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Abstract
This paper analyzes spurious regression phenomenon 
involving AR(p) stable processes with trend breaks. It 
shows that when those time series are used in ordinary 
least squares regression, the convenient t-ratios 
procedures wrongly indicate that the spurious relationship 
is present as the pair of independent stable series contains 
trend changes. The spurious relationship becomes 
stronger as the sample size approaches to infinite. As a 
result, spurious effects might occur more often than we 
previously believed as they can arise even between AR(p) 
stable series in present of trend breaks.
Key words: Spurious relationship; Stable sequence; 
T-ratios; Trend breaks
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INTRODUCTION
Spurious regression is a situation in which two or more 
variables are statistically related, but in fact there is not 
any direct relation between them. It is conceived in the 
time series econometric literature, can be traced back to 
Yule (1926), who identified the phenomenon by means of a 

computerless Monte Carlo experience in which correlation 
coefficients were obtained from pairs of independent 
non-stationary variables. Granger and Newbold (1974) 
identified it again for simple least squares estimates and 
showed that when unrelated data series are close to the 
integrated processes of order one or the I(1) processes, 
then running a regression with this type of data will yield 
spurious effects. Phillips (1986) provided the theoretical 
framework to understand the phenomenon in the simplest 
case(independent driftless unit root processes (DGPs)), 
such as unit root with drifts, trend stationary and long 
range.

The above results served as a springboard to a 
subsequent long series of investigations of the phenomenon 
for different types of regression and different types of data 
generation process. Marmol (1998) suggested that spurious 
correlation generally occurs in regressions including 
fractionally integrated processes. Spurious regressions 
are also shown to occur in models with series generated 
by various combinations of different types of stationary 
processes by Granger et al. (2001). For more details about 
spurious regression we refer the reader to Lizeth and Daniel 
(2011) and Martinez-Rivera and Ventosa-Santaularia 
(2012), among many others. 

All these studies rely on the case where variances of the 
sequence are finite and, therefore, demonstrate the existence 
of spurious regression under finite-variance. However, there 
is growing body of evidence showing that many economic 
and financial time series have volatilities that are stable 
sequence with infinite-variance. Many types of data from 
economics and finance have the same character: a heavier 
tail than the normal variables, and it is more suitable to 
model these heavy-tailed data by some processes belonging 
to the domain of attraction of a stable law with stable index, 
where the stable index can reflect the heaviness of the 
data. This kind of data was considered by Tasy (1999) and 
Phillips (1990). Later on, Rechev and Mittnik (2000) and 
Kokoszka and Taqqu (2001) studied linear processes with 
heavy-tailed distributions; Davis and Mikosch (1998) and 
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McElroy and Politis (2002) have developed the asymptotic 
theory for sample autocovariances and extreme for such 
processes. The purpose of this paper is to investigate the 
asymptotic behavior of the usual diagnostic statistics when 
they are employed to test if there exists a relationship 
between two independent stable sequences with infinite-
variance in presence of trend breaks. Thus, this paper is 
to extend the interval of tailed index from k=2(Gaussian 
series) to k∈(1,2](Infinite-variance sequences).

This paper is organized as follows. In Section 2, we 
present the data-generation processes with structural 
breaks in trend and the assumptions made on the various 
components. Section 3 deals with the asymptotic properties 
of the least squares estimates involving trend breaks. In 
Section 4, we would provide some simulation evidence, 
whilst conclusions are drawn in Section 5.

1.  THE MODELS AND ASSUMPTIONS
Our analysis of the spurious effects are based on simple 
regression models where the dependent variable and the 
single nonconstant regressor are independent infinite-
variance processes with structural breaks in mean. Before 
presenting these models, let us first briefly review some 
basic properties of the stable process.

We consider moving average of the form

  ( ) 0t t j t jj
y C L cε ε∞

−=
= = ∑  (1)

where ( ) 0t t j t jj
y C L cε ε∞

−=
= = ∑  and the weights cj 

satisfying

  0 jj
c∞

=
< ∞∑  (2)

This model nests causal ARMA(p,q) and . ( )AR ∞
specifications. The independent identical distribution 
innovations εt are assumed to be mean zero and in the 
domain of attraction of a stable law with 1<k<2. Thus εt 
satisfy the following assumption:

Assumption 2.1 The innovations εt are in the domain 
of attraction of a stable law with tailed index k∈(1,2) and 
Eεt=0.

Our method also relies on the results derived by 
Resnick (1987).

Lemma 2.1  If Assumption 2.1 holds, then 
[ ][ ]( ) ( ) ( )( )1 2 2 2

1 1
, , ,

dTr Tr
T t T tt t

a a Z r W rε ε− −
= =

→∑ ∑
where 

( ){ }1inf : ,T ta x P x Tε −= > ≤

and the random variable Z(r) is k— stable and W2(2) is 
k/2—stable Levy process in [0,1]. The notation d

→ stands 
for convergence in distribution.

The exact definition of the Levy process (Z(r),W2(r)) 
appearing in Lemma 2.1 is not needed in the following, 
but we recall that the quantities aT can be represented as 

( )1 ,Ta T J Tκ=

for some slowly varying function J.
Lemma 2.2 Suppose yt are defined by (1).  If 

Assumption 2.1 and (2) hold, then 

( )1 2 2 2
1 1 1

,  , T T T
T t T t T t t st t t s

a y a y a y y− − −
−= = = +∑ ∑ ∑

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2
0 0 0

1 ,  1 ,  1 ,
d

j j j s jj j j
c Z c W c c W∞ ∞ ∞

+= = =
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where Z(1),W 2(1) and aT are defined in Lemma 2.1.
Interestingly, Lemma 2.2 does not extended directly 

to a functional version, as it does in Lemma 2.1. This 
has been discovered by Avram and Taqqu (1986) and 
Resnick (1987). However, they still proved the results 

that [ ]

1
( )Tr

t Tt
y Op a

=
=∑  and  [ ] 2 2

1
( )Tr

T Tt
y Op a

=
=∑ , which 

are necessary to derive the asymptotic validity of our test 
procedures.

To examine the spurious effects, we first define two 
independent series ut and vt, which satisfy Assumption 
2.1 with tailed indices ku and kv, respectively. Now, we 
consider two stable processes xt (explanation variable) and 
yt (depedent variable) generated from the following DGP:

{ [ ]}( ) ( [ ])1 ,
xt x x x x t T tA L x t t T uτµ θ γ τ >= + + − +  (3)

{ [ ]}( ) ( [ ])1 ,
yt y y y y t T tB L y t t T vτµ θ γ τ >= + + − +  (4)

where lag polynomials, A(L)and B(L), have their roots 
lying outside the unit circle; xt is the explanation variable 
and yt is the depedent variable; μx and μy are the intercept 
of xt and yt; θx and γx are, respectively, the permanent trend 
and the transitory trend, resulting from a break, of the 
process xt; θy and γy are, respectively, the permanent trend 
and the transitory trend, resulting from a break, of the 
process yt. Both { [ ]}1

xt Tτ>  and { [ ]}1
yt Tτ>  equal 1 when t >[Tτx] 

and t >[Tτy], or equal 0. The below Theorem 3.1 indicates 
that (3) and (4) exist the 

spurious regression, but in fact there is not any direct 
relation between them.

Let us define the following inverse lag operators: 

( ) ( )1
0

j
jj

A L A L a L∞−
=

= = ∑  and 

( ) ( )1
0

j
jj

B L B L b L∞−
=

= = ∑ , with 0 jj
a∞

=
< ∞∑  and 

0 jj
b∞

=
< ∞∑ . Because the roots of A(L) and B(L) are 

outside the unit circle. Therefore, it follows from the BN 
(Beveridge and nelson) decomposition can be used as 
following, yields

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 ,

1 1 ,

A L A L A L

B L B L B L

= + −

= + −

W h e r e  ( ) 0 1
,j j kj k j

A L a a a∞ ∞

= = +
= =∑ ∑   a n d 

( ) 0 1
,j j kj k j

B L b b b∞ ∞

= = +
= =∑ ∑  .  B N  d e c o m p o s i t i o n 
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yields directly the martingale approximation to the partial 
sum process of a stationary time series, see Hall and 
Heyde(1980).

We assume, without loss of generality, that the initial 
values of the stable processes 0u , 0v , 0x  and 0y  are all 

zero. Hence, tx  and ty  can be rewritten as

{ }
{ [ ]}

(1) ( (1) (1)) (1)( [ ]) (1)

1 ( ) ,
x

t x x x x

t T t

x A A t A A t T A

A L uτ
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>

= + + + − +

+

 (5)

{ }
{ [ ]}

(1) ( (1) (1)) (1)( [ ]) (1)

1 B( ) ,
y

t y y y y

t T t

y B B t B B t T B

L vτ

µ θ γ τ

>

= + + + − +

+

 (6)
In the view of Lemma 2.1 and 2.2, if we define 

1
, ( )u

u T ua T J Tκ=  and 1
, ( )v

v T va T J Tκ= ,
then we have

( ) ( )( )
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,
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.

2.  MAIN RESULTS
Given the preceding discussion, we consider the 

  t t ty t xα δ β ξ= + + +  (7)

Let α̂ , δ̂  and β̂  denote the ordinary least square 
estimates from a regression of yt on a constant, the trend 
t and xt respectively. Their respective ‘variance’ are 

estimated by 2
ˆsα , 2

ˆs
δ

 and 
2
ˆs
β  from which we have the 

diagnostic statistics 
ˆ̂ ˆ /t sα αα= , ˆ̂

ˆ /t s
δ δ

δ=  and ˆ̂
ˆ /t s

β β
β= .

In order to determine the limit behavior of the t -ratios, 

the following Lemma is needed.
Lemma3.1 Suppose that (xt , yt) is generated by (5) and 

(6). The sequence, ut and vt, are independent and satisfy 
Assumption 2.1. Then, as T →∞ ,
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y x
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τ τ
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Moreover, the items 1-8 hold irrespective of the initial 

conditions assigned to x0 and y0.
Proof  The proof of item 1 of Lemma 3.1 can be 

available with some preliminary algebra. Now, we shall 
prove item 2 of Lemma 3.1. Note that

 ( ) ( )( ) ( ) ( ) [ ]{ }
( ) [ ]( ) [ ]{ } ( )

2
1

2 2 2
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One can verify that I→0 and III→0. In the view 
of Lemma 2.2 and item 1 of Lemma 3.1, yields 

( )
1

0
1xII A rdrθ→ ∫ , ( ) ( )

1
1

x
x xIV A r dr

τ
γ τ→ −∫ , and V=Op 

( )2
,u TT α− ⋅ =op(1).

To avoid any cumbersome mathematical expression, 
we shall summarize only the terms of order O(T -1) as 
follows. Note also that 
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One can verify 
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0
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x
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τ
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x
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τ
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To prove item 4 of Lemma 3.1, we have 
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Now it remains to prove item 8 of Lemma 3.1. One 
can verify the negligibility of items 5,6,7,9 and 10 in a 
similar fashion to complete the proof of Lemma 3.1. Note 
that 
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Let’s define 
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where the elements of the matrices are defined in 
Lemma 3.1.

The limiting behavior of regression statistics are stated 
in Theorem 3.1.

Theorem 3.1 Suppose that the conditions of Lemma 
3.1 are satisfied. Then, asT →∞ ,
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And I(i)denotes a vector in which the i -th element is 
one and other elements are zeros.

Proof of Theorem 3.1  Using the results from Lemma 
3.1, we have 
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By applying Lemma 3 .1, one can immediately derive 
the limits of individual terms in the above equations. 
Theorem 3.1 has been proved. 

3.  SIMULATION
In this section we use Monte Carlo simulation methods to 
examine the sample performance of our theoretical results 
in Section 2 and 3. We compute rejection frequency of thet-
ratios for testing the null hypotheses H0:β=0, in equations 
(7). All results are obtained by 3000 replications using a 1.96 
critical value (5% level) for a standard normal distribution.

We consider the properties of the t-ratios when the 
data-generating processes exhibit structural breaks in 
trend. For the simulation, we let

1 { [ ]}( [ ])1 ,
xt x t x x x x t T tx x t t T uτφ µ θ γ τ− >= + + + − +

1 { [ ]}( [ ])1 ,
yt y t y y y y t T ty y t t T vτφ µ θ γ τ− >= + + + − +

W h e r e 0.8, 1.2, 0.3, 0.2, 0.1x y x y xµ µ θ θ γ= = = = =  
and γy=0.2 The values of autoregressive parameters are 
still chosen to be{0.0,0.2,0.5,0.8,1.0}. The innovation 
processes ut and vt. The spurious regression of generated by 
the program of STABLE are independent of each other and 
satisfy Assumption 2.1 with tailed indexes kuand kv varying 
among {1.2,1.3,1.8}. Moreover, the program STABLE is 
available from J. P. Nolans website: academic2.american.
edu/.jpnolan. We just report the results for f=f x=f y, and the 
other cases have similar results.

Table1
Regressing Between Two AR(1) Infinite-Variance Series With Breaks in Trendf=f x=f y), Rejection frequency of 

1.96tβ > .

k1=1.3, k2=1.2 k1=1.3, k2=1.8
τx,τy T/f 0.0 0.2 0.5 0.8 1.0 0.0 0.2 0.5 0.8 1.0

0.10
0.10

500 20.63 30.55 59.62 84.50 100 88.00  90.48 96.43 97.82 100
1000 65.12 72.52 85.51 94.50 100 96.42 98.00 99.00 99.24 100
10000 99.10 99.43 99.30 99.91 100 100 100 100 100 100

0.10
0.90

500 2.20 5.50 14.87 39.83 100 18.31 24.42 45.11 69.10 100
1000 9.44 15.26 33.76 58.82 100 66.35 74.31 83.32 91.27 100
10000 95.00 96.00 97.89 99.10 100 100 100 100 100 100

0.50
0.50

500 90.35 93.50 95.77 98.15 100 98.12 99.00 99.47 99.81 100
1000 97.11 97.00 98.80 99.22 100 99.47 100 100 100 100
10000 99.13 99.17 99.33 99.76 100 100 100 100 100 100

0.90
0.10

500 3.58 5.00 12.95 32.45 100 5.64 6.16 12.76 30.67 100
1000 5.97 10.41 26.20 51.11 100 51.36 60.75 76.49 85.73 100
10000 94.89 97.78 97.32 99.00 100 100 100 100 100 100 

0.90
0.90

500 26.54 36.50 62.00 78.73 100 89.23 92.66 94.86 97.45 100
1000 64.45 74.60 86.06 92.23 100 98.06 97.62 99.28 99.40 100
10000 99.00 99.39 99.74 99.67 100 100 100 100 100 100

Table 1 report the simulated empirical power for 
the case of structural breaks in trend. There are some 
conclusions should be mentioned. Firstly, we will find the 
phenomenon of spurious regression driven by trend breaks 
is serious, since the magnitude of the probability limit 
of ˆt

β  increases even further. Hence, the rejection rate of 

100% is wel predicted. Second, as T increases, or either xφ  

or yφ  increass, the rejection powe increases. The rejection 

rate for the T=1000, 0.1, 0.9, 0.8, 0.8x y x yτ τ φ φ= = = =  are 
58.82% for k1=1.3,k2=1.2, and 91.27% for k1=1.3,k2=1.8, 
confirming the consistency results of Theroem 3.1. 

Finally, it is clear that the less tailed indexes provide a 
lower empirical power. It is mainly because both DGP 
xt and yt have more ‘outliers’ when the tailed indexes 
decrease. This conclusion that the test statistics are 
sensitive to the tailed index, and the similar results can 
been seen in the paper of Jin et al. (2009).

In order to give further intuitive idea for the influence 
of autoregressive parameter, break fraction and tailed 
index, we provide the rejection frequency of two pairs of 
tailed indexes with

0,0.2,0.5,1, , (0,1)x yφ τ τ= ∈ and sample size T=1000in 
Figure 1-2.

Figure 1
The First Panel Represents Rejection Frequency For Autoregressive Parameters 0φ =  and the Last Three for 

0.2φ = , 0.5φ = and 1φ =  ( 1 1.3κ = , 2 1.2κ = ) Respectively
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Figure 2
The First Panel Represents Rejection Frequency for Autoregressive Parameters 0φ =  and the Last Three for 

0.2φ = , 0.5φ = and 1φ =  ( 1 1.3κ = , 2 1.8κ = ) Respectively

Figure 1-2 report that the null hypothesis of ˆt
β will 

almost be rejected with certainty even if 0φ = in the case 
of trend breaks. In a word, our simulation experiments 
confirm our motivation a spurious relationship is present 
in these regressions in the case of structural breaks in 
trend.

CONCLUSION
The research of Tsay (1999) examined the possibility of 
spurious relationship between two independent integrated 
errors processes belonging to the domain of attraction of a 
stable law with tailed indexκ , and showed that the t-ratios 
diverge at the rate, which is identical to what Phillips 
(1986) has obtained for the Gaussian case where 2κ =
. This paper has been extended to consider the properties 
of t-ratios allowing for structural breaks in the regressive 
relationship when applied to independent infinite-variance 
series subject to breaks in trend. We find that using this 
fairly standard AR(p) framework allows us to successfully 
address the questions whether spurious regctural breaks in 
trend is found to be ( 1 2T ). A fairly extensive Monte Carlo 
study has also been conducted to verify the performance 
of our test procedures, especially those of convergence 
rate established in the paper. Hence, it is likely to find 
a spuriously statistical significant relationship between 
two independent stable AR(p) processes subject to trend 
breaks when the regression model includes a linear trend 
in its deterministic specification.
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