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ABSTRACT

In traditional sparse recovery problems, the goal is to identify the support of compressible signals

using a small number of measurements. In contrast, in this thesis the problem of identification of a

sparse number of statistical changes in stochastic phenomena is considered when decision makers

only have access to compressed measurements, i.e., each measurement is derived by a subset of

features. Herein, we propose a new framework that is termed Compressed Change Detection. The

main approach relies on integrating ideas from the theory of identifying codes with change point

detection in sequential analysis. If the stochastic properties of certain features change, then the

changes can be detected by examining the covering set of an identifying code of measurements.

In particular, given a large number N of features, the goal is to detect a small set of features that

undergoes a statistical change using a small number of measurements. Sufficient conditions are

derived for the probability of false alarm and isolation to approach zero in the asymptotic regime

where N is large.

As an application of compressed change detection, the problem of detection of a sparse number of

damages in a structure for Structural Health Monitoring (SHM) is considered. Since only a small

number of damage scenarios can occur simultaneously, change detection is applied to responses

of pairs of sensors that form an identifying code over a learned damage-sensing graph. Gener-

alizations of the proposed framework with multiple concurrent changes and for arbitrary graph

topologies are presented.
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CHAPTER 1: INTRODUCTION

Physical and natural processes often exhibit variability over several dimensions such as space and

time. Thus, one of the goals of monitoring these processes is to discover the deviation from normal

behavior. This goal is of paramount importance in order to give decision makers enough margin to

take possible preventive actions. It may be crucial to detect and localize changes as soon as they

occur. For example, structural health monitoring (SHM) systems are intended to quickly detect

structural changes and damage in the civil infrastructure for the safety assessment of the moni-

tored structures [1]. Similarly, in surveillance applications it is important to recognize anomalous

interactions in social processes for security purposes [2]. On the other hand, the information ac-

quired during the monitoring phase is often of tremendous volume and high dimensional. For

instance data collected from sensors measuring acceleration, strain, temperature, and displacement

of the structure, provide a huge amount of data on a daily basis. Analyzing all the information is

either expensive or computationally infeasible. Thus solving inference problems while processing

less amount of data is always preferable.

One of the inference problems is change point detection. In the classical theory, the goal is to detect

a change in the statistical properties of sequentially collected data, as soon as it occurs subject to

false alarm constraints. The pioneering work of Shiryaev [3] provides optimal stopping rules for

a single stream of data in Bayesian settings, where the change-point itself is random with a prior

geometric distribution. Recently, Tartakovsky et. al. [4] considered a setting in which information

is collected from multiple sensors. In this work the statistical properties of all sensors change after

the change-point. In another work, Premkumar et al. in [5] consider the problem of event detection

and localization in wireless sensor networks. In their setup each sensor is driven by white noise

and the sensing model at each sensor depends on distance.
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Our work is motivated by two observations. First, the statistical changes in stochastic phenomena

are typically sparse. Second, the effect of change is often localized, for example in the spatial

domain in SHM and within neighbors on social network graphs. While traditional sparse signal

processing is concerned with the recovery and/or reconstruction of the support of sparse signals,

the focus here is on the recovery of sparse statistical changes. Leveraging sparsity can generally

lead to significant reductions in the sampling rates and the storage requirements of modern algo-

rithms and technologies dealing with multi-dimensional compressible signals. Now the question

is whether similar gains can be achieved when the sparsity is associated with the change process,

and how such gains can be achieved.

Classical change point detection has been used to identify changes in the distributions of stochastic

processes and time series [6]. A dominant stream of research in this area focused on the design

of efficient change detection rules with favorable delay and false alarm tradeoffs [4, 7]. A large

number of algorithms, including CUSUM, MPCA were proposed to minimize the detection delay

subject to constraints on the probability of false alarm in different settings [6, 8, 9]. More recently,

[5, 10] studied the change detection problem in a distributed setting using multi-sensor observa-

tions. Also, decentralized change detection was considered in [4, 7, 10] wherein sensors send their

local decisions rather than their raw observations to a fusion center to decide if a change has oc-

curred. The problem of detecting a change at an unknown subset of multiple data streams using

centralized detection rules is considered in [11]. They assume each sensor can be influenced with

a certain probability. The problem in which only an unknown subset of data undergoes a change

by imposing a constraint on measurement and communication cost is investigated in [12].

Amongst numerous applications of the proposed method, we focus on Structural Health Monitor-

ing (SHM). SHM deals with the continuous monitoring of infrastructures for safety and condition

assessment [1]. One of the main goals of SHM is to quickly detect structural damages to take

possible preventive actions. However, given the massive amounts of multi-dimensional data pro-
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duced daily from multi-modal sensors installed on a structure, it is computationally inefficient to

process all the available information. Various methods deal with extracting the damage sensitive

features (DSF) from the sensors installed on structures in a training mode and then in the mon-

itoring phase, meaningful deviations in these features will result in declaration of damage. For

instance, [13] considers the autoregressive coefficient of vibration data as DSF. [14, 15] consider

the cross correlation between measurement of pair of sensors as DSF. In this method, the mean

and variance of the DSF in the training set is calculated and a damage is declared when its DSF

exceeds a threshold. Furthermore, structural damages are often localized, and hence only affect a

small subset of measurements. Moreover, damage is typically sparse since only a small number of

changes can occur simultaneously. We develop and analyze a new approach for damage detection

and sensor placement in civil infrastructures, and provide a case study using a 4-span laboratory

bridge model [16].

Contrast to Prior Work

Related work considered the problem of location detection in sensor networks using identifying

codes [17]. Finding identifying codes over graphs was considered in [18] and different greedy

algorithms were proposed to find near-optimal identifying codes. Similar ideas were used to detect

faults in multiprocessors and communication systems in [19]. In contrast to prior work, the focus

here is not on deterministic or static phenomena, but rather on stochastically changing phenomena.

In particular, identifying codes, which have been traditionally used to provide unique graph covers,

are used herein to provide a unique covering of the changes in the stochastic phenomenon. The

main idea is that if the stochastic properties of certain features change, then the changes can be

detected by examining the covering set of an identifying code using distributed sequential change

point detection. In other words, if the statistical properties of certain stochastic phenomena change,
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then the changes can be detected by examining a small subset of measurements that form a covering

set for this phenomenon. This approach integrates ideas from the theory of identifying codes [19]

with change point detection in sequential analysis [20, 7, 6].

Contribution of Thesis

In this thesis we introduce a new framework, which we term compressed change detection [21].

Specifically, we show that the aforementioned sparsity and locality in the change process can be

leveraged to compress the change detection so that sparse statistical changes can be identified and

localized using a small number of measurements. The main approach relies on integrating ideas

from the theory of identifying codes [19] with change point detection in sequential analysis.

Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, the basic problem setup is introduced

and some preliminary background about identifying codes over graphs and change point detec-

tion is provided. In Chapter 3, we present the proposed approach, which is based on integrating

coding over graphs with sequential change detection. A case study for a 4-span bridge model is

presented in Chapter 4. An asymptotic performance analysis of the proposed approach is presented

in Chapter 5 and numerical results are presented in Chapter 6. We discuss several generalizations

in Chapter 7 and conclude in Chapter 8.
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CHAPTER 2: PROBLEM SETUP

Suppose there are N random features, X1(n), X2(n), . . . , XN(n), where n = 0, 1, . . . denotes

a discrete time index. Each feature Xi is independent and identically distributed (i.i.d) across

time. Furthermore, the features are statistically independent. Decision makers do not have direct

access to features but instead observe measurements Y1(n), Y2(n), . . . , YM(n). Each measurement

is affected by a subset of features, i.e.,

Yi(n) = gi(XSi
(n)) for i = 1, . . . ,M (2.1)

where XSi
(n) = {Xs1(n), Xs2(n), . . . , Xsk(n)} ∀sj ∈ Si denotes a set of features affecting the

ith measurement and gi denotes an arbitrary function. At an unknown point in time λ, statistical

properties of an unknown subset of features indexed by S changes. The change point is assumed

to be random with prior distribution π, i.e., πk = P (λ = k), k = 0, 1, · · · . Let XS denote the set

of features indexed by the set S, i.e., XS = {Xj}j∈S . By assumption, features are independent

and identically distributed with a pre-change probability density function fXj
(x) = f0(x), j =

1, . . . , N . Conditioned on the change point, Xj(n), j ∈ S are i.i.d after the change point n > λ

with post-change distribution f1(x) for the set of features in S where f0 and f1 are two distinct

probability density functions. The cardinality |S| of the set S is assumed to be less than or equal to

K and it is assumed that K << N , hence the sparsity of the change process. The goal is twofold,

namely, we would like to identify the set S while minimizing the detection delay, and to understand

the role of sparsity in reducing the number of measurements needed to identify S.
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Background on Identifying Codes

Before describing the proposed approach we provide some necessary preliminary background. Let

G = (V,E) be a graph with node set V and edge set E. Consider any subset C ⊆ V and define the

identifying set of a vertex v ∈ V with respect to C as

I(v, C) = N (v) ∩ C, (2.2)

where N (v) = {i ∈ V : eiv ∈ E}, is the neighborhood of vertex v ∈ V . We can readily define an

identifying code [19, 17].

Definition 2.0.1. A collection of vertices C ⊆ V is called an identifying code if ∀vi, vj ∈ V and

vi 6= vj

I(vi, C) 6= ∅, (2.3)

I(vi, C) 6= I(vj, C). (2.4)

Equation (2.3) in Definition 2.0.1 means that the identifying set for each vertex with respect to C

is non-empty, and (2.4) refers to the fact that the identifying sets for different nodes are distinct.

As such, it is not hard to see that an identifying code provides a unique covering for every node.

This powerful property of identifying codes was exploited in [17] for source localization, in [19]

to detect faults in a communication network, and in [22] for identifying spectrum violators in

cognitive radio networks. Intuitively, a target or fault can be localized by examining the signature

of the fault as revealed through the identifying set.

Finding an optimal (minimum cardinality) identifying code C∗ over a graph is generally NP hard,

however, different greedy algorithms were proposed to find irreducible near-optimal identifying
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codes (See [23] and references therein). One approach is based on the observation that a graph

admits an identifying code if and only if the neighborhoods N (v) for different nodes v ∈ V are

distinct and non-empty [17]. In such cases, the code can be initialized as the whole set V , then

reduced by sequentially removing vertices. In each iteration, one vertex is eliminated based on

predetermined order of the vertices in V , and the remaining code is verified. If it satisfies (2.3) and

(2.4) then it is an ID-code and the procedure continues. If not, the node is not eliminated and the

elimination step is repeated with the subsequent node in the predefined order. The resulting code

C is an irreducible ID-code.

The Generalization is to use K-identifying codes which would provide a unique signature for up

to K simultaneous changes. This idea is further discussed in Chapter 7.

Background on Change Detection

In classical change point detection, we observe a sequence of independent and identically dis-

tributed (i.i.d) random variables Y1, Y2, · · · with distribution f0 before an unknown point in time

λ, λ ∈ {1, 2, · · · }. After the change point λ, observations are still i.i.d but with a different dis-

tribution f1. In a Bayesian setting, the change point is assumed to be random with distribution

πk = P (λ = k), k = 0, 1, 2, · · · . The goal is to detect the change in distribution as soon as it

occurs subject to a false alarm probability constraint [24].

A sequential detection procedure is a stopping time τ on the sequence of observations {Yn}n≥1

such that for every n, the event {τ ≤ n} is measurable, i.e., it is in sigma-algebra generated by

{Yi}ni=1 which is (FYn = σ(Y1, Y2, · · · , Yn)). A false alarm happens when the stopping time is less

than the change point , i.e., τ < λ. As defined in [24] a reasonable measure for the detection delay

is Average Detection Delay (ADD(τ )) and for false alarm rate is defined as Probability of False
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Alarm (PFA(τ )),

ADD(τ) = Eπ(τ − λ|τ ≥ λ) =
Eπ((τ − λ)+)

Pπ(τ ≥ λ)
(2.5)

PFA(τ) = Pπ(τ < λ). (2.6)

Pπ is the average probability measure with respect to π and Eπ is the expectation, respectively.

We define Pπ(Ω) =
∑∞

k=0 πkPk(Ω), where Pk is probability measure when λ = k and Ek is the

respective expectation.

An optimal change detection procedure minimizes ADD subject to PFA being below a given

threshold α ∈ (0, 1).

The problem can be viewed as a simple hypothesis test, with the following hypotheses,

• H0 : λ > n (i.e. change has not happened before time n.)

• H1 : λ ≤ n (i.e. change has happened before or at time n.)

It is easy to show that the likelihood ratio, Λn, for this test is as follows for each {n ≥ 0} [24],

Λn =
π0

1− π0
+

1

P(λ > n)

n∑
k=1

πk

n∏
t=k

f1(yt)

f0(yt)
(2.7)

In particular, Shiryaev showed that for the case of change point λwith prior geometric distribution,

it is optimal to stop at the first time νB that the likelihood ratio Λn crosses a threshold B which

depends on the threshold α [25],

νB = inf{n ≥ 1 : Λn ≥ B} (2.8)

where threshold B = Bα should be chosen so that PFA(νB) = α. By setting Bα = 1−α
α

, it is not

8



hard to show that νB ∈ ∆(α) = {τ : PFA(τ) ≤ α} [24]. Shiryaev’s procedure is asymptotically

optimal when α→ 0.
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CHAPTER 3: METHODOLOGY

In this chapter we describe the methodology of Compressed Change Detection formally. we also

provide a simple example with synthetic data.

Detection Graph Mapping

The function gi in equation (2.1) is typically unknown. The key point is that the change in the

statistical properties of any of the features indexed by Si will result in some change in the statistical

behavior of Yi. In other words, the detection of a change in Yi can be viewed as a detection of

change in a subset of the random features indexed by Si. Now, the problem can be transformed to

a bipartite graph G = (U, V,E) where U denotes the measurements and V denotes the features,

i.e., |U | = M and |V | = N . The edge set E describes the relation between the measurements and

the features.

E = {eij|∀j ∈ Si}, i = 1, 2, . . . , N (3.1)

where Si is the index set related to Yi. An edge eij means that measurement i can be affected

by feature j. Henceforth, the graph G is called Detection Graph. A typical detection graph is

depicted in Figure 3.1 (a). This detection graph is the key to our approach. It can be obtained from

the system dynamics or by data driven techniques during a training phase.

Change Fingerprints

The second step is the detection of statistical changes to identify the set S. The main idea we

are exploring here is that change point detection can be applied to the measurements of a subset

10



of sensors that define an identifying code over the graph G of sensors/features, thereupon the

detection of sparse statistical changes can be identified from a smaller number of measurements.

In the spirit of compressive sensing [26, 27], the responses of different sensors are driven by more

than one feature. Only measurements from sensors measuring features in the set S will have a

change in their statistical distributions, and thus can be detected using techniques from sequential

change detection. On account of the sparsity of the change process and the covering property of

the identifying code, the detection of change can be efficiently compressed. Thus, the set S can be

identified from the change fingerprints. Note that the identifying code together with the sequential

change detection will provide a unique covering for any change at any node in V .

More specifically, we wait until the first sensor in the identifying code fires. We then wait for a

grace period to allow other sensors in the identifying set of change(s) to fire. Setting the grace

period is a crucial design parameter to guarantee that the affected sensors in the identifying set fire

with high probability and that no other sensors outside the identifying set gives a false alert. In

our algorithm once a sensor fires we consider it as a change sensor until the end. At the end of the

grace period, the sensors which have already fired and raised a flag form the change fingerprint. If

the change fingerprint matches the actual identifying set for the change we have a true alert.

To illustrate the proposed approach, we consider an example in Figure 3.1 (a) with 7 sensors and

9 features. First, we find an ID-code consisting of nodes 1, 5, 6, and 7. Second, we observe the

statistics for Shiryaev change detectors placed at these nodes in Fig. 3.1 (b)-(e). Sensors 1, 6, and

7 detect a change as their statistics exceed a given threshold. The only feature corresponding to

this change pattern is feature 8, which is thus declared as the changed feature.

However, if multiple features, say up to K, change simultaneously, then the idea can be extended

by using a K-identifying code. Such codes provide unique covering for any subset of nodes of

cardinality less than or equal to K. Henceforth, and without loss of generality, we focus on a

11



single change and generalization to multiple changes is further discussed in Chapter 7 using K-

identifying codes.

12



1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9

(a) Bipartite graph.

0 100 200 300 400 500 600 700 800
−20

0

20

40

60

80

100

120

140

160

Time

Node 1

 

 

Threshold
LLR

(b) Node 1

0 100 200 300 400 500 600 700 800
−10

0

10

20

30

40

50

Time

Node 5

 

 

Threshold
LLR

(c) Node 5

0 100 200 300 400 500 600 700 800
−100

0

100

200

300

400

500

600

Time

Node 6

 

 

Threshold
LLR

(d) Node 6

0 100 200 300 400 500 600 700 800
−50

0

50

100

150

200

Time

Node 7

 

 

Threshold
LLR

(e) Node 7

Figure 3.1: Our proposed approach for a set of 9 features (white circles) and 7 sensors (gray
circles). The bolded circles denote the ID-code. The logarithm of Shiryaev statistics at sensors 1,
6, and 7 exceed the threshold, thus feature 8 is detected.
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CHAPTER 4: CASE STUDY

In this chapter, we have M measurement streams1 Yi, i = 1, . . . ,M . We consider N damage

scenarios of concern that could potentially occur on a given structure. It is assumed that each

measurement is only affected by a subset of damage scenarios. For example, if the structure is

equipped with multi-modal sensors (e.g. accelerometers, strain gauges, tiltmeters, etc.), sensors

could respond differently to different changes depending on the sensing modality, the sensors’

locations and the nature of damage. At some unknown point in time λ, an unknown subset S of

damage scenarios occurs; thereafter, the statistics of all measurement streams that respond to the

damage scenarios in S change.

The proposed approach consists of the following steps. First, we learn a damage-sensing graph,

then we find an identifying code for this graph. Sequential change detection is then applied to the

streams corresponding to this code to provide a unique signature for the set of damages S. Since

structural changes are typically sparse, we assume that the cardinality of S is upper bounded by K

and K � N . The goal is to identify S as soon as damages occur. In the following, we provide

details for each of these steps.

Learning damage-sensing Graph

In the first step, we learn a bipartite graph G = (V,E) with vertex set V = A ∪ B and edge set

E. The set A corresponds to the streams of measurement and B to the damage scenarios. An edge

eij ∈ E designates that the jth damage affects the ith measurement. Hereafter, we refer to the

graph G as the damage-sensing graph, since it specifies the sensitivity of different measurement

1These streams do not have to be raw measurements from individual sensors. For example, in our case study these
streams correspond to measurements of pairs of sensors deployed on a structure.
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streams to the various damage scenarios.

To decide if edge eij is in E, we apply a change-point detection algorithm to a sequence of mea-

surements formed from nominal data (under no-damage) followed by measurements from the ith

stream under damage j. If the change-point is detected, we conclude that the jth damage is de-

tected through measurement stream i, and hence eij ∈ E. This procedure is repeated for all

streams and all damage scenarios. Therefore, we need access to measurements under no-damage,

as well as separate measurements for the remaining damage scenarios. Such measurements could

be typically obtained from models of the monitored structures. In this chapter, we obtain these

measurements from a finite element model (FEM) of a 4-span laboratory bridge model.

While various change point detection algorithms can be employed [10, 6], we use Moving Cross-

Correlation Analysis (MCCA) [15, 28], since it is model-free which makes it suitable for our

purpose. We briefly outline the steps of MCCA next.

Background on MCCA

This algorithm relies on the cross correlation between measurements from pairs of sensors over

a moving window. In particular, let yi(t) and yj(t) denote the measurements of sensors i and j,

respectively, at time t. The Moving Cross-Correlation (MCC) at time t, ρij(t), is defined as,

ρij(t) =

∑t
k=t−T+1(yi(k)− µi(t))(yj(k)− µj(t))√(∑t

k=t−T+1(yi(k)− µi(t))2
)(∑t

k=t−T+1(yj(k)− µj(t))2
) (4.1)

for t ≥ T , where T is the size of a moving window. µi(t) and µj(t) are the moving averages for

sensor measurements i and j over the window at time t. To calculate µs(t) for a sensor s we take
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the sample average over the window,

µs(t) =
1

T

t∑
k=t−T+1

ys(k). (4.2)

The analysis consists of a training and a monitoring phase. In the training phase, we use the

baseline data to find the average and variance for the MCC of pairs of sensors,

µij =
1

Nt − T + 1

Nt∑
k=T

ρij(k) (4.3)

σij =

√∑Nt

k=T (ρij(k)− µij)2
Nt − T

, (4.4)

where Nt is the length of the training data, µij and σij are the temporal average and variance of

the MCC, ρij(t), between sensors i and j computed in (4.1). In the monitoring phase, a damage is

declared whenever the MCC between two sensors deviates sufficiently from the average, i.e.,

|ρij(t)− µij| > γ · σij, t > Nt (4.5)

where γ is a tuning parameter.

This analysis is carried out for all pairs of sensors. In other words, every pair of sensors corresponds

to a data stream in the learned damage-sensing graph.

Once a code C is found, we perform change point detection for the streams corresponding to

the nodes in C. In the monitoring phase, the damage is identified by comparing the pattern of

the damage (damage fingerprint) to the identifying set of the different combinations of damage

scenarios. This approach can significantly compress the process of damage detection since we

only need to monitor a suitable covering set for the damage-sensing graph.
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We consider a 4-span laboratory bridge model equipped with 9 strain gauges. These gauges are

Fiber Bragg Grating (FBG) sensors that measure strain by means of the proportional shift in re-

flected wavelength under strain. It is feasible to simulate and test a variety of global and local

damage scenarios that are commonly observed in bridge-type structures. An example of global

damage is alteration in boundary conditions, including roller, pin, and fixed support as shown in

Fig. 4.2(a) (Left). In addition, the bolts connecting the girders and deck can be loosened or re-

moved at different locations to modify the stiffness of the system and simulate local damage as

shown in Fig. 4.2(b) (Left). We identify 9 potential damage scenarios for the structure. To sim-

plify the measurement process, we obtained a large number of measurements from an FEM of the

described bridge model. This FEM was shown to faithfully represent the lab model [29]. A traffic

load moving across the bridge is simulated and the strain at different sensors is recorded. Sample

strain data is shown in Fig. 4.1 for the baseline condition (no damage), as well as different damage

scenarios. For change detection, we use the MCCA method described earlier in Chapter 4. Fig.

4.2 shows the observed change in the cross correlation coefficient under global and local damage

scenarios. In particular, in Fig. 4.2(a) (Left) a roller support is altered to a fixed support and in

Fig. 4.2(b) (Left) few bolts are removed from the first span. These observed changes are then used

to construct the damage-sensing graph based on the sensitivity of different streams to the different

damages. The resulting damage-sensing graph consists of 36 streams corresponding to all pairs of

sensors (set A) and 9 damage scenarios (set B). An ID-code is obtained using a greedy algorithm

and is illustrated in Table 4 along with the identifying set for each damage scenario. For example,

damage scenario 8 is only sensed by the pairs (1, 8) and (2, 4). By monitoring a small number of

streams (6 streams), we are able to provide a unique covering for any of these damages over the

bridge. Furthermore, it is observed that there is no need to use sensors 7 or 9 since they are not

present in the pairs of sensors defining the ID-code. As such, this approach can be potentially used

to optimize the sensor deployment.
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An example of damage detection is shown in Fig. 4.3 where damage scenario 1 occurs at time

522. The algorithm correctly identifies the damage fingerprint {(1, 4), (1, 8), (2, 4), (3, 6)}, which

is the unique signature for damage scenario 1, with a small detection delay. In this example we

have fixed the tuning parameter γ, however, since the variance for different streams is different, a

different threshold is used for the change statistic in (4.5).
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Figure 4.1: Typical Responses of strain gauges. (a) sensor 1 under baseline condition, (b) sensor 1
under damage scenario 1, (c) sensor 2 under baseline condition, (d) sensor 2 under damage scenario
2.

Table 4.1: ID-code and identifying sets for different damage scenarios. Having a 1 in the ijth entry
designates that measurement j is in the identifying set of damage scenario i.

(1,4) (1,8) (2,4) (3,5) (3,6) (6,8)
Scenario 1 1 1 1 0 1 0
Scenario 2 1 0 0 0 0 0
Scenario 3 0 0 1 0 0 0
Scenario 4 1 1 1 1 1 1
Scenario 5 0 1 0 0 0 0
Scenario 6 0 1 1 1 1 1
Scenario 7 0 1 1 0 1 0
Scenario 8 0 1 1 0 0 0
Scenario 9 0 1 1 1 1 0
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(a)

(b)

Figure 4.2: Change in MCC for (a) damage scenario 1, fixing the first boundary condition and (b)
damage scenario 4, removing bolts from the first span.
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Figure 4.3: Damage fingerprint. The revealed pattern consists of pairs {(1,4),(1,8),(2,4),(3,6)},
which corresponds to the identifying set of damage scenario 1.
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CHAPTER 5: ASYMPTOTIC ANALYSIS

In this chapter, we analyze the performance of the proposed approach in the asymptotic regime

where the number of features N →∞. This analysis gives insight into the scaling of the detection

delay as a function of the size of the graph. In our analysis we assume that G is an Erdös-Rényi

bipartite graph with probability of edge placement p. In this section we further assume that the

random features X1, X2, . . . , XN have a pre-change distribution Normal(0, 1/(Np)). After the

change point, the affected feature will have the post-change distributionNormal(1, 1/(Np)). This

setup corresponds to a fixed SNR regime for an additive sensing model, i.e., when gi in (2.1) is

simply a summation. We define a random time as follows,

Definition 5.0.2. We Consider N0 as the first time that the Shiryaev statistic of a sensor in the

identifying code crosses the threshold B and Tg as the grace period. Then,

τ = N0 + Tg (5.1)

is our random time.

In other words, we wait for a duration Tg – known as grace period – after the first time a sensor in

the identifying raises a flag, then we stop. This duration is a design parameter that should be long

enough to allow for the affected sensors to declare the change, but not too long to alleviate false

alarms from those sensors unaffected by the change.

Theorem 5.0.1. The random time τ defined in Definition 5.0.2 is a stopping time.

Proof. WLOG assume that the identifying code is the whole sequence of nodes representing the

measurement side. Define, Fn = σ(Y1(1), ..., Y1(n), Y2(1), ..., Y2(n), YM(1), ..., YM(n)), that is
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the σ-algebra generated by measurements up to time n. Consider the event {τ = n}. If n ≤ Tg

then {τ = n} = ∅ ∈ Fn. Now if n > Tg,

{τ = n} = {N0 + Tg = n} (5.2)

= { inf
u∈[1,...,M ]

{T u(B) + Tg} = n} (5.3)

= { inf
u∈[1,...,M ]

{T u(B)} = n− Tg} (5.4)

=
M⋃
u=1

{T u(B) = n− Tg} ∈ Fn−Tg ⊆ Fn. (5.5)

where T u(B) denotes the Shiryaev stopping time of node u with threshold B.

The Probability of false alarm and isolation of a change at node v on the feature side X is defined

as,

PFAI(v) := P π(N0 ≤ λ) + P (d 6= dG−1(v)) (5.6)

where d is change fingerprint at the time of detection and dG−1(v) is the identifying set of the

changed node v. Since the change happens uniformly at random at the nodes, the total probability

of false alarm and isolation is,

PFAI :=
N∑
i=1

P (v = i)PFAI(i) =
1

N

N∑
i=1

PFAI(i) (5.7)

By symmetry, PFAI(i) for all 1 ≤ i ≤ N are equal. Therefore, PFAI = PFAI(1) for instance.

Theorem 5.0.2. For an Erdös-Rényi bipartite graph, when a change occurs at one uniformly ran-

dom chosen feature with pre-change distribution f0 ∼ N (0, 1
Np

) and post-change distribution

f1 ∼ N (1, 1
Np

), the probability of false alarm and isolation(PFAI) goes to zero asymptotically if

• αtyp ∈ O( 1
log3N

), where αtyp is the Probability of False Alarm (PFA) of an individual change
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detector in a typical graph (which will be defined in the sequel).

• The grace period Tg ∈ O(log1.1N).

• Change point has a prior geometric distribution with parameter ρ ∈ O( 1
Tg

)

Under these conditions the average detection delay would be in the order of O(log1.1N).

To prove Theorem 5.0.2 we first establish the following lemmas.

Lemma 5.0.1. Given bipartite graphs G(U ∪ V, p) with |V | = N and edge placement probability

p, the probability Pr(C not a K-ID code) that a code C = U of size |C| is not an K-ID code is upper

bounded by N2K(1−min{p, 2p(1− p)}(1− p)K−1)|C|.

Proof. Similar to the proof of [23] but for a bipartite graph, consider M as all maximal pairs

(X, Y ) in {X ⊆ V, Y ⊆ V, |X| ≤ K, |Y | ≤ K}.

Pr{C is not K-ID code} ≤
∑

(X,Y )∈M

Pr{I(X, C) = I(Y, C)} (5.8)

≤
∑

(X,Y )∈M

∏
z∈C

Pr[{z ∈ I(X, C) ∩ I(Y, C)}

∪ {z 6∈ I(X, C) ∪ I(Y, C)}] (5.9)

≤
∑

(X,Y )∈M

∏
z∈C

Pr[{z ∈ I(X ∩ Y, C)}

∪ {z ∈ I(X\Y, C) AND z ∈ I(Y \X, C)} AND z 6∈ I(X ∩ Y, C)

∪ {z 6∈ I(X ∪ Y, C)}] (5.10)

Without loss of generality assume |X| ≤ |Y |. If X ⊂ Y because (X, Y ) is maximal then |X| =
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K − 1 and |Y | = K.

Pr[{z ∈ I(X, C) ∩ I(Y, C)} ∪ {z 6∈ I(X, C) ∪ I(Y, C)}]

≤ 1− (1− p)K−1 + (1− p)K (5.11)

= 1− p(1− p)K−1 (5.12)

If X 6⊂ Y we have |X| = K and |Y | = K due to the fact that the pair are maximal and then it is

easy to show that the upper bound is maximized when |X ∩ Y | = K − 1

Pr[{z ∈ I(X, C) ∩ I(Y, C)} ∪ {z 6∈ I(X, C) ∪ I(Y, C)}]

≤ 1− (1− p)K−1 + (1− p)K−1(1− (1− p))2 + (1− p)K+1 (5.13)

= 1− 2p(1− p)K (5.14)

Therefore,

Pr{C is not K-ID code} (5.15)

≤ N2K(max{1− p(1− p)K−1, 1− 2p(1− p)K})|C| (5.16)

≤ N2K(1−min{p, 2p(1− p)}(1− p)K−1)|C| (5.17)

For the case of 1-ID code or simply ID-code we have Pr(C = U. is not an ID-code) ≤ N2(1 −

min{p, 2p(1− p)})|C|.

Corollary 5.0.1. The probability that a randomly generated code C is an ID-code goes asymptoti-
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cally to 1 for some |C| = O(logN), i.e., ∃ constant C1 > 0 such that:

P{C is an ID-code} → 1 if |C| ≥ C1 logN. (5.18)

Now, we establish another lemma.

Lemma 5.0.2. If the process {Zn}∞n=1 is independent of the past, that is Zn is independent of

FZn−1 = σ(Z1, Z2, · · · , Zn−1), and finite dimensional distribution is stationary, that is givenm,n ∈

N and B1, · · · , Bn ∈ BR , where BR is the Borel sigma algebra on real line,

P (Z1 ∈ B1, · · · , Zn ∈ Bn) = P (Zm+1 ∈ B1, · · · , Zm+n ∈ Bn) (5.19)

Then, for stopping time N ,

P (Z1 ∈ B1, · · · , Zn ∈ Bn) = P (ZN+1 ∈ B1, · · · , ZN+n ∈ Bn|N <∞) (5.20)

Proof. Consider event A ∈ FN , where FN is the sigma algebra generated by stopping time N .

Then,

P (A, N <∞, ZN+n ∈ Bn, ZN+n−1 ∈ Bn−1, · · · , ZN+1 ∈ B1) (5.21)

=
∞∑
m=1

P (A, N = m,Zm+n ∈ Bn, Zm+n−1 ∈ Bn−1, · · · , Zm+1 ∈ B1) (5.22)

=
∞∑
m=1

P (A, N = m)P (Zm+n ∈ Bn, Zm+n−1 ∈ Bn−1, · · · , Zm+1 ∈ B1) (5.23)

=
∞∑
m=1

P (A, N = m)P (Zn ∈ Bn, Zn−1 ∈ Bn−1, · · · , Z1 ∈ B1) (5.24)

= P (A, N <∞)P (Zn ∈ Bn, Zn−1 ∈ Bn−1, · · · , Z1 ∈ B1) (5.25)
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By placing A = Ω, where Ω is the sample space, then,

P (ZN+1 ∈ B1, · · · , ZN+m∈Bm|N <∞) (5.26)

=
P (Ω, N <∞)P (Zn ∈ Bn, Zn−1 ∈ Bn−1, · · · , Z1 ∈ B1)

P (N <∞)
(5.27)

= P (Z1 ∈ B1, · · · , Zn ∈ Bn). (5.28)

As a corollary of lemma 5.0.2, we have,

Corollary 5.0.2. For positive constants C1, C2 and arbitrary density functions f0(x) and f1(x) we

have

P (C1

n∑
k=N

Πn
t=k

f1(Yt)

f0(Yt)
> C2|N <∞) = P (C1

n−N+1∑
k=1

Πn−N+1
t=k

f1(Yt)

f0(Yt)
> C2) (5.29)

Before we write the proof, we define a typical graph. First, we define an indicator function of

measurement i as Zi(N) := (zi1, z
i
2, · · · , ziN) where zij is 1 if measurement Yi is connected to Xj .

zij are i.i.d Bernoulli random variables with parameter p. Then the typical graph Gε
typ is the graph

with indicator functions Zi(N) such that

2−N(H(p)+ε) ≤ P (Zi(N)) ≤ 2−N(H(p)−ε), 1 ≤ i ≤M (5.30)

where H(p) = −p log p− (1− p) log(1− p) is the binary entropy [30].

Lemma 5.0.3. For the typical graphGε
typ, if ε ∈ o( 1

N
) the probability of each event (zi1, z

i
2, · · · , ziN)

goes to 2−NH(p) asymptotically.
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Proof. P (zi1, z
i
2, · · · , ziN) = lim

N→∞
2−N(H(p)+ε) = lim

N→∞
2−N(H(p)−ε) = 2−NH(p)

Corollary 5.0.3. As N → ∞, the number of features measured by sensors in typical graph goes

to Np.

Lemma 5.0.4. The probability that a graph is typical goes to 1 for sufficiently large N .

Proof. By the weak law of large numbers,

−1

n
logP (Zi(N))→ −E[logP (zi1)] = H(p)(in probability) (5.31)

Therefore, given ε > 0, there exists Ni, such that for all N > Ni,

Pr(|−1

n
logP (Zi(N))−H(p)| > ε) <

ε

M
, 1 ≤ i ≤M (5.32)

By choosing N > max(N1, · · · , NM) the probability of union of the sets in (5.32) must be less

than ε.

Now we can readily write the proof of Theorem 5.0.2.

Proof. The proof consists of three parts. First we establish an upper bound on the probability of

false alarm (P π(N0 ≤ λ)) and show that it goes to zero asymptotically. Then we find an upper

bound on the probability of false isolation (P (d 6= dG−1(v))) in two parts, namely, by bounding the

probability of false alarm of unaffected nodes and the probability of missed detection of affected

nodes. We show that those upper bounds go to zero asymptotically as well.
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Now we bound the probability that the first sensor fires before the change point.

P π(N0 ≤ λ) ≤ P π(N0 ≤ λ | C is ID-code AND G is typical)

+ P π(C is not ID-code ) + P π(G is not typical) (5.33)

≤
|C|∑
i=1

P π(T i ≤ λ | C is ID-code AND G is typical)

+ P π(C is not ID-code ) + P π(G is not typical) (5.34)

≤
|C|∑
i=1

P π(T typ ≤ λ) + P π(C is not ID-code ) + P π(G is not typical)

= |C|αtyp + P (C is not ID-code ) + P (G is not typical) (5.35)

where, T i is the individual Shiryaev stopping time for sensor i. αtyp is the probability of false alarm

(PFA) for a sensor in a typical graph. In equation (5.35), since the event {λ = k} is independent

of the event {C is not ID-code} and {G is not typical} for all k, we can replace the probability

measure P π with P . The upper bound we obtain goes to zero as N → ∞ by the assumptions of

Theorem 5.0.2, Corollary 5.0.1, and Lemma 5.0.4.

Next, we analyze the probability of false isolation. The event {d 6= dG−1(v)} occurs when either

• {at least one sensor in dG−1(v) does not fire before the stopping time τ} := E ,

• or {at least one sensor not in dG−1(v) falsely fires before the stopping time τ}:= F .

Now we want to show that P π(E) → 0 asymptotically. Henceforth, all probabilities are condi-

tioned on the event {N <∞}.

P π(E) ≤ P π(E|N0 > λ AND C is ID-code AND G is typical)

+ P π(N0 ≤ λ) + P π(C is not ID-code) + P (G is not typical) (5.36)
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By the assumptions in the statement of Theorem 5.0.2, corollary 5.0.1, and the result of previous

part the last three terms on the RHS go to zero asymptotically. It remains to show that P π(E|N0 >

λ AND C is ID-code AND G is typical) goes to zero asymptotically.

P π(E|N0 > λ AND C is ID-code AND G is typical) (5.37)

≤
∑

i∈dG−1

P π(T i > N0 + Tg|N0 > λ AND C is ID-code AND G is typical) (5.38)

≤
∑

i∈dG−1

P π(T i > λ+ Tg|C is ID-code AND G is typical) (5.39)

≤ |C|P π(T typ − λ > Tg) (5.40)

≤ |C|E
π[T typ − λ]

Tg
(5.41)

≤ |C|E
π[(T typ − λ)+]

P π(T typ ≥ λ)Tg
(5.42)

≤ |C|ADD
typ

Tg
(5.43)

∼ |C|| logαtyp|
Tg(

1
2

+ | log(1− ρ)|)
(5.44)

In inequality (5.40), T typ is associated with a typical measurement in the typical graph G. Inequal-

ity (5.42) is attained using Chebyshév’s inequality. Equation (5.44) is a result of Theorem 4 in

[24]. By the assumptions of the Theorem, equality (5.44) goes to zero asymptotically.

For bounding the probability of the event F , note that P π(F) = P∞(F) since the change never

affects the corresponding set of nodes and P∞ is the corresponding probability measure. In other

terms, all data for these sensors are coming from the f0(x) distribution.
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P π(F) = P∞(F) (5.45)

≤ P∞(F|C is ID-code AND G is typical) (5.46)

+ P (C is not ID-code) + P (G is not typical) (5.47)

The last two terms on the right hand side of inequality (5.47) go to zero by Corollary 5.0.1 and

Lemma 5.0.4. Now it remains to prove that P∞(F|C is ID-code AND G is typical) goes to zero

asymptotically.

P∞(F|C is ID-code AND G is typical) (5.48)

≤
∑

i 6∈dG−1 (v)

P∞(N0 ≤ T i ≤ N0 + Tg|C is ID-code AND G is typical) (5.49)

≤ |C|P∞(N0 ≤ T typ ≤ N0 + Tg) (5.50)

≤ |C|(P∞( max
N0<n≤N0+Tg

Λtyp
n > B| max

0≤n≤N0

Λtyp
n <

√
B) + P ( max

0≤n≤N0

Λtyp
n ≥

√
B)) (5.51)

T typ in inequality (5.50) is a typical node among unaffected sensors. It is easy to show that the

second term of the right hand side of (5.51) goes to zero asymptotically.

The rest is to show that, |C|P∞(maxN0<n≤N0+Tg Λtyp
n > B|max0≤n≤N0 Λtyp

n <
√
B) goes to zero
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asymptotically.

|C|P∞( max
N0<n≤N0+Tg

Λtyp
n > B| max

0≤n≤N0

Λtyp
n ≤

√
B)

≤ |C|P∞( max
N0<n≤N0+Tg

P (λ > N0)

P (λ > n)
.Λtyp

N0
.Πn

t=N0+1

f1(Yt)

f0(Yt)

+
1

P (λ > n)

n∑
k=N0+1

ρ(1− ρ)k−1Πn
t=k

f1(Yt)

f0(Yt)
> B) (5.52)

≤ |C|P∞( max
N0<n≤N0+Tg

1

(1− ρ)n−N0
.
√
B.Πn

t=N0+1

f1(Yt)

f0(Yt)

+
n∑

k=N0+1

ρ

(1− ρ)n−k+1
Πn
t=k

f1(Yt)

f0(Yt)
> B) (5.53)

≤ |C|P∞( max
N0<n≤N0+Tg

1

(1− ρ)Tg
.
√
B.Πn

t=N0+1

f1(Yt)

f0(Yt)

+
n∑

k=N0+1

ρ

(1− ρ)Tg+1
Πn
t=k

f1(Yt)

f0(Yt)
> B) (5.54)

≤ |C|P∞( max
0<n≤Tg

1

(1− ρ)Tg
.
√
B.Πn

t=1

f1(Yt)

f0(Yt)

+
n∑
k=1

ρ

(1− ρ)Tg+1
Πn
t=k

f1(Yt)

f0(Yt)
> B) (5.55)

≤ |C|
E∞( 1

(1−ρ)Tg .
√
B.Πn

t=1
f1(Yt)
f0(Yt)

+
∑Tg

k=1
ρ

(1−ρ)Tg+1 Πn
t=k

f1(Yt)
f0(Yt)

)

B
(5.56)

≤ |C|
(1− ρ)Tg

(
1√
B

+
ρTg

(1− ρ)B
) (5.57)

where inequality (5.55) is a result of Lemma (5.0.2) and inequality (5.56) is obtained from Doob’s

Maximal inequality for martingales [31], sinceZn = 1
(1−ρ)Tg .

√
B.Πn

t=1
f1(Yt)
f0(Yt)

+
∑n

k=1
ρ

(1−ρ)Tg+1 Πn
t=k

f1(Yt)
f0(Yt)

is a positive sub-martingale with respect to FYn under probability measure P∞. To show that, first
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it is obvious that Z is adapted to FYn . Secondly, for all n ∈ N

E∞|Zn| =
√
B

(1− ρ)Tg

n∏
t=1

E∞(
f1(Yt)

f0(Yt)
) +

n∑
k=1

ρ

(1− ρ)Tg

n∏
t=k

E∞(
f1(Yt)

f0(Yt)
) (5.58)

=

√
B

(1− ρ)Tg
+

ρ.n

(1− ρ)Tg
<∞ (5.59)

Thirdly, we need to prove that E∞(Zn+1|FYn ) ≥ Zn, i.e.

E∞(Zn+1|FYn ) = E∞(
1

(1− ρ)Tg
.
√
B.Πn+1

t=1

f1(Yt)

f0(Yt)
+

n+1∑
k=1

ρ

(1− ρ)Tg+1
Πn+1
t=k

f1(Yt)

f0(Yt)
|FYn ) (5.60)

=
1

(1− ρ)Tg
.
√
B.Πn

t=1

f1(Yt)

f0(Yt)
E∞(

f1(Yn+1)

f0(Yn+1)
|FYn )

+ E∞(
f1(Yn+1)

f0(Yn+1)
|FYn )

n∑
k=1

ρ

(1− ρ)Tg+1
Πn
t=k

f1(Yt)

f0(Yt)
+

ρ

(1− ρ)Tg+1
.E∞(

f1(Yn+1)

f0(Yn+1)
|FYn )

(5.61)

=
1

(1− ρ)Tg
.
√
B.Πn

t=1

f1(Yt)

f0(Yt)
E∞(

f1(Yn+1)

f0(Yn+1)
)

+ E∞(
f1(Yn+1)

f0(Yn+1)
)

n∑
k=1

ρ

(1− ρ)Tg+1
Πn
t=k

f1(Yt)

f0(Yt)
+

ρ

(1− ρ)Tg+1
E∞(

f1(Yn+1)

f0(Yn+1)
)

(5.62)

=
1

(1− ρ)Tg
.
√
B.Πn

t=1

f1(Yt)

f0(Yt)
(5.63)

+
n∑
k=1

ρ

(1− ρ)Tg+1
Πn
t=k

f1(Yt)

f0(Yt)
+

ρ

(1− ρ)Tg+1
(5.64)

= Zn +
ρ

(1− ρ)Tg+1
> Zn. (5.65)

The right hand side of the inequality (5.57) goes to zero asymptotically by the assumptions in the
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statement of the Theorem. Now for the calculation of the detection delay we have,

Eπ[N0 + Tg − λ|N0 > λ] = Tg + Eπ[N0 − λ|N0 > λ] (5.66)

= Tg + Eπ[ inf
1≤i≤|C|

T i − λ| inf
1≤i≤|C|

T i > λ] (5.67)

≤ Tg +
Eπ[(T typ − λ)+]

P (inf1≤i≤|C| T i > λ)
≤ Tg +

Eπ[(T typ − λ)+]

P (T typ > λ)
(5.68)

≤ Tg + ADDtyp ∼ Tg +
| logαtyp|

D(f typ1 ||f
typ
0 ) + | log(1− ρ)|

(5.69)

The order of Tg dominates the second term on (5.69). This completes the proof.
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CHAPTER 6: NUMERICAL RESULTS

To back up our asymptotic analysis we first compute the length of the ID-code as N increases. In

Figure 6.1 the length of the ID-code is plotted vs. logN . We observe that for Erdös-Rényi bipartite

random graphs, the length of the ID-code grows logarithmically with the size of the graph, which

matches (5.18). This demonstrates that significant savings can be achieved for detecting sparse

changes.

Next, we present some numerical results for the considered bipartite graph model. The pre-

change distribution is f0(Xi) = N (0, 1
Np

). The post-change probability density function is f1 =

N (1, 1
Np

). The Shiryaev [25] change detection algorithm is used for these simulations. The

probability of edge placement is p = 0.5 and the Shiryaev threshold is chosen to ensure that

αtyp = O( 1
log3N

). We also set the grace period Tg to be in O(log1.1N) and the geometric distri-

bution parameter ρ for the change point to be in O( 1
log1.1N

). The probability of false alarm and

isolation PFAI as a function of the total number of features N is plotted in Fig. 6.2. As shown,

PFAI approaches 0 as N increases when αtyp decreases as O( 1
log3N

) in agreement with Theorem

5.0.2. Fig. 6.3 shows the scaling of the detection delay with N . The detection delay is shown to

scale linearly with log1.1N , which is consistent with the derived upper bound in Theorem 5.0.2.
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Figure 6.1: Length of the ID-code vs. number of nodes in a random bipartite graph with p = 0.5.
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Figure 6.2: Probability of false alarm and isolation PFAI goes asymptotically to 0.
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Figure 6.3: Detection delay grows almost linearly with log1.1N , which is consistent with the upper
bound in Theorem 5.0.2.
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CHAPTER 7: GENERALIZATIONS

In this chapter, we briefly discuss generalizations of our approach to different scenarios.

Multiple Concurrent Changes

This approach and principle can be extended to multiple concurrent changes. The idea is to use

K-Identifying codes or simply K-ID codes which give unique signature to every subset of nodes

in the graph with cardinality less than or equal to K. In particular, consider a bipartite graph

G = (U, V,E) where U and V are two disjoint sets of size m and n. E denotes the edge set and

eij ∈ E designates that the ith node in U is connected to the jth node in V . Consider any C ⊆ U

and define the identifying set of X ⊆ V with respect to C as

I(X, C) =
⋃
x∈X

N (x) ∩ C, (7.1)

where N (x) = {i ∈ U : eix ∈ E}, is the neighborhood of vertex x ∈ V . We can readily define an

K-identifying code [19, 23].

Definition 7.0.3. A collection of vertices C ⊆ U is called a K-identifying code over V if ∀Xi, Xj ⊆

V , 1 ≤ |Xi| ≤ K and Xi 6= Xj

I(Xi, C) 6= ∅, (7.2)

I(Xi, C) 6= I(Xj, C). (7.3)

Finding an optimal (minimum cardinality) K-ID code is a NP-hard problem in general. Therefore,

some greedy algorithms were proposed to reduce complexity and provide sub-optimal solutions
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[18, 17]. We follow the work of Ray et al. in [17] to find a greedy algorithm for determining a

K-ID code.

First consider the whole set U as the code. Then check whether the code satisfies (7.2) and (7.3). If

not, the graph cannot admit a K-ID code and if yes the algorithm proceeds and removes one vertex

according to a predefined sequence of nodes at a time. At each step, if the remaining code does not

satisfy (7.2) and (7.3), the deleted vertex is put back in the code, and if it does, we continue until

every single node is examined. The remaining code is an irreducible K-ID code, i.e., no subset of

the resulting code is a K-identifying code.

The following lemma guarantees that a K-ID code with addition of a vertex or more still remains

K-ID code and is similar to lemma 1 in [17] for the case K = 1.

Lemma 7.0.5. If C is a K-ID code, any C ′ such that C ⊆ C ′ ⊆ U is a K-ID code.

Proof. For the sake of contradiction, there should be a C ′ such that C ⊆ C ′ which is notK-ID code.

Consequently, there should be two distinct subsets X, Y ⊆ U with cardinality less than or equal to

K such that

I(X, C ′) = I(Y, C ′) (7.4)(⋃
x∈X

N (x) ∩ C ′
)
∩ C =

(⋃
y∈Y

N (y) ∩ C ′
)
∩ C (7.5)

⋃
x∈X

(N (x) ∩ C ′ ∩ C) =
⋃
y∈Y

(N (y) ∩ C ′ ∩ C) (7.6)

⋃
x∈X

N (x) ∩ C =
⋃
y∈Y

N (y) ∩ C (7.7)

Equation (7.7) contradicts the assumption of C being a K-ID code.

The following Theorem provides guarantees for the output of the algorithm to be irreducible and

appears in [17] as Theorem 1 for K = 1.
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Theorem 7.0.3. The code generated by the algorithm depicted in Figure 7.1 is irreducible.

Proof. Assume C, the output of algorithm in Figure 7.1 to be reducible. Therefore, there is at least

one node x ∈ C such that C \ {x} is also a K-ID code. Consider iteration i in which the node

x is being considered and the corresponding K-ID code is Ci. Then Ci \ {x} is not an ID-code,

otherwise the node x would have been deleted in iteration i. Since C \ {x} ⊆ Ci \ {x}, by lemma

7.0.5, C\{x} is not aK-ID code which results in contradiction and hence completes the proof.

Arbitrary Graph Topology

So far, we have only considered Erdös-Rényi bipartite graphs. However, the approach extends

beyond bipartite graphs to graphs with arbitrary topology. Such graphs could be used to represent

other physical or social phenomena beyond the sensors/features problem we introduced in Chapter

2. For example, the nodes of a given graph can be used in an SHM application to represent a set of

critical points on the bridge structure. The connectivity represents the load distribution across the

structure. In other words, two points i and j are connected by an edge eij if a damage induced at

node i is sensed by a sensor placed at node j.

Figure 7.2 shows an identifying code for a 20-node graph. To learn this code we used the polynomial-

time ID-code algorithm, which can generate irreducible codes for arbitrary topologies. Change

detectors deployed at the ID code were shown to detect a change in the distribution at any given

node.
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procedure GREEDY

C ← U
S ←predefined sequence of U
if C does not satisfy (7.2) and (7.3) then

G does not admit K-ID code
else

for i:=1 to m do
Cnew ← C \ S(i)
if Cnew satisfy (7.2) and (7.3) then
C ← Cnew

end if
end for

end if
end procedure

Figure 7.1: Greedy algorithm for finding K-ID code.

Figure 7.2: Identifying code for a 20-node graph. The nodes encircled in red form an identifying
code.
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CHAPTER 8: CONCLUSIONS

In this thesis, we introduced a new framework for compressed change detection. The main ap-

proach integrates ideas from the theory of identifying codes over graphs and change point detec-

tion in sequential analysis to compress the detection of changes in stochastic phenomena. When

the change process itself is sparse, we get a significant compression in the number of measure-

ments since the size of ID code scales only logarithmically with the total number of nodes. We

established asymptotic results on the average detection delay for the probability of false alarm and

isolation to go to zero. It is shown that the detection delay increases gracefully with the number of

damage scenarios. Generalizations to multiple concurrent changes and arbitrary graph topologies

were also discussed.

We also leveraged the sparsity and locality of damage occurring in structures to efficiently com-

press the process of damage detection. This goal is achieved using the newly developed framework

for compressed change detection. The effectiveness of the proposed approach is verified through a

case study wherein different damage scenarios occurring on a 4-span bridge model equipped with

strain gauges are correctly and quickly identified based on the damage fingerprints.
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