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ABSTRACT

The content of this dissertation consists of three parts. In the first part, optimal

control strategies are developed for Unified Power Flow Controller (UPFC) following

the clearance of fault conditions. UPFC is one of the most versatile Flexible AC

Transmission devices (FACTs) that have been implemented thus far. The optimal

control scheme is composed of two parts. The first is an optimal stabilization control,

which is an open-loop ‘Bang’ type of control. The second is an suboptimal damping

control, which consists of segments of ‘Bang’ type control with switching functions

the same as those of a corresponding approximate linear system. Simulation results

show that the proposed control strategy is very effective in maintaining stability and

damping out transient oscillations following the clearance of the fault. In the sec-

ond part, a new power market structure is proposed. The new structure is based on

a two-level optimization formulation of the market. It is shown that the proposed

market structure can easily find the optimal solutions for the market while takeing

factors such as demand elasticity into account. In the last part, a mathematical

programming problem is formulated to obtain the maximum value of the loadibility

factor, while the power system is constrained by steady-state dynamic security con-

straints. An iterative solution procedure is proposed for the problem, and the solution

gives a slightly conservative estimate of the loadibility limit for the generation and

transmission system.
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CHAPTER 1

INTRODUCTION

1.1 Structure of a Generic Electric Power System

No matter how different two electric power systems might be, they are all composed

of two parts: the generating stations and the transmission network [1][2]. Generating

stations, which generate electric power, usually have synchronous machines that are

driven by turbines (steam, hydraulic, diesel, or internal combustion). Electric power

is transmitted to consumers through an intricate network of apparatus including

transmission lines, transformers, and switching devices. An industrial transmission

network could be classified as transmission system (typically, 230 kV and above), sub-

transmission system (typically, 69 kV to 138 kV), and distribution system (typically

4.0 and 34.5 kV in the primary feeders for small industrial customers, and 120/240

V in the secondary distribution feeders for residential and commercial customers).

In a modern power systems, generating stations are usually interconnected,

and generated power is transmitted from the generating sites over long distances to

load centers that are spread over wide areas. Voltage and frequency levels within the

system are required to remain within tight tolerance levels to ensure a high quality

product [3][4].

1



1.2 Modern Power System and Deregulation

After several decade’s of development, the modern power system has evolved into

one of the most complex man-made systems. Its planning and operation depend not

only on technical concerns, but also economical, geographical, and even political ones

[5]. Due to environmental and capital concerns, the construction of transmission and

generation facilities usually lags behind the growth of demand for electric power. As

a result, the stability margin of the whole system has been severely compromised.

On the other hand, principles derived from economics demand the power industry

be deregulated [6], that is, to separate the transmission sector out and form a new

business. In the mean time, customers requirements for electricity quality are getting

more and more diverse and sophisticated [7][8][9]. All the above demands and require-

ments give the industry strong incentives to make use of new technologies to remain

competitive in the business. Among the technologies used, Flexible AC Transmission

Systems is receiving most of the attention at present.

1.3 Flexible AC Transmission Systems

Flexible AC Transmission Systems (FACTS) identifies alternating current transmis-

sion systems incorporating power electronics-based controllers to enhance the con-

trollability and increase power transfer capability [10][11]. The implementation of

FACTS devices requires technology for high power (multi-hundred MVA) electronics

with its real-time operating control. The objectives of FACTS devices are three fold:

• To increase the power transfer capability of transmission systems.
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• To keep power flow over designated routes.

• To realize overall system optimization control.

After more than a decade’s development, the FACTS family has quite a

few members. Among them, those ahead of the list are Static Var Compensator

(SVC), Thyristor-Controlled Series Capacitor (TCSC), Static Synchronous Compen-

sator (Statcom), Static Synchronous Series Compensator (SSSC), the Unified Power

Flow Controller (UPFC) and the Interline Power Flow Controller (IPFC).

1.4 Optimal Transient UPFC Control

Power system dynamics and transients have been a subject of interest and concern

for researchers and system operators ever since the widespread used of electric power

[12][13][14][15][16][17]. The rapid development of FACTs technology gives engineers

a powerful tool to influence the dynamic and transient responses of a given power

system. UPFC is one of the most versatile devices in the FACTS family. Depending on

the mode of operation, it can be used as a series/parallel compensator, phase shifter,

and voltage regulator. Due to its quick response, UPFC also possesses the potential

to drastically improve the transient characteristics of a power system. In [22][23][24],

transient UPFC control strategies are proposed for a power system working under

stressed conditions. In this dissertation, we go one step further along this track by

proposing an optimal control strategy following the clearance of faulted conditions.

The purpose of the optimal UPFC control strategy is to maximize the chance the

system will remain stable following the clearance of fault on the one hand, and on

3



the other hand, minimize the time needed to damp down the transient oscillation.

1.5 Optimal Operations of Power System

Optimization concepts and algorithms were first introduced to power system dispatch-

ing, resource allocation, and planning in the mid-sixties in order to mathematically

formalize decision-making with regard to the myriad of objectives subject to tech-

nical and nontechnical constraints [25]. In recent years, the topic of how to apply

optimization in electric power engineering has attracted a lot of attention from re-

searchers. In this dissertation, based on our previous research results [26][27], two

practical applications are presented. In the first one, a new power market model is

proposed. The model is based on a two-level optimization formulation and solved

with the help of the Optimal Dispatch Rule (ODP). Then, an optimal non-iterative

power market structure is obtained for pool-type electricity market. In the second

application, a new formulation using mathematical programming theory is presented.

This formulation, after being solved by an iterative solution procedure, can be used

to estimate the loadability of a generation and transmission system.

4



CHAPTER 2

MATHEMATICAL BACKGROUND AND ITS
APPLICATION TO POWER SYSTEM

Calculus of variation is the mathematical discipline that deals with finding the op-

timum value of a functional. It is the mathematical foundation for modern optimal

control. Good coverage on this topic can be found in [18][19]. In this chapter, a brief

review of the basic concepts and principles is provided. We first give the definitions

for some important concepts in the calculus of variation. Then, necessary and suffi-

cient conditions are stated for the optimum of a function and a functional. Finally,

the variational approach to the optimal control problem is presented. A comprehen-

sive treatment of this approach can be found in [20]. At the end of this chapter, the

applications of these optimization tools to power system problems are outlined.

2.1 Basic Concepts of Calculus of Variation

2.1.1 Function and Functional

Function

A variable f is a function of a variable x, if to every value of x over a certain range

of x, there exist a unique f that is corresponding to the choice of value x. A typical
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example is

f(x) = 3x2 + 2. (2.1.1)

Functional

A variable quantity J is a functional dependent on a function f(x), if to each function

f(x), there corresponds a unique value J . An example is

J(f(x)) =

∫ xf

x0

f(x)dx. (2.1.2)

In (2.1.2), the value of functional J depends on the choice of function f(x).

That is, a functional is a function of a function.

2.1.2 Increment

Increment of a Function

The increment of a function f , denoted by �f , is defined as

�f � f(t+ �t) − f(t), (2.1.3)

where �t is the increment of the independent variable t.

Increment of a Functional

The increment of a functional J , denoted by �J is defined as

�J � J(x(t) + δx(t)) − J(x(t)), (2.1.4)

where δx(t) is called variation of the function x(t).

6



2.1.3 Differential and Variation

Differential of a Function

The differential of a function f at point t∗ is defined as

df =

(
df

dt

)
t∗
�t. (2.1.5)

It is clear that differential is the first order approximation to the increment

�f .

Variation of a Functional

The variation of a functional J , is defined as

δJ =
∂J

∂x
δx(t). (2.1.6)

Variation is also called the first variation. It is the first order approximation

of the increment �J .

The second variation is defined as

δ2J =
1

2

∂2J

∂x2
(∂x(t))2 . (2.1.7)

.

2.2 Optimum of a Function and a Functional

2.2.1 Definition

Optimum of a Function

A function f(t) is said to have a relative optimum at point t∗ if there is a positive

parameter ε such that for all points t in a domain D that satisfy |t − t∗| < ε, the

increment of f(t) has the same sign (positive or negative).
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Optimum of a Functional

A functional J is said to have a relative optimum at x∗ if there is a positive ε such

that for all functions x in a domain Ω which satisfy |x− x∗| < ε, the increment of J

has the same sign.

2.2.2 Necessary and Sufficient Conditions for Optimum of a
Functional

Theorem

The necessary condition for x∗(t) to be a candidate for an optimum is that the vari-

ation of J must be zero on x∗(t) for all admissible values of δx(t). The sufficient

condition for minimum is second variation δ2J > 0, and for maximum δ2 < 0.

Euler-Lagrange Equation

Let x(t) be a scalar function with continuous first derivatives. The problem is to find

the optimal function x∗(t) for which the functional

J(x(t)) =

∫ tf

t0

V (x(t), ẋ(t), t)dt (2.2.1)

has a relative optimum. It is assumed that the integrand V has continuous first and

second partial derivatives w.r.t. all its arguments; t0 and tf are known and the end

points are fixed.

For (2.2.1), derive its increment, and use the necessary condition theorem (for

an optimum the variation of a functional vanishes), we find the necessary condition

for x∗(t) to be an optimal of the functional J is given by

(
∂V

∂x

)
∗
− d

dt

(
∂V

∂ẋ

)
∗

= 0. (2.2.2)
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which is called Euler-Lagrange Equation.

2.2.3 Extrema with Conditions

Extrema of Functions with Conditions

Consider the extrema of a continuous, real-valued function f(x) = f(x1, x2, · · · , xn)

subject to the conditions

g1(x) = g1(x1, x2, · · · , xn) = 0
g2(x) = g2(x1, x2, · · · , xn) = 0

· · ·
gm(x) = gm(x1, x2, · · · , xn) = 0

(2.2.3)

where f and g have continuous partial derivatives, and m < n. Let λ1, λ2, · · · , λm

be the Lagrange multipliers corresponding to m conditions, such that the augmented

Lagrangian function is formed as

L(x, λ) = f(x) + λ′g(x), (2.2.4)

where λ′ is the transpose of λ. Then, the optimal values x∗ and λ∗ are the solutions

of the following n+m equations

∂L

∂x
=

∂f

∂x
+ λ′

∂g

∂x
= 0, (2.2.5)

∂L

∂λ
= g(x) = 0. (2.2.6)

Extrema of Functionals with Conditions

Consider the extremization of a functional

J =

∫ tf

t0

V (x(t), ẋ(t), t)dt, (2.2.7)

where x(t) is an nth order state vectro, subject to the following plant equation

gi(x(t), ẋ(t), t) = 0; i = 1, 2, ...,m (2.2.8)
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and boundary conditions x(0) and x(tf ) (which are given). The Lagrangian L is given

by

L(x(t), ẋ(t), λ(t), t) = V (x(t), ẋ(t), λ(t), t) + λ′(t)gi(x(t), ẋ(t), λ(t), t) (2.2.9)

and the Lagrange multiplier λ(t) = [λ1(t), λ2(t), ..., λm(t)]′. The augmented functional

is

Ja =

∫ tf

t0

L(x(t), ẋ(t), λ(t), t)dt. (2.2.10)

Apply Euler-Lagrange equation on Ja, we have

(
∂L

∂x

)
∗
− d

dt

(
∂L

∂ẋ

)
∗

= 0, (2.2.11)

(
∂L

∂λ

)
∗
− d

dt

(
∂L

∂λ̇

)
∗

= 0, (2.2.12)

Since (2.2.9) is independent of λ̇i, i = 1, 2, ...,m, therefore, (2.2.12) is equiva-

lent to (2.2.8).

2.3 Variational Approach to Optimal Control

The knowledge obtained by studying the calculus of variations can be used to solve

optimal control problem. In this section, we briefly review the variational approach

to the Bolza problem.

Consider the performance index as

J(u(t)) = S(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt, (2.3.1)

and given boundary conditions as

x(t0) = x0; x(tf ) is free and tf is free (2.3.2)

10



The plant is described as

ẋ(t) = f(x(t),u(t), t). (2.3.3)

2.3.1 Necessary Conditions for Optimum

Assume u∗(t) is the optimal value for control, and x∗(t) is the optimal value for state.

We define Hamiltonian H as

H = L(x(t),u(t), t) + λ′(t)f(x(t),u(t), t) (2.3.4)

where λ′(t) is the Lagrange multiplier vector.

Treat time t as a variable, and make use of the Euler-Lagrange equation, we

can get the necessary conditions for the optimum.

λ̇∗(t) = −
(
∂H

∂x

)
∗

(2.3.5)

ẋ∗(t) =

(
∂H

∂λ

)
∗

(2.3.6)

(
∂H

∂u

)
∗

= 0. (2.3.7)

(2.3.8)

and two other conditions at the terminal time

[
H∗ +

∂S

∂t

]
tf

= 0, (2.3.9)

[(
∂S

∂x

)
∗
− λ∗(t)

]
tf

= 0. (2.3.10)

Expression (2.3.6) is equivalent to (2.3.3). (2.3.5) is also called the costate

equation. (2.3.7) contains information about the form of the optimal control. (2.3.9)
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is also called the transversality condition, and it is useful in calculating the optimal

process time. (2.3.10) guarantees that the terminal state constraints are satisfied by

using the optimal control.

The problem formulated in (2.3.5)-(2.3.10) is a typical two-point boundary-

value problem.

2.3.2 Minimum-time Problems

If the objective is to find a control so that the system could be moved from its initial

state x0 to a final state xf in a minimum amount of time. Then, for the performance

index stated in (2.3.1), we have

S(x(tf ), tf ) = 0, (2.3.11)

L(x(t),u(t), t) = 1. (2.3.12)

And, the Hamiltonian becomes

H = λ′(t)f(x(t),u(t), t). (2.3.13)

It is easy to show that if H is not an explicit function of time, we have

Ḣ = 0. (2.3.14)

Therefore,

H = C. (2.3.15)

where C is a constant.
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On the other hand, at the optimum, the transversality condition (2.3.9) must

be satisfied. This leads to

Htf = 0. (2.3.16)

Combined with (2.3.15), we can conclude that for minimum-time problem, if

H is not an explicit function of time,

H(x(t),u(t), t) = 0 (2.3.17)

holds true for all the time t.

2.4 Pontryagin Minimum Principle

In this section, a summary for the famous Pontrygin Principle is provided. This

principle is used in late chapters for the derivation of optimal control strategies. A

thorough treatment of this principle can be found in reference [38].

Given the plant as

ẋ(t) = f(x(t), u(t), t), (2.4.1)

the performance index as

J = S(x(tf ), tf ) +

∫ tf

t0

V (x(t), u(t), t)dt, (2.4.2)

and the boundary conditions as

x(t0) = x0 and tf , x(tf ) = xf are free. (2.4.3)

The Hamiltonnian function is give by

H(x(t), u(t), λ(t), t) = V (x(t), u(t), t) + λT (t)f(x(t), u(t), t). (2.4.4)
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The Pontryagin Minimum Principle says that the necessary condition for the

constrained optimal control system is that the optimal control should minimize the

Hamiltonian, that is,

H(x∗(t), u∗(t), λ∗(t), t) ≤ H(x∗(t), u(t), λ∗(t), t), (2.4.5)

where “*” denotes the corresponding variables at optimality.

2.5 Application of Optimization Approaches in Solving Power
System Problems

Like many other physical systems, the dynamics of a power system can be describe

by a set of differential equations. Combined with all the relevant algebraic equations,

the energy flow, current and voltage relations, etc., of an inter-connected power sys-

tem can be satisfactorily described by the resulting Differential-Algebraic Equations

(DAEs). The inclusion of inequalities to the DAEs will also incorporate concerns such

as stability into the mathematical formulation. Once the mathematical formulation

is obtained, optimization approaches described in the previous sections can be readily

used to solve any optimization or optimal control problems that may be formulated.

Except for very simple problems, analytical solutions are usually difficult to

find. For power systems, analytical solutions are often limited to very simple systems,

such as a single-machine-infinite-bus system with extremely simplified machine and

transmission line model. Therefore, for most practical applications, numerical ap-

proaches have to be explored to find the solution. Numerical approaches are usually

based on iteration-based methods starting from an initial guess of the solution. Then,
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according to the nature of the problem, an algorithm that uses iteration methods such

as Steepest Decent, Newton-like Method and Quasi-Newton Method could be used

to find the solution. A good coverage on numerical approaches is provided in [21].
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CHAPTER 3

OPTIMAL TRANSIENT UPFC CONTROL

3.1 Introduction

In today’s power system worldwide, the transient and dynamic stability margin is

reduced due to increased power transfer. With proper control strategies, fast re-

sponding Flexible AC Transmission Systems (FACTS) could be used to improve the

transient and dynamic performance of the system so that the system transmission

could be safely expanded by increasing the level of utilization of the existing facili-

ties towards their thermal limits. On the other hand, by fully taping their ability to

shape the transient and dynamic response of the system, the higher cost (compared

with the traditional mechanically controlled power flow controller, e.g. adjustable

transformers and capacitor banks) of FACTS devices can be better justified.

In the FACTS family, UPFC is one of the most powerful and versatile FACTS

devices available so far. Being able to almost instantaneously insert a synchronous

voltage of arbitrary magnitude (within a pre-specified range) and phase angle (with

respect to the sending-end voltage) into the transmission line, UPFC can be used

to adjust the real electrical power output of a electric power system in real time.

Thus, UPFC is regarded by many researchers as an ideal candidate for improving the
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transient and dynamic performance of an electric power system. In [28][29], UPFC

is incorporated into the Phillips-Heffron model of a linearized power system. Then,

the well-established linear control techniques are used to design a UPFC damping

control. Dramatic improvement in dynamic stability performance is reported in their

study. Nevertheless, due to the nature of linearization, the technique developed there

can not be extended to study the transient response of the system. In [30] and [31],

the effects of UPFC on system transient stability improvement is studied more or

less qualitatively, and improved transient response is reported in each study. In [32]

and [33], nonlinear PID and coordinated control design techniques are employed,

respectively, to design UPFC controller to improve transient stability of a power

system. Even though improved transient responses were reported in both cases,

neither gave any indication as to whether the performance could be improved further,

and if it could, what the limit would be. To the best of our knowledge, there are no

results in the literature yet that address the issue of optimal UPFC control design

which is aimed at pushing the transient and dynamic performance improvement of

the system to its up-limit.

The purpose of this chapter is to develop an optimal UPFC control strategy

to improve the transient and dynamic performance of a power system following the

clearance of a major fault. It is optimal in the sense that it brings the transient and

dynamic performance improvement to its up-limit. The proposed optimal control

strategy consists of two objectives which are fulfilled one after another:

1. Develop an optimal UPFC control that will maximize the system’s chance to
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remain stable following the clearance of a major fault.

2. Develop an optimal UPFC control that will damp the transient and dynamic

oscillation most effectively.

3.2 UPFC Principle and Control Structure

3.2.1 UPFC concept and structure

A UPFC consists of two voltage-sourced converters, converter 1 and converter 2,

as shown in Figure 3.1. Converter 1 is parallel connected with the transmission

line through a parallel transformer, and converter 2 is connected in series with the

transmission line through a series transformer. The two converters are linked together

by a common dc link, which is a dc storage capacitor labelled “C” in Figure 3.1.

This arrangement enables real power to be transferred freely from the ac side of

converter 1 to the ac side of converter 2, and vice versa. Meanwhile, converter 1

and converter 2 are both capable of independently generating (or absorbing) reactive

power at their own ac output terminals. It is important to note that only real power

can be transferred across the capacitor “C”.

The function of converter 1 is two-fold: first, it is responsible to supply or

absorb the real power demanded by converter 2 at the common dc link; second, it can

generate or absorb a controllable amount of reactive power independently, and thereby

provide independent shunt reactive compensation for the line - voltage support.

The function of converter 2 is to inject a controllable synchronous voltage Vpq

into the system. Ideally, the magnitude of Vpq is capable of varying from 0 to a
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Figure 3.1: UPFC conceptual structure

maximum value Vpqmax, which is determined by physical limits, and its phase angle

varies from 0 to 2π.

The transformer that injects voltage Vpq into the line can be considered as a

voltage source. Line current flows through this voltage source resulting in real and

reactive power exchanges between converter 2 and the ac system. The real power

exchanged at the ac terminal of converter 2 is converted into dc power which appears

at the dc link as positive or negative real power demand.

Altogether a UPFC has 3 controllable parameters: susceptance BT , represent-

ing the UPFC parallel branch reactive compensation effect; magnitude of Vpq; and

angle of Vpq. By properly adjusting these 3 parameters, UPFC can be used as voltage

regulator, phase shifter, series compensator and the combination of the three. There-

fore, UPFC can be ideally used to meet multiple control objectives. In this chapter,

it is assumed that BT will be adjusted to maintain the UPFC parallel branch ac side

voltage.
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3.2.2 UPFC Control Structure

Shunt
converter

Series
converter

Shunt
converter
control

Phase-
locked
loop

Series
converter
control

Functional Operation Control

System Optimization Control
Power
system
variables

Operator 
inputs

U
P

F
C

 c
on

tr
ol

 s
ys

te
m

QRef PRefVpqRefV1RefRef

Mode
Selection

V1
V2

V1

VpqRefishRef

Vdc

Transmission line i P, QVpq

Figure 3.2: Overall UPFC control structure.

The overall UPFC control structure is shown in Figure 3.2. At the “System

Optimization Control” level, one of the tasks of the control algorithm is to determine

the reference value of electrical real power output PRef for the UPFC control system.

The proposed optimal UPFC control strategy should work at this level by giving out

a sequence of PRef instructions so as to achieve the desired control objectives. The

“UPFC control system” block is responsible for detailed shunt converter and series

converter control so that the bus voltage is at right level, and there is proper amount

of reactive power injection into the system.
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3.3 Model of the System

Before we proceed any further, the following assumptions have to be laid out:

• The delay between UPFC receiving an instruction and the implementation re-

sult is in place is negligible. Since the time constants of UPFC are much smaller

than those of the rest of the system, this assumption is valid in most cases.

• Generator mechanical friction is the only source of real power loss. This as-

sumption will allow us to focus on the major problems of the control design.

• The mechanical power input to the system, Pm, remains unchanged in the

duration of study.

• During the fault, the system real power output is 0.

• During the first swing, the generator mechanical damping effect is negligible.

Vpq

Ppq

UPFC

jX1

jX2

Vr

Vs

Vi=Vs+Vpq

Fault

Figure 3.3: Conceptual representation of UPFC in a SMIB system

A conceptual representation of UPFC, in a Single Machine Infinite Bus (SMIB)

system with double conductors, is given in Figure 3.3, in which UPFC is represented
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by a synchronous voltage source that can insert a synchronous voltage with angle

ρ (ρ ∈ [0, π]) and magnitude Vpq (Vpq ∈ [0, Vpqmax], where Vpqmax is the maximum

insertion voltage magnitude possible.)

Assume that the sending end voltage and the receiving end voltage are of the

same magnitude, that is Vs = Vr = V ; then, the steady state electrical power output

is given by [34]

Pe(δ, ρ) = P0(δ) + Ppq(δ, ρ), (3.3.1)

with

P0(δ) =
V 2

X
sin δ, (3.3.2)

Ppq(δ, ρ) =
V Vpq

X
sin ρ, (3.3.3)

where δ is the voltage angle difference between the sending end and the receiving

end, ρ is the insertion voltage angle with respect to the sending end voltage, and

X = X1‖X2, is the combined impedance of the transmission line.

Ppq is the amount of real power that could be influenced by UPFC operations,

and it satisfies the following relationship:

−V Vmaxpq

X
≤ V Vpq

X
sin ρ ≤ V Vmaxpq

X
. (3.3.4)

The dynamic relation of the system is given by

Mδ̈ = Pm −Dδ̇ − Pe, (3.3.5)
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where M is inertia constant of the machine on the left in Figure 3.3, and D is the

damping ratio. If we let

x1 = δ − δr,

x2 = ẋ1,

where δr is the reference power angle. It can be the initial power angle following the

clearance of a fault, or the power angle at certain equilibrium. Then, (3.3.5) can be

written as

ẋ1 = f1 = x2, (3.3.6)

ẋ2 = f2 =
1

M
(Pm −Dx2 − Pe). (3.3.7)

The power-angle relation of the system (with D = 0) before and after a fault

condition at one of the transmission line is shown in Figure 3.4. The area between

the dashed lines is the UPFC action envelop.

Assume that the system originally works at point “A” as shown in Figure 3.4,

with real power output Pm and power angle δ0, then, a bolted three-phase to ground

fault happens at time t0, and is cleared at time ti with the faulted transmission

line removed from service. The power angle at ti is increased to δi due to the energy

stored in the system during the fault, and the working point jumps back to point “B”.

The power angle thereafter will inevitably increase because 1) there usually is a big

difference between the mechanical power input Pm (which is assumed to be a constant

during the transient period) and the electrical power output at point “B”; 2) there

are potential and kinetic energy stored in the system during the fault. If the fault is
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Figure 3.4: Power-angle curves of the system with UPFC action envelop

cleared within the CCT, and if no actions are taken, the system will first move up

along the “Unregualted power-angle curve” shown in Figure 3.4 to the point “D” with

zero speed where the system potential energy equals the energy stored in the system

right at the time when the fault is cleared. Then, a period of diminishing oscillation

follows with the system moving along the “Unregulated power-angle curve,” till the

system settles down at point “C” as a result of a total dissipation of the stored

energy due to friction. If a UPFC is installed, the power-angle curve along which the

system oscillates could be manipulated within the UPFC action envelop as shown in

Figure 3.4.
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3.4 Problem Formulation and Solution

The real power Ppq given in (3.3.3) is the control variable in the system. Without

loss of generality, we assume it is a function of power angle x1, the first derivative of

power angle x2 and time t, and denote it as u(x1, x2, t). Thus, the electrical power

output given in (3.3.1) becomes

Pe =
V 2

X
sin(x1 + δr) + u(x1, x2, t). (3.4.1)

Two control objectives are studied. The first one is designed to maximize the

system’s chance to remain stable following the clearance of a major fault. The second

is designed to damp the oscillation in shortest time.

It should be noted that following the clearance of the fault with one of the

transmission lines removed from service, the value of the combined impedance X in

(3.3.2)(3.3.3) becomes the value of impedance X1, that is

X = X1. (3.4.2)

3.4.1 Optimal First-swing Stabilization Control

The control is the solution to the following optimization problem,

min
u(x1,x2,t)

J1 = x1f , (3.4.3)
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subject to

ẋ1 = x2 = f1, (3.4.4)

ẋ2 =
1

M
[Pm −Dx2 − V 2

X
sin(x1 + δ0) − u] = f2, (3.4.5)

∫ x1f

x10

(Pm − Pe)dx1 = A, (3.4.6)

|u(x1, x2, t)| ≤ umax, (3.4.7)

with boundary condition

x1(t0) = 0, (3.4.8)

x2(t0) = δ̇0, (3.4.9)

x2(tf ) = 0, (3.4.10)

where J1 is the performance index; x1f is the power angle at the end of the first swing;

x10 is the initial power angle; A is the initial potential and kinetic power; umax is the

upper limit of real power output that can be regulated by UPFC, and it is given by

umax =
V Vmaxpq

X
; (3.4.11)

t0 is the initial time, and tf is the final time.

During the first swing, the effect of damping is negligible. Therefore, for the

first swing stabilization problem, we have

D = 0. (3.4.12)
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3.4.2 Solution to the Optimal First-swing Stabilization Prob-
lem

Solution to the problem posted in (3.4.3) (3.4.7) is found out to be

u(x1, x2, t) = umax. (3.4.13)

Proof:

First, we transform the integral constraint (3.4.6) by adding a new state to

the system, that is

x3 =

∫ x1f

x10

(Pm − Pe)dx1 =

∫ tf

t0

(Pm − Pe)x2dt. (3.4.14)

Therefore, the dynamics of x3 is

ẋ3 = f3 = (Pm − V 2

X
sin x1 − u)x2, (3.4.15)

with boundary condition x3(t0) = 0, x3(tf ) = A.

By employing the above transformation, problem posed in (3.4.3)-(3.4.10)

is transformed into a classical functional optimization problem with dynamic and

boundary constraints. By employing the Lagrange approach, the system dynamics

are incorporated in the performance index. Taking into account the boundary condi-

tions, the extended performance index is given as

J1 = [φ+ µ2x2 + µ2(x3 − A)]t=tf +

∫ tf

t0

3∑
i=1

λi(fi − ẋi)dt, (3.4.16)

where φ = x1; µ2 and µ3 are constants to be determined to satisfy the boundary

conditions; λ1, λ2 and λ3 are co-state functions, and they are functions of time.
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The Hamiltonian for this problem is

H = λ1f1 + λ2f2 + λ3f3. (3.4.17)

The functions for the co-state functions are

λ̇1 = −∂H
∂x1

= (
λ2

M
+ λ3x2)

V 2

X
cos x1, (3.4.18)

λ̇2 = −∂H
∂x2

= −λ1 − λ3(Pm − V 2

X
sin x1 − u), (3.4.19)

λ̇3 = −∂H
∂x3

= 0. (3.4.20)

with boundary conditions

λ1(tf ) =
∂φ

∂x1

(tf ) = 1, (3.4.21)

λ2(tf ) = µ2, (3.4.22)

λ3(tf ) = µ3. (3.4.23)

The necessary condition for optimal control u(x1, x2, t), without considering

the constraints on u, is

∂H

∂u
= −(

λ2

M
+ λ3x2) = 0. (3.4.24)

Under the optimal control given by (3.4.24), (3.4.18) becomes

λ̇1 = 0. (3.4.25)

Combined with (3.4.21), we can conclude that

λ1 = 1. (3.4.26)
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Take the first derivative of (3.4.24), arrange terms, and also take (3.4.20) into

account we have

λ̇2

M
+ λ3ẋ2 = 0. (3.4.27)

Use (3.4.19) and (3.3.7) to replace λ̇2 and ẋ2 in (3.4.27), and collect terms we

have

1

M
= 0. (3.4.28)

Since M �= 0, we can conclude that the following must be true

∂H

∂u
�= 0. (3.4.29)

Based on Pontryagin Minimum Principle[36], for the case where u ∈ [−umax, umax],

the optimal control can only be

u(x1, x2, t) = ±umax. (3.4.30)

Compared with u = umax, u = −umax will store more potential energy when

Pe < Pm, and absorb less when Pe > Pm, thus will result in a bigger x1f . Therefore,

the optimal control for the first-swing stability problem is

u(x1, x2, t) = umax. (3.4.31)

3.4.3 Optimal Damping Control During The Transient

Since a remarkable amount of energy is often stored in the system during the fault,

major transient swings usually follow after the clearance of the fault. The control

objective in this section is to damp down the transient swings to dynamic level, and
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then to a new steady state in minimum time. Without loss of generality, we assume

that the optimal stabilization control developed in the previous section is employed

during the first swing, and the system is stable following the first swing before the

optimal damping control take over. The whole process can be best explained with

the help of Figure 3.5.
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Figure 3.5: Conceptual Illustration of the Damping Control Objective

Initially, the system works at the steady state “S” with real power output Pm

and power angle δS. Then, a three-phase bolted fault occured, and is cleared with

power angle increased to δC . Then, optimal UPFC stabilization control is committed

to maximize the system’s chance to stay stable by setting u = umax. The system

moves to the right along the thick curve “CA” as shown in Figure 3.5 till it reaches

point “A” at time t0 with δ̇ = 0. The task of the optimal damping control is to find

a control u such that the system settles down at point “B” in a minimum amount of
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time.

The problem can then be formulated as

min J2 = tf − t0, (3.4.32)

subject to

ẋ1 = x2 = f1, (3.4.33)

ẋ2 =
1

M
[Pm − V 2

X
sin(x1 + δe) − u] = f2 (3.4.34)

|u| ≤ umax. (3.4.35)

with boundary conditions

x1(t0) = δ0 − δe, x1(tf ) = 0; (3.4.36)

x2(t0) = δ̇0, x2(tf ) = 0; (3.4.37)

where δ0, δ̇0 and δeare the initial power angle, the initial derivative of power angle

and the power angle at the equilibrium, respectively. They are all known quantities.

Since mechanical friction is usually considered to be small, and also in the

hope of not obscuring the major aspect of the problem, we assume that the damping

ratio D is zero.

3.4.4 Properties of the Optimal Transient Damping Problem

The time optimal control problem posed in (3.4.32)-(3.4.37) contains nonlinear terms.

As a result, no solution has been found yet in the literature that could provide an

analytical solution to this problem. In this study, we developed a suboptimal control
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law that achieves good control result. In this section, properties of the system is

studied first, then, in the following sections, analytical solution is provided for a

linear equivalent system. A method, which makes use of the results obtained for

the linear system, is proposed to obtain a suboptimal solution for the nonlinear time

optimal control problem.

The Hamiltonian of the system is

H = 1 + λ1f1 + λ2f2 = 1 + λ1x2 +
λ2

M
[Pm − V 2

X
sin(x1 + δe) − u]. (3.4.38)

The control which absolutely minimizes H is given by

u(t) = umaxsgn(λ2). (3.4.39)

The Euler-Lagrange equations are

λ̇1 = −∂H
∂x1

=
λ2V

2

MX
cos x1, (3.4.40)

λ̇2 = −∂H
∂x2

= −λ1 +
λ2D

M
, (3.4.41)

Since we are minimizing time, and H is not an explicit function of time, we

have

H = 0. (3.4.42)

The following properties for the time-optimal control system are in order:

• There is no possibility of singular control. This is because the function λ2(t) can

not be zero over a finite interval of time, as this would require λ1(t) = λ2(t) = 0.

As a result, during this period of time (3.4.42) can not be satisfied.
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• The time-optimal control must be piecewise constant and must switch between

−umax and umax.

• It is very difficult to find the analytical solution for λ2(t).

3.4.5 Solution to the Equivalent Linear System

The nonlinear term in the time-optimal control problem (3.4.32)-(3.4.37) makes it

very difficult to find an analytical solution. However, if the nonlinear term is replaced

by a linear term, analytical solution can be found precisely [37]. In this section,

solution to the linear time-optimal control problem is presented.

Suppose that a system is described by the differential equation

d2y(t)

dt2
+ ω2y(t) = Kv(t). (3.4.43)

where K > 0 and the control v(t) satisfies |v(t)| ≤ 1.

If the state variables are defined as

y1(t) = y(t), (3.4.44)

y2(t) = ẏ(t). (3.4.45)

Then, the state space form of the system (3.4.43) is

ẏ1(t) = y2(t), (3.4.46)

ẏ2(t) = −ω2y1(t) +Kv(t). (3.4.47)
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Define

x1(t) =
ω

K
y1(t),

x2(t) =
1

K
y2(t).

Then, the state space form can be transformed into a more convenient form

ẋ1(t) = ωx2(t), (3.4.48)

ẋ2(t) = ωx1(t) + v(t). (3.4.49)

The time-optimal control law that forces the system (3.4.48)(3.4.49) from any

initial state (ξ1, ξ2) to the origin (0,0) in minimum time, with |u(t)| ≤ 1 is given by:

v∗ =

{
+1 for all (ωx1, ωx2) ∈ R+ ∪ γ+,
−1 for all (ωx1, ωx2) ∈ R− ∪ γ−.

where γ+ and γ− are defined as

γ+ = ∪∞
j=0γ

j
+, (3.4.50)

γ− = ∪∞
j=0γ

j
−. (3.4.51)

γj
+ and γj

− are given by

γj
+ = {(ωx1, ωx2) : [ωx1 − (2j + 1)]2 + (ωx2)

2 = 1;ωx2 < 0}, (3.4.52)

γj
− = {(ωx1, ωx2) : [ωx1 + (2j + 1)]2 + (ωx2)

2 = 1;ωx2 > 0} (3.4.53)

with j = 0, 1, 2, . . . .

R− and R+ are given by

R− = ∪∞
j=1R

j
− (3.4.54)

R+ = ∪∞
j=1R

j
+ (3.4.55)
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where Rj
− denotes the set of states which can be forced to the γj−1

+ curve in no more

than π/ω seconds by the control u = −1; Rj
+ denotes the set of states which can be

forced to the γj−1
− curve in no more than π/ω seconds by the control u = +1.

The semicircles of γj
+ and γj

−, j = 0, 1, 2, . . ., and the Rj
+ and Rj

−, j = 1, 2, . . .

regions are shown in the following Figure.
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Figure 3.6: The γ+− Semicircles and the R+− Regions

Important properties of the time-optimal solution to the second order linear

problem with system dynamics given in (3.4.43) as listed below.

• The time-optimal control is unique.

• The time-optimal control is piecewise constant and switches between +1 and

−1.
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• The time-optimal control can remain constant for no more than π/ω seconds.

• There is no singular control exists for the time-optimal problem.

3.4.6 Suboptimal Control for the Nonlinear System

In this section, a method is developed that utilizes the result shown in the previous

section to obtain a suboptimal solution to the nonlinear time-optimal control problem.

If we replace the nonlinear dynamics (3.4.34) by the following linear dynamics,

we have

ẋ2 = −kx1 +
1

M
u, (3.4.56)

where k is given by

k =
V 2[sin(δe + δ0−δe

2
) − sin(δe)]

MX( δ0−δe

2
)

. (3.4.57)

In (3.4.57), k is chosen in such a way so as to keep the overall difference

between the nonlinear dynamics (3.4.34) and the linear dynamics (3.4.56) over power

angle from δ0 to δe is small. This is shown graphically in Figure 3.7.

The control objective is to damp transient oscillation in minimum time, and

restore the system to the equilibrium point as shown in Figure 3.7. The dynamics of

the harmonic oscillator that passes the equilibrium point problem can be written as

ẋ1 = x2, (3.4.58)

ẋ2 = −kx1 +
1

M
u (3.4.59)

|u| ≤ umax. (3.4.60)
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Figure 3.7: Graphic View of Suboptimal Control Approximation Principle.

where k is given in (3.4.57).

The analytical solution for linear system (3.4.58)-(3.4.60) can be obtained

precisely. A suboptimal control is obtained by the nonlinear system by following the

procedures listed below:

1. Obtain the switching curve for time-optimal control problem (3.4.58)-(3.4.60).

2. Replace the linear dynamics (3.4.59) by the nonlinear dynamics (3.4.34).

3. Solve the nonlinear approximation system using the switching curve obtained

in 1. and following the optimal control law developed for the linear system as

shown in the previous section.

The solution obtained by following the above-mentioned procedures is not

strictly optimal. However, since dynamics of the nonlinear system and that of the
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Table 3.1: System Data of the SMIB System with UPFC Installed

M V X1 X2 D Pm

1.0 1.0 0.5 0.5 0 1.5

equivalent linear system are not too different, it is reasonable to conclude that the

optimal control obtained for the nonlinear system is fairly close to the real optimal

one.

3.5 Simulation Results

For the power system shown in Figure 3.3, simulation studies are carried out to

demonstrate the effectiveness of the proposed optimal UPFC control strategy. The

system data are given in Table 2.1 (all the data use per unit system):

For a single-machine-infinite-bus system as shown in Figure 3.3, its power angle

curves before and after the fault are shown in Figure 3.8, where Pm is the constant

mechanical power input. The pre-fault power angle is given by δ0 = 0.3844. The

UPFC action region is [P0 − 0.2, P0 + 0.2] per unit.

3.5.1 Optimal UPFC Stabilization Control Simulation

In this study, the CCTs of the power system are compared with UPFC employing

the proposed optimal stabilization control, no control, in-phase voltage control and

quadratic voltage control, respectively.
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Figure 3.8: Pre and after fault power-angle curve (umax = 0.2).

For in-phase voltage control, at full-thrust, the electrical real power output is

given by

Pe =
V 2

X
sin δ +

V Vpqmax

X
cos δ. (3.5.1)

For quadratic voltage control, at full-power, the electrical real power output

is given by

Pe =
V 2

X
sin δ +

V Vpqmax

X
sin δ. (3.5.2)

When umax = 0.2 p.u., it can be shown that

Vpqmax = 0.1 (3.5.3)

The CCT of different UPFC control strategy is given in Table 3.2
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Table 3.2: Critical-clearance-time for Different UPFC Control Strategies.

Type of UPFC control CCT (s)
no control 0.5967
In-phase voltage 0.6240
Qudratic voltage 0.7891
Optimal stabilization control 0.8042

3.5.2 Optimal UPFC Transient Damping Control Simulation

For the transient damping control, initial data is given as

Pm = 1,

δ0 = 1.5,

δe = 0.523.

The comparison of the system with and without the sub-optimal UPFC damp-

ing control are give in Figure 3.9, Figure 3.10 and Figure 3.11, respectively.

3.6 Conclusions and Future Research Extensions

In this chapter, it is demonstrated that UPFC can be used to effectively damp system

oscillation and extend the system stability margin following the clearance of a fault.

Optimal control strategies are developed to maximize the system first swing stability

margin, and to minimize the time required for the system to damp down the transient

and dynamic oscillations after the system is stabilized. It is noteworthy to point
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Figure 3.9: Nonlinear (Solid line) and Linear (Dashed line) Trajectories of x1

out that the optimal damping control works even better than the intuitively best

control in bringing the system quickly away from dangerously high power angle values.

Simulation results show that the proposed optimal control strategies are effective in

doing what they are designed to do.

The proposed control strategies work as well for other mechanical/electrical

systems as long as their dynamic relations could be described as a pendulum equation

(Just as the electrical power system is).

Even though the results presented in this chapter are developed for a SMIB

system, it is possible to use the same method to study a multi-machine-multi-bus

(MMMB) system. After all, the static model of a MMMB system can eventually be

reduced to an equivalent static SMIB system. However, for a MMMB system, what

makes the problem complicated is the interaction between the transients caused by
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Figure 3.10: Nonlinear (Solid line) and Linear (Dashed line) Trajectories of x2

UPFC control actions and the transients resulting from system interconnection. Only

after this interaction of transients, which are from two different sources, is studied

carefully, can meaningful UPFC controls be designed for MMMB systems. In brief,

extending the optimal transient UPFC control laws for SMIB system to MMMB

system is a challenging and practical further research topic to pursue. The result

out of the research will bring UPFC one step closer to real-world transient control

application in the power industry.
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CHAPTER 4

A OPTIMAL ALGORITHM-BASED POWER MARKET
STRUCTURE

In a successful competitive electricity market both social welfare and the producers’

benefit should be maximized, and the cost for reaching a settling price should be kept

low. In this chapter, a market structure that fulfills the above-mentioned requirements

is proposed. In the proposed electricity market, the trading framework is modelled as

a two-level optimization problem. At the higher level, the objective is to maximize the

social welfare. At the lower level, based on current market situation, bidders submit

their bids iteratively to maximize their own profit. The higher level objective is

achieved by following the Optimal Dispatch Rule (ODR). At the lower level, instead

of letting the iterative bidding process actually happen, an algorithm is developed

to replace the bidding process. The bidders provide the market operator with cost

curves, upper and lower limits that reflect their production conditions. Using these

information, the market operator runs the algorithm to find a solution. The solution

found by the proposed is the best solution possible had the actual bidding process

have happened. Social welfare is assured because only producers with lowest cost are

selected to supply the demand. On the other hand, producers’ benefit is guaranteed
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by the fact that the winning bidder’s price is not lower than its cost and the product

of price times allocated generation quantity is optimal under the market situation of

concern. Since the iterative bidding process is eliminated, the cost of operation is

low.

4.1 Introduction

The power industry has been undergoing massive restructuring worldwide since the

1980’s with the objectives of eliminating monopolies, encouraging development of new

technologies, and improving efficiency in mind. It’s believed that by introducing a

well-designed market structure and enacting sound rules of play, suppliers will behave

in such a way so as to maximize social welfare through fair and ferocious competition.

However, the emergent power market does not turn out to be a perfect one. But

rather, it helplessly evolves into an oligopoly, in which sellers are so few that the

actions of any one of them will materially affect price and have a measurable impact

on other competitors. The reason behind this outcome is the existence of special

characteristics of the power industry. Transmission constrains and losses discourage

customers from buying power from far away places; high entry barriers prevent new

suppliers from entering the scene. All these end up with the reality that only a few

electricity generation companies serve a given geographic region.

Since the power market is an oligopoly, players in it are apt to bid strategically

to obtain maximum profit. As a result, the study on bidding strategies has been

receiving attention from power suppliers, system operators and big customers for
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some time. A considerable number of results have been published in the literature on

this subject. It is obvious that the development of bidding strategies should be based

on market model and rules of activity.

Most bidding methods developed so far require knowledge about a rival bid-

ders’ bidding behavior. To this end, techniques such as probability analysis and fuzzy

set are often used. In [40], by modelling the competitor’s cost function as a probability

density function, a bidding strategy was proposed for two participants competing for

a single block of energy. The problem with the use of probability analysis and fuzzy

theory is that some of the crucial probabilities could not be calculated satisfactorily

due to a lack of data. Obviously, this is because the electricity market does not have

a very long history. In [41] and [42], by assuming that complete information about

rival bidders’ bid is given, a two-level optimization problem is formulated to describe

the bidding problem. One level represents social welfare, and the other the individual

generator’s profit. In the real world however, it is unlikely that such information will

be available. On the other hand, in order to reach an equilibrium, market participants

might be required to submit their bids iteratively until certain stop criteria are met.

Furthermore, all bidders are required to use the optimal bidding strategies proposed

by the authors to come up with new bids.

Game theory is also found its use in the study of bidding strategies[44]-

[50]. However, bidding strategies have to be discretized as “bidding high”, “bidding

medium” or “bidding low” before methods and results in game theory can be used.

Nevertheless, in the real world, bids offered by bidders can be continuous. Thus, a
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theoretical equilibrium obtained from game theory analysis is not guaranteed to exist

in realistic situations.

In this chapter, a scheme is proposed in which generators provide a cost curve

and its production limits, instead of just a quantity and price. Therefore, much

more information is available to the market operator. Thus, the task of searching for

an optimal solution becomes more reachable. The proposed market model has the

following features:

• A best solution could be reached without the bidders having to actually bid

iteratively.

• Both social welfare and the profit of producers are maximized.

• Stability is assured.

• Demand side elasticity can be easily accommodated.

• Fairness is guaranteed. Generators with higher incremental production cost are

bidden out the market first.

• Instead of gaming, producers could focus on coming up with accurate cost curves

and production limits in the short term; thus reducing production cost in the

long run.

This chapter is arranged as follows: a simple example with two generators

competing for a single block of energy is given to show that an iterative bidding process

by bidders could be replaced by an optimization algorithm. Then, a realistic model
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is established for a system composed of multiple generators. A two level optimization

problem is formulated, and solution provided. A simple pool-type market with five

generators is used as an example to demonstrate the effectiveness of the proposed

model.

4.2 Non-Iterative Implementation of Iterative Biding Pro-
cess

Almost all operating electricity markets worldwide employ sealed bid auction[39].

This means bidders submit their bid only once in the bidding process, and the bid

submitted is final. In a market operated this way, it is rare that the whole system can

reach an optimal solution, in which the benefits of all parties of interest are maximized

and any change from this equilibrium point will reduce benefits at least to the party

who changed its bid. As shown in [41][42][43], iterative bidding is generally needed

to reach optimal results. On the other hand, it happens often that bidders may want

to change their bid once the bidding result is public. Therefore, it seems that it is

beneficial to bid iteratively until an equilibrium is reached or a maximum number

of allowable iteration is exceeded. However, iterative bidding is not without its own

problem. A few drawbacks related to iterative bidding are listed below:

• Optimality is not guaranteed.

• Efficiency is low.

• Gaming is encouraged.

• Increased costs. Communication and personnel costs will certainly go up.
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Actually, the bidding process could be replaced by algorithms. To show this,

a simple example is given below.

Suppose there are two suppliers ‘A’ and ‘B’ competing for the right to supply

a single block of energy demand. Assume both ‘A’ and ‘B’ alone can provide the

demand, and the market rules are:

1. The market operator will choose the bidder who offers the lowest price to supply

the energy demand;

2. If ‘out-bidden’, the bidder is willing to lower its bid to the point where it could

just win the bid;

3. Bidders will not bid below their cost.

The actual bidding process is shown in Figure 4.1.

Market OperatorSupplier A Supplier B

CA

CB

BA0

BB0
BA1

BA2

BB1

BB2

BA0 BB0>

BA1< BB0

BB1<BA1

BA2 BB1<
BB2 BA2<

Bidding Result
CF

Figure 4.1: Illustration of actual bidding process
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At the beginning of the bidding process, supplier A and supplier B submit their

initial bid, BA0 and BB0, respectively. Since BA0 > BB0, supplier A decides to lower

its bid until BA1 < BB0. To avoid losing the bid, supplier B submits new bids until

BB1 < BA1. The process goes on iteratively until one of the bidders cannot lower its

bid any more due to cost constraint, at which point, the rival bidder wins the bid with

a bid just below the losing bidder’s cost. In this case, supplier A wins the bid, and

the final result for the bid is CF , the price for providing the block of energy demand.

In fact, the iterative bidding process can be replaced by well-designed market

operation mechanism. For example, instead of submitting their bid several times,

suppliers could submit their cost and initial bid to the market operator, the market

operator then uses the agreed-upon and publicized algorithm and bid-decrease interval

to imitate the actual would-be bidding process as shown in Figure 4.1 until the settling

price CF is reached.

In a market as described above, suppliers could focus on accurately calculating

their production cost, while using their initial bid to express their expectation for

profit. In the end, suppliers with lower cost will win the bid, and the energy price is

just below the losing bidder’s production cost. This result will give producers strong

incentives to reduce their cost of production compared with that of their competitors.

4.3 Problem Formulation

The formulation and solution presented are obtained under the following assumptions.
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Assumption 1: Only a given set of committed generators are considered. This

set of generators is always on-line. No generators will be shut down even if a particular

generator is operating at its lower limit.

Assumption 2: Market participants are only concerned with incremental costs.

Assumption 3: All suppliers are reasonable bidders. This means they all intend

to maximize their profit given a certain demand for electricity.

In this section, we study the case in which a market is composed of multiple

generators with quadratic cost function as shown in equation (4.3.1).

C0(g) = α+ βg + γg2. (4.3.1)

where C0 is the generator generation cost in dollar, and α, β, γ are generator cost

parameters.

The incremental cost of a generator is given by

IC0 =
dC0

dg
= β + 2γg. (4.3.2)

In a competitive electricity market, we propose to add an positive quantity m

to the linear term β to represent the supplier’s expectation for return above its cost

of production. We then define ‘Composite Incremental Cost’ as

IC = β +m+ 2γg. (4.3.3)

where m is a supplier’s price bid.

In words, composite incremental cost is defined as the sum of the incremental

cost of a generator and the supplier’s expectation for a price above its production
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cost. Composite cost is then given by:

C(g) = α+ (β +m)g + γg2. (4.3.4)

where C is the composite generation cost in dollar.

For ease of presentation, from this point on, the terms ‘cost’ and ‘incremental

cost’ shall be interpreted as composite cost and composite incremental cost, respec-

tively.

The problem of optimal market operation and optimal bidding for a market

with multiple generators can then be formulated as the following:

min
g1,g2,...gn

C =
n∑

i=1

αi + (βi +mi)gi + γig
2
i , (4.3.5)

Subject to:

n∑
i=1

gi = D, (4.3.6)

Lli ≤ gi ≤ Lui, (i = 1, ..., n.) (4.3.7)

{
maxmi

fi = migi

Subject to: 0 ≤ mi < T
(4.3.8)

(i = 1, . . . , n.)

where gi is the ith generator’s output in MW; n is the number of generators; D is the

demand for electricity; T is the ceiling for price add-up.

In the formulation above, the top level of the optimization problem, expression

(4.3.5), corresponds to actions taken by the market operator to properly allocate
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quantities of generation g1 ,..., gn to generators so as to minimize buyers’ payment;

while expression (4.3.8), lower levels of the optimization problem, corresponds to the

behavior of individual supplier to adjust mi so as to maximize its profit.

From (4.3.8), it seems that by increasing mi, the ith supplier could increase

its profit. At the system level, however, the market operator is expected to minimize

the customer’s or society’s payment for electricity. Therefore, the system operator

must reduce generation allocation gi, thus adversely affecting generator i’s profit. It

is obvious that it is beneficial to both customer and generators to find an optimal

m∗
i and g∗i so as to maximize supplier i’s profit, while at the same time keeping cus-

tomer’s payment low. As stated in the previous section, instead of iterative bidding,

algorithms could be developed to obtain an optimal solution, which the traditional

iterative process is trying to achieve. By solving the problem presented in (4.3.5)-

(4.3.8), the optimal point can be found.

4.4 Problem Solution

4.4.1 Application of Optimal Dispatch Rule

It is observed that the top level of the optimization problem, expression (4.3.5), to-

gether with equality constraint (4.3.7), is a typical classical economic dispatch prob-

lem if m1, m2,...,mN are given. An classical economic dispatch problem can be solved

by following the well known Optimal Dispatch Rule(ODR)[51]. When generator limits

are not considered, ODR is stated as:

Operate every generator at the same incremental cost.
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When generator limits are considered, the rule is:

Operate all generators, not at their limits, at equal incremental cost.

Based on these rules, the solution to the multilevel optimization problem can

be developed.

4.4.2 Exclusion of Inequality Constraints

Before we start, we assume that the n generators of interest are organized in such a

way so that βi ≥ βj if the index i < j.

According to ODR, the market should be operated in such a way so that

IC1 = IC2 = . . . = ICn = IC. (4.4.1)

It should be noted that IC is a quantity that can not be determined by the choice of

mi, since a change in the value of mi will make the value of gi change in the opposite

direction. For the i’s supplier, we have

βi +mi + 2γigi = IC, (4.4.2)

and

gi =
IC − βi −mi

2γi

. (4.4.3)

Substituting (4.4.3) into (4.3.8), we have

fi =
(IC − βi)mi −m2

i

2γi

. (4.4.4)

fi is a concave quadratic function, it reaches maximum at

m∗
i =

IC − βi

2
. (4.4.5)
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When mi takes the value m∗
i , IC can be written as

IC = βi +m∗
i + 2γig

∗
i . (4.4.6)

Substituting (4.4.6) into (4.4.5), we have

m∗
i = 2γig

∗
i . (4.4.7)

Substituting (4.4.7) into (4.4.6), we have

IC = βi + 4γig
∗
i . (4.4.8)

Therefore, (4.4.1) becomes

β1 + 4γ1g
∗
1 = . . . = βn + 4γng

∗
n = IC. (4.4.9)

Combined with the following equality constraint

g∗1 + g∗2 + . . .+ g∗n = D, (4.4.10)

the multilevel optimization problem can be solved. The solution is given below:

g∗1 =
D − ∑n

i=2
β1−βi

4γi

1 +
∑n

i=2
γ1

γi

, (4.4.11)

g∗j =
β1 − βj

4γj

+
γ1

γj

g∗1, (4.4.12)

(j = 2, . . . , n.)

and

m∗
k = 2γkg

∗
k. (4.4.13)

(k = 1, . . . , n.)

A few points of importance need to be laid out:
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1. From (4.4.10) and (4.4.9), it is observed that for each specific demand level D,

there is a unique incremental cost IC corresponding to it. The higher D is, the

bigger IC is going to be.

2. Generators with higher β might turn out a negative g∗ for certain demand level.

This means that that particular supplier already lost in the competition, and its

generation should be reduced to zero. From (4.4.11), it is clear that the critical

demand level, Dc, below which the 1th supplier will be out of the market can

be calculated by

Dc =
n∑

i=2

β1 − βi

4γi

. (4.4.14)

3. The solution obtained in (4.4.11)-(4.4.13) is the optimal solution. The optimal-

ity of the top level is guaranteed by ODR, and the optimality of the lower levels

is assured by choosing mis using (4.4.7).

4.4.3 Inclusion of Inequality Constraints

When inequality constraints are included, solving the problem presented in (4.3.5)-

(4.3.8) analytically is not a trivial task. Of course, an exhaustive search can always

be used as the last resort. However, drawbacks such as low efficiency keep this

straight-forward method from being of much practical usefulness in the real world,

especially when the number of generators involved is big. A better algorithm needs

to be developed to deal with this problem. Due to the nature of the problem, we

categorize the problem into two groups.

1. Lower Generation Limits All Zero
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An algorithm, with the method developed in the previous section as its core,

can be developed to accommodate all zero lower and higher generation limits. The

algorithm used is shown in Figure 4.2, and we name it Algorithm A.

All IECs satisfied? End

Y

Y

N

N

Initialization

Calculate optimal
solution without IECs
Any negitive values?

Put the generation 
of the generator with 
negative value to
zero.

If higher limit is violated, reduce 
generation to its upper limits, take the 
corresponding generators out of the
availability vector.   

Update demand, availability vector. 

(Initialize availability 
 vector, demand.)

Decrease IC
until Demand is met

Figure 4.2: (Algorithm A) Algorithm for the case in which all lower limits are zero.

In Figure 4.2, IEC stands for inequality constraints.

2. Lower Generation Limits Not All Zero

Close inspection of the ODR rule with inequality generation constraints active

reveals that the essence of this rule is to operate the market with a lowest incremental
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cost (IC) possible while at the same time satisfy the demand and observe all the

inequality constraints. This principle is shown graphically in Figure 4.3.

g

IC

G1
G2

G3

G4

Ll1 Ll2Ll3 Ll4Lu1 Lu2Lu3 Lu4

g1 g2g3

Figure 4.3: Principle of ODR with inequality constraints active

In Figure 4.3, a market with four generators on duty is used as an example,

where Ll and Lu denote the lower and upper limits of a generator, respectively. The

four generators are G1, G2, G3 and G4. Four line segments, obtained using (4.4.9),

correspond to the optimal incremental cost curves of the four generators with their

lower and upper generation limits, respectively. λ is the settled smallest possible

incremental cost for the current market situation. When IC = λ, we have

g1 + g2 + g3 = D. (4.4.15)

It is also noted that due to the effect of ODR we have

g3 = Lu3, (4.4.16)
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and

g4 = 0. (4.4.17)

The reason behind this result is that G3’s IC is lower than λ at its upper limit, while

G4’s IC is higher than λ at its lower limit.

An algorithm can be developed that works according to ODR with inequality

generation constraints active. The algorithm is shown in Figure 4.4, and we call it

Algorithm B.

In Figure 4.4, after initialization, the algorithm first finds the lowest incre-

mental cost λ0, which corresponds to the lowest incremental cost of all the suppliers

at their lower generation limit, as the starting point, and let λ = λ0. It then allo-

cates generation to generators using (4.4.8) with IC = λ. The generation allocation

obtained at this stage corresponding to the case where generation limits are not con-

sidered. Next, the algorithm checks to see whether the generation allocations obtained

above violates any of the limits on the generations. If, for any generator, the lower

limit is violated, the allocation to that generator is set to 0; if upper limit is violated,

the allocation is set to its upper limit. After all generation allocations are validated, it

then sum them all up to see whether the demand has been met; if not, λ is increased

by a small amount ∆λ, and redo generation allocation and validation till the demand

is met.

3. Algorithms Comparison

It is worthwhile to point out that when all the lower generation limits are zero,

algorithms A and algorithm B generate the same result. The only difference is that
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the efficiency of algorithms A is much higher. Nevertheless, algorithm B can deal

with situations in which lower generation limits are not zero. Therefore, it could be

more useful in the real world.

To study the nature of and to gain insight into the proposed market model, it is

usually necessary to set all lower generation limits to zero. In this case, algorithms A

should be used due to its high efficiency.

Algorithm B is an iterative search method in nature. However, the search

dimension has been reduced from 2n (exhaustive search) to 1 (just search a proper

IC). This makes it possible to solve the multilevel optimization problem in a real

world setting with an acceptable speed.

4.5 Bidding Model for Pool-Type Market

The proposed bidding market model works like this:

1. All bidders submit their cost curve plus upper and lower output limits to the

pool manager or market operator.

2. Organizations such as ISO, which are in charge of system stability, evaluate the

generation limits submitted by suppliers and make changes if necessary.

3. With bidders’ bids imbedded in the model, the market operator performs opti-

mal demand allocation based on ODR.

4. The bidding can be hold for each hour of the next 24 hours. The bidding result

is known before bidders bid for the next hour.
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5. The task of individual generator is to come up with a cost curve and generation

limits that takes into account the generator’s previous loading condition, and

internalize all involved costs and physical constaints.

6. Each and every generator is paid the same final incremental cost λ.

7. Optimality is guaranteed by the mathematical model based on which the market

operates.

4.6 Demand Elasticity

The proposed model can easily incorporate demand elasticity. It is clear from the

solution procedure that if demand drops due to high price, suppliers will be forced to

work at a lower incremental cost; furthermore, the more expensive generators might

even be forced out of the market automatically; this in return will cause a drop in

the price of electricity, and a new balance point will be found. An example is given

below to demonstrate this point.

4.7 Example System and Simulation Results

A simple example is given below. Assume a power pool consists of five generators,

and their information is shown below.

n α β γ Ll(MW) Lu(MW)
1 224.5 53.1 0.018 0 50
2 900 45 0.01 0 700
3 2500 43 0.003 0 800
4 1800 41.5 0.015 0 600
5 2600 40 0.02 0 650
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Using the algorithm presented in Figure 4.2, an optimal supply vs incremental

cost curve can be obtained as shown in Figure 4.5.

In Figure 4.5, the ‘Supply-price curve’ is obtained using the algorithm pre-

sented in this chapter, while the ‘Demand-price curve’ is a typical example of this

kind of curves. It is observed that the intersection of these two curves is the point

where the market strikes a deal.

Next, the market situation at different demand level is shown in the table

below.

D(WM) g∗1 g∗2 g∗3 g∗4 g∗5
2201.3 50.0 567.9 800 436.9 346.5
1800 50.0 382.7 800 313.5 253.8
1400 0 221.2 800.0 205.8 173.1
1000 0 129.5 598.5 144.7 127.3
600 0 56.8 356.1 96.2 90.9
400 0 20.5 234.8 72.0 72.8
200 0 0 101.9 45.4 52.8
100 0 0 27.8 30.6 41.7
60 0 0 0 23.6 36.4
16 0 0 0 0 16.0

Two observations could be made based the above table:

• Suppliers with higher β lose the bid first.

• The quadratic term γ plays an important role in determining the share of the

total demand a particular supplier can get if it wins.
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4.8 Conclusion and Future Research Extensions

It has been shown in this chapter that iterative bidding process could be replaced by

an algorithm. The proposed market structure can reach an optimal solution without

the suppliers bidding iteratively. The settled-upon price (incremental cost) obtained

reflects the actual market value of electricity, not just its cost of production. The

focus of an individual supplier is on production and reducing cost, and gaming is dis-

couraged. The proposed market structure can easily accommodate demand elasticity.

In brief, the proposed market structure is fair, optimal and efficient.

Stability is always a very important concern for the power industry. It is

usually the Independent System Operator (ISO)’s job to make sure that there is

enough stability margin system wide. Right now, the common practice is that ISO

perform security assessments before give the green light to a market transaction. How

to incorporate these assessment process into the market environment is a question

of practical importance. If this can be done, the efficiency can be improved further,

and the solution reached will guarantee system stability. In summary, to include the

stability assessment process in the proposed market structure can be a practical and

important extension to the proposed structure.

63



Initialization.
gi=1,...,n

Find lowest starting
0. Let 

Use (16) to calcualte gi .
gi=( i=1,...,n.

gk<Llk ?

gk=0

gk>Luk ?

|D- gi|< ?

End

k=1

gk=Luk

k=k+1 k=n?

Y

Y

Y

Y

N

N

N

N

Figure 4.4: (Algorithm B) Algorithm based on ODR with inequality contraints active
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CHAPTER 5

LOADABILITY DETERMINATION USING
MATHEMATICAL PROGRAMMING THEORY

Estimating loadability of a generation and transmission system is of practical im-

portance in power system operations and planning. This study presents a new for-

mulation for the estimation problem using mathematical programming theory. Both

steady-state and dynamic security are taken into accounts in the proposed formu-

lation. The difference between the proposed formulation and existing ones is that

dynamic security is handled by an integration method. Using the new formulation,

an iterative solution procedure is developed to solve the corresponding mathematical

programming problem numerically. The method normally yields a slightly conser-

vative estimate on the loadability of a generation/transmission system. Simulation

results of a test power system are provided.

5.1 Introduction

Construction and enhancement of generation/transmission systems generally requires

huge amounts of capital investment. Regardless of whether or not capital invest-

ment is available for constructing systems and enhancing their capacities, efficient
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utilization of existing power facilities is always desired for both economical and en-

vironmental concerns. In fact, efficient utilization, which can be divided into such

issues as optimal system scheduling and optimal facility maintenance, becomes in-

creasingly important for the utilities as they face deregulation. On the other hand,

optimal facility allocation known as optimal power system planning, is the method

of addressing how to optimize capital investment while meeting demand and security

requirements [66]. To address these two problems, one has to estimate loadability of

the transmission system under consideration.

Garver, et al., proposed in [60] a method to compute loadability of genera-

tion/transmission networks based on linear programming. The method presented in

[64] takes stability limit into account through the use of energy function method.

Recently, the relationship between voltage stability and loadability has been explored

in [52, 65, 61]. Conceptually, estimating loadability of a generation/transmission

system is a generalized mathematical programming problem. It is not a standard

mathematical programming problem because some of the constraints (specifically,

dynamic security constraints) have to be expressed not in algebraic forms but in the

form of differential equations [55, 56].

Analytically, estimating the loadability of power systems is somewhat similar

to the so-called generation rescheduling problem. However, there are a few impor-

tant distinctions. First, computational effort of estimating loadability is several times

more than that of generation rescheduling. Second, loadability of power systems is

dependent upon the pattern of load increasing. In our previous results [56, 57], a
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general framework for generation rescheduling problems is proposed based on math-

ematical programming theory. In this paper, the iterative procedure proposed in

[56, 57] is modified to estimate the loadability of power systems so that loadability of

power systems is solved using the mathematical programming method. To reduce the

computational effort, we propose to use the approach of pseudo-inverse based security

analysis to deal with steady-state security, while dynamic security is checked by fast

integration combined with automatic contingency selection. The method takes into

account the effects of both steady-state and dynamic security. Simulation results of

a 6-machine 22-node test power system are reported.

5.2 Mathematical Formulation

In this section, the problem of estimating loadability of transmission systems is for-

mulated using the terminology of mathematical programming theory. We begin with

two remarks pertaining to the new formulation. The first one is about an assumption

on changes of active and reactive power. It is assumed that the changes of active and

reactive power at each power station are proportional to each other in the proposed

formulation. While this assumption is not necessarily required (as one may simply

impose any other rule on changes of power generation), such an assumption is made

for the ease of presentation. The second one is about numerical algorithm. Although

the proposed formulation is given in the form of mathematical programming, typi-

cal algorithms such as simplex algorithm and steepest descent algorithm etc cannot

be used to solve the problem. This is because the formulation, as will be discussed
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later, is much more complicated than conventional mathematical programming mod-

els. Consequently, heuristics-based algorithms will have to be developed to solve the

formulation. Now we are in a position to present the formulation.

Objective:

Max α (5.2.1)

subject to the following constraints:

Pi(V, θ) + Pmi − αP 0
Li = 0, i = 1, 2, ...NB, (5.2.2)

Qi(V, θ) + αQ0
mi − αQ0

Li = 0, i = 1, 2, ...NB, (5.2.3)

Pmi ≤ Pmi ≤ P̄mi, i = 1, 2, . . . , Ng, (5.2.4)

−T̄i ≤ Ti ≤ T̄i, i = 1, 2, . . . , NL, (5.2.5)

and

|δl
i(t) − δl

j(t)| ≤ δlim, t = [0, tsp], i, j = 1, 2, . . . , Ng, l = 1, 2, . . . , Nc. (5.2.6)

In (5.2.1), α is the so-called loadability factor and is also the objective function of the

programming problem. The controllable variables in the above formulation are α and

Pmi (the latter denotes the mechanical power of ith generator). Pi(V, θ) and Qi(V, θ)

represent active and reactive power injections at the ith bus, respectively. These

power injections, whose expressions are well-known, come from external network.

Qo
mi, P

o
Li and Qo

Li refer to initial reactive power generation, initial active power load

and reactive power load at the ith bus, respectively. Pmi and Pmi denote upper and

lower limits of active power generation at the ith bus, respectively. Ti is the active
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power in the ith transmission line, and T i denotes the thermal limit of active power

of the ith transmission line. NB,NL and Ng represent the number of buses, the

number of transmission lines and the number of generators, respectively.

Note that (5.2.2) up to (5.2.5) constitute steady-state security constraints

which have been simplified to a certain extent. The effect of dynamic security is

included as (5.2.6). Here, dynamic security refers to whether or not the power system

under study is stable when it suffers from a major disturbance. In (5.2.6), δl
i(t) and

δl
j(t) denote rotor angles of the ith and jth machines at time t under the lth contin-

gency; respectively. δlim is the limit of maximum relative swing angle allowed (for

instance, 180 degrees). NC represents the number of specified contingencies under

consideration. Machine angles δi and δj are the solutions to the following ordinary

differential equations:

dδi
dt

= ωi

Mi
dωi

dt
= Pmi − Pgi i = 1, 2, . . . , Ng, (5.2.7)

where ωi represents rotor angular deviation, Mi is the inertial constant, and Pgi is

the electrical power output of ith generator. Further explanation regarding (5.2.7)

can be found in [63, 62].

It should be noted that, in the proposed formulation, dynamic security is

explicitly considered through a robust procedure. Specifically, dynamic security is

checked by the Rung-Kutta method which is most reliable at present. In addition, the

programming problem given by (5.2.1) up to (5.2.7) is not solvable using any existing
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mathematical programming package because of the presence of constraints (5.2.6) and

(5.2.7). To solve this programming problem, one has to rely on engineering judgment.

In the following section, an algorithm based on such an approach is provided.

5.3 The Proposed Solution Procedure

An overview of the proposed solution procedure is given first, followed by its detailed

descriptions.

5.3.1 Overview of the procedure

It is obvious that the mathematical programming formulation, given by (5.2.1) up

to (5.2.6) formulation, has three major components: the loadability factor and Pmi,

steady-state security constraints given by (5.2.2) up to (5.2.5), and dynamic security

constraints given by (5.2.6). The proposed procedure explores the relationship among

these three components.

The objective of maximizing loadability factor α and its corresponding active

power generation distribution can be met by using an iterative algorithm. The pro-

posed iteration scheme, illustrated by figure 5.1, consists of two layers. Numerically,

it is a two-kernel procedure: The first is security assessment procedure, and the sec-

ond is generation adjustment procedure. The first layer is the outer-loop iteration

within which loadability factor α is increased each time by a small increment. This

layer of iteration is always repeated unless the first kernel fails a number of times

consecutively. The second layer is the inner-loop iteration within which distribution

of active power generation is adjusted through the second kernel to meet the steady-
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state and dynamic security constraints specified by the first kernel. Overall, iteration

is continued until no meaningful improvement on loadability factor can be achieved.

By nature, computational effort of the problem is several times more than that of a

generation rescheduling problem (for which outer loop iteration is not needed).

It is apparent that efficiency of the inner-loop iteration depends on the algo-

rithm chosen for generation adjustment and that performance of the security assess-

ment routine has major impacts on the overall computation time. Procedures used

for security assessment and generation adjustment will be discussed in sections 5.3.2

and 5.3.3, respectively.

5.3.2 Security Assessment

In general, steady-state security assessment should include (n− 1) contingency anal-

ysis. In this paper, evaluation of steady-state security is simplified to be a standard

load flow analysis which is familiar to power audience. Contingency analysis, if de-

sired, can easily be incorporated into the proposed framework.

The algorithm used for dynamic security assessment is a step-by-step inte-

gration procedure. It fully exploits sparse matix/vector techniques and contains an

automatic contingency selection approach developed previously by the authors. De-

tails about the algorithm can be found in [58].

5.3.3 Adjustment of Generation

The algorithm used to adjust generation is a numerical implementation of the follow-

ing steps:
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Step 1 Classify and group the available generators in the system into three sets:

those machines that are severely disturbed, machines that are slightly disturbed,

and generators connected to a swing bus. Criteria for classification should be

based on machine acceleration at the instant when a fault occurs and on machine

kinetic energy at the instant that the fault is cleared.

Step 2 Re-dispatch active power generations of the machines according to the fol-

lowing guidelines. For severely disturbed generators, reduce their active power

generations by a small percentage (say 5%). For slightly disturbed machines, do

not change their generations. For swing machines, increase their active power

generation to compensate for the total reduction of generation at disturbed gen-

erators. Let the active power generations of the ith machine before and after

the adjustment be denoted by Pmi and P ′
mi (i = 1, 2, ..., Ng), respectively.

Step 3 Evaluate line flow using the linearized line flow equation

T ′
l = Tl +

Ng∑
i=1

Hli(P
′
mi − Pmi) (5.3.1)

where Tl and T ′
l are the line flows of the lth transmission line before and after

re-dispatching active power generation, respectively. Weighting Hli is the so-

called sensitivity factor [67], and it relates active power injection to the line

flow.

Step 4 Check inequality (5.2.5) to see if thermal limit of transmission lines has been

violated. If |T ′
l | < T l for all l = 1, 2, ..., NL, stop adjusting generation and go
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to step ”Re-compute load flow” defined at the bottom of figure 5.1. Otherwise,

proceed with Step 5.

Step 5 Rewrite the linearized load flow equation (5.3.1) as

�T = H(P ′′
m − P ′

m) (5.3.2)

where vector �T consists of all the changes of transmission line active power

flow as its components, elements of matrix H are Hli, l = 1, 2, ..., NL, i =

1, 2, ..., Ng, vector P ′
m is of dimension Ng and its elements are P ′

mi, and P ′′
m

denotes the new active power generation vector to be decided.

Form vector �T of appropriate dimension by defining its elements as �Tk =

T ′
k − Tk, where k ∈ ψ, and ψ is the set containing the number of transmission

lines at which violations of thermal limit on line flow are observed in Steps 3

and 4. Note that �T is a ”condensed” vector, and its dimension is denoted by

NT . In other words, the transmission lines without any line flow violation are

excluded from �T .

Step 6 Construct NT —by—Ng matrix S whose elements on the lth row are Hli,

i = 1, 2, ..., Ng. It follows from (5.3.2) that

P ′′
m = P ′

m + ST (S · ST )−1 · �T (5.3.3)

where superscript T denotes transpose. Equation (5.3.3) is the so-called pseudo-

inverse based steady-state security control formulation in [53, 54].
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Step 7 Set Pm = P ′′
m and go to the step ”Re-compute load flow” defined at the

bottom of figure 5.1.

The procedure of generation adjustment involves verification of both dynamic

security and steady-state security. Specifically, the steady-state security control al-

gorithm given in [53, 54] is extended so that, while steady-state security is studied

in steps 3 up to 7 based on the extended version of pseudo-inverse method, dynamic

security is verified in Steps 1 and 2 (based on heuristics). This extension makes it

possible to handle steady-state and dynamic security in a unified way in the dispatch

algorithm.

5.4 Simulation Results

The proposed formulation has been applied to the 6-machine, 22-node test power sys-

tem defined by figure 5.2. Original data of this test system is available upon request.

Note that machine 6 is not a generating unit but a var resource. Consequently, it is

not considered in the process of generation adjustment.

In the simulation, the specified limit on iteration counter K in figure 5.1 is set

to be 4. The initial active power generation and demand are listed in table 5.1. Note

that the test system is secure both in the steady state and dynamically under this

initial pattern of power injection. For briefness, detailed results of security assessment

are not included here.

To test the proposed numerical procedure, loadability factor is increased in
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Table 5.1: Initial Power Injection Mode of Test Power System

Location Active Power Active Power
Generation Load

1 5.7000
2 5.4990
3 3.0000
4 1.6000
5 4.3000
6 -0.0100
8 2.8700
9 3.7600
16 5.0000
18 0.7190
19 2.2650
20 0.7000
21 0.8600
22 4.300

increments of 1%. Our simulation shows that the test system remains to be secure

at values of α = 1.0, 1.01, and 1.02. However, when loadability equals 1.03, the test

system is only dynamically secure but not steady-state secure. Generation injections

in this case are listed in table 5.2.

At this point, the proposed procedure invokes generation adjustment algorithm

described in section 5.3.3. After three inner iterations, the test system is made to

be both steady-state and dynamically secure. The active power generations after

adjustment are listed in table 5.3, and some of the dynamic security assessment

results are listed in table 5.4.
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Table 5.2: Power Injection Mode of Test Power System when α Is Increased to 1.03

Location Active Power Active Power
Generation Load

1 6.1454
2 6.1766
3 3.1929
4 1.6475
5 4.4271
6 -0.0100
8 2.9553
9 3.8709
16 5.1483
18 4.4275
19 0.8856
20 0.7406
21 0.7209
22 2.3316

Our simulation also shows that, if α is increased to 1.04, secure active power

generation configuration cannot be found even after generation adjustment. There-

fore, the numerical simulation suggests that the maximum loadability factor of the

test system is between 1.03 and 1.04. Further study is needed to see if this result is

conservative.

Table 5.3: Active Power Generation after Adjustment when α Equals to 1.03

Location Active Power
Generation

1 7.0600
2 5.5000
3 3.0000
4 2.0000
5 4.0000
6 -0.0100
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Table 5.4: Dynamic Security Assessment Results of Test System when α Equals to
1.03

Contingency Maximum Relative Swing Angle
Location (degree)

8 22 64.2
9 22 64.6
11 12 163.8
12 11 172.0
13 12 72.0
18 16 60.8

5.5 Conclusions

The problem of calculating loadability of generation/transmission systems has gained

renewed interests in recent years partly because deregulation of utility industry are

being undertaken in many countries. Finding an exact solution to the problem is

formidable due to the limitations of existing mathematical methodologies. In this

paper, a new algorithm is proposed to estimate the maximum loadability factor of a

power system, and it is evolved from those algorithms developed previously by the

authors for generation rescheduling. A successful application would involve judicious

engineering judgment. The unique features of the method are that both steady-state

and dynamic security are taken into account and that dynamic security is analyzed

using an integration algorithm (which makes the proposed method more robust).

Despite of simplification is employed in computing load flow equations and dynamic

security constraints, our simulation results suggest that the proposed algorithm is

quite promising. Research is under way to loose the assumptions currently employed

in the algorithm.
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Figure 5.1: Flowchart of the solution procedure

79



1

2

3 4 5

6

7

8 9

10

11
12 13

14

15

16

17

18

19

20

2122
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH
EXTENSION

This dissertation presents research results in three areas in the power industry.

All of them are of significant importance. First, optimal control strategies are devel-

oped for UPFC during the transient period following the clearance of a fault condition.

The significance of this research is that the proposed control strategy drastically im-

proved the transient response of the system. As a result, system stability margin is

enlarged and system oscillation is minimized. Simulation results substantiated the

above claims. Results also demonstrated the potential value of FACTs devices in

influencing the system transient response, therefore, providing justification for the

relative high cost of this kind of devices. Although, the analytical control law devel-

oped in this dissertation is obtained for a simplified version of the SMIB system, the

insight obtained here is helpful in developing optimal control strategies for MMMB

system. However, there are still many hurdles that must be overcome before any

meaningful results can be obtained. Numerical approach might have to be used to

get a solution. Since nearly all power systems in service today are MMMB system,
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the development of control strategy for MMMB system is of tremendous practical

importance.

Second, a new power market structure is proposed. The significance of this

research is that it provides a scheme that could dramatically reduce the power market

operation cost, and improve the market efficiency, meanwhile the welfare of society is

guaranteed. The proposed market structure eliminates the need for iterative bidding,

and the settled solution is optimal in the sense that it is the best solution possible

had the iterative bidding process really taken place. The solution in the research

is obtained without considering system physical conditions, such as system stability

margin, overheating of transmission lines, and so on. One step further along this line

of research is to include all these concerns in the problem formulation. A solution

to such a problem will eventually give a more comprehensive result to the market

situation in question.

Third, a scheme is developed to solve the load flow problem such that loadabil-

ity factor for the system can be maximized. Following the deregulation of the power

industry, greater flexibility of the transmission system is demanded to satisfy the

ever-changing market situation. A load flow solution that leaves the biggest room to

accommodate market changes is very appealing to the market operators. Simulation

results show that the proposed scheme works well for a realistic power system.

In summary, the research topics pursued in this dissertation are of practical

importance to the operation of modern power system. The results obtained are

satisfactory, and simulation results substantiated the validity of those results. Future
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extensions to the research topics are challenging tasks, and will eventually bring them

closer to practical application in the industry.
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