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Abstract: In this paper, we discuss a repairable linear C (2, 3; G) system. One 
repairman carries out the maintenance of the system. It is assumed that the working 
time and the repair time of each component in the system are both exponentially 
distributed and only one component after repair is as good as new. Each component is 
classified as either a key component or an ordinary one according to its priority role to 
the system’s repair. We apply the geometric process, supplementary variable 
technique and generalized Markov process to study a repairable linear C (2, 3; G) 
system. We obtain Laplace transforms of some reliability indices such as availability 
and reliability. 
Key words: repairable system; generalized Markov process; key component; 
geometric process 

 
 

1.  INTRODUCTION 
 
The linear or ring C (2, 3; G) system is one simple system in engineering, so it is interested. Kontoleon 
(Kontoleon, 1980) first studied linear k out of n system in 1980, Chiang and Nin (Chiang & Niu, 1981) 
further studied k out of n system in 1981. The reliability of the model is interesting for people, and it 
becomes a active discussion in reliability theory and application. Fang Kui (FANG & LUO, 1998) 
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studied a special case: ring C (2, 3; G) system with dissimilar components, the all components can be as 
good as new，and the working time and the repair time of each component in the system are both 
exponentially distributed, then apply the Markov process to derive some reliability indices. Duan 
Qiu-shi (DUAN & ZHANG, 1998) studied ring C (2, 3; G) repairable system with dissimilar reparative 
case. Then Guan Ting-lu (GUAN, 2006) studied linear C (2, 3; G) repairable system with same 
components and all can not be as good as new, also apply the Markov process to derive some reliability 
indices. However, some components can not be as good as new after repair, and successive working 
times of the deteriorating components after repair will become shorter and shorter while the consecutive 
repair times after failure will become longer and longer. 

Based on the paper (FANG & LUO, 1998), we discuss a repairable linear C (2, 3; G) system. It is 
assumed that only one component after repair is as good as new. Each component is classified as either a 
key component or an ordinary one according to its priority role to the system’s repair. We derive Laplace 
transforms of some reliability indices such as availability and reliability. 

 

2.  DEFINITION AND ASSUMPTION 
 
Definition 1 (GUAN, 2006)：A stochastic process },2,1,{ L=nX n is a sequence of independent 

non-negative random variables. If the distribution function of },2,1,{ L=nX n is 

( )taF n 1− , L,2,1=n , and if a is a positive constant, then },2,1,{ L=nX n  is called a geometric 
process. 

Definition 2 (GUAN, 2006)：A repairable system is in failure state, the system begins working over 
again after a fault component is repaired, then the component is called key component, otherwise it is 
called common component. 

Assumption 1：Linear C (2, 3; G) repairable system consist of three dissimilar components and one 

repairman, component 1and 2 can not be as good as new, let i
kX , i

kY  be respectively the working time 

and the repair time of the two components in the k th cycle (Assume that the time interval form working 
to failure, then repair completely of component i is called one circle of component i), the distributions 
of i

kX  , i
kY  are given by 

( ) ( ) { }tataFtF i
kk

ii λ11 exp1 −− −−==  

( ) ( ) { }tbtbGtG i
kk

ii μ11 exp1 −− −−==  

Where L2,1.2,10,0,10,1,0 ==>><<>≥ kibat ii μλ  

Assumption 2：Component 3 is as good as new after repaired, 33 ,ηε  be respectively the working 

time and the repair time of component 3. The distributions of 33 ,ηε  are given by 

( ) tetF 313
λ−−= , ( ) tetG 313

μ−−=  

Where 0,0,0 33 >>≥ μλt  

Assumption 3：The key component has priority in repair. 

Assumption 4：The three components of the system are independent, and all components are new at 
the beginning. 
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Assumption 5：After system fault, the not fault components do not be fault. 

 

3.  SYSTEM ANALYSIS 
 

Now, let ( ){ }0, ≥ttN  be the system state at time t. According to the model assumptions, we have 

( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

down.shut  is system  thefail; 3,2 compoments  the t,at time if32,
down,shut  is system  thefail; 3,1 compoments  the t,at time if31,

 down,shut  is system  thefail; 1,3 compoments  the t,at time if13,
down,shut  is system  thefail; 1,2 compoments  the t,at time if12,

 works,system  thefails; 3compoment   the  t,at time if3,
down,shut  is system  thefails; 2component   the  t,at time if2,

 works,system  thefails; 1component   the  t,at time if1,
 works,system  the work;components  three, t at time if,0

tN  

Obviously, the state space is { }32,31,13,12,3,2,1,0=E , the set of working states is { }3,1,0=W , 

and the set of failure states is { }32,31,13,12,2=F . Although the stochastic process ( ){ }0, ≥ttN  is 
not a Markov process, we can obtain a vector Markov process by introducing a supplementary variable 
( ) ( )tItI 21 , . Let the supplementary variable ( )tI1  be the cycle of component 1 at time t ; ( )tI 2  be the 

cycle of component 2 at time t , then ( ) ( ) ( ){ }0,,, 21 ≥ttItItN  forms a generalize vector Markov 
process. 

Denote the state probability of the system by 

      ( ) ( ) ( ) ( ){ } .,,, 221121
EiktIktIitNPtP kik ∈====  Where L2,1, 21 =kk 。 

 
 

4.  THEOREM AND RESULT 
 
Theorem 1: the instantaneous availability of the system at time t is ( )tA , and the Laplace transform of 

( )tA  is given by 

( ) ( ) ( ) ( )[ ]∑
+∞

=

∗∗∗∗ ++=
1,

310
21

212121
kk

kkkkkk sPsPsPsA  

Proof: 

( ) ( )( )( ) ( )

( ) ( ) 2,

111

21332
2

12

1
2

1132
1

1
1

00

21

2

21

1

21

21

2121

≥Δ+Δ+Δ+

Δ+Δ−Δ−Δ−=Δ+
−

−

−
−

−−

kkttPtbP

tbPttataPttP

kk
k

kk

k
kk

kk
kkkk

ομμ

μλλλ
 

Predigest formula: 
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( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( )tPtPb

tPbtPaa
t

tPttP

kkkk
k

kk
k

kk
kkkkkk

2121

2

21

1

21

212121

33122
2

111
2

032
1

1
100

μμ

μλλλ

++

+−−−=
Δ

−Δ+

−
−

−
−−−

 

If 0→Δt  and 2, 21 ≥kk , we can obtain differential equation: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 1 21 2 1 2

1 1 2 2
1 2 3 0 1 2 3 31 1 2 1

k k k k
k k k kk k k ka a P t b P t b P t P t

t
λ λ λ μ μ μ− − − −

− −

∂⎛ ⎞+ + + = + +⎜ ⎟∂⎝ ⎠
So we can obtain also:  

( ) ( ) ( ) ( ) ( )2 1 1 2

1 2 1 2 1 21 2

1 1 1 2
2 3 1 1 1 0 2 3 3112 1

k k k k
k k k k k kk ka b P t a P t b P t P t

t
λ λ μ λ μ μ− − − −

−

∂⎛ ⎞+ + + = + +⎜ ⎟∂⎝ ⎠

( ) ( )2 2

1 2 1 2

1 1
2 2 2 0

k k
k k k kb P t a P t

t
μ λ− −∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

( ) ( )2 2

1 2 1 2

1 1
2 12 2 1

k k
k k k kb P t a P t

t
μ λ− −∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

( ) ( )1

1 2 1 2

1
1 13 3 1

k
k k k kb P t P t

t
μ λ−∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

( ) ( )1

1 2 1 2

1
3 31 1 3

k
k k k kP t a P t

t
μ λ−∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

( ) ( )2 2

1 2 1 2

1 1
2 32 2 3

k k
k k k kb P t a P t

t
μ λ− −∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1 2 1 2 1 2 1 2

1 1 2 2
1 2 3 3 3 0 1 213 1 32 1

k k k k
k k k k k k k ka a P t P t b P t b P t

t
λ λ μ λ μ μ− − − −

− −

∂⎛ ⎞+ + + = + +⎜ ⎟∂⎝ ⎠
      The initial conditions are:  

( ) ( ) ( ) 2,10011 ,00;0,00;10
2121

kkPiPP kkkik =≠==  are not 1 at the same time. 

The initial conditions are expressions about ( ) EitP kik ∈,
21

 when any 2,1 kk  are 1. So we set that is 

0, when some ( )2,11 == iki  and the exponent of a  or b  less than 0.  

Then taking the Laplace transform on the both sides of the above differential equation, and set 

32
1

1
1 21 λλλ +++= −− kk

k aasA  

1
1

32
1 12 μλλ −− +++= kk

k basB      32
1

1
1 21 μλλ +++= −− kk

k aasC      
We have： 

( ) ( ) ( ) ( ) ( ) ( ) ( )sP
A

sP
bsA
absP

A
bsP kk

k
kkk

k

kk

kk
k

k

kk
∗∗

−−

−−
∗

−

−
∗ +

+
+=

21212

22

21

1

21 3
3

10
2

2
2

2
2

2

111

2

0
μ

μ
λμ

μ  

( ) ( ) ( ) ( ) ( )
( )
( ) ( )sP
sB
a

sP
bsB
absP

B
asP kk

k

k

kkk
k

kk

kk
k

k

kk
∗

−
∗

−−

−−
∗

−
∗

+
+

+
+=

21

1

212

22
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1

21 3
3

1
1

3
11

2
2

2
2

2
2

0
1

1

1 μ
λμ

μ
λμλ

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sP
bsC
absP

bsC
b

sP
C

sP kkk
k

kk

kkk
k

k

kk
k

kk
∗

−−

−−
∗

−−

−
∗∗

+
+

+
+= 13

2
2

2
2

2
2

11
1

2
31

2

0
3

3 212

22

211

1

2121 μ
λμ

μ
λμλ
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( )
33

011 λμ−
=∗

kk

k

CA
C

sP       ( )
33

3
311 λμ

λ
−

=∗

kk CA
sP  

( ) ( ) ( )( )333

313

33

1
111 λμμ

λλμ
λμ

λ
−+

+
−

=∗

kkkkkk

k

CAsBCAB
C

sP  

According to the model assumptions, the instantaneous availability of the system at time t is  

( ) ( ){ } ( ){ } ( ){ }310 =+=+== tNPtNPtNPtA  
And taking the Laplace transform on the both sides of the about t , we have 

( ) ( ) ( ) ( )[ ]∑
+∞

=

∗∗∗∗ ++=
1,

310
21

212121
kk

kkkkkk sPsPsPsA . 

Theorem 2：The instantaneous rate of occurrence of failure of the system at time t is ( )tW f , and the 

Laplace transform of ( )tW f  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( )].

[

21

21

21

12

21

21

21

332
1

1
1

11
1

32
1

0
1,

32
1

1
1

sPaa

sPbasPaasW

kk
kk

kk
kk

kk
kk

kk
f

∗−−

∗−−∗
+∞

=

−−∗

+++

+++++= ∑
μλλ

μλλλλλ
 

Proof：According to reference (DUAN & ZHANG, 1999) about formula of ( )tW f , we have 

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ){ }3

10

32
1

1
1

1
1

32
1

32
1

1
1

21

1221

=+++

=+++=++=
−−

−−−−

tNPaa

tNPbatNPaatW
kk

kkkk
f

μλλ

μλλλλλ
 

And taking the Laplace transform, we can obtain ( )sW f
∗ . 

Lemma 1：Let absorb states of ( ) ( ) ( ) }0,,,{ 21 ≥ttItItN  is ( ) ( ) ( ) }0,~,~,~{ 21 ≥ttItItN , then the 

( ) ( ) ( ) }0,~,~,~{ 21 ≥ttItItN  forms a stochastic process. 

Theorem 3：By the definition, the Laplace transform of availability of the system at time t is given 
by 

( ) ( ) ]1[
32

1
1

1
3

1
1

32
1

1
1

1
10 2112

1

1

1 μλλ
λ

μλλ
λ

+++
+

+++
+= −−−−

−∞

=

∗∗ ∑ kkkk

k

k
k aasbas

asQsR  

Proof: Set ( ) ( ) .},~,~,~{ 221121
EikIkIitNPtQ kik ∈====  

According to probability analysis, we can obtain 

( ) ( ) ( ) ( )1 2 1

1 2 1 21 2

1 1 2
1 2 3 0 1 3 31 1

k k k
k k k kk ka a Q t b Q t Q t

t
λ λ λ μ μ− − −

−

∂⎛ ⎞+ + + = +⎜ ⎟∂⎝ ⎠

( ) ( )2 1 1

1 2 1 2

1 1 1
2 3 1 1 1 0

k k k
k k k ka b Q t a Q t

t
λ λ μ λ− − −∂⎛ ⎞+ + + =⎜ ⎟∂⎝ ⎠

( ) ( )1 2

1 2 1 2

1 1
1 2 3 3 3 0

k k
k k k ka a Q t Q t

t
λ λ μ λ− −∂⎛ ⎞+ + + =⎜ ⎟∂⎝ ⎠

 And taking the Laplace transform on the both sides of the about t , we have 
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( ) ( )sQ
bas

asQ kkkk
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kk
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2111
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21 0
1

1
31

1
1

1

1 μλλ
λ

( ) ( )sQ
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sQ kkkkkk
∗

−−
∗

+++
=

212121 0
32

1
1

1
3

3 μλλ
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( ) ( ) ( ) ( )sQ
BCA

abCA
sQ kk
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kk
kk

kk
∗

−

−−
∗

−
=

21

11

21 10
33

1
2

1
2

0 μλ
λμ

 

if 12 =k , 

( )

321

33
321

011
1

μλλ
μλ

λλλ
+++

−+++
=∗

s
s

sQ  

If 12≠k , ( ) 0
201 =∗ sQ k  

So we can obtain the Laplace transform of ( )tR : 

( ) ( ) ]1[
32

1
1

1
3

1
1

32
1

1
1

1
10 2112

1

1

1 μλλ
λ

μλλ
λ

+++
+

+++
+= −−−−

−∞

=

∗∗ ∑ kkkk

k

k
k aasbas

a
sQsR  

 
 

5.  CONCLUDING REMARKS 
 

The n-1/n(G) system is researched, when 3n = , and the working time and the repair time of each 
component in the system are both exponentially distributed and repair condition is different, we obtain 
Laplace transforms of some reliability indices such as availability and reliability. We consider from 
application, and supply some information for engineer, that make them get expediently some index of 
reliability, at the same time supply some help for further studying linear and ring C(k,n;G/F) systems. 
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