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ABSTRACT

Astronomy is a data heavy field driven by observations of remote sources reflecting or emitting

light. These signals are transient in nature, which makes it very important to fully utilize every

observation. This however is often difficult due to the faintness of these observations, often are

only slightly above the level of observational noise. We present new or adapted methodologies

for dealing with these low signal-to-noise scenarios, along with practical examples including de-

termining exoplanet physical properties, periodicities in asteroids, and the rotational and orbital

properties of the multiple asteroid system 2577 Litva.
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CHAPTER 1: INTRODUCTION

Background

Astronomy is unique among the fields of physical science. Most disciplines have the ability to con-

struct and conduct laboratory experiments to test if a hypothesis explains a physical phenomenon.

In contrast astronomy almost exclusively relies on passive observations of the subject that is being

studied. Many of these observations may be transient with long delays before follow up observa-

tions can occur. As such astronomers have great need to make the most out of any observations

which are collected, including low signal-to-noise data which may be disregarded in other fields.

There are many types of telescopes used to collect astronomical data, including ground based

optical telescopes, radar reflecting telescopes, space based telescopes, and many others. Each of

these systems offer a unique view into the heavens, and each come with their own limitations.

Ground based scopes are relatively cheap to build (at moderate sizes) and are plentiful providing

many opportunities to conduct observations. However, the atmosphere produces challenges that

include opacity and light pollution, which are large systematic errors that must be overcome. The

atmosphere has less effect on radar observations, however there are only a small number of such

facilities, and in the case of solar system observations, they are limited in the targets they can

observe by 1
r4

falloff in the strength of the radar signal which can be transmitted and detected.

There are only a small number of space based telescopes available for a large amount of possible

observations. These telescopes are above the atmosphere, and therefore they are unaffected by

many systematics that ground based telescopes must contend with. As such, these telescopes are

frequently used to conduct observations of phenomenon which no other facility would be able to

observe. Theses signals are therefore faint, often at the limit of the hardware to observe, and must

contend with systematics near the level of the signal.
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For each type of observation, the data collected is similar enough that a common set of analysis

tools can make meaningful contributions to characterizing the varying physical phenomenon. We

will be presenting new methodologies we have developed or adapted to increase the precision of

low signal-to-noise measurements. We make use of these routines to analyze observations of both

exoplanets and near Earth objects (NEO), which are two fields of study which low signal-to-noise

observations are quite common.

Near Earth Objects

The study and characterization of NEOs is an important topic in the field of planetary science.

This research has gained even more prominence in the past few years as it has become an objective

of NASAs robotic and human exploration programs, as well as a field which may be opened up

to private commercialization in the coming decades. With the recent impact of a small body in

Russia, additional interest has been kindled in possible applications for impact mitigation. A major

uncertainty for these programs is the diversity and numbers of NEOs along with our relative lack

of knowledge of NEOs fundamental physical properties such as density, internal structure, and

porosity. These data are necessary for mission design, mission planning, and risk reduction.

Ground based observations of NEOs are a cheap and effective way to characterize the history,

evolution, and physical properties of those objects. One particularly simple but useful tool involves

measuring the change in brightness of an object over time, its lightcurve. Under normal conditions

a small body is approximated, to first order, by a tri-axial ellipsoid. When the object rotates it will

present its smaller, then larger sides alternatively. This rotation varies the reflective area of the

object, producing a lightcurve whose amplitude varies over time with the changing total reflective

area. The rotational period can be determined by observing these variations. Additional amplitude

variations can indicate the objects shape as well as major surface features such as craters.

2



Table 1.1: Table of Binary Periods and densities, a - indicates no data

Body Period (h) Density (g/cm3) Body Period (h) Density(g/cm3)

2000 CO101 - - 69230 Hermes 13.892 ± 0.006 -

2006 VV2 - - 1999 DJ4 17.72 ± 0.01 -

2002 CE26 15.6 ± 0.1 0.9 ± 0.5 2001 SL9 16.4 ± 0.02 1.8±-

2000 JO23 >360 - 1998 ST49 - -

2002 XD58 - - 1999 HF1 14.017 ± 0.004 > 2

1994 AW1 22.3 ± 0.1 - 2001 SN263 149.4 ± 2.28 1.126 ± 0.171

2002 KK8 - - 2002 AM31 13.35 ± 0.08 -

1999 TO14 1356 ± 12 - 2000 PJ5 14.16 ± 0.04 -

2000 GL74 2034 ± 21 - 1996 FG3 16.135 ± 0.005 1.4 ± 0.3

2006 GY2 11.7 ± 0.4 - 2000 DP107 42.23 ± 0.04 1.7 ± 1.1

1994 CC 200.8 ± 9.6 2.1 ± 0.6 1994 XD - -

2003 YT1 36.7 ± 1.8 2.01 ± 0.7 1998 ST27 - -

2004 DC 23 ± 1 1.8±- 2004 FG11 20.0 ± 0.4 -

1990 OS 21 ± 3 - 2005 AB 17.9±- -

2002 BM26 - - 2005 NB7 15.28 ± 0.01 -

2000 UG11 18.4 ± 0.2 0.8 ± 0.6 2007 LE 13±- -

2007 DT103 15.32 ± 0.1 - 2008 BT18 - -

2003 SS84 - - 2008 DG17 - -

1999 QO 32.25 ± 0.03 - 1139 Atami 27.45±- -

2000 AS152 39.21 ± 0.05 - 1727 Mette 20.99 ± 0.02 -

1998 PG 14.0 ± 0.01 - 2044 Wirt 18.97 ± 0.01 -

1862 Apollo - - 2577 Litva 35.81 ± 0.01 -

1866 Sisyphus - - 3873 Roddy 19.24 ± 0.02 -

3671 Dionysus 27.72 ± 0.02 1.6+0.9
−0.4

1992 AX 13.51 ± 0.0016 -

5143 Heracles - - 7369 Gavrilin 49.12 ± 0.02 -

5381 Sekhmet 12.5 ± 0.3 1.98 ± 0.65 8373 Stephengould 34.15 ± 0.10 -

1990 TR 19.47 ± 0.01 - 1987 QD - -

7088 Ishtar 20.65 ± 0.02 - 1993 QO 32.25 ± 0.03 -

1991 VH 32.63 ± 0.02 1.6 ± 0.5 2001 OP83 20.76 ± 0.01 -

65803 Didymos 11.9 ± 0.005 1.7 ± 0.4 2000 RY76 62.05 ± 0.05 -

1998 RO1 14.54 ± 0.02 1.5+1.7
−0.6

1999 UT55 14.10 ± 0.01 -

1999 KW4 17.42 ± 0.036 1.97 ± 0.24 1997 CZ5 14.68 ± 0.01 -

2002 RL66 2.492 ± 0.001 - 1993 UC - -
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In a subset of NEOs additional variations occur regularly but with a different period than the

rotation, which indicate the presence of a moon or secondary object (Scheirich & Pravec, 2009).

These binary objects provide us with a unique opportunity to measure otherwise unknown physical

properties such as system mass and bulk density. However, the pace of binary discovery is well

ahead of the follow-up observations necessary to convert them from an astronomical observation

on the population of binaries to a geological observation on the structure of NEOs. Of the 66 NEO

binaries listed in Table 1.1 below, only 16 have published bulk densities and another 16 do not even

have published orbit periods. Furthermore, the error bars on most of the published densities are so

large that it is difficult to interpret asteroid structure from these data. Improving the quantity and

precision of these can provide fundamental insight into the density, internal structure, and physical

properties of NEOs. Improving and extending our knowledge of binary NEO physical properties

can provide major inputs into the design and risk reduction of future robotic and human NEO

missions.

The secondary periodic signals in binary lightcurves are caused as one or more smaller asteroids

orbit about the primary, which is a commonly studied classical dynamics problem. In this arrange-

ment, as the satellite orbits around the primary object there is a possibility that it will pass in front

of the primary and block some of its light. This is known as a primary eclipse. Conversely, when

the secondary passes behind the object from the observers point of view (a secondary eclipse),

some of the flux from the secondary object will be blocked, diminishing the total flux from the

system.

With this arrangement it is possible to work out many of the physical properties of these bodies as

laid out in (Pravec et al., 1998). The ratio of the effective diameters (an effective diameter is the

diameter of a disk required to reflect the observed flux with a given albedo) for the two components

of the eclipse can be determined by comparing the flux from the system outside of an eclipse to

that of the minimum flux during a total secondary eclipse (when the secondary object is completely
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covered by the primary). Once the size ratio has been determined, it can be used in combination

with timing information to determine the semi-major axis of the secondary object. As the body

passes behind the primary its light will slowly fade until it is blocked completely and after a time

interval begin to brighten as it begins to become visable again. Because the relative sizes of the

bodies are known, and the period of the orbit can be estimated from the frequency of eclipsing

events, the distance the secondary must be from the primary in order for it to spend the given time

eclipsed can be determined. The period of the orbit and the distance the body is away from the

primary can then be used in Kepler’s equations to determine the mass of the primary body. If there

are estimates on the volume of the object, the bulk density of the body can be estimated. The

density of the object, together with it’s spectral type, can be compared with meteorite analogues

and estimates of the objects porosity and internal structure can be made (Britt et al., 2002).

Our objective is to maximize the precision and scientific return from NEO lightcurves in order

to characterize the rotational properties of these objects. To accomplish this, we have developed

centering routines for improving the SNR of our photometry, Bayesian based modeling to robustly

analyze uncertainties and fit highly accurate models to low signal-to-noise data, Szego polynomials

for approximating frequencies in the data, and wavelet period analysis to see how periodicites are

changing in time. The following chapters present how each routine functions and how it might

apply to NEO research, and in chapter 5 we present observations and the physical characterization

of the NEO 2577 Litva using the outlined methodologies.
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Exoplanets

For most of the history of planetary science, the only planetary system available for study was our

own solar system. Many elegant theories of planetary formation and evolution were proposed and

accepted. These included such ideas as the ”Frost Line” where rocky planets will form inside this

line, and gas giants outside where the solar input is low enough that ices can form, and the Nice

model (Crida, 2009) of how the giant planets migrated clearing out minor planets from the solar

system and created the population distributions we see today. Then in 1995 the first planet orbiting

a main sequence star was announced (Mayor & Queloz, 1995). It was an unusual system with a

planet weighing several times the mass of Jupiter orbiting closer to its parent star then Mercury to

our own Sun. At last however we finally knew for sure what was long suspected, that our solar

system was not the only one to contain planets.

Over the next two decades many different telescopes and techniques were used to find additional

planets, but the pace of discovery was quite slow. Because these planets are many times fainter

then the background signal from their host star very precise, low signal-to-noise, observations

must be taken to detect any signal at all. To speed up planet discovery, the Kepler space telescope

mission (Borucki et al., 2010) was conceived and subsequently launched in 2009. This telescope

was designed to stare at the same small patch of sky, filled with tens of thousands of stars, and

monitor for signs of planets.

6



To search for planets Kepler monitors the brightness of the star over time (its lightcurve). If a

planet is present in the system, it will cause the light from the star to dim as the planet passes

in front of the star, in what is known as a planetary transit. The telescope has watched the same

group of stars for years, looking for these dimming events to happen in a periodic nature. This

ensures that transient events, or stellar activity is not mistaken for a planet. As of the writing of

this paper there is now a total of 1746 confirmed planets, with 4229 planetary candidates which are

awaiting confirmation bringing the total suspected planetary population to 4875 with 452 multi-

planet systems as reported by the NASA Exoplanet Archive 1.

As we have mentioned, many of the planetary systems discovered are significantly different from

our own. Some of these include large planets in close proximity to their stars (Mayor & Queloz,

1995), others have planets which orbit retrograde with respect to the stars rotation (Narita et al.,

2009), and some with seemingly impossible arrangements of planets such that six planets lie within

a distance equivalent to the orbit of Venus (Lissauer et al., 2011). These systems challenge our

notions of the formation and evolution of solar systems as well as provide a wealth of unique

planets to study.

To understand exoplanets and their planetary systems, detailed physical characterization beyond

the detection is necessary. These measurements must be done at an even greater sensitivity than

the initial detection. The Spitzer space telescope (Werner et al., 2004) is commonly used for this

task, as it is above the atmosphere and is set up to monitor the flux from only a few number

of stars at a time. Spitzer additionally operates in the infrared portion of the electromagnetic

spectrum, which provides a greater contrast between planet and star, as well as providing the

ability to make measurements of the composition of planetary atmospheres. These measurements

1http://exoplanetarchive.ipac.caltech.edu/
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often have signal-to-noise ratios in single digits to low tens. Observations taken with this degree

of sensitivity are often very sensitive to the method of data reduction used to perform calibrations,

measurements, and modeling. As such more accurate and robust tool-sets lead to finer detail in

the measurement physical properties, or the ability to detect properties which otherwise would be

undetectable.

Many of the tools we have developed for working with low signal-to-noise lightcurves of NEOs

are equally applicable to exoplanet research. In the chapters that follow, we will discuss how these

methods can be applied to the area of exoplanet characterizations. This includes methods for max-

imizing the signal-to-noise during data reduction, and routines for modeling physical properties

and their uncertainties. In chapter 4 we present the analysis of several different planetary systems

using our methodologies to infer their physical characteristics.
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CHAPTER 2: LEAST ASYMMETRY CENTERING METHOD AND

COMPARISONS

Introduction

Many analyses in astronomy, such as exoplanet detection, are done on extremely weak signals.

With planetary signals being many orders of magnitude weaker than those of the host stars, detect-

ing a primary transit or secondary eclipse often comes down to minimizing the error contribution

from the data analysis methods. In aperture photometry the signal is determined by placing an

aperture centered on the light source, and summing the pixels, or sub-pixels in the case of inter-

polation, inside (see Howell, 1989 for a description of methodology and error analysis). Error can

be introduced if the aperture is placed incorrectly, missing part of the signal, or including part of

the background as signal. This is particularly a problem if the images are under-resolved, as in the

many exoplanet light curves obtained by the Spitzer Space Telescope. In this chapter we investigate

methods to maximize the signal-to-noise ratio (SNR) from aperture photometry by using a variety

of high-precision centering methods on these under-resolved, variable-quality datasets.

Working with data collected from the Spitzer Space Telescope (Werner et al., 2004), we noted

that within the same data set, the standard centering routines, center of light (e.g., Howell, 2006)

and fitting a Gaussian, can produce different centers, and thus different model fits (Stevenson

et al., 2010). This chapter will compare these two common techniques with a third technique we

will introduce, that of finding the point of least asymmetry. We will also determine under what

conditions each of these techniques is superior.
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Research into determining the center of a stellar image has been ongoing throughout modern as-

tronomy. King (1971) identified the profile of a star versus distance away from its center when

using glass plates. This work was later extended by Diego (1985) for array instruments. The au-

thors found that stellar profiles are best represented by a Lorentzian function. We note that while a

very accurate mathematical match is required for extracting properties such as area under the curve

from a fitted function, it is not as important for determining the center. In cases such as these, any

axially symmetric, centrally peaked function should provide comparable results. Due to its simple

mathematical form, familiarity, and resemblance to the core of a point spread function, a Gaussian

has frequently been used in astronomy.

Mighell et al. (2008) attempt to address some of the same issues by fitting a model PSF to images

obtained from the Spitzer Infrared Array Camera (IRAC) (Fazio et al., 2004) 3.6 µm bandpass.

They show how aperture photometry performed on data can have a strong correlation with the

determined (x, y) center position, and they introduce a correction function to deal with this effect.

However, we identify that this flux-vs.-sub-pixel-position dependency is actually a function of both

an intrapixel sensitivity variation, as they suggest, and a pure pixelation effect due to subdividing

a continuous distribution function into discrete samples. In this chapter we investigate the direct

effect of pixelating a continuous function, as we have robust techniques that take into account both

effects (Stevenson et al., 2012a). We find photometry obtained through aperture methods with

these corrections is generally superior than that of fitting a function, due to the under-sampled

nature of the IRAC camera.

We begin by describing the construction of the datasets used for our tests. This is then followed by a

review of fitting a Gaussian and center of light methods for determining the center of a distribution.

We introduce a third technique, called least asymmetry, and provide a detailed description of its

implementation. We conclude with the centering results from each of the routines on our test data,

and a comparison between them.
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Synthetic Data and Analysis

The scatter in centering results indicates the precision, but not the accuracy, of a centering tech-

nique when used on real data. To assess accuracy (robustness against systematic offsets) we created

synthetic datasets with known centers, varying S/N and center location within a pixel.

Synthetic Data

We created three synthetic data sets, one based on the IRAC 8.0 µm channel point response func-

tion (PRF),one on the IRAC 3.6 µm channel PRF, and the third on a Gaussian distribution with

parameters chosen to approximate the PRF, each oversampled by a factor of one hundred. A PRF

is analogous to a PSF, but includes the inherent wavelength-dependent sensitivity of the pixels on

the detector as well as the optical distortion. With the PRF we are able to model real observations,

while the Gaussian represents a common, if not perfectly justified, approximation to a PSF that is

easy to calculate and sufficient for our purposes. It is important to note that the values obtained us-

ing these distribution functions are specific only to the functions used. Other distribution functions,

which may vary in shape, degree of sampling, or detector response per pixel, will necessarily have

different quantitative results. We use these three functions to look at the qualitative differences and

performance of each centering routine on idealized and real distribution functions.

We shifted the three oversampled distribution kernels in a 21×21-position grid with shift steps of 5

sub-pixels. This produced 441 different images. The Gaussian kernel was then averaged such that

the subpixels fell within original full-pixel boundaries to simulate light falling onto the detector

in slightly different locations, while the PRFs were downsampled according to the procedure laid

out in the IRAC handbook (IRAC Instrument and Instrument Support Teams, 2013). These frames

reflect the PSF in differing pixelation senarios. For each of these binned kernels, we applied
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normally distributed noise on a per-pixel basis. In order to determine the per-pixel variance for

each Gaussian distribution, we solved the standard charge-coupled device equation (Equation 2.1)

for a signal level I , with a given background (bg), detector noise (σd), and number of pixels (npix),

such that the per-pixel intensity and additional sources of error when summed satisfy the equation

for a given S/N. The units on I and bg are both number of photoelectrons per observation. We make

note that in this investigation the background (bg) encompasses all diffuse sources such as zodical

light and galactic nebulae. This process was repeated seventy-five times to generate a statistically

significant sample size. Finally, we varied the S/N to investigate the effect that different observing

conditions may have on centering.

S

N
=

I√
I + npix(bg + σ2

d)
. (2.1)

Altogether we had three data sets, Gaussian and two PRFs, with 19 S/Ns, each with 441 sub-

pixel locations containing 75 frames with separately drawn random noise, for a total of 1,256,850

samples.

Methods and Analysis

In aperture photometry, we wish to maximize the number of photons that come from the body of

interest, while minimizing those contributed by the background. This normally involves consider-

ing all flux within a certain region to be flux from the object. This leads to the issue of determining

the center of the region of interest from the finite sampling provided by detector pixels. Below we

discuss three methods, all of which solve this problem, but differently.
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Center of Light

Determining the center of a distribution using the center-of-light method is computationally and

conceptually straightforward. The functional form is the same as that for center of mass,

X =
Σimixi
Σjmj

, Y =
Σimiyi
Σjmj

, (2.2)

where mi is the “mass” or weight at each point, and yi, and xi are the distances of the points away

from the origin in the y and x directions, respectively. This performs an average in each dimension

weighted by the amount of “mass” present at each location, resulting in the center location about

which the mass is distributed. In this case, however, the “mass” at each point is the flux contained

in a given pixel. This method is also commonly known as centroiding. However, a center-of-mass

calculation is only equivalent to a geometric centroid when the object has constant density, such

as determining the center for an irregularly shaped but uniformly dense block. Since this is not the

case for a stellar image, as the amount of mass (light) per unit volume (pixel) is not constant, we

avoid the term in this paper.

The major advantage to this centering routine is that it assumes no inherent distribution of the light.

As a result, it works for irregular shapes; however, this is also its weakness. By assuming nothing

about the object’s shape, the routine is very sensitive to outliers in the distribution of additive noise

within the image. Where a nearby warm pixel might not seriously affect a Gaussian fit, it would

weight the center-of-light away from the true center.

13



Gaussian Centering

Assuming that the PRF combined with noise is axially symmetric, it is possible to derive sensible

centers by modeling it with a two-dimensional (2D) Gaussian,

G = Ae
− 1

2
(
(x−µx)2

σ2x
+

(y−µy)2

σ2y
)
, (2.3)

whereA is a scaling constant, x and y are the position of a pixel, µx and µy are the true positions of

the source in x and y, and the variances in x and y are given by σ2
x, σ2

y . Because the center is found

by fitting an analytic function, this routine is fairly robust against low variations, or a small number

of larger variations, due to noise. However, by assuming the distribution function is symmetric,

this routine will produce inaccurate centers when the distribution is asymmetric. This deviation

may arise from insufficient signal, asymmetric pixelation, speckles, or an inherently asymmetric

PRF.

Least Asymmetry

Least asymmetry was originally devised by James Gunn (Princeton University) for use in radio as-

tronomy. Russell Owen (University of Washington) then used it in a software package1 to drive the

pointing of telescopes, but did not explore it much further. In personal communications with Owen,

he shared the methods, background, and algorithm with us. A non-exhaustive search through the

literature did not produce references, so we present the full algorithm here with examples.

Up to this point, we have discussed determining centers using a weighted average and minimizing a

functional model. Least asymmetry accomplishes centering by first performing a transformation on

the data to produce a new space with different properties, similar in idea to a 2D cross correlation.

1
http://www.astro.washington.edu/users/rowen/PyGuide/Manual.html
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We begin with an asymmetric distribution that is a result of the optical aberrations in the system as

well as the presence of noise in the measured signal. Figure 2.1 depicts such an asymmetric signal.

We propose that the center is the point about which the distribution is most symmetric. We define

the asymmetry of the signal as a function of position as

A(x, y) =
R∑
0

V ar(Φ(r)) ∗N(r), (2.4)

where the discrete index r indicates the particular radial bin, Var is the variance operator, Φ is the

flux, and N(r) gives the number of pixels at a given radius for weighting. Equation 2.4 remaps

images to a space in which the intensity is more normally and symmetrically distributed, as demon-

strated by fitting a Gaussian to the image in asymmetry space vs flux space. In principle, if this were

a continuous dataset, we could continue this process until the point of minimum asymmetry was

absolutely determined. Because datasets collected using imaging arrays are discretely sampled,

we take advantage of the increased symmetry and use established centering routines to determine

the point of minimum asymmetry to sub-pixel accuracy.

To determine the point of minimum asymmetry, we calculate the value of asymmetry about each

pixel in the shaded region in Figure 2.1. The calculation begins by laying an aperture about a

given pixel as indicated in Figure 2.2. This region, which we note extends outside the window

undergoing transformation, is used to create a radial profile, (see Figure 2.3), with discrete radii

corresponding to the pixel centers, as shown in Figure 2.4. The radial profile for the particular

pixel shown in Figure 2.2 is given in Figure 2.5. Because we only choose radii corresponding to

pixel centers, the radial bins are groupings of points at discrete distances. As a general example of

asymmetry, Figure 2.3 shows profiles corresponding to low (top) and high (bottom) asymmetry.
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Figure 2.1: Asymmetric image for which the center is to be determined. The asymmetry value will
be calculated for each pixel in the shaded region near the center of the image.

Figure 2.2: Asymmetric image with thatched region to indicate the region of transform for the
dotted pixel
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Figure 2.3: Stellar radial profiles. Left: When the profile is centered on the star, the variance
in each radial bin is small, indicating low asymmetry. Right: When the profile is centered five
pixels from the stellar center, the variance in each bin is high because the light is asymmetrically
distributed about this point. The least asymmetry method works by minimizing the sum of the
variances in all of the radial bins.

The generated radial profile is used in conjunction with Equation 2.4, to calculate the value of

asymmetry. We repeat this process for each pixel in the conversion window to produce the asym-

metry values depicted in Figure 2.6. Finally, we use a traditional centering method in asymmetry

space to determine the center with sub-pixel accuracy. In our cursory tests, we determined Gaus-

sian centering performed better than center of light.

It is improper to do photometry on Figure 2.6 as the values correspond to sums of variances and not

flux values. The figure does not represent a cleaned up image but is merely an array representation

of the distribution of asymmetry values of the original image. The center as determined from this

distribution must be used in flux space to determine photometric measurements.
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Figure 2.4: Radii used to generate radial profile in the region of transformation.

Results

We applied the three methods to our three synthetic datasets to determine which performed the best

under different circumstances. Although specific values differed between the two PRFs, qualita-

tively the results are similar. As we are more concerned with the qualitative results of the centering

routines we will present only the 8 µm bandpass results in this section for comparison. Similar

figures for 3.6 µm bandpass are available in Appendix A.

To test the precision and accuracy of these routines, we ran each method against the synthetic data

described in Section 2 to produce calculated x and y values for each frame, a total of over 3.6

million centering calculations. To compare results we create images, see Figure 2.7, in which the

axes correspond to the sub-pixel location and the values correspond to the figure of merit: the mean

distances of the position residuals.
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Figure 2.5: Radial profile corresponding to our region of transformation. Red numbers correspond
to the labels of radii shown in Figure 2.4
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Figure 2.6: Image of asymmetry space for the region converted from Figure 2.1.

Tables 2.1 and 2.2 summarize these data. The values presented are the average over all subpixel

locations, indicating the total expected error. The value in parenthesis next to the mean is the

standard deviation over each of the trials used to construct the mean. These can be thought of

the error in the error, or the precision with which the resulting mean offset can be expected. The

optimum method at each S/N is shaded gray.
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Figure 2.7: Centering quality in sub-pixel space for least asymmetry (top), Gaussian (center), and
center of light (bottom) for the 8 µm bandpass PRF at S/N 10. Blue represents better centering, red
worse. The cross pattern arises from a combination of a pixelation effect and the non-uniformity
of the PRF.

Table 2.1 gives the results for centering the Gaussian kernel. Least asymmetry performs the best in

the noisiest conditions, and Gaussian centering performs best at high S/N. This is expected given

that the distribution is constructed from a Gaussian kernel. At low S/N, Gaussian fitting and center

of light are more easily thrown off. In the case of least asymmetry, however, the transformation

converts to a space that is more normal, so the signal in the asymmetry space is stronger. As the

signal continues to increase in strength, fitting a Gaussian becomes more accurate at a rate faster

than that of asymmetry. Center of light not only performs the worst in all cases, but its accuracy

improves at a much slower rate than that of the other two routines.
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The deviation of the Spitzer 8 µm bandpass PRF from normal is evident in Table 2.2. For the

lowest-S/N scenarios the distribution deviates furthest from normal and fitting a Gaussian in flux

or asymmetry space is out-performed by center of light, though the centering still has large errors.

Once the signal is discernible over the background, asymmetry is the preferred choice for all of

the test cases. Each of the routines tested all show improvement with increased S/N, as would be

expected, each converging at different rates in both precession and accuracy.

Gaussian centering is noticeably lacking throughout Table 2.2 because the asymmetric light dis-

tribution skews the Gaussian centering consistently away from the correct answer. The Gaussian

centering routine was very precise, but not accurate, giving it a larger sum of squared residuals.

This effect is illustrated in Figure 2.8, where the residuals of Gaussian centering are more tightly

packed than the residuals from asymmetry. If it could be accurately explored for a given distribu-

tion of light at particular gains and S/Ns, it might be possible to develop corrections to be used with

Gaussian centering to make it more accurate. These corrections would, however, only be good for

the particular PRF, S/N, and sub-pixel location. In the lowest-S/N cases, least asymmetry proves

to be both more precise and more accurate than Gaussian centering.

Conclusions and Future Work

Tables 2.1 and 2.2 show which centering methods perform better under particular circumstances

and are not intended as a comprehensive guide for which centering method is the best. A different

PRF will necessarily have different results, such as can be seen in Appendix A.
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Table 2.1: Gaussian Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light

1.0 0.4407 (0.0515) 20.619 (23.316) 0.7803 (0.2691)

2.0 0.1247 (0.0120) 0.5396 (0.4997) 0.7601 (0.2622)

3.0 0.0845 (0.0084) 0.1380 (0.2106) 0.7408 (0.2555)

4.0 0.0682 (0.0072) 0.0778 (0.0590) 0.7223 (0.2491)

5.0 0.0594 (0.0069) 0.0598 (0.0367) 0.7060 (0.2459)

6.0 0.0538 (0.0068) 0.0481 (0.0236) 0.6890 (0.2399)

7.0 0.0500 (0.0069) 0.0406 (0.0072) 0.6727 (0.2343)

8.0 0.0473 (0.0071) 0.0373 (0.0072) 0.6570 (0.2288)

9.0 0.0452 (0.0073) 0.0356 (0.0101) 0.6415 (0.2225)

10.0 0.0436 (0.0073) 0.0336 (0.0114) 0.6284 (0.2170)

20.0 0.0374 (0.0087) 0.0225 (0.0069) 0.5096 (0.1759)

30.0 0.0357 (0.0094) 0.0178 (0.0066) 0.4242 (0.1464)

40.0 0.0349 (0.0098) 0.0150 (0.0032) 0.3600 (0.1242)

50.0 0.0346 (0.0100) 0.0141 (0.0134) 0.3100 (0.1069)

60.0 0.0343 (0.0102) 0.0122 (0.0109) 0.2702 (0.0932)

70.0 0.0341 (0.0103) 0.0114 (0.0108) 0.2379 (0.0820)

80.0 0.0340 (0.0104) 0.0103 (0.0066) 0.2111 (0.0727)

90.0 0.0339 (0.0105) 0.0102 (0.0129) 0.1883 (0.0655)

100.0 0.0338 (0.0106) 0.0108 (0.0244) 0.1693 (0.0589)
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Table 2.2: 8 µm PRF Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light

1.0 0.8081 (0.0635) 89.66 (131.467) 0.4457 (0.1172)

2.0 0.4829 (0.0435) 0.8983 (3.5599) 0.4343 (0.1141)

3.0 0.2332 (0.0216) 0.2195 (0.1328) 0.4233 (0.1110)

4.0 0.1637 (0.0149) 0.1714 (0.0649) 0.4128 (0.1081)

5.0 0.1332 (0.0135) 0.1556 (0.0443) 0.4028 (0.1053)

6.0 0.1158 (0.0134) 0.1479 (0.0419) 0.3932 (0.1026)

7.0 0.1047 (0.0138) 0.1427 (0.0342) 0.3840 (0.1001)

8.0 0.0970 (0.0144) 0.1373 (0.0303) 0.3751 (0.0976)

9.0 0.0916 (0.0151) 0.1343 (0.0175) 0.3681 (0.0961)

10.0 0.0876 (0.0158) 0.1305 (0.0070) 0.3597 (0.0936)

20.0 0.0722 (0.0196) 0.1253 (0.0038) 0.2925 (0.0752)

30.0 0.0685 (0.0212) 0.1245 (0.0036) 0.2442 (0.0620)

40.0 0.0670 (0.0219) 0.1242 (0.0035) 0.2080 (0.0523)

50.0 0.0662 (0.0224) 0.1240 (0.0034) 0.1799 (0.0449)

60.0 0.0657 (0.0226) 0.1238 (0.0033) 0.1577 (0.0392)

70.0 0.0654 (0.0228) 0.1238 (0.0033) 0.1396 (0.0347)

80.0 0.0651 (0.0229) 0.1237 (0.0032) 0.1247 (0.0310)

90.0 0.0649 (0.0231) 0.1236 (0.0032) 0.1123 (0.0281)

100.0 0.0648 (0.0231) 0.1236 (0.0032) 0.1019 (0.0258)
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Figure 2.8: Routine precision at S/N = 5 on the 8 µm PRF. Top: The residuals from least asymmetry
centering. Middle: The residuals from Gaussian centering. Bottom: The residuals from Center-of-
Light centering. Asymmetry performs best at low S/N. Note the axes are the same scale, but the
subfigures are a larger view of the magenta square and differ in scale to provide further detail. The
red lines indicate the zero point.

However, these tables are useful for gaining a general understanding of these centering routines.

First, we note that centering with asymmetry performs well under a variety of conditions and is

just as viable as the other two centering choices. For example, least asymmetry outperforms center

of light by about a factor of seven at a S/N of 10. Second, under high noise conditions, fitting the

analytic function of a Gaussian gives an ill-defined minimum in parameter space and thus poor

centering. Finally, center of light outperforms the other two routines in the lowest S/N for the

Spitzer PRF distribution as the best of three bad results, which may be useful in situations with

poor or variable observing conditions or when changing centering routines on a dataset-by-dataset

basis is impractical. 24



This investigation also highlights the importance of accuracy versus precision. Figure 2.8 shows

that, when working with asymmetric PRFs, Gaussian centering is less accurate, but in Stevenson

et al. (2010) it does produce better results. In this case the precision allows us always to select the

same subpixels in our interpolated photometry (Harrington et al., 2007), minimizing the variance

in flux, regardless of maximizing the incoming flux recorded. In cases of lower S/N, or in cases

where accuracy matters, such as astrometry, the other routines will become increasingly useful.
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Figure 2.9: Routine precision at S/N = 60 on the 8 µm PRF. Top: The residuals from asymmetry
centering. Middle: The residuals from Gaussian centering. Bottom: The residuals from Center-
of-Light centering. Least asymmetery is more accurate but less precise than Gaussian centering,
while Center-of-light performs worst of all. Note the axes are the same scale, but the subfigures
are a larger view of the magenta square and differ in scale to provide further detail. The red lines
indicate the zero point.
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In the future it would be useful to investigate the effect that statistical weighting has on asymmetry

and Gaussian centering. It is possible that error estimates on individual pixels could improve

centering. Using unequal weights may be problematic, as a slightly wrong weight would pull the

centering routine toward a wrong result, an effect that is hard to detect in datasets with unknown

centers.

This work has application in a variety of areas requiring high accuracy, such as solar system orbit

determination and low-signal-to-noise light curve measurements. Many photometric investigations

are limited by the quality of centering. This work was developed as part of the Spitzer Exoplanet

Target of Opportunity Program, and substantially improved the results of Stevenson et al. (2010),

Campo et al. (2011), Nymeyer et al. (2011), and subsequent papers.
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CHAPTER 3: ADDITIONAL METHODOLOGY FOR ANALYZING LOW

SIGNAL-TO-NOISE ASTRONOMICAL DATA

Introduction

When conducting scientific observations and analysis there is often specific circumstances in which

specialized routines will out perform standard analysis techniques. We often do not include these

routines in the discussion of a paper as they are only a stepping stone, or may only be relevant

to specific data sets. Our work in these areas may best be described as applied mathematics, but

discussion of their development may aid a future researcher, and gives insight into our ability

to interpret mathematical techniques and apply it in the context of astronomical observation. In

this chapter we outline both techniques we frequently use, and those which have had niche uses.

Additionally, some of the techniques in this chapter we have experimented with but have not found

application for in our work. In these cases we hope to further develop these routines into workable

analysis packages in the future.

The objective is to maximize the precision and scientific return from lightcurve analysis in order

to characterize physical properties of anstronomical objects. This is accomplished by employing

a series of tools developed to maximize the data return from lightcurve observations. These tools

have been summarized in Lust et al. (2011) and include: (1) Further developments in the area of

determining the center of a distribution of light (2) a new application of Bayesian statistics for

characterizing the noise, refining the SNR, and qualitatively investigating signals and systematics,

(3) the application of wavelet period analysis to lightcurves to characterize how periodicities are

changing in time or identifying specific features present, and (4) The interpretation of routines

using Szego polynomials for approximating frequencies in the asteroid lightcurve data.
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Centering

Chapter 2 reviewed the differences between the commonly used methods for centering, center-of-

light and fitting a Gaussian, and introduced a third technique least asymmetry. Each proved to be

useful under differing circumstances, but for most scenarios fitting a Gaussian or least asymmetry

was preferred. Though we did go to great lengths to simulate realistic noise and systematic errors,

the work was specialized to the case of space telescopes where there are no atmospheric effects.

Many of the qualitative differences of the routines will still hold when an atmosphere is present.

Least asymmetry especially performs well under these conditions as it does not search for specific

features, but rather tries to find a balance in the shape of the distribution. Frequently however

a turbulent atmosphere will cause streaks, or multi-modal distributions. In these scenarios our

routines will perform adequately but not ideally. We developed a routine called peak convolution

which has proven to produce better signal to noise lightcuves for some observations.

The peak convolution routine begins with an image which has been trimmed such that only the ob-

ject in question is in the frame, as well as enough background for a sampling of the sky brightness.

In normal circumstances the width of the trimmed image is three to five times the diameter of the

circle (known as the aperture) inside which the flux is summed. This smaller image (henceforth

called the view) is then bi-linearly interpolated in a flux conserving manner by a desired factor.

For example a re-sampling by a factor of five will give a sub pixel tolerance of 0.2, and a factor of

ten will give a tolerance of 0.1. A higher interpolation factor will give provide more fine tuning

in placing the aperture, but comes at the expense of speed. Bi-linear interpolation itself is fairly

quick, but if it must be done over thousands of images the difference in scaling factor may become

a consideration.
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Next a binary aperture mask must be created for the desired aperture diameter with a one or two

pixel boundary and scaled by the same factor used in creating the view. The values inside the

aperture should be set to one, while those outside set to zero. This mask is then convolved with

the view of the astronomical object to produce a new array which we call the convolution map.

The position of the maximum value in the convolution map, controlling for hot pixels significantly

above the flux of the star, represents the location in the view which has the maximum photometry

at the given aperture size. The value at each position in the convolution map is the photometry

value obtained by placing the aperture at that location. Thus, the convolution map provides the

highest value of photometry as well as the centering location.

If the noise in the image is greatly dominated by noise from the photon statistics, (as opposed

to systematic sources), then the location of highest photometry in the convolution map will also

correspond to the location of highest signal to noise. If there are other significant sources of noise,

perhaps from a known bias pattern in the detector, a weighting mask the same shape as the view

can be created and applied to the convolution map such that the routine will search for the highest

signal to noise instead of the largest photometric value.

This procedure offers many compelling features. Performing a convolution is a widely imple-

mented, highly optimized procedure which can be performed very quickly. Peak convolution has

the added benefit of conducting centering and measuring photometry in one step. This saves some

computational effort, but certainly saves computational complexity in the implementation and us-

age. Additionally, because this method combines both steps in one, it is able to find the preferred

solution regardless of the shape of the light distribution. This gives it a certain amount of resis-

tance to noisy conditions and atmospheric blurring. In contrast, a center-of-light calculation is a

weighted average which may be skewed due to noise and shape of distribution, and least asymme-

try and fitting a Gaussian will tend to skew toward the peak of the distribution (Gaussian more than

asymmetry).
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Wavelet Analysis

In the following sections we will be discussing analysis tools which are in part or in whole based

upon wavelet analysis. It is useful to digress into a description of what wavelet analysis is, how it

works, and why it is useful before getting into particular applications of wavelet analysis. While

not intended to be a complete presentation of the topic, we aim to convey the core ideas and outline

the similarities and differences with other linear transform based analysis.

Samples obtained from observations are time averages of signals over some real continuous func-

tion which can be decomposed onto a set of basis vectors. Many are already familiar with this

concept from calculus where a vector can be represented with a set of basis vectors (i,j,k), or from

Fourier analysis where any square integrable function can be represented as a sum of trigonometric

functions. Wavelet analysis is an alternative way to decompose signals in which the basis vectors

are constructed from a wavelet function. Unlike Fourier analysis where the basis vectors span the

entire dataset, wavelets are localized in time.

A wavelet transform may use localized sines and cosines to deconstruct a signal, but is not re-

stricted to these functions. There are many functions that can serve as a basis set for a wavelet

transform. Each of these wavelets share the property that they asymptote to zero at positive and

negative infinity, and integrating to zero. The choice of which wavelet basis to use in a transform

depends on the application of the transform. This is analogous to representing a digital signal

with a series of delta functions or Fourier series. Both representations can reproduce the input data

points, but one may be better at representing the behavior or trend of the data. These features of the

wavelet transform allow investigation of features at different scales without changing or depending

on the data in the rest of the observation; i.e. ignore a noisy patch, or identify a short lived but

significant variation (such as the orbit of a satellite about an asteroid, or the eclipse of star by a

planet) without requiring an extremely large number of coefficients.
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The most straightforward wavelet to understand is the Haar wavelet (Haar, 1910), which is simply

a piece-wise step function as depicted in Figure 3.1. Any signal can be thought of as a sum of

step functions of various sizes. This idea can then be extended into different structures which are

similarly localized, such as the so called mexican hat wavelet built from the second derivative of a

Gaussian (Ryan, 1994) shown in Figure 3.2. This idea of a localized basis is similar to the concept

of a windowed Fourier transform, but has the ability to use a non trigonometric basis as well as

having the size of the window correlated to the scale of the feature being investigated.

Figure 3.1: Example of a Haar wavelet.

One of the strengths of wavelet analysis is the ability to choose the best basis for the type of feature

being investigated out of many possible bases. Any wavelet basis may be used, but the number and

interpretation of the basis coefficients will change with different basis. The wavelet basis, called

the mother wavelet, is scaled to each resolution level of the data. This scaling may be done such

that the transform may or may not have overlapping support of the basis vectors. For the case of a

wavelet series on discrete data, non overlapping support ensures a complete reconstruction of the

original signal while overlapping support is sometimes desirable for investigating specific scales or
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details present in the data. The inner product between the scaled, known as the daughter, wavelet

and the signal is computed and stored as a coefficient. The daughter wavelet is then translated

along the independent axis, time in one dimension or position in two, and the inner product is

computed at each location to generate the corresponding wavelet coefficient. Equation 3.1 shows

the equation for an arbitrary wavelet with a scaling parameter a and time localization parameter b.

Individual wavelets with have particular implementations of the function Ψ but they will all have

a scaling and translation parameter. The procedure for calculating the wavelet coefficients is given

in Equation 3.2. For completeness Equation 3.3 provides a way to reconstruct a transformed signal

with the wavelet used in deconstruction as well was the wavelet coefficients.

Ψa,b(t) =
1√
a

Ψ(
t− b
a

) (3.1)

Figure 3.2: Example of a Mexican Hat wavelet.
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WTΨ[x](a, b) = 〈x,Ψa,b〉 =

∫
R
x(t)Ψa,b(t)dt (3.2)

xa(t) =

∫
R
WTΨ[x](a, b) ·Ψa,b(t)dt (3.3)

Like Fourier transforms, wavelet transforms may be computed with a continuous wavelet trans-

form (CWT) or quickly with a discrete wavelet transform (DWT), each of which have particular

applications. DWTs are able to transform a data vector to a series of coefficients to the wavelet

basis, but only out to a certain level determined by the length of the data and shape of the wavelet

basis. These transforms are well suited for applications such as data compression, denoising, and

to a limited extent frequency analysis. CWTs can still be used on discretely sampled data, since

we assume it samples a continuous function, but gives us some flexibility that DWTs do not offer,

such as overlapping support and fine tuning scale (frequency is one example of scale) response.

Because wavelets are localized waves, they must be shifted in time to sample the entire data vector.

In a DWT these shifts must occur such that the end of one wave is the beginning of the next. With

CWT the wavelet is a continuous function parameterized by time and scale, and thus can accept

any time index. This overlapping of support in the wavelet basis allows us to quickly and easily

determine when a particular signal is present in the data. Also as a consequence of non overlapping

wavelets in a DWT, only particular scales can be investigated, as the length of the data must be

evenly divisible by the length of the wavelet at the particular scale. This can be mitigated by zero

padding the data to match the appropriate scale but may cause aliasing at the boundaries; however,

there is still a fundamental frequency which can be investigated due to the sampling rate and dis-

crete wavelet. A CWT, as mentioned, is characterized by time; as such, we can use the knowledge

of when a data point was sampled to construct the appropriate wavelet and sample any scale. This

makes a CWT ideal for scale and, with particular wavelets, frequency analysis.
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In a discrete wavelet transform there are only a finite number of wavelet coefficients for each signal,

related to its length. A complete deconstruction of the signal is still possible by making use of an

additional scaling function, the father wavelet. This is introduced to preserve the overall scaling

of the signal, and ensure a signal encoded with a finite number of coefficients can be completely

reconstructed. Each particular wavelet has a corresponding father wavelet uniquely designed to

compliment it. The father wavelet is most closely analogous to the zero frequency of a Fourier

transform where the power corresponds to the median value of the function, but contrasts in the

fact that the father wavelet may also be localized in time, providing a different scale at different

time intervals.

The final result of a wavelet transformation is a two dimensional data set, with one axis correspond-

ing to time, the second corresponding to scale, and the strength of the coefficient corresponding to

how well the data matches the wavelet. This two dimensional representation is referred to as a sca-

leogram. The time axis allows us to localize events in time, while the scale allows us to investigate

features of the data which occur on different time scales, i.e. noise will occur on the shortest time

scales while natural features in the data such as the eclipse events of an exo-planet or rotational

period of an asteroid occur over a much longer time, and thus will be represented in a different

scale.

Denoising

Signals from astronomical sources can be thought of as some real signal plus a noise term as shown

in Equation 3.4. We make the assumption that the noise is normally distributed, which holds for

all white noise, and when the photon count (Possion noise) is high. In denoising we seek to find

the values of xi by removing the noise from yi. To separate the various components of the signal,

it is decomposed into a corresponding series representation with a wavelet transform. Equation 3.5
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shows this decomposition at each wavelet (scale) level with the index representing the independent

axis. We are most interested in the scale levels, henceforth called levels, which correspond to the

shortest time lengths. We will refer to the lowest level as one, with larger scales corresponding

to larger numbers up to a maximum number corresponding to the length of the data-set. The

coefficients up to a certain level, where we expect signal to exist, correspond to only with the noise

term in Equation 3.4. Because a wavelet transform is a linear transform Equation 3.5, like Equation

3.4, has a coefficient that corresponds to reality which is contaminated by additive noise noise.

The denoising process may not alter the statistical significance of a measurement once the co-

variance of the transformed data is taken into account. Even when this is the case, denoising is

still a powerful and useful tool. It can be useful to identify patterns of concealed signals which

where not obvious in the original data, such as the discovery of two planets in the GJ 436 planetary

system (Stevenson et al., 2012b). We initially had evidence of one unknown planet in the sys-

tem, but by denoising the data a secondary planetary candidate was identified. This discovery was

supported by performing transit modeling on the original data near the location identified in the

denoised data. Denoised data-sets can also be used to find unknown systematics, generate better

point-spread-functions from image field stars, aid in positioning when determining the asymmetric

position of a solar system body, and identifying non-obvious trends within data-sets.

Yi = xi +N (0, σ2) (3.4)

di = θi +N (0, σ2) (3.5)
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Shrinkage and Thresholding

A wavelet coefficient is the amount of signal which is represented with a particular wavelet basis.

Because of this, if we believe the portion of the signal represented on that particular basis is com-

prised partially or predominantly with noise, shrinking or eliminating the coefficients will result

in decreased contribution from noise after performing an inverse transform. Routines have been

developed for determining which coefficients should be modified such that the denoised signal re-

mains consistent with the measured values. These routines commonly employ either determining a

shrinkage factor for each coefficient, or determining a threshold value below which the coefficients

are considered noise and eliminated, and above which the coefficients may or may not be altered

depending on the routine. We outline the pros and cons of several common techniques while noting

this is not an exhaustive list.

Baysean Linear Shrinkage We begin by describing a denoising strategy based on the standard

Bayesian formulation given in Equation 3.6. This equation tells us that if we have the probability

distribution of some measured quantity B depending on an unknown property A, along with a prior

estimate of the distribution function associated with A, we can estimate the unknown quantity A

as the maximum likelihood of the probability distribution of A given measurements B. This for-

mulation can then be applied in the context of determining wavelet coefficients shown in Equation

3.5. The measured quantity d will have a distribution given by 3.7, note that the variance of this

distribution is the same as that estimated on the observed data as should be expected with a lin-

ear transform. We then make the assumption that our denoised coefficients θ will be distributed

according to equation 3.8. Because the probability density function P (B) in Equation 5.1 acts

only as a scaling constant, it can be ignored when calculating the value which gives the maximum
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likelihood for θ as the absolute value does not matter, only the relative nature of the distribution

is important. Thus by substituting Equations 3.7 and 3.8 into 5.1 and solving for the argument

of maximum likelihood we get Equation 3.9. This is known as linear shrinkage. By estimating

parameters for σ from the collected data (photon noise, read noise, background sky flux level), and

Σ, ε from the distribution of coefficients, each coefficient is shrunk by a fixed factor.

P (A|B) =
P (B|A) · P (A)

P (B)
(3.6)

d ∼ N (θ, σ2) (3.7)

θ ∼ N (ε,Σ2) (3.8)

θi =
σ2 · Σ2

Σ2 + σ2
· [ di
σ2

+
ε

Σ2
] (3.9)

This technique demonstrates the shrinkage of coefficients where the change in each coefficient is

related to a polynomial function. This particular routine is conservative at denoising, due to the

linear change in coefficients, but is presented as a demonstration of the concepts behind systemat-

ically identifying and modifying coefficients. There are similar routines which perform quadratic,

or other nonlinear shrinkage, which are more agressive in denoising, but are beyond the simple

introduction provided by this chapter. We offer the caveat that this technique can only be utilized

when there is an estimate for the prior distribution of points (a model) and is therefore most useful

in situations of denoising known distributions such as a Gaussian.
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Thresholding An alternative to modifying wavelet coefficients through Bayesian inference is to

establish a threshold and only modify those coefficients which are not beyond that threshold. Vari-

ous wavelet thresholding techniques exist, each with their own advantages and disadvantages. Two

common methods for suppressing noise are hard and soft universal thresholding and are defined,

respectively, as follows:

ω = yI(|y| > T )ω = sgn(y)(|y| − T )I(|y| > T ), (3.10)

where y (ω) are the original (denoised) wavelet coefficients at a particular level, I is the Indicator

function, and T is some threshold limit. In both instances, if a particular wavelet coefficient, yi, is

less than T , then ωi = 0.With hard thresholding, the remaining coefficients are unaltered; however,

soft thresholding shrinks these coefficients by the threshold limit.

There are many ways to estimate the value of T , including VisuShrink, SURE Shrink, and Bayes

Shrink. The last technique is an adaptive data-driven threshold that estimates T at each level of

decomposition by minimizing the Bayes Risk (Chang et al., 2000) and is the method chosen for

this paper. Bayes Shrink employs soft thresholding because its optimal estimator yields a smaller

risk that hard-thresholding’s estimator.

The optimal threshold value is determined as follows, following the description by Chang et al.

(2000). In some instances, the noise variance, σ2, may be known a priori. If this is not the case, it

is estimated from the robust median estimator (Donoho & Johnstone (1994), Donoho & Johnstone

(1995)):

σ =
Median(|Y1(y)|)

0.6745
, (3.11)
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where Y1(y) represents the wavelet coefficients, y, at the lowest level of decomposition. Next, we

estimate the variance of Y (y) at a particular level j, assuming zero mean, by:

σ2
j =

1

n

n∑
i=1

Y 2
j (yi). (3.12)

where n is the number of wavelet coefficients at that level. Our observation model tells us that

σ2
j = σ2

x + σ2 so, to account for the case where σ2 > σ2
j , we calculate the standard deviation as

follows:

σx =
√
max(σ2

j − σ2, 0). (3.13)

Finally, the optimal threshold at a particular level is determined by:

Tj =
σ2

σx
. (3.14)

In the event that σ2 > σ2
j (Tj =∞), all of the wavelet coefficients are set to zero.
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Error Analysis

Error analysis is quite important when measuring physical phenomena, as it places meaningful

bounds on measured quantities and better informing future research and analysis. To explore

error propagation of observational data with errors through a wavelet transform and subsiquent

coefficient filtering we will look at the transformation using the notation of linear algebra. The

vector of observed data points is denoted by X and is decomposed into the wavelet basis using the

wavelet matrix W as shown in Equation 3.15.

Y = WX. (3.15)

As noted in section 3 the vector of wavelet coefficients Y represent the transformed data along

with noise. Certain coefficients in the Y vector will be changed such that in the inverse transform

their contribution to the data-set will be modified or eliminated. This modification is conducted by

means of a filter matrix Λ shown in Equation 3.16.

Ŷ = ΛY. (3.16)

The denoised signal is them obtained by performing an inverse wavelet transform on our filtered

data (Equation 3.17).

X̂ = W T Ŷ (3.17)
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Equation 3.18 gives the complete transform and denoising process.

X̂ = W TΛWX (3.18)

With the denoising process laid out in terms of linear algebra transformations we can begin to

address the question of how to propagate errors though this transformation. Because we have

filtered our wavelet coefficients using Λ we have introduced correlations in adjacent elements. This

means that unlike with our original observationsX in which we need only concern ourself with the

vector of uncorrelated variances σ2 where σ is the standard deviation of our measurement error, X̂

will have a covariance matrix Ω. The task of error propegation becomes one of determining Ω.

In general the covarance of a vector X̂ can be found using equation 3.19 whereE is the expectation

value operator.

Ω = Cov(X̂) = E(x̂x̂T ) (3.19)

In general X̂ does not have a known functional representation of the distribution a priori making it

difficult, if not impossible to calculate the covariance directly. However, Equation 3.18 gives us an

alternative represenation for X̂ in terms of our observed data X . With this substitution we obtain

equation 3.20.

Ω = E(W TΛWXXTW TΛTW ) (3.20)
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Because the expectation value only depends on the vector X we obtain Equation 3.21.

Ω = W TΛWE(XXT )W TΛTW (3.21)

We howevef make note that E(XXT ) is the covarance matrix of the vector X . Additionally, sub-

sequent observations ofX are uncorrelated with variances given by the vector σ2. Thus, this vector

corresponds to a covarance matrix Σ2 with the vector σ2 along the diagonal elements. Equation

3.21 can then be rewritten as Equation 3.22.

Ω = W TΛWΣ2W TΛTW (3.22)

Each term in Equation 3.22 is a square matrix, and that after the algebreic calculations, will result

in a square matrix. This is an important check as we expect a covariance matrix to be square with

dimensions corresponding to the length of our data. All of the values in each matrix are either

known or can be computed from the observed data. Evaluating Ω becomes a strait forward, though

possibly long, linear algebra calculation.

With the covariance matrix and denoised values it is possible to evaluate how some physical model

Z fits observed data. A commonly used standard metric for making this comparison is the chi-

squared, χ2, value. The most familar formulation for this evaluation is given in Equation 3.23.

χ2 =
N∑
i=0

(Zi −Xi)
2

σ2
i

(3.23)
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Unlike the case with uncorrelated errors we must take into account how the correlations between

points will affect the calculation of χ2. We then look at a more generalized formulation of a χ2

distribution, given X̂ and Ω, shown in Equation 3.24.

χ2 = X̂TΩ−1X̂ (3.24)

If we then want to compare some model Z, which depends on some other parameters to be varied,

we modify Equation 3.24 similarly to Equation 3.23 to get Equation 3.25.

χ2 = (Z − X̂)TΩ−1(Z − X̂) (3.25)

With this formulation we can use our denoised data along with our covariance estimates to perform

model fits independently or in conjunction with other methodologies such as Markov-Chain Monte

Carlo analysis.

Time-series image Denoising (TiDe)

The denoising techniques that we have outlined are established techniques used in a wide variety of

fields. When applying denoising to astronomical observations, the natural idea would be to make

some assumption about the shape of the point spread function, and denoise each frame. While this

approach is valid, frames may have relatively small dimensions leading to poor statistical sampling,

and edge pixels may contribute a significant amount of information.
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We propose an alternative approach which we call Time-series Image Denoising, or TiDe (pro-

nounced as tidy). In this approach we make the observation that if the center of the point spread

changes remains approximately stable, then each pixel will represent its own one dimensional

noisy time series. By working with individual pixels we gain the knowledge that short term vari-

ations should be relatively small, and the signal will be largely consistent over the whole series.

The temporal domain gives us many more observations on which to base our statistical estimates

of denoising parameters, in addition to containing only two endpoints which are of negligible im-

portance to the overall signal. The method also allows the correlation of scale levels with temporal

durations ensuring levels which correspond with the signal being investigated will not be altered.

By denoising pixels separately we are also able to deal with individual systematics a particular

pixel may exhibit.

The denoised frames, generated by TiDe on each pixel, have many benefits over their noisy coun-

terparts. First the centering will improve as the uncertainty in the center has decreased. This

will benefit placing photometric apertures, and identifying systematics such as the bliss method

(Stevenson et al. (2010)). Another area where TiDe may be useful is in generating point-spread-

functions from numerous field stars for the purpose of star subtraction. This is often done in cases

where an object being observed lies in a dense star field and systematic contributions from stars

need to be identified and removed.
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Application of Denoising Example

A practical application of denoising can be found by investigating the analysis of observations

taken of the Kepler-9 planetary system. It is comprised of two Saturn-sized exoplanets orbiting

a Sun-like, G2 star close to their mutual 2:1 orbital resonance (periods = 19.2 and 38.9 days for

Kepler-9b and Kepler-9c, respectively) and a super-Earth-sized exoplanet (Kepler-9d) on a brisk

∼1.6-day period. In this example we use data published by Holman et al. (2010) are publicly avail-

able for download in three FITS files (one for each quarter of observation). The files contain long-

cadence photometric data (∼30-minute exposures) in the optical I-band spanning seven months,

from 13 May 2009 to 16 December 2009, that have been processed with the Kepler pipeline. Fig-

ure 3.3 displays the normalized light curves from each quarter. There are large gaps in observing

between quarters and smaller gaps within the second quarter.

Figure 3.3: Normalized light curves spanning three quarters, depicted in blue, green, and red. The
black line is the result of soft thresholding using a biorthogonal 5.5 wavelet and is used to detrend
the data. The transits of Kepler-9b and Kepler-9c are clearly visible as the periodic dips in the
normalized flux within the data.
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Kepler-9 is an M dwarf star and is mildly active, particularly in the second quarter of observing

(see Figure 3.3). In order to detrend the light curve without reducing the significance of the transits,

we applied a simple median filter to the normalized data using a sliding window of 25 points (750

minutes) so that, at any one time, less than one third of the windowed points belong to a transit

event. As a comparison we perform the same de-trending by using wavelet thresholding on the

out-of-transit data to generate a denoised light curve.

Figure 3.4: Left panel: Magnified detrended light curves using median filtering (black) and wavelet
thresholding (red). The latter produces less scatter. Right panel: Full detrended light curve of
Kepler-9 using wavelet thresholding. The blue and green triangles indicate transits of Kepler-9b
and Kepler-9c, respectively. The red vertical lines denote Kepler-9d transits that are too weak to
be seen individually.

Figure 3.4 shows the results of the systematic de-trending. The black dots are the results of the

median filter, with a standard deviation of≈ 260 ppm, while the red shows the de-noised lightcurve

with a standard deviation of≈ 215 ppm. Even without the measurements of standard deviation it is

easy to see that the red dots fall inside a smaller region than the black. Also notably, the denoising

process was able to remove two spikes in brightness that the median filter could not. In a median

filter, new points are chosen as the median value of the group surrounding each of the original data

points. Thus if there is a sharp discontinuity it will be reduced in amplitude but not eliminated

unless a wide enough grouping of points were selected in the median process. This would however
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effectively destroy any signal present withing the data. Wavelets however are localized, and a

sharp discontinuity will simply show up as a single coefficient at the appropriate length scale in the

transform. If this coefficient is eliminated, then the discontinuity will be removed in the inverse

transform while preserving all the coefficients which correspond to actual signal. In the right hand

image of Figure 3.4 we show the fully detrended data using wavelet denoising and demonstrate

that the process did not remove the eclipses from the data.

Wavelet Period Analysis and Feature Detection

Period Analysis

Because of the clear connection between periodicities and trigonometric functions, Fourier trans-

forms are frequently used in analysis. Wavelet analysis is an alternative linear transform for the

same set of square integrable functions, but differ in key ways which make them ideal for ana-

lyzing lightcurves. With Fourier transforms the signal is decomposed onto trigonometric bases

with support on the whole time domain, meaning many basis vectors (coefficients) are needed to

represent the signal. This is especially apparent when there is a slow time varying change, such

as a shifting period, present in the data. As discussed in section 3 wavelets use a system of basis

functions which are localized in the time domain with the scale of the basis function proportional

to the size of the feature, i.e. frequency, in consideration.

As stated, there are many different types of wavelet transforms available. For most lightcurve anal-

ysis we choose to used a specialized continuous wavelet transform outlined in Foster (1996). This

technique, known as a weighted wavelet Z transform (WWZ), uses a methodology known as date

projection to deal with unevenly sampled data, which is ideal as many astronomical data sources

do not have constant cadence and contain gaps between observations. The WWZ is constructed
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from decaying sign and cosine waves, which allows for identifications of periodic behavior, while

still localizing these periodicities in time. Since it is a continuous wavelet transform, it has over-

lapping support which provides good investigative coverage. This type of transform is not ideal for

denoising as the inverse transform is ill posed, but for investigating periodicities or features there

is no need to perform an inverse transform.

We will first demonstrate the WWZ transform on the lightcurve of the asteroid 1022 Olympiada.

We again obtain the data from Warner et al. (2009a). In figure 3.5a we see the lightcurve for (1022)

Olympiada. The results of the transformation are shown in figure 3.5b. This is a two dimensional

contour plot with an x axis of time and a y axis of frequency. We can clearly identify the primary

and half frequency from the rotation of the body. If we are concerned with only the frequencies

and not when they occur in time, we can average over the time axis to produce a power spectrum

analogous to a Fourier transform, which can be seen in figure 3.5c. Though the period of this

lightcurve is easy to identify by eye, and would be just as clear with a Fourier transform, the

objective here is to highlight the effectiveness and functionality of the routine when the results

were easy to identify.

(a) Time (b) Scaleogram (c) Power Spectrum

Figure 3.5: Wavelet transform for (1022) Olympiada. Data from Warner et al. (2009a)
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Figure 3.6: Kepler-9 periodogram using the Lomb-Scargle method for unevenly sampled data. The
colored triangles depict the true periods of the three exoplanets.

For a more in-depth example, in which the periodicities of the data-set are not so defined, we return

to the Kepler-9 system used in section 3. A fast Fourier transform was performed on the lightcurve,

the results of which can be seen in Figure 3.6. The periodogram exhibits relatively strong peaks

at the known periods of Kepler-9b and Kepler-9c (as indicated) but the strongest peak occurs at

a period of 6.45 days. This value is a harmonic of both periods, which is why it is so strong.

The period ratio of this peak is 6:1 for Kepler-9c and 3:1 for Kepler-9b. The next strongest peak

longward of 6.45 days occurs 9.6 days and is the 4:2:1 harmonic. The periodogram also shows

some power near 13 days, the 3:1 harmonic with Kepler-9c. The numerous narrow peaks that

plague the periodogram around 5 days and shorter are even weaker harmonics. We conclude that

this periodogram alone is insufficient to confirm the orbital periods of any of Kepler-9’s exoplanets

because of the tendency of this method to pick up harmonics of the dominate periodicites.
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We next used the WWZ method to transform the Kepler-9 data-set, as shown in Figure 3.7. Look-

ing at the scaleogram (Figure 3.7a) the features of Kepler-9b and Kepler-9c can still be seen near

40 and 20 days respectively. When looking towards the shorter periods, the structure of the scale-

ogram becomes more complicated as with the fast Fourier transform in Figure 3.6. However, unlike

the results from the FFT, the scaleogram shows that the harmonic power at these frequencies are

localized in time. In figure 3.7b the scaleogram has been averaged over time, such that only signals

which span a significant portion of the data-set are strongly weighted. This figure shows that un-

like the FFT, the lower power harmonics are eliminated, while the strongest harmonic is reduced in

strength. The Feature of Kepler-9d is even detectable near 2 days, a feature which was completely

hidden in the power spectrum of the Fourier transform. We can thus conclude that this transform

allows quicker and more straight-forward identification of relevant periods in astronomical data

sets.

(a) Scaleogram (b) Power Spectrum

Figure 3.7: A weighted wavelet z transform of Kepler-9, where the color represents the strength of
the coefficient.
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Feature Detection

Often in astronomy, it is desirable to detect localized features instead of long term patterns such

as periodic behavior. These localized features may be the radio pulse from a pulsar, outburst of

a comet, a signature of an exoplanet, or a satellite of asteroid eclipsing its parent body. Because

the signal which is sought is localized in time, wavelet analysis again provides a powerful tool.

In addition to being localized in time, the particular wavelet used in a transform can be tailored

to the feature being investigated. As an example we once more return to the Kepler 9 planetary

system. In this scenario we seek to identify the location of planetary transits, rather than the period

at which they occur. This necessitates switching from a wavelet with periodic properties, to one

similar to that in Figure 3.2 in Section 3. In particular the negative Mexican hat wavelet is chosen

for its resemblance to a planetary transit in which the flux from the star decreases in a localized

manor. Figure 3.8 shows the results of this wavelet transform. It is immediately clear that the high

intensity regions of the scaleogram correspond to the location of transits within the Kepler 9 data-

set. A wavelet specialized to the shape of a planetary transit would have an even stronger response.

Similarly detecting features from other astronomical sources through a wavelet transform is strait

forward provided the proper wavelet to model the signal is chosen.
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Figure 3.8: SDG wavelet transform of Kepler-9. The large coefficients seen in the scaleogram
correspond in time with the dips in flux due to planetary transits

Szego Polynomial Frequency Analysis

Determining periodicities with methods such as Fourier and wavelet analysis is done by a process

analogous to guess and check. The signal is projected on a basis of a particular frequency, produc-

ing a coefficient representing the prevalence of that frequency. This is reliant on testing the correct

period and is sensitive to high levels of noise. Szego polynomials (Jones et al., 1990) offer an

approach where the end result will asymptote to any frequencies which are present, independent of

large numbers of iterations. This ensures the correct periods are investigated, and not harmonics or

local phase space minima, which can lead to incorrect shape or formation models. This feature is

particularly useful in the analysis of binary lightcurves or with objects in complex rotation states,

where multiple non-harmonic periods will be present.
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ρ0(ψ; z) = 1, ρ∗0(ψ; z) = 1, (3.26)

ρn(ψ; z) = zρn−1(ψ; z) + δnρ
∗
n−1(ψ; z), n ≥ 1, (3.27)

ρ∗n(ψ; z) = δ̄nzρn−1(ψ; z) + ρ∗n−1(ψ; z), n ≥ 1. (3.28)
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Polar Plot of the Zeros from a Szego Polynomial for 1022 Olympiada

Figure 3.9: Zeros for a sixth order Szego polynomial constructed from (1022) Olympiada. Data
from Warner et al. (2009a)

To begin, the input data vector is used to construct a measure such that the Szego polynomials

will be orthonormal inside the unit circle on the complex plane. This measure is then used in

the recurrence relations 3.26, 3.27, 3.28, where delta is built from the previous Szego polynomial

coefficients and the cross correlations of our signal, to construct a polynomial of the desired order.

The phase of the largest in magnitude complex zeros will asymptote to the periodicities present

within the data. Because of the asymptotic nature at large numbers of observations, this routine

will not return the exact periodicites present with small to moderate length data sets. It will,

however, provide an approximate answer and serve as a guide to distinguishing true periodicities

from harmonics and spurious results in traditional Fourier and wavelet analysis.
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In Figure 3.9 we show the results from Szego polynomial analysis on the data-set of (1022)

Olympiada from section 3 using a sixth degree polynomial. In this analysis, the time axis has

been re-mapped such that any angular frequencies will map between zero and pi. The first thing

we note is that frequencies often occur in conjugate pairs, due to this routine’s insensitivity to

signals propagating forward or backward in time, and thus we need only concern ourselves with

results from zero to pi. Secondly, we notice that the largest modulus zero does correspond with

the published frequency, giving a value for the period of 0.154 days versus 0.159 days for the pub-

lished value, a difference of about 7 minutes. The data-set used in this transformation only covers

two periods and thus we can expect better convergence with longer data sets.

An additional example is given with the analysis of 549 Jessonda, with data again obtained from

Warner et al. (2009a). We denoised the lightcurve and created a low order Szego polynomial with

this data to look for periodicities, shown in figure 3.10b. The most likely period as determined

by the Szego polynomial routine was found to be 0.231 days. Using a minimizer on the original

data-set, near the Szego result, we find a minimum at 0.247 days with a lightcurve shown in

figure 3.10c. For comparison, the lightcurve with the published value is shown in Figure 3.10a.

We find this curve likely as it is bi-modal, a typical trait of asteroid rotation curves. Subsequent

communications with the original observers have indicated that they too find a period of 0.247 days

to be more likely.

Conclusions and Future Work

Through out this chapter, we have described methodologies developed for the analysis of low

signal-to-noise astronomical signals. Though it is not an exhaustive list, examples were provided

for some possible uses for these methods.
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(a) Lightcurve of (549) Jessonda
using the published period of
0.124 days.
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(c) Lightcurve of (549) Jessonda
using a period of 0.247 days.

Figure 3.10: An example of finding periodicity within an asteroid lightcurve.

In centering we have provided another method for performing photometry with noisy data-sets

through the use of peak convolution. This tool is especially well suited for working with ground

based data, as atmospheric turbulence can cause variable and unpredictable distributions of light

in an observed image. This work may be expanded by exploring the behavior of the convolution

mapping. Using existing centering and minimization routines, we may find even more accurate

photometric results by optimizing over the shape of the convolution map. This, in effect, would be

a further interpolation of the data, but one that is informed by the overall flux, and not individual

neighboring pixels.

Denoising has been shown to be a powerful tool, but one which must be used appropriately and

with careful consideration. This involves selecting the appropriate shrinkage or thresholding for

the problem at hand, as well as determining the thresholding limit. We have discussed different

methods for denoising, such as per-frame or along the time axis, each of which offer different

pros and cons. These methods can be used in varying scenarios from determining and removing

systematic trends, to improving the determination of the sensitivity within a pixel.
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We have discussed the math behind, and usage of, wavelet analysis. When using a wavelet based

on sine waves this methodology provides a great alternative to Fourier analysis for detecting peri-

odicities. This tool can be much more robust against aliasing, and is able to identify and handle a

period which is changing in time. Though we have discussed periodic detection in terms of tempo-

ral signal, this methodology also is capable to working with spacial effects, such as cloud bands in

a planetary atmosphere which may change with latitude, or in scale. By changing the wavelet uses

in the analysis, the feature being investigated can be changed from periodic in nature to arbitrary

structures. As an example we have shown how planetary eclipses can be detected and localized in

the lightcurve of a star. It is interesting to note how the same transformation, on the same data-set,

yields entirely different scientific results by simply chaining the wavelet in use. Moving forward

we would like to adapt and customize this routine for detecting transits into a routine which can

automatically search for eclipses in asteroid lightcurves, which may be signatures of binary objects.

Period detection with Szego polynomials is probably the least explored technique, though possibly

the one with the largest potential. This method allows for quickly and easily determining periodic

behavior without a brute force searching of phase space. Even with models in which the period will

be dependent on other parameters of the model, Szego polynomials may allow the elimination of

one dimension of phase space to search as each combination of the other parameters will produce

a unique Szego polynomial, with zeros related to the periodicity. In the future we would like to

see if this method could be further optimized for shorter data-sets and noisier conditions, perhaps

through an application of Bayesian probabilities.

Each of these routines provide innovative ways for accessing and maximizing scientific returns

from low signal-to-noise data. We will make further use of them in the following chapters to in-

vestigate physical phenomena in situations which would otherwise be difficult to make meaningful

measurements.
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CHAPTER 4: COMPENDIUM OF CONTRIBUTIONS IN THE FIELD OF

EXOPLANET DETECTION AND CHARACTERIZATION

Introduction

In the recent past the field of detecting and characterizing extra-solar planets (exoplanet) has been

a major example of the analysis of low signal-to-noise observations. In these systems, the planet’s

flux is tiny compared to the flux their host stars. There are two man methods for detecting and

characterizing exoplanets, radial-velocity measurements and photometric measurements of tran-

sit/eclipse lightcurves. Each method contributes uniquely to our understanding of exoplanet prop-

erties. We will outline the procedure and basic science behind each method before detailing specific

investigations.

Radial velocity was the first technique to successfully detect and preliminary characterize an ex-

oplanet (Mayor & Queloz, 1995). If an object is orbiting about the star it will cause the star to

apparently wobble in space, as the barycenter of the two body system will be moving though

space. This wobble will cause a periodic shift in the star’s spectrum, as the star alternatively moves

toward and away from the observer. The magnitude of this change (due to a changing apparent

velocity) is determined by the mass of the companion object, the size of its orbit, and how closely

the plane of the orbit is aligned with the line of site from Earth. In this method a spectrograph is

used to make repeated measurements of a stars spectrum. As the star moves relative to Earth its

spectrum will shift to the right or left due to the Doppler effect. The direction of the shift is set by

the objects motion toward or away from Earth, while the magnitude of the shift is related to the

velocity of that motion.
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With measurements of periodic variability in a stars spectra, this problem can thus be inverted

to place bounds on the properties of the companions mass and orbit. Exact values cannot be

determined as there is a degeneracy between the parameter indicating the angle the orbit with

respect to Earth, and the mass of the object. In other words, it is impossible to know if the observed

effect is due to a large planet viewed at an oblique angle such that the star moves very little from

the perspective of Earth, or if the effect is directly in the line of site with Earth and the small motion

is due to a small companion pulling weakly on the primary star. However if the assumption that

the orbital plane is aligned with the direction of observation the minimum mass of the companion

necessary to produce that wobble can be determined.

Because the inclination of a planetary system is difficult to establish, and impossible to establish

with radial velocity measurements alone, the minimum mass of the companion object can only ever

be obtained with this technique. Another limitation of the radial velocity technique arises from the

sensitivity of spectrographs used to conduct the measurements. Detection of a companion object

occurs when that object induces a large enough motion in the primary star for the shift in its spectra

to be detected. Companions with low mass will only induce a tiny wobble, and will be difficult

to detect. Additionally the closer a planet is to a star the larger in pull on the host star. Thus, this

method will be inherently bias toward detecting planets in small orbits or larger gas giant planets,

with the majority of detections coming from large close in planets.
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An alternative approach to detecting and characterizing exoplanets is to monitor the brightness

of a star, and watch for a characteristic dimming which is caused by the presence of an orbiting

planet. In these senarios, as seen from Earth, the orbiting planet will pass in front (transit) or

behind (secondary eclipse) the star. Each of these cases will cause the total amount of flux from

the planetary system to dim and allow us to characterize the planet’s physical properties. The

transit of a planet normally causes a dip in flux of a few hendreths of a magnitude, but may be

larger or smaller. This varies with the size of the planet, and the distance it is away from its star. A

secondary eclipse is many times fainter than a transit, and is normally only observable with space

based telescopes.

In the case of a transit, the orbiting planet moves in front of its host star and blocks a percentage

of the stars visible light. This is essentially casting a tiny but perceptible shadow on the Earth.

These events can constrain the sizes, masses, and orbits of the transiting exoplanets (Charbonneau

et al. (2007),Winn (2009)). With a secondary eclipse the planet moves behind the star, and because

the planet does not produce any of its own light the total amount of light in the visual spectrum

remains unchanged. A planet however, is a radiating black body and is thus emitting infrared

light. This coupled with the fact that a star emits relatively smaller percentage of its light in the

infrared produces a detectable dip in the flux from the system if viewed in infrared wavelengths.

When outside of an eclipse the infrared flux from both the planet and the star is detectable, but as

the planet passes behind the star, the star blocks the infrared light from the planet, decreasing the

total flux. These secondary eclipses enable characterization of the planet’s atmosphere (if viewed

in multiple infrared band-passes), orbital eccentricity of the planet, and temperature (Kallrath &

Milone (2009); Demory et al. (2007)).
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The transit/eclipse method for detecting and characterizing planets also has a few drawbacks. First,

these events are only detectable if the orbit of the planet happens to be in line with the telescope’s

vantage point. This depends on the size of the star, the size of the orbit, and the inclination of

the orbit. In most combinations the probability of detecting a planet is quite small, requiring

observations of a large number of stars simultaneously to detect a meaningful number of planets.

False detections are also a problem for this method. Many stars are very active, having both solar

flares and solar spots which can increase or decrease solar flux and thus mimic the signature of a

planet. Detections require many follow up observations to confirm the repeatably of the detection,

or observations with different methods such as radial velocity.

Exoplanet measurements of any kind are extremely difficult as they are very low in the signal-

to-noise ratio. An example of this is the 8µm bandpass measurement of eclipse depth in Campo

et al. (2011) which has a signal-to-noise ratio of approximately 9. In the case of transit/eclipse

photometry the flux from the star represents a background signal which may be many orders of

magnitude larger than the changes to be measured. Again using Campo et al. (2011) as an example,

the planet they investigated had a flux which was approximately three orders of magnitude smaller

than the flux from the host star. This is further compounded by the inherent photon noise of the

system, the fundamental uncertainty in the number of photons emitted at the source per unit time.

This uncertainty is related to the square root of the number of photons received, and thus a larger

signal will have a larger uncertainty in the absolute sense even if the signal-to-noise ratio is larger.

The photon noise of the star with thus hinder the measurement of fainter signal from the planet.
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Many of the routines we initially developed for use in other areas of astronomy have proven to be

quite useful in enabling more accurate measurements of exoplanet systems. In the rest of this chap-

ter we will outline the scientific results that resulted from applying our methods which includes,

implementation and optimization of planetary eclipse models, exploration and characterization

of systematics, interpretation of the results from our routines, and drawing scientific conclusions

based on the analysis of exoplanet data.

On the Orbit of Exoplanet Wasp-12b

Campo et al. (2011) examined two secondary eclipses of the exoplanet Wasp-12b using the In-

frared Array Camera (IRAC Fazio et al. (2004)) aboard the Spitzer space telescope (Werner et al.,

2004). This is one of the hottest known planets with an equilibrium temperature around 2500k, has

a period of just 1.09 days, and orbits at a distance of only roughly 0.02AU from it’s primary. At

almost twice the radius of Jupiter, the planet is also quite large and is larger than theoretical models

predict for this planet. The close proximity of Wasp-12b it its planet should produce large tidal

forces on the planet which would quickly circularize this small orbit. The non-Keplerian gravi-

tational potential of the parent star could cause an apsidal precession of Wasp-12b on time scales

that may be measurable. The differences between the timing of eclipse-transit and transit-eclipse

can very over time and provide a direct measurement of the apsidal precession of the system.
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Our analysis shows a secondary eclipse phase of 0.5, where 0 is the beginning of an orbit and 1

is the end, within a two sigma confidence interval (on a scale 0 to 1 across one full orbit). This

agrees with other observations of the timing of the secondary eclipse done it the past by other

teams, which means the timing of the secondary eclipse is not changing in time measurably. An

eclipse which is not changing in time indicates that we could not detect the presence of apsidal

precession. We determined the eccentricity to be 0.065 ± 0.014, which could be higher than the

true value due to poor constraints on esin(ω) (where e is the eccentricity and ω is the argument of

periapsis). Our results are consistent with those of a circular orbit, but apsidal precession can not

be ruled out without a longer base line of observations.

High C/O Ratio and Weak Thermal Inversion in the Very Hot Atmosphere of Exoplanet Wasp-12b

Madhusudhan et al. (2011) is a continuation of the work on the Wasp-12 system. We observed

the planet using multiple bands in the IRAC camera. Different wavelengths of light will penetrate

different amounts in a planetary atmosphere, so by using multiple bands we were able to sample the

light from differing heights within the atmosphere of Wasp-12b. This allows us to put constraints

on the concentrations of chemical compounds in the atmosphere by looking at the opacity in each

of the bandpasses. A strong secondary eclipse in a particular band suggests that there are no species

which strongly absorb at those wavelengths. Alternatively a weak signal means we are observing

a strong absorption and can characterize the chemistry of that atmospheric zone.
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Our observations find low brightness temperatures in the 3.6µm and 4.5µm channels which sug-

gests a strong absorption by CH4 and CO respectively. Strong CO in the 4.5µm band also indicates

that temperature must decrease with altitude (suggesting a lack of stratosphere) as a temperature

inversion would cause CO to have emission features in the 3.6µm band which would produce a

higher flux than is observed. High brightness temperature in the 5.8µm channel suggests there is

low absorption from H2O.

We use the broadband observations in a statistical retrieval technique which allows for the inference

of the chemical composition and temperature structure for the observed side of the planet. This

technique combines a one dimensional model with a Markov Chain Monte Carlo algorithm which

computes over 4x106 models, checking if there is a thermal inversion or equilibrium chemistry,

and varying over a range of atomic abundances.

In our best fit model contains little water, and a large amount of methane in the atmosphere. This

is inconsistent with equilibrium chemistry if the system contains the same abundances of elements

as our solar system. Our observations place a strict limit on the C/O in the system and determine

a value greater than one at the three sigma confidence level which is about double that of our own

solar system. This may imply there are formation mechanisms for solar systems which very greatly

from models based on using chemical abundances approximately those of solar abundances.
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Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

In Stevenson et al. (2010) we use the techniques and methodologies from our previous exoplanet

papers to observe the exoplanet GJ 436b. This planet belongs to a class of planets referred to as

’hot Neptunes’ as they are about the size of Neptune, yet are much closer to their parent star, and

therefore have much higher equilibrium temperatures. The host star GJ 436 is a M dwarf star,

smaller cooler than our own. This provides a stronger contrast in the thermal spectrum compared

to an equivalent planet orbiting around a solar type star.

We used standard photometry and image calibration in the reduction of our data. A Markov-chain

Monte-Carlo routine was used to fit channel specific systematics at the same time as the parameters

of the secondary eclipse. This includes a new model of the dependence of flux on the position of

the star within a single pixel on the array, as well as a model of the time varying sensitivity of the

array.

Our results find the phase of the secondary eclipse to be at 0.5868 ± 0.003 which is a significant

improvement of the precision from previous results. We find best fit values of 0.1371+0.0048
−0.00013 for

the eccentricity of the planets orbit, and a period of 2.6438983± 1.6x10−6 days.

The resulting eclipse models were then used in conjunction with the atmospheric chemical abun-

dances model from Madhusudhan et al. (2011) to investigate the makeup of GJ 436’s atmosphere.

Basic chemical equilibrium predicts H2, H2O, CH4, CO, and NH3 should be the most abundance

species present in the atmosphere. Given this, chemical composition models result in H2O and CH4

contributing the most to the planets emission. The strong signal in the 3.6µm band along with a

lack of signal in the 4.5µm band shows that the planet is deficient in methane by a factor of around
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7,000 compared to what is predicted from chemical equilibrium models. We explored varying

concentrations of CO2 and CO which may create the appearance of a lack of methane, however

none of these were consistent with the observed data. Other possibilities which may explain the

data which include, a temerature inversion, lack of hydrogen, planet variability, and stellar activity

were explored, but none could plausibly fit the observations.

The planet is tidally locked with its host star and thus receives all of its flux on one side of the

planet. This level of radiation may be able to drive disequilibrium chemistry and large scale con-

vection in the atmosphere. It is possible that vertical mixing may increase the abundance of CO

in the upper atmosphere, thus reducing the CO to CH4 ratio, or that the large solar flux is driving

CH4 to be polymerized into other hydrocarbons.

Two Nearby Sub-Earth-Sized Exoplanet Candidates in the GJ 436 System

There has long been suspicion of additional planets within the GJ 436 system, but all previous

attempts to locate any planets did not produce any solid detections. Stevenson et al. (2012b)

outlined one planetary candidate, preliminary named UCF-1.01, and evidence of a second planet,

which we call UCF-1.02. Both of these planets appear smaller than Earth at about 0.66 Earth radii.

If they share a similar density with Earth, they each would be just under a third of an Earth mass.

Observations of the GJ 436 system were carried out with the Spitzer space telescope and combined

with data from many sources which were previously gathered on the system. The new observations

were reduced using our Photometry for Orbits, Eclipses, and Transits (POET) pipeline, which

performs calibrations, systematics reduction, and photometry. We also introduced a new technique

called time-series image denoising (TiDe) which allows for precise centering and reduction of intra

and inter pixel systematics. In TiDe the uncertainties which arise from photon noise are modeled
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and reduced, such that standard centering routines are able to determine both more accurate and

more precise centers. This method recognizes that with stable pointing the same (x,y) pixel location

will over time represent the same portion of the stars point spread function. We therefore use the

time axis along each pixel to estimate the level of noise, and use a wavelet transform to estimate its

level and reduce its contribution, while leaving the larger scale signal intact. This provides more

data points with which to make estimates of the noise versus the low number of points in each

frame. This denoising technique produces significantly better results when subsequent routines are

used on the denoised data vs denoising the individual frames.

Using previous observations of the GJ 436 system we were able to determine the period of UCF-

1.01 and make a prediction of when it should occur in the future. We were able to obtain time on

Spitzer to test our prediction, and were successfully able observe the planet transit. We were only

able to obtain two non-consecutive detections of UCF-1.02 and were thus unable to determine its

period. An independent analysis of all our results agreed with all of our conclusions to within 1.5σ.

Confirmation of UCF-1.01 as a planet would require only a limited number of observations, but as

the period of UCF-1.02 is uncertain, further investigation of the planet would require an extensive

observing campaign as future prediction of when this planet will transit are currently impossible.

When claiming planetary detections, it is important to ensure the signal is not something else

which is mimicking the appearance of a planetary transit. The large proper motion of the planet

makes it unlikely that we are seeing a background star which periodically dims, either because

it is variable, or because it is an eclipsing binary star. We also checked past observations of this

area of the sky and are able to confirm there are no stars brighter than at least 9 magnitudes fainter

than GJ 436. Another possibility for a false detection may arise from stellar activity in the host
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star. We calculated the probability that active events which would mimic planetary transits would

happen at periodic intervals and find the probability to be negligibly small. Lastly we compare the

strengths of our model fits of the GJ 436 system to the null hypothesis that there are no new planets

in the system. Even with a parameter which penalizes models against the complexity of including

additional variables, we find higher probability in models which include both additional planets.
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CHAPTER 5: OBSERVATIONS AND ANALYSIS OF ASTEROID 2577

LITVA WITH A MODIFIED BAYESIAN INFERENCE APPROACH

Introduction

Remote observations are an inexpensive way to gather information on the physical properties of

near earth objects (NEOs), the understanding of which provides insights into topics ranging from

solar system formation and evolution to impact mitigation. Specific physical properties such as

density and porosity help to answer questions about what these bodies are made of, where they

originated, how they have been modified over time, are these objects potential resources for the

human space program or industrial applications, and what is the best way to deal with potential

hazards. Binary asteroid systems provide an invaluable resource for measuring these properties.

The orbital period of a secondary object can be used in conjunction with Kepler’s equations to

determine the mass of the system and when coupled with volume estimates, the bulk density of the

system can be determined.

Measurements of these physical properties are heavily constrained by the quality of observations

on the body, and the accuracy of the analysis of those observations. If an NEO is large, or bright,

and has a large change in brightness over its rotational cycle, it is relatively easy to make high-

quality measurements with a few nights of observations. With lower quality observations, either

due to a fainter body or smaller observing facilities, many nights of observations may need to be

combined to achieve a high enough signal-to-noise. Even with good equipment which produces
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high quality measurements, NEOs are often of such small size that it is only feasible to take ob-

servations when they are quite near Earth and at their brightest. Because the mutual orbits only

keep these objects near Earth for a short periods, many different apparitions are often need to be

combined together. However, longer base-line observations introduce their own systematic errors,

complicating accurate measurements of both the physical properties and their confidence intervals.

This work analyzes a low quality lightcurve of the near earth multiple system 2577 Litva. We use

this object to highlight various techniques for working with lightcurves of this nature, perform-

ing high quality measurements on data with a low signal-to-noise ratio. Section 5 describes our

observations and the archival data used as well as the history of the multiple system 2577 Litva.

We then present robust statistical methodologies for analyzing low signal-to-noise observations as

well as generating accurate uncertainty estimates in section 5. Finally, in section 5, we apply our

routines and present the analysis of Litva comparing our results with previously published works.

In addition, we present physical properties, such as the direction of the rotation axis (pole direc-

tion), determined in the course of accounting for rotation systematics. This work demonstraits the

validity of this methodology with a high signal-to-noise object, and providing confidence for use

in future low signal-to-noise analysis.

Figure 5.1: Observations of 2577 Litva from Robinson Observatory over the course of one observ-
ing night

69



Observations and Background

2577 Litva is a Mars-crossing asteroid discovered in 1975 by N. Chernykh. In 2009 the object was

determined to be a binary member of the Hungaria family (Warner et al., 2009b). As a binary, the

object warranted aditional follow up as there are relatively few binaries known and opportunities

to determine physical properties are extremely valuable. Merline et al. (2013) discovered a second

satellite orbiting Litva with observations in June and August 2012, as well as August and October

2013.

The data used in our study was a mixture of new observations and reanalysis of existing archival

data sets. The newly collected data provides us with fresh sampling of the body, in an environment

where we were able to control and understand the entire collection process from observation to

reduction. The archival data helped with comparisons to previously published figures, and in

identifying the presence of eclipsing events (either parent on satellite or satellite on parent, known

as a primary or secondary eclipse).

Additional observations of Litva were taken from Robinson Observatory located at the University

of Central Florida. The observatory features a 0.5 meter Ritchey-Chretien telescope on a MI-750

German equatorial mount. The imager is a SBIG 6303e CCD camera with a 0.46 arc-second plate

scale. The data was recorded over the course of several weeks spanning from December 2013

through February 2014. We used exposure times of 2 minutes and 30 seconds to balance signal-

to-noise requirements against time resolution in the observations. Each observation represented

integrating over approximately 1.5% of the primary rotation period. In total we acquired 520

usable observations, which were analyzed using aperture photometry and techniques laid out in

Lust et al. (2011). The result was a brightness time series known as a lightcurve. A portion of the

lightcurve covering one nights observation is shown in Figure 5.1.
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Archival data for Litva was obtained using the asteroid lightcurve database (Warner et al., 2009a).

We used data obtained by B. Warner,D. Higgins, C Bembrick,and R.D. Stephens, from March

2009, July 2010, and August 2010. Additional data from April 2012 taken by J.W. Brinsfield was

used as a control to verify our results, but was not used in the modeling and reduction process. We

used the raw data from the archive but performed our own calibrations.

Methodology

We present the routines used to analyze our data in two parts. Section 5 presents methodologies

for determining physical properties through Bayesian investigation outlined in Gregory (1999).

In this section we introduce modifications for dealing with differing observational view points

arising from the mutual orbits of Earth and the body being investigated. Section 5 describes how

corrections to orbital systematics are made, and how this leads to the determination of the pole

direction. These methods allow meaningful measurements along with error estimates to be made

for a number of physical properties, providing a more comprehensive picture of Litva, and by

extension asteroids in general.

Bayesian Inference of Asteroid Properties

The lightcurve of an asteroid, generated by reflected sunlight off the rotating body, encodes physi-

cal properties such as rotation period,shape, major morphological features, or presence of a satel-

lite. Determining these physical properties involves fitting mathematical models to the measured

data. Harris & Lupishko (1989) outlines the most frequently used model, based around a Fourier

series of sine waves. The parameters of this model are the amplitudes and phase of each component

sine wave, and the period of rotation. A second method, Stellingwerf (1978), involves mapping
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each time value to a percentage through one rotational period (know as the phase) of the body. The

data is binned and the variance in each bin is computed and summed. The period is varied until the

variance is minimized, giving this technique the name phase dispersion minimization. Both meth-

ods use a function which attempts to optimize parameters such that once the model is removed,

the variance of the residuals is minimized. These minimizer functions work by following gradients

in parameter space to arrive at a minimum. Each of these methods has their own advantages and

disadvantages, and covers enough material to be the subject of an entire paper separately.

Gregory (1999) outlines a different model, originally developed for analyzing lightcurves from

rotating stars. This routine shares some features with the standard methods, but uses Bayesian

statistics to explore the parameter space in place of a minimizer.

Before continuing with the application of Bayesian inference we will briefly outline how the

process works. Equation 5.1 is the Bayes theorem and is the core of all Bayesian inference.

This theorem states that the probability of a given parameter θ given a model M and data D

(P (θ|M,D),known as the posterior probability) is equal to the probability of the parameter given

the model (P (θ|M)) times the probability of the data given the parameter and model (P (D|θ,M))

normalized by the probability of the data given the model integrated over all possible parameters

(P (D|M)). The quantity P (θ|M) is known as the prior distribution of the parameter. If it is known

that the parameter falls according to some distribution, say a normal distribution, the probabilities

are weighted by this distribution. If no prior information is known about the parameter, an uninfor-

mative prior may be used, typically some form of uniform distribution which may or may not span

all of the parameter space. An uninformative prior with limited parameter space may be thought of

as a step function, all values in a range are given equal weighting, but outside the range the weight

(likelyhood) is set to zero. This reflects prior knowledge that the parameter cannot be above or
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below certain values, perhaps from physical arguments, but what value it takes on inside the range

is unknown. The normalization term P (D|M) can be thought of as the average probability of the

data given the model, irregardless of what parameter is chosen. Often times in Bayesian inference

the absolute probability of a parameter is not as important as the relative probabilities between

parameter values, and the normalization constant is excluded from the calculations.

P (θ|D,M) =
P (θ|M)P (D|θ,M)

P (D|M)
(5.1)

Bayesian inference is well suited for working with data collected in real world scenarios. Every

part of the inference, from the data, to the results are treated as probability distributions. This

makes it especially well suited for dealing with low signal-to-noise data sets, as well as generat-

ing meaningful uncertainty estimates with proper uncertainty propagation though each step of the

analysis. Another useful feature arises with how the method is able to deal with unknown, uncon-

strained, or otherwise uninteresting parameters. When outlining the theorem, we have used θ as

a single variable in the model M , but it need not be a single variable, and can represent a vector

of variables. In such a case the only modification is that the prior probability function P (θ|M)

is replaced by a multiplication of the prior probability distribution for each parameter. If only

one parameter in the model is of interest, integrating over the range of possible values for each

of the other variables will suitably take them into account in the distribution function of the pa-

rameter of interest. This is known as marginalizing over a parameter (or many parameters). An

example of this would be marginalizing over a parameter representing the dimming of a lightcurve

with distance from the sun when generating the distribution function representing the period of the

lightcurve.
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Another benefit of Bayesian inference arises from the structure of the theorem itself. If the inves-

tigation can be explicitly written out in analytical form it is possible to do many calculations ’pen

and paper’ style and find a functional representation of a parameters distribution without the need

for a computer. Though this is not possible when a parameter is implicit, rather than explicit in

an expression, it is sometimes still possible to marginalize certain parameter into a simplified ex-

pression before investigation with a computer. This can sometimes greatly reduce the computation

time necessary for generating the posterior distribution of a parameter. Finally we will highlight

how with Bayesian inference the model itself can be thought of as a parameter, which can be useful

for assessing the probabilities that various models accurately represent the data. An example of

this could be comparing a linear vs. quadratic fit for the bias levels in a charge-coupled device

(CCD) camera.

j(t) = int[1 +m[(ωt+ φ)mod2π]/(2π)] (5.2)

p(D|ω, b, φ,Mm) =(2π)−
N
2 (∆r)−m[
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2
)
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)×

m∏
j=1

[W
−1/2
j [erfc(yjmin)− erfc(yjmax)]]

(5.3)

χ2
Wj

=

nj∑
i=1

(di − dWJ
)2)

s2
i

(5.4)

Wj =

nj∑
i=1

1

s2
i

(5.5)
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yjmin =

√
bWj

2
(rmin − dWj

), yjmax =

√
bWj

2
(rmax − dWj

) (5.6)

p(b|Mm) =
1

bln(bhi/blo)
(5.7)

p(ω|Mm) =
1

ωln(ωhi/ωlo)
(5.8)

The model used by Gregory (1999) to represent lightcurves is a piece-wise step function, similar

to what is used in phase dispersion minimization. With this, the lightcurve is approximated by a

constant value in each phase bin. By varying the number of bins m we get a class of models that is

highly adaptable, and able to model complex arbitrary shapes. In order to compare this model with

lightcurve, each of the times corresponding to a data point must be mapped to its corresponding

phase value according to equation 5.2 where ω is the lightcurve’s angular frequency, t is the time

index, and φ is the over all phase shift between different nights. If all data are referenced from the

same time value then φ is zero. In order to use Bayes’ theorem, we use the expression presented in

equation 5.3, but leave the derivation to Gregory (1999). Equation 5.3 represents the probability of

having dataD given the various parameters. As the shape of the lightcurve is unknown, distribution

function has already been marginalized over the shape parameters rj . In this equation m gives

the number of bins in the piece-wise step function, N is the total number of data points, si is

the uncertainty associated with each data point, b is a scaling factor (if the uncertainty on the

data points is over or under estimated as determined by the maximum likelyhood of a Bayesian
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inference) often it is set to 1 indicating uncertainties are not to be scaled, χ2
Wj

is given in equation

5.4 and describes how well the piece-wise function fits a particular bin j. Wj is given in equation

5.5 and is the sum of one over the uncertainty squared for all the data points inside a particular bin

j. Finally yjmin and yjmax are given in 5.6 and are related to how each bin j corresponds to the

marginalized shape parameters r.

To use Bayes’ theorem for investigating each of the model parameters we also need to assign prior

distributions to them. It would be possible to use uniform distributions over some range, however

we adopt the priors from Gregory (1999) as they have been shown to better describe the unknown

behavior of the variables, with the exclusion of φ as we tie all our data to a common origin and

thus φ is equal to zero. Equations 5.7 and 5.8 outline the established priors. With these it is

possible generate probability distributions for each parameter by marginalizing over each of the

others. We make note that to speed up some calculations it is possible to find optimal values for

some parameters, such as b, and substitute the most likely value in all subsequent investigations

without having much impact on the subsequent distribution.

The Bayesian framework of Gregory (1999) also provides a method for generating a model of the

shape of the asteroid. Using the most likely period, determined from the model marginalized over

the shape parameter, a series of piece wise step functions can be generated. At a particular number

of bins m the value of the model at each time t is the average of each of the data-points in the same

bin as time t. Different values of m will produce different binning, and thus different values for

each t. Each of these differing models can then be averaged with equal weighting to produce a

model smoother than the initial step function. Alternatively the same Bayesian inference process

can be used to generate a probability distribution function for the likelyhood that each value m

best represents the data. This distribution function may then be used as weights in the inter-model

averaging process.
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Figure 5.2: A cartoon demonstrating the effects of orbit on determining periodicities.

Through Bayesian inference we now have a framework to determine the probability distribution

function for parameters, such as period, of the model outlined by Gregory (1999). This model,

however, is not completely sufficient for investigating asteroid lightcurves as it was designed for

working with stellar sources. These objects are sufficiently far away such that through the course

of the Earth’s orbit the viewing geometry of the system does not change appreciably. This is not

the case when observing solar system objects, as the mutual orbits of the Earth and the body under

observation lead to differing vantage points of observation.

To understand why the orbit of a body will affect the measurement of a period we remind the

reader of the difference between a sidereal and solar day. A sidereal day is measured by picking

the location of distant stars in the sky as a reference point, and then measuring the time elapsed

until the same stars get to the same position in the sky. When measuring a solar day, the position of

the sun in the sky is used as a reference. The day is then the time elapsed between the sun starting

at a particular place, say directly overhead, and returning to it. Because the Earth is orbiting as
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well as rotating, after a 360 degree Earth rotation the sun will not be directly over head, and Earth

must rotate a bit more for it to return to that location. This is because of the distance moved in the

Earth’s orbit around the sun during one day. In contrast, a sidereal day is where the a distant star

will appear back in the same position after only 360 degrees, as the parallax of the distant star due

to the Earth’s orbit is so small.

Observations of orbiting asteroids exhibit a very similar phenomia, depicted with a cartoon in

Figure 5.2. In this figure E represents Earth, and B is the body being observed. In position one a

particular feature, denoted by the arrow, is pointing along a direction toward Earth. This feature

is represented in the lightcurve, a maximum or minimum of flux, but can be at any point in the

rotation of the body. If the position of body B did not change, then after it had rotated through 360

degrees the feature would again point in a line directly towards Earth. However, because body B is

orbiting about the sun, its position does change, as denoted by position two. Body B was rotating

at the same time as it was orbiting, and thus after a 360 degree rotation the feature denoted by the

arrow is now parallel to it self in position one, but is not pointing towards Earth and must rotate

through some angle theta before it is seen as in position one. Because the rotation rate of the object

is constant the extra rotation through theta will be observed as the feature showing up later in the

time series than it would if the body was not rotating. If the senses of rotation were different, or

the Earth’s position were to lead, the only difference would be the sign of the additional angle.

These angular corrections are analogous to the phase parameter initially discussed with the model,

except there will be a phasing parameter associated with each observation. As will be layed out

in section 5, this phasing parameter will not only depend on the relative position of Earth and the

body (parameterized by the observing time t) but also by the direction of the asteroid’s rotation

axis. Equation 5.9 is a modification of the function which determines which phase bin each data

point belongs in. We introduce the term ψ(t, λ, β) which is the parameterized representation of the

orbital effects on the observational phase of the body. The negative sign in the equation represents
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the convention for correction we have adopted. Unless the body being observed is near to the Earth

and moving rapidly, phase corrections over short time scales will all be very close in value. With

low signal-to-noise data-sets the variance may be larger than the phasing effect, in which case

it may only be possible to constrain which values are excluded vs which values are likely to be

correct. In these cases, or when only period information is desired, these angular corrections can

be marginalized such that the uncertainties of the other parameters better reflect the uncertainties of

the measurements. By not taking this correction into account, even over short time spans, the phase

effect will cause dispersion in the measurements which will resemble a higher noise level. This

may lead to incorrectly determining the period, as standard minimization routines will attempt

to balance the scatter in the data around the tested model. Because the uncertainties reported

with these techniques are often the formal errors from the model fitting, they will not encompass

the possibilities that the model is not fully representative of the data. The results of our period

analysis, section 5, are presented with this marginalization and corresponding uncertainty limits.

A full analysis as well as additional results can also be found in section 5.

j(t) = int[1 +m[(ωt+ φ− ψ(t, λ, β))mod2π]/(2π)] (5.9)

Orbital Timing Correction

The problem of orbital phase corrections is more complicated than the simple cartoon of Figure

5.2. In reality the Earth is also in orbit about the sun, and the orbital planes of Earth and the body

are most likely inclined with respect to each other. The Earth’s orbital position will introduce a

further complication into determining the extra rotation angle of the body, as shown in figure 5.3.

In this depiction the Earth is interior to the object and thus progresses through its orbit faster. The

inclination effect will manifest as a changing amplitude in the lightcurve. If the observations are
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taken close enough in time, and the body is not unreasonably close or have a pole direction near

parallel with Earth’s orbital plain, the changing amplitude will be below the level of uncertainty in

the lightcurve brightness measurements and can be ignored. Alternatively, if the period determi-

nation routines being used only take into account relative amplitudes the inclination effect will not

matter. For the matter of rotational timing we only need to consider the positional effects of the

bodies.

Figure 5.3: A more detailed cartoon depicting the mutual orbits of the body and Earth.

Firstly the three dimensional heliocentric Cartesian vector coordinates for both the body and the

Earth must be obtained corresponding to each observation. For this we use the horizons1 tool

provided through JPL, but any tool that produces this information will work equally as well. By

subtracting the vector for the body, in our case Litva, from that of Earth, the coordinate system is

transformed from a Sun centered into a body centered reference frame. In this system each vector

is now one which points from the center of the body towards the center of Earth at the time of each

observation.

1http://ssd.jpl.nasa.gov/?horizons
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Figure 5.4: Body-Earth vectors depicted in body centeric coordinates

If the Earth and body were in the simple arrangement shown in Figure 5.2, finding the extra angle

the body must rotate though between two observations would be as simple as taking the dot product

between the vector corresponding to the first observation and the vector for each subsequent ob-

servation. However, as indicated above, the solution is not that straightforward. Figure 5.4 depicts

the arrangement in our transformed body-centeric frame. By switching coordinates the mutual

orbits of both the body and the Earth are taken into account by the direction of the vectors pointing

towards the Earth, two positions of which are depicted by V1 and V2. For further illustration Figure

5.5 depicts the vector end points pointing towards the earth centered on 2577 Litva. We make note

of the curved shape, with motion in each dimension.
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Figure 5.5: Position of Earth as seen by Litva in body centric coordinates.

Our solution to the orbital phasing problem will seem familiar to those who work with light curve

inversion. Specifically it bears resemblance to pole determination routines of Drummond et al.

(1988). When determining the extra rotational angle of the body, we are only concerned about the

components of these vectors which lay in the direction of rotation, and thus we must first define the

axis about which the body rotates. The pole direction is defined by the two angular components

of the spherical coordinate system, θ and φ. In the context of astronomy these angles are taken to

correspond to the direction the pole points to in latitude and longitude in the ecliptic coordinate

system. With these angles and a unit radius we can define a new Cartesian vector along the pole

direction, which is perpendicular to, and defines, the body’s equatorial plane. The body-Earth

vectors, again depicted by V1 and V2, must then be projected onto the equatorial plane, depicted

by P1 and P2. The angle between each projected vector and the vector corresponding with the first

observation will be the extra rotation the body must go through for each object to match the aspect

of the first observation.
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Figure 5.6: Depiction of reference plane and Earth vector, demonstrating which quadrants corre-
spond to what angles formed with the x and y axes.

One final consideration is the direction of the angular change, i.e. is a particular feature phased

such that it appears to arrive early or late as shown in figure 5.3. To determine this, we construct yet

another reference frame centered on the body with the pole direction as our z-direction. The vector

defining the x-direction may be any vector perpendicular to the z-direction, but it makes sense

to use the projected vector corresponding to the first observation as it allows for a simple time

stepping through subsequent observations. Additionally because the vector has been projected

into the observation plane we know it is perpendicular to the z-direction, as the projection plane is

defined to be perpendicular to the pole direction. Finally we cross the x and z directions to define

a new y-direction.

With the x and y vectors defined as directions in the body’s equatorial plane we now have a system

that is analogous to the quadrant system familiar from algebra, shown in in Figure 5.6. We define

two angles, α and β, as the dot product between any particular projected Earth vector and the x

and y axes respectively. We take a moment to note that an astute reader will notice that since we

defined our x-axis as our first observation direction projected onto the equatorial plane, the angle
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α corresponds with the time phasing angle in the rotational period. Returning to Figure 5.6 we

can see that if a subsequent observation has a corresponding vector which lays in quadrants I or

II , then we would expect a given feature to “show up late” and have a positive phase delay. If

the vector lays in quadrants III or IV this would represent a feature arriving early and would

have a negative phase delay. Determining which quadrant any given vector lays in can be done

by investigating α and β as shown in the figure, and in Table 5.1. It is important to note that this

directionality of sign is based on the body rotating prograde. If the sense of rotation is retrograde

then these signs will be reversed. By analyzing which sign produces the lowest residuals, the

directionality of rotation can be determined.

Because of how we define the coordinate system it does not matter which body is closer to the

Sun. Figure 5.3 shows that as the Earth orbits faster, vectors in the third quadrant (as defined by a

reference vector pointing in the general direction of the sun) will become negative, as the feature

appears to arrive early. If the body was instead inside Earth’s orbit, it would instead orbit faster,

however the initial reference vector (pointing from the body towards Earth) would be pointing

generally away from the sun. Thus, in this the third quadrant of our reference frame would still

represent a given feature appearing early.

Table 5.1: Table showing which combinations α and β angles correspond with what quadrants

Quadrant α β

I α ≤ 90° β ≤ 90°

II α > 90° β ≤ 90°

III α > 90° β > 90°

IV α ≤ 90° β > 90°
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With this methodology we can correct a lightcurve for the delay or advancement in timing due

to orbital effects given the positions of the Earth and the body, along with the pole direction. As

noted the directions of the body can be determined by any orbital integrator, for which we use

JPL’s Horizons, which leaves the determination of the pole direction. For this we again rely on

Bayesian inference to determine the probability distribution of the pole parameter. Like before,

this is proportional to the prior likelyhood of the pole direction times the likelyhood that our data

is consistent with the value of these parameters. For the prior likelyhoods, as we do not already

know the pole direction, we take uniform distributions over 0, π
2

in latitude, and 0, 2π in longitude.

To determine the likelyhood that our data corresponds to given parameter values, these values are

used to generate a model of the data according to the phases given by equation 5.9. Because these

two parameters greatly expand the phase space that must be searched, we use a Bayesian inference

methodology of ter Braak & Vrugt (2008). Their routine uses a specialized Monte Carlo (random

stepping) style approach to intelligently search the phase space. This is faster than explicitly gen-

erating the entire joint distribution, and has been shown to converge to the analytical distribution

as the number of steps in the Monte Carlo gets large. Additionally, our specialized implementation

has been shown to converge much more rapidly than traditional approaches, and is able to deal

with correlated parameters by moving along the direction of mutual co-variance.

Determining the pole direction, and correcting the phasing effects of the orbit in the mannor we

have described is dependent on the strength of the dispersion due to the orbital effects. To make

meaningful measurements of this effect, it must be greater than the noise level of the observation.

If this criteria is not met, it may still be possible to exclude certain values of phase space, but not

precisely determine which values are most likely. This either requires moderate to high signal-

to-noise data, or many data-points. The greater the distance through the orbit the greater the

dispersive effect. In an ideal situation if there is a good estimate of the period of rotation, the

orbital span required at a particular signal-to-noise could be estimated for a range of pole directions
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and observations planned accordingly. If suficient observations can’t be done in a semi contiguous

manor (over a short time frame), then the period uncertantly becomes increasingly a problem as

there is no way to know exactly how many rotations the body has undergone. The uncertainty

makes it difficult to tell if the phase change observed is due to orbital phasing effects or rotational

effects. A one second uncertainty in period on each revolution of the body over months to years

leads to a situation where the phase that the body “should” be in is impossible to predict. In

these conditions more orbital positions spaced over the orbit are required to disentangle the effects

of orbit vs rotational uncertainty and narrow down the probable values in phase space. When

observational brightness and telescope facilities are available, a frequent observing schedule should

make it possible to determine the probable pole direction over a relatively short time scale.

Results

The methodology outlined in section 5 was used to analyze the our data (section 5). We sought to

identify and characterize the primary rotation period, an additional rotation period present in the

data, the presence of an eclipse from the companion object, and the pole direction of the primary.

Extensive effort was put in to properly quantify the uncertainties in addition to the most likely

value.
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Figure 5.7: Relative probabilities of periods over the suspect range.

Figure 5.8: Relative probabilities over a range near the most probable value.

Primary Rotation Period

Visual inspection of our collected lightcurve (5.1) leads to the conclusion the rotation period of the

primary lies between 2.5 and 3.5 hours. Figure 5.7 depicts the relative probabilities in logarithmic

scaling for each of the periods in the range to be investigated. The most probable period appears

to occur near 2.8 hours, we therefore do a more detailed analysis in that range shown in figure 5.8.

From this we determine a most probable period of 2.81209 ± 0.0018h comparable to 2.81258 ±
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0.00002h reported in Warner et al. (2009b). Though these two values only differ by about 2.5

seconds, the error bars of the two measurements do not overlap at the one sigma level. At the three

sigma level our measurements do encompass their value, but the converse is not true. We make

note that our error bars do appear to be an order of magnitude larger, but this is due to inclusion

of, and marginalization over, the uncertainty distribution of the pole direction. Because this effect

is not taken into account, the fitting of the original measurement may have been skewed towards

the larger period with the formal error bars of the least squares fitting not encompassing the full

uncertainty. Figure 5.9 depicts our observations phased around the most likely period, as well as

the model for the lightcuve.

Figure 5.9: Our Litva observations phased around the most likely period along with a model of the
lightcuve shape.
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Figure 5.10: Relative probabilities of periods in a large region around the additional rotation period.

Additional Rotation Period

Warner et al. (2009b) reported discovering an additional rotation period present in the data after

the primary rotation period was removed. They suggested that this was the rotational period of a

third satellite in the Litva system. This was expanded upon by Pravec et al. (2012) who discovered

this additional rotational period was still present even when the secondary object was in eclipse.

To analyze this period we subtract the model shown in figure 5.9 from our data set leaving the

residual signal. Since we have an idea of the period from previous works we search in the area

near the published value akin to searching for the primary signal. This is not as clearly defined

as the secondary signal is weaker, and we get a few signals which are a confluence of random

noise which lead to a strong uniform model. After testing each peak we identify the secondary

signal as shown in figure 5.10. We identify the most likely period for the additional signal to be

5.68389±0.0005h. This value is comparable to the published value of 5.6842±0.00002 in that our
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error-bars just about encompass the published value at the one sigma level. The two measurements

differ by about a second, with ours slightly shorter in duration. We again attribute the differences

in value to the uncertainty accounting. Figure 5.11 shows our data phased about the most likely

period. We choose to leave out the error bars on this plot, as the amplitude of rotation is near the

level of error on a per data-point bases which makes the plot cluttered on visual inspection.

Figure 5.11: Phase plot of the additional rotational period around the most likely value

Binary Eclipse

In a binary system the presence of eclipses (either primary or secondary) is of interest, as it aids in

the determination of orbital period, size ratios of the components, and mass of the system. Warner

et al. (2009b) first detected these eclipses and provides constraints on the relative timing between

events, duration of events, as well as the orbital period. Figures 5.12 and 5.13 show our data

phased about the published orbital period of 35.81h. The top figure is the data phased containing

the rotation periods of the components, while the bottom has those periods removed. In either plot

we see no strong eclipse present. There may be a hint of an eclipse near 0.32 and 0.81, but the

level is not much above that of the noise, and certainly not as deep as those observed in Warner

et al. (2009b).
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Figure 5.12: Observations of Litva phased around the secondary orbital period including the rota-
tion periods of the system.

Figure 5.13: Observations of Litva phased with the rotation periods removed.

The lack of a prominent eclipse could mean one of two things; (1) from Earth’s vantage point there

is no, or a very weak, eclipse or (2) the eclipse happened at a cadence such that our observations

missed it. To be sure of possibility one, we must rule out the second possibility. We do this by

assuming that the eclipse must have occurred at some point in the preceding 1.49 days (one orbital

period) before our first observation. We then create test points which span every 15 minutes for one

orbital period. These test points represent the times at which the center point of the hypothetical
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eclipse occurs. Each test point is then propagated forward in time at the period of the satellites

orbit. The propagated test points are compared to the times of each of our observations. If any of

the propagated test points falls within 15 min of one of our data points we say that an eclipse at

that test position would have been detected We do this looping over each test point. We are further

aided that in a given orbit there would be two phase positions which would have been dimmed

by mutual events between the primary and secondary objects. For detection we don’t care which

object is the one eclipsed, only that a deviation from the standard brightness occurred, we can test

our propagation at half the orbital period, increasing the odds that we would have successfully

detected an event.

Our analysis only finds two locations that are not within 15 minutes of an observed data-points.

Each of these are within 30 minutes of a data-point, which is within the eclipse window determined

by Warner et al. (2009b). This indicates that unless the geometry of the Earth/body is such that the

mutual events occurred over a short time frame (i.e. a glancing detection short in duration and or

with an amplitude comparable to our noise level) we would have been able to detect it.

Though no detection is evident in our data this null result is none the less useful. When trying to

model the orbital plane (defined by the pole direction of the orbit) it is as important to know what

vantage points do not show an eclipse as it is which ones do. By comparing various vantage points

and the visibility of the secondary object one can invert what pole direction is necessary to give

these results.
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Primary Pole Direction

When applying our methodology for determining pole direction we determined our data was not

of sufficient duration (covering enough orbital distance) to produce a phase dispersion larger than

the variance of our data. Because of this, we used archival data as mentioned in section 5. We used

three data-sets for the modeling (ours and two from Warner et al.), and one as a control to test the

effects of the determined pole against the data used in the modeling.

Including the archival data in our analysis increases the total time span of observations to about five

years. As we discussed in section 5 period uncertainties over this range of time make it impossible

to know now many rotations the body has undergone, and thus what phase the body should be in.

This produces strong correlations between the parameters of period and those of the pole direction.

We therefore use our Bayesian inference to explore the joint distribution of the period along side

the latitude and longitude of the pole. Because we have an estimate on the period and associated

errors of the body, we can use this to construct a prior likelyhood to reduce the possible phase

space of the period and speed up computations. For completeness we take the prior range on the

period to be three times that of our determined errorbars on the parameter. The latitude parameter

is allowed to vary over 0, 90 degrees, while longitude varied from 0, 360 degrees.

Because it is not possible to easily plot out the three dimensional probability distribution we will

instead present the data as several two dimensional histograms. For the initial inference figure 5.14

shows the joint distribution of period with latitude, figure 5.15 shows period with longitude, and

figure 5.16 shows latitude with longitude. The first thing which is evident is that there appears to be

three distinct regions of interest. This is more clearly seen in figure which depicts the probability

distribution of just the period. These figures indicate that there are three regions in which the

parameters give a high probability of corresponding to our observed data.
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For further investigation of the three regions of interest in figures 5.14, 5.15, and 5.16 we isolate a

single period by placing a more restrictive prior likelyhood at the peak near 2.8125 and generating

the corresponding joint distribution. We then take the most likely parameters and assess the perfor-

mance of the routine by creating an orbit corrected phase diagram for each of the data-sets, as seen

in figure 5.18. It is clear why this is a high probability combination of parameters, as peaks line up

with peaks, and troughs line up with toughs. However, as lightcurves are bi-modal (they typically

have two defined peaks) we can see that with this combination of parameters the wrong peaks are

aligning, making this combination incorrect. This is further evident when we include the phase

diagram of our control curve (data from J.W. Brinsfield), figure 5.19. Similarly we investigate the

period near 2.8128 hours as shown in figure 5.20. With this set of parameters it appears there is

good agreement with the lightcuves, but when we include the control, figure 5.21, we can see this

set of parameters is also excluded.

Figure 5.14: Joint probability distribution of period and latitude parameters for the global inference
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When we investigate the period centered near 2.8122, however, we can see good agreement be-

tween the data-sets used for modeling (figure 5.22) as well as with the control data-set (figure 5.23).

We can thus conclude the joint distribution including the 2.8122h period has the highest likelyhood

of correctly modeling the system and represents the true period, latitude, and longitude. Figures

5.24 - 5.26 show the joint distributions for the correct parameters, while 5.27 - 5.29 show the in-

dividual distributions. We find the most likely prameters to be, a period of 2.812186 ± 5x10−6,

latitude of 62.96± 2, and longitude of 292.8± 11. For completeness we tested the same procedure

for retrograde rotation but did not find any combination of parameters which worked.

Figure 5.15: Joint probability distribution of period and longitude parameters for the global infer-
ence
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Figure 5.16: Joint probability distribution of latitude and longitude parameters for the global infer-
ence

Figure 5.17: Probability distribution for the period parameter of the global inference. Note to show
fine detail the scale on the period axis starts at 2.811h
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Figure 5.18: Phase plots corrected for orbital effects using the joint probability distribution includ-
ing a period of 2.8125h

Figure 5.19: Phase plots with the control corrected for orbital effects using the joint probability
distribution including a period of 2.8125h
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Figure 5.20: Phase plots corrected for orbital effects using the joint probability distribution includ-
ing a period of 2.8128h

Figure 5.21: Phase plots with the control corrected for orbital effects using the joint probability
distribution including a period of 2.8128h
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Figure 5.22: Phase plots corrected for orbital effects using the joint probability distribution includ-
ing a period of 2.8122h

Figure 5.23: Phase plots with the control corrected for orbital effects using the joint probability
distribution including a period of 2.8122h
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Figure 5.24: Joint probability distribution of period and latitude for the correct parameters

Figure 5.25: Joint probability distribution of period and longitude for the correct parameters
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Figure 5.26: Joint probability distribution of latitude and longitude for the correct parameters

Figure 5.27: Probability distribution for the most likely period. Note the scale on the period axis
starts at 2.8121 to better show fine detail.
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Figure 5.28: Probability distribution for the most likely latitude

Figure 5.29: Probability distribution for the most likely longitude
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Conclustions and Future Work

In this work we have shown how Bayesian inference is both competent and useful for precise mod-

eling of asteroid lightcurves and determination of their properties. A major advantage in processing

data in this manor is how it handles uncertainties. Each input to the inference process is treated as a

distribution rather than an individual point. The inference can further be constrained with previous

knowledge, and or physical knowledge about the system using the prior likelyhood term. This is

more robust than simple boundaries placed on parameters in other modeling techniques, as it can

be extremely flexible in nature. For example if there are disconnected regions where the parame-

ters are disallowed or complex distributions such as a Poisson distribution the routines handles it

as easily as simple boundaries. Bayesian inference also provides a mechanism to marginalize over

parameters which are uninteresting, complicated to analyze, or unknown and still account for them

in parameter determination by modifying the resulting parameter distribution. Finally, Bayesian

inference has many implementations which provide a fast and efficient way to explore phase space.

We have shown how the model of a lightcuve given in Gregory (1999) can be modified successfully

to account for the systematics of an orbit and determine the pole direction of rotation. Though not

shown here, this methodology should be feasible to use on a fairly short time frame. The duration

of observations needed to determine the pole direction should be possible to estimate given the

expected signal-to-noise ratio, period, and range of pole directions. This will provide a useful tool

for observation planning and coordination.
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Litva appears to have a fairly standard pole direction for an asteroid of its size. Hanuš et al. (2011)

outlines distribution functions for the latitude and longitude of pole directions for many main belt

objects. They find the most likely latitude for objects under 30 km to be between 50 and 90

degrees. This agrees quite well with our determined pole direction of approximately 62 degrees.

The distribution of longitudes is much more uniform, as one might expect, and thus there is nothing

surprising with our determined value of 292 degrees.

We have done a preliminary search based on our methodology for the pole direction of the non

tidally locked satellite and determined a period of 5.6815h, a latitude of 45.34 degrees, and a

longitude of 201.1 degrees. We caution that this may or may not be indicative of the true value

as the model does not fully take into account the extra degrees of freedom which the satellite has

as it orbits the primary body. As such we decline to put formal confidence limits on the pole

direction as these limits would not reflect the uncertainty to which the model represents the system

it is modeling. To better look for satellite properties we can modify our approach in the following

ways. Currently, we have the vectors to the center of Litva in three-dimensional space, i.e. the

Litva reference frame. To use the same basic methodology discussed in this paper we would need

to have vectors from the center of the satellite to Earth at each observation point. Because the

distance to Earth is much greater than the semi-major axis of the satellite’s orbit, these lines are

expected to be nearly parallel but not exactly. A full model would include parameters for the orbit

of the satellite such that the vector offsets from the center of Litva to the center of the satellite

could be determined. With the updated vectors, the pole direction of rotation for the satellite could

be determined. This would also have the added benefit of providing all of the orbital parameters,

as well as the pole direction of the orbit.
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The model for the phase delay /advancement can also be adapted to work with an eclipsing model

vs that of an alternating sinusoidal function. In this way we could model the eclipsing portion of

a satellite for both transit depth and timing to determine the pole direction of the orbital plane as

well as orbital parameters.

This work may also benefit from alternative models to that of a step-function. A Fourier series

would still be easy to modify to account for the changing phases. This may even prove to be

bennificial as a Fourier series is analytic making it easier to marginalize over parameters. A Fourier

model would also benefit from the ability of Bayesian inference to differentiate between models,

because this would allow for a inference based selection on the number of harmonics to include.

If the preliminary pole direction of the satellite proves to be correct with a more complicated model

it would lead to questions such as why the mutual interactions have not damped the two bodies

such that their spins are aligned. These questions may provide insight into formation mechanisms

which bifurcates pole directions, as it is currently thought that many binaries form from rotational

ejection near the equator (Walsh et al., 2008). Further analysis may also reveal if the spin axis and

orbital axis are aligned, and what implications that may have for the evolution of the system as a

whole.
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APPENDIX A: APPENDIX OF FIGURES AND TABLES FOR IRAC

3.6µm ANALYSIS
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Figure A.1: Goodness of centering in sub-pixel space. Results for Least Asymmetry (top left),
Gaussian (top right), and center of light (bottom left) for the 3.6 µm PRF at S/N 10. Blue represents
better centering, red worse. The cross pattern arises from a combination of a pixelation effect and
the non-uniformity of the PRF.
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Table A.1: 3.6 µm PRF Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light

1.0 0.6060 (0.0780) 68.943 (107.73) 0.4466 (0.1181)

2.0 0.2030 (0.0400) 0.8195 (4.6259) 0.4355 (0.1150)

3.0 0.1556 (0.0402) 0.2031 (0.1259) 0.4249 (0.1120)

4.0 0.1427 (0.0446) 0.1599 (0.0739) 0.4147 (0.1092)

5.0 0.1369 (0.0475) 0.1476 (0.0603) 0.4050 (0.1064)

6.0 0.1337 (0.0494) 0.1426 (0.0592) 0.3957 (0.1038)

7.0 0.1318 (0.0506) 0.1395 (0.0582) 0.3868 (0.1013)

8.0 0.1305 (0.0516) 0.1390 (0.0583) 0.3783 (0.0989)

9.0 0.1295 (0.0522) 0.1371 (0.0573) 0.3701 (0.0966)

10.0 0.1288 (0.0528) 0.1362 (0.0580) 0.3618 (0.0946)

20.0 0.1264 (0.0549) 0.1334 (0.0607) 0.2972 (0.0768)

30.0 0.1259 (0.0554) 0.1325 (0.0596) 0.2509 (0.0645)

40.0 0.1256 (0.0557) 0.1324 (0.0606) 0.2162 (0.0558)

50.0 0.1255 (0.0558) 0.1326 (0.0607) 0.1894 (0.0494)

60.0 0.1254 (0.0559) 0.1322 (0.0610) 0.1682 (0.0448)

70.0 0.1254 (0.0560) 0.1321 (0.0610) 0.1511 (0.0413)

80.0 0.1253 (0.0560) 0.1320 (0.0610) 0.1371 (0.0387)

90.0 0.1253 (0.0560) 0.1320 (0.0611) 0.1255 (0.0367)

100.0 0.1253 (0.0561) 0.1319 (0.0611) 0.1254 (0.0352)
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Figure A.2: Routine precision at S/N = 5 on the 3.6 µm PRF- Top: The residuals from asymmetry
centering. Middle: The residuals from Gaussian centering. Bottom: The residuals from Center-
of-Light centering. Note the axes are the same scale, but the subfigures are a larger view of the
magenta square and differ in scale to provide further detail. The red lines indicate the zero point.
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Figure A.3: Routine precision at S/N = 60 on the 3.6 µm PRF- Left: The residuals from least
asymmetry centering. Right: The residuals from Gaussian centering. Least asymmetery is more
accurate but less precise than Gaussian centering. Note the axes are the same scale, but the subfig-
ures are a larger view of the magenta square and differ in scale to provide further detail. The red
lines indicate the zero point.
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Ryan, H. 1994, CSEG Recorder, 8

Scheirich, P. & Pravec, P. 2009, Icarus, 200, 531

Stellingwerf, R. F. 1978, ApJ, 224, 953

Stevenson, K. B., Harrington, J., Fortney, J. J., Loredo, T. J., Hardy, R. A., Nymeyer, S., Bowman,

W. C., Cubillos, P., Bowman, M. O., & Hardin, M. 2012a, ApJ, 754, 136

Stevenson, K. B., Harrington, J., Lust, N. B., Lewis, N. K., Montagnier, G., Moses, J. I., Visscher,

C., Blecic, J., Hardy, R. A., Cubillos, P., & Campo, C. J. 2012b, ApJ, 755, 9

Stevenson, K. B., Harrington, J., Nymeyer, S., Madhusudhan, N., Seager, S., Bowman, W. C.,

Hardy, R. A., Deming, D., Rauscher, E., & Lust, N. B. 2010, Nature, 464, 1161

ter Braak, C. J. F. & Vrugt, J. A. 2008, Statistics and Computing, 18, 435

118



Walsh, K. J., Richardson, D. C., & Michel, P. 2008, Nature, 454, 188

Warner, B. D., Harris, A. W., & Pravec, P. 2009a, Icarus, 202, 134

Warner, B. D., Pravec, P., Harris, A. W., Higgins, D., Bembrick, C., Brinsfield, J. W., Pray, D. P.,

Pollock, J., Reichart, D., Ivarsen, K., Haislip, J., Lacluyze, A., & Galad, A. 2009b, Minor Planet

Bulletin, 36, 165

Werner, M. W., Roellig, T. L., Low, F. J., Rieke, G. H., Rieke, M., Hoffmann, W. F., Young,

E., Houck, J. R., Brandl, B., Fazio, G. G., Hora, J. L., Gehrz, R. D., Helou, G., Soifer, B. T.,

Stauffer, J., Keene, J., Eisenhardt, P., Gallagher, D., Gautier, T. N., Irace, W., Lawrence, C. R.,

Simmons, L., Van Cleve, J. E., Jura, M., Wright, E. L., & Cruikshank, D. P. 2004, ApJS, 154, 1

Winn, J. N. 2009, in IAU Symposium, Vol. 253, IAU Symposium, ed. F. Pont, D. Sasselov, & M. J.

Holman, 99–109

99

119


	Creation and Application of Routines for Determining Physical Properties of Asteroids and Exoplanets from Low Signal-To-Noise Data Sets
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Background
	Near Earth Objects
	Exoplanets

	CHAPTER 2: LEAST ASYMMETRY CENTERING METHOD AND COMPARISONS
	Introduction
	Synthetic Data and Analysis
	Synthetic Data
	Methods and Analysis
	Center of Light
	Gaussian Centering
	Least Asymmetry


	Results
	Conclusions and Future Work

	CHAPTER 3: ADDITIONAL METHODOLOGY FOR ANALYZING LOW SIGNAL-TO-NOISE ASTRONOMICAL DATA
	Introduction
	Centering
	Wavelet Analysis
	Denoising
	Shrinkage and Thresholding
	Error Analysis
	Time-series image Denoising (TiDe)
	Application of Denoising Example

	Wavelet Period Analysis and Feature Detection
	Period Analysis
	Feature Detection

	Szego Polynomial Frequency Analysis
	Conclusions and Future Work

	CHAPTER 4: COMPENDIUM OF CONTRIBUTIONS IN THE FIELD OF EXOPLANET DETECTION AND CHARACTERIZATION
	Introduction
	On the Orbit of Exoplanet Wasp-12b
	High C/O Ratio and Weak Thermal Inversion in the Very Hot Atmosphere of Exoplanet Wasp-12b
	Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b
	Two Nearby Sub-Earth-Sized Exoplanet Candidates in the GJ 436 System

	CHAPTER 5: OBSERVATIONS AND ANALYSIS OF ASTEROID 2577 LITVA WITH A MODIFIED BAYESIAN INFERENCE APPROACH
	Introduction
	Observations and Background
	Methodology
	Bayesian Inference of Asteroid Properties
	Orbital Timing Correction

	Results
	Primary Rotation Period
	Additional Rotation Period
	Binary Eclipse
	Primary Pole Direction

	Conclustions and Future Work

	APPENDIX A: APPENDIX OF FIGURES AND TABLES FOR IRAC 3.6µm ANALYSIS
	APPENDIX B: DEFENSE ANNOUNCEMENT
	LIST OF REFERENCES

