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Abstract: In this paper, we discuss a repairable linear C (2, 3; G) system. One
repairman carries out the maintenance of the system. It is assumed that the working
time and the repair time of each component in the system are both exponentially
distributed and only one component after repair is as good as new. Each component is
classified as either a key component or an ordinary one according to its priority role to
the system’s repair. We apply the geometric process, supplementary variable
technique and generalized Markov process to study a repairable linear C (2, 3; G)
system. We obtain Laplace transforms of some reliability indices such as availability
and reliability.
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1. INTRODUCTION

The linear or ring C (2, 3; G) system is one simple system in engineering, so it is interested. Kontoleon
(Kontoleon, 1980) first studied linear k out of n system in 1980, Chiang and Nin (Chiang & Niu, 1981)
further studied k out of n system in 1981. The reliability of the model is interesting for people, and it
becomes a active discussion in reliability theory and application. Fang Kui (FANG & LUO, 1998)
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studied a special case: ring C (2, 3; G) system with dissimilar components, the all components can be as
good as new > and the working time and the repair time of each component in the system are both
exponentially distributed, then apply the Markov process to derive some reliability indices. Duan
Qiu-shi (DUAN & ZHANG, 1998) studied ring C (2, 3; G) repairable system with dissimilar reparative
case. Then Guan Ting-lu (GUAN, 2006) studied linear C (2, 3; G) repairable system with same
components and all can not be as good as new, also apply the Markov process to derive some reliability
indices. However, some components can not be as good as new after repair, and successive working
times of the deteriorating components after repair will become shorter and shorter while the consecutive
repair times after failure will become longer and longer.

Based on the paper (FANG & LUO, 1998), we discuss a repairable linear C (2, 3; G) system. It is
assumed that only one component after repair is as good as new. Each component is classified as either a
key component or an ordinary one according to its priority role to the system’s repair. We derive Laplace
transforms of some reliability indices such as availability and reliability.

2. DEFINITION AND ASSUMPTION

Definition 1 (GUAN, 2006) : A stochastic process{Xn , N =1,2,~-}is a sequence of independent
non-negative random variables. If the distribution function of {X,,n=12,--} s
F(a”_lt), n=12,---, and if a is a positive constant, then {X,,n=1,2,---} is called a geometric
process.

Definition 2 (GUAN, 2006) : Arepairable system is in failure state, the system begins working over
again after a fault component is repaired, then the component is called key component, otherwise it is
called common component.

Assumption 1 : Linear C (2, 3; G) repairable system consist of three dissimilar components and one
repairman, component 1and 2 can not be as good as new, let X,i ,Yki be respectively the working time

and the repair time of the two components in the K th cycle (Assume that the time interval form working
to failure, then repair completely of component i is called one circle of component i), the distributions

of X, .Y, are given by
F.(t)=F (a“"t)=1-expl-a** 4t
G, (t)= G, (b"'t)=1—expl-b*yt}

Wheret>0,a>10<b<1,4, >0, >0 =12 k=12---

Assumption 2 : Component 3 is as good as new after repaired, &,,77, be respectively the working

time and the repair time of component 3. The distributions of &,, 77, are given by
F(t)=1-e ™, G,(t)=1-e ™
Where t > 0,4, >0, 1, >0

Assumption 3 : The key component has priority in repair.

Assumption 4 : The three components of the system are independent, and all components are new at
the beginning.
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Assumption 5 : After system fault, the not fault components do not be fault.

3. SYSTEM ANALYSIS

Now, let {N (t),t 2 0} be the system state at time t. According to the model assumptions, we have

0, if attimet, three components work; the system works,
1, if attime t, the component1fails; the system works,
2, If attime t, the component 2 fails; the system is shut down,
N ()= 3, if attime t, the compoment 3 fails; the system works,
12, if at timet, the compoments1,2 fail; the system is shut down,
13, if at timet, the compoments1,3fail; the systemis shut down,
31, if at timet, the compoments3,1fail; the systemis shut down,
32, if at timet, the compoments 3,2 fail; the system is shut down.
Obviously, the state space is E = {0,1,2,3,12,13,31,32}, the set of working statesis W = {0,1,3},
and the set of failure states is F = {2,12,13,31,32}. Although the stochastic process {N(t),t > 0} is
not a Markov process, we can obtain a vector Markov process by introducing a supplementary variable
I,(t),1,(t). Let the supplementary variable 1, (t) be the cycle of component 1 attime t; I, (t) be the

cycle of component 2 at time t, then {N(t), I,(t),1,(t),t > 0} forms a generalize vector Markov
process.

Denote the state probability of the system by
P, (t)=P{N(t)=i,1,(t)=k,,1,(t)=Kk,}, ieE. wherekk, =12

4. THEOREM AND RESULT

Theorem 1: the instantaneous availability of the system at time t is A(t), and the Laplace transform of
A(t) is given by

A (s)= [P (5)+ iy (5)+ Py (5)]

Ky ko =1

Proof:

Py, (t+AL) = Py, (- a4 AL 2" 2, AL - 2,AL) + Py, D52 At
+ Py 1,00 1AL+ Py 11, AL+ 0(At) k., k, >2

Predigest formula:
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P t+At)—P t
l OklkZ( T At) OklkZ( )J = (_ akl_l/ll - akz_lﬂz - /13 )POklkz (t)"' bkl_z/v‘l Pl(kl—l)kz (t)

+ bkz_ZﬂZ P2k1(k2—1) (t)+ ’Ll?’ P3k1k2 (t)

If At > 0 and k,,k, > 2, we can obtain differential equation:

0 _ _ _ _
(a4 By, ()= P, (010 P (0 6, 1)
So we can obtain also:

0 - i _ ,
(a +a™ A, + 4, +b" lﬂl] Pk, (t)=a" lﬂ’lPOklkz (t)+0" s, Pk (1) (t)+ 445 P, (t)

0 _ _
(E‘*‘ b lﬂzj Pok, (t) =a" A, Pokk, (t)

§+ b, j Ra, (1) =2 4P, (1)

L |Ray (0= AR, ()

24 ﬂa} P, () =2 4Py, (1)

§+ b ‘1;12) Pk, (1) =" 4,Py (1)

§+ a“ A, +a% T, + ﬂsj Pagi (1) = AaPa, () +D% % 4Py, (1) +0% 4Py, 5 (1)

The initial conditions are:
P,0)=1 Pk, (0)=0, i#0; Poksk, (0)=0, k, K, are not 1 at the same time.

The initial conditions are expressions about F’iklkz (t), I € E whenany k, Kk, are 1. So we set that is
0, when some K, =1 (i =1,2) and the exponent of @ or b less than 0.

Then taking the Laplace transform on the both sides of the above differential equation, and set
A =s+a“'A +a" A, + A4,
B, =s+a“ A, + A, +b“ "y, C =s+a“"“ A +a" A, +u,
We have:

. bk1—2 . bk2—2 ak2—2/1 . .
P0k1k2 (5) = Tﬂl Pl(k1—1)k2 (S) + A (S ll_:zb k-2 /122) P0k1(k2—1) (S) +('UE3 P3k1k)2 (S)
. akl—l/ll X bkz—ZﬂZakz—ZAZ ﬂs aklflﬂ,l .
=— — P
1ok, (S) B, Oklkz( )+ B, (S b% 7, B, (S N ,Us) 3Kk, (5)
X /1 i bklizﬂ /1 i bkz—Zﬂ ak2—2/1 .
(S)z : ( )+ Ck(3+bk11_23ﬂ1) 1k, -1)k, (S)+ Ck(S +2bk2_2,u22) 3kl(k2—1)(s)

) Pl*lzl(kz—l) (S) +
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C A

p: - "k p; =3

011(8) AC, — tz A, 311(8) AC, — 3,

. 4G, Uz A
P.(s)= +
- ) B, (Akck _ﬂs/ﬁta) B, (S+ﬂ3)(Aka _ﬂaﬂa)

According to the model assumptions, the instantaneous availability of the system at time t is

A(t)=P{N(t)=0}+ P{N(t) =1} + P{N(t) = 3}

And taking the Laplace transform on the both sides of the about t, we have

A (S) = *Z“’ [Po*klk2 (S) + Plilkz (S) + P;;(lkz (S)]

ky ko =1
Theorem 2 : The instantaneous rate of occurrence of failure of the system at time tis W/ (t) and the

Laplace transform of W, (t) is given by

Wf* (S) = i[(akl_%l + akz_l/iz +4, )Do*klk2 (S) + (a kz_l/lz + A3+ bkl_l:ul )Pﬁ;k2 (S)

Ky kp=1
a7 124, 4 Py, )]
Proof : According to reference (DUAN & ZHANG, 1999) about formula of W, (t) we have
W, (t)= (@24 +a“ 2, + 4, JPIN() = 01+ (254, + 4, + b5, JPIN(E) =1}
(a7, +a% A, + u JPIN() = 3}
And taking the Laplace transform, we can obtain W, (S)
Lemma 1 : Letabsorb states of {N(t), I, (t), I, (t),t > 0} is {N(t), I~1(t), |~2 (t),t > O}, then the
{N(‘[), rl(t), |~2 (t),t > O} forms a stochastic process.
Theorem 3 : By the definition, the Laplace transform of availability of the system at time t is given
by
& a“?'q Ay
1 1 S+ aszlﬂ + A+ bkl’l T k-1 k,-1
k=1 2 T3 Mo sS+atT A +ar A, +
Proof: Set Q,, (t) = P{N(t)=1i,I, =k,, 1, =k, },i ¢ E.

According to probability analysis, we can obtain

0 ~ N _
a‘l‘ ak1 1/11 + ak2 1/12 +/’L;1]Q0k1k2 (t) = b|<1 Z;ulQl(kl—l)kz (t)+/u3Q3k1k2 (t)

a B _ _

a—i_ ak2 lﬂvz + 23 + bkl 1/u1lek1kz (t) = akl 111Q0k1k2 (t)
0 _ _

a-ﬁ- ak1 1/11 + akz 1/12 + ﬂ3jQ3k1k2 (t) = 13Q0k1k2 (t)

And taking the Laplace transform on the both sides of the about t, we have
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akl—l/'i1
o (s)= e (S
Qlklk2 ( ) S+ akl_lﬂl + /13 + bkl_l,Ul QOklkz ( )
* /1 *
Qi (8) : Qo ()

Cs+abty +a% e, + u,
_ACDh P pal

Q* S — Q* ) S
0k1k2( ) (Akck _13/‘3 )Bk 0(k, 1)k2( )
if k, =1,
x 1
Qon(s): Ayl
s+il+/12+/13—s+/11j/13 a
2 3

If k%1, Qqy (5)=0
So we can obtain the Laplace transform of R(t):

R(5)= 3005 (Lt B /s

_I_
= s+a' A, + A4, +b Ty s+a“tA +a" A, +

5. CONCLUDING REMARKS

The n-1/n(G) system is researched, when n=3, and the working time and the repair time of each
component in the system are both exponentially distributed and repair condition is different, we obtain
Laplace transforms of some reliability indices such as availability and reliability. We consider from
application, and supply some information for engineer, that make them get expediently some index of
reliability, at the same time supply some help for further studying linear and ring C(k,n;G/F) systems.
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