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ABSTRACT 

A monolithically integrated smart rectifier has been presented first in this work. The 

smart rectifier, which integrates a power MOSFET, gate driver and control circuitry, 

operates in a self-synchronized fashion based on its drain-source voltage, and does not 

need external control input. The analysis, simulation, and design considerations are 

described in detail. A 5V, 5-µm CMOS process was used to fabricate the prototype. 

Experimental results show that the proposed rectifier functions as expected in the design. 

Since no dead-time control needs to be used to switch the sync-FET and ctrl-FET, it is 

expected that the body diode losses can be reduced substantially, compared to the 

conventional synchronous rectifier. The proposed self-synchronized rectifier (SSR) can 

be operated at high frequencies and maintains high efficiency over a wide load range. 

As an example of the smart rectifier’s application in isolated DC-DC converter, a 

synchronous flyback converter with SSR is analyzed, designed and tested. Experimental 

results show that the operating frequency could be as high as 4MHz and the efficiency 

could be improved by more than 10% compared to that when a hyper fast diode rectifier 

is used. 

Based on a new current-source gate driver scheme, an integrated gate driver for buck 

converter is also developed in this work by using a 0.35µm CMOS process with optional 

high voltage (50V) power MOSFET. The integrated gate driver consists both the current-

source driver for high-side power MOSFET and low-power driver for low-side power 
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MOSFET. Compared with the conventional gate driver circuit, the current-source gate 

driver can recovery some gate charging energy and reduce switching loss. So the current-

source driver (CSD) can be used to improve the efficiency performance in high frequency 

power converters. 

This work also presents a new implementation of a power supply in package (PSiP) 

5MHz buck converter, which is different from all the prior-of-art PSiP solutions by using 

a high-Q bondwire inductor. The high-Q bondwire inductor can be manufactured by 

applying ferrite epoxy to the common bondwire during standard IC packaging process, so 

the new implementation of PSiP is expected to be a cost-effective way of power supply 

integration.  
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CHAPTER 1: INTRODUCTION 

1.1 Background and Prior-art 

Physical feature sizes of Integrated Circuits (IC) continue to scale down as IC fabrication 

technology advances. Thanks to the shrinking in geometry size, more transistors and new 

functions are integrated into today’s GHz-class microprocessors. At the same time, the 

current consumption of the microprocessors increases significantly due to the increasing 

number of integrated transistors, higher operating frequency, and more functions. The 

power consumption of the microprocessor, therefore, increases dramatically in spite of 

the decreasing of the core voltage. According to the international technology roadmap for 

semiconductors (ITRS) published by the Semiconductor Industry Association (SIA), 

microprocessors will be operating at less than 1V, drawing up to 200A in the near 

future[1]. 

Voltage regulator modules (VRM) and voltage regulator down (VRD) are responsible for 

delivering power to multiple-processor and a single processor, respectively, as stated in 

Intel’s VRD/VRM design guidelines[2]. The primary performance requirements for 

VRM/VRD are accurate voltage regulation and fast transient response to load variation. 

At the same time, in today’s battery powered, portable electronic system, the 

requirements for smaller volume, lighter weight, and longer battery life become more 

important than ever. To meet these requirements, DC-DC converters must have high 

efficiency, high power density (or high integration), and high switching frequency (in 
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MHz range). Formidable technological challenges exist in designing of power supplies 

for today’s and future’s advanced application systems. 

Power MOSFETs are the most critical component and fundamental building block of 

high performance power supplies. Power MOSFET structure, as illustrated in Fig. 1.1, 

consists of a gate voltage controlled channel and an integral body diode which is in anti-

parallel to the channel. The body diode is inherent to the structure of the MOSFET and 

turns on whenever the voltage polarity across it is reversed during typical switching 

operation. Power MOSFETs form the fundamental building blocks of switching mode 

power converters and act as active power switches or synchronous rectifiers. 
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Figure 1.1 A typical power MOSFET structure with the inherent body diode 
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Synchronous buck converter has been predominantly employed in high performance, 

low-voltage and high-current power converters, like VRM or VRD, to efficiently provide 

power to computer system and portable/hand-held devices. A typical synchronous buck 

converter is shown in Fig. 1.2, where power MOSFETs are used as main control switch 

(ctrl-FET) and synchronous rectifier (sync-FET).  

A time interval, so called “dead time”, has to be inserted between two gate driving 

signals to prevent shoot through in a synchronous buck converter. Shoot-through is 

defined as the condition when both MOSFETs are either fully or partially turned on, 

providing a path for current to “shoot through” from VIN to GND[3]. Shoot through, if 

allowed to occur, reduces system efficiency, causes power MOSFET heating and even 
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Figure 1.2 A typical synchronous buck converter 
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thermal shutdown. Dead time is a time period where neither switch conducts, which is a 

new feature of the newer integrated circuits that are designed specifically for synchronous 

rectification applications. During the deadtime, because both MOSFETs keep off, so the 

inductor current has to flow through the body diode of the synchronous rectifier (sync-

FET), which causes power loss and degrades the overall efficiency of the system. 

1.1.1 Body Diode Power Loss in Synchronous Rectifiers 

The corresponding switching waveforms of the synchronous buck converter is shown in 

Fig. 1.3. From the waveforms, it can be seen that the body diode of the sync-FET turns 

td1 td2

Vgs_ctrl

Vgs_sync

Vsw

iL

t11 t12 t21 t22

IAV

 

 

Figure 1.3 Switching waveforms of a typical synchronous buck converter 
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on twice during deadtime interval of td1 and td2 in every switching cycle, which degrades 

the system efficiency by both conduction loss and reverse recovery loss. During deadtime 

td1, the body diode conduction loss can be calculated by 

12

1
11

1 1

1

( )
2 2

d

t
O U T F

cond t F
t

sw

IN O U T O U T F

F sw AV sw d d

V V
P V t dt

T L

V V V V
V f I D T t t

L L




    

 
        



       (1-1) 

where Tsw is the period of the switching cycle, D is the duty circle, fsw is the switching 

frequency, VF is the forward voltage drop of the body diode, IAV is the average inductor 

current, which equals to output current IOUT, VIN and VOUT are input and output voltage, 

respectively.  

And at time t12, ctrl-FET turns ON, body diode begins reverse recovery, which cause 

power loss 

12

1
12

1
( )

rr

d

t t

rev t IN rr IN sw rr
t

sw

P V i t dt V f Q
T




              (1-2) 

where irr(t) is the transient reverse recovery current, trr is the reverse recovery time, and 

Qrr is the reverse recovery charge, which is the stored excess carriers when the body 

diode is conduction under forward bias condition. 

During deadtime td2, the body diode conduction loss can be calculated by 
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22
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         (1-3) 

At time t22, sync-FET turns on, body diode is still forward biased (but the biasing voltage 

becomes VDS-sync) and hence there is no reverse recovery loss. The total power loss caused 

by diode conduction, therefore, can be calculated as (by assuming 
1 2d d d

t t t  ) 

1 2 1

2
d d ddiode cond t cond t rev t F sw O U T d IN sw rr

P P P P V f I t V f Q
  

                 (1-4) 

The above analysis is for continuous conduction mode (CCM), for discontinuous 

conduction mode (DCM), the body diode loss is only conduction loss which occurs only 

during deadtime td2.  

From equation (1-4), it can be concluded that the diode related power loss increases 

dramatically for longer deadtime, higher switching frequency, and higher output current. 

Another interesting conclusion is that the higher the input voltage, the more reverse 

recovery loss. 

Given the fact that MOSFET conduction and switching losses have been reduced 

substantially in the past years [4]-[6], the body diode loss will contribute to a substantial 

portion of the total losses in the future due to the large forward voltage drop and poor 

reverse recovery characteristics of the PN junction diode. For example, in [7], over 3.5% 

improvement of efficiency is reported for a synchronous buck converter by just 

eliminating unnecessary body diode conduction. Because body diode related power 
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losses during dead time are proportional to switching frequency, the body diode power 

loss will present a fundamental technical barrier for meeting performance and efficiency 

requirement of future DC/DC converters as they migrate into higher switching frequency 

ranges [8]-[9].  

Various prior-art approaches have been proposed to address the body diode loss issue 

during dead time interval from both device and circuit points of view. From device 

standpoint, people have tried to control carriers lifetime profile [10] or to add additional 

Schottky diode in parallel with the body diode[11]-[15]. Control of carrier lifetime reduce 

reverse recovery loss but have no effect on the conduction loss. Additional Schottky 

diode will suppress the body diode turn on, so it reduces the body diode related losses 

significantly. However, it is limited by the increased cost and also by the die size (when it 

is integrated) or parasitic resistance and inductance (when it is co-packaged or externally 

connected). 

It is important to realize that a fixed very short dead time is impractical since the dead 

time required to avoid shoot through usually depends on circuit input, load condition, 

power MOSFET parameter, other circuit components parameters, and even the 

temperature. Therefore, many circuit techniques, including adaptive deadtime control, 

have been proposed to keep the deadtime as short as possible[16]-[23] to maximize 

system efficiency. Some proposed algorithm[19]-[23], however, require fairly complex 

additional hardware, and therefore increase the overall size and cost of the power 

converters. Hence, the less complicated, adaptive/predictive deadtime control schemes 
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have been commonly implemented[24]-[26]. More simplified circuit techniques, if 

possible, are still at a premium to address the body diode conduction. 

1.1.2 Synchronous Rectifier in Isolated Power Converters 

When synchronous rectification technique is used in isolated converter to improve system 

efficiency, there are some specific issues that need to be solved[27]. Flyback converter, 

the isolated version of buck-boost converter, has been widely used in power applications 

under 200W due to the advantages of less component counts, low cost, compact profile, 

step up and down functions, and isolation between input and output [28]-[31]. Here, we 

take flyback DC-DC converter as an example to explain the existing problems and some 

solutions when synchronous rectifiers are used. 

Recently, high frequency flyback converters are being considered for VRM application to 

overcome the low duty cycle limitation encountered in the buck VRM topology [32][33] 

since the flyback topology uses a transformer to step down the voltage, and is thus not 

limited by the low duty cycle issue. In low-output-voltage flyback converters, it is 

necessary to use MOSFET as secondary synchronous rectifiers (SR) to meet the high 

efficiency requirement [34]-[36]. However, the synchronous rectifier MOSFET (Sync-

FET) requires a control signal and gate driver circuit for proper switching timing control, 

which must be in synchronization with respect to the control power MOSFET on the 

primary side of the transformer. This presents a design and implementation challenge in 

terms of system complexity, performance, and overall cost. 
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According to how the gate driving signal is generated, the synchronous rectifiers in 

existing flyback converter can be classified into two types: the self-driven synchronous 

rectifier (SDSR) and external-driven synchronous rectifier (EDSR) The SDSR approach, 

as shown in Fig.1.4, realizes synchronized switching by simply connecting an additional 

winding in the transformer to the gate and source of the sync-FET [37][38]. Although 

very simple in operation principle, SDSR does not offer sufficiently precise control 

timing to fully utilize the Sync-FET [39]. The parasitic body diode of the Sync-FET 

conducts the load current during a significant portion of the total rectifier on-time, 

resulting in low system efficiency, particularly at very high switching frequencies. 

Furthermore, SDSR does not allow DCM operation and consequently lead to low 
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Figure 1.4 SDSR driving topology 
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efficiency at light load conditions because current is still circulating all the time after the 

primary side switch is turned off.  

The EDSR approach, as shown in Fig. 1.5, can be used to overcome the limitations of 

SDSR to a certain extent by using break-before-make control scheme. Usually, the 

control signal in this approach comes from the primary side directly without isolation or 

through a pulse transformer or opto-isolator[40][41]. Similarly, deadtime is also used in 

these topologies to avoid the switch in primary side and the switch in secondary side 

from conduction simultaneously. Therefore, as in other synchronous converters, the same 

issue with regards to minimizing the deadtime remains because system efficiency is very 

Load
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O U T
V

Ctrl-FET

Sync-FET
Cout

Driver

Control 

& Logic

 

Figure 1.5 EDSR driving topology 
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sensitive to the deadtime[42]. Also, in these topologies, DCM operation is still not 

available, which degrades the system efficiency the same way as it does in SDSR. 

The sync-FET can also be controlled by sensing the secondary current through a current 

transformer [43]-[45]or voltage drop of the sync-FET.[46]-[49]. However, those circuits 

are mostly implemented in discrete form and do not offer sufficient precision in timing 

due to the influence of the parasitic elements. It is therefore advantageous to find a 

integrated, less-complicated way to realize synchronous rectifier in isolated converters. 

1.1.3 Current-Source Gate Driver 

Switching power supply operates at ever increasing high frequency in order to reduce the 

size of the passive components in hand-held/portable applications and to meet the 

requirements for fast dynamic response and low output voltage ripple in computing 

electronics[50]-[52].  

However, as the switching frequency increases, the switching loss and gate drive loss 

also increase dramatically since both of the losses are proportional to switching 

frequency. These two frequency-dependent loss components become dominant in the 

total loss of a high frequency power converter system, which significantly degrades the 

overall efficiency and increases the heat removal cost. Switching loss is also proportional 

to the switching time, while switching time is mainly decided by the gate driver design 

for a given power MOSFET. Conventional gate driver circuit usually charges and 

discharges the gate capacitance of the power MOSFET through active switches. The 

charging and discharging current have high peak value but fast drop down rate. So the 
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switching time is relatively long. Therefore, further increase in the switching frequency 

necessitates a new gate driver scheme to reduce both the gate driver loss and switching 

loss. 

Fig. 1.6 presents a simplified conventional lossy gate driver circuit, where MOSFET S1-

S4 compose the simplified drive circuit to drive main MOSFET M1. There are 3 main 

parasitic capacitors also illustrated in Fig. 1.6 for the main MOSFET M1: CGS, CGD, and 

CDS, which represent the gate-source capacitor, gate-drain capacitor, and drain-source 

capacitor, respectively. All of these capacitors are non-linear, which means their 

capacitance values vary with the bias conditions. In a power MOSFET datasheet, three 

different capacitors, i.e. Ciss, Coss, Crss are usually specified. Ciss and Coss refer to input 

capacitor (when drain and source are shorted) and output capacitor (when gate and source 

M1

VDRV

CGD

CGS

CDS

S3

S4
S2

S1

Gate 

driver

Power 

MOSFET 

being driven

RG

 
 

Figure 1.6 Simplified converntional gate driver  
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are shorted), respectively, while Crss means reverse transfer capacitor (or miller 

capacitor). The analysis and calculation of MOSFET power loss will based on these three 

capacitance from MOSFET datasheet. The relationship between these two groups of 

capacitance is given by 

iss GS GD
C C C                             (1-1) 

oss GD DS
C C C                             (1-2) 

rss GD
C C                              (1-3) 

The most important power losses in the conventional driver circuit can be classified as 

the power used to charge and discharge all the output capacitance of switch S1-S4, the 

power dissipated when charging and discharging all the input capacitance of switch S1-S4, 

and the power dissipated when charging and discharging the input capacitance of the 

main power MOSFET M1. The first two power losses are caused by the driver circuit 

itself, which are targeted low in conventional driver circuit design. Power MOSFET M1 

usually needs to handle high current, which requires low Rds-on to lower power loss. Low 

Rds-on means large silicon area and high parasitic capacitance in most cases. Therefore, the 

third item (the power required to turn on/off the power MOSFET M1) is the dominant 

power loss for driving a power MOSFET. In [53], the investigation discovers that the 

power required to turn on/off the power MOSFET M1 accounts for 66.7% of the total 

power loss in the driver circuit. In this work, we mainly consider the third loss item. The 

power loss due to charging the input capacitor of M1 is given as 
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0

1
( )

chgt

D RV D RV G D RV SW G

SW

P V i t dt V f Q
T

                      (1-4) 

where VDRV is the gate drive voltage. iG(t) is the transient gate charging current. tchg is the 

time to charge the gate capacitance. QG is the gate charge when the gate capacitors are 

charged to VDRV. Interestingly, the gate resistance RG have no effect on gate driving loss. 

Based on this equation, several approaches have already been proposed to reduce the gate 

drive loss. 

From device point of view, small gate capacitor means less gate charge, so by 

optimization of device structure or fabrication process technology (like doping profile), 

the gate driving power loss can be reduced [7][54]-[57]. Once a power MOSFET in the 

market is chosen for a specific application, some circuit techniques can be used to further 

reduce the gate drive power loss. 

Since 
G DRV iss

Q V C  , it can be inferred that gate drive loss is approximately 

proportional to the square of driving voltage from the equation (1-4). So decreasing the 

gate driving voltage will reduce the gate loss significantly. However, the conduction loss 

may increase due to the increased Rds-on. Based on this observation, some circuit 

techniques, like low-swing gate driver [58]-[60] were proposed to try to find a optimum 

driving voltage which can obtain a good trade-off between gate drive loss and conduction 

loss and improve the system efficiency. 

In conventional gate driver circuit, half of the gate driving energy is stored in the gate 

capacitors during charging and dissipated when the gate capacitor is discharged. Some 
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resonant gate driver circuits have been proposed to recover part of the energy loss. In 

[61], a resonant gate driver is proposed with extra L-C tank to reduce the gate drive loss. 

The main drawback of [61] is that the inductor current is continuous, which means there 

is always a circulating current flowing in the driver circuits. So the driver circuit generate 

some extra conduction loss. Another resonant gate driver is proposed in [62], in which 

the inductor current is discontinuous. No inductor current is present except during the 

on/off transition of the main MOSFET. So the conduction loss in driver circuit is 

reduced. However, since the inductor current starts from zero to charge and discharge the 

gate of the main MOSFET, the switching transition becomes longer, the switching loss 

increases. Combining both [61] and [62], a current source gate driver[63] is proposed, in 

which, the inductor current is discontinuous, but it rises before turning the main 

MOSFET on/off, so the conduction loss in driver circuit is minimized and a quick turn-on 

and turn-off transition is obtained at the same time. In addition, it is capable of clamping 

the main MOSFET gate to the gate driving power supply during the on time and to 

ground during the off time. The ground-clamping is particularly important to avoid 

undesired false triggering of the main MOSFET, i.e. Cdv/dt immunity [64]-[66]. 

1.1.4 Power Supply in Package 

The evolution of mobile electronic devices such as PDAs, smart cell phones, and digital 

audio/video recorder/players has been driving the increasing demand for power supply 

miniaturization or integration. Apart from the saved board space and reduced board 

mounting height, the power supply integration is also advantageous for the improved 
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performance and system efficiency due to the reduction in unwanted parasitic 

components, e.g. inductance and resistance [67]-[69].  

Power supply on chip (PwrSoC), which is an advanced technology to incorporate 

multiple components into a single semiconductor substrate, is believed to be the ultimate 

level of power system integration. Some PwrSoC implementations have already been 

demonstrated in literature [70]-[72]. In these work, although very high switching 

frequencies have been used to reduce passive components size,  inductors and capacitors 

usually still consume a large portion of the silicon area. There is no cost effective way 

been found to make the PwrSoC actually enter the power supply market. So far, there are 

only a few “near” PwrSoC devices which are so called power supply in package (PSiP). 

PSiP integrates all active devices and passive components into a single package, 

providing an attractive and practical solution because of the significant improvement in 

performance and reduction in board space, parts count, and time-to-market[73]-[75].  

However, the development of PSiP is seriously hindered by a few major technical 

barriers including integration of magnetic passive components. Magnetics integration is 

thought as an enabling technology for power supply integration [76]. The main challenge 

is to find a cost effective means of integrating inductors and transformers with adequate 

performance in terms of inductance, dc series resistance, saturation current, coupling 

coefficient, and Q factor. Current research work on integrated magnetics has 

predominantly focused on utilizing MEMS (micro-electro-mechanical-system) 

micromachining technology as a post-processing step after the completion of the CMOS 

chip containing all power switching devices and control circuitry [77]-[83]. 
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Sophisticated MEMS technology allows sequential deposition and patterning of 

numerous layers of conductor, insulator, perm alloy or ferrite thin films to form desirable 

inductor and transformer structures. However, the high dc resistance and poor Q factor 

(typically 3 to 8) of the MEMS inductors/transformers severely limit the current handling 

capability and efficiency. More critically, the large increase of fabrication complexity and 

cost associated with the MEMS post-processing approach raises questions on its 

feasibility to facilitate large scale commercialization of the power system integration 

concept into the extremely cost-sensitive power supply market. 

In reality, almost all PSiP products available in market only have control, drive and 

power MOSFET assembled with passive components in a single surface mount package 

[84]. Usually in PSip, the silicon dice of active devices and passive components are 

connected with each other through mixed-mode inter-connection, which adopts surface 

mounting technology (SMT) and bondwires [85][86]. The package and the inside of the 

PSiP are illustrated in Fig. 1.7. It is very clear that this type of PSiP is only a co-package 

 
 
 

Figure 1.7 PSiP products in market: inside and package 
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of few active dice and passive components, and hence they usually can not use standard 

package process.  

1.2 Research Objectives 

The main purpose of this dissertation work is to address some issues mentioned in the 

previous section, i.e. the body diode power loss in synchronous rectifiers, the 

synchronous rectification technique in flyback converter, new gate driver in high 

frequency power converters, and power supply integration, for today’s high frequency, 

high performance, and high integration switching power converters.  

The first objective is to develop a monolithically integrated, smart synchronous MOSFET 

with significantly reduced body diode power loss without employing an additional 

Schottky diode. More specifically, we propose to investigate a smart auxiliary circuit 

approach to enable the synchronous MOSFET to operate in a self-synchronized fashion 

without requiring complex “dead time” or “break-before-make” control, but in the 

meantime offer a very low conduction loss. The smart rectifier, which integrates a power 

MOSFET, its driving circuit, and control logic, operates in a self-synchronized fashion 

similar to a simple diode. We verify the concept with extensive circuit simulation and a 

prototype device fabricated with AMIS 0.5μm CMOS technology through MOSIS 

services. 

When synchronous rectification technique is used in isolated converters, synchronization 

of the switching timing of the two power MOSFETs on different sides of the transformer 

becomes complicated. The second objective of this work is to propose and demonstrate a 
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new way to simply implement a synchronous flyback converter by using the newly 

developed monolithic self-synchronized rectifier. 

The third research objective is to develop a gate driver chip for a buck converter. The 

chip, which integrates gate drivers for both high-side and low-side power MOSFETs, is 

expected to reduce the gate drive loss in high frequency power converters by using some 

new gate drive techniques. 

Another research objective is to demonstrate a package level integration of a monolithic 

buck converter in a cost-effective way by using high performance bondwire inductors. 

1.3 Dissertation Outline 

There are six chapters in this dissertation. In this chapter, the research background, the 

existing issues, and the prior-of-art solutions are presented. At the end of this chapter, the 

research objectives and the dissertation outline are given. 

Chapter 2 describes the development of the self-synchronized rectifier, which includes 

brief introduction to the process technology and EDA tools used in the development, 

circuit design and simulation results, design considerations, layout design and 

experimental verification.  

In chapter 3, we propose and demonstrate a new way to implement the high frequency 

synchronous flyback converter by using the novel self-synchronized smart rectifiers 

developed in chapter 2. We have discussed the existing schemes to realize synchronous 

rectification in flyback converter first. In chapter 3, the flyback converter with the smart 
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rectifier is designed, analyzed and simulated. We then demonstrate the new 

implementation through an experiment. The experimental results and explanation are also 

presented. 

An integrated gate driver circuit, which includes gate drivers for both low-side and high-

side power MOSFETs, is developed using high voltage (50V) isolated process 

technology in chapter 4. High-side driver is designed based on a concept of current 

source gate driver. A brief introduction is first given to the current source gate drive 

circuit. The whole procedure of the development including circuit design, simulation, 

layout, and package are presented in detail. 

In chapter 5, we present a cost-effective way to realize power supply in package (PSiP) 

by using high-Q, high inductance bondwire inductor with ferrite epoxy coating. The 

prior-of-art techniques used in power supply integration has been briefly reviewed. In 

chapter 5, a introduction to the new bondwire inductor is given first. Then a synchronous 

buck converter is designed and implemented to demonstrate the new PSiP concept. 

Experimental results also are presented and discussed. 

The dissertation work is summarized and concluded in last chapter. Some possible future 

work is also pointed out in the last chapter. 
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CHAPTER 2: SELF-SYNCHRONIZED RECTIFIER (SSR) 

Power MOSFETs have been widely used as synchronous rectifiers in essentially all low 

voltage dc power supplies to improve the power converter’s efficiency because of its low 

conduction voltage drop in comparison with regular P/N junction diode rectifiers 

[34][35][87][88]. However, as mentioned in chapter 1, the conduction of the body diode  

during deadtime results in both conduction loss and reverse recovery loss, which 

degrades the system efficiency considerably in high frequency power converters. The 

majority of the existing approaches to address deadtime control, unfortunately, suffer 

from the increased complexity and cost.  

In this chapter, an integrated, high-speed self-synchronized rectifier (SSR) is designed, 

simulated, and fabricated, which offers remarkably simplified circuit design and reduced 

body diode power loss without employing an additional Schottky diode. The smart 

rectifier integrates a main low-voltage power MOSFET and a simple control circuitry that 

does not need external control signal input. High-speed and high-efficiency operation in 

the whole load range can be ensured by innovative control circuit. It is suitable for 

applications in both isolated and non-isolated DC-DC converters.  

AMIS C5 process is used in the development of the SSR prototype. C5 is a 5V, 0.5-µm 

mixed signal CMOS process, but the minimum channel length is 0.6 µm. Double poly, 

13.5 nm gate oxide thickness are used in the process. There are 2 or 3 metal layers 

available. To have good shielding protection for some critical paths, 3 layers of metal is 

used in our SSR prototype. 
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Virtuoso
®
 Front to Back Design Environment v5.1.41 from Cadence™ is used for 

schematic input. Accurate circuit simulations have been performed with Spectre 

simulator in Analog Artist. Assura
®
 is used for design rule check (DRC) and layout 

versus schematic (LVS) comparison during back-end layout physical design.  

2.1 Concept of the Self-Synchronized Rectifier 

Fig. 2.1 depicts the implementation of synchronous rectification technique in a 

conventional buck converter using an externally controlled synchronous rectifier. A 

PWM/PFM controller IC controls both high side MOSFET (Ctrl-FET) and low side 
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Figure 2.1 Conventional synchronous buck converter 
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MOSFET (Sync-FET). The logic signals (with deadtime) generated by the controller 

control both power MOSFETs through gate drivers. When the high-side MOSFET switch 

turns on, the inductor current rise linearly. When the Ctrl-FET is turned off, the low-side 

synchronous rectifier turns on to provide a current path for the inductor current to ramp 

down. In this topology, the dead time has to be generated inside the controller, and body 

diode of sync-FET conducts current during the dead time.  

The concept of the smart self-synchronized rectifier is shown in Fig. 2.2. The self-

synchronized rectifier consists of a synchronous MOSFET and an auxiliary control 

circuit to minimize body diode conduction during the deadtime and simplify the 

PWM/PFM control IC design. The core of the auxiliary circuit is a high-speed 

comparator which senses VDS of the sync-FET and generates a control signal accordingly 

to switch the Sync-FET. When the Ctrl-FET is on, the Sync-FET is off and has a VDS 

close to the input voltage Vin (e.g. 12V). The voltage comparator therefore outputs a logic 

“0” signal and keeps the Sync-FET off. When the Ctrl-FET turns off, the inductor current 

will start to freewheel through the body diode of the Sync-FET, and VDS of the sync-FET 

becomes negative. A negative VDS triggers the output of the voltage comparator to logic 

“1”, and turns on the Sync-FET to carry the inductor current through its MOS channel. 

The smart rectifier doesn’t need any external control signals. It automatically adapt to the 

switching operation of the Ctrl-FET. The Sync-FET only turns on after the Ctrl-FET 

turns off and it will turn off before the Ctrl-FET turns on completely. So the “break-

before-make” control is automatically realized and no extra dead-time control circuit is 

needed. Since no dead-time control needs to be used to switch the Sync-FET and Ctrl-
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FET synchronously, it is expected that the body diode losses can be reduced substantially 

comparing with the conventional synchronous rectifier. 

A similar concept has been studied in [89]-[93]. However, the main objectives of the 

work in [89]-[93] are only to propose a simple control scheme to emulate power 

MOSFET switch as an ideal diode rectifier. Body diode conduction and the related power 

loss were not addressed. Furthermore, all the proposed schemes, only being tested in very 

low frequency (less than 110 kHz or DC) and over-simplified circuits, have not been 

experimentally verified in actual high frequency power converters and hence many 

important design considerations and possible issues were not pointed out.  
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Figure 2.2 Concept of the proposed self-synchronous rectifier 
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The smart rectifier concept has also been implemented in some products [94]-[97]. All of 

these products can only work at low frequency due to fundamental design issues. The 

reported highest operating frequency is below 500 kHz[96]. Furthermore, they potentially 

suffer from high gate driving loss and switching loss at light load condition and hence 

low overall efficiency. 

2.2 Design of the Self-Synchronized Rectifier 

The block diagram of the proposed self-synchronous rectifier is shown in Fig. 2.3. The 

whole system consists of the following main blocks: current source, comparator, POR 

(Power On Reset), control and logic, and gate driver.The POR block offers some basic 
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Figure 2.3 Block diagram of the proposed self-synchronous rectifier 
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protection function to ensure the gate of sync-FET is connected to ground if the power 

supply is below the normal operating voltage. The current source provides accurate 

current bias for the voltage comparator. The voltage comparator and control function 

blocks in our design have distinct features and will be discussed in detail. 

2.2.1 Power On Reset (POR) 

The POR block works like a UVLO (Under Voltage Lock Out), which generates a reset 

signal to ensure the Sync-FET stays off during the power on/off stage. When the power 

supply, VCC, ramps to above 2V, the reset signal turns to low level (inactive). The control 

circuit starts to function normally. Only a rough UVLO is needed here, so a very simple 
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Figure 2.4 Power on reset 
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circuit structure, as shown in Fig.2.4, is used. The simulation results is presented in 

Fig.2.5. 

 

2.2.2 Current Source 

This block generates a steady current source bias for the high speed comparator. A self-

biased current source structure, including start up circuit as shown in Fig. 2.6, is used. 

The current generated from this circuit, ICS, is expressed as below,  
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Figure 2.5 Simulated transient response of the POR (typical) 
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where VGS-M5 can be find from the following equation as long as M5 is operating in 

saturation mode. 

25
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                       (2-2) 

So obviously, the current source is power supply independent. By appropriate selection of 

R, the temperature coefficient (TC) of Vgs and R may cancel each other, so a temperature 

independent current source can be obtained. In this work, both poly resistor (R2, negative 

TC) and Nwell resistor (R3, positive TC) are used. The design value of the output current 
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Figure 2.6 Current source circuit 
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is 5 uA with typical model, 5Vcc V  and 27Temp C  . Typical simulation results 

are shown in Fig. 2.7 and Fig. 2.8. 

 

Figure 2.7 Current source power supply dependence (typ.) 

 

Figure 2.8 Current source temperature dependence (typ.l) 
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2.2.3  Comparator 

The voltage comparator is the most critical function block of the self-synchronous 

rectifier. Propagation delay and input offset voltage are the two most important 

parameters for its design. A high-speed comparator can minimize the time during which 

the body diode conducts current and therefore reduce the diode power loss. Offset voltage 

(VOS) is a measure of the accuracy of a voltage comparator. A large offset voltage may 

falsely trigger the voltage comparator. A low offset voltage leads to high accuracy, but 

may inadvertently degrade the dynamic response time. This is because a low offset 

voltage usually means large device size (which results in large parasitic capacitance) for 

good matching while a fast dynamic response time needs small parasitic capacitance to 

minimize the delay time. As shown in the simulated transient response waveform in Fig. 

2.4, the propagation delay of the voltage comparator is approximately 10 ns in our final 

design. 

A. Offset voltage polarity selection 

If an ideal voltage comparator is used, zero-crossing VDS detection should be realized in 

the self-synchronized rectifier. However, non-zero input offset voltage is the mostly 

likely case for the non-ideal nature of practical voltage comparators. VOS serves as the 

reference or threshold voltage of the voltage comparator, and directly affects the timing 

of the sync-FET switching action. The overall efficiency performance of the converter 

will also be affected by the offset voltage.  
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For instance, if a small positive offset voltage of a few mV shows up in the voltage 

comparator as in [97][98], that is, the reference voltage is slightly higher than ground, as 

shown in Fig. 2.9, the positive VOS causes an much larger turn-off delay of the sync-FET 

when the ctrl-FET starts to turn on. The total delay, is the sum of tdl0 and tdl1, where tdl0 is 

the propagation delay of the whole control circuitry including delay from comparator and 

driver, while tdl1 is the delay caused by the use of positive VOS. The large turn-off delay 

limits the operating frequency range that this approach can be applied. Furthermore, the 

sync-FET has to conduct a large amount of reverse current (i.e. from drain to source), 

which means, in heavy load or continuous conduction mode (CCM), shoot-through may 

happen; and in light load, reverse inductor current may occur. Shoot-through current 
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Figure 2.9 VDS waveform of the sync-FET for VOS > 0 
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flows from power supply to ground through RDS-ON of ctrl-FET and sync-FET, generates 

heat and lowers the overall efficiency. Reverse inductor current pushes current back into 

the circuit unnecessarily, wasting power and discharging output capacitor.  

On the other hand, a small negative offset voltage, as shown in Fig. 2.10, can be used to 

minimize the turn-off delay and improve the shoot-through problem associated with a 

positive offset voltage. In this case, the total turn-off delay of sync-FET equals to the 

propagation delay of the whole control circuitry, tDL0. And if tDL0 is less than tzc , which is 

the time interval from VDS cross VOS (the reference voltage of the comparator) to VDS 

cross zero, sync-FET will be turned off prematurely and hence there would be no shoot 
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Figure 2.10 VDS waveform of the sync-FET for VOS < 0 



33 

through at all. So negative offset in the voltage comparator tends to be more power 

efficient than a positive offset 

However, negative offset may cause oscillation under light load condition as shown in 

Fig. 2.11. Under light load conditions, the inductor current becomes very small, and VDS, 

(the product of RDS-ON and inductor current) may rise above VOS very soon after sync-FET 

turns on. If this happens, the voltage comparator output will switch from high to low, and 

turn off the sync-FET. However, this would force the inductor current to flow through the 

body diode, and bring VDS again to below VOS. The sync-FET will turn on again if that 

happens.. Once sync-FET turns on, the voltage comparator output will switch again. So 

the oscillation occurs until the inductor current reaches zero. The oscillation results in 

repetitive on and off of the Sync-FET and a large gate drive and switching power loss. 

 

VDS

 

Zero voltage

VOS

 
 

Figure 2.11 VDS waveform with oscillation for VOS < 0 under light load  
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In this work, we propose to use a small negative offset voltage combined with a new 

control logic to ensure the Sync-FET only turns on once in each switching cycle to avoid 

the oscillation and minimize non-necessary gate drive and switching loss at light load 

condition. 

B. Circuit design 

Voltage comparator is designed based on the consideration of negative offset voltage, 
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Figure 2.12 Schematic of the voltage comparator 
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minimized delay, and the input common-mode range (ICMR). The simplified final circuit 

of the voltage comparator is shown in Fig. 2.12. 

The input common-mode voltage needs to go below zero. Therefore PMOS differential 

pair input stage and folded cascode structure are used. In this circuit, assume M3-M7 in 

saturation operating region, the low ICMR can be expressed as 

| |
LOW bn THN THP

ICMR V V V                        (2-3) 

where Vbn is the bias voltage at the gate of M5-M7, VTHN and VTHP are the threshold 

 

 

Figure 2.13 Propagation delay simulation for the voltage comparator (typ.) 
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voltage of NMOS and PMOS, respectively. So by proper setting up bias voltage , the 

ICMR can be met. 

The delay of the circuit is mainly generated by bias current charging and discharging the 

node capacitors. In this circuit we try to reduce propagation delay by using relatively high 

bias current (typical total bias current is around 240 µA) and small device sizes. The 

typical delay is around 10 ns as shown in Fig. 2.13. 

The offset voltage of the voltage comparator generally comes from two main sources: 

 

 
 

Figure 2.14 Voltage comparator offset voltage simulation 
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circuit design and fabrication mismatch. Circuit design may introduce an intrinsic or 

system offset voltage due to designated devices sizes and/or circuit structures. 

Nevertheless this part of the offset voltage can be controlled. In our design, we introduce 

a negative offset (around -6.4 mV as shown in Fig. 2.14). Offset caused by fabrication 

mismatch usually can not be directly controlled by the circuit designer. Yet a good layout 

design can help to minimize it. Statistical data from process technology shows that the 

MOSFET VTH mismatch can be approximately calculated by [99] 

0.1
ox

TH

t
V m V

W L


 


                     (2-4) 

where tox is the thickness of oxide layer and expressed in angstroms, W and L are 

MOSFET channel width and length, respectively, and in microns. If we substitute the 

device size and process parameter for our design: 135
ox

t  , 30W  , and 3L  , we 

can get the VTH mismatch is around 1.42mV. Therefore the -6.4mV should be negative 

enough to ensure the negative offset voltage in the final silicon chip to prove our concept. 

2.2.4 Control Logic 

Fig. 2.15 shows the detail of the proposed control logic. The control circuit is mainly 

composed of a mono-stable circuit and a D-type flip-flop. The mono-stable circuit input 

is tied to the drain of the sync-FET, and triggered at the falling edge of VDS. The D-type 

flip-flop is designed with Set and Reset features. Its data input port is connected to 

ground, and its clock signal is tied to the output of the voltage comparator to be triggered 

at the falling edge.  
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In every switching cycle, when the ctrl-FET turns off, VDS of the sync-FET drops below 

zero. The mono-stable output sets the D flip-flop to high level. The voltage comparator 

output then can turn on the sync-FET. Under very light load conditions, the comparator 

output goes to low once VDS goes above VOS. The comparator output serves as a clock 

signal for the D flip-flop and the falling edge will make Q become zero. The low level Q 

signal will keep the sync-FET off no matter what the comparator output is until the next 

switching cycle. The repetitive switching ON/OFF of sync-FET at light loads is thus 

avoided. Fig. 2.16 and 2.17 show the circuit simulation result without and with the 
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Figure 2.15 Detailed block diagram of the proposed SSR with the ONE-SHOT control 
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proposed ONE-SHOT logic control. It is shown that there is only one pulse to turn on the 

sync-FET in every switching cycle with the control logic.  

One drawback of this control logic is that a very small inductor current will be forced to 

flow through the body diode after sync-FET turns off. This may introduce some power 

loss. But compared to the total gate driving loss and switching loss, this diode loss is 

relatively small because the current level is very low.  

Estimation of the load current when oscillation happens is complicated because it 

depends on not only comparator design, power MOSFET, but also operating conditions 

of the buck converter. However, we can assume an extreme case as example, where the 

 
 

Figure 2.16 Simulation results for VOS < 0 without the ONE-SHOT control 
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product of peak inductor current and RDS-ON is equal to 
OS

V , then the light load current 

to trigger oscillation can be roughly estimated as below 

(1 )
2

OS O

trigger

DS ON

V V
I D T

R L


    


                   (2-5) 

where VO is the output voltage of the buck converter, L is inductance value of the 

inductor in the buck converter, D is duty cycle, T is the period of the switching cycle. 

2.2.5 Gate Driver Design 

The main consideration for gate driver of the power MOSFET is the propagation delay. A 

simple tapered inverter chain is used as the driving circuit. The tapering coefficient is 3 

and 6 stages are used. Less than 10 ns of delay is achieved typically. 

 
 

Figure 2.17 Simulation results for VOS < 0 with the ONE-SHOT control 
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2.2.6 Physical Design 

The proposed self-synchronized rectifier is designed using an AMIS C5 process. Special 

attention has been paid to the physical design to minimize the offset voltage variation of 

the voltage comparator. We have adopted a split layout strategy in which each of the 

input pair of the voltage comparator is split in half. The final layout of the comparator is 

shown in Fig. 2.18. It is worth noting that each input transistor is placed with half on the 

 
 

 
 

Figure 2.18 Layout of the voltage comparator 
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upper left (or upper right) corner and the other half on the lower right (or lower left) 

corner in the layout.  

In the top level design, the Kalvin probe path is used to sense VDS of the sync-FET. Metal 

shield has been added along the whole route of the sensing wires. The two metal path 

connected from drain and source to comparator input terminals also have to be routed to 

have equal length and width. The top layout result is presented in Fig. 2.19. The total die 

size is 1.29×0.72 mm
2
. 

 
 

Figure 2.19 Top layout view 
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2.3 Experimental Results 

Our design was successfully fabricated with the AMIS C5 0.5-μm CMOS process 

through MOSIS. Fig. 2.20 shows the die photo of the fabricated smart rectifier. In 

addition to the external drain and source pads, several internal probe pads are designed 

onto the chip to allow us to test the function of each individual block.  

All the testing work has been performed by using wafer probe station with no package. 

Since there are no standard ESD protection devices available in the process design kit, 

only very basic diodes to ground and to power supply paths are provided for static charge 

discharging. Actually, there is no any guarantee that the ESD events can be protected in 

this case. Therefore, some measures have to be taken during the testing procedure. For 

 

 
 

Figure 2.20 Photo of the self-synchronized rectifier chip 
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instance, all the probes have to contact with ground before contact with the pads on the 

die. Testing results are summarized in the following sub sections. 

2.3.1 Testing of the Main Functional Blocks 

A. POR block 

Fig.2.21 and 2.22 show the measured waveforms of the UVLO (Under Voltage Lock 

Out) function of the POR block during power up and down operation, respectively. 

Channel 1 is the voltage ramp waveform of the power supply. Channel 3 is the reset 

 

 
 

Figure 2.21 UVLO at Power-up transient 

Power supply 

RESET signal 
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signal of POR. It is shown that the reset signal becomes active when the power supply 

voltage decreases below about 2V, and inactive when the power supply increases above 

2V. The testing results match simulation results very well. 

 

B. Current source block 

Fig. 2.23 shows the measured characteristics of the current source on two different chips. 

The design target is 5μA output current source at 5V power supply voltage. The testing 

results are very close to it. 

 

 
Figure 2.22 UVLO at Power-down transient 

Power supply 

RESET signal 
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C. Comparator testing 

The comparator offset voltage was tested based on the open-loop configuration in Fig. 

2.24. A dc power supply was connected to the inverting input terminal, which sweeps 

from negative to positive. The offset is the inverting input voltage when the output is 

Vcc/2. Fig. 2.25 demonstrates the measured transfer characteristics of the voltage 

comparator. The offset voltage is found to be around -13 mV, which is good for us to 

verify the operation of the proposed self-synchronized rectifier. 

 
 

Figure 2.23 Current source testing results 
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Figure 2.24 Comparator offset voltage testing setup 

 

 
 

Figure 2.25 Comparator DC transfer characteristics 
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2.3.2 Testing of System Level Function 

A buck converter shown in Fig. 2.26 is designed onto a monolithic IC chip to verify the 

operation of the self-synchronized rectifier design. All the devices inside the green 

dashed line box are integrated into one single chip. A pulse function generator is used to 

provide the input PWM control signal for the p-channel ctrl-FET. With 5
IN

V V  and 

input control signal duty cycle of 0.5, the measured waveforms are provided in Fig. 2.27 

and Fig.2.28. With the adjustable resistor load, the system is tested in both heavy load of 

120mA and light load of 40mA. PMOS (ctrl-FET) gate signal, inductor current, VDS of 

the NMOS (sync-FET), and output voltage are shown in channel 1 to channel 4, 

respectively. No oscillation is observed in the waveform of VDS even when the load 

current decreases into very light condition. 
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Figure 2.26 Simple buck converter testing circuit 
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(a) Heavy load of 120mA 

 

 
(b) Light load of 40mA 

 
Figure 2.27 Measured switching waveforms of the buck converter at 500KHz  
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2.4 Summary 

A monolithic self-synchronized rectifier (SSR) for DC/DC converter applications is 

presented in this paper. The analysis, simulation, design considerations, and fabrication 

of the SSR are described in detail. Actual application in a integrated buck converter has 

also been presented. Experimental results show that the SSR functions as designed. 

Compared to the prior work on smart rectifier concept [84]-[92], this work combines the 

following advantages. 

 

 
 

Figure 2.28 Measured switching waveforms of the buck converter at 1MHz 
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1) Monolithic: Power MOSFET, driver circuit, control circuit and necessary 

protection circuit are all integrated in a single chip, which substantially 

reduces the components count and parasitic components. So smaller mounting 

area and better control accuracy can be achieved. 

2) High speed: it can be operated in MHz range because of the use of negative 

threshold voltage and small propagation delay in comparator and driver 

design. Higher operating frequency is helpful to reduce the size of passive 

components in power converters. 

3) High efficiency over a large range of load current. At very light load, it still 

maintains high-efficiency operation due to the elimination of the possible 

oscillation, diode emulation, and the DCM operation. 

A comparison with some commercial products in the market is given in Table 2.1. 

Table 2.1 Coparasion to the similar comercial products 

 

NIS6111   
BERS™ IC (Better 
Efficiency Rectifier 

System) 

IR1167 
SmartRectifier™ 

Control IC 

Self-Synchronous 
Rectifier      

(This work) 

Integration Co-packaged 
Control IC and 

MOSFET separated 
Monolithic 

Switching frequency Below 100KHz Below 500KHz Above 2MHz 

Pin count 5 8(controller only) 3 
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CHAPTER 3: MEGAHERTZ SYNCHRONOUS FLYBACK CONVERTER 

Isolated DC-DC converters are widely used as power supply in low-output-voltage 

applications where secondary-side synchronous rectification is usually required to 

improve system efficiency. However, as pointed out in chapter 1, the generation of a 

precise control and driving signal for the gate of the synchronous rectifier MOSFET has 

been a design challenge in terms of performance, system complexity, and cost. In this 

chapter, we propose and demonstrate a new way to implement a synchronous flyback 

converter by using the monolithic self-synchronized rectifier (SSR) [100]. The use of the 

SSR considerably simplifies converter design, improves system efficiency, and enables 

an operating frequency up to 4MHz. A demonstration board with 3.6V/100mA output 

was built and tested. Modeling analysis and ,measurement results are also discussed. 

3.1 Proposed Flyback DC-DC Converter with the SSR 

The proposed synchronous flyback converter is depicted in Fig. 3.1. The sync-FET in the 

secondary side of a conventional synchronous flyback converter is just simply replaced 

by the SSR chip in this implementation. The circuit shown in the dashed box is the 

subcircuit of the monolithic SSR as described in Chapter 2. It is basically a 3-terminal 

device. The real drain-source voltage drop, VDSs, through the sync-FET switch is sensed 

to compare with a reference voltage Vos (<0) to decide the switching action of the SSR. 

The power supply pin, VCC, could be biased in following ways: 
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1) Connecting VCC pin to an auxiliary winding in secondary side. In this way, the 

isolation between primary side and secondary side and proper voltage for normal 

and safe operation of the SSR can be achieved. 

2) Connecting VCC pin to the same power supply in primary side (in case there’s no 

isolation needed), to a bootstrap circuit in secondary side, or to the output voltage. 

In all these possible connections, the power supply voltage for the SSR chip has 

to be in the safe range for normal operation of the SSR.  
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Figure 3.1 Proposed synchronous flyback converter with the SSR 
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3.2 Operation of the Proposed Synchronous Flyback Converter 

To verify the operation of the proposed flyback converter, extensive accurate time-

domain simulations have been performed in Cadence, the full-custom IC design 

environment, in which the monolithic smart rectifier was designed. The functional 

schematic used for simulation is presented in Fig. 3.2. The transformer is modeled by a 

leakage inductor Lk, a magnetic inductor LM, and an ideal transformer TX1 with a turns 

ratio of N:1. By the variation of the load resistor, the converter could be operated in both 

continuous-conduction-mode (CCM) and discontinuous-conduction-mode (DCM). At 

18V input, 3.6V output, and 2MHz switching frequency, the simulation results are 
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VDSP

CB

DB
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Figure 3.2 Circuit setup for simulations in Cadence 
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presented in Fig. 3.3 (CCM) and Fig. 3.4 (DCM). The description of the circuit operation 

is given as follows. 

In CCM operation, when the switch in the primary side, ctrl-FET, turns on, the SSR 

automatically becomes off. There is no current in both sides of the ideal transformer. The 

voltage drop across the magnetic inductor is close to Vin, so the current increases linearly 

and flows through ctrl-FET. The voltage drop across the secondary winding is Vin/N with 

reversed polarity, where N is the turns ratio from primary side to secondary side. 

Therefore, the voltage VDSS of SSR can be written as. 

 

 
 

Figure 3.3 CCM Simulation 
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                        (3-1) 

where D is the duty cycle of the control signal for the primary side switch, while VIN and 

VOUT are input and output voltage, respectively. 

When the switch, ctrl-FET, turns off, the SSR is automatically turned on, so current flows 

in both sides of the ideal transformer. The voltage appearing across the secondary side 

winding is close to Vout (neglecting the SSR voltage drop). This voltage reflects to the 

primary side (and appearing across the magnetic inductor) as N·Vout with the reversed 

 

 
 

Figure 3.4 DCM Simulation results  
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polarity. Because the magnetic inductor has an constant reversed voltage drop, its current 

linearly decreases and circulates through primary side of the ideal transformer, which 

also induces current in secondary side. The voltage drop across the primary side switch, 

ctrl-FET, is given as  

1

1PDS IN OUT IN
V V N V V

D
    


                        (3-2) 

Equations (3-1) and (3-2) can be used to determine the voltage ratings of the switches in 

both sides so that proper devices can be chosen accordingly. The peak current in primary 

side and secondary side to determine the current rating of the power switches are also 

given below 

1

2 1 2
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pk pri AV SW
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N D L



      


               (3-3) 
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            (3-4) 

where IAV is the average magnetizing inductor. 
L

I  is the peak-to-peak current ripple of 

the magnetizing inductor. ILOAD is the load current, TSW is the switching period. 

Under light load conditions, the secondary side current decrease to zero before primary 

side switch turns on. If SDSR is used, or if EDSR is used but control signal comes from 

primary side, there would be circulating current in the secondary side, which results in 

some energy transferred from output capacitor to secondary winding. With the use of the 
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SSR, before the current decreases to zero, the voltage drop across the sync-FET will 

trigger the comparator to turn off the secondary switch and thus no reverse current. 

However, the turning-off of the sync-FET before the current decreases to zero will force 

the very small current to flow through the body diode, which will trigger the turn-on of 

the sync-FET again. The repetitive on/off of the sync-FET increases gate driving loss and 

switching loss and therefore lowers the system efficiency. Fortunately, this would be 

suppressed by the one-shot control logic in the SSR. 

During the switching transient, due to the existences of the transformer leakage 

inductance Lk and MOSFET output capacitor Coss (neglecting stray inductance and 

resistance), the turning-off of ctrl-FET or sync-FET will cause resonant oscillation in the 

L-C tanks of primary or secondary side, respectively. The resonance results in high spike 

in voltage and current waveforms, which actually increases the voltage and current stress 

in power switches. The resonant angular frequency ωr and characteristic impedance zr 

can be simply given as 

1
r

k OSS
L C

                              (3-5) 

k

r

L
z

C oss
                              (3-6) 

Compared to the prior topologies on the control of synchronous rectifier in flyback 

converters, the SSR solution has the following advantages. First, monolithic integration 

reduces parasitic components and overall converter size. Second, the DCM operation can 
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be easily realized. Third, the capability for high switching frequency allows further 

reduces the volume of passive components. 

3.3 Experimental Results 

We have designed and built a synchronous flyback converter with the monolithic SSR IC. 

which is a very simple design and only used to demonstrate the operation of the new 

flyback converter at high frequencies. To use the SSR IC, its safe operating area (SOA) 

has to be considered in the design. For example, the maximum voltage applied to the 

SSR, which can be calculated from equation (3-1), has to be less than the breakdown 

voltage given in the design rule file from the IC foundry (7V in this case). The final input 

and output parameters for the flyback converter are listed in Table 1. 

The demonstration board designed is shown in Fig.3.5. The transformer used in this 

design is C1453 from Coilcraft, which has a turns ratio of 6 from primary side to 

secondary side, magnetic inductance of 50uH, and lekage inductance of 1.1uH. With the 

use of this transformer, the typical duty cycle would be greater than 50%. The voltage 

Table 3.1 Design specification for the prototype flyback converter 

Symbol Description Value 

Vin Input voltage 10~18V 

Vout Output voltage 2.8~4.2V 

Iout Output current 10~200mA 

 Typical output 3.6/100mA 
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stress for the primary side MOSFET can be calculated from (2). A 80V MOSFET, 

FDS3812, from Fairchild is used in the design. Real parameters from these datasheets are 

used in the simulation presented in Section III. The monolithic SSR IC is packaged with a 

DIP-24 but only 3 pins being used. To show the real performances and operation of the 

proposed converter, there is no snubber circuit or clamp circuit. An over-voltage 

protection (OVP) circuit is used to prevent output voltage from over-voltage in the 

testing. To have a comparison, a DR and the SSR can replace each other as rectifier in the 

design. The rectifier diode used in the comparison is a Fairchild hyperfast diode, 

PHRP1560. The list of the main components used in the demo board is show in Table 

3.2. Experimental results are summarized as follows. 

 
 

Figure 3.5 Prototype of the proposed flyback converter with the SSR 

SSR 
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Fig. 3.6-8 shows the VDS waveforms of the primary side ctrl-FET switch and the 

secondary side SSR at 1MHz, 2MHz, and 4MHz operating frequency. The waveforms 

show that the SSR works normally even at 4MHz, which is the highest operating 

frequency observed in lab testing. The main limitation to the increase of the switching 

frequency comes from the parasitic components and the safe operating area (SOA) of the 

ctrl-FET and the SSR. After primary side switch turns off (and SSR turns on), the 

primary side leakage inductance and the output capacitor Coss of ctrl-FET compose a 

resonant tank. The ringing can be seen on the VDSp waveform. On the SSR waveforms, 

the ringing of the leakage inductance and the equivalent capacitor between drain and 

source terminals of the SSR can also be seen on VDSs waveform. 

 
Table 3.2 Components list for the prototype flyback converter 

Component  Manufacturer part # 

Transformer  C1453 

Ctrl-FET  FDS3812 

Driver  UCC37322 

Comparator (for OVP)  LM393A 

Hyperfast diode rectifier (DR)  PHRP1560 
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Figure 3.6 Operating waveforms at 1MHz 

 

Figure 3.7 Operating waveforms at 2MHz 

VDS of ctrl-FET 

VDS of SSR (sync-FET) 

VDS of ctrl-FET 

VDS of SSR (sync-FET) 



63 

 

The efficiency performance of the prototype flyback converter has also been investigated. 

Fairchild hyperfast diode PHRP1560 was used to replace the SSR as a diode rectifier 

(DR) in the secondary side of the demonstration board. The efficiency when SSR is used 

was compared to that when DR is used. The testing was done with the typical output, i.e. 

3.6V/100mA.  

Fig. 3.9 presents the measured efficiency versus input voltage of the prototype flyback 

converter at the switching frequency of 1MHz. The results show that at high input 

voltage, SSR efficiency higher than DR efficiency. Vise versus. This is because at low 

 

Figure 3.8 Operating waveforms at 4MHz 
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input voltage, the duty circle become very low, which means the conducting time of the 

SSR is very short. So the efficiency improvement from low conduction voltage drop may 

be outweighed by the increase in switching loss in high operating frequency when the 

SSR was used. 

The measured efficiency versus switching frequency when input voltage is 18V are given 

in Fig. 3.10, which shows that by using the SSR, system efficiency could be improved by 

up to more than 10%. For very low frequency, the flyback converter operates in DCM 

mode. For the same output power, a flyback converter works under DCM usually have a 

much lower efficiency than its CCM counterpart [101]. With the increase of the 

 

 
Figure 3.9 Measured efficiency vs. input voltage 
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frequency, switching loss dominant, the efficiency close to each other for both SSR and 

DR. 

It should be mentioned that the efficiency for the prototyped flyback converter is 

relatively low for both SSR and DR cases. First reason for this is because the very high 

RDS-ON of the sync-FET, which is around 650 mΩ. The RDS-ON is limited by the available 

die size in the SSR design and the CMOS process itself. So it is expected to have higher 

efficiency by reduce RDS-ON. Secondly, the 3.6V/100mA application can not take full 

advantage of the synchronous rectification technique, which would be most beneficial to 

efficiency improvement in low-output-voltage and high-output-current applications. The 

reason why 3.6/100mA application is chosen is also limited by RDS-ON. The voltage drop 

 
Figure 3.10 Measured efficiency vs. switching frequency 
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across the SSR will be very high if high current is flowing through. Finally, the demo 

board, which is used just for the demonstration of the new scheme to realize synchronous 

rectification in flyback converter, is not optimized for efficiency performance. Since 

there are no any clamp or snubber circuits, large current and voltage spikes degrade the 

system efficiency. 

3.4 Summary 

In this chapter, we experimentally investigate the new scheme for synchronous flyback 

DC-DC converters with the use of the monolithically integrated self-synchronized 

rectifier developed in Chapter 2. The self-synchronized rectifier (SSR) prototype IC, 

considerably simplifies converter design, improves system efficiency, and enables high 

operating frequencies up to 4MHz. A flyback DC-DC converter with 3.6V/100mA output 

was built and tested by use of the SSR IC. Modeling analysis and experimental results are 

also discussed in detail. Compared to the prior art secondary control methods, the new 

SSR solution has the advantages of monolithic integration to minimize parasitic 

components and converter size, automated DCM operation, and MHz switching 

frequency capability to reduce the size of passive components.  
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CHAPTER 4: INTEGRATED GATE DRIVER FOR BUCK CONVERTER 

In this chapter, a current source gate driver (CSD) scheme [63] is studied in detail to 

develop an integrated gate driver for buck converters. The integrated gate driver is 

developed by using a high voltage, isolated semiconductor process technology. Specific 

considerations in circuit design, layout, and package are discussed in detail for the 

integrated high voltage gate driver. 

The process technology used for this work is ONSemiconductor’s I3T50. I3T50 is a 0.35-

µm mixed signal CMOS process with 50V high voltage power devices available. All the 

devices are built in n-type epitaxial layer above p-type substrate. Single poly, 7 nm gate 

oxide thickness is used in the process. There are 4 layers metal available for standard 

process, at the same time 3- or 5-layer of metal are optional. To reduce cost, the design is 

made with only 3 metal layers. 

Virtuoso® Front to Back Design Environment v5.1.41 from Cadence™ is used for 

schematic input. Circuit simulations are done with Spectre MMSIM 6.0 simulator in 

Analog Artist. Layout physical design is verified by Caliber® DRC and LVS tools from 

Mentor Graphic®.  

4.1 Introduction to the Current Source Gate Driver 

The concept of the current source gate driver (CSD) circuit is illustrated in Fig. 4.1. The 

circuit consists of four small driving MOSFETs (i.e. S1-S4), their drivers, and a very small 

inductor. It should be noticed that in order to simplify the drivers design, S1 and S2 are 
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PMOS switches and S3 and S4 are NMOS switches. The current in the inductor is 

controlled to make it discontinuous so as to minimize conduction loss caused by 

circulating current in the driver. The operation waveforms of the current source driver 

(CSD) are given in Figure 4.2. Waveforms, vgs1-vgs4, represent the gate driving signal of 

MOSFETs S1-S4. The operation of the CSD circuit is described as follows. 

t0-t1: Before t0 , S4 is on and S1-S3 are all off, so gate of M1 is clamped to its source 

potential to keep M1 off. At t0, S1 is turned on, so VDRV is applied across inductor Lr. 

Inductor current increases linearly. So in this period, energy is stored in the inductor to 

prepare to charge the gate capacitor of M1. Current flows in this path: S1  Lr  S4. 

t1-t2: At t1, S4 turns off. The current flowing in the inductor start to charge the gate 

capacitor. So in this period, the gate capacitor is charged to turn on M1. Current flows in 

this path: S1  Lr  gate of M1. 
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Figure 4.1 Schematic diagram of the current source driver (CSD) 
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t2-t3: At t2, the gate is charged to VDRV , M1 is completely on and S1 turns off. Also at this 

moment, S2 turns on (D2 may turn on in the transition) and D3 turns on. So the energy 

stored in the inductor is returned to the line in this period. Current flows in this path: D3 

 Lr  S2 (D2). 

t3-t4: S2 is on to make sure the gate of M1 is clamped to VDRV to keep M1 on. D1 and S2 

are on, so inductor current equals zero. No circulating current during this period. 
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Figure 4.2 Waveforms of the CSD circuit 
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t4-t5: At t4, S3 turns on, voltage applied to the inductor become VDRV again but with 

reversed polarity, so inductor current begins to linearly increases. So in this period, 

energy is stored in the inductor to prepare to discharge the gate capacitor of M1. Current 

flows in this path: S2  Lr S3. 

t5-t6: At t5 , S2 turns off. Inductor current starts to discharge the gate of M1. So in this 

period, the gate capacitor is charged to turn off M1. Current flows in this path: gate of 

M1  Lr  S3. 

t6-t7: At t6 , gate capacitance of M1 is completely discharged, so M1 turns off and S3 

turns off. S4 turns on (D4 turns on during the transition) and D1 turns on. So in the 

period, the gate discharging energy is returned to the line. Current flows in this way: S4 

(D4)  Lr  D1. 

After t7, S4 is kept on to clamp gate of M1. D3 and S4 are on, so there is no voltage drop 

across the inductor. No circulating current in the circuit until next M1 turn-on process 

starts. 

So the new current source driver circuit has the following 4 advantages when compared 

to the previously proposed gate driving solutions. 

1)  Part of the gate charging energy is recovered during the discharging process. 

2)  No circulating current during the steady ON/OFF state. So the power loss in 

driving circuit itself is reduced.  

3)  Charging and discharging currents are adjustable (by changing inductance value 

or the length of time intervals of t0-t1 and t4-t5). So quick turn-on and turn-off 



71 

transition time can be achieved. Therefore, the power MOSFET switching loss 

can be reduced. 

4) The ability to actively clamp the power MOSFET gate to gate driving power 

supply during the on time and to ground during the off time so as to avoid 

unwanted triggering of the power MOSFET, i.e. dv/dt immunity. 

4.2 Integrated Gate Driver for Synchronous Buck Converter 

Fig. 4.3 illustrates a system level block diagram of a buck converter, where the Gate 

Driver Chip is the integrated driving circuit that we are going to develop in this chapter. 

The PWM signal is processed by CPLD module to get proper control signals CT1-CT6, 

which are the input signals for the integrated gate driver. Outputs (HSG and LSG) of the 

driver chip are connected to the gates of high-side MOSFET M1 and low-side MOSFET 

M2 in the power stage of the buck converter. 

Lr

Vc

M1

DB

CB

M2

PH

VinCT1

CT2

CT3

CT4

CT6

Gate Driver 

Chip

HSG

VB

Ip

LSG

PGNDSGND

VDD

CPLD

3.3V

SGND

PWM

Co

RLd

VoCT5

PM

 

 

Figure 4.3 System level block diagram of a buck converter 
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The simplified block diagram of the integrated gate driver circuit for a synchronous buck 

converter is shown in Figure 4.4, where we integrate necessary level shifting circuits and 

the driver circuits for high-side MOSFET and low-side MOSFET. The inductor Lr will be 

an external component. Because low-side MOSFET is almost ZVS turn-on, the switching 

loss in high-side MOSFET is dominant in buck converter. The driver for the high-side 

MOSFET employs the CSD circuit, while the low-side MOSFET driver still uses the 

conventional driver circuit to simplify the circuit design. The main design specification is 

given in Table 4.1. 
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Figure 4.4 Simplified block diagram of the integrated gate driver 
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Table 4.1 CSD chip main design specifications 

Parameter Symbol Test conditions Typical 

VDD power supply VDD  5~12V 

Bootstrap voltage VB  17~24V 

Input signal (CT1-CT6) High level   3.3V 

Switch turn-on resistance RDS-ON S1-S3 250mΩ 

Switch turn-on resistance RDS-ON S4,S5 125 mΩ 

Rise/fall time of driver for S1-S5 output  tFS,tRS CLoad=3nF 8ns 

Source/sink current of driver for S1-S5 output  Isrc,Isnk  2A 

Rise time of driver for M2 tRS CLoad=3nF 8ns 

Fall time of driver for M2  tFS CLoad=3nF 4ns 

Source current of driver for M2 Isrc  2A 

Sink current of driver for M2 Isnk  4A 
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4.3 Circuit Design 

The schematic top level gate driver chip is presented in Fig. 4.5, where all ESD 

protection circuit is removed for circuit readability.  

The level shift circuits are necessary based on two reasons. First, all the input signals 

(CT1-CT6) generated by CPLD module use 3.3V power supply while the power supply 

used in the CSD chip is in 5-12V range. Second, some circuits also have to use floating 

ground in the CSD chip. In this design, the level shifting function is decomposed into two 

functional blocks. The first one, as shown in Fig. 4.6, performs the high level shift of the 
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Figure 4.5 Schematic of the top level CSD chip 
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input signals from 3.3V to chip power supply VDD. The second one, as shown in Fig. 4.7, 

is used to shift the signal ground to floating ground and also shift high level from VDD. to 

bootstrap voltage source VB for the control signals of switches S1-S5. 
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In the first level shifter, it is all CMOS devices because all the voltages are low voltage. 

R1 is used for ESD to protection gate of the NMOS. R2 is used as pull-up resistor. In the 

second one, M1-M4 are used to shift high level from VDD to VB, and M5-M8 are used to 

shift low level from SGND to FGND. 

Tapering inverter chain is widely used as gate driver for its simplification of circuit 

design. Usually, the design of the tapering inverter chain driver follows the following 

equation 

gN

i

C
A

C
                             (4-1) 

where N is the number of inverters in the chain; A is the tapering coefficient, i.e. the 

width ratio between n th stage and (n-1) th stage; Ci is the total capacitance at the input 

node of the chain; Cg is the capacitance at the output node, which is dominated by the 

gate capacitance of the power MOSFET being driven. Basically, the design of the driver 

is to decide the value of N and A. To get minimized propagation delay from input to 

output, [102] suggest the following equation should be used to decide N and A 

A e                               (4-2) 

ln
g

i

C
N

C
                             (4-3) 

Usually, using the values obtained from (4-2) and (4-3) will result in too many stages of 

inverters, which causes the power loss in driver circuit increase [103][104]. In the CSD 

chip design here, both power loss and propagation delay are considered. 
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The low side MOSFET driver includes two block: a pre_drv block and a ldriver block. 

The pre_drv block is a simple inverter chain with A = 5 and N = 4. The ldriver block is 

shown in Fig. 4.8. The circuit can be seen as a 3-stage inverter chain. The P/NMOS in the 

last stage are driven by two separated inverters so to reduce short-circuit loss in last stage 

because the devices in last stage is very big. BJT devices are used in parallel with 

P/NMOS in the output stage to boost the charging and discharging current at Miller 

plateau. 

The high-side MOSFET driver, which includes 3 diodes in series, 5 switches and their 

driver blocks (called “hdriver”), is a little different from the CSD circuit in [63]. The 3 
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diodes in parallel with switch S5 are added to make the high-side MOSFET turn off 

quickly and completely but with no effect on the turn-on transient. 

Fig. 4.9 shows schematic of the hdriver block, the driver for MOSFET switches, which 

also includes 3 stages of inverter. For the same reason, the output stage P/N MOS are 

driven separately by two different inverters. Because the switch S1-S5 are smaller than the 

external low-side power MOSFET, the sizes of the devices in hdriver are smaller than 

those in ldriver and no BJTs are used. 

The MOSFET switches are designed just to meet the on-resistance specification. The on-

resistance of a MOSFET operating in linear region can be written as 
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Figure 4.9 Driver for MOSFET switches in high-side driver 
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Where 
n

  is the mobility of electrons in silicon, and 
ox

C  is the gate-oxide capacitance 

per unit area. W and L are channel width and length, respectively. 
TH

V  is the threshold 

voltage of the MOSFET. 
GS

V  is the gate drive voltage. Thus, by choosing suitable width 

(length of power MOSFET usually is fixed), we can get the desired 
DS ON

R


 at the given 

driving voltage. 

Extensive simulations were done in Cadence to ensure the function and performance of 

the designed circuit. The simulation results versus specifications are summarized in Table 

4.2. 
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Table 4.2 CSD chip design resuts vs. specifications 

Parameter Symbol Test conditions Spec. Sims. 

VDD power supply VDD  5~12V  

Bootstrap voltage VB  17~24V  

Input signal (CT1-CT6) High level   3.3V  

Switch turn-on resistance RDS-ON S1-S3 250mΩ 213mΩ 

Switch turn-on resistance RDS-ON S4,S5 125mΩ 110mΩ 

Output rise/fall time of S1-S5 

driver tFS,tRS CLoad=3nF 8ns 8ns 

Output source/sink current of S1-

S5 driver Isrc,Isnk  2A 1.4A 

Driver for M2 rise time tRS CLoad=3nF 8ns 8ns 

Driver for M2 rise time tFS CLoad=3nF 4ns 4ns 

Driver for M2 source current Isrc  2A 1.5A 

Driver for M2 sink current Isnk  4A 2.6A 

 

The simulation results meet all of the performance specifications. Driver peak source/sink 

current is not critical, because all the rise/fall times meet the specs. 
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4.4 Physical Design and Package 

For the layout of this design, matching is not a strict requirement. The most important 

consideration is to avoid parasitic devices from turning on or affecting the normal circuit 

operation. Other main considerations in the layout design include ESD protection, metal 

electro-migration, and latch-up. 

For reliability concern during wirebonding, all the pads are designed with all 3 metal 

layers inter-connected by an array of vias during layout design. The pad position and 

related blocks layout must consider the feasibility in packaging.  

 

 
 

Figure 4.10 Layout of the CSD chip 
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The final whole chip layout is shown in Figure 4.10. Total 16 layers of mask are used in 

the design. Only 3 metal layers are used in the design to reduce cost. The total die size is 

2
4098.25 m  2347.55 m 9.62 mm   . 

The pin count of the gate driver chip is 15. We chose CSOIC16 as the package for the 

driver chip. Hence, one of the pins will be left no connection. The bonding diagram 

shown in Fig. 4.11 is manually generated to guide the bonding work. Because some of 

the pads in the chip will conduct high switching current, to reduce parasitic resistance and 

inductance, those pads are connected to the package with double bonding wires in 

parallel.  

 
 

Figure 4.11 CSD chip bonding diagram 
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The pinouts are shown in Fig. 4.12 and pin description is listed in Table 4.3. 
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Figure 4.12 CSD chip pinouts 
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Table 4.3 Package pin desicription 

Pin # Symbol Description 

1 PGND Power ground 

2 LSG Low-side gate drive 

3 VDD Power supply 

4 IP Inductor connection pin 

5 HSG High-side gate drive 

6 PM Switch S4/S5 common source pin 

7 NC No connection 

8 PH Phase node 

9 VB Bootstrap voltage 

10 CT5 Switch S5 gate signal 

11 CT2 Switch S2 gate signal 

12 CT1 Switch S1 gate signal 

13 CT3 Switch S3 gate signal 

14 CT4 Switch S4 gate signal 

15 CT6 Switch S6 gate signal 

16 SGND Signal ground 

 

4.5 Summary 

An integrated gate driver for a buck DC-DC converter has been developed. The gate 

driver chip includes drivers for both high-side power MOSFET and low-side power 
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MOSFET of a buck converter. To simplify circuit design but not to sacrifice too much 

performance, high side driver uses the new current source drive scheme, while low side 

driver still uses a conventional drive circuit but optimized for both delay and power 

consumption. Design considerations, circuit analysis, layout design are presented in 

detail. A package style is also properly selected to facilitate testing work.  
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CHAPTER 5: POWER SUPPLY IN PACKAGE 

 

Power supply in package (PSiP) that integrates all active and passive components into a 

single package using low cost semiconductor manufacturing processes will provide an 

attractive solution with significant improvement in performance and reduction in board 

space, parts count, and time-to-market. As mentioned in Chapter 1, the integration of 

magnetic passive components is one of the major technical barriers in PSiP development. 

The magnetic components made from MEMS and LTCC technologies are limited by high 

cost and low performance [71]-[78][105]. 

 

In this chapter, we propose and investigate a new approach of forming in-package power 

supply by utilizing gold or aluminum bondwires with ferrite epoxy glob cores as 

inductors. All the active power devices, driver circuitry, and necessary control logic were 

designed and fabricated with a standard 0.5µm CMOS process. The bondwire inductor is 

made by adding ferrite epoxy composite glob coating to the bondwires during the IC 

packaging process to increase the bondwire inductance and thus increase Q factor. A 

2.2V/120mA prototype PSiP buck converter was built to operate at frequencies up to 

5MHz. Multi-turn bondwires with and without ferrite epoxy glob cores are used as the 

filter inductor in the buck converter. The power level of the prototype buck converter is 

scalable by scaling of the active power switches. Analysis, experimental results, and 

discussion are presented in this work.  
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5.1 Concept 

Wirebonding has been commonly used in nearly all power IC packages. Bondwires 

naturally show some inductive characteristics with the inductance value of few nH 

depending on the length, loop height, and diameter of the bondwires. To increase the 

inductance, it was proposed to add ferrite epoxy composite glob cores to the 

bondwires[106]. Fig. 5.1 shows the concept of the bondwire with ferrite epoxy coating. 

Modeling and experimental results of bondwire inductors with ferrite epoxy were 

reported in [107]-[109]. With the use of ferrite epoxy, the bondwire inductance can be 

increased by up to 5 times. To further increase the inductance, multi-turn bondwire 

inductors, as shown in Fig. 5.2, have also been investigated [110]. It is similar to 

conventional coil inductor, in which the coupling effect between each turn boosts the 

inductance value. However, the conventional coil inductor is formed by winding a 

conductor (usually a solid copper wire) around a core, while multi-turn bondwire 

 

 

Figure 5.1 Concept of single bondwire with ferrite epoxy beads 
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inductor is formed by on chip metal traces and bondwires with ferrite epoxy glob. Unlike 

conventional ferrite ceramics, ferrite epoxy materials are essentially ceramic magnetic 

powders mixed with a polymer binder, and can be dried or cured at temperatures less than 

200oC. These materials combine appropriate magnetic properties with a high resistivity 

and high manufacturability.  The ferrite epoxy glob cores can be formed on the 

bondwires during the PSiP or PSoC packaging process using high precision robotic tools 

similar to the commonly used electronic assembly equipment such as solder paste 

dispensers. 

The purpose of this work is to demonstrate a proof-of-concept PSiP buck converter based 

on the bondwire inductor concept. Fig. 5.3 depicts a two-phase, 5V-to-2.5V buck 

converter using bondwire inductors as filters and a monolithic power IC on a package 

substrate (PCB in this case).  

 
 

Figure 5.2 Concept of coupled on-chip multi-turn bondwire inductor 
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The power IC chip, as shown in Fig. 5.4, integrates all active power switches, gate 

drivers, and logic circuits. It was designed and fabricated with a standard 0.5 µm CMOS 

process (the AMIS C5 process) through the MOSIS foundry service. To simplify the 

design of the gate driver stage, PMOS was used as the high side power switch (the 

controlFET). NMOS was used for the low side power switch (the SyncFET) to minimize 

the silicon real estate. Although the AMIS C5 process offers 20V extended drain 

MOSFET options, it is essentially a 5V digital CMOS process that is not optimized for 

power applications. The specific RDSON of both its 20V extended-drain NMOS and 

PMOS are much higher than those of a typical BCDMOS power IC process. This 

constraint will limit the achievable efficiency of the prototype buck converter but 

otherwise will not affect the basic operation of the circuit. The NMOS low side switch 

has a channel length of 5µm and a channel width of 50 mm while the PMOS high side 

switch has a channel length of 3 µm and a channel width of 100 mm. Both gate drivers 

 
 

Figure 5.3 Conceptual drawing of the PSiP buck converter 
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simply use the tapered inverter chain structure to optimize delay and sufficient source and 

sink current to charge and discharge the gate capacitors of the power MOSFETs. The 

control logic block basically generates two out-of-phase PWM signals for the high- and 

low-side power switches from the external PWM input signal. To focus on the goal of 

evaluating the basic converter operation with the bondwire inductors, the power IC 

converter was purposely designed for open-loop operation without any feedback circuit. 

The electrical parameters of the key elements of the power IC are summarized in Table 

5.1. 
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Figure 5.4 Schematic diagram of the buck PSiP 
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Table 5.1 Driver and power MOSFET design results 

High Side PMOS Rds-on @Vgs=5V 0.72 Ω 

Low Side NMOS Rds-on @Vgs=5V 0.63 Ω 

High side Driver propagation delay 3 ns 

Low side Driver propagation delay 5 ns 

 

5.2 Prototype of the PSiP Buck Converter and Experimental Results 

The final implementation of the PSiP converter before and after applying the ferrite 

epoxy glob cores are shown in Figs. 5.5 and 5.6 respectively. The multi-project silicon 

chip shown has a die size of 5 ×5 mm
2
, but the actual chip area for the buck converter is 

 
 

Figure 5.5 The buck PSiP before ferrite epoxy coating 
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only 2.5×1.5 mm
2
. (the green boxes in Fig. 5.5 and 5.6) Due to the limitation of the 

manual wirebond machine used in this experiment, the pads size and spacing between 

bondwires are relatively large. While the total size of the PSiP buck converter in its 

current form is 13 ×12 mm
2
, it is expected to be reduced to 5 × 5 mm

2
 by using a 

dedicated silicon die and finer pitch wirebond machine. Three-turn bondwire inductors 

were used as the filter inductor in the PSiP buck converter which demonstrated an 

inductance of 150 nH and 450 nH without and with the ferrite epoxy glob cores 

respectively. 

 

 

 
 

Figure 5.6 The buck PSiP after ferrite epoxy coating 
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Figs. 5.7 and 5.8 show the switching waveforms of the PSiP buck converter without and 

with the ferrite epoxy glob core respectively. The testing conditions were as the 

following: Input voltage VIN = 5 V and switching frequency fSW = 5 MHz. It is observed 

 
 

Figure 5.7 Operating waveforms of the PSiP without ferrite epoxy coating 
 
 
 

 
 

Figure 5.8 Operating waveforms of the PSiP with ferrite epoxy coating 
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that the converter operated in DCM and the peak to peak inductor current ripple 

decreases approximately 35% with the utilization of ferrite epoxy glob cores. With the 

use of ferrite epoxy, the inductor ripple current and output voltage ripple decreases, so the 

efficient increases. 

5.3 Discussion 

A. Increase the output power and improve the overall efficiency of the PSiP 

The output voltage and current of the PSiP buck converter is 2.2V and 120 mA 

respectively. The measured efficiency is about 52% which is low. Since the bondwire 

inductor shows very high saturation current and low DCR [109], the low efficiency is 

attributed to the power MOSFET losses. As discussed earlier, the specific RDSON of the 

power MOSFET in the AMIS C5 5V digital CMOS process is very high, and 

subsequently limits the achievable converter efficiency. The lack of reverse current 

blocking function in DCM operation and the less than optimal dead time control in the 

power IC also partially contributed to the low efficiency. It is expected that the efficiency 

can be significantly improved with the adoption of more advanced power IC fabrication 

processes and IC design optimization. Nevertheless, the prototype buck converter 

reported in this letter did serve its purpose of demonstrating the basic operation with in-

package bondwire inductors at a frequency up to 5 MHz. 

B. Inductance value selection for the PSiP 

The selection of inductance value in buck converter is a tradeoff between efficiency and 

transient response. A larger value of inductance offers greater output current capability, 
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reduced inductor ripple current, low output voltage ripple, and hence a higher system 

efficiency. However, the transient response will degrade as a penalty if larger inductance 

value is used because inductor current changes very slowly. Generally, selecting an 

inductance to have the peak-peak current ripple of 20~40% of the average current gives a 

good balance between efficiency and transient response. If take the ratio of current ripple 

to average current as a design input to design a buck power converter, the inductance 

value can be expressed as 

(1 )
in

O sw

V D D
L

I R R f

  


 
                           (5-1) 

where Vin is the input voltage, Io is the output current, fsw is the switching frequency, D is 

the duty cycle, RR is the ratio of inductor ripple current over average inductor current. 

In the PSiP buck converter prototype, the bondwire inductance is around 150 nH and 450 

nH without and with ferrite epoxy core respectively, which is relatively small and causes 

the system operating in DCM and gives rise to high current ripple. Bondwire inductance 

values can be considerably increased with the use of fine pitch wirebonding machine 

[111] In addition, by adopting some system topology, such as multiphase technology, the 

ripple current could be reduced even with the same inductance value. 

C. The non-linear inductor current waveform of the PSiP 

In the presented experimental results, the inductor current waveforms show some non-

linearity, which can be explained as the following. The slope of the inductor current in 

the PSiP buck converter can be approximated as the following expressions. 



96 

_
in ON P L o

V R i V
Rise slope

L


  

                     (5-2) 

_
ON N L o

R i V
Fall slope

L


 

                        (5-3) 

where Vin and Vo are input and output voltage, respectively; RON-P and RON-N are the on-

resistance of the high side PMOS and low side NMOS, respectively; iL is the inductor 

current, and L is the inductance of the inductor. Usually, in practical buck converter,  

RON-P and RON-N are very small, so the product of the on-resistance and the inductor 

current can be neglected. Therefore, the slope is almost constant and the inductor current 

is linear. In our demonstration unit, RON-P and RON-N are much larger because of the 

limitations of the 5V digital CMOS process and silicon real estate, introducing 

considerable nonlinearity of the inductor current. 

D. The integration of capacitors in PSiP 

The integration of input and output capacitors is still a major challenge for any PSiP 

development. On-chip capacitors are not a practical solution yet due to the large silicon 

real estate they consume. The highest integrated capacitance per unit area reported so far 

is 400nF/mm
2
 for TiN/Al2O3 MIM capacitors [112]. In the experiment we report here, 

surface-mount ceramic capacitors are used for the input and output ports and mounted on 

the backside of the PCB substrate. 
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5.4 Summary 

In this chapter, a power supply in package (PSiP) prototype, which contains the power IC 

of a buck converter and bondwire inductor, is presented. The power IC containing all 

switching devices, driver circuitry, and control logic was designed and fabricated with a 

standard 0.5 µm CMOS process. Multi-turn bondwires with and without ferrite epoxy 

glob cores are used as the filter inductor in the buck converter.  Although with a 

relatively low efficiency due to the CMOS fabrication process limitation, the PSiP buck 

converter prototype demonstrated basic operation with an output voltage and current of 

2.2V and 120mA, and switching frequencies up to 5MHz. The power level of the 

prototype buck converter is scalable by increasing the size of the active power switches. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

High power density and high efficiency are two basic requirements for the power 

supplies in hand-held or battery-powered electronic devices. Increasing the switching 

frequency is one of the most effective way to reduce the volume of power converters by 

reducing the sizes of passive components. However, power loss in the converters also 

increases significantly due to increased switching frequency. In this work, various 

integration of new topologies and control techniques have been investigated to address 

the demand for high switching frequency, high efficiency, and high power density DC-

DC converters. 

6.1.1. Self-Synchronized Rectifier 

The concept of self-synchronized rectifier (SSR) has been proposed in this work to 

mitigate the body diode conduction issue in conventional synchronous rectification 

technique, which is one of the most popular techniques used in power converters for 

today’s electronic devices. Analysis, design considerations, circuit simulation and layout 

design have been done. A prototype with the negative offset voltage, high speed 

comparator and the novel one-shot control has been fabricated in a 5V, 0.5-µm mixed 

signal CMOS process. Experimental results for the block performance parameters and 

functions matches the simulation results. The prototype SSR IC was also tested in a 

monolithic buck converter. It works well under both heavy load and light load conditions. 

The possible oscillation (the repetitive turning on/off of the sync-FET in one switching 
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cycle) is eliminated under light load condition. The SSR can be used in high switching 

frequency ( higher than 1MHz) power converters.  

6.1.2. MHz Synchronous Flyback Converter 

A MHz synchronous flyback DC-DC converter using the SSR has been analyzed, 

designed, and simulated. Based on the modeling work, experimental demonstration has 

also been performed with a 3.6V/100mA flyback converter. By using the SSR, the design 

of flyback DC/DC converters was significantly simplified. The 3.6v/100mA flyback 

converter can also be operated at high frequency (higher than 4MHz), which is helpful to 

reduce the board space. Compared to a flyback converter using diode rectifier, the one 

using the SSR have efficiency improvement up to more than 10%.  

6.1.3. Integrated Gate Driver for Buck Converter 

An integrated gate driver for buck converter has also been presented in this work to 

address the ever increasing dynamic power loss (gate driving loss plus switching loss) in 

high frequency power converters. The monolithic gate driver integrates both the driver 

for high-side power MOSFET and the one for low-side power MOSFET of a buck 

converter. To simplify the circuit design, the high-side MOSFET driver employs the 

current source gate driving (CSD) scheme and the low-side one use the conventional gate 

driver but with design considerations on both delay and power loss. A 0.35-µm mixed 

signal CMOS process with optional 50V high voltage power devices was used for the 

fabrication of the chip. Simulation results show that the CSD chip is able to provide fast 



100 

switching transient less than 8 ns. The design, simulation, layout, and packaging 

consideration are discussed in detail in this thesis. 

6.1.4. Power Supply in Package (PSiP) Integration 

PSiP integration of a buck DC-DC converter has been demonstrated in a cost effective 

way. The PSiP buck converter operates at a frequency of 5MHz with 2.2V/120mA 

output. All the active devices, including power MOSFETs, drivers, and logic circuit, are 

integrated into a single silicon chip by using a 0.5- µm CMOS process technology. Multi-

turn bondwire with ferrite epoxy core was used as the output filter inductor, which has 

been proved to have high inductance, low DCR (and thus high Q), high saturation 

current. Since the bondwire magnetic integration can be made during standard IC 

packaging process, it is believed to open enormous possibilities for realizing cost-

effective, high current, high efficiency PSiP. 

6.2 Future Work 

Some possible future work is outlined here for the topics in this thesis work. 

6.2.1. Self-Synchronized Rectifier 

The proposed self-synchronized rectifier (SSR) features high speed comparator with 

negative input offset voltage and one-shot control method. Because the offset voltage 

plays an important role in the SSR, it would be better to have it externally programmable 

or adaptive to load conditions.  
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In addition, the possibility to integrate a power supply for the SSR would be very 

advantageous since the SSR would be more like an ideal diode with only two terminals 

by doing this. However, an relatively large capacitor may need to be integrated for the 

power supply integration. 

To better demonstrate the advantage of the SSR, low RDS-ON power MOSFET from a 

power IC process technology needs to be used in the SSR. In this way, the output power 

level can be increased and the overall system efficiency can also be improved. 

6.2.2. MHz Synchronous Flyback Converter 

The use of a power IC process technology for the SSR fabrication would also be 

beneficial to the demonstration of the synchronous flyback converter. 

And if the SSR can be packaged in a small package with reduced parasitic inductance and 

resistance, the switching frequency can be pushed to higher. Therefore the passive 

components size can be reduced further. 

6.2.3. Integrated Gate Driver for Buck Converter 

Currently, the integrated gate driver has been developed with an external inductor. A very 

promising future work is to integrate the inductor into the package or onto the chip since 

the inductance required in the current source gate driver is relatively small (in the range 

of only few tens of nH).  

Another future work is to integrate the CPLD function (which is used in the system level 

testing to generate gate control signals for the power MOSFETs) into the driver. So the 
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only input signal would be PWM pulse input. Furthermore, the controller may also be 

integrated with the driver to reduce component counts and board space. 

6.2.4. Power Supply in Package (PSiP) 

The buck converter chip can be made with a power IC process to reduce the RDS-ON of the 

power MOSFET. Then the output power level, overall efficiency will be improved. The 

inductor current will also become more linear. 

If the multi-turn bondwire inductor can be made on the silicon chip with on-chip metal 

traces, it would be more attractive because the whole power supply system will be 

demonstrated in a very small area. 
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