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ABSTRACT

Surface acoustic wave (SAW) devices are a solution for today’s ever growing need

for passive wireless sensors. Orthogonal frequency coding (OFC) together with time

division multiplexing (TDM) provides a large number of codes and coding algorithms

producing devices that have excellent collision properties. Novel SAW noise-like re-

flector (NLR) structures with pulse position modulation (PPM) are shown to exhibit

good auto- and cross-correlation, and anti-collision properties.

Multi-track, multi-transducer approaches yield devices with adjustable input

impedances and enhanced collision properties for OFC TDM SAW sensor devices.

Each track-transducer is designed for optimum performance for loss, coding, and chip

reflectivity. Experimental results and theoretical predictions confirm a constant Q

for SAW transducers for a given operational bandwidth, independent of device and

transducer embodiment.

Results on these new NLR SAW structures and devices along with a new novel

915 MHz transceiver based on a software radio approach was designed, built, and

analyzed. Passive wireless SAW temperature sensors were interrogated and demod-

ulated in a spread spectrum correlator system using a new adaptive filter. The

first-ever SAW OFC four-sensor operation was demonstrated at a distance of 1 me-

ter and a single sensor was shown to operate up to 3 meters. Comments on future

work and directions are also presented.

iii



Dedicated to my wife, Evgenia, and our son, Andrew.

iv



ACKNOWLEDGMENTS

First, I would like to thank my wife, Evgenia, and our son, Andrew, for their patience

with an absent husband and father, especially during past two years. I thank them for

letting me pursue my academic and career goals. I love you both for understanding

and support.

It has been a truly great privilege to work with Dr. Donald C. Malocha. I would

like to thank him for providing me with guidance and encouragement during my

graduate studies at University of Central Florida. He gave me every opportunity to

become a better engineer.

This work would not be possible without the support of my colleagues at the

Consortium for Applied Acoustoelectronic Technology. In particular, I would like to

thank N. Saldanha, D. Gallagher, M. Gallagher and former colleague, D. Puccio.

It is my pleasure to thank the committee for their support, especially, Dr. Arthur

Weeks for his help with the system and proofreading countless revisions of my papers

and the dissertation.

I would like to thank NASA and Dr. Youngquist for supporting me and our group

financially. I thank Mnemonics Inc, especially Madjid Belkerdid and TJ Mears, for

their help with the final prototype of the system.

Finally, I owe my gratitude to my parents and the extended family for their love

and support. I have come a long way and you have always been there for me.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

CHAPTER 1 : INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : BACKGROUND . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Surface Acoustic Wave Principles . . . . . . . . . . . . . . . . . . . . 4

2.2 Sensor Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 CDMA and TDMA Surface Acoustic Wave Sensors . . . . . . 10

2.3 Orthogonal Frequency Coding . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Ideal SAW Reflector Response Model . . . . . . . . . . . . . . 17

vi



2.4 Temperature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 3 : DEVICE MODELING . . . . . . . . . . . . . . . . . . . 22

3.1 SAW Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Non-reflecting, lossless Interdigital Transducer . . . . . . . . . 23

3.1.2 Other Structures . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Signal Flow Representation . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Multi-Track Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Modeling of Apodized Reflectors . . . . . . . . . . . . . . . . . . . . . 34

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 4 : SAW NOISE-LIKE REFLECTORS AND DEVICE COD-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Definitions and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 AWGN and Noise-like Reflector (NLR) Structures . . . . . . . 44

4.1.2 Primitive Cell Structure Definition . . . . . . . . . . . . . . . 48

vii



4.2 Noise-Like Reflector Structures . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 NLR Structures Modeled using Ideal Reflector Model . . . . . 54

4.2.3 NLR Structures Modeled using COM Model . . . . . . . . . . 58

4.2.4 Device Layout and Data Extraction . . . . . . . . . . . . . . . 59

4.2.5 Experimental Results of NLR Structures . . . . . . . . . . . . 63

4.3 Repeating Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Layout of Devices with Repeating Structures . . . . . . . . . . 71

4.3.3 Modeled Results for Repeating Structures . . . . . . . . . . . 74

4.3.4 Measurement of Repeating Structures . . . . . . . . . . . . . . 76

4.4 Cell-based Device Coding . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Designing Codes for Multi-sensor System . . . . . . . . . . . . 85

4.4.2 NLR Structures and Device Scaling . . . . . . . . . . . . . . . 89

4.4.3 Experimental Devices and Cell-based Coding Technique . . . . 97

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



CHAPTER 5 : DEVICE DESIGN: MULTI-TRACK DEVICES AND

APODIZED REFLECTORS . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Multi-track, Multi-transducer OFC SAW Devices . . . . . . . . . . . 105

5.1.1 Chip Collisions and Transducer Embodiments . . . . . . . . . 106

5.1.2 Transducer Impedance and Q . . . . . . . . . . . . . . . . . . 108

5.1.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 109

5.1.4 COM Model and Signal Flow Graph Analysis . . . . . . . . . 111

5.2 Apodized Reflector Gratings . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Apodization Profiles . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Experimental Data of Apodized Reflector . . . . . . . . . . . . 118

5.3 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Experimental SAW Tag Device . . . . . . . . . . . . . . . . . 123

5.4 Experimental Results of SAW Tag Device . . . . . . . . . . . . . . . 124

5.5 Experimental Multi-track Transducer-only Devices with Various Em-

bodiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



CHAPTER 6 : SAW SENSOR CORRELATOR SYSTEM . . . . . . 130

6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 SAW Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . 136

6.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Range Experiments . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.2 Range Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3.3 Multi-sensor Operation . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

CHAPTER 7 : CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 151

APPENDIX : PUBLICATIONS AND PATENTS . . . . . . . . . . 157

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

x



LIST OF FIGURES

Figure 2.1 Schematic representation of a Rayleigh wave (SAW), circle indicates

the direction of motion of the individual molecules of the substrate. . . . . . 4

Figure 2.2 (a) Schematic representation of SAW IDT and (b) principle of op-

eration of the IDT (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.3 (a) Schematic drawing of SAW reflector grating and (b) principle of

operation of the grating (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.4 Examples of (a) battery powered and (b) energy harvesting sensors

(energy harvesting wireless on-off switch). . . . . . . . . . . . . . . . . . . . . 9

Figure 2.5 Schematic drawings of a passive wireless SAW (a) resonance and (b)

delay line sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.6 Schematic drawing and impulse response of single frequency SAW

ID tag, all reflector gratings are in one track besides the input transducer. . . 12

Figure 2.7 Ideal frequency domain impulse response of the OFC reflectors of the

consecutive frequencies f1, f2, and f3 shown in red, blue and green respectively. 15

xi



Figure 2.8 Sample single-sided SAW sensor with 7 OFC chips. . . . . . . . 16

Figure 2.9 Principle of operation of the adaptive matched OFC ideal filter re-

sponse to maximize the correlation waveform and extract the SAW sensor tem-

perature. Conceptually, a series of matched filters are synthesized corresponding

to differing temperatures. These signals are correlated with the received signal

and the correlation signal is determined versus time. The maximum correlation

peak is plotted versus scaling factor to determine the sensor temperature. . . 21

Figure 3.1 Shown in figure is (a) a schematic drawing of a SAW transducer and

(b) a model view of an IDT with two acoustic and one electric ports. . . . . . 23

Figure 3.2 Signal-flow graph representation of SAW elements: transducer, de-

lay, reflector, absorber, and an ideal edge. Shown in red are element connection

going from reflected port of one element to the incident port of an adjacent SAW

element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.3 Signal-flow graph representation of two transducers that are assigned

to the same electrical port connected in parallel (green) and in series (purple). 29

Figure 3.4 Example of cascading adjacent SAW elements to reduce the size of

the final device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xii



Figure 3.5 Examples of multi-track devices: electrical ports of the two track

connected in a) parallel, b) series, and c) electrical ports of multiple tracks with

mixed connection types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.6 COM model apodized reflector representation as series of tracks. 35

Figure 3.7 Example of sub-track representation (a) with free surface delays and

(b) half free and half metalized surface delays. . . . . . . . . . . . . . . . . . 35

Figure 3.8 Comparison of a uniform reflector (blue dotted curve) with apodized

reflector modeled with free surface delays (dashed green curve) and with apodized

reflector modeled with half free half metalized surface delays (solid red curve). 37

Figure 3.9 Simple, single track tag/sensor device example. . . . . . . . . . 38

Figure 3.10 Simple, dual track, orthogonal tag/sensor device example. . . . 39

Figure 3.11 Impulse response of the simple, dual track, orthogonal tag/sensor

device given in Figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.12 Device example. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.13 Device example. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.1 Definition of ith Electrode (Primitive Structure) . . . . . . . . . 48

Figure 4.2 Schematic drawing of an OFC device (top) and an NLR device

(bottom) which is based on the OCF device. . . . . . . . . . . . . . . . . . . 52

xiii



Figure 4.3 Pulse position modulation applied to an OFC (left) and NLR (right)

devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.4 Comparison of spectrum spreading of OFC7, RND7 and OFC7-PPM

reflector structures using the ideal reflector model. . . . . . . . . . . . . . . . 55

Figure 4.5 Comparison of signal distribution of OFC7 (blue), RND7 (green) and

OFC7-PPM (red) reflector structures simulated from the ideal reflector model. 55

Figure 4.6 Comparison of ideal correlation peaks for OFC7, RND7, and OFC7-

PPM devices, ideal reflector model. . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.7 Comparison of frequency responses of OFC7-PPM and RND7-PPM,

ideal reflector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.8 Comparison of ideal correlation peaks of OFC7-PPM and RND7-

PPM, ideal reflector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.9 Comparison of band limiting effect of 120MHz brick wall band-pass

filter (BPF) IDT on ideal correlations of OFC7, RND7 and OFC7-PPM devices,

ideal reflector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.10 Comparison of OFC7 device frequency response predicted by ideal

reflector model and COM model. . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiv



Figure 4.11 Comparison of RND7 device frequency response predicted by ideal

reflector model and COM model. . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.12 Comparison of OFC7-PPM device frequency response predicted by

ideal reflector model and COM model. . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.13 Correlation peak of ideal to ideal signal (red) compared to correlation

peak of COM model to ideal signal (green) of OFC7 device. . . . . . . . . . . 61

Figure 4.14 Correlation peak of ideal to ideal signal (red) compared to correlation

peak of COM model to ideal signal (green) of RND7 device. . . . . . . . . . . 61

Figure 4.15 Correlation peak of ideal to ideal signal (red) compared to correlation

peak of COM model to ideal signal (green) of OFC7-PPM device. . . . . . . 62

Figure 4.16 Device layout used for reflection measurement. SAW reflector struc-

tures used were OFC7, RND7 and OFC7-PPM. . . . . . . . . . . . . . . . . . 62

Figure 4.17 Comparison of experimentally measured frequency domain response

of OFC7 structure to prediction from the ideal reflector model and COM model. 64

Figure 4.18 Comparison of experimentally measured frequency domain response

of RND7 structure to prediction from the ideal reflector model and COM model. 64

xv



Figure 4.19 Comparison of experimentally measured frequency domain response

of OFC7-PPM structure to prediction from the ideal reflector model and COM

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.20 Comparison of ideal auto-correlation of device OFC7 to cross-correlation

of measured response of device OFC7 and its ideal reflector response. . . . . 65

Figure 4.21 Comparison of ideal auto-correlation of device RND7 to cross-correlation

of measured response of device RND7 and its ideal reflector response. . . . . 66

Figure 4.22 Comparison of ideal auto-correlation of device OFC7-PPM to cross-

correlation of measured response of device OFC7-PPM and its ideal reflector

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.23 Comparison of correlation peaks of experimentally measured OFC7,

RND7 and OFC7-PPM reflector structures. . . . . . . . . . . . . . . . . . . . 67

Figure 4.24 Example of normalized magnitude frequency response from the ideal

reflector model calculations for super cells with 2, 3 and 4 unit cells. As N in-

creases, the local stopband frequencies narrow. The effects of increased reflec-

tivity and inter- and intra- reflector interactions are not predicted in the ideal

reflector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xvi



Figure 4.25 OFC bit device layouts (drawing is not to scale, nor does it show the

correct number of electrodes), structures. Because there can be defined a unit

cell, which is repeated within the structure, the structure is pseudo-periodic. 73

Figure 4.26 Random bit device layouts (drawing is not to scale, nor does it

show correct number of electrodes). For device RNDx1, the unit cell consists

of totally random primitive cells, but the super cells in the other devices are

pseudo-random, consisting of RNDx1 periodically used in the super cell. . . . 74

Figure 4.27 COM model predicted reflector frequency response of devices OFC

x1 through OFC x4 (output is normalized for comparison). . . . . . . . . . . 75

Figure 4.28 COM model predicted reflector frequency response of devices OFC

x1 through OFC x4 (output is not normalized). . . . . . . . . . . . . . . . . 77

Figure 4.29 COM model predicted reflector frequency response of devices RND

x1 through RND x4 (output is not normalized), with relative magnitudes. . . 77

Figure 4.30 Experimental reflector frequency response of devices OFC x1 through

OFC x4 (output is normalized). This result compares well to the predicted re-

sponse of Figure 4.28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 4.31 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for OFC x1 device. . . . . . . . 79

xvii



Figure 4.32 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for OFC x2 device. . . . . . . . 80

Figure 4.33 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for OFC x3 device. . . . . . . . 80

Figure 4.34 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for OFC x4 device. . . . . . . . 81

Figure 4.35 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for RND x1 device. . . . . . . . 82

Figure 4.36 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for RND x2 device. . . . . . . . 82

Figure 4.37 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for RND x3 device. . . . . . . . 83

Figure 4.38 Predicted reflector frequency response of ideal reflector model and

COM model compared to experimental data for RND x4 device. . . . . . . . 84

Figure 4.39 A sample set of 16 OFC devices using 16 time slots and 7 frequen-

cies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.40 Two sample devices realized using codes 1 and 2 from Figure (4.39). 87

xviii



Figure 4.41 Comparison of auto-correlation of a single device to correlation of

that device to the entire system (sum of 16 devices). . . . . . . . . . . . . . . 88

Figure 4.42 Construction of a NLR chip. . . . . . . . . . . . . . . . . . . . . 90

Figure 4.43 Demonstration of chip collisions: a) auto-correlation (black) and

cross-correlations (red and green) of OFC chips, and b) auto-correlation (black)

and cross-correlation (red) of NLR chips. . . . . . . . . . . . . . . . . . . . . 92

Figure 4.44 Probability of having a certain MCAR for a two NLR-chips with 16

electrodes semi-randomly (as shown in Figure 4.42) distributed within 312 ns. 92

Figure 4.45 Highest correlation lobe of correlation of one NLR chip to the an-

other NLR chip with the same code but scaled to a different frequency. . . . 94

Figure 4.46 NLR-based code set, each NLR chip is denoted by two numbers

(g, f), where g is NLR code number and f is an index of the frequency used. 96

Figure 4.47 Comparison of auto-correlation of a single device to correlation of

that device to the entire system (sum of 12 devices). . . . . . . . . . . . . . . 96

Figure 4.48 OFC-based code set, each cell with number 1, 2 or 3 corresponds to

an OFC chip with center frequency 240MHz, 250MHz or 260MHz respectively,

and each cell with zero corresponds to an unused time slot for that particular

device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xix



Figure 4.49 Fabricated device (device #5 of Figure 4.48) with 3 OFC chips coded

using cell-based method with 12 time slots. . . . . . . . . . . . . . . . . . . . 99

Figure 4.50 Comparison of auto-correlation of an ideal OFC device (green) to

correlation of experimental data and the ideal reflector response (red). . . . . 99

Figure 4.51 Comparison of auto-correlation of a single ideal OFC device response

to correlation of ideal OFC device response and sum of 3 devices measured ex-

perimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 4.52 Fabricated device with 4 NLR chips coded using cell-based method

(device #4 of Figure 4.46) with 4 time slots and total number of 12 of unique

NLR chips available for codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 4.53 Comparison of an ideal NLR device (green) to correlation of exper-

imental data and the ideal reflector response (red). . . . . . . . . . . . . . . . 102

Figure 4.54 Comparison of auto-correlation of a single ideal NLR device response

to correlation of ideal NLR device response and sum of 3 devices measured ex-

perimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.1 Reflection coefficient: examples of a constant Q arc (a) for: (b) all

electrically parallel transducers, (b) three pairs of parallel connected transduc-

xx



ers in series, and (d) all transducers electrically in series or a single wide band

transducer is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 5.2 Examples of some of the possible transducer configurations for a

6-chip device: (a) all transducers electrically in series, (b) all in parallel in a

single track, (c) all in parallel in two tracks, (d) three pairs of parallel connected

transducers in series, and (e) three pairs of in series-connected transducers in

parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.3 Transducer performance evaluation during initial tuning stages using

ideal edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.4 Signal flow graph of transducer performance evaluation during initial

tuning using ideal edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.5 Transducer performance evaluation during simulation using an ideal

edge and the signal flow analysis approach of Figure 5.4. . . . . . . . . . . . . 111

Figure 5.6 Signal flow graph representation of transducer, delay line and reflec-

tor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.7 Overlap of frequency responses of adjacent and one over adjacent

chips highlighted in red and green respectively. . . . . . . . . . . . . . . . . . 114

xxi



Figure 5.8 Ratios of cross-correlations of chip one to chips two through six to

auto-correlation of chip one for following apodization window functions: uniform

(blue), Hamming (green), and Sinc (red) . . . . . . . . . . . . . . . . . . . . 115

Figure 5.9 Overlap of frequency responses of adjacent and one over adjacent

Hamming window chips highlighted in red and green respectively. . . . . . . 116

Figure 5.10 Auto-correlation of chip 1 and cross-correlations of chip one to other

chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.11 Auto-correlation of chip 1 with Hamming window and cross-correlations

of chip 1 to other chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.12 Reflector grating with Hamming window function apodization. . 118

Figure 5.13 Comparison of auto-correlation of a 6-chip device (blue) to an auto-

correlation of 6-chip device with Hamming apodized reflectors (green). . . . . 119

Figure 5.14 Comparison of an ideal (blue), COM (green), and experimental (red)

single hamming window chip in (a) frequency and (b) time domains. . . . . . 120

Figure 5.15 Illustration of reflector spacing considerations. . . . . . . . . . . 121

Figure 5.16 Experimental device: three tracks connected in series with two trans-

ducers per track connected in parallel. . . . . . . . . . . . . . . . . . . . . . . 124

xxii



Figure 5.17 Smith chart of COM model simulation of reflection coefficient (solid

blue line) compared to the measured reflection coefficient (dashed green line). 125

Figure 5.18 Time domain of COM model simulation (blue) compared to exper-

imental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 5.19 Individual chips gated out and plotted in frequency domain. In the

upper left corner of the plot, legend has chips listed in the order in which they

appear in time domain appear in time. . . . . . . . . . . . . . . . . . . . . . 126

Figure 5.20 Various transducer configurations (i) and impedance ranges of their

implementation with 15λ to 150λ, 915MHz center frequency and 60MHz band-

width and select device responses (ii) . . . . . . . . . . . . . . . . . . . . . . 127

Figure 5.21 Input impedance ranges of various transducer configurations with

15λ to 150λ and 60MHz bandwidth and select device responses: (i) 250MHz and

(ii) 500MHz center frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6.1 Block diagram of the 915 MHz correlator transceiver and sensor

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 6.2 Block diagram of the 915 MHz system. There are 5 modules shown

which are seperable from an analysis viewpoint: the RF clock and LOs, the

xxiii



duplexer and antenna, the RF transmitter, the RF receiver, and the ADC and

digital post processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 6.3 Packaged 915 MHz SAW OFC temperature sensor and antenna used

on sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.4 Comparison of predicted RMS power at the ADC (solid blue) and

experimental data (solid purple line with circle data markers). Predicted reflected

signal power at ADC with processing gain added (green dotted), system noise

floor (red dashed), noise of the ADC card including quantization noise (black

dash-dotted), and accuracy of the reading at corresponding distance (dark yellow

dotted line with circle markers, right y-axis). . . . . . . . . . . . . . . . . . . 140

Figure 6.5 Block diagram of the noise model for system analysis. An additional

variable attenuator, β, is added for test measurements. . . . . . . . . . . . . 144

Figure 6.6 Model predictions for -46 dBm MDS: SNR* values for several atten-

uation steps at the ADC (0 dB to 40 dB) vs distance. . . . . . . . . . . . . . 145

Figure 6.7 Range measurements for system configured for -46 dBm MDS: SNR*

values for several attenuation steps at the ADC (0 dB to 40 dB) vs distance. 146

Figure 6.8 Range measurements for system configured for -46 dBm MDS: ex-

perimental SNR* data for multiple ADC attenuator values (dashed purple line

with circle data markers) and reading error at corresponding distance (dark yel-

xxiv



low dash dotted line with circle markers, right y-axis). Multiple data curves

correspond to attenuator values (increments) at ADC increasing in the direction

of arrow. Shown in thick solid green line is cut-off SNR*, lower SNR* values yield

error 0.07 and higher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 6.9 Results of the 915 MHz SAW OFC temperature sensor transceiver

system. Four OFC SAW sensors are co-located in close range to each other at a

distance of 0.8m to 1.2m; sensors NS402 and NS403 remained at room temper-

ature, sensor NS401 heated to 140◦C and sensor NS403 cooled to -130◦C. Data

was taken simultaneously from all four sensors and then temperature extracted

in the correlator receiver software. . . . . . . . . . . . . . . . . . . . . . . . . 150

xxv



LIST OF TABLES

Table 2.1 Common piezoelectric substrates for use with SAW devices and their

key parameters [16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 4.1 OFC Device Design Values . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.2 OFC Device Design Values for Repeating Structures Experiment . 72

Table 5.1 SAW Propagation Attenuation Constants . . . . . . . . . . . . . . 113

Table 5.2 Experimental Device Parameters . . . . . . . . . . . . . . . . . . . 123

xxvi



LIST OF ACRONYMS

AWGN — Additive White Gaussian Noise
BAW — Bulk Acoustic Wave
BPF — Band-pass Filter
CDMA — Code Division Multiple Access
COM — Coupling of Modes
IDT — Interdigital Transducer
IF — Intermediate Frequency
IL — Insertion Loss
LiNbO3 — Lithium Niobate
LiTaO3 — Lithium Tantalate
LO — Local Oscillator
MCAR — Cross-correlation-to-auto-correlation Ratio
MDS — Minimum Detectable Signal
NLR — Noise-like Reflector
OFC — Orthogonal frequency coding
PN — Pseudo-noise
PPM — Pulse Position Modulation
Q (factor) — Quality (factor)
RF — Radio-frequency
RFID — Radio-frequency Identification
RND — Random
SAW — Surface Acoustic Wave
SNR — Signal-to-noise Ratio
TCD — Temperature Coefficient of Delay
TDM — Time Division Multiplexing
TDMA — Time Division Multiple Access
UWB — Ultra-wide Band

xxvii



CHAPTER 1

INTRODUCTION

Surface acoustic wave (SAW) sensors have been gaining popularity in the past

several years. Various sensors embodiments have been studied to measure physical

properties, such as temperature, pressure, and strain, as well as chemical and bio-

logical elements [1, 2, 3, 4]. The SAW sensors often offer unique properties such as

passive, wireless operation as well as being radiation hard. This thesis will present

the first results for an operational spread spectrum SAW sensor system. The research

is based on the use of SAW device coding for an RFID tag and an adaptive filter for

temperature extraction in a correlator receiver. Novel SAW device coding, analysis

and configurations will be shown. Experimental results of various SAW structures

and system performance parameters will be given.

The principles of operation of the basic SAW elements are discussed in Chap-

ter 2. This chapter also provides an overview of current competing technologies.

Orthogonal frequency coding (OFC) is used in the design of the devices used in this

dissertation [5] and fundamentals and advantages are presented. Sensitivity to ex-
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ternal stimuli presents itself as a change in surface wave velocity, which results in

frequency and time domain scaling of the device response. A matched filter approach

for extracting the velocity change is discussed in this chapter.

Modeling is a very important step in the product development cycle. Chapter 3

presents two models; the synthesis model, used for just the SAW transducer design

and the coupling of modes model that accounts for various second order effects

[6, 7, 8]. Both models use a hybrid matrix approach to represent the device. These

matrices can then be used to build up a signal flow graph of the entire device,

which can then be solved using primarily Mason’s gain formula [9]. This approach is

discussed in detail and also demonstrates the approach used for modeling apodized

and multi-track devices.

Unlike with powered sensors, passive sensors are unable to adjust the amount

of the return energy or turn off and on again transmission of the signal in order to

avoid collisions with other sensors. Chapter 4 discusses device coding requirements

and provides coding techniques that yield systems with high code diversity and low

multi-device collisions. This chapter presents noise like reflector structures (NLR) as

well as OFC approaches to device coding. A technique is demonstrated using OFC

and TDM that yields a multi-device system with excellent collision properties.
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Inter-device reflections and antenna impedance matching are addressed in Chap-

ter 5. Multi-track, multi-transducer embodiments acoustically separate SAW ele-

ments within the device which results in reduced inter reflections. Using various

transducer configurations, the input impedance of the sensor can be tuned to conju-

gately match the antennas impedance resulting in reduced mismatch losses.

Chapter 6 presents an operational 915 MHz OFC SAW sensor interrogator sys-

tem. A module-by-module discussion of the transceiver is provided and key system

parameters are discussed. Also, implemented OFC sensors are presented along with

their key parameters. This chapter provides range-noise analysis and multi-sensor

operation is demonstrated with four simultaneously interrogated sensors.

Finally, Chapter 7 will list important conclusions and will discuss possible areas

of future OFC SAW sensor research.
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CHAPTER 2

BACKGROUND

2.1 Surface Acoustic Wave Principles

Piezoelectricity was discovered in 1880 by two brothers, Pierre and Paul-Jacques

Curie, and was named by Wilhelm Hankel in 1881 [10]. Surface acoustic wave (SAW)

was first studied and modeled by Lord Rayleigh in 1885 [11]. In his paper, he

described the surface acoustic wave (mode) of propagation and its properties. Shown

in Figure 2.1 is a schematic representation of a Rayleigh wave (SAW). For the wave

propagating left to right, motion of the molecule at the surface of the substrate is

counterclockwise.

Wave Propagation 

Particle
Motion

Figure 2.1: Schematic representation of a Rayleigh wave (SAW), circle indicates the
direction of motion of the individual molecules of the substrate.

4



An interdigital transducer (IDT) was invented by White and Voltmer, and in

1965 they demonstrated the first SAW delay line filter [12]. Shown in Figure 2.2(a)

is a schematic drawing of a SAW IDT. A RF signal applied to the IDT will warp

the piezoelectric material underneath. As the input RF signal alternates, the SAW

waves are generated. If the period of the input RF signal is equal to the time it takes

a SAW to travel under one period of the transducer, the generated surface waves will

add in phase and propagate out of the acoustical ports of the transducer; otherwise,

the waves will add out of phase and will be attenuated [12]. Principle of the SAW

IDT operation is depicted in Figure 2.2(b).

Another important SAW element is a reflector grating (Bragg reflector) [13].

The Bragg reflector was first used in optics and it consisted of multiple layers of

various materials with varying refractive index. Depending on the layers thickness,

periodicity and the refractive index, light of some wavelengths would go through and

another would reflect [14]. The concept of Bragg reflectivity has been applied to

- -
+

Piezoelectric substrate

-

+

(a) (b)

Figure 2.2: (a) Schematic representation of SAW IDT and (b) principle of operation
of the IDT (b).
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SAW devices and was implemented via periodic structures (i.e. metallic structures)

as shown in Figure 2.3(a) [15]. Part of the forward traveling wave is reflected at

each edge of each electrode of the reflector grating. If the period of the reflector

grating is an integer multiple of the wavelength of the forward traveling wave, the

reflectivity at the wavelength (frequency) will be maximum. For an off-frequency

wave reflection will be attenuated or none at all and the wave will pass underneath

the reflector grating with little loss.

What makes SAW devices so attractive is that their typical free surface velocity is

on the order of 3×103m
s

, compared to free space velocity of approximately 3×108m
s

,

which yields a factor of 105 difference in wavelength and device implementation

using SAW versus micro-strip lines, at frequencies between 70 MHz and 2.5 GHz.

The key parameters of piezoelectric substrates is the free surface velocity, coupling

coefficient, which determines how well electrical energy is coupled into mechanical

a 1 b 2

b 1

Piezoelectric substrate

(a) (b)
cross-section view of
reflector electrodes

Figure 2.3: (a) Schematic drawing of SAW reflector grating and (b) principle of
operation of the grating (b).
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energy and back, temperature sensitivity, and maximum temperature of operation.

Most common substrates and their parameters are given in Table 2.1. One can

note that for temperature sensor applications up to 350◦C Y,Z LiNbO3offers good

sensitivity and high coupling. For temperatures higher than 350◦C one might choose

Y,X langasite. For tag applications or sensors other than temperature one might

choose quartz; however, low coupling would yield devices with higher loss or narrower

operational bandwidth.

2.2 Sensor Field

The topic of sensors is becoming more and more popular. Sensors can make ma-

chines more robust, safe and efficient. Sensors can also make human interaction with

Table 2.1: Common piezoelectric substrates for use with SAW devices and their key
parameters [16].

Material Crystal Coupling Temperature SAW Maximum

Name Cut Coefficient Sensitivity Velocity Temperature

LiNbO3 Y,Z 4.6% 94 ppm/°C 3488 m/s ∼ 350◦C

LiNbO3 128°Y,X 5.6% 72 ppm/°C 3992 m/s ∼ 350◦C

LiTaO3 Y,Z 0.74% 35 ppm/°C 3230 m/s ∼ 350◦C

Quartz ST 0.16% 0 ppm/°C 3152 m/s 570◦C

Langasite Y,X 0.37% 38 ppm/°C 2330 m/s > 1000◦C

Langasite 138°Y,26°X 0.34% ∼ 0 ppm/°C 2743 m/s > 1000◦C
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electronic devices more intuitive and friendly; today, a smart phone can have over

10 sensors. While for certain applications list of commercially available sensors is

quite extensive, some requirements such as being passive, wireless, radiation hard,

and able to work in high or cryogenic temperatures can quickly narrow down the

number of viable solutions to none.

Sensors can be divided into two major groups: wired and wireless. The wireless

group can then be further divided into following most popular subgroups: battery

powered, energy harvesting, passive resonant, passive SAW delay line, and passive

RFID based sensors.

Battery powered senors typically use resistive sensing elements. An active element

reads the sensor output and transmits it via wireless interface. One of the popular

battery power sensors is an outdoor temperature sensor for weather stations shown in

Figure 2.4(a). Another type of wireless sensor is energy harvesting sensor. Typically,

such sensor operates via conversing of chemical, thermal, mechanical, fluidic motion,

electromagnetic, or optical energy into electrical energy. Shown in Figure 2.4(b) is

a passive wireless switch developed by EnOcean, that converts mechanical energy

of flipped switch into electrical energy that is enough to send a signal to the lamp

controlled by the switch. A major drawback of these two types of sensors is that
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they are typically expensive, they are not radiation hard, they have high number of

possible failure points, and cannot operate under extreme temperatures.

Passive wireless sensors resonance-based are currently available on the market.

They are typically implemented using micro-strip networks, SAW or BAW devices

[17, 18]. The reader for the resonant sensors will typically emit a high power CW

signal, which will cause the sensor to start ringing. Once the CW is turned off,

the sensor’s output frequency is recorded. Change in the measured frequency is a

function of the frequency or other desired parameter. While being suitable for some

applications, their drawbacks include lack of security and coding, typically small

range due to closed loop gain requirements, and high sensitivity to noise and multi-

path. A schematic drawing of a passive wireless resonance-based SAW sensor is given

(a)

Act of pushing
the switch

Energy harvesting
module 

Wireless
link

(b)

Figure 2.4: Examples of (a) battery powered and (b) energy harvesting sensors
(energy harvesting wireless on-off switch).
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in Figure 2.5(a). A delay line based SAW sensor is shown in Figure 2.5(b). The SAW

delay line itself acts as a wireless platform with an antenna attached to one port of

the delay and a sensing load to the second port. The sensing load changes amplitude

and phase of the device response [19, 20]. While sensitivity to noise and multi-path

issues can be reduced using chirped transducers, lack of coding and low accuracy

of reading make this approach impractical for some applications. Passive wireless

TDMA and CDMA SAW approaches will be discussed in following section.

2.2.1 CDMA and TDMA Surface Acoustic Wave Sensors

In recent years, passive wireless SAW-based sensors started to become a viable solu-

tion for todays demanding sensing applications. The use of SAW delay line sensors

Antenna

Antenna

Input Transducer

(a)

ZL

Antenna

Antenna

Sensing Load

Input Transducer

(b)

Figure 2.5: Schematic drawings of a passive wireless SAW (a) resonance and (b)
delay line sensors.
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have been previously reported in the literature, with various system performance

results [21, 22, 23, 24, 25, 26, 27]. CDMA, TDMA and OFC sensors have also been

discussed and can be grouped in the class of spread spectrum signaling formats that

provide coding for RF identification [28, 29, 26, 30, 27].

As a background, the most common approach to SAW RFID tags use a code

division multiple access (CDMA) approach, with the device schematic shown in

Fig. 2.6. In principle, the device is excited with a single carrier RF burst that

generates a surface wave that propagates to the reflectors, which then is partially

reflected from each of the in-line, unweighted reflectors. An amplitude shift keying

(ASK) or phase shift keying (PSK) receiver can be used with this device in order

to determine the reflected pulse locations that indicate the device code and/or the

sensed information [4, 26, 20, 31, 25]. Alternatively, tag identification and sensor

readout can be accomplished by applying the tag response to a matched filter based

on the bit locations and phases [23, 32].

The desired impulse response is a series of reflected pulses with time locations

corresponding to the physical locations of the reflectors. Typical SAW CDMA devices

used for RFID have 30-60 dB insertion loss (IL) due to use of single frequency Bragg

reflectors having low reflectivity per chip that minimize distortion effects[31].
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Figure 2.6: Schematic drawing and impulse response of single frequency SAW ID
tag, all reflector gratings are in one track besides the input transducer.
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SAW-based sensors and tags offer a wide range of advantages over alternative

technologies. They can be designed to operate wirelessly which reduces the need of

having wires, which is especially important when monitoring moving and or rotating

parts. Passive SAW devices enable long term, operation in applications when battery

replacement is impossible such as monitoring concrete and fiber glass structures

internally. SAW devices are also radiation hard (EM and gamma), which enables

them to be used in space applications. While SAW-based sensors might experience

temporary glitches, silicon based devices and MEMS will be permanently damaged

when exposed to such radiation. Fabrication cost of SAW devices is significantly

lower when compared to complex MEMS devices at present state. Operation at

extreme temperatures (from cryo to >1000◦C) is also one of the advantages of SAW

based devices over silicon based.

2.3 Orthogonal Frequency Coding

2.3.1 Principles

Two finite time length functions are called orthogonal if their cross correlation at

time t = 0 is zero as
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τ2∫
τ1

h (t) · g (t) dt = 0, (2.1)

where h (t) and h (t) are the two orthogonal functions. For uniform reflectors, whose

ideal frequency domain impulse responses can be represented as a sampling function,

the orthogonality rule of Equation 2.1 yields reflector responses whose peaks in fre-

quency domain coincide with nulls of their respective orthogonal reflectors as shown

in Figure 2.7. All OFC reflectors of the same set have constant time response length.

Mathematically, relationship between OFC reflector time response length and their

frequencies is expressed as

fk = f0 +
N

τc
, (2.2)

where f0 is the center frequency of the first OFC reflector, fk is the center frequency

of the kth OFC reflector (k > 0), τc is response time length of the reflector, and N

positive integer number. It is also important to note that product fi · τc is an integer

number that corresponds to number of electrodes in the kth reflector.

The orthogonality rule ensures that each reflector is transparent to all other

reflectors at their center frequencies.
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A schematic of an OFC RFID tag with 7 chips, each having a different Bragg

frequency, is shown in Fig. 2.8. The multi-frequency OFC chip reflectors are nearly

transparent outside their Bragg frequency, allowing low loss (<10 dB) and reduced

second order effects. OFC easily operates ultra-wide-band (UWB) and needs only a

few chips for most sensor applications.

OFC has many code combinations with relatively few chips because of the pos-

sibility of using both frequency and PN coding. As an example, a OFC device with

8 chips has an equivalent number of possible codes as a 23-chip, PN-CDMA device

[33]. For commercial tagging applications, large codes are necessary, however, sensor

applications usually require a much smaller code set and 4 to 8 chips may be suf-

ficient. Work has been previously published on passive wireless OFC SAW sensors

[34, 35, 5, 33].
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Figure 2.7: Ideal frequency domain impulse response of the OFC reflectors of the
consecutive frequencies f1, f2, and f3 shown in red, blue and green respectively.
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Figure 2.8: Sample single-sided SAW sensor with 7 OFC chips.

16



2.3.2 Ideal SAW Reflector Response Model

Once reflector structures are physically defined, mapping from physical dimensions

to time domain is performed and Equations 2.3 through 2.5 are applied to produce

simple model prediction of time and frequency responses. The following equations

determine the ideal reflector response model given the reflector definitions, as

fk =
v

pk
, (2.3)

τck = 2
pk
v
, (2.4)

where fk is the center frequency of the kth reflector, τck is the impulse response length

of the kth reflector, v is the SAW velocity, and pk is the electrode-gap width (typically

half-wavelength) of the kth reflector

τpk = 2
xk
v
, (2.5)

where xk is additional spacing between kth and (k − 1)th reflectors. In the case of a

reflector, τck and τpk are double of the physical dimension calculated delay since this
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is a round trip reflection. Once mapping from physical dimensions into time domain

is completed, and the ideal reflector response is calculated as

τpos1 = τp1 , (2.6)

τposk =
k−1∑
i=1

(τci + τpi) + τpi for k = 2, 3, 4, ..., (2.7)

where τposk is the position of the kth reflector with respect to the start of the first

reflector of the array. The time domain response is then defined as

h (t) =
N∑
k=1

Sin (2πfk (t− τposk))Rect

(
t− τposk
τck

)
, (2.8)

and frequency domain response as

H(f) =
N∑
k=1

j
Sinc (τck (f + fk))

2τck
e−j2πfτposk +

+
N∑
k=1

j
Sinc (τck (f − fk))

2τck
e−j2πfτposk . (2.9)
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2.4 Temperature Extraction

An adaptive matched filter technique can be used to extract temperature informa-

tion from the sensor. A change of device temperature varies the SAW velocity and

translates into scaling of the frequency and the time domain responses, which can

be measured as a time scaling factor. At the reference temperature, the time scaling

factor, α, is one 1, and it deviates linearly as temperature coefficient of delay (TCD)

of the substrate and cut used. TCD is defined as

R (T ) = R (T0) (1 + TCD ·∆T ) , (2.10)

where R (T ) is measured physical parameter, R (T0) is the physical parameter at

reference temperature, and ∆T is deviation of temperature from the reference tem-

perature (∆T = T − T0). The time scaling factor can then be defined as

α = 1 + TCD ·∆T. (2.11)

For Y,Z LiNbO3, TCD is -94 ppm/◦C [34]. An ideal reflector response model is used

to synthesize an ideal matched filter for the SAW OFC reflector bank. This reference

signal is used in a software-defined correlator. To measure the change in the SAW
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velocity, a set of matched filters is generated as functions of temperature, which is

essentially the same function but scaled in time domain given as

hcorrelation (t) = hmf (α · t) ∗ hreflection (t) , (2.12)

or in frequency domain as

Hcorrelation (f) =
1

α
Hmf

(
f

α

)
·Hreflection (f) , (2.13)

where hreflection and Hreflection is the received signal in time and frequency domains

respectively, and hmf and Hmf is a matched filter (an ideal representation of the

reflected signal as shown in Equation 2.8 and Equation 2.9 respectively). The time

scaling factor, α, is swept over the required range such that hcorrelation is maximized,

which corresponds to the temperature of the sensor [22, 36]. Shown in Figure 2.9 is

a block diagram description of the temperature extraction algorithm.

Information presented in this chapter is crucial in understanding of work accom-

plished in this dissertation. OFC is the core enabling technology for passive wireless

SAW sensors.
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Figure 2.9: Principle of operation of the adaptive matched OFC ideal filter response
to maximize the correlation waveform and extract the SAW sensor temperature.
Conceptually, a series of matched filters are synthesized corresponding to differing
temperatures. These signals are correlated with the received signal and the corre-
lation signal is determined versus time. The maximum correlation peak is plotted
versus scaling factor to determine the sensor temperature.
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CHAPTER 3

DEVICE MODELING

Modeling is a very important step in SAW device development cycle. While there

are several models available to simulate SAW devices, an accurate and common model

is the coupling of modes (COM) model, which originated in the field of optics [37, 38].

In the 1980’s, the COM model was applied to reflector gratings and interdigital

transducer (IDT) [39, 40]. Since then, the SAW COM model has gained popularity

and has been extended to include many second order effects [7, 8]. The hybrid P-

matrix is used to represent various types of SAW elements. P-matrices of individual

SAW elements are put together as a flow graph to form the device. The COM and

electrostatic modeling and parameters are used to define the P-matrix elements. Flow

graph solution, element-cascading and optimization techniques will be demonstrated

in this chapter. While the complete COM equations have been developed by others,

in order to establish a fundamental understanding of transducer design principles,

an electrostatic-based transducer synthesis model will be discussed [41]. The result

of this model is also a hybrid P-matrix that can be use with the same signal-flow
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i3
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Figure 3.1: Shown in figure is (a) a schematic drawing of a SAW transducer and (b)
a model view of an IDT with two acoustic and one electric ports.

device model. Also in this chapter, modeling of apodized reflectors and transducers

will be discussed.

3.1 SAW Elements

3.1.1 Non-reflecting, lossless Interdigital Transducer

A schematic drawing of a SAW transducer is shown in Figure 3.1.a. A model view

with incident and reflected waves at the acoustic ports and current and voltage of

the electric port is shown in Figure 3.1.b.

The transducer can be represented as a P-matrix as
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b1

b2

i3

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 ·

a1

a2

v3

 , (3.1)

where P11, P12, P21 and P22 is the 2×2 scattering parameter matrix of the acoustical

ports, P13 and P23 are the voltage-to-SAW transfer elements, P31 and P32 are the

SAW-to-voltage transfer elements and P33 is the admittance of the electrical port of

the IDT.

The simple IDT admittance element can be calculated based on the electrical

properties of the transducer layout electromechanical properties, and energy argu-

ments of the substrate as [41]

Ga0 = πk2f0C0WaN
2
eff , (3.2)

X (f) = π (f − f0) τC , (3.3)

Ga (f) = Ga0

[
Sin (X (f))

X (f)

]2
, (3.4)
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Ba (f) = Ga0

[
Sin (2X (f))− 2X (f)

2X (f)2

]2
, (3.5)

Cs = C0WaN, (3.6)

and

Y (f) = Ga (f) + jBa (f) + j2πfCs, (3.7)

where f0 is center frequency, τC is time response length, k2 is the material coupling

coefficient, C0 is the substrate electrode capacitance, Wa is the acoustic aperture, N

is the total number of IDT electrodes and Neff is the effective number of synchronous

electrode pairs. From the energy arguments for a loss-less non-reflecting transducer

its P-matrix can be derived as

P33 (f) = Y (f) , (3.8)

P13 (f) =

√
1

2
Ga (f)e−jπτcf = P23 (f) , (3.9)
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and

P31 (f) = −2P13 (f) = P21 (f) . (3.10)

For a non-reflecting IDT reflection coefficients of the S-parameter matrix of the

acoustical port are zero, or [41]

P11 (f) = P22 (f) = 0. (3.11)

Assuming that the IDT coupling is low, acoustical parameters from one acoustical

port to the other can be modeled as a delay as

P21 (f) = e−j2πτcf = P12 (f) . (3.12)

.

3.1.2 Other Structures

The other two elements that will be used in the synthesis model are a delay path

and an ideal edge reflector. The hybrid P-matrix for a simple delay is expressed as
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b1

b2

0

 =


0 e−j2πf

L
v 0

e−j2πf
L
v 0 0

0 0 0

 ·

a1

a2

0

 , (3.13)

where v is the delay path surface velocity. The P-matrix of an ideal edge reflector is

expressed as


b1

b2

0

 =


−1 0 0

0 −1 0

0 0 0

 ·

a1

a2

0

 . (3.14)

3.2 Signal Flow Representation

A signal-flow graph approach will be used to simulate an entire device. First each

device is represented as a three- or two-port signal-flow graph as demonstrated in

Figure 3.2. Then incident nodes are connected to the reflected nodes of the acoustic

ports of adjacent elements as shown in Figure 3.2 highlighted in red. If two or

more transducers are assigned to the same electrical port, they are connected as

shown in Figure 3.3 for electrically in parallel (green) and serially (purple) connected

ports, respectively. For transducers connected electrically in parallel, incident node

27



Electrical Port (3)

Transducer Delay Line Ideal Edge

(1) (2) (1) (2)

P21b

P12b

-1

P33a

P32a

P23a

A
bs

o
rb

er

P11a

P21a
P12a

P22a

P31a P13a

-1

AbsorberReflector

(1) (2)

P21c

P12c

P11c
P22c

Figure 3.2: Signal-flow graph representation of SAW elements: transducer, delay,
reflector, absorber, and an ideal edge. Shown in red are element connection going
from reflected port of one element to the incident port of an adjacent SAW element.

of electrical port of first transducer is connected to the incident node of electrical

port of second transducer and reflected node of electrical port of second transducer

is connected to the reflected node of electrical port of first transducer, in which case,

the newly formed common electrical port has the same nodes as the first transducer.

For transducers connected electrically in series reflected node of electrical port of first

transducer is connected to the incident node of electrical port of second transducer, in

which case, the newly formed electrical port will have incident node of first transducer

and reflected node of the second transducer. It is important to distinguish between

device port and transducer electrical port. For example, a device might have two

device ports and three transducers (each transducer has one electrical port). The

electrical ports of first and second transducers can be connected to the first device

port and electrical port of third transducer is connected to the second device port.
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Once the signal-flow graph for the entire single-track device is completed, the

device solution can be represented as a simple hybrid P-matrix as given in Equa-

tion 3.15

Electrical Port (3)

(1) (2)

P33a

P32a

P23a

P11a

P21a
P12a

P22a

P31a P13a

Electrical Port (3)

(1) (2)

P33a

P32a

P23a

P21a
P12a

P22a

P31a P13a

P11a

Input node for both,
parallel and series

connections

Output node for
parallel connection

Output node for
series connection

Figure 3.3: Signal-flow graph representation of two transducers that are assigned to
the same electrical port connected in parallel (green) and in series (purple).
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b1

b2

i3

...

in+2


=



Acoustical-only
S-Parameter

P11 P12

P21 P22

P13 · · · P1,n+2

P23 · · · P2,n+2

P31 P32

...
...

Pn+2,1 Pn+2,2

P33 · · · P3,n+2

...
. . .

...

Pn+2,3 · · · Pn+2,n+2

Electrical-only
Y-Parameter





a1

a2

v3

...

vn+2


. (3.15)

where n is number of unique ports in the device. Generally, only the admittance

sub-matrix (Y-parameter) is of interest. Values of all elements of the Y-parameters

can be computed using Mason’s gain formula as [9]

G = Pn,m =
in
vm

=

N∑
k=1

Gk∆k

∆
, (3.16)

where G = Pn,m is an element of the admittance sub-matrix of the hybrid P-

parameter, N is number of forward paths, Gk is the gain of a kth forward path,

∆k is one less sum of all loop gains non-touching forward path Gk, and ∆ is one less
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sum of all loop gains plus sum of products of all non-touching loop gains taken two

at a time.

3.2.1 Optimization

For a long multi-element devices, the process of calculating all forward path and

loop gains can become very time consuming. One way to reduce the computational

times is to combine adjacent SAW elements two at a time, until only a small struc-

ture remains. The following combinations of elements are most straight forward to

cascade: two elements with acoustical ports only, one element with acoustical port

and one element with an electrical port, two elements with electrical ports assigned

to the same port of the complete device. Combining elements that are connected

to different device ports creates an additional level of complexity and is not cost

effective computationally. The two elements are removed from the device model and

are treated as a stand-alone element. Their P-matrix is computed and is inserted

into the original device in place of the two removed elements. An example of this

optimization method in action is given in Figure 3.4. In step 1, two acoustic-only de-

vices are combined together to produce a computed acoustic-only element. In step 2,

the computed element is cascaded with a transducer to produce a computed element
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with an electrical port, which is assigned to the same device port. In step 3, since

the new computed is assigned to the same device port as the following transducer,

they too can be cascaded together. The next element in the device has an electrical

port which is not assigned to the same device port; therefore, these two elements

cannot be cascaded, so, in step 4, the next pair of the elements that can be cascaded

is found until there are none left.

3.3 Multi-Track Devices

It is possible, to have device with multiple acoustical tracks and interconnected

transducers between the tracks as shown in Figure 3.5. The number of ports and their

assigned names must be the same across all tracks. Separated tracks are computed as

separate devices. If ports across multiple tracks are connected in parallel, as shown

in Figure 3.5.a, the Y-parameters of separate tracks are simply added together. If

ports are connected in series, as shown in Figure 3.5.b, Y-parameters must first be

converted to Z-parameters that can be added together. For mixed connections, as

shown in Figure 3.5.c, a custom equation needs to be determined.
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Figure 3.4: Example of cascading adjacent SAW elements to reduce the size of the
final device.
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3.4 Modeling of Apodized Reflectors

Apodization is a useful tool when precise control over the envelop function in time or

profile in frequency is needed. Apodized devices can be tuned to have flatter pass- or

reflect-bands, lower side-lobes, or a different bandwidth for the same response time

length.

In order to simulate an apodized reflector using the COM model, each track is

divided into sub-tracks in such way that each sub-track has only uniform portion of

the reflector as shown in Figure 3.6. Free space delay is added before and/or after the

uniform portion of the reflector (as shown in Figure 3.7.a) and the sub-track is then

1
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Figure 3.5: Examples of multi-track devices: electrical ports of the two track con-
nected in a) parallel, b) series, and c) electrical ports of multiple tracks with mixed
connection types.
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Figure 3.6: COM model apodized reflector representation as series of tracks.

simulated as a separate device. Once each sub-track is calculated the Y-parameters

can be added together for the final result.

Since the free surface velocity differs from the surface velocity under the grating,

there will be a phase difference from one sub-track to the other. In order to reduce

this difference, half of the delay is metalized but this only occurs when total delay is

longer than a single electrode-gap pair as shown in Figure 3.7.b.

a) b)

Reflect grating

Free surface

Metalized surface

Figure 3.7: Example of sub-track representation (a) with free surface delays and (b)
half free and half metalized surface delays.

35



Figure 3.8 compares a simulation of a uniform reflector (dotted blue curve) to

a simulation of apodized reflector modeled with free surface delays (dashed green

curve) and with apodized reflector modeled with half free half metalized surface

delays (solid red curve). Both apodized reflectors had Hamming window envelope

applied to them. It can be noted that the apodized reflector without metalized delays

has a very non-symmetric response and a highest side-lobe only 5 dB lower than the

uniform reflector. In contrast, the apodized reflector modeled with compensated

metalized delays has a very symmetric response with highest side-lobe nearly 25 dB

lower than the one of the uniform reflector.

3.5 Examples

Illustrated in Figure 3.9(a) is a sample device consisting of a transducer with 9 MHz

bandwidth, a delay, and a reflector with 13.5 MHz bandwidth. The center frequency

for both reflector and transducer is approximately 247 MHz. The COM model was

used to compute the Y-parameters which was then converted to an S-parameters

[42]. Shown in Figure 3.9(b) is a reflection coefficient simulated using COM model

simulation of just the transducer (solid green curve) and the compete device (dotted
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Figure 3.8: Comparison of a uniform reflector (blue dotted curve) with apodized
reflector modeled with free surface delays (dashed green curve) and with apodized
reflector modeled with half free half metalized surface delays (solid red curve).
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blue curve). In the frequency domain, the reflector response shows up as a ripple on

top of the transducer response.

A dual track device is shown in Figure 3.10. The transducers and reflectors

bandwidths are similar to the device in Figure 3.9; however, the center frequencies

of the two tracks chosen in such way that the transducers are orthogonal to each

other. The transducers are electrically in parallel and acoustically isolated. Shown

in Figure 3.11(a) and Figure 3.11(b) is the impulse response of the multi-track device

in the frequency and time domains respectively. In the frequency domain, the two

responses are neat to each other. Since the tracks are acoustically separate from

each other, there is no inter-chip reflections, as can be seen in time domain plot. The

main reflection of the first reflector is at 1.5 µs and its triple-transit response at 3
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(b) Reflection at the electrical port

Figure 3.9: Simple, single track tag/sensor device example.
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µs. Response of the second reflector comes in at 2 µs with the triple transit trailing

at 4 µs.

To demonstrate the versatility of the signal-flow graph approach, the device of

Figure 3.10 is reconfigured and now the two transducer-reflector pairs are in the same

acoustical path as shown in Figure 3.12(a). The time domain impulse response of

the device is shown in blue in Figure 3.13. One can note, since all transducers and

reflectors are within the same acoustical path, there are now multiple inter reflections

present. Adding an absorber, as shown in Figure 3.12(b), acoustically separates the

transducer-reflector pairs and, since the transducers are still connected electrically in

parallel, yields the same result as in dual track case as can be seen from the dotted

green curve of Figure 3.13.

Delay

Electrical Port

Delay

Figure 3.10: Simple, dual track, orthogonal tag/sensor device example.
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Figure 3.11: Impulse response of the simple, dual track, orthogonal tag/sensor device
given in Figure 3.10.
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Figure 3.12: Device example.
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3.6 Summary

This chapter has presented signal-flow graph representation of SAW devices using

elements that are expressed as hybrid P-matrices. P-matricies can be calculated

from previously developed COM equations (when used signal-flow graph solution,

this model will be referred to as COM model). An electrostatic expression for the

P-matrix for the transducer has been presented, when used with the signal-flow

graph solution this model is referred to as the synthesis model. Also, modeling of

apodized reflectors has been demonstrated for the purposes of bandwidth shaping

and side-lobe reduction.
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Figure 3.13: Device example.
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CHAPTER 4

SAW NOISE-LIKE REFLECTORS AND DEVICE

CODING

There are several properties that a good passive wireless reflective tag or sensor

should have; good auto-correlation (narrow peak, low side-lobes), minimized code

collision (low cross-correlation) with other codes, and low loss [36]. Current schemes

for finding good codes for multi tag or sensor environments are complex and system

dependent due to the asynchronous nature of the SAW system, which often limits

system performance.

Nature has provided numerous examples of the use of periodic, pseudo-periodic

and aperiodic structures to attain certain desired properties. One example is the def-

inition of an electronic material as single-crystal (periodic), poly-crystalline (pseudo-

periodic) or amorphous (aperiodic). In a material, such as a semiconductor, the

structure has a profound effect on the material properties and movement of an elec-

tron through the material. The effect of a material structure on the electron prop-

agation is analogous to that of the light propagating in certain optical structures,
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which has been termed photonic materials or structures. The same analogy is true

for an acoustic mode propagating in certain structures, termed phononic structure.

A large body of work has analyzed or showed initial results of wave propagation

in phononic crystals. Some work has focused on creation of acoustic band gaps in

phononic crystals [43, 44, 45, 46], guiding of waves using phononic crystals has been

experimentally demonstrated [47, 48], and SAW effects in phononic structures have

been studied [49, 50, 51]. Nelin described phase apodization in crystals to generate

a phononic structure response, which may also have application in future phononic

SAW structures [49]. Dhar and Rogers used lithography to fabricate phononic struc-

tures on crystals [52].

This chapter will introduce a study of some SAW phononic structures and their

SAW propagation properties. The structures will consist of periodic, pseudo-periodic

and aperiodic reflectors that have interesting frequency and time domain character-

istics. It is possible to produce some new and unique one dimensional phononic

structures using similar concepts developed for orthogonal frequency coded (OFC)

SAW devices [28]. The chapter will provide definitions of the structures, a basic

theory and predictions based on a coupling of modes (COM) formulation. Experi-

mental results of devices fabricated on Y,Z LiNbO3 will be compared to theoretical

predictions.
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The motivation for this research is to develop a system for wireless, passive inter-

rogation of SAW multi-sensors. A SAW device platform, which has RFID encoding

for identification of 4-100 devices, has low loss and good range, can accommodate

differing on-board sensor functions, and can operate in a wide range of space and

ground-based applications. The device approach chosen uses SAW orthogonal fre-

quency coded (OFC) reflectors and transducers in a delay line embodiment to pro-

vide an RFID tag [28]. This presentation will focus on new SAW OFC device efforts

for the device platform that provides the communication link for the sensor system

[4, 26, 20, 31, 25].

4.1 Definitions and Theory

4.1.1 AWGN and Noise-like Reflector (NLR) Structures

As a conceptual model for NLR structures, additive white Gaussian noise (AWGN)

was examined. Since the power spectrum of AWGN is constant, its autocorrelation

produces a peak at time t=0, and zero everywhere else. The lack of correlation

side-lobes is highly desirable since the time domain autocorrelation energy is tightly

confined around a point, which is a goal of coding schemes [53].
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The device embodiment studied assumes a single SAW transducer connected

to an antenna, and a SAW reflector delayed from the transducer. The transducer

input admittance is the sum of the electrical input admittance, with no reflector,

plus a term which is a function of the transducer coupling and the delayed reflector

response. This can be converted to scattering parameters of the transducer electrical

port, S11(f). The frequency dependent reflected wave can be written as following

product

A1 (f) = α · P31(f) · Γ(f) · P13(f), (4.1)

where P31(f), P13(f) are P-matrix parameters of electrical-to-acoustical port conver-

sion and vice versa, Γ(f) is the reflected wave from the SAW grating, and a delay

between the reflection grating and the transducer can be included in α. Since the

delay between the reflector grating and the transducer only offsets the correlation,

assuming no loss, α is set to unity without loss of generality.

When calculating the cross-correlation, the matched filter function consists only

of the grating reflection response. Therefore, the cross-correlation takes the form of

Hcc(f) = A1 · Γ∗(f). (4.2)
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Substituting equation (4.1) into the equation (4.2) results in a simplified form of

Hcc(f) as

Hcc (f) = P31(f) · Γ(f) · P13(f) · Γ∗(f). (4.3)

Assuming, for the moment, a constant magnitude of 1 for Γ(f), equation (4.3) is

simplified further as

Hcc(f) = P31(f) · Γ(f) · Γ∗(f) · P13(f)

= P31(f) · P13(f). (4.4)

The relationship between P13 and P31 is [41]

P13(f) = −2P31(f). (4.5)

Applying equation (4.5) to equation (4.4) results in the final simplified expression

for the transducer’s cross-correlation as
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Hcc(f) = −2P 2
31(f) (4.6)

From this point on, the expression in equation (4.6) will be referenced as the

transducer effect. Given that the reflection of the grating was assumed to have a

constant magnitude and random phase (AWGN), the transducer effect can dominate

the shape of the correlation peak.

To determine the effects of transducer band-limiting, an AWGN simulation was

conducted and sampled at fs = 2 GHz. Noise was then band-limited at center

frequency, f0 = 250 MHz. Two types of transducers were simulated assuming simple,

ideal time responses: an unapodized IDT (Rect time function and Sinc frequency

response) and cosine apodized IDT. Two transducer effects are of interest: 1) the

narrower the bandwidth, the larger the correlation peak width (BW = γ/τ , where

γ is a constant depending on time window), and 2) the transducer time response

changes the time domain correlation shape. Both of these effects are as expected from

Fourier transform theory and need to be considered in final designs. Unfortunately,

the idealized AWGN auto-correlation properties can never by obtained because of

the band-limiting effects of the SAW transducer, as well as practical device and

system limitations associated with RF components bandwidth, antenna bandwidth,
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and necessary matching networks bandwidth. However, understanding the limitation

will aid in optimizing a design.

4.1.2 Primitive Cell Structure Definition

All devices are composed of multiple, individually defined, primitive structures that

are composed of an electrode and gaps that define a period, p, as shown in Figure 4.1.

The relationships that map from physical dimensions into the time domain for

the primitive cell are given in the following parameters as

i
th

electrode

xi ai

di

pi

Figure 4.1: Definition of ith Electrode (Primitive Structure)
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fi =
v

pi
. (4.7)

A delay offset between primitive cells is given as

τci = 2
pi
v
. (4.8)

where fi is the center frequency of the primitive structure, τci is the impulse response

length of the primitive cell, and v is the SAW velocity.

τpi = 2
xi
v
. (4.9)

where τpi is the impulse response offset of the ith primitive structure.

For a reflector, τci and τpi are double of the physical dimension calculated delay,

since this is a round trip reflection:

di = 0 (reference chosen), (4.10)

and
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ai =
pi
2
. (4.11)

Equations (4.7) through (4.11) relate physical dimensions to time and then into SAW

device layout parameters.

4.2 Noise-Like Reflector Structures

4.2.1 Devices

4.2.1.1 OFC Reflector Structures

The starting structure was an OFC reflector array consisting of 7 chips and the total

number of electrodes is 182 [28]. Detailed parameters are described in Table 4.1.

This device will be denoted by OFC7 in all future discussions.

4.2.1.2 Random Reflector Structures

The first random structure examined is based on the OFC7 reflector array where the

primitive cells (electrode-gap pairs) were randomly shuffled as shown in Figure 4.2.
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This structure has the same number of electrodes (182) that are placed one after

another; therefore, time response length of the new device is the same as time length

of the OFC device it was based of. In future discussions this device will be denoted

as RND7.

4.2.1.3 Reflector Structures with PPM

Another way to produce a random device is to insert at random additional gaps

of various lengths between the primitive cells. This technique can be recognized as

pulse positioning modulation (PPM) [54].

Table 4.1: OFC Device Design Values

Frequency Number of Position

(MHz) electrodes

f1 221.14 23 1

f2 230.76 24 6

f3 240.38 25 3

f4 (f0) 250.00 26 2

f5 259.62 27 5

f6 269.24 28 4

f7 278.86 29 7
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A random device design with PPM included the following parameters; at random

one half of the primitive cells were assigned 0 and another half were assigned 1. Cells

corresponding to 0 remained at xi = 0, and cells corresponding to PPM code 1 had

a value of xi = pi/2 as

xi =


0 if PPM code is 0

pi/2 if PPM code is 1

. (4.12)

Such delay creates a π offset of the local frequency of the primitive cell with

respect to its original position.

f1 f2 f3

Electrodes
are shuffled

OFC
Device

NLR
Device

Figure 4.2: Schematic drawing of an OFC device (top) and an NLR device (bottom)
which is based on the OCF device.
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This modulation was applied to both OFC7 and RND7 reflector structures as

demonstrated by Figure 4.3. Both structures have the same number of electrodes;

however, the time response length was increased by approximately 25%, since the

impulse response length of half of cells was increased by 50%. These devices will

be referenced as OFC7-PPM and RND7-PPM in future discussions presented. The

motivation for examining both of these structures is to determine whether there is an

advantage in keeping the same size cells (as in case of OFC7-PPM grouped together)

versus a completely random structure (RND7-PPM).

PPM Code
000110101

Applied

PPM Code
000110101

Applied

inserted extra space

f1 f2 f3

OFC

OFC w/ PPM

RND

RND w/ PPM

Figure 4.3: Pulse position modulation applied to an OFC (left) and NLR (right)
devices.
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4.2.2 NLR Structures Modeled using Ideal Reflector Model

Figure 4.4 is the simulated ideal reflector model frequency domain response of RND7,

OFC7 and OFC7-PPM reflector structures. It can be seen that the RND7 device

has the most narrow frequency response. Each electrode within the random array

has frequency of f0 ±∆f , and since electrodes are randomly placed, the device looks

like a poorly fabricated single frequency reflector grating with center frequency f0.

Therefore, its frequency response is expected to be narrow. The OFC reflector struc-

ture has the expected frequency response [28]. Reflector array OFC7-PPM, has the

widest band response due to PPM. The reflected signal looks like a CDMA signal fill-

ing in envelope that resembles single electrode response with center frequency f0 and

ultra-wide bandwidth. A narrow band plot (band of interest) is shown in Figure 4.5,

and highlights the spectral response.

Figure 4.6 shows auto-correlations of OFC7, RND7 and OFC7-PPM responses

in the time domain. As expected, the wider the frequency domain response, the

narrower the correlation peak. RND7 device produced widest (worst) correlation

peak and OFC7-PPM produced the most narrow (best) one.

PPM coding was applied to both RND7 and OFC7 reflectors and Figure 4.7

compares the frequency domain responses. Both plots are similar and at this point
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Figure 4.4: Comparison of spectrum spreading of OFC7, RND7 and OFC7-PPM
reflector structures using the ideal reflector model.
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Figure 4.5: Comparison of signal distribution of OFC7 (blue), RND7 (green) and
OFC7-PPM (red) reflector structures simulated from the ideal reflector model.
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it is not clear whether having identical cells grouped together has any advantages

over a completely random reflector structure. Figure 4.8 compares auto-correlations

of RND7-PPM and OFC7-PPM. Again, there are no apparent advantages of one

structure over another.

Reflector structures encoded with PPM lead to extremely wide band responses.

Since transducers used with such reflectors are going to have narrower bandwidth,

band-limiting effects on the correlation are examined. As part of this research, several

different shapes and bandwidth transducers effects were examined. As a general rule,

as bandwidth decreases the correlation peak becomes wider and smaller. However,

the shape of the frequency domain response of the transducer effect is also important.

Figure 4.9 demonstrates the effect for brick-wall shaped frequency domain response

with 120 MHz bandwidth. One notices that OFC7 and RND7 do not show significant
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Figure 4.6: Comparison of ideal correlation peaks for OFC7, RND7, and OFC7-PPM
devices, ideal reflector model.
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Figure 4.7: Comparison of frequency responses of OFC7-PPM and RND7-PPM, ideal
reflector model.
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Figure 4.8: Comparison of ideal correlation peaks of OFC7-PPM and RND7-PPM,
ideal reflector model.
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changes after the transducer effect is applied; however, the OFC7-PPM correlation

peak became wider and dropped by 3 dB. The transducer effects the overall frequency

response, reducing the transducer-reflector effective bandwidth, which leads to a

reduced correlation peak and wider compressed pulse width.

4.2.3 NLR Structures Modeled using COM Model

While the ideal reflector model is a good synthesis tool, for initial predictions, the

COM model was used to simulate SAW reflector responses, including second order

effects. For purposes of comparison of ideal reflector model results to COM model

results, Figure 4.10 through 4.12 compare predictions of the ideal reflector model
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Figure 4.9: Comparison of band limiting effect of 120MHz brick wall band-pass filter
(BPF) IDT on ideal correlations of OFC7, RND7 and OFC7-PPM devices, ideal
reflector model.
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to the COM model. Reflection predicted by the COM model was compared to the

response simulated by the ideal reflector model. Figure 4.13 through 4.15 compare

COM model correlations to the ideal ones. Both frequency domain responses and

correlations of the two models agree well, which verifies that the ideal reflector model

is a good synthesis tool.

4.2.4 Device Layout and Data Extraction

In order to be able to extract clean reflection data, test devices were built having

two transducers on one side of a reflector as shown in Figure 4.16. S21 was measured

from these two-port structures over the band of interest.
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Figure 4.10: Comparison of OFC7 device frequency response predicted by ideal re-
flector model and COM model.
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Figure 4.11: Comparison of RND7 device frequency response predicted by ideal
reflector model and COM model.

200 220 240 260 280 300
−50

−40

−30

−20

−10

0

Frequency (MHz)

M
ag

ni
tu

de
 (

dB
)

Response − OFC7 PPM

 

 

OFC7 PPM − First Order Model
OFC7 PPM − COM Model

Figure 4.12: Comparison of OFC7-PPM device frequency response predicted by ideal
reflector model and COM model.
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Figure 4.13: Correlation peak of ideal to ideal signal (red) compared to correlation
peak of COM model to ideal signal (green) of OFC7 device.
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Figure 4.14: Correlation peak of ideal to ideal signal (red) compared to correlation
peak of COM model to ideal signal (green) of RND7 device.
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Figure 4.15: Correlation peak of ideal to ideal signal (red) compared to correlation
peak of COM model to ideal signal (green) of OFC7-PPM device.
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SAW Reflector

Structure

Under Test

Figure 4.16: Device layout used for reflection measurement. SAW reflector structures
used were OFC7, RND7 and OFC7-PPM.
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The measured reflected signal is composed of two parts; the direct response (from

one transducer to the other) and the reflected response (from one transducer to

the reflector grating and then to the second transducer). The two signals can be

separated by gating the time domain signal. Once gated, both parts were transformed

back into frequency domain. The gated reflected response was then divided by the

direct response in order to remove the transducer effect. A threshold was applied

at approximately 70 dB below the peak signal to eliminate the noise floor. For

this particular device implementation 70 dB threshold yields usable bandwidth of 80

MHz.

4.2.5 Experimental Results of NLR Structures

Figure 4.17 through 4.19 compare experimental data, with the transducer response

removed, to the ideal (reflector model) response. Since the experimental data was

acquired through a band-limiting transducer, data can only be compared over 80 MHz

bandwidth. Remarkable agreement between the experimental data and the ideal

reflector model further verifies that the latter is a good synthesis tool.

Figure 4.20 through 4.22 compare ideal auto-correlations to correlations of ex-

perimental data and ideal responses. In this case, the ideal transducer effect was
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Figure 4.17: Comparison of experimentally measured frequency domain response of
OFC7 structure to prediction from the ideal reflector model and COM model.
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Figure 4.18: Comparison of experimentally measured frequency domain response of
RND7 structure to prediction from the ideal reflector model and COM model.
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Figure 4.19: Comparison of experimentally measured frequency domain response of
OFC7-PPM structure to prediction from the ideal reflector model and COM model.
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Figure 4.20: Comparison of ideal auto-correlation of device OFC7 to cross-correlation
of measured response of device OFC7 and its ideal reflector response.
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Figure 4.21: Comparison of ideal auto-correlation of device RND7 to cross-correlation
of measured response of device RND7 and its ideal reflector response.
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Figure 4.22: Comparison of ideal auto-correlation of device OFC7-PPM to cross-cor-
relation of measured response of device OFC7-PPM and its ideal reflector response.
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added to the ideal reflector model, in order to simulate correlation peak degradation.

Figure 4.23 compares experimental correlation peaks degraded by transducer effect

of the three reflector structures (OFC7, RND7 and OFC7-PPM). Correlation peaks

were normalized for comparison purposes.

4.3 Repeating Structures

While NLR devices yield excellent correlation properties, their wide-band nature

makes them impractical when considering transducer and interrogator requirements.

Simply narrowing bandwidth down could result in significant reflectivity loss. In

order to de-spread the reflector response in frequency and create more distinct fre-

quency pass and reject bands, structures can be repeated.
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Figure 4.23: Comparison of correlation peaks of experimentally measured OFC7,
RND7 and OFC7-PPM reflector structures.
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4.3.1 Theory

A first order mathematical analysis is considered, which ignores the acoustic im-

plementation effects. Given a unit cell structure with a time response h(t), and a

frequency response H(f), having a time length τB and repeated N times, then hN(t)

is given as

hN (t) =
N−1∑
k=0

h (t+ τB · k). (4.13)

The frequency response HN (f) is

HN (f) =
N−1∑
k=0

H (f) e−j(4π·f ·τB)k. (4.14)

Defining

α (f) = 4π · f · τB, (4.15)

equation (4.14) can be reduced to

HN (f) = H (f)
N−1∑
k=0

[
e−j·α(f)

]k
. (4.16)
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The summation in equation 4.16 is recognized as a geometric progression and

using the summation formula for such a progression, equation (4.16) yields [55]

HN (f) = H (f) · 1− e−j·N ·α(f)

1− e−j·α(f)
. (4.17)

Factoring out the exponents, applying Euler’s formula, and back substituting

using equation (4.15), HN (f) can be expressed as a product, rewritten as

HN (f) = H (f) e−j·(N−1)·2π·f ·τB sin (N · 2π · f · τB)

sin (2π · f · τB)
. (4.18)

The peak frequencies occur when

2π · fpeak · τB = n · π, (4.19)

where n ∈ N, or

fpeak =
n

2 · τB
. (4.20)

The relationship to the frequency nulls is
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N · 2π · fnull · τB = m · π, (4.21)

where m ∈
{
N : N

m
/∈ N
}

and

fnull =
m

2 · τB ·N
. (4.22)

The null bandwidth is given as

BWnull =
N · n+ 1

2 · τB ·N
− N · n− 1

2 · τB ·N
=

1

τB ·N
. (4.23)

HN(f) is expressed as a product ofH(f), which is the unit cell frequency response,

a linear phase term of unity magnitude, and a real, modulating function. Figure 4.24

is an example response of HN(f), for N = 2, 3, 4 and H(f) = 1. Expressions for peak

and null locations and peak bandwidth are given in equations (4.20), (4.22), and

(4.23), respectively.

This simple analysis is applicable to idealized short reflector arrays. It assumes

the inter- and intra-reflections are negligible and that the electrode reflection is ap-

proximately equal to a half-wavelength at the local carrier frequency, or where the

period is 1/2 wavelength. This is not always true, as will be demonstrated, but it
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provides an understanding of what is expected and a direction for experimentation.

As seen in Figure 4.24, a series of periodic stop bands will be produced due to the

multiple periodic unit cells creating the super cell. This would correspond to the

idealized reflector response of such a structure. By changing the unit cell and/or

super cell, differing stop (reflection) and pass bands can be achieved.

4.3.2 Layout of Devices with Repeating Structures

A total of eight devices were modeled, built, and tested. All of the devices were

one-port devices and had a 3 · f0 apodized transducer which reduced second order

transducer effects. To verify the theory developed in section 4.1, an OFC structure

was initially chosen as a unit cell for its well behaved and slowly changing frequency

response, H(f). This response should give good verification of peak and null locations
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Figure 4.24: Example of normalized magnitude frequency response from the ideal
reflector model calculations for super cells with 2, 3 and 4 unit cells. As N increases,
the local stopband frequencies narrow. The effects of increased reflectivity and inter-
and intra- reflector interactions are not predicted in the ideal reflector model.
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Table 4.2: OFC Device Design Values for Repeating Structures Experiment

Frequency Number of Position

(MHz) electrodes

f1 245.2 25 1

f2 (f0) 250.0 26 2

f3 254.8 27 3

and predicted bandwidth. A 3-chip OFC structure was designed to have frequencies

245.2MHz, 250.0MHz, and 254.8MHz with 25, 26 and 27 electrodes respectively (as

shown in Table 4.2). A shorter, 3-chip configuration was chosen as opposed to 5-

chip devices in Section 4.2 to avoid having long devices and second order effects

associated with them. Super cells were built from OFC bits repeated 1, 2, 3, and 4

times as shown in Figure 4.25. Devices were then labeled as OFC x1, OFC x2, and

so on. Primitive structures were designed which have pi = 0.5λi, xi = di = 0, and

ai = 0.25λi, where λi is corresponding wavelength to each frequency.

Also, a random structure was used as a unit cell for a second set of four devices.

This structure was built using the primitive cells from the previously described OFC

structure. Primitive structures (electrode followed by free space each of quarter

wavelength width) were randomly shifted within the unit cell, yielding the same

total number of electrodes and length of the unit cell as described for OFC. This

72



unit cell was then repeated similarly to then OFC xN devices; 1, 2, 3 and 4 times as

shown in Figure 4.26, and labeled RND x1, RND x2, and so on.

The second set of random and pseudo-random devices provided a unique reflec-

tivity response and was also used to examine the accuracy of the COM model when

simulating fast changing structures. The COM model has been shown to be accurate

for slowly varying changes in electrode periodicity [7]. The random unit cell struc-

ture can have rapidly changing primitive cell characteristics, which may challenge

the applicability of the COM model.

OFC

x1

x2

x3

x4

Figure 4.25: OFC bit device layouts (drawing is not to scale, nor does it show the
correct number of electrodes), structures. Because there can be defined a unit cell,
which is repeated within the structure, the structure is pseudo-periodic.
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4.3.3 Modeled Results for Repeating Structures

Two models were used to design and predict the device response. The ideal reflector

model was primarily used to provide an analytic design tool; it has simple equations

and gives the ability to develop design algorithms. The reflector response is approx-

imated by idealized time carriers dependent on the period of the electrode modeled.

It does not take under consideration coupling, inter-reflectivity, and second order

effects. Reflection is linearly proportional to the number of electrodes and does not

model the stored energy in the device. For a more complete analysis, which includes

RND

x1

x2

x3

x4

Figure 4.26: Random bit device layouts (drawing is not to scale, nor does it show
correct number of electrodes). For device RNDx1, the unit cell consists of totally
random primitive cells, but the super cells in the other devices are pseudo-random,
consisting of RNDx1 periodically used in the super cell.
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coupling, inter-reflectivity and second order effects, the COM model is applied to the

structures [7].

Both models define one primitive structure (electrode) at a time. Also, both

models produce the expected reflective S-parameter of the acoustic ports. Acoustic

ports cannot be measured directly, which requires transducers for launching and

receiving the SAW and their effect needs to be compensated when extracting the

data.

Figure 4.27 shows the COM model predicted frequency response of OFC x1

through OFC x4 devices. Peaks, nulls, and bandwidth correlate well with theory

developed in section 4.1. In this case the bit length τB is approximately .9µs. As

expected, the unit cell response, OFC x1, defines the reflection band window in fre-
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Figure 4.27: COM model predicted reflector frequency response of devices OFC x1
through OFC x4 (output is normalized for comparison).
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quency. The periodic reflection bands are determined by the periodic unit cell delay

and number of unit cells in the super cell.

Figure 4.28 shows a narrower frequency interval of the same response as shown

in Figure 4.27, demonstrating the null bandwidth variations and the relative change

in reflectivity as the super cell length increases. This plot can also be compared to

the plot of Figure 4.24.

Figure 4.29 shows the COM model frequency response for the devices composed of

the randomized unit cell. The general positions of peaks and nulls are close to those

predicted by the ideal reflector model, but the peak around 255MHz is saturated due

to the inter- and intra- reflectivity effects, which is not predicted by equation (4.23).

The character of the reflector response is very diverse, owing to the uniqueness of

the random structure of the unit cell. The periodicity is a function of the primitive

cell delay offset.

4.3.4 Measurement of Repeating Structures

It is not possible to measure acoustic ports of reflector banks (super cells) directly.

Data was acquired through a transducer using a network analyzer and then trans-

formed into the time domain using the Fourier transform. The super cell reflection
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Figure 4.28: COM model predicted reflector frequency response of devices OFC x1
through OFC x4 (output is not normalized).

240 245 250 255 260

0

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

 

 

COM Model, Random x2
COM Model, Random x3
COM Model, Random x4

Figure 4.29: COM model predicted reflector frequency response of devices RND x1
through RND x4 (output is not normalized), with relative magnitudes.
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has been gated out in the time domain and transformed back into the frequency

domain. The transducer response has been measured separately and then compen-

sated for in the response of the super cells. The experimental reflector responses have

been compensated, eliminating the transducer response effect, providing the proper

reflector magnitude frequency response.

The COM simulation parameters were adjusted slightly to align the frequency

nulls (velocity change) and the reflectivity was fixed to match measurements made

from test structures on the same wafer. These model parameters will need further

study for these structures, but the transfer function is presently the parameter of

interest.
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Figure 4.30: Experimental reflector frequency response of devices OFC x1 through
OFC x4 (output is normalized). This result compares well to the predicted response
of Figure 4.28.
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Figure 4.30 shows the experimental frequency response of OFC x1 through OFC

x4 devices. It can be noted that the number of peaks, their relative location, and

bandwidths correlate well with ideal reflector model (Figure 4.24) and COM model

simulations (Figure 4.28).

Figure 4.31 shows the normalized expanded frequency response of device OFC

x1, which is a super cell consisting of just one OFC bit. This response represents the

unit cell, H(f) in section 4.1. Devices OFC x2, x3, and x4 are expected to generate

the desired peaks and nulls within this frequency response window. For this device

both models and the data correlate well.

Figure 4.32 shows the frequency response of a super cell consisting of two bits (2-

unit cell). At this point both models and experimental data agree with an exception

of the high frequencies where there appears to be a slight ripple.
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Figure 4.31: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for OFC x1 device.
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Figure 4.32: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for OFC x2 device.
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Figure 4.33: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for OFC x3 device.
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Figure 4.33 and Figure 4.34 show responses of super cells with 3 and 4 bits,

respectively. The overall character of the frequency responses is predicted quite well,

however, there is a ripple within the reflection bands. At this point it is not clear

the reason the experimental devices have this ripple, but it may be due to the device

layout, mode conversion, fabrication, or some other effect. Future research on long

super cell structures is required to explain this effect.

Figure 4.35 shows the normalized frequency response of device RND x1, which is

a unit cell consisting of random, different primitive cells. This corresponds to H(f) in

section 4.1. Again, the RND x1 response is expected to act as the frequency window

as the super cell increases in length. The comparison of measured and predicted

responses is quite good. The response has unique character dependent on the nature

of the unit cell, demonstrating the results of the randomized primitive cells.
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Figure 4.34: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for OFC x4 device.
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Figure 4.35: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for RND x1 device.

240 245 250 255 260

0

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

 

 

Simple Model, Random x2
COM Model, Random x2
Experiment, Random x2

Figure 4.36: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for RND x2 device.

82



Figure 4.36 shows modeled and measured frequency responses of a super cell

consisting of two random unit cells. The nulls and peaks are predicted quite well, but

the experimental data shows a much stronger reflectivity than predicted, evidenced

by the higher side-lobes and broader stop bands.

Figure 4.37 and 4.38 show responses of super cells with 3 and 4 random unit

cells, respectively. The general measured frequency response characteristics agree

between predictions and measurements is evident; however, there is greater diver-

gence between all the plots. The COM model is much closer to the experimental

measurements than the simple model since strong reflectivity can be taken into ac-

count. It appears that the COM model reflectivity should be decreased, which would

result in a narrowing of the null spacing and a smoothing of the peak frequency re-

sponses. COM model also does not take under consideration additional loss term
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Figure 4.37: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for RND x3 device.
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associated with waves traveling underneath the reflector grating. This loss term may

make reflectivity seem less and it becomes more prominent for long devices such as

RND x4. The 4-cell reflector begins to show ripples, similar to that seen in the OFC

3- and 4-cell structures. At this point it is not clear the reason the experimental

devices have this ripple. It may be due to the device layout, mode conversion, fab-

rication, or some other effect not included in COM model, again, future research on

long super cell structures is required.

4.4 Cell-based Device Coding

In a typical digital communication system, a number of active components are desig-

nated to ensure that multiple devices do not conflict with each other. A base station

240 245 250 255 260

0

Frequency (MHz)

M
ag

ni
tu

de
 (d

B
)

 

 

Simple Model, Random x4
COM Model, Random x4
Experiment, Random x4

Figure 4.38: Predicted reflector frequency response of ideal reflector model and COM
model compared to experimental data for RND x4 device.
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typically tells the devices when to talk, when not to talk, how much power to output

and which frequency to use. This is done through the handshaking and the ongoing

monitoring of the devices within the environment. Also, when the received digital

signal is correlated, shape and quality of the correlation peak is not as important as

long as it is detectable and the phase can be determined.

4.4.1 Designing Codes for Multi-sensor System

In a passive wireless system, once the device is in place, it will use fixed frequen-

cies at fixed times and output (reflected) power that cannot be controlled by the

base station. Correlation of the sensor of interest is computed together with cross-

correlations of all the other devices present in the system. In order to extract accurate

data from a sensor, the auto-correlation peak must be unaffected by the presence of

all the other cross-correlations. In other words, cross-correlations of other devices

need to be minimal (ideally zero) in the proximity of the main auto-correlation peak.

Codes must be designed in such way that at any given time each sensor is either

silent or occupies its own frequency band(s). An OFC device is composed of a

number of OFC chips that are located in assigned time slots. For multiple OFC
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devices operating without collisions, for any one given time slot OFC chip of a

certain frequency can only be used in one device.

A relationship can be established between the number of chips used to make up

one device (n), number of chips that are allowed to be used within the same time

slot (m), number of devices required (N), and number of time slots (M) given as

M =
⌈
N · n

m

⌉
, (4.24)

based on the fact that the total number of chips in the system across all devices is

Total Number of Chips = N · n = M ·m. (4.25)

Figure 4.39 shows 16 codes for a 16-device system, that uses seven OFC chips.

In the table each row is a code, each column is an OFC-chip length time slot. Cells

with zeros are unused time slots of a particular code and cells with values 1-7 are

time slots with OFC chips of orthogonal frequencies 1-7.

Figure 4.40 shows the schematic drawing of the first two codes of Figure 4.39 as

implemented into actual devices. The 16-code system was then simulated using the

first order model discussed in Chapter 3. In Figure 4.41 an auto-correlation of one

device (blue) was compared to the correlation of the matched filter for that device
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Figure 4.39: A sample set of 16 OFC devices using 16 time slots and 7 frequencies.

Figure 4.40: Two sample devices realized using codes 1 and 2 from Figure (4.39).
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to the entire system with all the 16 codes (green). It can be noted that the main

auto-correlation peak was not affected significantly by the presence of all the cross-

correlations. Also note that even the two main side-lobes of the auto-correlation have

not been affected significantly, which means that even if the location of the auto-

correlation peak shifts due to a sensor parameter change, within a certain distance

it still will not collide with the other cross-correlations. The amount by which the

peak can change its position while being unaffected is one of the factors that will

determine the dynamic range of the system and its physical spread in space. Even

though only one device is demonstrated, this is representative of all the 16 devices.

This cell-based approach to device coding produces codes with excellent anti-collision

properties.

Figure 4.41: Comparison of auto-correlation of a single device to correlation of that
device to the entire system (sum of 16 devices).
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4.4.2 NLR Structures and Device Scaling

Previous work has shown that the noise-like reflector (NLR) structures are wide-

band with random pass- and reject-bands and can produce codes with good auto-

correlation and anti-collision properties [53]. At this time such reflectors are gen-

erated at random. Once a set of devices with NLR structures is generated, each

cross-correlation needs to be examined for the anti-collision properties. If one or

more of the cross-correlations do not have the desired anti-collision properties, the

entire set has to be discarded and a new one is generated until all cross-correlations

are satisfactory. For sets with large number devices and large number of electrodes

this code set selection process could be time and resource consuming.

Proposed in this section is a new and novel approach for the code generation

where instead of the OFC chips, NLR chips are used. The chips are much shorter

than the entire code and fewer chips are needed to build up larger number of codes,

which significantly reduces time and resources needed for good NLR chip selection.

First, it is important to establish how a NLR chip is constructed. Shown in

Figure 4.42 is a diagram of a portion of a NLR chip. The NLR structure is created

by taking a regular reflector bank and inserting free space (shown in blue) between

electrode-gap pairs (shown in red and light red). As the amount of inserted free
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space increases, anti-collision properties improve. In this particular case, quarter-

wavelength electrodes are used, making an electrode-gap pair half-wavelength long.

Inserted free space is an integer multiple (shown as K in Figure 4.42) of a quarter-

wavelength, which makes electrodes randomly in-phase or 180° out of phase.

Two OFC chips with adjacent frequencies have cross-correlation lobes to main

auto-correlation peak ratio of 0.32. Same ratio for two OFC chips with one over ad-

jacent frequencies is 0.17, as described in Chapter 2.3. Since NLR chips are random,

only probability of having cross-correlation lobes to main auto-correlation peak ratio

below a certain level can be determined: analytical expression is difficult to calcu-

late; it would have to factor in the electrodes representation as sine waves and the

Figure 4.42: Construction of a NLR chip.

90



band-limiting transducer effect. It is, however, possible to determine this probability

by analyzing large numbers of NLR chips sets. Shown in Figure 4.43 is chip collision

analysis. Due to changes in temperature and spacial position, the auto-correlation

peak will move within a certain time window (a dynamic range) (τDR),which is a

parameter considered at the design time. Chip length (τC−OFC is generally an upper

boundary for possible τDR values, but τDR is generally not a function of τC−OFC .

For an OFC-based system, the auto-correlation will be affected by cross-correlation

of other chips. For adjacent frequency chips, the maximum cross-correlation peak

to auto-correlation lobe ration (MCAR) is 0.32 and for one over adjacent frequency

MCAR is 0.17. In order to generate comparable NLR-based system, randomly gen-

erated NLR chips need to have MCAR value of 0.2 with in the τDR. The dynamic

range window (τDR) for the OFC- and NLR-based systems is the same. However,

NLR chip length is generally longer than an OFC chip length. MCAR is applied to

all possible cross-correlations.

Figure 4.44 shows the probability finding two NLR chips with cross-correlation

lobes below a certain level; each chip has 16 electrodes at 250MHz center frequency

randomly distributed within 312 ns window with average integer multiple for inserted

free space K=7.75 and a 150MHz null-bandwidth transducer.
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Figure 4.43: Demonstration of chip collisions: a) auto-correlation (black) and cross–
correlations (red and green) of OFC chips, and b) auto-correlation (black) and cross–
correlation (red) of NLR chips.
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Figure 4.44: Probability of having a certain MCAR for a two NLR-chips with 16
electrodes semi-randomly (as shown in Figure 4.42) distributed within 312 ns.
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From Figure 4.44, it can be noted that it is possible to generate two NLR chips

with MCAR lower than 0.2, which is comparable to OFC chips. In order to compete

with the OFC approach, more NLR chips are needed. For N NLR chips, the number

of cross-correlations needed to be examined is 1
2
(N2 −N). After generating and

analyzing numerous 4-NLR-chip sets a few sets were found where MCAR was just

below 0.3 of the average of the four auto-correlation peaks of their respective NLR

chip set.

The odds of finding good codes rapidly decreases with the number of codes

needed. One way to produce more codes is to simply scale the physical dimensions of

the reflector bank leaving the code the same. Figure 4.45 shows the maximum cross-

correlation lobe when correlating one code with its scaled versions. If a code is scaled

to 1.01 (by 1%) of its original physical dimensions, maximum cross-correlation is re-

duced to 10% of the auto-correlation peak. Scaling physical dimensions of a 250MHz

device by factor of 1.04 produces a 260MHz device, similar to OFC chips. Band-

width of the system does not change with reflector scaling and is dependent on the

transducer of the SAW devices.

A 12-sensor system was designed using the NLR approach with scaling and simu-

lated using the first order model discussed in section 3. Four unique NLR chips were

randomly generated and selected based on having all cross-correlation lobes to main
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Figure 4.45: Highest correlation lobe of correlation of one NLR chip to the another
NLR chip with the same code but scaled to a different frequency.
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auto-correlation peak rations below 0.3. Each NLR chip consists of 16 electrodes

at 250MHz center frequency randomly distributed within a 312ns window with an

average integer multiple for inserted free space K=7.75. These codes where scaled

to two more frequencies (240MHz and 260MHz), producing a total of 12 NLR-chips.

An unapodized transducer with 150MHz null-bandwidth used in simulation and with

four NLR chips per device were used. The number of time slots needed was deter-

mined to be 4 based on equation (4.2). The codes are shown in Figure 4.46, where

each row is a code and each column is a time slot. In this case, each NLR-chip (cell)

is denoted by two numbers (f, g), where f is the NLR code number 1 through 4 and

g is an index of the frequency used: 1, 2 and 3 that correspond to 240MHz, 250MHz

and 260MHz, respectively.

Shown in Figure 4.47 is the auto-correlation of one of the 12 codes compared to

the correlation of that code to the entire system (sum of all the 12 codes). Shown

is an average performing device in terms of the anti-collision properties. The main

correlation peak of the code to the system shown in Figure 4.47 is approximately

4% lower than the auto-correlation of just that one code by itself, which is indica-

tive of code collision, also the presence of the cross-correlation lobes close to the

auto-correlation peak indicates potentially smaller dynamic range of the NLR-based
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Figure 4.46: NLR-based code set, each NLR chip is denoted by two numbers (g, f),
where g is NLR code number and f is an index of the frequency used.

Figure 4.47: Comparison of auto-correlation of a single device to correlation of that
device to the entire system (sum of 12 devices).
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system than in the case of the OFC-based system. However, due to a higher number

of possible codes, NLR-based system can be a viable approach for tag applications.

4.4.3 Experimental Devices and Cell-based Coding Technique

4.4.3.1 OFC-based System

In order to assess the differences in the performance of the NLR-based and the OFC-

based approaches, the two code sets were designed to have as many parameters in

common as possible. The OFC-based system was designed based on the NLR-based

system described in section 4.4.2. The following parameters were used for both sys-

tems and as similar as possible: number of the electrodes per reflector bank, time

length of each reflector bank, and a wide-band transducer. One of the possible solu-

tions for the OFC-based system meeting these requirements consisted of three OFC

chips (240MHz, 250MHz and 260MHz with 25, 26 and 27 electrodes respectively),

each chip had time response length of 0.104µs. In order to produce 12 codes, 12 time

slots and 3 chips per device were used. Each device has 78 electrodes and on average

approximately 1.04µs time response length. Codes used for the OFC-based system
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are shown in Figure 4.48. Only three of the 12 devices were fabricated. Devices were

fabricated on Y,Z LiNbO3. One of the devices is demonstrated in Figure 4.52.

Since the temperature is most likely to vary as a function of time, this parameter

was measured (temperature extraction was performed as described in Chapter 2.4).

Figure 4.50 compares the correlation of the measured and the ideal responses and the

auto-correlation of the ideal response. The plot shows very good agreement between

the first order model and the experimental data. The two other devices were also

measured and added to the first measured device. This sum was correlated against

the ideal response of the first device and compared the ideal auto-correlation of that

Figure 4.48: OFC-based code set, each cell with number 1, 2 or 3 corresponds to
an OFC chip with center frequency 240MHz, 250MHz or 260MHz respectively, and
each cell with zero corresponds to an unused time slot for that particular device.
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ReflectorsTransducers
Time slots

Figure 4.49: Fabricated device (device #5 of Figure 4.48) with 3 OFC chips coded
using cell-based method with 12 time slots.

Figure 4.50: Comparison of auto-correlation of an ideal OFC device (green) to cor-
relation of experimental data and the ideal reflector response (red).
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device as shown in Figure 4.51. It can be noted that while the two adjacent lobes to

the main peak did go up, the peak is not affected by the presence of the two other

devices. This clearly demonstrates the anti-collision properties of the OFC-based

devices coded using the cell-based approach.

4.4.3.2 NLR-based System

The NLR-based system was built using codes described in section 4.4.2. The elec-

trode count per reflector bank is 64 and average time length response is approximately

1.2µs. Three of the 12 devices were built on Y,Z LiNbO3.

Figure 4.51: Comparison of auto-correlation of a single ideal OFC device response
to correlation of ideal OFC device response and sum of 3 devices measured experi-
mentally.
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NLR ChipsTransducers
Time slots

Figure 4.52: Fabricated device with 4 NLR chips coded using cell-based method
(device #4 of Figure 4.46) with 4 time slots and total number of 12 of unique NLR
chips available for codes

Photograph of one of the NLR-based devices is shown in Figure 4.52. Figure 4.53

compares the correlation of the measured with the ideal response, and the auto-

correlation of the ideal response. Plot shows good agreement between the first order

model and the experimental data. The two other devices were then measured and

added to the first measured device. This sum was correlated against the ideal re-

sponse of the first device and compared the ideal auto-correlation of that device as

shown in Figure 4.54. It can be noted that the peak was not affected by the presence

of the two other devices; however, a cross-correlation lobe appeared at the base of

the auto-correlation peak. At fixed temperature, this device demonstrates that the

NLR-based approach provides good anti-collision codes. It can also be noted, that

the auto-correlation peak of the NLR device is narrower than the auto-correlation

peak of the OFC device, which translates into higher sensitivity to a temperature

change.
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Figure 4.53: Comparison of an ideal NLR device (green) to correlation of experimen-
tal data and the ideal reflector response (red).

Figure 4.54: Comparison of auto-correlation of a single ideal NLR device response
to correlation of ideal NLR device response and sum of 3 devices measured experi-
mentally.
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4.5 Summary

The purpose of this chapter was to present research into new and novel SAW noise-

like-reflector (NLR) structures. This chapter presents some of the first embodiments

that have been studied and tries to establish a framework for defining the structures

implemented. It was shown that NLR-based approach is a successful alternative

for wide-band coding. SAW reflector embodiments were demonstrated that had

random properties in their structural design. Experiments conducted showed that

it is possible to design and build structures with multiple stop-bands with near

unity reflection. It has been demonstrated that the presented repeating structures

can be used to de-spread the frequency response of NLR devices and introduced

sharper pass- and -reject bands. Cell-based coding produces codes with excellent

anti-collision properties. In case of the OFC chips, cross-correlation lobes in the

proximity of the main auto-correlation lobe are generally very low resulting in a good

dynamic range of the system. NLR chips along with chip scaling can produce even

larger amount of codes in the system and are best suited for tag/RFID applications.
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CHAPTER 5

DEVICE DESIGN: MULTI-TRACK DEVICES AND

APODIZED REFLECTORS

The motivation for this work is to develop a device layout that reduces inter and

cross deice chip collisions as well as provides flexible impedance matching character-

istics. Multi-track CDMA tags have been previously studied, which helps to balance

the tag reflectivity from chip-to-chip. Normally the IDT’s beam extends over all

tracks and the bandwidth is the same for all tracks, and there is no significant ad-

vantage over a single-track using this approach. Wideband tags using orthogonal

frequency coding (OFC) can use multi-frequency chips subdivided into multi-tracks

with low loss operation [5]. Each track has one or more chips, with each chip having

a different chip frequency. The track-transducer is then designed to operate only over

the required frequency bands; making each non-interacting track low loss. The over-

all transducer embodiment is now tailored for optimum performance for loss, coding

and chip reflectivity. If all tracks are electrically in parallel, the overall transducer Q

remains the same as a short wideband IDT, but the electrical reflection coefficient is
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chosen for minimum loss or matching [42]. Several parallel track OFC S11 responses

are measured where the reflection coefficient is nearly optimized for minimum un-

matched insertion loss. In comparison, for a short wideband transducer of equivalent

bandwidth, the reflection coefficient is close to unity with large unmatched loss.

5.1 Multi-track, Multi-transducer OFC SAW Devices

SAW OFC embodiments using multi-frequency Bragg reflectors increase design flex-

ibility over CDMA single frequency Bragg reflector devices. Multi-track CDMA

devices have been shown, and eliminate the pulse roll-off effect of a single in-line

multi-chip structure. However, the multi-tracks increase insertion loss due to power

division and recombining at the transducer. In comparison, OFC multi-track devices

can be configured in many combinations with frequency selective tracks. The advan-

tage is increased coupling and minimal inter-chip distortion. Since each track can be

designed to couple energy at specific frequency bands, the inherent transducer inser-

tion loss remains the same as a single track OFC device. The out-of-band parallel

tracks simply add reactive loading, and the overall transducer Q is independent of

embodiment, ignoring parasitic effects. Multiple tracks add further design flexibility

for impedance matching and minimization of second order effects. There are many
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possible transducer embodiments. A number of different types have been studied

and proposed during these investigations and a few examples will be discussed.

5.1.1 Chip Collisions and Transducer Embodiments

A typical OFC tag has a wide band transducer with low number of electrodes. For

any given bandwidth (including the total bandwidth of multi-track device) electrical

Q is constant. A constant Q-arc is shown on the Smith chart given in Figure 5.1.a.

One can move on that circle by adjusting the aperture of the transducer. In real-

ity, apertures should be between 20 and 150 wavelengths long to avoid second order

effects. This limits wide band transducer’s possible impedance to the orange line

segment Figure 5.1.d. In the case of a multi-track device, transducers can be elec-

trically connected, mix and matching parallel and serial topologies. By picking the

correct topology, it is possible to move along most of the Q-arc in the capacitive

region of the Smith chart. For instance, for a 6-chip 60MHz device in order to -1

reflection coefficient (most left point on Smith chart) all parallel connections can be

used as shown by the red line segment Figure 5.1.b.

Separating chips into multiple tracks can help to reduce chip collisions. An effec-

tive way to separate different chips is to ensure that any one track does not contain

106



Figure 5.1: Reflection coefficient: examples of a constant Q arc (a) for: (b) all
electrically parallel transducers, (b) three pairs of parallel connected transducers in
series, and (d) all transducers electrically in series or a single wide band transducer
is used.
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two chips with adjacent OFC frequencies. Examples are shown in Figure 5.2 a, c, d,

and e. Tracks can be connected electrically in parallel or in series. In-line transducers

(i.e. transducers of the same track) can also be connected in parallel or in series to

modify the impedance.

5.1.2 Transducer Impedance and Q

The transducer Q is a function of material coupling coefficient, parasitics, and re-

quired bandwidth given as

QTransducer <
2 ·%BW
πk2

. (5.1)

Figure 5.2: Examples of some of the possible transducer configurations for a 6-chip
device: (a) all transducers electrically in series, (b) all in parallel in a single track,
(c) all in parallel in two tracks, (d) three pairs of parallel connected transducers in
series, and (e) three pairs of in series-connected transducers in parallel.
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where the fractional bandwidth, %BW = N−1
eff . To first order the transducer Q is

constant, independent of the embodiment. However, the transducer impedance (or

admittance) elements are functions of the beam width and embodiment, and can

be modified for optimum impedance. Possible embodiments include a simple IDT, a

phase weighted IDT, in-line dispersive, parallel track OFC, and various combinations.

Using these simple design principles provides a good first order design, but only works

for non-reflecting transducers and provides a starting point for detailed analysis.

5.1.3 Performance evaluation

In order to evaluate and synthesize the multi-track transducer, the SAW COM model

equations described in Chapter 3 are used. The transducer under test is put at a

given distance from an ideal edge as shown in Figure 5.3. An ideal edge is a perfect

reflector with no reflection loss and zero length.

This device is represented in a signal flow graph as shown in Figure 5.4. The

solution is found using Mason’s gain formula as [9]

G = P33a + P13aP12b (−1)P21bP31a. (5.2)
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Figure 5.3: Transducer performance evaluation during initial tuning stages using
ideal edge.

Figure 5.4: Signal flow graph of transducer performance evaluation during initial
tuning using ideal edge.
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Reflection of the edge can be gated in time and plotted in the frequency domain

as shown in Figure 5.5.b. The Smith chart (Figure 5.5.a) is used as a predictor

the device impedance. However, in order to make chips uniform in amplitude, the

apertures of individual transducers are adjusted using the frequency response plot.

5.1.4 COM Model and Signal Flow Graph Analysis

The more exact coupling of modes (COM) model was used to simulate the devices.

It has been shown that there is good correlation between the first order model, COM
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Figure 5.5: Transducer performance evaluation during simulation using an ideal edge
and the signal flow analysis approach of Figure 5.4.
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model, and experimental data for the structures designed and built for this chapter

[7, 53, 8]. The simplified COM model predicts all higher order effects and multiple

reflections.

Single track devices use the simple COM model. For multi-track or non-uniform

track structures, signal flow graph theory was used in conjunction with the COM

model to provide a completely flexible analysis and arbitrary electrical connections

[9]. The three essential SAW components are represented as 2- or 3-port devices as

shown in Figure 5.6.

Additionally propagation loss constants in equation 5.3 were changed from the

values given by Morgan as shown in Table 5.1 to Morgan2007.

Loss = α1f
α2 + α3f

α4 , (5.3)

where Loss is loss in dB/µs, f is frequency in GHz and α1 through α4 are attenuation

constants.

The COM material parameters have been previously extracted and used in the

analysis. Bulk wave and propagation losses were empirically derived from experimen-

tal measurements and follow the general form given in Morgan, but with modified
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Table 5.1: SAW Propagation Attenuation Constants

Constant Morgan Experimental Values

α1 0.19 0.24

α2 1.0 1.0

α3 0.88 1.1

α4 1.9 1.9

coefficients given in Table I [41]. Also an additional loss term was added for waves

traveling underneath gratings and transducers of approximately 4.5 dB/µs.

5.2 Apodized Reflector Gratings

5.2.1 Apodization Profiles

The enabling technology behind OFC devices is that at each of the chips center

frequency all other chips have nulls (i.e. are nearly transparent). However, there

Figure 5.6: Signal flow graph representation of transducer, delay line and reflector.
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is interaction between the chips within their bandwidth as highlighted in red for

adjacent chips and in green for one over adjacent chips in Figure 5.7.

One of the ways to reduce this interaction is to apply a window function to a

uniform reflector. A wide range of window functions is available with very side-lobes;

however, typically, window functions with lowest side lobes have the longest time

response length for the same bandwidth. Side-lobe attenuation has to be balanced

against time response length. Truncated Sinc and Hamming window functions are

good compromise of time length and side lobe levels. Shown in Figure 5.8 are ratios

of cross-correlations of chip one to chips two through six to auto-correlation of chip
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Figure 5.7: Overlap of frequency responses of adjacent and one over adjacent chips
highlighted in red and green respectively.
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one for following apodization window functions: uniform (blue), Hamming (green),

and Sinc (red).

The Hamming window function has been chosen to be used with the devices for

work presented in this chapter. Highlighted in Figure 5.9 in red is overlap of chips

with adjacent OFC frequencies and in green - next adjacent OFC frequency, such

as f1 to f3. Overlap in frequency is noticeably better for adjacent frequencies and

dramatically better for the one over adjacent case.
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Figure 5.8: Ratios of cross-correlations of chip one to chips two through six to auto–
correlation of chip one for following apodization window functions: uniform (blue),
Hamming (green), and Sinc (red)
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In a multi-sensor/-tag environment it is possible that a particular chip of a partic-

ular device will occupy the same time slot as one or more chips of other frequencies

of one or more other devices. In order to reduce code collisions, cross-correlation

of chips needs to be minimal. Cross-correlations for uniform and Hamming window

function ideal chips are shown in Figure 5.10 and Figure 5.11 respectively.

Using COM model simulation, it has been found that the reflector grating with a

specific window function can be built using following steps: apply window function

to the grating, shift first half of the grating all the way down to the lower bus bar,

and shift second half of the electrodes to the upper bus bar. Additionally, metalized
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Figure 5.9: Overlap of frequency responses of adjacent and one over adjacent Ham-
ming window chips highlighted in red and green respectively.
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Figure 5.10: Auto-correlation of chip 1 and cross-correlations of chip one to other
chips.
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Figure 5.11: Auto-correlation of chip 1 with Hamming window and cross-correlations
of chip 1 to other chips.
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Figure 5.12: Reflector grating with Hamming window function apodization.

regions were added to remove any effects related to the difference in velocities in

free and in metalized surfaces. Sample reflector grating with Hamming window

apodization is shown in Figure 5.12.

Figure 5.13 shows a comparison of an auto-correlation of a six-chip device with

uniform reflectors (blue) to an auto-correlation of a six-chip device with Hamming

window reflectors (green). Two side lobes of Hamming-based device located half a

chip away from main auto-correlation lobe are approximately 5dB higher than the

side lobes of the typical OFC tag; however, majority of the lobes of the Hamming-

based device are significantly lower.

5.2.2 Experimental Data of Apodized Reflector

A single chip device has been fabricated on Y,Z LiNbO3 around 890MHz with 10MHz

bandwidth, transducer operating at third harmonic and reflector grating operating
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at second harmonic. Impulse response model, COM model and experimental data

has then been compared in Figure 5.14. A good agreement between the models

and the measured response has been shown, with side-lobes levels of approximately

40dB below the main response. Experimental data has shown one side-lobe (higher

in frequency than the main response) that is higher in magnitude than predicted.

This kind of non-symmetry is most likely due to the fact that there is still a phase

difference between the sub-tracks.
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Figure 5.13: Comparison of auto-correlation of a 6-chip device (blue) to an auto-cor-
relation of 6-chip device with Hamming apodized reflectors (green).
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5.3 Devices

5.3.1 Layout Considerations

Longest and shortest paths traveled by waves of each of the transducer-reflector pairs

is give in equations 5.4 and 5.5 as shown in Figure 5.15:

DLongest = 2 (LTX + L+ LGT ) , (5.4)

and
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Figure 5.14: Comparison of an ideal (blue), COM (green), and experimental (red)
single hamming window chip in (a) frequency and (b) time domains.
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Figure 5.15: Illustration of reflector spacing considerations.

DShortest = 2L, (5.5)

where LTX is length of transducer, LGT is length of reflector, and L is the distance

measured from right edge of transducer to left edge of reflector.

In order for chips not to collide adjacently placed chips must satisfy

2L2 ≥ 2 (LTX + L1 + LGT ) . (5.6)

For a smallest device foot print, L1 and L2 are expressed

L2 − L1 = LTX + LGT . (5.7)
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A cell based coding technique has been developed in Chapter 4. [36]. This

technique requires that each chip to be assigned to a specific time slot with number

of time slots equal to number of codes desired. Length of the entire reflector bank

can then be represented by

LGTArray = NCodes (LTX + LGT ) . (5.8)

If triple-transit is an issue, physical slots for the reflectors must start at a distance

equal to the length of all allocated reflector slots, doubling the length of the device.

Additionally, the input transducer also has to be factored in, its length must be

multiplied by the number of in-line transducers (number of transducers per track).

Finally, the full device length is given as

LDevice = 2NCodes (LTX + LGT ) +NInlineTXLTX , (5.9)

where NInlineTX is number of transducers per track.

As an example, for a 60MHz-bandwidth device with six chips, six uniform trans-

ducers and hamming apodized reflectors on Y,Z LiNbO3 TX = LGT ≈ 381µm. For

an 8-code set and two transducers per track total length of the device is approxi-

mately 1.2cm.
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5.3.2 Experimental SAW Tag Device

A layout with 3 tracks connected in series and transducers within the tracks con-

nected in parallel has been chosen as shown in Figure 5.16. The device was built on

Y,Z LiNbO3 at 915MHz and total bandwidth of 60MHz. Transducers were built with

eighth wavelength electrodes to operate at third harmonic, and Hamming window

apodized reflectors were designed to operate at second harmonic. Detailed design

information is shown in Table 5.2.

Table 5.2: Experimental Device Parameters

Chip Transducer Reflector Aperture Distance*

# λ (µm) Np λ (µm) Np (µm) (µm)

1 11.582 30 7.734 45 154.12 7976

2 11.430 30 7.671 45 123.29 11960

3 11.328 31 7.582 46 112.51 9017

4 11.201 31 7.493 46 154.12 12980

5 11.074 31 7.417 47 123.29 5969

6 10.947 32 7.341 47 112.51 6985

*Distance measured from right edge of transducer to left edge of reflector
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Figure 5.16: Experimental device: three tracks connected in series with two trans-
ducers per track connected in parallel.

5.4 Experimental Results of SAW Tag Device

Parasitics were added in the COM model with experimental data. Both Smith chart

Figure 5.17 and time domain plots Figure 5.18 of COM and experimental data show

good agreement.

Shown in Figure 5.19 are individual gated in time chips and plotted back to

frequency domain. Chips 2 and 3 are the most attenuated because they travel under

one transducer and one reflector. This additional propagation loss has not been

included with the COM model this time. Other chips have either direct path or just

one off-frequency element in the path of propagating wave. Note that for chips 1, 4,

5 and 6 side-lobe levels are 25-35 dB below the main response, which is a significant

improvement over uniform reflectors that have side-lobe levels 15-20 dB below the

main response.
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Figure 5.17: Smith chart of COM model simulation of reflection coefficient (solid
blue line) compared to the measured reflection coefficient (dashed green line).
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Figure 5.18: Time domain of COM model simulation (blue) compared to experimen-
tal data.
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5.5 Experimental Multi-track Transducer-only Devices with Various

Embodiments

Several device embodiments, shown in Figure 5.20.i, have been modeled using COM

analysis as described in Chapter 3. Devices were modeled at several different center

frequencies (250MHz, 500MHz, and 915MHz) with 60MHz bandwidth and apertures

ranging from 15 to 150 wavelengths. Impedance ranges for those possible config-

uration are shown in Figure 5.20.ii, Figure 5.21.i, and Figure 5.21.ii for 915MHz,

250MHz, and 500MHz respectively.

Figure 5.20: Various transducer configurations (i) and impedance ranges of their
implementation with 15λ to 150λ, 915MHz center frequency and 60MHz bandwidth
and select device responses (ii)
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A sample set of transducer-only devices has been fabricated for various embod-

iments and aperture sizes and compared against predicted ranges and also plotted

in Figure 5.20.ii and Figure 5.21. The purpose is to illustrate the impedance shifts

due to different parallel series track embodiments. The constant Q regions are very

useful for optimization of transducer and antenna matching for device integration.

Experimental data has fallen well within the predicted ranges.

Figure 5.21: Input impedance ranges of various transducer configurations with 15λ
to 150λ and 60MHz bandwidth and select device responses: (i) 250MHz and (ii)
500MHz center frequencies
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5.6 Summary

The purpose of this chapter was to demonstrate a new and novel multi-track, multi-

transducer OFC device design approach with reduced cross code collisions as well

as lowered chip interactions within the devices for RFID and sensing applications.

While Q for a specific bandwidth and specific substrate is fixed, the proposed multi-

transducer approach allows flexibility of designing a device with reasonable aperture

values almost anywhere on the constant Q-arc on the capacitive side of the Smith

chart. It has been demonstrated that the flexible impedance design can provide opti-

mal impedance matching which can reduce the size or completely eliminate the need

for matching network. Due to nature of OFC chips, multiple transducer-reflector

pairs can be combined within one track with minimal chip collisions without having

to go to low reflectivity.
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CHAPTER 6

SAW SENSOR CORRELATOR SYSTEM

Presented in this chapter is an interrogator for passive wireless SAW sensors. An

RF burst interrogation technique was used for the system design. System implemen-

tation as well as its basic noise model are presented. Range analysis is performed and

its relationship to noise is established. In addition, a simultaneous passive wireless

operation of four 915 MHz OFC SAW sensors will be demonstrated.

6.1 System Overview

Several approaches have been suggested for realizing an interrogation system for

passive wireless SAW sensors; a very simple approach to be discussed is the use of

a pulsed RF-sinusoidal wave interrogation signal [21, 23, 24, 22]. Such system can

be easily realized by either mixing up a DC pulse to a center frequency of the SAW

sensors or by gating a continuous wave (CW). The system presented uses a gated

CW interrogation signal, a synchronous transmitter and receiver, and a software
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Figure 6.1: Block diagram of the 915 MHz correlator transceiver and sensor system.

radio based correlator receiver. Interrogator, receiver and ADC are controlled by the

same reference clock to allow for coherent integration of multiple sweeps.

The block diagram of the 915 MHz OFC sensor system is shown in Figure 6.1. In

its simplest form, the system is composed of multiple, passive, coded SAW sensors, a

transceiver, and a post processing platform. The transceiver generates and transmits

an RF burst that excites the sensors and also receives the reflected SAW signal,

which is then mixed down to be digitized by an analog-to-digital converter (ADC)

for post-processing in a computer. The system is composed of the following five

modules: clock generator and phase locked loops (PLL), antenna duplexing switch,

interrogator, receiver, and ADC/DSP module.
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6.1.0.1 Clock generator and PLLs

A 10 MHz reference clock is used to control the ADC, digital circuit of the transmit-

ter, and PPLs that generate a 915 MHz CW for interrogator. The same reference

clock is also used to generate the 775 MHz local oscillator (LO) frequency to mix the

received signal down to the 140 MHz intermediate frequency (IF) filter. The trans-

mitter and receiver are synchronized by the master clock when coherent integration

of multiple interrogation sweeps is needed to increase the signal-to-noise (SNR) ratio.

A schematic representation of the transceiver module is shown in Figure 6.2.

6.1.0.2 Duplexing Antenna RF Switch

A Yagi antenna is shared by interrogator and receiver, via an RF duplex switch, and

has 9 dB of gain and 50Ω impedance. RF switch provides 60 dB of isolation between

interrogator and receiver parts of the system.
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6.1.0.3 Interrogator

The interrogation burst is a gated 915 MHz, 10 ns sine wave with peak output power

of 30 dBm into a 50 Ω load, with the total energy in the pulse of approximately 1 nJ.

The interrogator controls the duplexing antenna RF switch for timing of transmit or

receive mode.

6.1.0.4 Receiver

The receiver bandwidth is 95 MHz, the maximum gain is 47 dB, and the 1 dB

compression point is 23 dBm. The received signal is mixed from 915 MHz down to

a 140 MHz IF using a 775 MHz synchronized CW signal. The RF bandwidth of the

ADC card is 300 MHz with a sampling rate of 2 Gsps. The ADC resolution is 8

bits and input voltage range is selectable from 400 mV to 8 V, and can be adjusted

dependent on the level of the received signal.
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6.1.0.5 ADC and DSP

Signal processing and sensor data extraction (for these sensors, temperature is the

measured parameter) is performed within a standard computer platform using a

software radio method developed with MATLABrcode. An adaptive filter is used

for obtaining the matched filter response of each sensor as a function of temperature

[36]. A single sensor can be interrogated up to 12 times per minute, and the current

acquisition rate is limited by the post processing speed. The acquisition rate can be

significantly increased with C coding and GPU utilization.

Since the SAW sensors are passive components, the tags will normally have a

substantial amount of loss. Additionally, often gain of the antenna is compromised

for its size, resulting in even higher loss of the returned signal, which can quickly

result in the signal below the noise level. One technique to bring the signal out

of the noise and improve SNR is to average multiple interrogation sweeps. If the

reflected signal does not change and the noise is random, noise power will reduce by

a factor of N , where N is the number of the averaged interrogation cycles. Phase

lock between CW and the pulse is required for coherent integration. For example,

when 100 sweeps are averaged, noise power is reduced by a factor of ten and the
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range of operation is doubled [56]. Although the current receiver is synchronized,

this chapter will only discuss results for single pulse mode operation.

6.2 SAW Temperature Sensor Parameters

A set of 4 sensors was designed using a time division approach [36]. OFC temperature

sensors were built on Y,Z LiNbO3 at 915 MHz center frequency. Each sensor has a

unique OFC code with 5-chip reflector grating. Chips have time lengths of τchip = 54

ns and are contiguous in time. The single chip bandwidth is BWchip = τ−1
chip = 18.5

MHz with overall device bandwidth of BWSAW = 5 · BWchip = 93 MHz. The SAW

transducer is broadband, bidirectional, and has an aperture of 377 µm. Minimum

delay between IDT and reflector is 1µs and varies with the device. The target

antenna was a folded dipole on an FR-14 PC board and had approximately 2 dB

gain[57, 58]. There was no intermediate matching network between the antenna

and the device. Antenna design has been optimized such that the impedance of the

antenna is nearly conjugately matched to the impedance of the SAW sensor. Target

loss is approximately 22-24 dB, based on SAW sensor and antenna network analyzer

measurements, with loss variance due to parasitic electrical effects of packaging and
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connections of the SAW sensor and antenna. Photograph of one of the sensors used

in the system is shown in Figure 6.3.

6.3 Experimental Setup and Results

6.3.1 Range Experiments

The range of the system depends on many parameters, including output power,

transceiver antenna gain, receiver gain, noise figure and thermal noise of the receiver,

interrogation signal power and energy, sensor antenna gain, SAW sensor bidirectional

and propagation loss, SAW/antenna reflection loss and mismatch loss, and signal

path loss. The receiver’s ADC minimum-detectable-signal (MDS) and internal noise

Figure 6.3: Packaged 915 MHz SAW OFC temperature sensor and antenna used on
sensors.
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are used as a measure of the predicted or expected range. Signal loss will occur

at or near the ADC’s MDS level, or if the signal to noise ratio (SNR) at the ADC

becomes too small for detection. If the signal is above the MDS level but the S/N

level is too low, coherent integration can be used and successful demodulation is

still expected but this will not be discussed further. There are a number of noise

sources which can degrade the signal integrity and can be divided into the following

groups: internal noise of the receiver, inter-tag self-interference, and external signals

that act as jammers. Post processing software simulates a correlator receiver for

code demodulation and the device processing gain (PG) provides additional gain,

but cannot be effectively utilized below the MDS level. If the noise floor is below the

MDS level, then it is expected that the MDS level will be the approximate detection

threshold, since the device PG cannot be used without a detectable signal.

For the following discussion, the MDS is defined as:

VMDS = ∆V =
VRange
2Nbits

, (6.1)

where VMDS is the minimum detectable signal, VRange is ADC input voltage range

and Nbits is resolution of the ADC in number of bits. In this case, MDS is the

smallest voltage change in signal that can be detected in the worst case scenario. A
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typical ADC is designed so that its internal noise is close to the value of the MDS,

as defined in Equation 6.1 [59].

Data was taken to determine the receiver range and whether the MDS level is a

good measure to predict the maximum range. Range experiments were conducted

with a single device to eliminate inter-tag self-interference, and were performed in an

open area where the external noise was at an acceptable level. The internal system

noise is approximately 10 dB below the MDS level. For the system described, the

receiver gain was 47 dB, the ADC input voltage range was 400mV, and the MDS

level was 1.6mV (-42.9 dBm).

Figure 6.4 shows predicted and measured range versus input power at the ADC

(left vertical axis) and extracted temperature error (right vertical axis). The reading

error is defined as

Error =
std (Tout)

stdmax
, (6.2)

where the std (Tout) is the standard deviation calculated based on 128 temperature

readings, and the stdmax is the standard deviation of the uniform distribution within

the dynamic range of the system (maximum standard deviation of the output). For

this experiment, 128 samples were recorded for each distance and power level. The
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Figure 6.4: Comparison of predicted RMS power at the ADC (solid blue) and exper-
imental data (solid purple line with circle data markers). Predicted reflected signal
power at ADC with processing gain added (green dotted), system noise floor (red
dashed), noise of the ADC card including quantization noise (black dash-dotted),
and accuracy of the reading at corresponding distance (dark yellow dotted line with
circle markers, right y-axis).
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temperature dynamic range is 280◦C (full scale). In the current implementation, the

temperature extraction algorithm always returns a value within the dynamic range

of the system. When the signal is stronger than any of the noise sources, the distri-

bution of the extracted temperature values is approximately Gaussian. In the case

when the signal to noise ratio is very small or the sensor is completely out of range,

the extracted temperature will have an approximately uniform distribution within

the dynamic range of the system. For example, for this system the dynamic tem-

perature range is 280◦C, which yields an 80.8◦C standard deviation for uniformly

distributed noise (stdmax). Let’s assume a 3 m distance, which yields a standard

deviation of 5.5◦C according to Figure 6.4. Based on equation 6.2, the error value is

approximately 0.07. A cut-off error value of 0.07 was chosen based on the maximum

value of the second derivative of the error curve, shown in Figure 6.4, which corre-

sponds to the point where the rate of signal loss is greatest. In practical application,

a cut-off error value would be determined based on the required accuracy.

From the predictions and measurements of Figure 6.4, it can be seen that the

error increases dramatically as the measured signal level approaches the receiver noise

level, as expected. The signal PG provides good detection accuracy, but its effect is

lost as the signal approaches the receiver noise level.
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6.3.2 Range Limits

As it has been mentioned in section 6.3.1, range in the presented system is limited

by two key parameters: noise present in the system (both internal and external) and

the minimum detectable by ADC signal, which is a function of both quantization

and internal noise of the ADC.

Both thermal and external noise can be treated as one for range prediction pur-

poses. Such noise can also be reduced by means of coherent integration as described

in Section 6.1. In reality, successful signal detection at signal levels close to MDS

would be limited by the internal ADC noise. In an ideal case, transition between

detecting signal and loosing it would be sharp; however, in the real SAW system due

to the fact that the chips are not uniform and roll off at high and low frequency is

present, some of the chips will disappear sooner than others, which means that the

signal will be lost gradually due to the MDS restrictions. Unlike with the regular

noise, once the received signal falls completely below the MDS, coherent integration

fails to bring the signal level up out of the noise [59].

A block diagram of a noise model of the presented system is shown in Figure 6.5.

An attenuator was used to create conditions when the noise of the receiver and the
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received signal is smaller than the ADC noise and the MDS. The received signal is

given as

P ∗
SIG = (PSIG + PNSY S) · β + PNThrm + PNADC , (6.3)

and

SNR∗ =
P ∗
SIG

PNSY S · β + PNADC + PNThrm
= SNR + 1, (6.4)

where P ∗
SIG is the signal power received at the ADC, PSIG is the signal from the SAW

sensor, PNSY S is the internal noise of the receiver, PNThrm is the thermal noise at

the input to the ADC, PNADC is the internal ADC noise (including the quantization

noise), and β is attenuation value at the input to the ADC. The ADC noise has been

calculated based on the specifications provided by the manufacturer. Noise of the

receiver has been determined using spectrum analyzer measurements. Signal power

has been determined based on oscillator measurements at a distance of 0.6 meters

for 0 dB attenuation at ADC. It was assumed that the power decreases 40 dB per

decade increment of the distance from the interrogator to the sensor.

Once the signal level is close to or below the noise level, it is only possible to

estimate the signal power using the correlation peak value using the matched filter
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Figure 6.5: Block diagram of the noise model for system analysis. An additional
variable attenuator, β, is added for test measurements.

technique. Since the adaptive matched filter approach is used, the algorithm will

always produce a correlation peak, even if the sensor is out of range and the only

signal acquired by the ADC is noise. It is impossible to measure true SNR when the

signal level is low, so SNR* is used instead, as in Equation 6.3. Figure 6.6 illustrates

SNR* for a system configured for -46 dBm MDS for multiple attenuation steps at

the ADC. First three curves are nearly identical, which suggests that both signal and

system noise are at the same level with respect to each other and the ADC noise is

not making any impact. The last two curves are attenuated by 10 dB steps, indicate

that the signal has decreased noticeably compared to the ADC noise, shown by the

reduced range for SNR* approaching 0 dB.

Experimental data shown in Figure 6.7 agrees well with the model for SNR*

values above 5 dB. Due to the fact that the signal strength is measured using the

adaptive matched filter technique and also due to the fact that at low signal levels,

quantization effects start to become significant, measured SNR* instead of converging
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to 0 dB fan out up to ± 5 dB; however, as it will be demonstrated further, at these

levels successful single sweep temperature extraction is not possible.

Shown in Figure 6.8 is SNR* and reading error from equation 6.2 versus distance

versus attenuation values at the ADC. While the SNR* confirms the predictions of

the noise model, error curves provide additional information about the noise effects

on the reading. For a scenario when ADC noise is less than the receiver noise (three

upper most SNR* curves of Figure 6.8), SNR* needs to be 10 dB or greater for the

extracted temperature error to be less than 0.07. For SNR* values equal to or greater

than 10 dB SNR∗ = SNR + 1 ≈ SNR. This experiment also shows that for this

Figure 6.6: Model predictions for -46 dBm MDS: SNR* values for several attenuation
steps at the ADC (0 dB to 40 dB) vs distance.
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particular system, a gain of 27 dB would be sufficient to achieve maximum range

provided that the receiver noise is proportional to the gain.

A typical ADC operation requires the input signal to be amplified to span the

entire allowed ADC input voltage range to avoid effects associated with small input

signal levels with respect to MDS. However, in the event that the needed amplification

is not available, signal can still be extracted. For the bottom two SNR* curves

of Figure 6.8, dominant noise is the ADC noise. For example, the SNR* curve

corresponding to a 40dB attenuation at the ADC (most bottom SNR* curve) crosses

Figure 6.7: Range measurements for system configured for -46 dBm MDS: SNR*
values for several attenuation steps at the ADC (0 dB to 40 dB) vs distance.
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Figure 6.8: Range measurements for system configured for -46 dBm MDS: exper-
imental SNR* data for multiple ADC attenuator values (dashed purple line with
circle data markers) and reading error at corresponding distance (dark yellow dash
dotted line with circle markers, right y-axis). Multiple data curves correspond to
attenuator values (increments) at ADC increasing in the direction of arrow. Shown
in thick solid green line is cut-off SNR*, lower SNR* values yield error 0.07 and
higher.
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the 4-dB mark when temperature error becomes more than 0.07. For SNR* values

of 4 dB, SNR is approximately 1.5 dB, based on equation 6.4.

6.3.3 Multi-sensor Operation

As a demonstration of multi-sensor operation, the 915 MHz SAW OFC transceiver

system with four OFC SAW sensors interrogated simultaneously is given, with results

shown in Figure 6.9. The devices are located in close range to each other at a nominal

distance of 0.8 to 1.2 meters, at this distance SNR* ≈ SNR ≈ 25 dB. Devices

were cooled and heated using a refrigerant and heat gun, respectively, and were free

running. Thermocouples (TC) were attached as close to the sensor devices as possible

to achieve good thermal contact and electrical isolation, while minimizing interference

to the antenna. Sensors NS402 and NS403 remained at room temperature; sensor

NS401 was heated to 140◦C and sensor NS403 was cooled to -130◦C. Data was taken

simultaneously from all four sensors, with a single ”ping” and then temperature

extracted in the correlator receiver software, with no post processing integration.

The temperature was extracted using the adaptive filter approach. Power received

from the sensors at the interrogator antenna is approximately 95 dB below power sent
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to the antenna. The SAW sensors and thermocouple tracked to within ±3◦C over

nearly the entire range of temperature variation.

6.4 Summary

Single sensor operation has been demonstrated for up to 3 meters with 60% of ex-

tracted values within 3.5% range of the dynamic range of the system. A first order

noise and signal strength model has been developed and showed good agreement

when compared with measured results. With the first order range analysis it was de-

termined that in order to successfully extract temperature an SNR of approximately

10 dB is required when noise received at the ADC is dominantly due to the receivers

internal noise. SNR of 1.5 dB is sufficient when the internal ADC noise is greater

than the noise of the receiver.

Multi-sensor passive wireless operation has also been demonstrated for four OFC

SAW sensors located at approximately 1 meter away from the interrogator. A dy-

namic range of 280◦C has been demonstrated with ±2.5% accuracy.
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Figure 6.9: Results of the 915 MHz SAW OFC temperature sensor transceiver sys-
tem. Four OFC SAW sensors are co-located in close range to each other at a distance
of 0.8m to 1.2m; sensors NS402 and NS403 remained at room temperature, sensor
NS401 heated to 140◦C and sensor NS403 cooled to -130◦C. Data was taken si-
multaneously from all four sensors and then temperature extracted in the correlator
receiver software.
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CHAPTER 7

CONCLUSION

As part of this dissertation, the first operational software correlator based transceiver

for passive wireless OFC sensor system has been developed. An OFC TDM coding

technique has been introduced for multiple sensors which are interrogated simulta-

neously with minimal code collisions. A unique multi-track, multi-transducer device

configuration has been proposed that conjugately matches the SAW device to the

antenna input impedance, and also spatially separates chips within the device further

reducing inter-device code collisions.

In order to design and accurately simulate devices presented in this dissertation,

the existing COM model analysis has been extended by using a signal-flow graph

technique with elements expressed as hybrid P-matrices. This approach can be used

to analyze diverse device configurations with unlimited number of ports and acousti-

cally independent tracks. In current implementation, a new solution is computed for

every track and P-matrix element. The computational complexity can be noticeably

reduced by reusing previous solutions or parts of the solutions from one track to
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another, since the track parameters are similar to each other; often have the same

number and types of elements and their order. The model has also been expanded

to analyze apodized reflectors that are separated into multiple tracks that contain

only uniform portions of the reflectors. Reflectors with high number of electrodes

result in high number of tracks. By rounding off the tracks and reducing the number

of tracks to a fixed number with uniform width, accurate results can be obtained

with as little as 25 tracks. The algorithm can be further improved by implementing

grouped tracks when the two smallest tracks are merged together, until only 10-15

tracks remain. This enhancement should produce better and faster results. In ad-

dition to the COM model, a synthesis model has been created based on the hybrid

P-matrices and signal-flow graphs. This model can be used to quickly and accu-

rately design a multi-track, multi-transducer device. This model could be expanded

to model the parasitic capacitance and resistance of the ground and signal pads as

well as connections made between several transducers.

The cell-based (OFC with TDM) coding technique produces codes with excellent

anti-collision properties. In case of the OFC chips, the cross-correlation lobes in

the proximity of the main auto-correlation lobe are generally very low resulting in

good dynamic range of the system. It was shown that the NLR structures can be a

successful alternative for wide band coding and SAW reflector implementations were
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demonstrated that had random properties in their structural design. Experiments

conducted showed that it is possible to design and build structures with multiple

stop-bands with near unity reflection. A system of devices with NLR chips instead

of OFC chips was designed using cell-based coding. In future work, a relationship

between systems dynamic range, spacial diversity, number of chips, devices and total

bandwidth needs to be established. The drawback of the NLR-based approach is

reduced dynamic range; it can, however, be successfully used in tag applications.

The auto-correlation peak of NLR devices is narrower compared to OFC devices,

which yields higher sensitivity. It is possible to use this approach on a substrate that

is less sensitive to temperature change. The NLR-based approach has better security

properties and on temperature compensated substrate can work well as an RFID tag

or for sensors with small dynamic range (i.e. temperature sensors for homes). NLR

codes are currently generated randomly until a good code set is found. The initial

code is found using just ”+1” and ”-1”, and then verified using the COM model. It

was found that better codes can be achieved if each electrode-gap pair is modeled

as a sequence ”+1,-1”, and the offset of an electrode-gap pair (to produce opposite

phase) simply as ”0”. On the chip level, the NLR approach is similar to CDMA and

perhaps, some of the device coding techniques available for CDMA should be used

for generation of NLR chips. It has been shown that the bandwidth of the NLR chips
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can be reduced using repetitions. However, long structures need to be examined for

second order affects, which presented them selves as a ripple in the frequency domain

response.

A new and novel multi-track, multi-transducer OFC device design approach has

been demonstrated and showed reduced cross code collisions as well as lowered chip

interactions within the devices for RFID and sensing applications. While Q is a func-

tion of device substrate and bandwidth, the described multi-transducer approach

allows flexibility of designing a device impedance with reasonable aperture values

(between 20 and 200 wavelengths) almost anywhere on the constant Q-arc on the

capacitive side of the Smith chart. The flexible impedance design can provide opti-

mal impedance matching; reducing the size or completely eliminating the need for a

matching network. Due to the nature of OFC chips, multiple non-adjacent frequency

transducer-reflector pairs can be combined within one track with minimal chip col-

lisions for reflectors with even high reflectivity. Due to second order and parasitic

effects, measured devices have typically 5-10 dB higher insertion loss than a typical

wide-band single transducer device. In future research, this loss needs to be ex-

plained and modeled. An interesting sensor embodiment for future investigation has

transducers electrically separate from each other and connected to their own narrow
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band antennas, versus having to use a single wide band antenna that typically has

lower gain.

It has been shown that the synthesis model is a good design and analysis tool.

Possible impedance ranges have been calculated for 250MHz, 500MHz and 915MHz

center frequencies, 60MHz bandwidth on Y,Z LiNbO3 substrate. Three sets of

devices at those frequencies have been built and measured and successfully compared

against predicted impedance ranges. Apodization can extend the OFC approaches

and reduce inter-chip collision and cross correlation energy. It also results in code

collision reduction for multi-tags/-sensor systems. Multi-track, multi-transducer,

OFC SAW sensors offer viable solution for multi-device applications.

The first operational passive wireless OFC SAW sensor RF burst interrogator has

been demonstrated at 915MHz. A single sensor has been successfully interrogated at

a distance of 3 meters. At 3-meter distance, 60% of the extracted values fell within

a 10◦C range of the actual temperature (measured with a thermocouple) which is

3.5% of the dynamic range of the system. A first order noise and signal strength

model has been developed and showed to be in good agreement when compared

with measured results. With the first order range analysis it was determined that

a SNR of approximately 10 dB is required when noise is dominantly due to the

receiver. An SNR of 1.5 dB is sufficient when the ADC noise source is dominant over
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other sources. Multi-sensor passive wireless operation has also been demonstrated

for four OFC SAW temperature sensors located at approximately 1 meter way from

the interrogator. A dynamic range of 280◦C has been demonstrated with ±2.5%

accuracy. A future study needs to be performed for near field interaction of the

sensors; the maximum range of operation decreased as the number of sensors in the

system increased. One of the range limiting factors in the range experiment was the

noise coming from the local interference such as cell phone towers, which resulted in

noise higher than the internal noise of the system. A range measurement needs to be

performed in a large anechoic chamber or in a field area with poor or no cell phone

reception. Using an RF chirp instead of a short RF pulse can significantly increase

the power of interrogation and therefore range. An RF chirp based system should

be implemented as part of future work.
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