
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2005 

Interconnection, Interface And Instrumentation For Interconnection, Interface And Instrumentation For 

Micromachined Chemical Sensors Micromachined Chemical Sensors 

Naveenkumar Srinivasaiah Palsandram 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Palsandram, Naveenkumar Srinivasaiah, "Interconnection, Interface And Instrumentation For 
Micromachined Chemical Sensors" (2005). Electronic Theses and Dissertations, 2004-2019. 482. 
https://stars.library.ucf.edu/etd/482 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236293453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/482?utm_source=stars.library.ucf.edu%2Fetd%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


INTERCONNECTION, INTERFACE AND INSTRUMENTATION FOR   
MICROMACHINED CHEMICAL SENSORS 

 
 
 
 
 
 
 

by 
 
 
 

NAVEENKUMAR PALSANDRAM 
B.E. Karnatak University, 2000 

 
 
 

A thesis submitted in partial fulfillment of the requirements  
for the degree of Master of Science 

in the Department of Electrical and Computer Engineering   
in the College of Engineering and Computer Science  

at the University of Central Florida 
Orlando, Florida 

 
 
 
 
 
 
 
 
 

Summer Term 
2005 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2005 Naveenkumar Palsandram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



ABSTRACT 

In realizing a portable chemical analysis system, adequate partitioning of a 

reusable component and a disposable is required. For successful implementation of 

micromachined sensors in an instrument, reliable methods for interconnection and 

interface are in great demand between these two major parts. This thesis work 

investigates interconnection methods of micromachined chip devices, a hybrid fluidic 

interface system, and measurement circuitry for completing instrumentation. The 

interconnection method based on micromachining and injection molding techniques was 

developed and an interconnecting microfluidic package was designed, fabricated and 

tested. Alternatively, a plug-in type design for a large amount of sample flow was 

designed and demonstrated. For the hybrid interface, sequencing of the chemical analysis 

was examined and accordingly, syringe containers, a peristaltic pump and pinch valves 

were assembled to compose a reliable meso-scale fluidic control unit. A potentiostat 

circuit was modeled using a simulation tool. The simulated output showed its usability 

toward three-electrode electrochemical microsensors. Using separately fabricated 

microsensors, the final instrument with two different designs—flow-through and plug-in 

type was tested for chlorine detection in water samples. The chemical concentration of 

chlorine ions could be determined from linearly dependent current signals from the 

instrument. 
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CHAPTER ONE: INTRODUCTION 

"No matter how vast your knowledge or how modest, it is your own mind that has to 

acquire it. It is only with your own knowledge that you can deal. It is only your own 

knowledge that you can claim to possess or ask others to consider. Your mind is your 

only judge of truth — and if others dissent from your verdict, reality is the court of final 

appeal. Nothing but a man's mind can perform that complex, delicate, crucial process of 

identification which is thinking. Nothing can direct the process but his own judgment. 

Nothing can direct his judgment but his moral integrity." 

Ayn Rand, 1978 

 

There has been a rapid progress in the development of micrototal analysis systems 

(µTAS), where complete chemical analysis or sensing can be performed in a compact 

instrument [1, 2]. The precisely defined sample volumes as well as the automated control 

over the microflows offer the potential for greatly improved speed and sensitivity of the 

instrument compared with the conventional glassware-based apparatus [3]. The progress 

in the field was originally enabled from developments in analytical chemistry and 

traditional precision engineering. However, after the introduction of innovative 

micromachining techniques, which combine traditional 3-D manufacturing methods such 

as electroplating, and molding with non-traditional 2-D semiconductor fabrication 

process such as thin film deposition and lithography, major breakthroughs have taken 

place as can be seen in DNA microarray [4]. Unlike the pure electrical components and 
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instrument, in realizing this type of instruments, generic challenges include the 

partitioning of the various components in an instrument. The power supply, heaters, the 

mechanism for getting the sample into and out of the instrument, providing fresh viable 

reagents, and the detection method and sensors must be carefully considered [4, 5]. 

Depending on the application, the electronics, and the power for the fluidic handling 

mechanism may be interfaced with the disposable microfluidic and/or sensing 

component. For the chemical analysis instrumentation, the partitioning design, in which 

the whole instrument is divided into a hybrid fluidic system and a disposable chip, has 

been a viable approach. The viability of a compact hybrid fluidic system relies on the 

sophisticated and robust miniature fluidic components as well as control and 

measurement circuitry that can be easily interfaced with the micromachined disposable 

chemical sensor [6].  Although a variety of microfluidic components have been 

developed to control the movement of fluids, (for example, using acoustic, centrifugal, 

electromagnetic and pneumatic forces) [7-11], the components must be selected carefully 

to form a compact instrument. In addition, the interface/interconnection between the 

system and the disposable is of critical importance for the successful instrumentation. 

In this work, the subjects of interconnection as a part of disposable chip, a hybrid 

fluidic system as an interface to a disposable chip and measurement circuitry for 

instrumentation are investigated to realize a compact and portable chemical analysis 

system. 
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1.1 Literature Review 

1.1.1 Interconnection  

MEMS fluidic devices have long been plagued by the lack of an efficient and 

convenient means of connection to the outside world or even to other MEMS devices. 

According to A. Puntambekar “one of the non-trivial challenges in the successful 

incorporation of a microfluidic component in the system has been the development of 

reliable microfluidic interconnection technologies which connect the micro-scale devices 

to the macro-world”. Until now, many micromachined fluidic devices incorporate 

connections formed by manually gluing tubes to input/output ports.   

 

Figure 1.1: Fluidic coupler with sleeve around the bore, capillaries inserted into the 
sleeve coupler[12]. 

Figure 1.1 shows an interconnection technique in which coupler is created on 

silicon substrate with deep reactive ion etching (DRIE) [12]. In this technique holes are 

drilled using DRIE and matched with the inside outside diameter of the capillaries. The 

capillary is inserted into the coupler opening and held with adhesive. This technique uses 

a DRIE process, which is very expensive and thus not suitable for a disposable 

component. This approach uses silicon sleeve as coupler material which is brittle in 
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nature and needs an extra step of adhesive bonding to hold the capillary/silicon interface. 

The sleeve enhances the mechanical integrity of the coupling, but there is a chance of 

introducing an additional dead volume during the process. 

(a)

(b)

(c)(a)

(b)

(c)  

Figure 1.2: (a) molded coupler process flow, (b) molded coupler, and (c) post coupler 
attached to fluidic port[13].

Figure 1.2 shows another way of interconnecting tubing to fluidic port by 

introducing intermediate coupler that accurately mates the tubing and port. The mold is 

fabricated from two bonded silicon wafers (fig 1.2a). One is an oxidized wafer etched 

with KOH to create through-holes; the other wafer is dry etched to form a circular peg. 

The peg forms alignment structure for tubing. By bonding these two structures together 

and coating them with a PTFE release layer, a mold is formed [13]. Moldings are realized 

by melting raw material such as polyolefin around fused silica tubing fitted on mold posts 

and releasing when cool (fig 1.2b). Released structures are then attached to fluidic ports 

simply by re-heating polyolefin, allowing it to reflow and adhere to silicon port (fig 1.2c). 

This technique needs an extra step for fabricating mold using DRIE process which is of 

high cost, and it also needs post processing of thermal bonding. 
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Figure 1.3: Fabrication process of o-ring couplers[14]. 

Figure 1.3 shows another way of interconnecting tubing to port by o-ring rubber 

coupler. The process of fabricating coupler starts with etching silicon substrate by DRIE 

to define o-ring shape (fig 1.3a). Then silicon-di-oxide layer is thermally grown followed 

by silicon-nitride deposition to serve as adhesion layer between substrate and silicone 

rubber (fig 1.3b). The silicone rubber is squeezed into the DRIE cavities to form the o-

ring (fig 1.3c). Then DRIE etching is done on backside of the substrate to form backside 

hole (fig 1.3d). The oxide and nitride membranes are then stripped, using chemical 

etchants (fig 1.3e). The tube is inserted in the hole, and the rubber o-ring deforms to 

establish a good seal (fig 1.3f) [14]. The process is long and complicated, which is not 

adequate for producing an inexpensive component. Furthermore, the application of this 

approach is limited to silicon substrate.      

 

Figure 1.4: Schematic diagram of interconnect (a) flanging operation and (b) assembled 
structure[15]. 
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Figure 1.4 shows another interconnecting method used for glass- and plastic-

based microfluidic systems. In this technique, holes are drilled on glass or polymer 

substrate and polymer tubings are inserted. Interconnections are formed by deformation 

on polymer tubings which serves as flanges [15]. Since the holes are formed separately, 

alignment with the microfluidic channels could be difficult. Thermal bonding is needed 

as post-process. Although Pattekar and Kothare have proposed a modified approach for 

the previous technique compatible for high temperature and pressure, the same technical 

challenge remains [16]. In their approach, they use formation of flange on Teflon tubing 

by thermal deformation. High temperature epoxy bonding is used for reinforcement of 

the interconnection. 

 

 

Figure 1.5: Process flow of integrated polymer sealant interconnector[17]. 

Figure 1.5 shows another technique of fluidic interconnector using an integrated 

polymer sealant. First, holes are drilled on a Pyrex glass wafer, a Mylar (DuPont Mylar 

50M44) film is attached to glass wafer by a thermal bonding process. After the Mylar 

film is bonded onto the wafer, a photoresist is spun on and patterned as an etchant mask. 

The Mylar film is patterned by oxygen plasma. The remaining Mylar film is used as the 

integrated polymer sealant to assist the micro-to-macro interconnection. A capillary tube 
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is then inserted through the polymer sealant, then a droplet of room-temperature curing 

(instant glue) is applied to enhance the bonding strength [17]. The extra step for adhesive 

bonding is still needed in this method. 

1.1.2 Hybrid fluidic interface 

An intermediate scale of the system is required for driving fluids to a reactor or 

sensor surface. For driving and routing microflows, various types of micro-pumps [18-

20] and microvalves [21, 22] have been studied. For some applications the reduction in 

size itself is critical (e.g. minimal invasive surgery). For other applications however, it is 

the precise control of small amounts of fluids (e.g. chemical analysis system), the reduced 

consumption of reagents (e.g. screening) or the capability of building integrated systems 

with reduced power consumption (e.g. portable health monitoring) [11] that is critical. 

This thesis focuses more on the adequate selection and interface of the discrete pumps 

and valves than on the development of individual components. A mesoscale hybrid 

fluidic system has been studied as an interface to a chip device [6]. 

 

Figure 1.6: Schematic of the micromachinable actuators used in flow control valves[11]. 
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Microvalves:  during the last few years a wide variety of microvalves has been 

developed by many research groups [23, 24]. Different types of valves have been 

developed using various driving principles shown in Fig 1.6 such as electrostatic, 

thermopneumatic, electromagnetic and bimetallic actuation. Among those, commercially 

available microvalves include a bimetallic-driven microvalve manufactured by IC-

Sensors [25], a thermopneumatic valve manufactured by Redwood Microsystems [26] 

and a pneumatically-actuated elastomer (PDMS) membrane valves manufactured by 

Hoerbiger-Origa-Pneumatics [27]. While dealing with chemical samples in analytical 

chemistry, often the pinch valve is preferred due to non-contact operation of the valve 

with the chemical samples. Since the valve shuts off the flow by pinching the tubing not 

by interacting with the sample itself, any possible chemical interference or contamination 

can be prevented [28]. A low power, small scale pinch valves are commercially available 

from Bio-Chem Valve Inc.  

Micropumps:  The pump mechanisms are based either on traditional hydraulic 

pump or electro hydrodynamic, electroosmotic, or traveling wave principles [29]. For 

commercial products, a micromachined flat-walled valveless diffuser pumps (Techno 

valves, Sweden) [6, 30] and VAMP (valve and micropump) have been developed 

(Microvalves, Germany). The VAMP device could be used either as an active microvalve 

or as a forward and reverse working micropump [31]. An extensive review can be found 

in the Woias’s article [32]. A commercially available miniaturized peristaltic pump 

(Instech Laboratories, Inc) can offer a wide range of pumping rates and self-priming 

function without contacting the chemical samples. 
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Hybrid fluidic system: Figure 1.7 shows the hybrid macro-micro fluidics system 

for a chip-based sensor developed by C.R. Tamanaha et al[6]. The fluidics system 

consists of four discrete components: (1) a flow cell mounted on top of the sensor chip; 

(2) a PDMS membrane into which pump and valve membranes and fluid reservoirs have 

been molded; (3) the plastic fluidics cartridge, which houses the sensor chip and fluidics; 

and (4) the pump and valve actuator system. 

 

Figure 1.7: Schematic cross-sectional view of the complete mechanical assembly of 
hybrid fluidic system[6]. 

The pump and pinch valves are molded using positive relief brass mold on PDMS 

membrane. The active component of the membrane is the dual-chamber PDMS pump, 

based on the valveless diffuser/nozzle pump principle. Figure 1.8 shows the assembled 

PDMS membrane with fluidic cartridge. The microfluidics is driven by the pump and 

valve actuators contained in the external unit that interfaces kinematically with the PDMS 
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membrane on the cartridge. Figure 1.9a shows the schematic of principal components in a 

pump actuator. The actuator is a simple-lever, flexure-hinge displacement amplifier that 

increases the motion of a piezoelectric stack. The horizontal motion of piezoelectric stack 

is transferred by the lever and strap linkage into an amplified vertical motion of the pump 

interface plunger. Figure 1.9b shows the schematic of principal components in a valve 

actuator. The actuator is a cantilever operated by shape memory alloy (SMA) wire. The 

open/close of microfluidic channel is performed by locally compressing the pliable 

PDMS membrane channels. When current is applied, the SMA wire shrinks in length, 

causing the cantilever to bend downwards. The biasing spring allows the cantilever to 

return to its starting position once the power to the wire is removed.  

 

 Figure 1.8: Schematic of assembled PDMS membrane onto the fluidic catridge[6]. 
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(a) (b)(a) (b)  

   Figure 1.9: Schematic cross-sectional drawing of the principal components in (a) pump 
actuator, (b) valve actuator[6]. 

1.1.3 Measurement circuitry 

Chemical sensing is a part of information acquisition process in which some 

insight is obtained about the chemical composition of the system in real time. The group 

of electrochemical sensors is the widest and oldest of chemical sensors. Some have 

achieved commercialization but others are still under development[33]. Among those, 

amperometric sensors use transference of ionic to electronic charges between 

electroactive species and electrode. When the species is oxidized or reduced at an 

electrode, the current produced is directly related to concentration of the species. All the 

electrochemical variables are analog, so suitable circuitry for controlling and measuring 

voltages, currents and charges in analog domain is needed. The circuit elements best 

suited to these jobs are operational amplifiers[34]. Since 1942 when Hickling built the 

first three electrode potentiostat using operational amplifiers, a lot of research has been 

done to build better potentiostat [35-37].  
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Figure 1.10: Basic potentiostat design. 

The potentiostat circuit measures the potential difference between the working 

and reference electrode, applies the current through the counter electrode and measures 

the current as an iR drop over the series resistor Rm (fig 1.10). The control amplifier CA 

is responsible for keeping the voltage between the reference and the working electrode as 

close as possible to the voltage of the input source Ei. It adjusts its output automatically to 

control the cell current [34, 38]. Various instrumentation designs have been developed by 

the researchers using OpAmp to fulfill a simple, reliable and portable amperometric 

measuring system [39]. 

1.2 Motivation and objective 

In the development of a compact and portable instrument for chemical analysis, as 

discussed in the introduction, adequate partition of the instrument—a disposable chip, 

interconnection, a hybrid fluidic system and measurement circuitry—is required. For 

handling liquid samples in such instrument, an efficient method for 

interface/interconnection between a disposable chip (microelectrodes) and a hybrid 
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fluidic system (with macro pumps and valves) is in great demand. The interconnection as 

a part of microfluidic packaging is challenging because of a lack of a standard platform. 

For this purpose, as shown in the review, holes are usually drilled on glass or polymer 

and substrate, which are later used for the insertion of tubes[15, 16]. In this approach, 

interconnection is often completed by adhesive or thermal bonding. However, there are 

many drawbacks involved in this process: defect formation during hole formation, 

misalignment of holes and time-consuming post-processing of the tubing attachment. 

Adopting an idea from the existing model of IC packages, in which pins and connection 

pads with standardized pitch and grid dimensions are used for the interconnections, this 

work intends to develop a reliable, interconnecting method. This can serve as a 

standardized platform and provide easy connectivity between different microfluidic 

devices and to a hybrid fluidic system. This work further investigated two-piece plug-in 

type package as an alternative platform, with interlocking lip for alignment clasps to hold 

the micromachined sensor for easy connectivity. 

In addition to “standardized model,” another issue in the microfluidic devices and 

systems is “partitioning,” whereby disposable (replaceable) and reusable components are 

separately fabricated and interfaced to complete an instrument[4]. A hybrid fluidic 

interface system is needed in this type of approach as reusable component[6]. This work 

also focuses on designing separate reusable hybrid fluidic interface system from 

commercially available products.  
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Finally, the design of measurement circuitry based on amperometric sensing, 

which will communicate signals with micromachined electrodes, is the subject of the 

study for completing the instrument. 
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CHAPTER TWO: INTERCONNECTION AND 
PACKAGING METHOD FOR MICROMACHINED 

CHEMICAL SENSORS 

A one piece microfluidic package was designed to assemble with micromachined 

chemical sensor. The microfluidic package was assembled on top of the micromachined 

sensor chip to enable flow through sample measurement sensor scheme. The microfluidic 

package inlet/outlet ports were designed so that they can be interconnected to use 

multiple sensors for a single sample flow. The sample would be introduced into the 

package by hybrid fluidic interface driven by peristaltic pump and pinch valves for flow 

through measurement. Alternatively a two—piece plug-in type of package was designed 

to hold micromachined sensor and contact leads; the package inserts itself in a tubing of 

sample flow stream for water quality monitoring without sample extraction. The plug-in 

type package was fabricated using liquid photopolymer resin by micro stereolithography 

(Micro-STL)[40]. PalmSens potentiostat (Palm Instruments BV.) was used to take the 

measurements. 

2.1 Interconnecting microfluidic package 

The microfluidic package was designed to accommodate micromachined chip 

based sensor. The fluidic package has an inlet and an outlet on one side to standard 

tubing connection while accommodating the fluidic channels and fluidic chamber on the 

other side. The schematic view of fluidic package structure with interconnecting tubing 

dimensions is shown in figure 2.1. 
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Figure 2.1: Fluidic chambers and fluidic channels, which is on the bottom side of the 
fluidic package connected to an inlet and outlet of interconnecting tubing on top side 
through fluidic channels. 

The chamber houses the sample solution and the sensor electrode. The analyte 

enters the chamber through the fluidic channels which connect the chamber to an inlet 

and outlet. The design of fluidic package was done using the CAD tool. Figure 2.2 shows 

the dimensions of the designed fluidic package. Aligning holes were included for precise 

assembling of the package with the sensor chip.   
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Figure 2.2: Top, bottom and cross-sectional view with dimensions of a fluidic package. 

The microfluidic package was fabricated by injection molding using COC (cyclic 

olefin copolymer) resin. Figure 2.3 shows the schematic of the injection molding 

fabrication method for microfluidic package.   

 17



Polymer resin
Micro pattern
on mold insert

Injection nozzle

Mold

Fabricated fluidic 
package

Polymer resin
Micro pattern
on mold insert

Injection nozzle

Mold

Fabricated fluidic 
package  

Figure 2.3: Schematic of microfluidic package fabrication by injection molding. 

The COC polymer resin is heated to form liquid and injected into the mold, after 

injection the mold is cooled and fabricated microfluidic package is taken out of the mold. 

The interconnecting tubes, holes and channels were completed with predefined mold. 

Therefore, any extra step of bonding or alignment was not necessary. The complicated 

packaging issue was solved with one body construction of “standardized” tubing 

connections (1/32”dia inlet and 1/16”dia outlet), which gives great benefit to microfluidic 

devices. 

The inlet/outlet interconnecting tubing were designed in such a way that they can 

be snapped in together. The internal diameter of the outlet is same as the outer diameter 

of the inlet. This design enables connecting multiple devices for a single sample flow 

using the standardized package platform.  
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Figure 2.4: Cross sectional schematic of interconnecting microfluidic package with 
multiple sensors for flow through measurement. 

Figure 2.4 presents the idea of interconnecting multiple microfluidic packages for 

different sensors. Depending on the requirement of the sensor device, the channel side of 

the package can accommodate different structures while maintaining the same 

interconnections on the other side of the package.  

2.2 Plug-in type package.  

The plug-in type package was designed as an alternative way of an 

interconnection between the micromachined sensor and the sample flow. The package is 
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made of two pieces which snaps in together holding the sensor in between. The package 

was designed to connect either right or left hand side contact pads of the sensor. Figure 

2.5 shows the designed 3-D model of the package with dimensions. The outer diameter of 

the whole package was designed to fit the standard tubing size of  3/8”. The sensor would 

be inserted into standard T-connectors for dip-in flow-through measurement. This 

method of interface is suitable for a flow of samples in large quantity while using 

microelectrodes for sensing component 

Contact leads
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Alignment lip

7 mm 

46 mm 

Contact leads

2 mm
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Alignment lip

7 mm 
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Figure 2.5: PRO-E® model of the package with design dimensions.  

The package was designed to have an interlocking lip for alignment and clasps to 

hold the micromachined sensor. The plug-in type package was fabricated using liquid 
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photopolymer resin by micro stereolithography. Figure 2.6 shows the PRO-E® model of 

the designed package with sensor for plug insertion scheme. 

 

 

Figure 2.6: PRO-E® model of the package with sensor based on plug insertion scheme. 

In micro stereolithography, a liquid photopolymer resin is selectively cured using 

an ultraviolet beam of laser. Figure 2.7 shows the schematic diagram of 

stereolithography. The machine’s software slices the CAD model of the 3D shape of the 

package to be produced into the required layers. The computer directs the laser beam by 

means of a set of galvanometer-controlled mirrors. A horizontal elevator tray supports the 

layer of cured resin. As soon as a layer is finished, the elevator tray lowers one step to 

submerge the finished layer and fresh (liquid) resin floods onto the surface, covering it 

ready for the next layer. Each layer neatly bonds to the previous layer. In this way, 
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building layer by layer the complete model is finished. After the final layer is finished, it 

can be removed from the tray for final curing and cleaning up of residual resin. 
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Figure 2.7: Schematic diagram of stereolithography[41]. 
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CHAPTER THREE:  HYBRID FLUIDIC INTERFACE 

3.1 Design and assembly 
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Figure 3.1: Block diagram of design scheme for a hybrid fluidic system. 

For a flow-through type chemical sensor, initially small quantities of buffer 

solution need to be driven to the chemical sensor surface for cleaning, then the calibration 

solution for calibrating the sensor and finally the sample solution for testing. Figure 3.1 

shows the design scheme used for building hybrid fluidic system for flow through type 

chemical sensor. The flows are driven by the pump from sample holder to waste 

reservoir, and the selection of the sample to be driven is made by actuating the valves. 

The sensor signal is measured using potentiostat for electrochemical type sensor.  
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Figure 3.2: Schematic of hybrid fluidic system. 

Figure 3.2 shows the schematic of a hybrid fluidic system. The fluidic system has 

three syringes to hold sample, buffer and calibration solution. A silicone tubing (1/32” 

dia) was used for the transport of the fluids. The fluids were driven by a peristaltic pump 

(Instechlabs, P625) with an intended flow rate range of 0.15-3.0 ml/min. A variable 

resistance potentiometer was used to control the flow rate. 

Two types of pinch valves (normally open, normally closed) ( Bio-Chem Valve 

Inc., 075P) were used to select the sample to be driven to the sensor chip. Figure 3.3 

shows the actual view of a pump and a valve used in the hybrid fluidic system. 
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Figure 3.3: Actual view of (a) peristaltic pump and (b) pinch valve. 

 The pump and valves are powered by 12-volt battery pack. A normally-closed 

pinch valve was used for buffer and calibration selection, since these fluids are needed 

initially for little time to clean and calibrate the sensor. A normally-open valve was used 

for sample/analyte selection, since this fluid needs to be driven for long time. The 

adequate selection of the components helps reduce power consumption.  
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CHAPTER FOUR: MEASUREMENT CIRCUITRY 

4.1 Equivalent circuit for three-electrode cell 

For the simulation of the potentiostat circuit we need an equivalent circuit which 

models an electrochemical cell. An equivalent circuit using passive components (resistors 

and capacitors) can be constructed by understanding the potential situation at electrodes 

in the cell.  
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∆∅w
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Figure 4.1: Schematic representation of potential gradients in a three-electrode cell:      
(a) i=0; (b) i≠ 0. Redrawn from [38]. 

Figure 3.1 shows the potential gradients in the three electrode cell. The potentials 

∆∅r, ∆∅w and ∆∅c are the inner potential difference corresponding to reference, working 

and counter electrodes that exist between the electrode and the solution. The potential 

difference ∆∅ that exists between the two phases is not measurable. The second 
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electrode in contact with the solution is necessary (and this electrode will have its own 

metal-solution potential difference) to measure the potential difference between the 

electrodes[38]. There is no potential gradient across the bulk of the solution phase under 

zero-current conditions. This means that an ion in the bulk solution phase will have no 

way of knowing whether electrodes exist, and will have no way of ascertaining its own 

potential relative to either of the electrodes. The region across where ∆∅ resides is 

broadly defined as the “electrical double layer,” and it is in the region of very high 

potential gradient (typically 106 V/cm) that all the chemical reactions takes place. The 

double layer has the electrical characteristics similar to that of a conventional capacitor 

[35]. 

The electrode where the chemistry of importance occurs is called the working 

electrode (W). The working electrode is at the ground as far as the outside world is 

concerned; it is positive relative to the bulk solution inner potential. The potential 

difference we wish to control is ∆∅w and the desired control point (DCP) needs to be 

indicated. The actual control point (ACP) as far as the circuit is concerned is at the 

reference electrode. The reference electrode is used as a potentiometric (always zero-

current) probe to monitor ∆∅w relative to its own ∆∅r. The counter is used to complete 

the circuit, allowing charge to flow through the cell. The DCP and ACP are closer 

together in the three electrode cell, they are still not the same. There will be iR drop error, 

albeit small. The total cell resistance has been divided into two parts: a compensated 

resistance Rc and an uncompensated resistance Ru [42].  
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Figure 4.2: Equivalent circuit of a three electrode cell. 

The equivalent circuit for the three electrode cell can be constructed using passive 

components as shown in figure 4.2. Rr is the reference electrode impedance, Rc is the 

compensated resistance, Ru is the uncompensated resistance, and the working electrode is 

connected to ground. The bulk-phase resistances are represented by Rc and Ru, the 

solution and electrode interphase components is represented by Cd (double-layer 

capacitance), and Zf (faradaic impedance) has been added. When a faradaic reaction 

occurs, the working electrode interface takes on the character of a leaky capacitor [34]. 

Phenomenologically, one considers the charge stored in the double layer to leak away 

through some heterogeneous electron transfer reaction represented by the impedance, Zf. 

In order to maintain the potential difference ∆∅w relative to reference electrode, 

additional charge must flow to replenish that being lost through Zf. This is the function of 

the potentiostat and is realized using operational amplifiers. 

4.2 Design and simulation 

Figure 4.3 shows the block diagram of the potentiostat measuring system for three 

electrode chemical sensor.                                                                                                                              
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Figure 4.3: Block diagram of the measuring system for three electrode amperometric 
chemical sensor. 

Potentiostat is a circuit for maintaining invariable the voltage between reference 

and working electrodes. The circuit compensates possible voltage losses due to the 

chemical solution. The I-V converter outputs a voltage proportional to the working 

electrode current and the output multimeter shows the current-voltage values to those 

corresponding to chemical concentration. An adjustable circuit to provide a constant cell 

polarization potential at the working electrode was designed using a zener diode.  

The basic circuit of a potentiostat is represented by a feedback circuit, which 

compensates voltage drops generated between the working electrode and the reference 

probe. The circuit is shown in figure 4.4. The integrated circuit (IC) U1, operational 

amplifier, outputs a potential equal to potential for polarizing and initiate chemical 

reaction of importance at the working electrode plus losses originated in the solution. 
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Figure 4.4: Schematic diagram of the potentiostat circuit. 

The IC U2, is the sensor to feedback an error voltage through resistor R2. 

Consider the circuit shown in figure 4.4, Rc and Rw are the hypothetical resistors of 

charge-transfer resistance of the dissolution zones between counter and reference 

electrodes and between reference and working electrodes respectively. 

For U1, with e3=0, and R1= R2, 

                                                   ( ) .
2
1

020212 EEve +−=                                        (1) 

where V1 is the polarizing input voltage to U1 and E02 is the output voltage signal from 

reference electrode.    

The circuit U2, as voltage follower from the hypothetical network of Rc and Rw, 

works according to the equation shown below. 
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=                                            (2) 

Combining (1) and (2) and making practical considerations like a very large open-

loop amplification factor of the operational amplifier and the working and reference 

electrodes close together in the solution, the condition Rw<<<<Rc can be accepted. Then, 

we have the expression, 

                                                              102 VE −=                                                   (3) 

which means the reference electrode potential can be set ignoring Rw and Rc effects. This 

condition and the virtual ground in the I-V converter circuit, establish the potential 

difference between the reference and working electrodes, once preset, to be constant. The 

IC U1 is an operational amplifier of type TL081 with FET input, low noise, high slew 

rate and a high common mode rejection ratio (CMRR). The circuit U2, type CA3140, is a 

device with very high input impedance (>1012Ω), low noise, high CMRR. A 

potentiometer P8 was connected to provide offset adjustment. 
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Figure 4.5: Circuit for current-voltage conversion. 
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The I-V configuration uses the condition of virtual ground on the input e2, which 

acts as a sum point. This is shown in figure 4.5 and can be expressed in the equation 

shown below. 

                                                                rc II −=                                                   (4) 

where Ic is the input current of this circuit. It also corresponds to the current passing by 

counter and working electrodes. The current Ir passes by the feedback resistor Rr. The 

output voltage V0 of I-V converter is given by the equation below. 

                                                              rc RIV −=0                                                  (5) 

Or 

                                                              rr RIV =0                                                     (6) 

The output voltage of I-V converter will be proportional to current passing by the 

electrochemical cell from the counter to working electrodes. 
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Figure 4.6: Circuit diagram of potentiostat for amperometric measurements in three 
electrode chemical sensor. 

The complete circuit of potentiostat for amperometric measurement in three 

electrode chemical sensor is shown in figure 4.6. The IC U1 is the control amplifier 

responsible to keep the voltage between the reference and working electrodes constant to 

the preset voltage set through the IC U3. The control amplifier adjusts its output to 

automatically control the cell current so that the preset voltage difference is maintained 

between the working and reference electrodes. A small AC excitation signal is added to 

excess polarization at the working electrode. The bulk phase resistances values of Rc and 

Ru in equivalent circuit for electrochemical cell depend on solution conductivity, the 

distance between the two electrodes, and electrode geometry. In a cell with circular 

planes, the resistance between the counter electrode (radius ra) and working electrode 
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(radius rw) can be adequately estimated from the following equations from literature[38, 

43]. 

                                                     ( )cww
s rrrK

R
+

=
π

1
                                          (7) 

                                                     ( )www
u rrrK

rR
+

=
π                                       (8) 

In the above equations K (Ω-cm)-1 is the specific conductivity of the solution. The 

distance between working and reference electrode is represented by r. Rs is the total bulk 

phase resistance which is equal to Rc+Ru. The values of interfacial capacitance and 

faradaic impedance are assumed. The circuit was simulated using ModelSIM® circuit 

simulator (Mentor Graphics Corporation). 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

5.1 Interconnection 

5.1.1 Microfluidic package 

The microfluidic package was successfully fabricated using injection molding. 

Figure 5.1 shows a SEM picture of the interconnection hole formed with the microfluidic 

channel. 

 

 

Figure 5.1: SEM picture of the interconnection hole in fluidic channel. 

The standard inlet/outlet interconnection tubing of the microfluidic package made it 

possible to snap together multiple packages. Figure 5.2 shows the interconnected 

microfluidic packages. 

 

 

Figure 5.2: Interconnected fluidic packages. 

A demonstration device with package used for testing is shown in figure 5.3. 
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Figure 5.3: Assembled view of the microfluidic package with a chip based sensor. 

5.1.2 Plug-in type package 

 

Figure 5.4: Assembled view of the plug-in type package with micromachined sensor. 

Figure 5.4 shows the fabricated package with sensor. Figure 5.4a and b shows the 

micromachined sensor placed in between the two pieces of the package. Commercially 

available electrical contact leads is fitted in the holes for measurement of signal from the 

sensor.  Figure 2.9c shows the inserted plug-in type package with sensor into T-junction 

connector for online monitoring of the sample without the need for sample extract. 
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5.2 Hybrid fluidic system 
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Figure 5.5: Hybrid fluidic system. 

Figure 5.5 shows the completely assembled hybrid fluidic system using 

commercially available peristaltic pump and pinch valves. A silicone tubing is used for 

fluidic transport. Control buttons are used for actuating pump and valves. Syringes are 
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used for holding the samples. The flow rate can be controlled linearly by adjusting 

potentiometer. Figure 5.6 shows the change in flow rate with varying resistance.  
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Figure 5.6: Flow rate as a function of resistance. 

5.3 Potentiostat circuit simulation. 

The potentiostat circuit was simulated for transient analysis to observe the output 

current and voltage for varying values of Rc and Ru in the equivalent electrochemical cell 

circuit. Figure 5.7 shows the block diagram of the potentiostat circuit. Rc and Ru values 

are dependent on structure, distance between the electrodes, and specific conductivity of 

the sample solution. The bulk phase resistances Rc, Ru were calculated by taking the 

values of specific conductivity of the KCl solution and distance between the electrodes 

from the above tested micromachined chlorine sensor using the equations (7), (8) 

mentioned in chapter 4.  
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Figure 5.7: Block diagram of the potentiostatic circuit including equivalent circuit of an 
electrochemical cell. 

Figure 5.8 shows the current output taken at the working electrode corresponding 

0.2M KCl specific conductivity solution equivalent values of Rc and Ru. The stable 

current outputs and were tabulated and plotted as shown in the figure 5.9. As observed in 

the graph, the variation in the current is very minute; this is because the faradaic 

impedance (Zf) and double layer capacitance (Cdl) were kept constant for varying bulk 

phase resistance values. The voltage output at the C-V converter corresponding to current 

at the working electrode were tabulated and plotted as shown in figure 5.10.  
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Figure 5.8: Time variation for current output at the working electrode. 
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Figure 5.9: Current output for varying bulk resistance values corresponding to KCl 
concentration. 
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Figure 5.10: Voltage output for varying bulk resistance values corresponding to KCl 

concentration. 
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5.4 Instrumentation testing 

5.4.1 Micromachined sensor 

The sensors for testing were fabricated by metal deposition, photolithography, 

electroplating and etching. The dimensions are shown in figure 5.11. Figure 5.12 shows 

the fabricated sensors for testing.  
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Figure 5.11: Dimensions of the three terminal amperometric chlorine sensor (a) flow-
through type sensor, (b) plug-in type sensor. 
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Figure 5.12: Fabricated sensors (a) flow-through type sensor, (b) plug-in type sensor. 

5.4.2 Flow-through sensor instrument 

Potentiostatic polarization experiments were performed on varying concentration 

of chlorinated DI water samples using Clorox®. Figure 5.13 shows the experimental setup 

for the flow through measurements using developed hybrid fluidic system and 

microfluidic package. In this case commercially available Palmsens potentiostat (Palm 

Instruments BV) and pocket pc (HP hx 2110) were used to measure and display the 

sensor output.   
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Figure 5.13: Experimental setup for flow through measurement. 

The sample was introduced to the microfluidic packaged sensor from the sample 

holding syringes at a flow rate of 3ml/min. Figure 5.14 shows a potentiostatic 

polarization curve on sample with 1.6ppm chlorine concentration.  
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Figure 5.14: Time variation of sensor output measured in a solution with 1.6ppm chlorine 
under flow through conditions. 
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As can be observed from the graph the sensor took 100 seconds to attain a stable 

value. The stable current outputs from all the potentiostatic polarization experiment were 

plotted as shown in figure 5.15 
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Figure 5.15: Sensor output current as a function of chlorine concentration. 

5.4.3 Plug-in sensor instrument 

Figure 5.16 shows the cyclic polarization curve for the standard solution of 0.1M 

KCl in DI water which was used to obtain the polarization potential of the sensor. The 

plug-in type packaged sensor is dipped in the sample under static condition. 

Electrochemical measurements were made from Palmsens potentiostat (Palm Instruments 

BV). The cyclic polarization was performed between -1V and 1V with respect to the 

reference electrode. From the results, the reduction potential of chlorine was obtained and 

used for performing amperometric measurements. 
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Figure 5.16: Cyclic polarization curve obtained from microfluidic packaged chlorine 
sensor using 0.1M KCl solution. 

From the obtained reduction potential of chlorine by cyclic polarization curve, 

potentiostatic polarization experiments were performed with plug-in type packaged 

chlorine sensor. The experiments were conducted in static and dynamic conditions. 

   Static condition: In this experiment the plug-in type packaged sensor was 

dipped in the analyte which is under static condition. Standard solutions varying from 

0.1M to 1M KCl in DI water was prepared to perform the potentiostatic polarization 

experiment. Figure 5.17 shows a potentiostatic polarization curve on sample with 0.1M 

KCl concentration. 
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Figure 5.17: Time variation of sensor output measured in 0.1M KCl solution at static 
condition for chlorine concentration. 

 Potentiostatic polarization is performed for different samples. The stable current 

output from all the experiment under static condition was plotted as shown in figure 5.18.  
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Figure 5.18: Sensor output current as a function of KCl concentration. 
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Dynamic condition: In this case the plug-in type packaged sensor was inserted in 

the T-connector in the sample flow stream. Figure 5.19 shows the experimental setup for 

dynamic measurements in the flow stream without sample extraction.  

Pocket PCPotentiostat

Sensor with
Package

Sample container

Pocket PCPotentiostat

Sensor with
Package

Sample container

 

Figure 5.19: Experimental setup for dynamic condition measurement using plug-in type 
packaged chlorine sensor. 

Figure 5.20 shows the potentiostatic polarization on sample with 0.4M KCl 

concentration under dynamic condition at flow rate of 15ml/min. a fairly stable output 

was observed under the flow rate of 15ml/min. A stability period of 100 second was 

needed for sensor signal to attain fairly constant value of the current. The constant valve 

of the current was matching with the static condition, which validates the use of plug-in 

type sensor for online monitoring.   
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Figure 5.20: Time variation of sensor output measured in 0.4M KCl solution at dynamic 
condition for chlorine concentration. 
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CHAPTER SIX: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this work, interconnection methods of micromachined chip devices, a hybrid 

fluidic interface system, and measurement circuitry for completing instrumentation were 

studied. The interconnection method is based on one body construction which includes 

fluidic channels and chambers with standard interconnection tubings. In addition, a plug-

in type interconnection method for a large amount of flow samples was studied. The 

hybrid fluidic system was developed using a commercially available peristaltic pump and 

pinch valves. Micromachined electrochemical sensors were tested with the developed 

methods and hybrid fluidic system for flow-through measurement. The results obtained 

from testing validate the use of the developed interconnection methods and interface for a 

portable instrument. The potentiostat circuit for amperometric measurement was 

investigated. The circuit was designed and simulated in ModelSIM circuit simulator. 

Transient analysis of the circuit was done in the simulation for varying values of bulk 

phase resistances. The simulated output showed  linear current and voltage values, which 

would be useful to realize an integrated potentiostat for miniaturization of the chemical 

analysis instrument. 

6.2 Future work 

The potentiostat simulation results need to be implemented into a real circuit for a 

truly instrument. An automated flow regulation as well as incorporation of a display will 

be investigated. 
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