment change. The significance of the proposed work is the step taken towards design-

ing battery independent devices with minimal tuning in the design phase. The eventual addition of

learning harvesters capable of adapting to the ambient environment introduces the idea of a general

all-purpose device for use in many sensing, actuation, and remote power applications in distributed

wireless networks.

1.4 Dissertation Structure

This dissertation guides the reader through the field of piezoelectric energy harvesting and details

a novel technique for creating a more efficient high-bandwidth harvesting device.

Chapter 2 explores the motivation for vibration-based energy harvesting and the role of piezoelec-

tricity in the process. A clear path through the literature dictates the limitations of current linear

and nonlinear techniques, laying the foundation for more optimal nonlinear approaches for en-

ergy harvesting away from resonance. Chaotic dynamics, modeling techniques, and control are

explained as related to their improvements in nonlinear energy harvesting.

Chapter 3 derives a lumped parameter model of the bistable harvesting system to dictate the ef-

fects of the potential function on the solution trajectories. Coexistent attractors are explored, and

statistical recurrence techniques are explained to isolate unstable periodic orbits within the chaotic

attractor. From the isolated orbits, least squares fit methods for an approximate linear model are

explained, and various control methods are derived in relation to this model. Delay coordinate

embedding is also introduced, approximating the full nonlinear harvester through measurement of
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a single state of the system.

Chapter 4 illustrates the theoretical solution of the harvesting model under various forms of control.

In conjunction with the simulations, the development of an experimental test stand is dictated and

used as a proof of concept towards real-world implementation on a nonlinear energy harvester

with active chaos control. Switch-based harvesting circuitry is described in relation to applying

control perturbations to multiple parameters of the system and harvesting potential is qualitatively

explained.

Lastly, Chapter 5 reiterates the benefits of the proposed harvesting system and explains its novelty

and significance to the field as a whole. In addition, remaining research questions are explored both

within the field of energy harvesting and the subfields of nonlinear dynamics and chaos control.

The unification of advances of the aforementioned fields would serve to advance development of

the nonlinear piezoelectric-based energy harvesting system.
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CHAPTER 2: BACKGROUND

Prior to developing the theoretical framework of an improved nonlinear vibration energy harvester,

a review of the relevant literature is needed to provide sufficient understanding of the problem as

well as any analysis methods needed herein. This chapter starts by considering the electrome-

chanical phenomena of piezoelectricity and its constitutive relations. Common coupling methods

are explored, with detail on the prototypical cantilever beam structure primarily used in vibration

energy harvesting. Limitations of the linear system and the induced nonlinearity are explained

along with the potential energy functions and the dynamic attractors. The need for chaos control

and common forms of chaos control are then detailed as relevant to nonlinear vibration energy

harvesting.

2.1 Piezoelectricity

Piezoelectricity is a naturally occurring process where certain solid materials exhibit electrome-

chanical responses in the event of a mechanical stress or an electric field. The direct piezoelec-

tric effect describes the electric charge that accumulates in response to an applied mechanical

stress [22]. By extension, the indirect effect describes when a mechanical force develops due to

the application of a magnetic field [23]. While the direct effect was discovered in 1880 by French

physicists Jacques and Pierre Curie and the indirect effect one year later by Gabriel Lippmann,

piezoelectricity was not full classified until Woldemar Voigt’s paper in 1910. His paper classified

the crystal structures that exhibit piezoelectricity and defined twenty classes of crystal capable of

piezoelectricity and defined their piezoelectric constants [24].
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2.1.1 Piezoelectric Materials

There are many natural and synthetic materials that exhibit piezoelectric effects. Quartz, berlinite,

sucrose, Rochelle salt, and topaz are a few naturally occurring crystals known to have piezoelectric

properties. Interestingly, biological materials such as tendon, silk, wood, enamel, dentin, and DNA

possess piezoelectric properties as well. Fukada et al. observed the piezoelectric effect within the

collagen of dry bones [25]. More recently, Lee et al. showed the existence of piezoelectric behav-

ior in viral proteins. Specifically, thin films of M13 bacteriophage were used to generate enough

electricity to power a liquid crystal display [26]. For large-scale piezoelectric energy harvesting,

naturally occurring crystals and biological micro-materials do not produce enough power. Syn-

thetic materials are common choices for harvesting and include gallium orthophosphate, barium

titanate and lead titanate. Sodano et al. concluded lead zirconate titanate (PZT) to be the most effi-

cient piezoceramic for energy harvesting in its ability to charge a battery under random vibrations

typically present in an environment as compared to other synthetic materials [27].

2.1.2 Constitutive Relations

The piezoelectric effect is mathematically described through the constitutive relations of piezoelec-

tric materials showing the interaction between stress T , strain S, charge-density displacement D,

and electric field E. The Cartesian coordinate system shown in Figure 2.1 illustrates the common

axis labeling convention in mathematical formulation and polarization of a piezoelectric cube. Four

standard sets of linear relations exist; strain-charge form is shown in index notation in Equation

2.1 [28, 29]:

Sij = sEijklTkl + dkijEk

Di = diklTkl + εTikEk

(2.1)
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Figure 2.1: Coordinate axes of a piezoelectric cube [29]
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The complete set of equations are defined by 81 mechanical compliance constants, 27 piezoelec-

tric strain coefficient values, and 9 dielectric permittivities. Due to symmetry of the stress and

strain tensors, only 6 elements of stress and strain are unique and a notation reduction known as

Voigt notation can be applied. Equation 2.2 shows how Voigt notation reduces stress and strain

components from an (i, j) index notation where each component takes a value from 1 through 3 to

a single index of values 1 through 6.

S1 = S11 T1 = T11

S2 = S22 T2 = T22

S3 = S33 T3 = T33

S4 = S23 + S32 T4 = T23 + T32

S5 = S31 + S13 T5 = T31 + T13

S6 = S12 + S21 T6 = T12 + T21

(2.2)

Using Voigt notation, Equation 2.1 can be rewritten [29]:

Si = sEijTj + dikEk

Dm = dmjTj + εTmkEn

(2.3)

where i and j take on values from 1 through 6 and m and n take on values from 1 through 3. This

simplification results in 36 independent elastic coefficients, 18 piezoelectric strain coefficients, and

9 dielectric permittivities. The constitutive equations can be compacted further into the commonly

known matrix form [28]: S

D

 =

sE dt

d εT


T

E

 (2.4)

where sE is a 6 × 6 matrix of compliance coefficients, d is a 3 × 6 matrix of piezoelectric strain
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coefficients, and εT is a 3× 3 matrix of dielectric permittivities. Superscripts E and T are used to

indicate that the quantity is taken at constant electric field and stress, respectively, and t represents

the transpose operator [29]. Further reduction of the number of parameters comes with the knowl-

edge that most manufactured piezoelectric materials are orthotropic and therefore sij = sji = 0

with i = 1, 2, 3, j = 4, 5, 6 and s45 = s46 = s56 = s65 = 0. Piezoelectric materials also

exhibit a plane of symmetry resulting in equal elastic moduli in the 1 and 2 directions illustrating

transversely isotropic behavior. Similarly, electric fields applied in any direction will not produce

electric displacements in the orthogonal directions. Therefore the number of coefficients can be

reduced further and written in the expanded matrix form:



S1

S2

S3

S4

S5

S6


=



sE11 sE12 sE13 0 0 0

sE21 sE22 sE23 0 0 0

sE31 sE32 sE33 0 0 0

0 0 0 sE44 0 0

0 0 0 0 sE55 0

0 0 0 0 0 sE66





T1

T2

T3

T4

T5

T6


+



0 0 d31

0 0 d32

0 0 d33

0 d24 0

d15 0 0

0 0 0




E1

E2

E3

 (2.5)


D1

D2

D3

 =


0 0 0 0 d15 0

0 0 0 d24 0 0

d13 d23 d33 0 0 0





T1

T2

T3

T4

T5

T6


+


εT11 0 0

0 εT22 0

0 0 εT33



E1

E2

E3

 (2.6)
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where:

sE =



1
Y E
1

−ν12
Y E
1

−ν13
Y E
1

0 0 0

−ν21
Y E
2

1
Y E
2

−ν23
Y E
2

0 0 0

−ν31
Y E
3

−ν32
Y E
3

1
Y E
3

0 0 0

0 0 0 1
GE

23
0 0

0 0 0 0 1
GE

13
0

0 0 0 0 0 1
GE
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(2.7)

Compliance terms are dependent on the short-circuit elastic moduli, Poisson’s ratio, and the short

circuit shear-moduli.

In relation to harvesting potential, a simple metric relating the elastic boundary conditions imposed

on the material known as the piezoelectric coupling coefficients is defined as:

kij =
dij√
εTiis

E
jj

(2.8)

and is typically found in vendor catalogs. Deciding which index is important depends on the mode

of operation in which the harvester is being utilized. For each mode of coupling where only one

stress or strain component and one electric displacement or field component is non-zero, a separate

coefficient exists [28]. The constitutive relations are then simplified to scalar terms. The coupling

coefficient can also be defined mechanically as the difference between open-circuit and short-

circuit stiffness (cD and cE) and electrically defined as the difference between free and blocked

dielectric permittivity (εT and εS):

k2 =
cD − cE

cD
=
εT − εS

εT
(2.9)

Equation 2.9 can be rewritten in terms of resonant frequencies under short-circuit and open-circuit
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conditions:

k2 =
ω2
oc − ω2

sc

ω2
oc

. (2.10)

Note, while similar to the generalized mechanical coupling coefficient κ, the two are not the same.

The generalized mechanical coupling coefficient κ is the ratio of converted energy to unconverted

energy and always positive. When κ equals infinity under complete energy conversion, k reaches

a theoretical maximum of unity [30]. The two quantities k and κ are related by:

κ2 =
ω2
oc − ω2

sc

ω2
sc

=
k2

1− k2
. (2.11)

2.1.3 Coupling Modes

The separation of charge needed within the piezoelectric element for energy harvesting is due to

electric dipole displacement caused by a strain in the material. When loaded, the crystal structure

of the piezoelectric material deforms causing an ion to shift within each unit cell of the structure

producing charge [31]. Thus each unit cell has an electric dipole which can be re-oriented through

pressure to configurable directions. Figure 2.2 illustrates the poling process in a piezoelectric

material.

Figure 2.2: Electric dipole orientation before, during, and after poling [32]
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Piezoelectric energy harvesters generally involve some method of force or power amplification

making their application more attractive. Piezoelectric elements can be stacked together or coupled

to a substructure inducing larger strains and producing more electric power. Two common coupling

modes arise in application and both lead to the generation of electric charge known as the 31

mode and the 33 mode. Coordinate convention always aligns the poling axis in the three direction

with the other coordinate direction representing the direction of mechanical loading. Figure 2.3

illustrates the two common coupling configurations highlighting the axes involved, the direction

of poling, and the location of the electrodes.

Figure 2.3: Coupling modes of the piezoelectric vibration energy harvesting system [1]

Loading a piezoelectric material through bending is known as the 31 mode, while compressing
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a piezoelectric material directly is known as the 33 mode. In the 31 mode, a force is applied in

the direction perpendicular to the poling direction, for example by bending a beam with a surface-

mounted piezoelectric patch. In the 33 mode, the force is applied in the same direction as the poling

direction by compressing a piezoelectric stack. In both cases, the potential difference is observed

across the top and bottom surfaces of the piezoelectric material. While the 33 mode yields a

higher coupling coefficient, most harvesters utilize the more compliant 31 mode configuration as a

larger strain can be imparted with less force due to a lower stiffness of the structure in the loading

direction.

2.2 The Cantilever Beam

The prototypical structure for a piezoelectric energy harvester operating in the 31 mode is a can-

tilever beam. Piezoelectric patches are typically bonded to the area of maximum strain and the

addition of a proof mass at the free end of the beam both increases coupling between the me-

chanical and electrical domains, and reduces the system’s fundamental natural frequency. The

use of thin beams to maximize deflection leads to systems with inherently low damping and well-

separated modes. To identify the resonant frequencies of the beam and thus illustrate the limitation

of widespread use of this harvester in application, the force interaction of a differential element of

a cantilever beam is shown in Figure 2.4:
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Figure 2.4: A differential element of the cantilever beam for model derivation [33]

Neglecting the effects of rotational inertia and summing the shear forces and bending moments

leads to the following equation of motion for each different element of the beam:

ρA
∂2y(x, t)

∂t2
= −T + T +

∂T

∂x
dx

0 = T
dx

2
+M +

(
T +

∂T

∂x
dx

)
dx

2
−
(
M +

∂M

∂x
dx

) (2.12)

where ρA is the mass of the element, and ∂2y(x,t)
∂t2

represents the transverse acceleration. Higher

order terms can be ignored as their contribution to the solution is insignificant simplifying the

22



equations of motion:

ρA
∂2y(x, t)

∂t2
=
∂T

∂x

0 = T − ∂M

∂x

(2.13)

Since both equations depend on shear force T , the moment equation can be solved and differen-

tiated with respect to x, reducing the system to a single equation capturing all the dynamics [33]:

ρA
∂2y(x, t)

∂t2
=
∂2M

∂x2
(2.14)

Curvature, which measures the deflection of the neutral axis indicated by a dotted line in Figure

2.4 allows for the moment M to be described as a relation of (x, y) coordinates and measurable

system parameters:
1

r
≈ d2y

dx2
= −M

EI
(2.15)

Combining the new moment description with Equation 2.14 yields a simplified equation of motion

described by (x, y) coordinates and measurable system parameters:

ρA
∂2y(x, t)

∂t2
= −EI ∂

2

∂x2

(
∂2y(x, t)

∂t2

)
(2.16)

Rewriting derivatives with respect to time with dot notation and derivatives with respect to position

with roman numeral notation, Equation 2.16 can be expressed in the following compact form:

ρAÿ + EIyiv = 0 (2.17)

Dividing Equation 2.17 by the element mass term ρA and introducing a constant c = EI
ρA

reduces

the model further:

ÿ + c2yiv = 0 (2.18)
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Equation 2.18 captures the free transverse vibration of a cantilever beam in absence of longitudinal

forces and rotational inertia satisfying the assumption of the Euler-Bernoulli beam equation. The

major takeaway from this analysis is the evaluation of the beam’s resonant frequencies to specifi-

cally illustrate the fundamental limitation of energy harvesting with resonant cantilever beams. A

general assumption is that the solution will take the form:

y(x, t) = a(x)V (t) (2.19)

separating the spacial and time dependent components of the system. Substituting the solution

form into Equation 2.18 leads to a new equation of motion:

aiv

a
= −cV̈

V
(2.20)

Since each side of the equation is independent of the other side, both must equal a constant (Ω2)

allowing for variables to be separated into two ordinary differential equations:

aiv − Ω2

c
a = 0

V̈ + Ω2V = 0

(2.21)

A new constant ν4 = Ω2

c
is introduced to simplify notation. The solution of the spacial equation is

assumed to take the form:

a(x) = Aerx (2.22)

resulting in a characteristic equation having the following roots:

r1,2 = ±ν r3,4 = ±jν (2.23)
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Expanding leads to the spacial solution:

a(x) = A1e
νx + A2e

−νx + A3e
jνx + A3e

−jνx (2.24)

Euler’s formula for trigonometric relations:

e±jνx = cos νx± j sin νx

e±νx = cosh νx± sinh νx

(2.25)

are used to remove the exponentials in the spacial solution:

a(x) = C1 cosh νx+ C2 sinh νx+ C3 cos νx+ C4 sin νx (2.26)

Constants C1, C2, C3, C4 are constants of integration determined by the boundary conditions of the

problem. Using the typical boundary conditions for a clamped cantilever beam fixed at one end

and free at the other:

y(0, t) = 0 yii(l, t) = 0

yi(0, t) = 0 yiii(l, t) = 0

(2.27)

leads to the following relations solving for the constants of integration:

C1 + C3 = 0

ν(C2 + C4) = 0

ν2 (C1 cosh νx+ C2 sinh νx− C3 cos νx− C3 sin νx) = 0

ν2 (C1 cosh νx+ C2 sinh νx+ C3 cos νx− C3 sin νx) = 0

(2.28)
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A nonzero ν implies that C3 = −C1 and C4 = C2, and reduces the equations above to:

(cosh νl + cos νl)C1 + (sinh νl + sin νl)C2 = 0

(sinh νl − sin νl)C1 + (cosh νl + cos νl)C2 = 0

(2.29)

To prevent nontrivial solutions, the following frequency equation must be obeyed:

cos νl cosh νl + 1 = 0 (2.30)

Therefore, the resonance frequencies are based off the constant ν4, the roots of Equation 2.30

and [33]:

Ωn = (νnl)
2

√
EI

ρAl4
(2.31)

Solving numerically yields the first few roots as ν1l = 1.875, ν2l = 4, 694, ν3l = 7.855, and

ν4l = 10.9955. Simple inspection of Equation 2.31 shows a spacing between natural frequencies

of Ω2 = 6.27Ω1, Ω3 = 17.55Ω1, and Ω4 = 34.39Ω1. For example, this means that if ambient

vibration around a harvester is 25 Hz (Ω = 157 rad/sec) and the harvester is tuned to this frequency

(i.e., Ω1 = Ω), the second mode of vibration will exist at 157 Hz (Ω2 = 985 rad/sec). With natural

frequencies so well-separated, neighboring modes do not influence each other; therefore only the

first mode is ever captured during excitation. Excitation of a single mode under normal operation

illustrates the resonance limitation inherent to cantilever-based piezoelectric energy harvesters.

The well-separated modes present in a cantilever beam harvester allow the system to be represented

by an equivalent, but simpler, lumped parameter model. Reduction to a single degree of freedom

system simplifies computation allowing the system to be adequately represented by a mass-spring-

damper model coupled to a capacitive electric circuit capturing the effects of beam displacement

on energy harvesting. The lumped parameter derivation is reserved for Section 3.1 as it directly

frames the proposed nonlinear harvesting technique. Instead, the main takeaway from the dis-
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tributed parameter derivation is the resonance limitation that cripples performance of traditional

piezoelectric energy harvesters in time-varying ambient environments.

2.3 Energy Harvesting Improvements

Chapter 1 broadly described the different areas of research and the limitations therein of the cur-

rent state of piezoelectric energy harvesting. From shape variations of the cantilevered beam to

harvesting circuits that charge a capacitor until a peak voltage is reached, the techniques aim to

better use a harvester in its resonance excitation implementation.

2.3.1 Improvements through Beam Configuration

For energy extraction, a cantilevered configuration is most common for piezoelectric harvesters.

Improvements of the cantilevered harvester have been approached through a variety of angles to

improve each individual aspect of the device. While typically rectangular, cantilever beams easily

allow flexibility in geometrical shape. Altering this shape between a trapezoidal beam, a triangular

beam, and an initially curved beam provides multiple avenues for improving beam deflection under

lower forces correlating to a larger strain [34–38].

Placement of the piezoelectric material also plays an important role in harvester efficiency. Typ-

ically, one piezoelectric element is placed in the area of maximum strain on the beam. Using a

single piezoelectric element is commonly known as a unimorph configuration. During bending,

the beam deflects in both positive and negative directions; therefore an alternate bimorph configu-

ration involves placing piezoelectric elements on both sides of the beam [39–42].

Inherent to each beam is a corresponding natural frequency that should ideally match the ambient
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environment. By adding mass to the tip of the beam, a way of tuning the natural frequency was

made possible without changing the entire harvesting system [43]. Pre-stressing the cantilever

beam also proved beneficial as a baseline stress ensured a larger charge separation during loading

[44].

All of the above methods improve power output at resonance. To combat this bandwidth limitation,

research has addressed both tuning the resonance frequency to match that of the ambient vibrations

and developing devices with more than one resonant state. A passive high-bandwidth system has

been developed using an array of cantilevered harvesters, each tuned to a different resonant fre-

quency [45, 46]. Linear cantilever configurations require resonance excitation because the modes

of vibration are well separated. Working to reduce the separation, an L-shaped cantilever configu-

ration was investigated. This design created two closely-spaced natural frequencies resulting in a

higher bandwidth harvester [47–49].

Work with respect to geometry and configuration successfully created harvesters yielding larger

power outputs, but did not solve the resonance excitation requirement. Even though bandwidth

improvements were observed, they were achieved at the expense of initially tuning to a natural fre-

quency. Also, further design improvements through methods of extracting and storing the electric

charge were overlooked in the approaches mentioned above.

2.3.2 Improvements through Circuitry and Power Storage

Shifting from the mechanical side of the process, researchers have also focused on modifying the

power harvesting circuitry and storage medium. When loading a cantilevered harvester, continuous

charge extraction does not result in any meaningful amount of power. Realizing the instantaneous

power generated by a harvester was too small for any practical application, circuits were designed

to store energy and release it in bursts. Energy was stored in a capacitor until a release voltage

28



was reached, discharging the capacitor into a load [41, 42]. Improvements to this circuit were

made through component changes and the introduction of DC converters [50–56]. Combining

both mechanical and electrical modifications, harvesters were developed that diverted some power

to sense the ambient frequency and modify the stiffness of the cantilever beam [57].

Electrical improvements are important because once high bandwidth harvesters are created, suffi-

cient charge extraction methods need to exist in parallel to capture the largest amount of energy.

Unfortunately, circuit improvements fail to solve the original bandwidth problem plaguing piezo-

electric materials. A complete solution to the problem needs to embrace both avenues of improve-

ment from the previous sections, but also eliminate the dependence on resonance excitation and

maintain a small footprint.

2.3.3 Improvements through Induced Nonlinearities

A viable method to extend progress further towards the creation of high-bandwidth energy har-

vesters involves forcing the linear harvester to embrace nonlinear dynamics. By placing the typical

cantilevered harvester in a magnetic field, the central equilibrium of the potential function destabi-

lizes, shifting the governing dynamics of the system to a bistable Duffing oscillator.

Progress has been made toward developing a non-resonant piezomagnetoelastic energy harvester

and investigating high-energy periodic orbits over a range of excitation frequencies [19, 58]. The

resulting system was modeled by the nonlinear bistable Duffing oscillator modified to account

for piezoelectric coupling. Experimental measurements showed considerably larger oscillation

amplitudes with greater bandwidth than its linear piezoelastic counterpart and a corresponding

increase in harvested energy. These results are promising, but still do not reach the full potential

of an actively controlled counterpart.
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The works cited thus far either only address improvements at resonance excitation, result in clunky

ways of mitigating the resonance requirement, or do not exploit nonlinear behavior to their fullest

potential. This work aims to improve the bandwidth of the harvester with little expense to power

output throughout the operating region. By accepting chaos as a desirable property, small per-

turbations to a manipulable system parameter can greatly alter the behavior of a system. This

extreme sensitivity to initial conditions can allow small control inputs to have large effects on state

trajectories and power output. Extending the nonlinear piezomagnetoeleastic beam element de-

scribed by a Duffing oscillator in Figure 1.6 to embrace chaotic motion more actively can improve

the bandwidth of the harvester without compromising harvested energy. Driving motion along a

chaotic attractor allows a single excitation frequency to generate a theoretically infinite number

of unstable periodic orbits that can be stabilized through control. Ergodic wandering of a chaotic

orbit over its strange attractor eventually brings the trajectory arbitrarily close to every unstable

period orbit in the attractor [59]. Since each single excitation frequency creates an infinite number

of orbits, some overlap is expected with multiple frequencies containing the same orbit in space.

The chosen orbit can be accessible from a large range of input excitation frequencies improving

the bandwidth of the piezoelectric harvester. Embracing chaotic motion will allow development of

a novel harvester able to work across a large range of excitation frequencies, both harmonic and

non-harmonic.

Chaotic motion in conjunction with a low-power controller can drive the system through a wider

range of trajectories as opposed to the more limited motion captured by linear models [60]. By

studying the nonlinear dynamics of said chaotic system, it becomes possible to trap the harvester

through feedback in a chosen orbit for energy extraction [59]. As such, a high bandwidth harvester

can be created by developing feedback controllers for an unstable periodic orbit within the chaotic

attractor.
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2.4 The Duffing Oscillator

Classically, the Duffing oscillator is a well researched system of nonlinear dynamics. Famous for

its use in studying non-harmonic oscillations and chaotic nonlinear dynamics, the equation was

developed by the German engineer Georg Duffing [61]. While the Duffing oscillator is versatile

among its applications, it is used herein to model the vibration of a buckled piezomagnetoelastic

beam.

To visualize the the effects of nonlinearity on the frequency response of a Duffing oscillator, it is

useful to start with the system representation in absence of any electromechanical coupling [62].

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (2.32)

where δ represents the mechanical damping ratio, α and β together represent the effect of the

nonlinear spring force, γ is the forcing amplitude, and ω is the harmonic excitation frequency.

Applying the method of harmonic balance, a solution to Equation 2.32 is assumed in the following

form:

x = a cos(ωt) + b sin(ωt) = z cos(ωt+ φ) (2.33)

where z2 = a2 + b2 and tanφ = b
a
. Differentiation and substitution of Equation 2.33 into Equation

31



2.32 leads to:(
−ω2a+ ωδb+ αa+

3

4
βa3 +

3

4
βab2 − γ

)
cos(ωt)

+

(
−ω2b− ωδa+

3

4
βb3 + αb+

3

4
βa2b

)
sin(ωt)

+

(
1

4
βa3 − 3

4
βab2

)
cos(3ωt)

+

(
3

4
βa2b− 1

4
βb3

)
sin(3ωt) = 0

(2.34)

Similar to the distributed parameter cantilever beam model, higher order terms and harmonics can

be neglected as they pose little impact to the system response. As a result, a nontrivial solution

exists when the coefficients of sin(ωt) and cos(ωt) are independently zero:

−ω2a+ ωδb+ αa+
3

4
βa3 +

3

4
βab2 = γ

−ω2b− ωδa+
3

4
βb3 + αb+

3

4
βa2b = 0

(2.35)

Squaring both equations and adding them together results in the magnitude function of the fre-

quency response: [(
ω2 − α− 3

4
βz2

)2

+ (δω)2

]
z2 = γ2 (2.36)

Depending on the sign of the variable spring force, a softening or a hardening Duffing oscillator

can result. In each case, the tip of the magnitude plot bends left or right, respectively, and gives

initial insight to the coexisting dynamic attractors that can arise during excitation of a Duffing

oscillator system. Figure 2.5 illustrates the frequency response of both softening and hardening

Duffing oscillators compared to the linear lumped parameter beam model. Nonlinear harvesters

aim to eliminate the resonance excitation dependence, while also allowing for efficient operation

in low frequency ambient environments. Therefore, a softening harvester is the system of choice,
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with a theoretically larger magnitude than an equivalent linear system, wider operating bandwidth,

and optimal performance below the resonance frequency.

Figure 2.5: Frequency response of the Duffing oscillator

2.4.1 Multistability of the Duffing Oscillator

The bending of the frequency response coincides with the the destabilization of the central equi-

librium point caused by the nonlinear restoring spring force in the Duffing oscillator. The direction

of the frequency sweep dictates on which branch of the response the system will oscillate. These

branches correlate to what are commonly called the dynamic attractors of the system. In addition
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to the sweep direction, environmental disturbances can also cause the solutions to jump or fall

between the branches [62].

Figure 2.6: A bistable potential function labeled with the possible dynamic attractors [15]

Figure 2.6 more readily illustrates both the destabilized central equilibrium caused by the nonlin-

earity and the solution branches from a potential function perspective dependent on the excitation

energy available in the ambient environment. Under low-energy ambient environments, the tra-

jectories remain in a single well (a) with small periodic solutions inefficient for suitable energy

harvesting. Increasing the excitation energy further leads to aperiodic chaotic solutions (b) domi-

nating the response. In chaotic motion the system experiences enough energy to bounce between

potential wells, but at an irregular rate. These solutions are different from random motion, in that

they exist in a finite region of the phase space as illustrated by the outer bounds of the potential

function. Increase the excitation even further and a large-amplitude, periodic interwell solution

34



(c) dominates the response. With respect to nonlinear vibration energy harvesting with a bistable

system, this has been considered the ideal response for optimal performance [15, 16].

Figure 2.7 takes the solution branches illustrated in both Figures 2.5 and 2.6 and depicts them as

a phase portrait highlighting the displacement differences between solutions. The outer line (c) is

the desirable large displacement orbit. Region (d) and trajectory (b) represent the chaotic attractor

and a possible stable periodic orbit within. Trajectory (a) illustrates the poor performance of an

equivalent linear harvesting system operating away from its fundamental frequency. A combina-

tion of the three figures paints a clear picture of the physical responses possible for each dynamic

attractor, and the energy differences presented when considered from the perspective of vibration

energy harvesting.

The phase portrait in Figure 2.7 visualizes the types of responses possible, but does not adequately

capture the notion that these responses can coexist for a range of system parameters. Bifurcations

used to illustrate what dynamics attractors are present for a range of system parameters is addressed

in more detail in Section 3.2 once the proper analytical tools are developed. Chaotic oscillations

and the large amplitude orbits can both dominate the response, with the final solution depending

on initial conditions or disturbances over time. When these instances arise, it is typical to disregard

chaos and hope the large amplitude solution wins out. Contrary to common practice, chaos can

be a highly beneficial property of an energy harvesting system. The stretching and folding of

trajectories in the state space due to the existence of both stable and unstable manifolds gives

chaotic systems an extreme sensitivity to variations in parameters and initial conditions. Before any

design decisions can be made regarding the chaotic solution, a new set of analysis tools is needed to

visualize the system, breaking from the traditional framework of a deterministic analytical solution.

The next few sections quantify how chaotic motion is beneficial and provide an explanation of the

analytical tools and control ideologies that will be used.
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Figure 2.7: Phase portrait comparisons of the common attractors in a bistable energy harvester [63]

2.5 Visualizing Chaotic Systems for Control Design

When solving harmonically forced linear systems of the form mẍ + cẋ + kx = F0 sinωt, it is

often a trivial task to determine key values of damping ratio and natural frequency. Typically a

differential equation solver can plot solutions of the form seen in Figure 2.8 and represented by

Equation 2.37:

x(t) = Ae−ζnωnt sin(ωdt+ φ) +
F0

k

1

(1− r2)2 + (2ζnr)2
sin(ωt+ ψ) (2.37)
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where r represents the ratio of excitation frequency to natural frequency and ωd =
√

1− ζ2
n repre-

sents the damped natural frequency.

Figure 2.8: Time series solution of a forced linear mass-spring-damper system

Multistability is not possible in linear systems and damping ratio, natural frequency, and excitation

frequency can all be interpreted directly from the plot. However, when representing solutions for

nonlinear and chaotic systems, it is often impossible to discern significant information from a time

domain solution. For example, no distinct pattern or trend exists in the time series solution of the

Duffing oscillator exhibiting chaotic motion. Worse still, identical systems occupying the same

chaotic attractor can exhibit substantially different solutions from each other due to the extreme

sensitivity to initial conditions. Figure 2.9 illustrates the solution of two identical Duffing oscil-

lators. One oscillator was given initial conditions of (1, 0) for displacement and velocity, respec-
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tively. The second oscillator was started at (1.01, 0). The solutions remain identical for roughly

thirty seconds before traversing highly different trajectories within the same bounded space even

though the same chaotic attractor is present in both oscillators as seen in Figure 2.10.

Figure 2.9: Time series solutions of identical Duffing oscillators started from slightly different initial condi-
tions

Successful control of the chaotic system hinges on the ability to isolate useful quantities related to

periodicity and stability of the system. While time series plots of the system trajectories are often

useless at best, alternative analysis techniques have been investigated in the literature, allowing

some conclusions to be made about chaotic systems. The stretching and folding of the trajecto-

ries in the state space previously mentioned frame the idea that a chaotic attractor is a dense sea

of infinitely many unstable periodic orbits. One method of visualizing these orbits is called the
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Poincaré section.

Figure 2.10: Phase portrait and Poincaré section of the Duffing oscillator illustrating the chaotic attractor

2.5.1 Poincaré Sections

In systems exhibiting periodic or quasi-periodic behavior, it becomes beneficial to illustrate the

system as a reduced dimensional mapping transverse to another dimension of the system. The

resulting plot is then defined as a map of points every time the trajectories either cross the same

plane in space, or cross a plane in time with periodic multiplicity. This method is known as a

Poincaré map and was developed in 1899 by Henri Poincaré [64]. This discrete map decreases

dimensionality to (n − 1) while still capturing important dynamical phenomena like periodicity
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and stability. Therefore, a Poincaré map allows complex dynamic behavior to be clearly observed

for general periodic trends.

Poincaré maps can be generated for spatial and time varying functions, but the total system dimen-

sion must be greater than or equal to three. As Duffing oscillators are driven by a time-dependent

harmonic function, the latter approach is used in generating a section. Freedom exists to choose

a map starting at any time τ within the first period, T , of the system. Then, as the trajectory

progresses, a data point is taken at every time τ + nT , when n is an integer from 0, 1, . . . , n.

Theoretically, a Poincaré map is described by the following equation:

xk+1 = Pxk (2.38)

though it is often impossible to explicitly describe the relation for P. The Poincaré map in Figure

2.11 illustrates that consecutive points traversing through an identical plane from Xn to Xn+1

involve the analytical mapping P , and motion from Xn to Xn+2 is described by P 2.

The Poincaré map is exceptionally useful when used on unknown systems suspected of exhibiting

periodic behavior. As a tool it can readily display if a solution is periodic as well as the period

of said solution, or if more complex chaotic and random behavior is present. Since a map can

be created solely from discrete time series states of the system, simple characterization between

chaotic and non-chaotic behavior can be made. However, the map by itself does not dictate enough

information to develop a control algorithm for the system. The points in the Poincaré map illustrate

the location of unstable periodic orbits with the chaotic attractor, with large time horizons providing

adequate insight into the bounds of the attractor itself. Unfortunately, the period of each orbit point

is still unknown, nor is there any method to find the other points for orbits greater than period-1.

Isolating a single dimension of the Poincaré map and plotting a current point against a future point

n + p periods later allows the diagonal line xn = xn+p to be used as a visual classifier for orbits
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of that period. Such a plot is called a return map and will be described in Section 3.2. Creating a

robust controller requires developing an automated solution that can isolate orbit points of various

periods. Using recursive techniques, such an algorithm was developed and will be explained in the

following chapter. Once orbit points are isolated, a chaotic controller can be implemented.

Figure 2.11: Dimensional reduction for computing a Poincaré section

2.6 Chaos Control Methods

Chaos control for piezoelectric-based vibration energy harvesting systems seeks to isolate unsta-

ble periodic orbits within the chaotic attractor and generate stable periodic trajectories capable of

producing a net larger power output of the system than aperiodic chaotic oscillation alone. To do

so while embracing the sensitivity to variations in parameters, local linear models are fit in the
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vicinity of each of the isolated unstable periodic orbit points. From these models, control gains are

computed depending on the algorithm chosen; these gains aid in perturbing the system onto the

stable manifold of the isolated periodic orbit. A caveat of this control approach is the wait time

associated for the trajectories to wander sufficiently close to the isolated orbit points for the local

linear controller to be valid. While ergodicity of the attractor ensures all unstable orbits points are

visited in finite time, this time cannot be quantified and is different between attempts. Also, once

control is applied the perturbations must be repeated upon each passing of the trajectory preserving

stability as the trajectory then remains along the stable manifold. Two different control techniques

were developed using discrete data and a third, model-dependent method was implemented to

investigate the success of a control law capable of perturbing the system between attractors.

2.6.1 Ott, Grebogi, and Yorke Control

Derived with the notion that chaotic motion is the result of an infinite number of unstable periodic

orbits in the phase portrait, Ott, Grebogi, and Yorke theorized that a well-chosen small pertur-

bation to a parameter within the nonlinear system could allow periodic orbits of any period to

be stabilized within a finite number of iterations [20]. Computing this parameter stems from the

two-dimensional phase portrait and Poincaré section constructed to isolate the unstablem-periodic

orbit points. Fitting a local linear model to each orbit point is equivalent to computing the Jacobian

of the system with eigenvalues representing the stable and unstable manifold for each point. Note

that a two-dimensional chaotic system is guaranteed to have one stable and one unstable direction,

and this is the only condition on which OGY control works.
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Figure 2.12: Stabilizing an unstable periodic orbit point with OGY control

The OGY control approach illustrated in Figure 2.12 is centered around the idea that an accessible

parameter within the system can be perturbed, forcing a point in the neighborhood of x onto the

stable manifold. The value of p0 represents the steady state value of the accessible parameter. The

point xk is chosen in the neighborhood of the fixed point with the dotted line representing the path

it can be shifted along through perturbation. Once x is perturbed to (p0 + δp), the next iteration

forces point xk to be both attracted to x(p0 + δp) parallel to its stable manifold and repelled from

x(p0 + δp) parallel to its unstable manifold. Proper choice of perturbation δp causes xk+1 to fall

directly onto the stable manifold of x(p0). The parameter can then be returned to its nominal value

p0 as the periodic orbit will remain stable until the next cycle.
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2.6.2 Sliding Mode Control

ωu

ωs

•
x(p0)

ωi

•
xk

•
xk+1

•
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Figure 2.13: Stabilizing an unstable periodic orbit point with sliding mode control

A weakness of the OGY algorithm is its reliance on both the ability to compute the system Jaco-

bian for the chaotic system and the existence of a single unstable manifold direction. For higher-

dimensional systems computing a Jacobian is computationally challenging and can lead to multiple

unstable manifold directions for a single orbit point. The two-dimensional bistable system used is

linearly coupled to a capacitive circuit representative of the harvesting element; introducing another

dimension to the system. Therefore, an alternative algorithm was implemented independent of a

system Jacobian and robust when considered for higher-dimensional chaotic systems. Whereas the

OGY controller prescribed perturbations to shift trajectories along the unstable manifold onto the

stable manifold, the sliding mode controller prescribes a custom manifold designed to intersect the

stable manifold of the orbit point. Shown in Figure 2.13, perturbations made by the sliding mode
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controller do not push the system directly onto the stable manifold of the orbit point. Instead, the

trajectory gets pushed into a custom manifold designed to intersect the stable manifold.

2.6.3 Control Across Attractors

Mentioned repeatedly in the literature and earlier sections of this work, the ideal orbit for energy

harvesting is pure interwell motion in which the system does not get trapped in either potential

well. The above control strategies aim to stabilize interwell trajectories, but these orbits lie within

the low energy attractor. Conceptually, re-framing the problem in which isolated orbit points exist

in a different attractor altogether, the same control strategy can be implemented with the end result

being control across attractors from low energy to high energy. In a method adapted by Liu et al.,

the bistable harvester system model is solved in parallel to a theoretical model tracking the large

amplitude trajectory. The difference between the results is framed as an error to be minimized using

control. Contrary to the previous methods, this method cannot presently be done from discrete time

series data.

Figure 2.14: Stabilizing trajectories across attractors with a model-based feedback controller [65]
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Previous work by Liu et al. has demonstrated the feasibility of an intermittent controller for a

classic Duffing oscillator system. Two period-one attractors of small and large amplitude exist

concurrently for a specific set of system parameters. The goal of the control algorithm is to min-

imize the error between the current state in the lower-energy attractor and the desired state in the

high-energy attractor for both position and velocity. As the required perturbation is small, a local

linear controller is designed near the intersection of the two concurrent attractors. The event-driven,

intermittent application of the control law prevents unwanted changes to the underlying dynamics

or attractors of the system [65]. When a perturbation is intermittently applied to a state of the sys-

tem, the system is adjusted onto the higher-energy attractor thus resulting in a larger displacement

for the harvester. The same ideology is preserved in the nonlinear harvesting application; how-

ever, the starting attractor is chaotic and the periodic large amplitude attractor is stabilized through

perturbation.

The proposed design induces chaotic motion through nonlinearity of the piezoelectric-based vibra-

tion energy harvester. Time series data from the chaotic motion can be used to isolate points from

a dense sea of unstable periodic orbits and fit a control law resulting in stable, large-displacement

trajectories of the system. The result is a harvester capable of operating away from resonance with

an optimal solution existing across a wide band of frequencies present in an ambient environment.

The rest of this dissertation is aimed at assembling the chaotic system and successfully stabilizing

large-displacement trajectories of the system; both theoretically and experimentally.
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CHAPTER 3: MODEL DEVELOPMENT

The background covered in Chapter 2 frames the harvesting problem, extends the technology to-

wards induced nonlinearity for bandwidth improvements, and details the dynamic solutions present

in the system. The strength of the proposed control method is model independence as parameters

are fit from time series data of the system. This chapter derives a lumped parameter model for the

prototypical bistable energy harvester to then use time series data with the topological mapping

techniques for analyzing chaotic systems. Orbit points are isolated using a statistical recurrence

technique and a local linear model is then fit within the vicinity of each point for control. State

reconstruction is described, reducing the measurement requirements to a single state of the system;

i.e. displacement. Additionally, the model-based feedback control method designed is capable of

improving the harvesting system further by perturbing the system out of the lower energy chaotic

attractor and onto the desirable large amplitude response.
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3.1 Bistable Piezoelectric Energy Harvesting Model

m

θV
X + Z

dU(X)
dX c

Z

− θẊ

+

CpR
V

Figure 3.1: Schematic of the lumped parameter representation of the nonlinear harvesting system [16]

It was previously shown that well-separated modes allow a lumped parameter model to sufficiently

capture the dynamics of the linear piezoelectric energy harvester. While the nonlinear system is

non-resonant, excitation still occurs at some frequency slightly shifted from resonance. Therefore,

a similar modeling methodology is possible when deriving the equations of motion for the Duffing-

oscillator-based piezoelectric vibration energy harvesting system. Figure 3.1 illustrates how a

piezoelectric harvesting element is coupled to the mass-spring-damper system accounting for the

electrical energy generated during beam deflection. Summation of forces and Kirchoff’s voltage

law leads to the following dimensional model of the nonlinear energy harvester:

mẌ + cẊ +
dU(X)

dX
+ θV = −mZ̈

CpV̇ +
V

R
− θẊ = 0

(3.1)

whereX represents the relative displacement of a massm, c represents the linear viscous damping,
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θ represents the linear electromechanical coupling, Z̈ represents the base acceleration, Cp repre-

sents the capacitance of the piezoelectric element, and V represents the induced voltage measured

across an equivalent resistive loadR [15,16]. The function U(X) represents the potential energy in

the system; its shape depends on the nonlinearity present in the harvester. In general, the potential

function can be written as:

U(X) =
1

2
k1(1− r)X2 +

1

4
k2X

4 (3.2)

also known as the Duffing potential leading to cubic nonlinearities in the mechanical oscillator. The

coefficients k1 and k2 represent the linear and nonlinear stiffness, respectively, and r is a tuning

parameter allowing variation in the linear stiffness around its nominal value. By varying the tuning

parameter r and the nonlinearity strength δ = k2/k1, three different topologies of the harvester

can be designed. Setting δ = 0 and r < 1 eliminates the nonlinearity and yields a monostable

linear cantilevered harvester. When r ≤ 1, a monostable Duffing oscillator results with a softening

nonlinearity when δ < 0 or a hardening nonlinearity when δ > 0 (again, δ = 0 reduces to the

linear case). When the tuning parameter r > 1 and δ > 0, the central equilibrium destabilizes,

resulting in the bistable harvesting system of interest. The locations of the stable equilibria, x,

then depend on the tuning parameter and the strength of the nonlinearity; x = ±
√

(r − 1)/δ [15].

Figure 3.2 highlights the shape of the potential function as tuning and nonlinearity strength are

varied. Introducing terms:

x =
X

lc
z =

Z

lc
t = τωn v =

Cp
θlp

V

nondimensionalizes Equation 3.1 where lc and lp represent length scales and ωn =
√
k1/m rep-

resents the short circuit nominal frequency when r = 0. Applying the transformations above and

substituting the derivative of the potential function, the nondimensional equations of motion can
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be written as:

x′′ + 2ζnx
′ + (1− r)x+ δx3 + κ2v = −z′′

v′ + λv + γx′ = 0

(3.3)

where ()′ represents the derivative with respect to nondimensional time τ [15, 16]. The following

variables are defined:

ζn =
c

2mωn
δ =

k2l
2
c

k1

κ2 =
θ2

k1Cp
λ =

1

RCpωn
γ =

lc
lp

(3.4)

where ζn represents the mechanical damping ratio, κ represents the linear dimensionless elec-

tromechanical coupling coefficient between mechanical and electrical subsystems, λ represents

the ratio between time constants of the mechanical and electrical subsystem, and γ represents a

length scaling coefficient between the mechanical and electrical subsystems equal to unity under

ideal coupling. While the dimensional forms of both κ2 and γ are equal, the nondimensionalization

groups terms differently allowing the coefficients to be split representing the indirect (direct) piezo-

electric effect in the mechanical (electrical) equations. Such a representation allows for broader

applicability in modeling the system.
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Figure 3.2: Shaping the potential functions of the nonlinear oscillator through manipulation of the nonlin-
earity

Setting r > 1 and δ > 0 to create a bistable dynamic system admits three separate response

types. Depending on the initial conditions and the magnitude and frequency of the excitation, the

system can oscillate solely in one potential well (intrawell), move periodically between both po-

tential wells (interwell), or move aperiodically between both potential wells (chaos). Aside from

frequency matching to ensure resonance excitation, significant bandwidth improvements seen in

bistable harvesters are only ensured when the system experiences interwell solutions. Unfortu-

nately, this branch of solutions depends strongly on the initial conditions, harvester system param-

eters, and excitation strength [16]. If the input excitations are too small, interwell oscillation is

never realized, and the system performs marginally better than a linear cantilever. Should proper

potential well depth and excitation level be present, limitations can still arise as the favorable,

large-amplitude response coexists with chaotic and aperiodic solutions.
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Figure 3.3: Bifurcation diagram capturing the coexistence chaotic and interwell solutions across a range of
forcing frequencies [16]

Figure 3.3 presents a bifurcation diagram for the bistable harvesting system. While explained in

more detail in Section 3.2, a bifurcation plot illustrates one dimension of a Poincaré map against

a swept parameter of the system revealing under what range of the chosen parameter multiple at-

tractors can exist. Figure 3.3 identifies that from frequency range Ω
ω

between 0.75 and 0.9 both

chaotic attractors and large amplitude periodic orbit are present dependent only on initial condi-

tions. While analytical techniques show promise to increase the bandwidth where the periodic

interwell solution is unique, improving the system response when in the chaotic regime still merits

attention [17, 18, 66].

3.2 Topological Analysis of the Chaotic System

The model described in Equation 3.3 is the foundation on which the chaotic control technique will

be developed. In control systems, differential equations of motion are commonly rewritten into
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first-order form aligning with standard practice in control design and use with MATLAB solvers:

x1
′ = x2

x2
′ =

1

2
x1(1− x2

1)− 2ζx2 + κ2x3 + f cos Ωt

x3
′ = −γx2 − λx3

(3.5)

System parameters and initial conditions for Equation 3.5 must be chosen so that the solution

exists in the chaotic attractor. Using bifurcation plots where displacement is plotted against every

parameter in the system can isolate regions where chaotic trajectories occur. To stay consistent

with the Duffing-based nonlinear harvester efforts in the literature parameters ζ = 0.01, ν = 0.05,

f = 0.08, Ω = 0.8, λ = 0.05, γ = 0.5, and κ2 = 0.05 are selected, corresponding to previously

studied chaotic parameters of the harvesting system [58].

Equation 3.5 was solved using MATLAB ode45 to generate a time series for each system state.

Figure 3.4 illustrates the four dimensions of the harvesting system: displacement, velocity, voltage,

and time as the independent variable. From Equation 3.5 it can be seen that voltage is linearly

coupled to the nonlinear Duffing oscillator system. As such, the voltage state remains important but

has little use in assisting the visualization of the chaotic system. Removing time as an independent

variable and treating voltage as a third dimension of the system projected into the page, a two

dimensional plot can be generated showing beam tip velocity against beam tip displacement. The

phase portrait in Figure 3.5 begins the topological visualization techniques discussed in Chapter 2;

namely Poincaré maps and return maps. These work in harmony to condition the time series data

that will be used to isolate unstable periodic orbit points and compute control gains.
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Figure 3.4: Chaotic time series solutions of the nonlinear harvesting system

A bistable equilibrium can be observed by inspecting the trajectories in Figure 3.5. The origin

acts as a saddle point, with x± = ±1 forming the stable wells. The existence of these equilibrium

conditions indicates the existence of unstable periodic orbits within the system. Both the time

series plot and phase portrait show that while dynamic behavior for a Duffing oscillator may appear

random, the response is bounded. While more easily interpreted than the time series solutions, the

phase portrait still lacks the clarity necessary for analysis. Using the method of visualization

developed by Henri Poincaré detailed in Section 2.5.1, a data point within the phase portrait is

taken for each state once per period of excitation. The resulting points are then plotted on the same

axes as the phase portrait. The result is a more simplified representation of the system preserving

periodic behavior. A Poincaré map for the Duffing oscillator harvesting system is shown atop a
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complete phase portrait in Figure 3.6.

Figure 3.5: A chaotic phase portrait of the nonlinear harvesting system
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The presence of many points spread throughout the Poincaré section confirms chaotic behavior of

the Duffing oscillator, and the shape of the plot is known as a chaotic attractor. This attractor is the

bounded structure on which all of the chaotic trajectories reside. Note, however, that the structure

can look different if a Poincaré section is started at a different initial point along the excitation

period. Figure 3.7 depicts a different Poincaré section for the same oscillator, but with the initial

data point taken at some τ later within the first period. For the control design in this work, all

Poincaré sections are sampled at the positive-slope zero crossing of the harmonic excitation. This

existence of infinitely many Poincaré sections containing infinitely many unstable periodic orbits

points increases the likelihood of isolating desirable large amplitude orbits. Ideal selection of a

starting point is not a subject of this work, but a parallel advancement that can be made to the

benefit of the field.

With a method visualization for the unstable periodic orbit points of the system defined, a bifur-

cation plot of the harvesting system can be constructed to highlight the alternate solutions that

can arise independent of chaos or the large amplitude response. A typical bifurcation plot sweeps

a single parameter of the system across a range of values and computes a Poincaré section for

each value of the parameter. A single state from the section is then plotted versus the parameter,

creating a side profile of stacked Poincaré sections. The result is used to dictate where chaotic

motion exists in addition to any other solution attractor visible in the system. Holding all pa-

rameters constant and varying the forcing amplitude from zero to five results in a bifurcation plot

shown in Figure 3.8. The vertical-axis corresponds to the beam tip displacement values with the

horizontal-axis describing the parameter variation. The results of the bifurcation diagram in Figure

3.8 can be roughly interpreted to illustrate values of forcing amplitude where one point attractors

(f = 0.2 to 0.4, 2.2 to 3.2), period doubling regions (f = 2.2 to 3.6), and regions of chaotic

motion (f = 0 to 0.2, 0.4 to 2.2, 3.6 to 5) can exist.
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Figure 3.6: A Poincaré Section of an harvesting system sampled every nT

The phenomenon behind bifurcations and how these different attractors are created and destroyed is

an active field of research beyond the scope of the energy harvesting problem. Instead, the different

solution regions are analyzed solely from the perspective of displacement. Larger displacements

cause larger strains in the piezoelectric element, and therefore result in larger power outputs of

the system. While in general targeting low forcing amplitudes is desirable for harvesting ambient

vibrations, the following analysis is purely for comparative purposes.
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Figure 3.7: A Poincaré Section of an harvesting system sampled every τ + nT

Studying the one point attractor region, a phase portrait and Poincaré section was determined at

a forcing amplitude of f = 0.02. The existence of one branch in Figure 3.8 at this amplitude

illustrates that the Poincaré section consists of a single point. A point in a two dimensional section

correlates to a stable limit cycle in the higher dimensional system. Due to excitation outside of the

chaotic regime, Figure 3.9 illustrates oscillation around one of the potential wells. Inspecting the

Poincaré section, all trajectories evolve to the location of a single stable periodic orbit within the

potential well. This is not useful for improving the bandwidth of a piezoelectric energy harvester,

and other regions of the bifurcation plot must be analyzed.

Since the end goal is to improve the bandwidth of the harvester, operating on a period-1 orbit within
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a single potential well is not beneficial. Stepping over in Figure 3.8, a period doubling region is

studied where f = 3.55. Figure 3.10 shows a more dynamic phase portrait than the single point

attractor; however, the system still biases one potential well. Worse still, the Poincaré section for

this period doubling condition shows the beam snapping back and forth repeatedly with a large net

displacement of 1.5 but not occupying two specific points as expected for a stable period-2 orbit.

Without the clear existence of an orbit, driving the system within the period doubling region can

increase the displacement of the system, but will likely interfere with periodicity required for the

harvesting circuitry.

Figure 3.8: Bifurcation plot observing displacement under a sweep of forcing amplitude
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Studying the dynamics of other solutions of the Duffing oscillator builds a foundation in the use

of the topological analysis tools and highlights the weaknesses that can be mitigated by embracing

chaotic motion. By isolating the periodic orbits in the chaotic Duffing oscillator shown in Figure

3.6, large displacement trajectories can be isolated for use in subsequent control towards the goal

of improved piezoelectric-based vibration energy harvesting.

Figure 3.9: Topological representation of a Duffing oscillator acting in a one-point attractor
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Figure 3.10: Topological representation of a Duffing oscillator during a period doubling route to chaos

3.2.1 Orbit Isolation

While bifurcation plots and Poincaré sections can illustrate the existence of chaotic motion, very

little can be said about both the exact location of the orbit points and their respective periodicity.

Introduced in Chapter 2, return maps plot a time series from a Poincaré section against itself n

periods shifted in time. Since each point in a Poincaré section represents a first return from the

previous point, plotting successive Poincaré points against each other is called a first return map.

There is no theoretical limitation to what period return map can be created and using larger return

times results in higher-period orbits. Return maps of higher periods will contain fewer orbits for

the same length time series. Distinguishing between a period-8 orbit, multiple period-2 and period-
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4 orbits, or false detection becomes a challenge due to the extreme sensitivity to initial conditions

inherent to chaotic systems [67, 68]. Two return maps are created with period-1 and period-4

returns respectively in Figures 3.11 and 3.12. Both horizontal and vertical axes correspond to

displacement data; therefore the points occurring along the diagonal line specify unstable orbits

where the original and future return are a candidate orbit for control. For a period one return,

the return map shows a large cluster of unstable periodic orbits in the attractor. As return time

increases, the figures illustrate how return maps lose structure with less unstable periodic orbits

accessible in the attractor.

Figure 3.11: First return map of the Duffing oscillator-based energy harvesting system

Compared to the nonlinear analysis of the one point attractor and period doubling Duffing regimes,

the benefits of chaos are easily justified. By choosing different harmonic forcing amplitudes, mo-
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tion along a chaotic attractor can be quantified, with any one of the infinite unstable periodic orbits

becoming a candidate for control. For the Duffing oscillator harvester studied, the ideal chaotic

regime is actually accessible through a lower forcing amplitude than many of the other regimes.

Not only will a dense set of periodic orbits exist, but the harvester itself can function in lower en-

ergy ambient environments and still result in larger deflections made possible through the chaotic

controllers.

Figure 3.12: First return map of the Duffing oscillator-based energy harvesting system
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Visual inspection of a return map is inefficient and fails to shed any light on the intermediate points

for orbits of periods larger than one. For instance, a period-5 orbit is made of up five unstable

periodic orbit points, yet a period-5 return map only illustrates the first and last orbit of the return.

A single point representing a large periodic orbit be good enough in some cases, but a more robust

solution captures the intermediate points and uses them during control design for a simultaneous

stabilization strategy [69]. To determine the unstable orbit points of the system from the Poincaré

section data, a recurrence algorithm was adopted from Lathrop et al. [70].

3.2.1.1 Recurrence Detection

Lathrop et al. devised a method of recurrence detection centered around the observation that as

a point x nears an orbit, the trajectory stays in the vicinity of the orbit for some amount of time,

moving with roughly the same frequency as the orbit, before eventually deviating due the chaotic

nature of the system [70]. This motion is therefore an approximation of the orbit. To isolate the

potential orbit points, a large amount of data is gathered at successive Poincaré intersections with

xi as a point on the attractor. Following the observed images, xi+1, xi+2, . . ., xi+k, with index k

representing the lowest integer k > i where ‖xk − xi‖ < ε. The orbit is then defined with period

m = k − i where xi is a (m, ε) recurrent point and ε represents a small region around the fixed

point [70].

The isolated series of orbit points only marks a candidate for a potential orbit. The sensitivity

of chaotic systems reduces the likelihood that every isolated sequence is an actual orbit point.

Instead, collecting all likely (m, ε) recurrent points, grouping them, and computing the average

to determine x̄1, x̄2, . . . , x̄m, reasonably estimates the locations of the actual orbit x∗1, x
∗
2, . . . , x

∗
m.

This grouping, coupled with a smaller region ε and larger data sets all work to ensure the likelihood

that the estimated orbit points converge to an actual existing unstable periodic orbit of the system.
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A MATLAB script used to determine recurrence points for each period is in Appendix B.

The recurrence method can be easily implemented in a chaotic system, with a few potential set-

backs. Accuracy improvements made by reducing the size of the ε-ball require a much longer time

series to make the estimates. The dependence of vector length, ε-ball, and orbit accuracy result

in a system that may take a significant amount of time to converge on even low period orbits.

More specifically, should the algorithm isolate a sub-optimal orbit, repeating the method further

increases the amount of time needed before a stabilized orbit can take effect. Improved methods

of orbit detection have been shown to shed dependence on an ε-ball, converge with data sets as

small as 100 samples, versus thousands sometimes needed for recurrence detection, and isolate all

possible orbits a specific period as opposed to just the least unstable orbit [71]. For this work the

simple recurrence method is used throughout. To demonstrate the method, Figure 3.13 illustrates

the isolated unstable periodic orbit points for periods six through ten.

3.2.2 System Model Approximation

Control is centered on the idea of stabilizing a three-dimensional continuous trajectory through

periodic perturbation of an unstable orbit point isolated through reduced dimensional mapping onto

its stable manifold. Once the unstable periodic orbits have been determined for arbitrary period m,

the pole placement control strategies require a linear regression algorithm to fit an approximated

state-space model at each orbit point. From this analysis, each point x̄1, x̄2, . . . , x̄m will have

corresponding matrix pairs (A1, B1), (A2, B2), . . . , (Am, Bm) computed from the same data used

for recurrence detection. In the next two sections a linear regression algorithm is described with an

iterative method to improve the estimated models. In addition, the algorithm has been generalized

for arbitrary system dimension n and period p.
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Figure 3.13: Recurrence results on the harvester time series data for orbits of period six through ten

3.2.2.1 Linear Regression

General linear regression uses data pairs (x1, y1), (x2, y2), . . . , (xp, yp), least squares to fit the co-

efficients a and c in a function y = ax+ c. For this case, the best fit line is defined as the line that

minimizes the sum of the squared residuals of the linear regression model. Framing the residuals

as an error ej = yj − (axj + c), the algorithm can be written as:

min
a,c

:

p∑
j=1

e2
j =

p∑
j=1

[yj − (axj + c)]2 (3.6)
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For a general n-dimensional problem, Equation 3.6 expands to:

min
a1...ak,c

:

p∑
j=1

e2
j =

p∑
j=1

[yj − (a1x1,j + a2x2,j + . . .+ akxk,j + c)]2 (3.7)

The data used in the model fit represent a deviation of a measured data point from the nearby

isolated orbit point. Therefore, the points xk represent the deviation δxi = xi−xi and yj represents

the image of xi one Poincaré piercing later δxi+1 = xi+1 − xi+1. Now, a linear curve is being

estimated for δxi+1 = f(δxi) using data points within ξ > ε. Therefore, for every estimated

unstable orbit point x1, x2, . . ., xm, data pairs (xi, xi+1) in which both ‖xi − xi‖ < ξ and image

one Poincaré piercing later ‖xi+1 − xi+1‖ < ξ should be found. It is important to ensure proper

choice of ξ, as a value too small would result in long run times to gather enough data, but a value

too large could yield points in which a linearized model is no longer valid.

For a two-dimensional system, the linear fit for ∂xi+1 = f(∂xi) takes the form:

δxi+1,1 = a1,1δxi,1 + a1,2δxi,2 + . . .+ a1,nδxi,n + c1

δxi+1,2 = a2,1δxi,1 + a2,2δxi,2 + . . .+ a2,nδxi,n + c2

...

δxi+1,n = an,1δxi,1 + an,2δxi,2 + . . .+ an,nδxi,n + cn

(3.8)

The values ci form a vector that denotes an offset quantifying how far measured trajectories are

from the isolated unstable orbit. Should ci be equal to zero, then x = x∗ and the trajectory lies on

the orbit perfectly. However, since the vector ci is often nonzero, an iterative improvement method

can be used to correct the estimates, essentially forcing all ci to zero [72].
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3.2.2.2 Improved Linear Regression

Proper approximation assumes that the x = x∗, implying that all ci are zero, which is not the

case in real-world systems. Including a correction factor through the addition of error terms and

subsequent minimization of the error terms through repeated iteration allows the fixed points to

be adjusted to their “true” values. For two dimensional Poincaré data the adjusted terms can be

defined as [x+ dx, y + dy] = [x∗, y∗] where dx and dy represent the zero offsets. For a period-one

orbit the least squares method can be rewritten as:

[δxi+1 − dx] = a11[δxi − dx] + a12[δyi − dx]

[δyi+1 − dy] = a21[δxi − dy] + a22[δyi − dy]

(3.9)

Extending to a period-two orbit, the least squares method with adjustment terms is:

δxi+1,1 − a11,1δxi,1 − a12,1δyi,1 = −a11,1dx1 − a12,1dy1 + dx2

δyi+1,1 − a21,1δxi,1 − a22,1δyi,1 = −a21,1dx1 − a22,1dy1 + dy2

δxi+1,2 − a11,2δxi,2 − a12,2δyi,2 = −a11,2dx2 − a12,2dy2 + dx1

δyi+1,2 − a21,2δxi,2 − a22,2δyi,2 = −a21,2dx2 − a22,2dy2 + dy1

(3.10)

Rewriting both into matrix form sheds light on how the algorithms change when considering dif-

ferent periods.

Period 1: δxi+1 − a11δxi − a12δyi

δyi+1 − a21δxi − a22δyi

 =

(1− a11) −a12

−a21 (1− a22)


dxdy

 (3.11)
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Period 2:



δxi+1,1 − a11,1δxi,1 − a12,1δyi,1

δyi+1,1 − a21,1δxi,1 − a22,1δyi,1

δxi+1,2 − a11,2δxi,2 − a12,2δyi,2

δyi+1,2 − a21,2δxi,2 − a22,2δyi,2


=



−a11,1 −a12,1 1 0

−a21,1 −a22,1 0 1

1 0 −a11,2 −a12,2

0 1 −a21,2 −a22,2





dx1

dy1

dx2

dy2


(3.12)

Each iteration of the augmented regression algorithm results in new estimates given by:

xnew

ynew

 =

xold

yold

+

dxdy
 (3.13)

with dx and dy becoming incrementally smaller. Iterating until these components are below a

certain threshold can essentially ensure x = x∗ with respect to the measured unstable periodic

orbit points [72]. For the harvesting system proposed, it is desirable to consider unstable periodic

orbits of arbitrary period. It is also useful to reduce the dimensionality constraint imposed in the

formula and derive a function capable of iterating a least squares algorithm regardless of dimension

or period. The MATLAB script used to compute the system matrices is based on the following
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iterative linear least squares regression of the form L = N ∗P where:

L =



δx1i+1,1
− a11,1δx1i,1 − a12,1δx2i,1 − . . .− a1n,1δxni,1

δx2i+1,1
− a21,1δx1i,1 − a22,1δx2i,1 − . . .− a2n,1δxni,1

...

δxni+1,1
− a21,1δx1i,1 − a22,1δx2i,1 − . . .− ann,1δxni,1

δx1i+1,2
− a11,2δx1i,2 − a12,2δx2i,2 − . . .− a1n,2δxni,2

δx2i+1,2
− a21,2δx1i,2 − a22,2δx2i,2 − . . .− a2n,2δxni,2

...

δxni+1,2
− a21,2δx1i,2 − a22,2δx2i,2 − . . .− ann,2δxni,2

δx1i+1,p
− a11,pδx1i,p − a12,pδx2i,p − . . .− a1n,pδxni,p

δx2i+1,p
− a21,pδx1i,p − a22,pδx2i,p − . . .− a2n,pδxni,p

...

δxni+1,p
− a21,pδx1i,p − a22,pδx2i,p − . . .− ann,pδxni,p



(3.14)
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N =



 A1


1 0 · · · 0

0 1 · · · 0

...
... . . . ...

0 0 · · · 1

· · ·

0 0 · · · 0

0 0 · · · 0

...
... . . . ...

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

...
... . . . ...

0 0 · · · 0

 A2

 · · ·

1 0 · · · 0

0 1 · · · 0

...
... . . . ...

0 0 · · · 1

...
... . . . ...

1 0 · · · 0

0 1 · · · 0

...
... . . . ...

0 0 · · · 1

0 0 · · · 0

0 0 · · · 0

...
... . . . ...

0 0 · · · 0

· · ·

 Ap





P =



dx11

dx21

...

dxn1

dx12

dx22

...

dxn2

...

dxnp



(3.15)

and:

Ap =



−a11,p −a12,p · · · −a1n,p

−a21,p −a22,p · · · −a21,p

...
... . . . ...

−an1,p −an2,p · · · −ann,p


(3.16)

Note that the result of the estimation thus far only represents the (A) matrix in the (A,B). The

matrix B is computed the same way, but the maximum allowable system perturbation must be

applied at alternating periods of excitation. This new time series is then split into two arrays with

and without the applied perturbation, and run through the least squares algorithm.

It is important to ensure that local linearity of the model is preserved. To determine if the choice
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of ξ is successful, Figure 3.14 illustrates the points selected in the linear regression algorithm.

Successful choice of ξ confirms that the isolated points lie on intersecting flat planes. There is no

drawback to using too small a value for ξ other than array size and computation time. However,

if too large a value for ξ is used then the planes shown in Figure 3.14 start to curve, violating the

constraint of local linearity and preventing the control algorithm from performing as expected.

Figure 3.14: Poincaré points used in the linear least squares regression
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3.3 Control Design

Successful isolation of the unstable periodic orbit points and a local state-space model constrained

in a linear region of each orbit point complete the required steps before the chaotic control laws

can be derived. This section presents three separate control techniques. The first two methods

preserve model independence and stabilize a large displacement trajectory within the boundary of

the chaotic attractor. The third method uses a model dependent continuous feedback control law

that tracks both the current chaotic trajectories and the desired large amplitude response. Control

then lifts the system from the lower-energy attractor to the higher-energy attractor consistent with

the response shown in the literature for nonlinear bistable systems in vibration energy harvesting

[15, 16, 58].

3.3.1 Ott, Grebogi, and Yorke Control

A time-invariant representation of the system can be defined as:

∆xk+1 = Ak∆xk + Bk∆qk

Ak =
∂f (xk, qk)

∂xk

∣∣∣∣
xk,q0

Bk =
∂f (xk, qk)

∂qk

∣∣∣∣
xk,q0

∆xk = xk − xk

∆qk = qk − q0 = KT
k∆xk

(3.17)

where Ak and Bk represent the linear fit models in the vicinity of the periodic orbit points xk,

and both ∆xk and ∆qk are bounded to ensure any designed control law is only activated when the

system trajectory enters the region in which the linear approximation is valid [73]. Periodicity of
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the desired orbit requires Ak+np = Ak+p = Ak where n is any positive integer. This requirement

also holds for matrices B and K, meaning that a properly stabilized orbit will continuously cycle

through the approximated linear regions for all future time.

During control of a period-p orbit with u unstable directions determined from the eigenvalues

and eigenvectors of Equation 3.46, u small parametric perturbations {qk, qk−1, . . . , qk+u−1} are

applied when the trajectory is in a pre-specified control region dictated by a maximum allowable

perturbation δqmax. These perturbations would act to control the modified state dynamics onto the

stable subspace of the desired periodic orbit.

To solve for the control perturbations directly, consider u iterates of Equation 3.45 correlating to

the number of unstable directions:

Yk+u −Yk+u = Φk,0

[
Yk −Yk

]
+ Φk,1Bk (qk − q) + Φk,2Bk+1 (qk+1 − q)

+ . . .+ Bk+(u−1)

(
qk+(u−1) − q

) (3.18)

where

Φk,j = Ak+u−1Ak+u−2 . . .Ak+j+1Ak+j (3.19)

for j = 1, 2, . . . , (u− 1) and Φk,u ≡ I. Similar to classical control system theory, a controllability

matrix can be formulated:

Ck = [Φk,1Bk
...Φk,2Bk+1

... · · · ...Φk,u−1Bk+u−2
...Bk+u−1

...νk+u,1
...νk+u,2

... · · · ...νk+u,s+r] (3.20)

where νi+u,1, νi+u,2, and νi+u,s+r represent any set of linearly independent unit vectors spanning the

linearized stable subspace. Note that u represents the number of unstable directions in Equation

3.46, s = d − u represents the number of stable directions in Equation 3.46, d is the system

dimension, and r is a product of Poincaré piercings. To guarantee stability of Y, the matrices Ck
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must be invertible. The control parameter can now be solved with:

qk = q −KT
k

[
Yk −Yk

]
(3.21)

where control gains KT
k are found from:

KT
k = χC−1

k Φi,0 (3.22)

and χ represents a row vector whose first element is one and the remaining elements are zero [74].

The chosen control gains can then be implemented by computing perturbations for each period

point, selecting the smallest perturbation, determining if the smallest perturbation is within the

acceptable region where the linear approximation is valid, and if so, then applying the selected

perturbation to the system.

3.3.2 Sliding Mode Control

While the high-dimensional OGY controller can work for the harvesting system, implementing a

control law centered around invariant principles may act to reduce computational time as stable

and unstable manifold directions do not need to be determined. In fact, certain high-dimensional

nonlinear problems pose great difficulty in computing these directions for cases where the system

Jacobians possess complex eigenvalues. Starting again from the state matrices developed through

linear regression, the controlled harvesting system within the approximated linear regions can be

represented as:

∆xk+p =

(
p∏
i=1

(
Ai + BiK

T
i

))
∆xk (3.23)

Paskota et al., theorized developing p unique controllers for simultaneous stabilization of large pe-

riod orbits with a chaotic system, but determined that it is not enough to ensure
∣∣eig

(
Ak + BkK

T
k

)∣∣ <
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1 for each k = 1, 2, . . . , p [69]. To guarantee stability of the desired periodic orbit, it is necessary

and sufficient to ensure: ∣∣∣∣∣eig

(
p∏
i=1

(
Ai + BiK

T
i

))∣∣∣∣∣ < 1 (3.24)

Note that simply applying the typical OGY prescribed perturbation at every pth piercing of the

Poincaré section theoretically works, but requires long wandering times and is highly susceptible

to disturbances and noise in application. The stability criterion in Equation 3.24 gives rise to the

idea that it may be possible to prescribe a time-invariant matrix F such that [73]:

Ak + BkK
T
k = F, ∀ k = 1, 2, . . . , p (3.25)

If so, since eig(Fp) = (eig(F))p, proving that:

|eig(F)| < 1 (3.26)

would guarantee that Equation 3.24 is satisfied.

3.3.3 Defining the Invariant Manifold

With multiparameter control, an arbitrary closed-loop matrix F can be achieved through Equation

3.25, as long as the number of controllable parameters meets or exceeds the number of states.

While several implementations for controlling the harvesting system are possible, consider a per-

turbation applied solely through the velocity state of the system. In this case, an arbitrary F cannot

be achieved in the ordinary state space. By transforming the system into controllable canonical

form, a time-invariant closed-loop representation for F can be realized [73]. The transformed

system can be represented by:

∆xCF,k = Tk∆xk (3.27)
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where Tk are the transformation matrices used for formulating equivalent systems in controllable

canonical form (subscript CF). The transformed linear region(s) of the chaotic system can be rep-

resented by:

∆xCF,k+1 = ACF,k∆xCF,k + BCF,k∆qk (3.28)

where

ACF,k =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

... . . . . . .

0 0 0 . . . 1

aCF1,k aCF2,k aCF3,k . . . aCFN,k


and

BCF,k = [0, . . . , 0, 1]T (3.29)

are in controllable canonical form. In computing the transformation matrices Tk, the following

relations can be used for second-order periodic systems [73]:

Ck+p = Ck = [Bk+p−1,Ak+p−1Bk+p−2] (3.30)

tTkCk = [0, 1] (3.31)

Tk =

 tTk

tTk+1Ak

 (3.32)

Matrices Ck are again correlated to the controllability matrix in linear systems, but this time do not

rely on the number of unstable and stable manifolds and do not require the inclusion of arbitrary
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unit vectors spanning the stable subspace of the system. Applying the transformation:

ACF,k = Tk+1AkT
−1
k (3.33)

BCF,k = Tk+1Bk (3.34)

control gains KCF,k can be computed from the invariant formulation of the transformed system:

ACF,k + BCF,kK
T
CF,k = F (3.35)

where F is also in controllable canonical form:

F =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

... . . . ...

0 0 0 . . . 1

f1 f2 f3 . . . fN


(3.36)

Upon computing KCF,k, the control gains can be transformed back into the physical phase space

coordinates and implemented through the same method described in the OGY method:

Kk = KCF,kTk (3.37)

In the absence of multiparameter control the invariant matrix, F, cannot be made identically equal

to zero. To compute a best alternative to reduce control effort and ensure stability of the chaotic
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system, the controlled system can be written in physical coordinates:

Ak + BkK
T
k = T−1

k+1FTk (3.38)

with the following optimization applied:

min
F

min
k

∣∣∣∣T−1
k+1FTk

∣∣∣∣ (3.39)

The controllable canonical form defining F allows the optimization to be performed over the eigen-

values λk:

zN +
N∑
k=1

−fkzk−1 =
N∏
k=1

(z − λk) (3.40)

but must be solved on a case-by-case basis depending on the system in question [73].

3.4 Delay Reconstruction from Measured Times Series Data

The two control methods derived so far use time series data to fit local models that are then used in

discrete perturbation-based control laws. An aside from the presented work in this dissertation, but

an additional strength of the control method, is the ability to use delay reconstructed time series

data. When using delay coordinates, the linearization in Equation 3.17 must to be modified to

account for past parameter variations. Assuming that the time between two successive Poincaré

piercings is analogous to the forcing period of the system, Tf = 2π
Ω

, it is clear that when στ > Tf ,

the delay coordinate Zk will contain information about the previous Poincaré piercing(s) at time

tk − Tf . All parameter values {qk, qk−1, . . . , qk−r} will have an influence on the delay coordinate

Zk, where r is the smallest integer such that στ < rTf [72, 74]. The formed delay representation
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Zk+1 must then depend on r previous values of the applied perturbation:

Zk+1 = f(Zk, qk, qk−1, . . . qk−r) (3.41)

leading to an extended form of the linearization including the dependence on previous parameters:

Zk+1 − Zk+1 = Ak(Zk − Zk) + B1
k(qk − q) + B2

k(qk−1 − q) . . .+ Br+1
k (qk−r − q) (3.42)

where:

Bj
k = Bj

k+p =
∂f(Z, qk, qk−1, . . . , qk−r)

∂qk−(j−1)

(3.43)

Note that all quantities discussed thus far can be approximated solely from discrete data in the

system. Matrices Ak are approximated through typical least squares regression, which is compu-

tationally cheap. The collection of matrices Bj
k, 1 ≤ j ≤ r + 1 are also obtained from the time

series by turning on the perturbation to the full prescribed amount at each (r+ 1)th piercing of the

Poincaré section. Then, the method continues identically to the least squares regression estimates

of matrices Ak [75].

To frame the controlled system in a more compact form, the delay coordinate vector Zn and the

r previous parametric values are incorporated into a new state vector Yk, where the () indicates

nominal parameters at the orbit point:

Yk =



Zk

qk−1

qk−2

...

qk−r


Yk = Yk+T =



Zk

q

q

...

q


(3.44)
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This state vector can be formed into a new linearization including both state and parameter depen-

dence between Poincaré piercings [74]:

Yk+1 −Yk+1 = Ãk(Yk −Yk) + B̃k(qk − q) (3.45)

Matrices Ã and B̃ are redefined as:

Ãk =



Ak B2
k B3

k . . . Br
k Br+1

k

0 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . 1 0


(3.46)

B̃k =



B1
k

1

0

...

0


(3.47)

The new Ã and B̃ are then used in place of the (A,B) pairs in the previous control design equa-

tions.
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Figure 3.15: Delay reconstruction of the chaotic attractor from individual measured states
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The delay reconstruction method is nondiscriminatory with respect to which state is originally

used for the embedding. In lieu of measuring displacement and/or velocity of the system, it is

possible that the orbit points, local linear models, and control algorithms can be described purely

from measurement of the voltage state. Sensing only voltage could reduce device costs and make

a chaotic control method more attractive for energy harvesting applications. Figure 3.15 illustrates

the reconstruction of a chaotic attractor using each of the three states of the system: displacement,

velocity, and voltage, respectively. Unfortunately, without further advancements the recurrence

detection algorithm is unable to accurately detect unique period-two orbit points. Nonetheless,

this idea is mentioned as a long term goal for additional improvements to chaotic control-based

energy harvesting.

3.5 Control Across Attractors

To more readily match the state of the art in current nonlinear bistable-based piezoelectric vibration

energy harvesters, a control approach capable of jumping between attractors as opposed to simply

optimizing motion within an attractor was investigated. The foundation of the controller centers on

tracking the current trajectory of the system against the desirable large amplitude response, then

perturbing the system at times of minimal error [65]. For a general non-autonomous system:

x′′ = f(x, x′) + p(t) + u(t) (3.48)

where x is the state variable, f(x, x′) is the nonlinear system, p(t) represents the harmonic excita-

tion, u(t) represents the external control input and ()′ is used to denote the derivative with respect

to a nondimensional time. It is assumed for the system parameters chosen that multiple stable so-

lutions exist, and the desirable solution can be attained through proper choice of initial conditions
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in the absence of control:

x′′d = f(xd, x
′
d) + p(t). (3.49)

The control technique is a simple tracking controller where state differences can be expressed as:

e1 = x− xd

e2 = x′ − x′d.
(3.50)

A general error equation can be formulated by subtracting Equation 3.49 from Equation 3.48:

e′2 = f(x, x′)− f(xd, x
′
d) + u(t) (3.51)

The intermittent tracking control law is then written as:

u(t) =


0 |e1| > δ

−f(x, x′) + f(xd, x
′
d)− kpe1 − kde2 |e1| ≤ δ

(3.52)

where kp and kd are positive linear gains of the controller, and δ represents the neighborhood

boundary of the displacement error between the actual and desired trajectories. Note only a single

error term was needed for sufficient control of the system, but theres no reason the norms of both

error terms could not have been included in the analysis [65].

3.5.1 Stability Analysis of the Proposed Control Law

The control law is designed to guarantee asymptotic convergence towards the desired orbit tra-

jectory whenever |e1| ≤ δ and the control gains are selected properly [65]. To prove stability,

the following positive-definite Lyapunov function is formulated dependent on the state errors and
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control gains of the system:

V (e1, e2) =
1

2
(e2 + ψe1)2 +

1

2
(kp + ψkd − ψ2)e2

1. (3.53)

A positive scalar ψ leads to a sufficiency condition for a positive definite Lyapunov function:

0 < ψ < kd. (3.54)

Applying the intermittent control law in Equation 3.52 to the error equation in Equation 3.51 yields:

e′2 =


f(x, x′)− f(xd, x

′
d) |e1| > δ

−kpe1 − kde2 |e1| ≤ δ.

(3.55)

Taking the time derivative of Equation 3.53 and substituting Equation 3.55 yields

V ′(e1, e2) = (ψ − kd)e2
2 − ψkpe2

1 (3.56)

for |e1| ≤ δ. The derivative V ′(e1, e2) is indeterminate for |e1| > δ. Since the sufficiency condi-

tion in Equation 3.54 ensures that ψ is positive and less than kd, Equation 3.56 is negative definite,

guaranteeing asymptotic convergence for the closed loop system under intermittent feedback con-

trol. Liu et al. deliver a more in-depth analysis of the proposed controller, with a critical difference

being application towards control between two period-one attractors [65]. This work extends the

foundation towards application in which one of the system attractors is chaotic in nature.
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3.5.2 Controlling the Piezomagnetoelastic System

To efficiently track the desired trajectory in relation to the actual trajectory, the differential equa-

tions of motion in Equation 3.3 were transformed into their state-space equivalent and discretized

using a finite different technique with step size ∆ = 0.01. Discretization easily allows for si-

multaneous solution of the system for both chaotic motion as well as the desired large amplitude

response in MATLAB. The new equations of motion, with the introduction of the control parameter

u(t) from Equation 3.52 are then rewritten as:

x1(i+ 1) = ∆x2 + x1

x2(i+ 1) = ∆

(
1

2
x1(1− x2

1) +−2ζx2 + κ2x3 + f cos Ωt+ u(t)

)
+ x2

x3(i+ 1) = ∆ (−λx3 − γx2) + x3

(3.57)

In order to test the proposed control laws, MATLAB was used to simulate both the chaotic system

and the desired large amplitude system. Real time error between the states was calculated, and the

control law enabled whenever e1 < δ. Shown in the next chapter, control is initiated at t = 250,

with kp = 1, kd = 20, and δ = 0.05. The feedback controller is quick to stabilize the system, yet

requires sizable perturbations in its current form, detrimental to the power output of the harvesting

system. To mitigate the sizable perturbations required, the control law from Equation 3.52 can be

modified to include a maximum allowable perturbation of umax = 1:

u(t) =


0 |e1| > δ

−f(x, x′) + f(xd, x
′
d)− kpe1 − kde2 |e1| ≤ δ and |u| < umax

sign(u) ∗ umax |e1| ≤ δ and |u| ≥ umax

(3.58)
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CHAPTER 4: EXPERIMENTAL DATA AND MODEL VALIDATION

Theoretically, chaos control allows large displacement trajectories to be stabilized from a dense

sea of unstable periodic orbits within a chaotic attractor. The three control techniques described

all successfully stabilize large displacement periodic orbits from low-energy chaotic oscillations.

Two methods are model independent and use time series data to fit a local linear model and apply

small perturbations to stabilize a trajectory. The third method uses two identical system models at

different initial conditions to simultaneously solve both the chaotic system and the desired large

amplitude trajectory. A feedback controller is then used to minimize the error between solutions

and perturb the system from the low energy attractor to the more desirable high energy solution.

This chapter first covers the simulation results of the two model-independent controllers for a stable

orbit within the same attractor as well as the result of the model-dependent feedback controller with

unconstrained and constrained control effort. The latter half of the chapter describes the model

validation conducted with a hardware test stand. Because chaotic systems are highly sensitive to

their initial conditions, an equivalent solution between theory and experiment is challenging to

attain. Instead, validation is confirmed by successful control of different periodic orbits in the

theoretical and experimental cases. A hardware test stand is developed from common over the

counter components, instrumented, and connected through data acquisition cards to a National

Instruments LabVIEW interface. To the best of the authors knowledge, this is the first modular

platform for testing chaotic control algorithms.
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4.1 Controlled Response Within the Same Attractor

The OGY and sliding mode controllers use different approaches, but both control identical trajec-

tories of the system. Selecting a period-two orbit, recurrence detection from the theoretical time

series isolated points:

xk =

 0.4394 −1.2259

−0.4695 0.4864


where each column is the displacement and velocity of a single orbit point, respectively. Figure 4.1

illustrates the phase portrait of the chaotic trajectories, the isolated orbit points, and the controlled

response from both algorithms.

Figure 4.1: A stable trajectory from the chaotic attractor using the model independent control techniques
[76, 77]
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It should be noted that while the displacement attained is desirable, such a result is not guaranteed

in either theory or practice. Recurrence detection isolates the least unstable orbit of a specified

period. The controller then ensures that the trajectories pass through these points. Nothing is

known regarding the path the trajectory takes between the points and, under the current control

paradigm, accounting for specific trajectories would not be possible.

Another caveat of chaos control is the waiting period for the system trajectories to enter the vicinity

of the fixed point before any control action is specified. Figure 4.2 illustrates a side profile of

the Poincaré section progressing forward in time. Both algorithms attempt to stabilize the same

isolated points and trajectory, however, the guiding principles in how the response is attained are

fundamentally different. Therefore, not only do stable responses happen over a different time

horizon, the steady-state control action post stabilization is different as well. The takeaway from

the two control models is that sliding mode control relaxes the need to compute a Jacobian, which

is computationally challenging for high-dimensional chaotic systems.

4.2 Control Across Attractors

The third control strategy departs from the previous techniques in that a system model is preserved

and control successfully elevates the energy in the system from the chaotic attractor onto the large-

displacement attractor. The chaotic solution is computed in parallel to the desired larger trajectory

solution, and an error term tracks the difference between the identical states of each attractor.

A feedback controller is then used to minimize the error, thus perturbing the system between

attractors and stabilizing the large amplitude trajectory from the lower-energy attractor. Figures 4.3

and 4.4 illustrates the phase portrait and time series of the unconstrained and constrained control

approaches when control is turned on at T = 250 seconds.
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Figure 4.2: Observed displacement compared to control effort for the OGY and sliding mode controllers
[76, 77]
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Figure 4.3: Stable response across attractors with unbounded control input [78]
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Figure 4.4: Stable response across attractors with bounded control input [78]
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As expected when compared to the other control strategies, control perturbations need to be larger

to add enough energy to the system to bounce between attractors. Larger perturbations have the

inverse effect of reducing the net power output of the harvester, crippling these algorithms in prac-

tical use. As an experiment, the control effort was constrained to investigate if a stable response

is still attainable. Run under identical conditions, the controller is able to reach the attractor with

larger displacement, though the state error decreases over a noticeably longer time horizon. For

widespread implementation of this technique, control perturbation would need to be reduced fur-

ther, and the time series based approximation techniques extended to hybridize the two methods,

preserve low perturbations, and remain independent of a system model.

Typically, experimental validation of theoretical findings sets up a system in an attempt to produce

identical results to the theoretical cases. However, the nature of chaos makes such a comparison

challenging. Instead, an experimental test stand was used to verify the techniques, though the

response is not identical and repeatability between runs poses a significant problem. To confirm

the validity of a chaotic control algorithm for improved performance of bistable, nonlinear energy

harvesters, an experimental test stand was constructed to mimic the lumped-parameter Duffing os-

cillator model of Equation 3.3. The remainder of this chapter details the hardware used to assemble

the bistable structure, bonding of the piezoelectric elements to the ferrous cantilever beam, and the

hybrid MATLAB/LabVIEW software elements used for data collection, model approximation,

control design, and actuation.

4.3 Experimental Setup

Physical implementation of the harvesting system involves setting up a vertically suspended can-

tilever beam symmetrically within a magnetic field about the beam tip and instrumenting that

beam with sensors and actuators. Then a data acquisition interface is needed to both process the
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raw measurements and implement the control law. National Instruments CompactRIO was cho-

sen as the ideal platform for implementation of a real-time controller for the chaotic system. This

decision was made when considering the sensitivity of chaotic systems and the requirement for

perturbations to be made precisely once per period of excitation. The CompactRIO platform takes

advantage of Field Programmable Gate Array architecture that allows an integrated circuit to be

reprogrammed and run on an independent processor built into the chassis. This division of labor

allows critical components to execute at precise clock speeds leaving the host PC available for

low-level computations like visualization and data transfer.

Figure 4.5: The bench top experimental test stand used throughout this work
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4.3.1 The Piezomagnetoelastic Structure

The experimental test stand is built similar to Figure 1.6 and uses an aluminum frame to suspend

a steel beam vertically between two symmetrically-placed magnets. The vertical orientation of the

system eliminates gravity effects in the direction of primary displacement and both beam height

and magnet spacing are adjustable to reflect tuning parameters h and d. A proof mass is placed at

the tip of the cantilever beam to increase compliance and reduce the natural frequency of the sys-

tem. Note that while the nonlinear techniques are non-resonant, the system’s fundamental frequen-

cies allows the harvester to work at lower frequencies more desirable for the target applications.

Two Midé piezoelectric patches are bonded at the clamped end of the beam using a high-shear

epoxy and wired together in parallel. The entire assembly oscillates on low friction linear rails,

driven by a Modal Shop 2025E shaker powered by the 2100E21 amplifier. A Polytec OFV-505 sen-

sor head and OFV-5000 vibrometer controller is used to measure displacement and velocity at the

tip of the cantilever beam. A National Instruments CompactRIO 9035 chassis with NI 9263 analog

output and NI 9221/9229 analog input data acquisition cards are used to collect data and produce

the required control effort. Figure 4.5 illustrates the bench-top setup. The use of the FPGA again

allows a dedicated on-board processor to carry out control-specific computations while the host

computer manages the less time-critical data transfer for post-processing and visualization tasks to

be performed independently; i.e., at no penalty to the control logic timing. The system is designed

to be modular meaning a variety of methods for approximation and control design can computed

in MATLAB and input into LabVIEW without changing the interface. The system also allows for

relative ease in computing control perturbations for orbits of varying periods. More details regard-

ing the interface is shows in Appendix A.2. Significant effort was placed into preserving a robust,

modular system so the working prototype can then be used for rapid implementation of controllers

and approximation techniques as subsequent optimization occurs.
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4.3.2 Harvesting Circuitry

Harvester

Switch Voltage Source

− +

Perturbation Control

Load Resistor

Figure 4.6: Electrical harvesting circuit diagram used during direct perturbation to the load resistance

When benchmarking performance of a piezoelectric energy harvesting, the storage medium is typ-

ically represented by the inclusion of a resistive load. Power dissipation across some determined

optimal resistance forms the standard performance metric of the harvesting capability for a pro-

posed design [79]. The same format was used when developing the harvesting circuitry for the

chaotic system and voltage across this resistor was measured using an input channel of the Lab-

VIEW data acquisition card. Chaotic control of a Duffing oscillator typically applies the control

perturbation through the shaker amplitude to stabilize the system [80]. However, this approach

is impossible in the current energy harvesting application: to do so would require changing the

ambient environment in such a way to control orbits of the system. Instead, a switch-based circuit

allows for control perturbations to be moved from the shaker amplitude to the harvesting system
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itself. Synced to the harmonic excitation frequency, a switch closes for a short specified amount

of time, and a potential difference is introduced governed by the control law. This instantaneous

voltage change to the parallel circuit architecture ideally acts as a short transient perturbation to

the nominal load resistor. Figure 4.6 shows the schematic for the control circuitry and attached

harvesting circuit, which is approximated here with a load resistor.

4.3.3 Experimental Results

Figure 4.7: Results of recurrence detection from measured time series data of the physical system

The CompactRIO chassis has two analog output cards of different connector types, and one analog

input card. The analog outputs of the LabVIEW interface are used to send shaker commands, send
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a pulsed DC voltage signal responsible for closing the relay circuit timed to the positive-slope zero

crossing of the harmonic input for a fixed duration of time, and apply a dynamic voltage signal

computed by the control logic. The analog inputs are used to acquire beam displacement, beam

velocity, voltage across the load resistance, and voltage applied to the circuit for control. Under

operation, 50, 000 Poincaré intersection points were measured to determine the system model and

design a controller under application of a 5 Hz harmonic driving signal. The orbit points deter-

mined from recurrence detection and computed control gains are then run in a separate LabVIEW

VI with the results shown in Figures 4.8 for a period-5 orbit.

Ergodic wandering of the chaotic system prevents immediate stabilization of the orbit. As tra-

jectories naturally wander into the specified vicinity near an orbit point, the control turns on and

stabilizes the system. Figure 4.8 displays one example showing periodic trajectories for all system

states. Since the isolated orbit points are computed independent of control application, control via

shaker amplitude or circuit perturbations stabilize identical orbits. Controllability is nominally en-

sured within LabVIEW by determining if the chosen state of the system for control actually results

in a controllable system using classic linear control system theory. Figure 4.8 illustrates the phase

portrait of the experimental controlled chaotic response. Once the trajectories entered the vicinity

of the experimentally isolated orbit points, the period-5 orbit was successfully stabilized for 56

cycles. The perturbations shown in Figure 4.8 emphasizes that the control effort is constrained to

not violate linearity of the model around the orbit points.
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Figure 4.8: Phase portrait and time series of a stable period-5 orbit in the experimental system
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

Piezoelectric-based vibration energy harvesters can successfully be used as a source of power

for small-scale sensors across a range of applications. Current harvester technology places small

piezoelectric patches at the location of maximum strain on a cantilever beam and uses the ambient

environment to induce transverse vibration of the beam. This deflection strains the piezoelec-

tric material, generating charge separation that can be conditioned as power through appropriate

circuitry. Cantilever beams are unfortunately limited to peak deflection around the fundamental

resonance frequency, reducing potential operating environments to those with known dominant

frequencies. Induced nonlinearity has been successful in improving the operating bandwidth, es-

pecially when oscillation occurs in the large-amplitude attractor of a Duffing oscillator system.

Though commonly ignored, these solutions coexist with a lower-energy chaotic attractor and the

desirable solution is not always guaranteed. This work set out to counterintuitively induce chaotic

oscillations and then periodically apply a low-power controller to stabilize larger displacement so-

lutions isolated within the attractor. Recurrence detection algorithms in addition to least squares

estimation successfully fit a model to time series data of the chaotic system. A controller then

selected a perturbation that was applied through both the shaker amplitude and the piezoelectric

patch directly. Note relocating the perturbation aligns with a real-world system and the inability

to affect change directly to the environment. While nonlinear systems in energy harvesting and

chaos control are not new ideas, marrying the methods together had not been explored prior to

this research effort. This work stepped through the design challenges of implementing a real-time

chaotic control algorithm both through simulation and with a physical test stand. The experimen-

tal system marks the first effort of building a modular platform for rapid prototyping of various

chaotic systems and control strategies.

No singular research effort is truly exhaustive and significant questions remain. This work set the
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groundwork for an energy harvesting strategy not previously considered. It is not an omission on

behalf of the author to fore go power computations in a work detailing performance improvements

of vibration based energy harvesters. While literature exists describing power expectations in each

solution attractor of a nonlinear energy harvester, these analyses would not be complete when ac-

counting for power expended by the control logic itself [58]. Further work is needed in quantifying

power expenditure for recurrence detection, model fitting, and control application for each algo-

rithm considered. Power usage is also dependent on the micro-controller selected, and various

implementations of the hardware would need to be studied and quantified before a representation

power profile of the chaotic nonlinear energy harvesting can be given. Instead, the key research

findings and remaining questions are outlined both stating the successes of this study and parallel

accomplishments needed before power output can be quantified and widespread implementation

of the proposed energy harvester is possible.

5.1 Key Research Findings

5.1.1 Large Amplitude Responses are Attainable from Chaotic Attractors

In the energy harvesting literature, chaos is typically ignored as the aperiodic oscillations result

in less accessible energy than the coexistent large-amplitude attractor. More so, even very low

intrawell periodic oscillations are preferred over chaotic oscillation as harvesting circuitry requires

a periodic voltage signal for optimal operation. A cornerstone of this work is to embrace the sensi-

tivity inherent to chaotic systems. Between the three algorithms presented and implementation of a

physical test stand, various large displacement periodic trajectories were stabilized both in and out

of the chaotic attractor for improved performance of the vibration response in low-energy ambient

environments. Recurrence detection isolates the least unstable orbit of a specified period, and con-

trol ensures trajectories pass through those points as indicated by the Poincaré map. It is therefore
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not possible to enforce the trajectory taken by the system between orbit points. If an interwell

response is attained, displacement is ensured to be larger than both intrawell periodic motion and

an equivalent linear harvester excited away from resonance. Larger periodic displacements yield

more power from the harvester due to larger strains across the piezoelectric element and also pre-

serve periodicity requirements of the harvesting circuitry. Preservation of a dynamic model when

controlling across attractors solves the trajectory limitations by using a feedback controller to min-

imize the error between the existing trajectory and the desired large displacement orbit. While the

true optimal response is attained for nonlinear harvesting systems, a continuous controller utilizes

more power in sensing, and the energy injection required to jump between solution attractors can

be quite large.

5.1.2 A Model Independence Solution Reduces Tuning before Implementation

Linear, resonant, vibration energy harvesters must be tuned to a dominant frequency in the envi-

ronment. Inherently low damping for thin beam cantilever systems allows for large oscillations

of the beam tip, but a narrow band of operating frequencies. Shifting to a nonlinear strategy that

benefits from chaos largely reduces any prior tuning. Chaotic motion typically exists across a

wide spectrum of the frequency response, and all multistable systems will pass through chaos at

lower frequencies than the desired large-amplitude response studied in the literature [81]. With

chaotic oscillations ensured, a key strength of this work is the reduction of tuning due to model

independence of the control strategy. Time series data about the system is used with recurrence

and least squares approximation techniques to isolate the orbit points, fit a local linear model in a

small vicinity of each orbit point, and perturb the system from its unstable manifold onto its stable

manifold.
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5.1.3 Experimental Chaos Control is Achieved through A Modular Platform

The literature mentions experimental control techniques, but none to date has outlined an exact

sequence of steps needed to build a real-time chaos controller [20, 80]. With LabVIEW FPGA the

real-time chaotic system can be controlled through a dedicated clock not tied to the host computer’s

processor. The separate processor ensures the periodic perturbations occur exactly when needed

in time with the harmonic excitation of the environment. Time delays in the control application

are prone to exist when the controller is fighting for resources with an operating system and, when

coupled with sensitivity inherent to chaotic systems, can worsen performance and prevent con-

vergence to a stable response. Splitting the LabVIEW interface into two experiments allows data

acquisition and control application to be separated. The first experiment gathers data for a specified

number of periods tied to the rising edge of the harmonic excitation zero-crossing. This VI then

writes data to a file that can be used through the various MATLAB functions that specify control.

A second VI reads the derived control law while running the same data acquisition to stabilize the

system onto a more desirable trajectory. Since the controller accepts gains and orbit points, the

user can use any technique of their choosing for these independent computational processes. The

result is a fully modular platform for chaos control with direct application towards piezoelectric

vibration energy harvesting.

5.2 Remaining Questions

5.2.1 Iterative Learning can Reduce Time to Control

The algorithms used in fitting a model require a large number of data points sampled once per

excitation period for operation. In a simulation environment, this task can be seen as trivial as

10,000 data points can easily be generated. Shifting to an experimental platform at low frequen-
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cies, 10,000 data points at a 5 Hz excitation frequency is not an inconsequential amount of time.

Harvesters under the current framework would need more than 30 minutes before enough data was

gathered to fit an initial control. The controller would then require an unknown additional amount

of time before the trajectories approached a vicinity significantly close to the isolated orbit. Such

preprocessing for a system meant to power itself using large-amplitude oscillations could pose a

problem to any initial on-board temporary power source. Developing algorithms that can fit con-

trol to an iteratively growing data set can likely expedite attempts at a stable response, and also

more readily update to changing environmental conditions over time. Incorporating work in ma-

chine learning and neural networks can teach these algorithms to better recognize orbit candidates

and reduce the time horizon needed for a controlled large displacement response. Also, while the

targeted environments are non-resonant, implementation still depends on sampling aligned with a

harmonic excitation. Further research into stochastic systems can lead to new sampling techniques,

further reducing the dependence on any sort of regularity in the ambient environment.

5.2.2 Optimization is Required to Ensure Repeatability

Chaotic attractors form as a result of stretching and folding in the phase portrait trajectories over

time. The chaotic attractor is a consequence of the system being both stable and unstable, and as

a result yield unpredictable trajectories at any specific instant in time. Ergodicity of the attractor,

however, ensures all possible trajectories within a finite region of the phase portrait are traversed

in finite time. In simulation, MATLAB solvers execute repeated runs more accurately only lim-

ited by rounding accuracy across machines. In reality, however, the system does not start from

an identical initial condition between runs. Thus two consecutive runs can take vastly different

trajectories while still remaining within identical attractors. The potential for divergence impedes

model approximation for control and inhibits consecutive stable orbits from being attainable. The

recurrence detection algorithm proved robust in finding period-five orbits repeatedly in the same
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vicinity over the 10, 000 data points collected. A stable result based on similar prediction was not

guaranteed within the time horizon as small disturbances can affect the ergodic wandering prior to

control and thus ensure control action is not implemented within the time horizon studied. There-

fore, even if repeated runs isolated the same orbits, disturbances unique to each run can delay the

trajectories from entering the vicinity of the isolated orbit points. To combat this, future work in

iterative learning may alleviate this challenge, and the addition of targeting techniques can force

trajectories to desired regions of the phase space where control can be successfully implemented.

5.2.3 Real-Time Selection of the Control Strategy can Improve Bandwidth

When chaotic dynamics exist uniquely in the system, the chaos control strategy presents the only

way of reaching an optimal condition for energy harvesting. When chaotic solutions exist concur-

rently with large-amplitude periodic solutions and low-energy periodic intrawell solutions, chaos

control provides a way to ensure an optimal response is attained, regardless of the attractor the sys-

tem originated in. Bifurcation analysis proves that there are frequency bands where only a single

attractor exists, and it may be chaotic or interwell periodic. It has been shown that interwell pe-

riodic responses are optimal whenever possible and an algorithm has been presented in this work

to bump trajectories into the higher-energy attractor. In highly dynamic environments attractors

may be created and destroyed, and a truly optimal system needs to account for this. Should large-

amplitude interwell solutions exist uniquely, then no active control is needed. If both attractors

exist concurrently, the techniques documented herein can mitigate the issue of low-energy chaotic

oscillation. Should chaos exist uniquely, as is common at very low frequencies, than again the

methods presented in this research can optimize the final trajectory. Should these situations be-

come interchangeable, it would be ideal for the algorithm to sense this and adapt ensuring that the

optimal periodic orbit is always present.
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5.2.4 The Perturbation Circuitry Warrants Parallel Improvements

This work performed direct perturbation of the piezoelectric element through a switch circuit timed

to the excitation period using a LabVIEW data acquisition card to provide the positive or negative

voltage. For widespread implementation, a robust data acquisition system will likely not be acces-

sible and perturbations will need to be handled solely at the device level. Additional components

like capacitors will need to be added to the device allowing for both energy injection and energy

drain as specified by the control logic. Shunting is an active research topic in the piezoelectric

smart material community, but proper implementation of this technique would require variable

shunting and energy injection within a finite bound..

5.2.5 Power Drain from Control Must be Quantified

Though not a primary focus of this work, power output remains the most important metric of

a technique’s success in the energy harvesting community. There are well known publications

demonstrating that the large-amplitude periodic orbit yields an average voltage output three times

larger than an equivalent linear system under the same operating conditions. Chaotic oscillations

without control have a larger instantaneous voltage, but a similar average voltage to a linear har-

vester. Control of these trajectories to a large periodic orbit within the attractor is theorized to

possess an average voltage twice that of the linear system. At present claiming this as fact is trivial

at best as the output voltage does not take into account power drain needed by the active control

element itself. Using LabVIEW for data acquisition and actuation allows for a flexible platform,

but does not make quantifying power a straightforward problem. Sensing position and performing

low-level computations to fit a local linear model require power and are ultimately dependent on

the processor used. Applying the perturbation again requires power and is connected to where

the perturbation is made, and what upper bound is placed on the system. There is no “one size
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fits all” technique for control implementation and future power comparisons will likely be depen-

dent on the hardware used. That said, it is still an important issue to quantify before widespread

implementation of the documented techniques in piezoelectric-based energy harvesting.
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APPENDIX A: ILLUSTRATIONS OF THE EXPERIMENTAL TEST

STAND
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A.1 Hardware Assembly
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Figure A.1: Three dimensional rendering of the experimental test stand used for the development of the
physical harvesting system
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Figure A.2: Three dimensional rendering of the low-friction linear rails used to constrain displacement of
the frame in a purely transverse direction
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Figure A.3: Three dimensional rendering of the clamped end of the beam simulating base excitation of the
harvester
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A.2 LabVIEW Interface
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Figure A.4: Front Panel of the LabVIEW VI used in acquiring time series data for further processing in
MATLAB
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Figure A.5: LabVIEW graphical programming logic for the front panel display during acquisition
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Figure A.6: LabVIEW FPGA VI for data acquisition
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Figure A.7: Front Panel of the LabVIEW VI used in control of a period-5 orbit
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Figure A.8: LabVIEW graphical programming logic for the front panel display during control
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Figure A.9: LabVIEW FPGA VI for control of a period-5 orbit
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APPENDIX B: MATLAB SCRIPTS
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B.1 General analysis functions

B.1.1 Solving the system of ordinary differential equations both with and without control

1 f u n c t i o n dx = D u f f i n g ( t , x , u )

2

3 % R e p r e s e n t s t h e c o n t i n u o u s t ime sys tem i n s t a t e −s p a c e form

4 % I n p u t s a r e i n i t i a l c o n d i t i o n s and t h e t ime s t e p v e c t o r and

p e r t u r b a t i o n

5 % O u t p u t s a r e t h e t h r e e s t a t e e q u a t i o n s d e r i v a t i v e s

6

7 % z e t a : m e c h a n i c a l damping r a t i o

8 % kappa2 : c o u p l i n g c o e f f i c i e n t

9 % gamma : l e n g t h s c a l i n g c o e f f i c i e n t be tween e l e c t r i c a l / m e c h a n i c a l

s u b s y s t e m s

10 % lambda : r e c i p r o c a l o f t ime c o n s t a n t

11 % omega : e x c i t a t i o n f r e q u e n c y

12 % f : e x c i t a t i o n a m p l i t u d e

13

14 g l o b a l omega gamma lambda kappa2 z e t a f

15 dx = z e r o s ( 3 , 1 ) ;

16 dx ( 1 ) = x ( 2 ) ;

17 dx ( 2 ) = f ∗omega ˆ2∗ s i n ( omega∗ t ) − 2∗ z e t a ∗x ( 2 ) − 0 . 5∗ x ( 1 ) ˆ3 +

0 . 5∗ x ( 1 ) + kappa2 ∗x ( 3 ) + u ;

18 dx ( 3 ) = −lambda∗x ( 3 ) − gamma∗x ( 2 ) ;

19 end
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B.1.2 Determining a Poincaré section through periodic sampling

1 f u n c t i o n [ Dx , Dy , Dz ] = P o i n c a r e T i m e ( x , t , omega , C)

2 %P o i n c a r e

3 % Computed t h e P o i n c a r e s e c t i o n from a d a t a s e t x

4 % omega : e x c i t a t i o n f r e q u e n c y

5 % C : s t a r t i n g p o i n t w i t h i n f i r s t p e r i o d f o r s am p l i n g

6

7 i = 1 ;

8 l = 1 ;

9 %I n p u t C r e p r e s e n t s t h e s t a r t i n g p o i n t a l o n g t h e w a v e l e n g t h

10 %Omega i s t h e f o r c i n g f r e q u e n c y of t h e D u f f i n g O s c i l l a t o r

11 %S e c t i o n computed by p r o g r e s s i n g f o r w a r d i n t ime

12 p e r i o d = (2∗ p i ) / omega ;

13 k = 0 ;

14 i f 0 <= C <= p e r i o d

15 w h i l e i < l e n g t h ( t )−1

16 %Compare s i g n of c u r r e n t and f u t u r e p o i n t , on ly c o n c e r n e d

when n o t

17 %e q u a l

18 i f s i g n ( t ( i ) − ( p e r i o d ∗k + C) ) ˜= s i g n ( t ( i +1) − ( p e r i o d ∗k + C

) )

19 %I f f i r s t p o i n t p o s i t i v e and f u t u r e p o i n t a t C

20 i f s i g n ( t ( i ) − ( p e r i o d ∗k + C) ) == −1 && s i g n ( t ( i +1) − (

p e r i o d ∗k + C) ) == 0

21 %C r e a t e s new v a r i a b l e s t o r i n g p o i n t c o o r d i n a t e on
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s e c t i o n

22 Dx ( l ) = x ( i +1 ,1 ) ;

23 Dy ( l ) = x ( i +1 ,2 ) ;

24 Dz ( l ) = x ( i +1 ,3 ) ;

25 l = l + 1 ;

26 k = k + 1 ;

27 e l s e i f s i g n ( t ( i +1) − ( p e r i o d ∗k + C) ) == 1

28 %I f f i r s t p o i n t p o s i t i v e and second p o i n t n e g a t i v e

29 %Add t o s e c t i o n v a r i a b l e by i n t e r p o l a t i n g v a l u e a t C

30 Dx ( l ) = x ( i , 1 ) + ( x ( i +1 ,1 ) − x ( i , 1 ) ) ∗ ( ( ( p e r i o d ∗k + C)

− t ( i ) ) / ( t ( i +1)− t ( i ) ) ) ;

31 Dy ( l ) = x ( i , 2 ) + ( x ( i +1 ,2 ) − x ( i , 2 ) ) ∗ ( ( ( p e r i o d ∗k + C)

− t ( i ) ) / ( t ( i +1)− t ( i ) ) ) ;

32 Dz ( l ) = x ( i , 3 ) + ( x ( i +1 ,3 ) − x ( i , 3 ) ) ∗ ( ( ( p e r i o d ∗k + C)

− t ( i ) ) / ( t ( i +1)− t ( i ) ) ) ;

33 l = l + 1 ;

34 k = k + 1 ;

35 end

36 end

37 i = i + 1 ;

38 end

39 e l s e

40 s p r i n t f ( ’ E n t e r e d s t a r t p o i n t i s l a r g e r t h a n 1 p e r i o d , e n t e r a

s t a r t p o i n t l e s s t h a n %d . ’ , p e r i o d )

41 end
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B.1.3 Recurrence detection to isolate points of an unstable periodic orbit

1 f u n c t i o n pm = Recur renceMethod ( da t a ,m, eps )

2

3 % d a t a : Three t ime s e r i e s s t a t e s o f t h e h a r v e s t i n g sys tem

4 % m: d e s i r e d p e r i o d i c o r b i t t o c o n s i d e r

5 % eps : v i c i n i t y a round each o r b i t p o i n t t o c o n s i d e r a s

r e c u r r e n c e o f

6 % f u t u r e o r b i t p o i n t s

7

8 dim = 3 ;

9 x ra ng e = max ( d a t a ( 1 , : ) ) − min ( d a t a ( 1 , : ) ) ;

10 y ra ng e = max ( d a t a ( 2 , : ) ) − min ( d a t a ( 2 , : ) ) ;

11 z r a n g e = max ( d a t a ( 3 , : ) ) − min ( d a t a ( 3 , : ) ) ;

12

13 % Loop t h r o u g h P o i n c a r e d a t a and d e t e r m i n e i f s u c c e s s i v e p o i n t s

a r e i n t h e

14 % v i c i n i t y s e t above . I f t h e norm f u l f i l l s t h e c r i t e r i a , s t o r e

t h e p e r i o d

15 % i n t o a s p a r s e m a t r i x . Break t h e loop once d e s i r e d p e r i o d i s

r e a c h e d .

16

17 v e l d = z e r o s ( 1 , l e n g t h ( d a t a ) ) ;

18

19 f o r i = 1 : ( l e n g t h ( d a t a )−1)

20 f o r j = i +1 : l e n g t h ( d a t a )
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21 d d a t a = d a t a ( : , i ) − d a t a ( : , j ) ;

22 d d a t a = [ d d a t a ( 1 , : ) / x r an g e ; d d a t a ( 2 , : ) / y r a ng e ; d d a t a

( 3 , : ) / z r a n g e ] ;

23 c r i t = norm ( dda ta , 2 ) ;

24

25 i f c r i t < eps

26 v e l d ( 1 , i ) = j−i ;

27 b r e a k

28 e l s e i f j−i >= m

29 b r e a k

30 end

31 end

32 end

33

34 % For each p e r i o d , s e p a r a t e o u t a l l t h e r e c u r r e n t p o i n t s s p e c i f i c

t o t h a t

35 % p e r i o d i n t h e m a t r i x r e c . rec num i s on ly used a f t e r a l l 15

p e r i o d s a r e

36 % s o r t e d t o make a h i s t o g r a m p l o t o f r e c u r r e n c e p o i n t s .

37

38 f o r p e r i o d = 1 :m

39 [ i , j ] = f i n d ( v e l d == p e r i o d ) ;

40 f o r n = 1 : l e n g t h ( j )

41 r e c ( 1 , n ) = j ( n ) ;

42 r e c ( 2 : dim , n ) = d a t a ( : , j ( n ) ) ;
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43 end

44 % rec num ( p e r i o d ) = l e n g t h ( j ) ;

45

46 % This s e c t i o n s y s t e m a t i c a l l y s t e p s t h r o u g h t h e r e c u r r e n t

p o i n t s

47 % f i n d i n g t h e l o n g e s t s e q u e n c e o f i n d i c e s . I f an i n i t i a l

s e q u e n c e i s 2

48 % elemen t s , b u t a l a t e r one i s 5 , t h e i n i t i a l s e q u e n c e i s

o v e r w r i t t e n

49 % wi th t h e l a t e r one . Conver se ly , s h o r t e r s e q u e n c e s found

l a t e r i n t h e

50 % d a t a s e t a r e d i s c a r d e d . When s a v i n g s e q u e n c e d a t a v a l u e s ,

t h e s t a r t

51 % and f i n i s h i n d i c e s a r e saved as w e l l .

52

53 c u r r L e n g t h = 1 ;

54 maxLength = 0 ;

55

56 f o r n = 1 : l e n g t h ( r e c ( 1 , : ) )−1

57 i f r e c ( 1 , n +1)−r e c ( 1 , n ) == 1

58 c u r r L e n g t h = c u r r L e n g t h + 1 ;

59 e l s e i f c u r r L e n g t h > maxLength

60 maxLength = c u r r L e n g t h ;

61 c u r r L e n g t h = 1 ;

62 s t a r t = n+1−maxLength ;
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63 f i n i s h = n ;

64 e l s e

65 c u r r L e n g t h = 1 ;

66 end

67 i f c u r r L e n g t h > maxLength

68 maxLength = c u r r L e n g t h ;

69 s t a r t = n+2−maxLength ;

70 f i n i s h = n +1;

71 end

72 end

73

74 % From t h e s t a r t and f i n i s h i n d i c e s o f t h e l o n g e s t sequence ,

t h e d a t a

75 % i s saved i n t o an a r r a y a l o n g wi th a v e c t o r o f ones used i n

t h e

76 % a v e r a g i n g scheme l a t e r on .

77

78 maxSeq = r e c ( 2 : end , s t a r t : f i n i s h ) ;

79 sd = ones ( 1 , maxLength ) ;

80

81 % S i n c e t h e end g o a l i s t o have a s e q u e n c e o f p o i n t s a l o n g

t h e o r b i t

82 % e q u a l i n l e n g t h t o t h e o r b i t , t h e a r r a y would need t o be

f i l l e d i n

83 % s h o u l d t h e r e n o t be enough p o i n t s . The l o g i c b eh i nd t h i s
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s t e p i s t h a t

84 % i f 5 c o n s e c u t i v e p o i n t s i n a p e r i o d 7 o r b i t meet t h e

v i c i n i t y

85 % c r i t e r i a , t h a n t h e s u b s e q u e n t two p o i n t s i n t h e d a t a s e t

c a n n o t be

86 % t o o f a r o u t s i d e t h e v i c i n i t y . ( Not s u r e t h i s i s c o m p l e t e l y

v a l i d ) .

87 % The new ammended s e q u e n c e i s saved as w e l l a s t h e

l e n g t h e n e d v e c t o r

88 % of ones used i n a v e r a g i n g .

89

90 i f maxLength < p e r i o d

91 n = [ r e c ( 1 , f i n i s h ) +1 : r e c ( 1 , f i n i s h ) + p e r i o d−maxLength ] ;

92 maxSeq ( : , maxLength +1: p e r i o d ) = d a t a ( : , n ) ;

93 sd ( 1 , maxLength +1: p e r i o d ) = ones ( 1 , p e r i o d−maxLength ) ;

94 maxLength = p e r i o d ;

95 f i n i s h = s t a r t + p e r i o d −1;

96 end

97

98 % While t h e l o n g e s t s e q u e n c e y i e l d s a s t r o n g c o r r e l a t i o n t o

t h e

99 % e x i s t e n c e o f an o r b i t o f t h a t p e r i o d , t h e o t h e r r e c u r r e n c e

p o i n t s c a n n o t be

100 % i g n o r e d . Th i s s t e p augments t h e max s e q u e n c e t o i n c l u d e

p o i n t s n o t i n
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101 % t h e l o n g e s t sequence , b u t s t i l l w i t h i n t h e v i c i n i t y o f t h e

s e q u e n c e p o i n t s .

102

103 f o r n = [ 1 : s t a r t −1 , f i n i s h +1: l e n g t h ( r e c ( 1 , : ) ) ]

104 f o r mm = 1 : maxLength

105 dx = r e c ( 2 : end , n ) − maxSeq ( : ,mm) ;

106 dx = [ dx ( 1 , : ) / x r a ng e ; dx ( 2 , : ) / y r a ng e ; dx ( 3 , : ) /

z r a n g e ] ;

107 i f norm ( dx , 2 ) < eps

108 sd ( 1 ,mm) = sd ( 1 ,mm) + 1 ;

109 maxSeq ( : ,mm, sd ( 1 ,mm) ) = r e c ( 2 : end , n ) ;

110 b r e a k

111 e l s e

112 end

113 end

114 end

115

116 % The segment t a k e s t h e new s e q u e n c e i n c l u d i n g t h e added

p o i n t s i n t h e

117 % v i c i n i t y o f t h e o r i g i n a l s e q u e n c e s t o r e d i n a 3 rd d imens ion

of t h e

118 % o r i g i n a l s e q u e n c e a r r a y . A l l r e c u r r e n t p o i n t s a r e t h e n

a v e r a g e d t o

119 % r e s u l t i n a s e q u e n c e t h e same l e n g t h as t h e p e r i o d wi th a

s t r o n g
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120 % c o r r e l a t i o n o f b e i n g l o c a t e d on t h e o r b i t . F i x e d p t s i s a

c e l l

121 % s t r u c t u r e t h a t s t o r e s t h e o r b i t s e q u e n c e f o r each p e r i o d t o

be

122 % used i n t h e l a t e r c o n t r o l a l g o r i t h m .

123

124 newSeq = maxSeq ( : , 1 : p e r i o d , : ) ;

125 newSD = sd ( 1 , 1 : p e r i o d ) ;

126 f o r n = 1 : maxLength−p e r i o d

127 r a t i o = c e i l ( n / p e r i o d )−1;

128 e x t r a = newSD ( 1 , n− r a t i o ∗ p e r i o d ) ;

129 newSD ( 1 , n− r a t i o ∗ p e r i o d ) = e x t r a + sd ( 1 , n+ p e r i o d ) ;

130 newSeq ( : , n− r a t i o ∗ p e r i o d ,1+ e x t r a : newSD ( 1 , n− r a t i o ∗ p e r i o d ) )

= maxSeq ( : , n+ p e r i o d , 1 : sd ( 1 , n+ p e r i o d ) ) ;

131 end

132

133 f o r n = 1 : p e r i o d

134 pm ( : , n ) = sum ( newSeq ( : , n , 1 : newSD ( 1 , n ) ) , 3 ) / newSD ( 1 , n ) ;

135 end

136 end

137 end
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B.1.4 Fit model using linear least squares and adjust location of predicted orbit points

1 f u n c t i o n [A, C , pm , o r i g , a f b ] = S t a t e M a t r i x A p p r o x i m a t i o n ( da t a ,m, t o l ,

pm , eps , v i c i n i t y )

2 % Adapted from Wi tvoe t 2005

3

4 dpm = ones (2∗m, 1 ) ; % I n i t i a l f i x e d p o i n t a d j u s t m e n t ( dx , dy )

5

6 % E s t i m a t e A by Min imiz ing C

7 w h i l e max ( abs ( norm ( dpm ) ) ) > t o l

8 yn = [ ] ;

9 xn = [ ] ;

10 x n t o t = [ ] ;

11 f o r i = 1 :m

12 [ o r i g , a f b ] = Search A ( da ta , pm , eps , v i c i n i t y ) ;

13 n = s i z e ( o r i g ( : , : , i ) , 2 ) ;

14 x = [ ones ( 1 , n ) ; o r i g ( : , : , i ) ] ’ ;

15 y = a f b ( : , : , i ) ’ ;

16 c = x\y ;

17 A ( : , : , i ) = c ( 2 : end , : ) ’ ;

18 C ( : , : , i ) = c ( 1 , : ) ’ ;

19 end

20 f o r i = 1 :m

21 f o r j = 1 : 2

22 yn = v e r t c a t ( yn , [ ( a f b ( j , : , i )−A( j , : , i ) ∗ o r i g ( : , : , i ) )

’ ] ) ;
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23 end

24 xn (2∗ i −1:2∗ i , 2∗ i −1:2∗ i ) = −A ( : , : , i ) ;

25 end

26 i f m > 1

27 xn = xn + d i a g ( ones (2∗m−2 ,1) , 2 ) ;

28 xn ( end−1: end , 1 : 2 ) = eye ( 2 ) ;

29 e l s e

30 xn = eye ( 2 ) + xn ;

31 end

32

33 f o r i = 1 :2∗m

34 x n t o t = v e r t c a t ( x n t o t , [ r epmat ( xn ( i , : ) , n , 1 ) ] ) ;

35 end

36

37 dpm = x n t o t \yn ;

38

39 i f max ( abs ( norm ( dpm ) ) ) > t o l

40 dp vec = [ dpm ( 1 : 2 : end ) ’ ; dpm ( 2 : 2 : end ) ’ ] ;

41 pm ( 1 : 2 , : ) = pm ( 1 : 2 , : ) + dp vec ;

42 end

43 end

44 end
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B.2 Internal functions used in linear least squares approximation

B.2.1 Function to find points for A approximation near an orbit point

1 f u n c t i o n [ o r i g , a f b ] = Search A ( da ta , pm , eps , v i c i n i t y )

2 % Adapted from Wi tvoe t 2005

3

4 x ra ng e = max ( d a t a ( 1 , : ) )−min ( d a t a ( 1 , : ) ) ;

5 y ra ng e = max ( d a t a ( 2 , : ) )−min ( d a t a ( 2 , : ) ) ;

6

7 % S e a r c h i n g p o i n t s w i t h i n ’ eps ’

8 o r b i t p o i n t s = [ pm , pm ( : , 1 ) ] ;

9 k = ones ( s i z e (pm , 2 ) , 1 ) ;

10

11 f o r i = 1 : ( l e n g t h ( d a t a )−1)

12 f o r j = 1 : s i z e ( o r b i t p o i n t s , 2 )−1

13 d d a t a = d a t a ( : , i ) − o r b i t p o i n t s ( : , j ) ;

14 d d a t a = [ d d a t a ( 1 , 1 ) / x r an g e ; d d a t a ( 2 , 1 ) / y r an g e ] ;

15 k s i 1 = norm ( dda ta , 2 ) ;

16 c l e a r d d a t a

17

18 i f k s i 1 < v i c i n i t y ( j ) ∗ eps

19 d d a t a = d a t a ( : , i +1) − o r b i t p o i n t s ( : , j +1) ;

20 d d a t a = [ d d a t a ( 1 , 1 ) / x r an g e ; d d a t a ( 2 , 1 ) / y r an g e ] ;

21 k s i 2 = norm ( dda ta , 2 ) ;

22 c l e a r d d a t a
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23

24 i f k s i 2 < v i c i n i t y ( j ) ∗ eps

25 o r i g ( : , k ( j ) , j ) = d a t a ( : , i ) − o r b i t p o i n t s ( : , j

) ;

26 a f b ( : , k ( j ) , j ) = d a t a ( : , i +1) − o r b i t p o i n t s ( : ,

j +1) ;

27 k ( j ) = k ( j ) +1 ;

28 b r e a k

29 e l s e

30 end

31 e l s e

32 end

33 end

34 end

35 end
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B.2.2 Function to find points for B approximation near an orbit point

1 f u n c t i o n [ o r i g , a f b ] = Search B ( d a t a d p , pm , eps , v i c i n i t y )

2 % Adapted from Wi tvoe t 2005

3

4 x ra ng e = max ( max ( d a t a d p ( 1 , : , : ) ) )−min ( min ( d a t a d p ( 1 , : ) ) ) ;

5 y ra ng e = max ( max ( d a t a d p ( 2 , : , : ) ) )−min ( min ( d a t a d p ( 2 , : ) ) ) ;

6

7 o r b i t p o i n t s = [ pm , pm ( : , 1 ) ] ;

8 k = ones ( s i z e (pm , 2 ) , 1 ) ;

9

10 f o r i = 1 : ( l e n g t h ( d a t a d p )−1)

11 f o r j = 1 : s i z e ( o r b i t p o i n t s , 2 )−1

12 d d a t a d = d a t a d p ( : , i , 1 ) − o r b i t p o i n t s ( : , j ) ;

13 d d a t a d = [ d d a t a d ( 1 , 1 ) / x r an ge ; d d a t a d ( 2 , 1 ) / y r an ge

] ;

14 k s i 1 = norm ( d d a t a d , 2 ) ;

15 c l e a r d d a t a d

16

17 i f k s i 1 < v i c i n i t y ( j ) ∗ eps

18 d d a t a d = d a t a d p ( : , i , 2 ) − o r b i t p o i n t s ( : , j +1) ;

19 d d a t a d = [ d d a t a d ( 1 , 1 ) / x r a n ge ; d d a t a d ( 2 , 1 ) /

y r a ng e ] ;

20 k s i 2 = norm ( d d a t a d , 2 ) ;

21 c l e a r d d a t a d

22
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23 i f k s i 2 < v i c i n i t y ( j ) ∗ eps

24 o r i g ( : , k ( j ) , j ) = d a t a d p ( : , i , 1 ) −

o r b i t p o i n t s ( : , j ) ;

25 a f b ( : , k ( j ) , j ) = d a t a d p ( : , i , 2 ) − o r b i t p o i n t s

( : , j +1) ;

26 k ( j ) = k ( j ) +1 ;

27 b r e a k

28 e l s e

29 end

30 e l s e

31 end

32 end

33 end

34

35 end
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B.2.3 Function to estimate the B matrix

1 f u n c t i o n [B , o r i g , a f b ] = E s t i m a t e B ( d a t a d p , pm , A, eps , dp eps ,

v i c i n i t y )

2 % Adapted from Wi tvoe t 2005

3

4 p e r i o d = s i z e (pm , 2 ) ;

5 % Looking f o r p o i n t s c l o s e t o t h e o r b i t s

6 [ o r i g , a f b ] = Search B ( d a t a d p , pm , eps , v i c i n i t y ) ;

7 % E s t i m a t i n g B

8 f o r i = 1 : p e r i o d ;

9 t e m p a f b = a f b ( : , : , i ) ;

10 w h i l e t e m p a f b ( : , end ) == [ 0 ; 0 ] ;

11 t e m p a f b = t e m p a f b ( : , 1 : ( end−1) ) ;

12 end

13 t e m p o r i g = o r i g ( 1 : 2 , 1 : s i z e ( t emp afb , 2 ) , i ) ;

14 n = s i z e ( t e m p o r i g , 2 ) ;

15 x = t e m p o r i g ’ ;

16 y = temp afb ’ ;

17 b a l l = t e m p a f b − A ( : , : , i ) ∗ t e m p o r i g ;

18 n u l = z e r o s ( 1 , n ) ;

19 bave = mean ( b a l l , 2 ) ;

20 B ( : , : , i ) = bave / d p e p s ;

21 end

22 end
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B.3 Control computation for OGY control and sliding mode gains

B.3.1 Create the matrix formed through multiplication of all A matrices

1 f u n c t i o n p h i = MakePhi (A, u , i , j )

2 % Adapted from Wi tvoe t 2005

3

4 m = s i z e (A, 3 ) ;

5 i f j > u−1

6 p h i = z e r o s ( 0 , s i z e (A, 1 ) ) ;

7 e l s e

8 w h i l e i + j > m

9 i = i−m;

10 end

11 p h i = A ( : , : , i + j ) ;

12 w h i l e j < u−1

13 j = j +1 ;

14 w h i l e i + j > m

15 i = i−m;

16 end

17 p h i = A ( : , : , i + j ) ∗ p h i ;

18 end

19 end

B.3.2 Create the modified controllability matrix

1 f u n c t i o n [C , u ] = MakeC (A, B)

138



2 % Adapted from Wi tvoe t 2005

3

4 m = s i z e (A, 3 ) ;

5

6 % C a l c u l a t i o n number o f s t a b l e and u n s t a b l e e i g e n v e c t o r s

7 prod = A ( : , : ,m) ;

8 f o r i = 1 :m−1

9 prod = prod ∗A ( : , : , m−i ) ;

10 end

11 c l e a r i

12

13 d = e i g ( prod ) ;

14 s = 0 ; u = 0 ;

15 f o r i = 1 : l e n g t h ( d )

16 i f abs ( d ( i ) ) < 1

17 s = s +1;

18 e l s e i f abs ( d ( i ) ) > 1

19 u = u +1;

20 e l s e

21 end

22 end

23 c l e a r i p rod d

24

25 % C a l c u l a t i o n s t a b l e e i g e n v e c t o r s f o r e v e r y p o i n t

26 f o r i = 1 :m
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27 s t a b = A ( : , : , i ) ;

28 j = i −1;

29 f o r n = 1 :m−1

30 i f j == 0

31 j = m;

32 e l s e

33 end

34 s t a b = s t a b ∗A ( : , : , j ) ;

35 j = j −1;

36 end

37 [ v , d ] = e i g ( s t a b ) ;

38 z =1;

39 f o r n =1: l e n g t h ( d )

40 i f abs ( d ( n , n ) ) < 1

41 vs ( : , z , i ) = v ( : , n ) ;

42 z=z +1;

43 e l s e

44 end

45 end

46 end

47 c l e a r i j n z v d s t a b

48

49 % C r e a t i o n o f C ( by u s i n g makephi )

50 f o r i = 1 :m

51 i u = i +u ;
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52 iumin = i +u−1;

53 w h i l e i u > m

54 i u = iu−m;

55 end

56 w h i l e iumin > m

57 iumin = iumin−m;

58 end

59 temp = [ B ( : , : , iumin ) , vs ( : , : , i u ) ] ;

60 i f u−1 < 1

61 e l s e

62 f o r j = 1 : u−1

63 temp = [ MakePhi (A, u , i , u−j ) , temp ] ;

64 end

65 end

66 C ( : , : , i ) = temp ;

67 end

68 c l e a r i j temp
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B.3.3 Compute the control gains for the OGY controller

1 f u n c t i o n K = MakeK (A, C , u )

2 % Adapted from Wi tvoe t 2005

3

4 m = s i z e (C , 3 ) ;

5 kappa = z e r o s ( 1 , s i z e (C , 1 ) ) ;

6 kappa ( 1 , 1 ) = 1 ;

7 f o r i = 1 :m;

8 temp = kappa ∗ i n v (C ( : , : , i ) ) ∗MakePhi (A, u , i , 0 ) ;

9 K ( : , : , i ) = temp ’ ;

10 end

11 end
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B.3.4 Compute control gains using the sliding mode controller

1 f u n c t i o n [K, K T , A CCF , B CCF , T ] = Sl id ingModeGains (A, B ,m, F )

2

3 % D u p l i c a t e A and B t o 2p

4

5 f o r i = 1 :m

6 A ( : , : ,m+ i ) = A ( : , : , i ) ;

7 B ( : , : ,m+ i ) = B ( : , : , i ) ;

8 end

9 % C a l c u l a t e components o f t i f m a t r i x c o n t r o l l a b l e

10 f o r i = 1 :m

11 i f m == 1

12 U ( : , : , i ) = [B ( : , : , i ) , A ( : , : , i ) ∗B ( : , : , i ) ] ;

13 e l s e

14 U ( : , : , i ) = [B ( : , : , ( i +m−1) ) , A ( : , : , ( i +m−1) ) ∗B ( : , : , ( i +m−2) )

] ;

15 end

16 i f d e t (U ( : , : , i ) ) == 0

17 d i s p ( ’ System i s n o t c o n t r o l l a b l e ’ )

18 e l s e

19 t ( : , : , i ) = [ 0 , 1 ] /U ( : , : , i ) ;

20 end

21 end

22 % Group t o g e t h e r t o d e t e r m i n e components o f T

23 f o r i = 1 :m
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24 t ( : , : ,m+ i ) = t ( : , : , i ) ;

25 end

26 f o r i = 1 :m

27 T ( : , : , i ) = [ t ( : , : , i ) ; t ( : , : , i +1) ∗A ( : , : , i ) ] ;

28 end

29 % D u p l i c a t e T f o r C o n t r o l l a b l e C a n o n i c a l Form C o n v e r s i o n

30 f o r i = 1 :m

31 T ( : , : ,m+ i ) = T ( : , : , i ) ;

32 end

33 % Compute C a n o n i c a l Form

34 f o r i = 1 :m

35 A CCF ( : , : , i ) = T ( : , : , i +1) ∗A ( : , : , i ) ∗ i n v ( T ( : , : , i ) ) ;

36 B CCF ( : , : , i ) = T ( : , : , i +1) ∗B ( : , : , i ) ;

37 end

38 K CCF ( : , : , 1 ) = [−A CCF ( 2 , 1 , 1 ) ; −A CCF ( 2 , 2 , 1 ) ] ;

39 K CCF ( : , : , 2 ) = [−A CCF ( 2 , 1 , 2 ) ; −A CCF ( 2 , 2 , 2 ) ] ;

40 f o r i = 1 :m

41 K T ( : , : , i ) = ( ( i n v ( T ( : , : , i +1) ) ∗F∗T ( : , : , i ) ) − A ( : , : , i ) ) / B ( : , : ,

i ) ’ ;

42 % K CCF ( : , : , i ) = ( F − A CCF ( : , : , i ) ) / B CCF ( : , : , i ) ’ ;

43 K ( : , : , i ) = ( K CCF ( : , : , i ) ’∗T ( : , : , i ) ) ’ ;

44 end

45 end
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B.4 Master scripts to initialize functions and process intermediate data

B.4.1 Standalone script for control within the chaotic attractor

1 %%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%%%%%%%%%

3 % Tunable P a r a m e t e r s

4 %%%%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%%%%

6 g l o b a l omega z e t a f kappa2 gamma lambda

7 omega = 0 . 8 ; z e t a = 0 . 0 1 ; f = 0 . 0 8 ; lambda = 0 . 0 5 ; gamma = 0 . 5 ;

kappa2 = 0 . 0 5 ;

8 p e r i o d = 2∗ p i / omega ;

9

10 % I n i t i a l c o n d i t i o n s and t ime v e c t o r s

11 b e g i n = [1 0 0 ] ;

12 t i m e c o n t = [0 2 5 0 0 0 0 ] ;

13

14 % O r b i t c o n s i d e r e d f o r s t a b i l i z a t i o n

15 m = 2 ;

16

17 % V i c i n i t y and P e r t u r b a t i o n amount f o r p r e d i c t i o n and c o n t r o l

18 eps = 0 . 0 2 5 ; % Used i n o r b i t s e l e c t i o n , and r e g i o n

s u r r o u n d i n g f i x e d p o i n t s

19 eps = 0 . 1 ;

20 d p e p s = 0 . 0 0 5 1 ; % Used i n p e r t u r b a t i o n o f t h e map f o r
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s e l e c t i n g B

21 p = 0 ; % For use i n a p p l y i n g c o n t r o l s h o u l d s t e a d y

s t a t e v a l u e be d i f f e r e n t

22 d u e p s = d p e p s ; % Region f o r c o n t r o l a p p l i c a t i o n ( same as B)

23 F = [0 1 ; 1 0 ] ; % I n v a r i a n t m a t r i x f o r S l i d i n g Mode C o n t r o l

24

25 % Compute v i c i n i t y f o r i n d i v i d u a l o r b i t p o i n t s i n A, B e s t i m a t i o n

26 v i c i n i t y = ones ( 1 ,m) ∗2 ;

27

28 % S t o p p i n g c r i t e r i a f o r A and f i x e d p o i n t c o r r e c t i o n

29 t o l = 1e−4;

30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % Compute D u f f i n g Data S e t s and F ixed P o i n t s

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36

37 e i n d = t i m e c o n t ( 2 ) ;

38 nop end = c e i l ( e i n d / p e r i o d ) ;

39 t i m e p o i n c a r e = [ 0 : p e r i o d : nop end ] ;

40

41 % Compute t ime s e r i e s and P o i n c a r e d a t a

42 [ t c o n t , x c o n t ] = ode45 ( @Duff ing Piezo 3D , t i m e c o n t , b e g i n ) ;

43 % [ t l a r , x l a r ] = ode45 ( @Duff ing Piezo 3D , t i m e c o n t , [ 1 , 1 . 3 , 0 ] ) ;
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44 [ tp , xp ] = ode45 ( @Duff ing Piezo 3D , t i m e p o i n c a r e , b e g i n ) ;

45 % d a t a t o t a l = [ xp ( : , 1 ) , xp ( : , 2 ) , xp ( : , 3 ) ] ’ ;

46 % d a t a = [ xp ( : , 1 ) , xp ( : , 2 ) ] ’ ;

47

48 [ Dx , Dy , Dz ] = P o i n c a r e T i m e ( x c o n t , t c o n t , omega , 0 ) ;

49 d a t a = [ Dx ; Dy ] ’ ;

50

51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52 % I n i t i a l E s t i m a t e o f F ixed P o i n t

53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

54 pm = Recur renceMethod ( da t a ,m, eps ) ;

55

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57 % I t e r a t e d Improvements o f A, B , and F ixed P o i n t s

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59

60 [A, C , pm , o r i g a , a f b a ] = S t a t e M a t r i x A p p r o x i m a t i o n ( da t a ,m, t o l , pm ,

eps , v i c i n i t y ) ;

61

62 f o r i = 1 :m

63 f i g u r e ( i ) , p l o t 3 ( o r i g a ( 1 , : , i ) , o r i g a ( 2 , : , i ) , a f b a ( : , : , i ) , ’ . ’ ) ,

g r i d

64 end

65

66 d a t a p e r t u r b = b e g i n ;
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67 b e g i n p e r = b e g i n ;

68

69 f o r k = 1 : l e n g t h ( d a t a )

70 i f rem ( k , 2 ) ˜= 0

71 u p e r = p + d p e p s ;

72 e l s e

73 u p e r = p ;

74 end

75 t i me dc = [ ( k−1)∗ p e r i o d k∗ p e r i o d ] ;

76 [ t p e r , x p e r ] = ode45 ( @Duff ing Per tu rbed 3D , t imedc , b e g i n p e r

, [ ] , u p e r ) ;

77 b e g i n p e r = [ x p e r ( end , 1 ) x p e r ( end , 2 ) x p e r ( end , 3 ) ] ;

78 d a t a p e r t u r b = v e r t c a t ( d a t a p e r t u r b , b e g i n p e r ) ;

79

80 end

81

82 d a t a p e r t u r b = d a t a p e r t u r b ’ ;

83

84 j = 1 ;

85 f o r i = 1 : 2 : l e n g t h ( d a t a p e r t u r b )

86 d p s e p ( : , j , 1 ) = d a t a p e r t u r b ( : , i ) ;

87 j = j +1 ;

88 end

89 j = 1 ;

90 f o r i = 2 : 2 : l e n g t h ( d a t a p e r t u r b )
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91 d p s e p ( : , j , 2 ) = d a t a p e r t u r b ( : , i ) ;

92 j = j +1 ;

93 end

94

95 dp sep 2D = d p s e p ( 1 : 2 , : , : ) ;

96

97 [B , o r i g b , a f b b ] = E s t i m a t e B ( dp sep 2D , pm , A, eps , dp eps , v i c i n i t y )

;

98

99 f o r i = 1 :m

100 f i g u r e (m+ i ) , p l o t 3 ( o r i g b ( 1 , : , i ) , o r i g b ( 2 , : , i ) , a f b b ( : , : , i ) , ’ . ’ ) ,

g r i d

101 end

102

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 % S l i d i n g Mode C o n t r o l Gains

105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

106

107 [K, K A , A CCF , B CCF , T ] = Sl id ingModeGains (A, B ,m, F ) ;

108 K = −K;

109

110 [ Cc , u ] = MakeC (A, B) ;

111 K B = MakeK (A, Cc , u ) ;

112

113 %%%%%%%%%%%%%%%%%%%
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114 %%%%%%%%%%%%%%%%%%%

115 % Apply C o n t r o l

116 %%%%%%%%%%%%%%%%%%%

117 %%%%%%%%%%%%%%%%%%%

118

119 d a t a t o t = [ ] ;

120 r d a t a = begin ’ ;

121

122 f o r i = 1 : l e n g t h ( d a t a )

123 f o r j = 1 :m

124 i f norm ( ( r d a t a ( 1 : 2 , end ) − pm ( : , j ) ) , 2 ) < eps

125 dp ( j , 1 ) = −K B ( : , : , j ) ’∗ ( r d a t a ( 1 : 2 , end ) − pm ( : , j ) ) ;

126 i f abs ( dp ( j , 1 ) ) > d u e p s

127 dp ( j , 1 ) = 0 ;

128 end

129 e l s e

130 dp ( j , 1 ) = 0 ;

131 end

132 end

133 t e s t = f i n d ( dp ) ;

134 [ e , d ]= min ( abs ( dp ( t e s t ) ) ) ;

135 dp=dp ( t e s t ( d ) ) ;

136 i f i s e m p t y ( dp )

137 dp = 0 ;

138 e l s e
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139 end

140 u dp ( i ) = p + dp ;

141 t i me dc = [ ( i −1)∗ p e r i o d i ∗ p e r i o d ] ;

142 u c = u dp ( i ) ;

143 [ tdc , xdc ] = ode45 ( @Duf f ing P iezo Con t ro l 3D , t imedc , begin

, [ ] , u c ) ;

144 temp = [ t d c xdc ] ;

145 d a t a t o t = v e r t c a t ( d a t a t o t , temp ) ;

146 r d a t a ( : , i +1) = [ xdc ( end , 1 ) ; xdc ( end , 2 ) ; xdc ( end , 3 ) ] ;

147 b e g i n = xdc ( end , : ) ;

148 end
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B.4.2 Standalone script for control across attractors

1 %%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%%%%%%%

3 % Tunable P a r a m e t e r s

4 %%%%%%%%%%%%%%%%%%%%%%

5 %%%%%%%%%%%%%%%%%%%%%%

6

7 g l o b a l omega gamma lambda kappa2 z e t a f

8 omega = 0 . 8 ; z e t a = 0 . 0 1 ; c h i = 0 . 0 5 ; kappa = 0 . 5 ; lambda = 0 . 0 5 ;

f = 0 . 0 8 ;

9 p e r i o d = 2∗ p i / omega ;

10

11 %%%%%%%%%%%%%%%%%%%%%%%%%

12 % S e t i n i t i a l c o n d i t i o n s

13 %%%%%%%%%%%%%%%%%%%%%%%%%

14 x1 ( 1 ) = 1 ;

15 x2 ( 1 ) = 0 ;

16 x3 ( 1 ) = 0 ;

17 x1d ( 1 ) = 1 ;

18 x2d ( 1 ) = 1 . 3 ;

19 x3d ( 1 ) = 0 ;

20

21 d t = 1E−2;

22 t k = 0 : d t : 5 0 0 ;

23 u max = 1 ;
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24 f o r i = 1 : l e n g t h ( t k )−1

25

26 % E r r o r C a l c u l a t i o n

27 e1 ( i ) = x1 ( i ) − x1d ( i ) ;

28 e2 ( i ) = x2 ( i ) − x2d ( i ) ;

29

30 i f t k ( i ) > t k ( end ) / 2 && abs ( e1 ( i ) ) < 0 . 0 5 % e1 ( i ) >= 0 && e1 (

i ) < 0 . 0 5 %

31 u ( i ) = −19.1∗ e2 ( i ) − 2∗ e1 ( i ) − x1 ( i ) ˆ3 − x1d ( i ) ˆ 3 ;

32 i f abs ( u ( i ) ) < u max

33 % S t a r t i n g T r a j e c t o r y

34 dx1d t ( i ) = x2 ( i ) ;

35 dx2d t ( i ) = −2∗ z e t a ∗x2 ( i ) + ( 1 / 2 ) ∗x1 ( i ) ∗(1−x1 ( i ) ˆ 2 ) + c h i ∗

x3 ( i ) + f ∗ cos ( omega∗ t k ( i ) ) + u ( i ) ;

36 dx3d t ( i ) = −lambda∗x3 ( i )−kappa ∗x2 ( i ) ;

37 e l s e

38 u ( i ) = s i g n ( u ( i ) ) ∗u max ;

39 dx1d t ( i ) = x2 ( i ) ;

40 dx2d t ( i ) = −2∗ z e t a ∗x2 ( i ) + ( 1 / 2 ) ∗x1 ( i ) ∗(1−x1 ( i ) ˆ 2 ) + c h i ∗

x3 ( i ) + f ∗ cos ( omega∗ t k ( i ) ) + u ( i ) ;

41 dx3d t ( i ) = −lambda∗x3 ( i )−kappa ∗x2 ( i ) ;

42 end

43 e l s e

44 u ( i ) = 0 ;

45 % S t a r t i n g T r a j e c t o r y
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46 dx1d t ( i ) = x2 ( i ) ;

47 dx2d t ( i ) = −2∗ z e t a ∗x2 ( i ) + ( 1 / 2 ) ∗x1 ( i ) ∗(1−x1 ( i ) ˆ 2 ) + c h i ∗x3 ( i

) + f ∗ cos ( omega∗ t k ( i ) ) ;

48 dx3d t ( i ) = −lambda∗x3 ( i )−kappa ∗x2 ( i ) ;

49 end

50

51 x1 ( i +1) = d t ∗ dx1d t ( i ) + x1 ( i ) ;

52 x2 ( i +1) = d t ∗ dx2d t ( i ) + x2 ( i ) ;

53 x3 ( i +1) = d t ∗ dx3d t ( i ) + x3 ( i ) ;

54

55 % D e s i r e d T r a j e c t o r y

56 dx1d td ( i ) = x2d ( i ) ;

57 dx2d td ( i ) = −2∗ z e t a ∗x2d ( i ) + ( 1 / 2 ) ∗x1d ( i ) ∗(1−x1d ( i ) ˆ 2 ) + c h i ∗x3d (

i ) + f ∗ cos ( omega∗ t k ( i ) ) ;

58 dx3d td ( i ) = −lambda∗x3d ( i )−kappa ∗x2d ( i ) ;

59

60 x1d ( i +1) = d t ∗ dx1d td ( i ) + x1d ( i ) ;

61 x2d ( i +1) = d t ∗ dx2d td ( i ) + x2d ( i ) ;

62 x3d ( i +1) = d t ∗ dx3d td ( i ) + x3d ( i ) ;

63 end
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