# Toward A Real-time Celestial Body Information System 

Brian Mitchell Guise<br>University of Central Florida

## Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

## STARS Citation

Guise, Brian Mitchell, "Toward A Real-time Celestial Body Information System" (2010). Electronic Theses and Dissertations, 2004-2019. 1565.
https://stars.library.ucf.edu/etd/1565


# TOWARD A REAL-TIME CELESTIAL BODY INFORMATION SYSTEM 

By<br>BRIAN MITCHELL GUISE<br>B.S.E.E. University of Central Florida, 1988<br>M.S. University of Central Florida, 1997

# A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy <br> in the Department of Industrial Engineering and Management Systems in the College of Engineering and Computer Science <br> at the University of Central Florida <br> Orlando, Florida 

Summer Term
2010

Major Professor: Michael D. Proctor
© 2010 Brian Mitchell Guise


#### Abstract

The National Aeronautics and Space Administration maintains a challenging schedule of planned and on-going space exploration missions that extend to the outer reaches of our galaxy. New missions represent a huge investment, in terms of actual costs for equipment and support infrastructure, and personnel training. The success of a mission is critical considering both the monetary investment, and for manned missions, the lives which are put at risk. Tragedies involving Challenger, Columbia, Apollo 7, and the near tragedy of Apollo 13 exemplify that space exploration is a dangerous endeavor, posing extreme environmental conditions on both equipment and personnel. NASA, the National Science Foundation' and numerous independent researchers indicate that predictive simulations have the potential to decrease risk and increase efficiency and effectiveness in space exploration activity. Simulations provide the capability to conduct planning and rehearsal of missions, allowing risk reducing designs and techniques to be discovered and tested. Real-time simulations may improve the quality of the response in a real-time crisis situation.


The US Army developed Layered Terrain Format (LTF) database is a uniquely architected database approach that provides high fidelity representation of terrain and specialized terrain query functions that are optimized to support real-time simulations. This dissertation investigates the question; can the unique LTF database architecture be applied to the general problem of celestial body representation? And if so, what benefits might it bring for mission planners and personnel executing the mission? Due to data limitations, this research investigates these questions through a lunar analog setting
involving $S$ band and Earth-bound communication signals as might be needed to conduct manned and/or robotic mission on the moon.

The target terrain data set includes portions of the Black Point Lava Flow in Arizona which will be used for NASA's 2010 Desert RATS analog studies. Applied Research Associates Inc, the developer of the LTF product, generated Black Point databases and made limited modifications to the LTF Viewer tool, RAVEN, which is used for visualization of the database. Through the results attained during this research it is concluded that LTF product does provide a useful simulation capability which could be used by mission personnel both in pre-mission planning and during mission execution. Additionally, LTF is shown to have application an information system, allowing geospecific data of interest to the mission to be implemented within its layers.

The Florida Space Research \& Education Grant Program sponsored by FSGC, Space Florida and UCF provided a grant of $\$ 31,500$ to perform this research.

## TABLE OF CONTENTS

LIST OF FIGURES ..... vii
LIST OF TABLES ..... viii
LIST OF ACRONYMS ..... ix
1 GENERAL LITERATURE ON CELESTIAL BODY MODELING AND SIMULATION ..... 1
1.1 Simulation Needs for Space Exploration ..... 1
1.2 NASA Exploration Programs and DSES ..... 4
1.3 NASA Desert Research And Technology Studies ..... 6
1.4 NASA's Reuse of Existing Technology ..... 6
1.5 Army Simulation Terrain Databases ..... 7
1.5.1 LTF Terrain Database Generation ..... 9
1.6 Application of LTF in NASA Simulations ..... 9
1.6.1 Lunar Reconnaissance Orbiter (LRO) Terrain Data ..... 12
1.7 Motivation For Research ..... 13
1.8 Research Summary ..... 14
1.9 Dissertation Overview ..... 15
2 BACKGROUND AND RELATED CELESTIAL BODY MODELING AND SIMULATION WORK ..... 17
2.1 Layered Databases ..... 17
2.2 Requirements and Development of the Army's Layered Terrain Format Database ..... 18
2.3 Application of LTF in NASA Products ..... 21
2.4 Lunar Space Communications Architecture ..... 26
2.5 Lunar and Earth Based Communications Models ..... 29
3 RESEARCH METHOD ..... 38
3.1 Scope and Research Limitations ..... 38
3.2 General Research Questions: ..... 41
3.3 Specific Research Questions ..... 42
3.3.1 Question RQ1A ..... 42
3.3.2 Question RQ1B ..... 43
3.3.3 Question RQ1C ..... 46
3.3.4 Question RQ1D ..... 46
3.3.5 Question RQ1E ..... 47
3.3.6 Question RQ1F ..... 47
3.3.7 Question RQ1G ..... 50
3.3.8 Questions RQ2A and RQ2B ..... 51
3.4 Post Processing of Collected Black Point Data ..... 52
3.5 Discussion of Reliability of LTF ..... 53
4 DATA COLLECTION AND ANALYSIS ..... 60
4.1 Raw Data ..... 60
4.2 LTF Communication Coverage Predictions and Signal Strength Predictions ..... 62
4.3 Statistical Analysis ..... 69
4.4 RQ1BH1 Test and Analysis ..... 70
4.5 RQ1FH2 Test and Analysis ..... 75
4.6 RQ1FH4 Test and Analysis ..... 78
4.7 RQ1GH1 Test and Analysis ..... 82
4.8 RQ1GH2 Test and Analysis ..... 86
4.9 Additional Analysis Beyond What Was Proposed ..... 87
4.9.1 Regression Analysis of LIDAR Predictions ..... 87
4.9.2 Chi-Square Analysis of LIDAR Blocked and Unblocked predictions ..... 89
5 SUMMARY, CONCLUSIONS, RESEARCH LIMITATIONS, LESSONS LEARNED AND SUGGESTED FUTURE RESEARCH ..... 92
5.1 Summary ..... 92
5.1.1 Motivation ..... 92
5.1.2 Research Design ..... 93
5.1.3 Data Collection ..... 97
5.1.4 Findings and Analysis ..... 99
5.2 Conclusions ..... 101
5.3 Potential Research Benefits and Inferences ..... 105
5.4 Scope and Limitations ..... 107
5.5 Lessons Learned ..... 109
5.6 Applicability of Current Research Findings and Suggested Future Research Opportunities ..... 110
APPENDIX A COLLECTED FIELD DATA ..... 114
APPENDIX B LTF LIDAR DATABASE AND SRTM DATABASE ELEVATION COMPARISONS ..... 150
APPENDIX C LTF PREDICTION OF TERRAIN BLOCKAGE ..... 154
APPENDIX D TEST 2 - LIDAR CALCULATED SIGNAL STRENGTH ERROR ..... 171
APPENDIX E SIGNAL STRENGTH ERROR FOR SRTM AND LIDAR PREDICTIONS ..... 174
APPENDIX F CHI-SQUARE TEST DATA RQ1GH1A ..... 178
APPENDIX G COLOR ASSIGNMENT COMPARISONS FOR THREE ATTENUATION MODELS ..... 187
APPENDIX H LINEAR REGRESSION ANALYSIS ..... 191
APPENDIX I CHI SQUARE TEST OF LIDAR BLOCKED VS UNBLOCKED PREDICTIONS ..... 195
APPENDIX J NASA LTF VIEWER POTENTIAL IMPROVEMENTS ..... 217
LIST OF REFERENCES ..... 222

## LIST OF FIGURES

Figure 1 Fixed Tropos Radio Deployment ..... 61
Figure 2 Mobile Tropos Radio Deployment ..... 61
Figure 3 LIDAR Communications Coverage Prediction Map ..... 63
Figure 4 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 1 ..... 64
Figure 5 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 2 ..... 65
Figure 6 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 3 ..... 66
Figure 7 Statistical Test Parameters. ..... 73
Figure 8 Statistical Test Parameters ..... 77
Figure 9 Statistical Test Parameters ..... 80
Figure 10 Statistical Test Parameters ..... 84
Figure 11 Signal Strength Prediction (dB) vs. Distance (meters) ..... 88
Figure 12 Predicted Signal Strength Error (dB) vs. Distance (meters) ..... 89
Figure 13 LTF Communication Layers Diagram ..... 94
Figure 14 LTF Communication Layers Entity Relationship Diagram ..... 95
Figure 15 LTF Capability Modification Flowchart ..... 96
Figure 16 Coverage Map Overlay of BP Mountain as Shown in LTF Viewer ..... 97
Figure 17 LTF Application in Mission Planning and Execution ..... 104

## LIST OF TABLES

Table 1 Sample of Human Health Risks of Space Exploration ..... 3
Table 2 LMMP Requirement Subset ..... 25
Table 3 Lunar Communications Architecture Major Components ..... 27
Table 4 Proposed Test Matrix for RQ1BH1 ..... 45
Table 5 Summary of Research Questions, Hypotheses, and Test Methods ..... 55
Table 6 Tropos Output Data Files ..... 62
Table 7 Chi Square Test Matrix for RQ1BH1 ..... 74
Table 8 Chi Square Test Matrix ..... 85
Table 9 Cochrans Q Test Matrix ..... 87
Table 10 Chi Square Test Matrix ..... 90
Table 11 Test Data Provided in Appendices ..... 98
Table 12 Tropos. 500 Raw Data ..... 115
Table 13 Tropos. 505 Raw Data ..... 137
Table 14 Tropos. 727 Raw Data ..... 143
Table 15 Fixed Antenna Locations ..... 149
Table 16 Height Error Comparison ..... 151
Table 17 Chi Square Test Data RQ1BH1 ..... 155
Table 18 LTF Predicted Signal Strength Error ..... 172
Table 19 LIDAR and SRTM Prediction Errors ..... 175
Table 20 Chi Square Test Data RQ1GH1A ..... 179
Table 21 Friis, Egli, and Foore and Ida Model Results for Cochran's Q Test ..... 188
Table 22 Linear Regression Analysis ..... 192
Table 23 Chi Square Analysis of LTF Prediction of Blocked/Unblocked Signals ..... 196

## LIST OF ACRONYMS

API - Application programming interface
ARA - Applied Research Associates, Inc
ATHLETE - All-terrain, hex-limbed, extra-terrestrial explorer
A-TESS - Army tactical engagement simulation system
BP - Black Point, Arizona
BVH - Bounding volume hierarchy
COLLADA - Collaborative Design Activity (an XML schema for graphical design)
COTS - Commercial off the shelf
db - decibel
DB - Database
DEM - Digital elevation map
DSES - Distributed Space Exploration Simulation
DSNet - Distributed simulation network
DTED - Digital terrain elevation data
EVA - Extravehicular activity
FOM - Federation Object Model
FOV - Field of view
FSGC - Florida Space Grant Consortium
GIS - Geographic information system
GOTS - Government off the shelf
GP - Geometric pairing
GPS - Global positioning system

HLA - High level architecture
KML - Keyhole markup language
KSC - Kennedy Space Center
LCT - Lunar communications terminal
LIDAR - Light detection and ranging
LMMP - Lunar Mapping and Modeling Project
LOLA - Lunar Orbiter Laser Altimeter

LOS - Line of site
LRO - Lunar Reconnaissance Observer
LROC - LRO Camera

LSOS - Lunar surface operations simulator
LSS - Lunar surface systems
LTF - Layered Terrain Format
MILES - Multiple Integrated Laser Engagement System
NASA - National Aeronautics and Space Administration
PC - Personal computer
PEO STRICOM -Program Executive Office Simulation Training and Instrument
Command
RATS - Research and technology studies
RDECOM - Research Development and Engineering Command
RF - Radio frequency
RUGUD - Rapid Unified Generation of Urban Databases
SBES - Simulation-based engineering science

SBIR - Small business innovative research
SNE - Synthetic natural environment
SRTM - Shuttle radar topography mission
STTR - Small business technology transfer

## 1 GENERAL LITERATURE ON CELESTIAL BODY MODELING AND SIMULATION

Chapter 1 reviews the need for simulations supporting heliophysic, celestial body science and exploration, and space exploration mission rehearsal. A description of current and planned simulations systems developed by the National Aeronautics and Space Administration (NASA) in support of on-going and future exploration missions is provided. The US Army's Layered Terrain Format (LTF) database is introduced and a general overview of its capabilities and use in military training is included. The motivation for the proposed layered celestial body database research will be identified by the gaps in current space mission planning, mission rehearsal, mission support, and mission mirroring capabilities that could potentially be satisfied by the LTF database product.

### 1.1 Simulation Needs for Space Exploration

The Bush administration's 2004 Vision for Space Exploration launched NASA on a challenging new mission to resume both robotic and manned exploration missions to the celestial bodies within our solar system, including the creation of sustained human habitats on both the Moon and Mars. NASA, in response to the vision, has developed an aggressive exploration program with near term goals of Lunar and Mars robotic missions and longer term goals of exploring celestial bodies within and outside of our solar system. Early robotic Mars and Lunar missions are expected to provide proof of mission architectures which will support longer range missions (Connolly, 2006). NASA has
since been engaged in numerous architecture studies and analog field trials aimed at developing systems which support these new exploration endeavors. The development of simulations systems to support the new exploration missions is currently ongoing.

NASA's recognition of the importance of simulation to space exploration is evident through its history of development of mission specific simulators. Throughout the early space programs (Mercury, Gemini, and Apollo), astronauts would spend one third or more of total training time in simulators. NASA simulators range from full-motion full function mission simulators to task targeted part task trainers. The Apollo program alone used 15 simulators which logged a total of nearly 30,000 training hours during the multiyear program (Tomayko, 1988). Since the end of the Apollo program, NASA has expanded the use of simulation beyond just crew training, leveraging simulation tools for planning, risk assessments, design analysis, and mission rehearsal.

As the tragedies involving the Challenger, the Columbia, Apollo 7, and the near tragedy of Apollo 13 exemplify, space exploration is a dangerous endeavor, posing extreme environmental conditions on both equipment and personnel. NASA's future planned missions will require long term exposure to both dynamic heliophysic and planetary effects. NASA's Bioastronautics roadmap was generated to document the expected risk to humans of such extended exposure and to provide guidance for risk assessment and reduction activities. Table 1 provides a small sampling of the health risks identified in this report (NASA/SP-2004-6113, 2005).

Table 1 Sample of Human Health Risks of Space Exploration

| Risk No. | Risk Title | Risk Description |
| :--- | :--- | :--- |
| 22 | Medical Informatics, <br> Technologies and Support <br> Systems | Limited communication capability during space <br> flight results in the compromised ability to <br> provide medical care and may have adverse <br> consequences for crew health. |
| 26 | Mismatch between Crew <br> Cognitive Capabilities and <br> Task Demands | Human performance failure may occur due to <br> inadequate design of tools, interfaces, tasks and <br> information support systems. Task saturation <br> may also occur due to compromises in crew <br> health, human factors and cognitive capabilities. |
| 28 | Carcinogenesis | Increased cancer morbidity or mortality risk in <br> astronauts may be caused by occupational <br> radiation exposure. |
| 31 | Acute Radiation Risks | Acute radiation syndromes may occur due to <br> occupational radiation exposure. |
| 44 | Mismatch between Crew <br> Physical Capabilities and <br> Task Demands | Human performance failure may occur due to <br> human factors inadequacies in the physical work <br> environments (e.g., workplaces, equipment, <br> protective clothing, tools and tasks). |
| 45 | Poorly Integrated Ground, <br> Crew, and Automation <br> Functions | Mission performance failure may occur without <br> adequate operational concepts, design <br> requirements and design tools for integration of <br> multiple factors that affect mission performance, <br> such as ground-crew interaction, communication <br> time, and level of automation. |

Additionally NASA's 2009 SBIR/STTR Program Solicitation (Topic X6: Lunar
Operations) states " Reducing risk and ensuring mission success depends on the coordinated interaction of many functional surface systems including life support, power, communications infrastructure, and transportation." Simulation is a key tool in the modeling, development, and integration of interacting complex systems, as well as the prediction of risk, minimization of risk through design, and determining action in the face
of unavoidable occurrences of risk. NASA will have simulations running throughout the lunar missions to aid in mission planning and execution, and handling of unexpected events.

The National Science Foundation's Simulation-Based Engineering Science Final Report states that predictive simulations provide the ability to optimize human activity and infrastructure in respect to adverse events or trends and real-time simulation the ability to identify rational responses to crisis. The report highlights the September 11 World Trade Center tragedy as an example, "... if real time simulation had been available, the emergency response team would have realized the importance of the immediate evacuation of the building complex." (SBES Final Report)

### 1.2 NASA Exploration Programs and DSES

NASA's Vision for Space Exploration initiative defines the requirement for a Distributed Space Exploration Simulation (DSES) project. The purpose of DSES is to develop and implement a Simulation Based Acquisition process where simulation will play a role throughout an exploration mission's life cycle. DSES outlines an Integrated Modeling and Simulation strategy that includes key policies of reuse of simulation from other organizations/projects and implementation of distributed simulations. (Crues, 2006). Future NASA programs will be supported by a suite of simulation systems that model everything from launch of the space vehicles to the task operations planned for execution on the celestial body surface. And according to Monell (2007), modeling and simulation will be integral to every aspect of a space exploration mission including planning,
architecture analysis, technology evaluation, requirements definition, risk assessment, supportability, operability \& affordability analyses, performance analysis, test and verification, training and operations.

A primary DSES component of interest to this dissertation is the Lunar Surface Operations Simulator (LSOS). LSOS is a physics-based simulator providing realistic visual simulation of lunar surface operations. The LSOS requirements are summarized in the following bullets:

- To provide a virtual environment that represents the best knowledge of the lunar surface in which to simulate operations including surface topography, lighting, radiation environmental features
- To incorporate surface elements (rovers, habitats, crew) at their currently-known level of detail (geometry, structure, function and behavior ) into that environment
- To accurately portray exploration and science operations performed by those elements in that environment, assessing how well the elements can perform the operations (e.g., rover driving, towing, digging/hauling, assembly/disassembly)
- To enable analysts to expose limitations imposed by element functionality and/or environment on the success of the operations at an early time in the design cycle so that the analysts/designers can address them
- To gain experience in simulation of mock lunar operations at terrestrial sites (validates simulations, systems and scenarios). (Wall, 2007)

The LSOS simulation interfaces with other DSES components via the NASA Distributed Simulation Network (DSNet) using IEEE 1516 High Level Architecture (HLA). The

DSES Federation Object Model defines the interoperable data types which DSES components use to exchange data. The models currently available within DSES include simulation programs developed by 5 NASA centers which provide a current capability to simulate the launch of space vehicles and simulation of surface activities provided through LSOS. Future evolution of DSES capabilities will include addition/reuse of Government and Commercial off the shelf (GOTS, COTS) simulations which contribute to the DSES mission (Crues, Chung, Blum, Bowman, 2007).

### 1.3 NASA Desert Research And Technology Studies

NASA's Desert Research and Technology Studies (RATS) are an annual series of analog tests performed by NASA at sites having terrain and terrain features geographically similar to the lunar surface. The 2009 Desert RATS field test ran from August 28th through September 18th. The purpose of these field tests is to assess preliminary exploration operational concepts and prototype systems including rovers, extravehicular activity (EVA) timelines, and ground support by providing hands-on experience with simulated planetary surface exploration EVA hardware and procedures (NASA web).

### 1.4 NASA's Reuse of Existing Technology

In addition to the DSES charter to reuse GOTS and COTS software, several NASA sources have encouraged the reuse of existing technology to reduce cost and development times for NASA projects. "NASA plans to work with other government agencies and the private sector to develop space systems that can address national and commercial needs" and " .. focus on innovations that reduce the cost of sustained space operations" (NASA, The Vision For Space Exploration, 2004).

### 1.5 Army Simulation Terrain Databases

Army training devices are categorized in three domains: Live, Virtual, and Constructive. Live domain is a representation of military operations using Live forces and instrumented weapons and exercise ranges to simulate actual operational conditions. Virtual simulations include training devices that provide force on force engagements in a visible artificial world. Constructive simulations include training simulations that provide force on force engagements in a non-visible artificial world (PEO STRICOM). Terrain databases developed for training system within each group are specialized to fulfill specific domain needs.

Virtual training device typically allow the operator to view a virtual world via computer generated images and display systems. The terrain databases developed for virtual simulators are typically very large and contain detailed data required to render realistic looking scenes including terrain, vehicles, human models, buildings, trees, etc.

Resolution and feature attributes of virtual terrain databases must often support target recognition and engagements at modern weapon ranges. Constructive training devices usually lack the out-the-window viewing features and typically do not have the high fidelity scene rendering capabilities of a virtual system. However the modeled agents and entities within a constructive environment often require the same level of detail from the terrain database to allow path planning, movement, engagement and similar autonomous decision tasks. Terrain attributes such as soil type, water depths, and road networks must be included to support both virtual and constructive systems (Campos, Borkman, Peele, Cambell, 2008). In live training, human participants do most of the planning and
decision making that is agent based in constructive and virtual systems. Less attribute data is required for the terrain database because trainees infer the same information via their own senses. Live training has specific database requirements that differ from other training systems (Borkman, Peele, Cambell, 2007).

A tactical engagement simulation system is a live training device that allows soldiers and combat vehicles to simulate weapon firing, target hits and misses. The Army's Multiple Integrated Laser Engagement System (MILES) is a laser based tactical engagement system, which is similar to a commercial laser tag game. Weapons are fitted with lasers, and potential targets (dismounted infantry and vehicles) have laser detectors. Data encoded within a single laser shot identifies the shooter and munitions type allowing determination of damage/kill status of the target. Although the MILES system was successful, smoke and weather effects severely hindered operations. Additionally, nonline of site weapons, and weapons such as grenades could not be simulated. The Army's newest engagement simulator, Army-Tactical Engagement Simulation System (A-TESS), was designed to provide the MILES functionality without using lasers. Weapons are fitted with high fidelity gyros and inertial devices and players have personnel location systems that allow determination of weapon and target orientation and location. A weapon's trigger pull launches a line of site calculation against the terrain database to determine the intermediate and terminal impact points of the simulated projectile and register target/shooter pairings when successful hits are calculated. The database and executing code reside on a wearable PC carried by the shooter (Borkman et al., 2007).

The LTF database was developed to support the A-TESS program. Specific LTF design constraints included:

- Layered data scheme to provide query optimization for different data types.
- High resolution feature and terrain representation
- Scalable - supports additional data layers, expansion of terrain area.
- $10 \mathrm{Km} \times 10 \mathrm{Km}$ minimum terrain coverage
- Terrain attributes tagging to allow munitions to pass through various surfaces


### 1.5.1 LTF Terrain Database Generation

Due to the high resolution requirements of LTF, databases compiled for Live training events are typically generated from high resolution light detection and ranging (LIDAR) environment data. The RUGUD Toolkit is a suite of tools which generate the LTF database. The input source data, can also include digital elevation data, photo maps, or LIDAR source data. The RUGUD is also capable of generating various other common terrain database formats such as openFlight, COLLADA, etc.

### 1.6 Application of LTF in NASA Simulations

Because the LTF is optimized to provide the rapid LOS calculations, as required by ATESS, applications of LTF within NASA space exploration simulations should be considered to leverage these capabilities. Recent discussions with NASA KSC Lunar Surface Systems (LSS) group has identified the capability to quickly generate and represent lunar surface communications mapping as a gap in current NASA capabilities which is a likely application of LTF. NASA currently uses LSOS and other products,
such as Radio Mobile, to generate coverage maps, but these tools lack the real-time LOS execution capabilities provided by LTF. NASA desires the capability to provide fast updates to coverage predictions given the likely dynamic nature of celestial body exploration mission execution and re-planning. A further benefit LTF may provide is the representation of other types of geo-specific data. The communications use case for example will provide an LTF layer to represent radio hardware assets and their parameters. A mining mission may benefit from the addition of an LTF materials layer containing geo-specific mineralogy data from previous missions or satellite sensors. Layers contain details of surface type and slope could be added to support route planning and navigation tasks.

That leads to the general research question for this dissertation: Can the unique LTF database architecture be applied to the general problem of celestial body representation? Due to research limitations, this database architecture will be investigated for general celestial body representation not through a clinical study but rather through literature research and a case study in an analog setting. The case study will investigate one layer both in terms of modeling and representational characteristics. The communications mapping is intended to provide astronauts and/or robotic controllers with a visual indication of areas in which they can explore or traverse while still staying with LOS and transmission range of moon base, earth, or satellite communications antennas. The potential application of LTF for this use case allows us to further define the question: (RQ1) As analogs to Planetary and Heliophysiscs effects, what factors must the LTF database represent and at what resolution must the LTF database model these factors in
order to represent attenuation of various communications signals due to geospatial and atmospheric effect to the extent that they influence planning and execution of analog lunar surface operations?

NASA's current lunar communications architecture specifies the use of $S$ and Ka band RF signals for voice and data transmissions and for use in lunar surface navigation systems. GPS-based navigation will likely not be available on exploration missions, due to the prohibitive cost of the constellation of satellites that would be required. Instead NASA will employ a hybrid navigation system relying on both terrain references and radio transmissions. This system will be highly dependent on the LOS-based communications network. (Schier, 2007) Section 2 provides more detailed discussions of NASA's communications architecture.

If LTF can be successfully leveraged for communications predictions, then usability leads to a second general research question:
(RQ2) What are the human systems integration/interface components and what should their characteristics be so that astronauts or mission controllers receive spatial representations of various communications signal attenuations to affect timely and effective planning and execution of analog lunar surface operations?

There are no tested research hypotheses derived from this general question, in part due to a lack of research funds required to implement specific LTF features desired by NASA, and also due to a schedule slip in the NASA Desert RATS trials which will prevent review of the product by relevant astronaut analogs. Recent meetings with NASA

Kennedy Space Center scientists have yielded discussions of visual display concepts such as coverage maps, routes, and exploration points that are rendered within the LTF tool as semi-transparent overlays as a proof of concept for overlay files which could be exported to other viewing systems. NASA has also indicated that dynamic communications maps, which update due to relay antenna deployment or transmitter repositioning, are desired. The current plan is to provide a proof of concept demonstration of these capabilities and collect any personal anecdotal feedback to be included in the results section of this dissertation to aid future researchers that wish to pursue such study.

### 1.6.1 Lunar Reconnaissance Orbiter (LRO) Terrain Data

NASA's LRO is tasked with finding safe landing sites, potential resources (such as frozen water) and characterizing the radiation environment of the Lunar polar regions. The LRO was launched in July 2009 and is currently in a low polar orbit for a planned 1 year mission. Data from the LRO's instrument package began arriving on September 17, 2009.

One of the primary instrument packages aboard the LRO is the Lunar Orbiter Laser Altimeter (LOLA). LOLA will gather lunar topography data providing lunar digital elevation maps (DEM) that will support landing events and mobility during surface activities. Additional LRO instruments include the Lunar Reconnaissance Orbiter Camera (LROC) which will collect images of the lunar surface. LROC incorporates 2 narrow and 1 wide field of view cameras. Images from the narrow FOV cameras will provide meter-scale mapping of select lunar polar regions that are of exploration interest to NASA (NASA Press Kit, 2009). The accuracy of digital elevation data gathered by
the laser altimeter data will be $\pm 10$ centimeters, with a grid resolution of 25 meters between posts (NASA LOLA Fact Sheet, 2009).

For the proposed research, it will not be possible to collect actual lunar RF transmission data against which to test the LTF performance. Instead RF measurements data collected at the planned 2010 Desert RATS site will be used. LTF will model that site (Black Point, Arizona) using two sources of topographical data to produce two different resolution LTF databases. One Black Point (BP) database will be generated from (Shuttle Radar Topography Mission) SRTM datasets. The other database will be generated from high fidelity LIDAR data recently collected by NASA.

### 1.7 Motivation For Research

Fulfilling requirements for planning and rehearsal of space exploration missions has historically involved creation of mission specific simulations that incur both a major cost element and a potential schedule impact to the program. The DSES program is a forward thinking initiative by NASA, providing a reusable set of simulation capabilities which will benefit future space exploration endeavors. However, because space exploration poses extreme risks to both equipment and humans, it is imperative that developed simulations realistically model both the systems and environmental conditions under which they will operate. NASA recognition of this need is identified in internal briefings which require developers to develop and implement processes for verification, validation and accreditation of software models and simulations (Monell, 2007).

The motivation for our research is to investigate the re-use of a mature Army developed high fidelity terrain database capability to satisfy existing requirements or improve upon current capabilities of current or planned NASA simulations. The layered architecture of the LTF database may provide a good fit for the identified communications layer task. LTF is optimized to provide rapid line of sight calculation, provides LOS attenuation capabilities based on terrain and feature attributes, and allows addition of layers which can accommodate terrain specific attributes that affect RF transmission. The US Army version of LTF lacks models for RF signal propagation and attenuation. The US Army is currently funding additional research and development tasks to improve and expand the capabilities of LTF which may further benefit NASA requirements. The research approach will verify, through the scientific method, the validity of implementing LTF terrain databases to model attenuation for lunar surface communications. Additionally this research will:

- Support reuse strategies outlined in NASA's DESD program objectives
- Implement a scope limited celestial body information system within LTF providing proof of concept for additional mission specific data layers
- Support Florida Space Grant Consortium objectives to supporting research opportunities, and academic-NASA-industry partnerships.


### 1.8 Research Summary

The goal of this case study is to determine the feasibility of re-purposing a matured Army simulation product, the LTF database, for use by NASA to fulfill gaps within their current mission simulation capabilities.

Our specific objectives are:

- Creation of LTF databases from existing lunar analog surface topology data:
- 2010 Desert RATS exercise area digital elevation data to be provided by NASA
- SRTM DTED level 2 elevation data for the same site.
- Identification of an S-band communications model that can be embedded in LTF
- Creation of a corresponding communications data layer within the LTF database
- Create of LOS communications overlays and queries on the selected analog database for both local and analog earth bound signals
- Conduct actual communications signal power readings samples from the site of NASA's planned 2010 Desert RATS analog tests, using the points of interest and antenna locations provided by NASA.
- Conduct analysis to identify per cell accuracy of prediction to actual field reading. Research will include inferential statistical analysis of correct positives, correct negatives, incorrect positives, and incorrect negatives.
- Publication and dissemination of findings


### 1.9 Dissertation Overview

Chapter 2 provides further discussion of the LTF product, ongoing Army development activities, and the RUGUD database generation tool which is used to build the LTF database. NASA's lunar communications architecture is examined and the current approaches to Lunar and Earth based communication simulations are reviewed from the literature. The identified general research questions are developed into detailed research questions which address the capability of LTF to fulfill both NASA simulation
requirements and to address the gaps identified in the current lunar communications modeling knowledge base.

Chapter 3 defines the research methods used for statistical analysis. Limitations of the research are defined. Hypotheses are developed, and the statistical tests planned for each hypothesis is stated. A discussion of post processing of field collected RF measurement data is also provided.

Chapter 4 provides the statistical test results for tested hypotheses. The raw data collected during the data collection trip is provided. The specific subset of data used for each test is provided in Appendices which are referenced within the chapter 4 body text.

Chapter 5 provides a summary of the overall effort of this research, findings and conclusions. The specific contributions of this research to the body of knowledge is provided as well as generalization of findings to additional domains. Finally a discussion of future research opportunities and potential improvements to the developed LTF capabilities is provided.

## 2 BACKGROUND AND RELATED CELESTIAL BODY MODELING AND SIMULATION WORK

Chapter 2 starts with a review of literature for recent research related to layered terrain databases, then the current requirements and capabilities of the Army's Layered Terrain Format (LTF) database are discussed. A preliminary assessment of where and how LTF capabilities could enhance NASA simulations will be discussed. NASA's lunar communications architecture is examined and the current approaches to Lunar and Earth based communication simulations are reviewed from the literature. The literature review will identify key requirements and gaps within current and planned NASA developed celestial body terrain databases. The general research questions identified in chapter 1 are developed into detailed research questions which address the capability of LTF to fulfill both NASA simulation requirements and to address the gaps identified in the current lunar communications modeling knowledge base.

### 2.1 Layered Databases

References to layered terrain databases within the literature are primarily focused on Geographic Information Systems GIS, specifically, virtual globes such as Google Earth, Microsoft Virtual Earth, and NASA World Wind. The capability of integrating satellite imagery, aerial photography, and digital map data with user specific geospatial information has popularized the use of virtual globes across many domains. For the research community, these systems have enabled easier collaboration on and sharing of research projects and research findings (Chen, Leptoukhm, Kempler, Di, 2008). Kamadjeu (2009), states that "Google Earth is becoming an important mapping structure for public health". His case study involved tracking of a polio outbreak and eradication
program response within the Democratic Republic of Congo. Addition examples of Google Earth use within the healthcare ranges from the geographic tracking of infectious diseases, such as Avian Flu, to studies of molecular epidemiology enabled through mapping of genetic differences across geographic areas. The capability to extract data from independent sources (or layers) and provide 2D or 3D overlays integrated with the topographic layer is referred to as "mashups" and is one key to the popularity and success of the virtual globe systems (Boulos, Scotch, Cheung, Burden, 2008).

In addition to the virtual globe applications, there are numerous examples of customized GIS samples which overlay user specific data on custom topographic databases. These systems often require greater geographic accuracy or additional interface capabilities not available via Google Earth or Microsoft Virtual Earth. Hydroseek, for example, is a geospatial search engine developed to links hydrological data from three repositories, the National Water Information System, Chesapeake Bay Information Management System, and National Atmospheric Deposition Program to a satellite image based user query interface (Beran, Piaseki, 2009). Microsoft is developing a system called Sensor Map which is designed to interact with real-time sensors and web based information sources to provide geo-spatial mapping of user specified data. (Nath, 2007).

### 2.2 Requirements and Development of the Army's Layered Terrain Format Database

The majority of Synthetic Natural Environment (SNE) terrain databases developed by the US Army have supported virtual and constructive domain simulation systems. As stated in section 1.3, live training systems have unique database needs because the training is
done in a real world environment and the trainee is exposed to both the real environment and the calculations run within the virtual environment. For example if a tree exists (on the real world training field) between a shooter and his intended target then a simulated weapon fire must be blocked, preventing a kill or damage score. This requires accurate positioning and sizing of the tree within the database as well as accurate representation of both participants' locations within the simulation. Thus the live training database must very accurately correlate with the real training environment for elements which could hinder munition flyout such as terrain and features.

The design approach for A-TESS is Terrain Augmented Geometric Pairing (GP). GP systems use GPS positions and pointing sensors in order to determine weapon firing trajectories. Terrain augmented GP adds terrain knowledge to the calculations preventing modeled projectiles from shooting through hills or other represented features (Baer, Campbell, Campos, Powel, 2008). Resolution requirements for LTF result from consideration of the inherent inaccuracies within the GP system. GPS systems have a nominal error of two meters for 2-D position. GPS vertical inaccuracies are much larger so the elevation is retrieved from the LTF database, given the GPS position. The "Foxhole Problem" defines a situation where a player is at a terrain feature where 2 different elevations exist, such as a foxhole. Determining the correct elevation of the player at this point is challenging given the positional inaccuracy of the GPS. The LTF terrain grid resolution of 1 meter was found to provide a 75 percent probability of correctly determining a player's elevation in this situation.

The 10 cm elevation accuracy was derived considering the overshoot and under shoot errors when modeling shallow angle shots for short range weapons such as the M203 and Mark 19 (grenade launchers). Weapon elevation sensor inaccuracies are also considered. The 10 cm elevation accuracy was found to provide a small enough overshoot/undershoot error that the intended target is still within the effective range of the munitions blast area (Baer et al., 2008).

Since the Army's LTF was a ground up development project, it leveraged commercial graphics and computer science domains to implement data storage structures and algorithms which provide rapid LOS calculation. Terrain data is stored in pages that represent 1 square kilometer of terrain. Terrain elevations are provided as a 16 bit integer value at grid post spacing of 1 meter. Culling grids are defined for 10 by 10 post areas and for larger 100 by 100 post areas. The terrain skin is stored in a hierarchical three level tree structure - the lowest level being the 1 meter grid and the highest being the $100 \times 100$ post grid.

Line of site calculations use the two-dimensional digital difference analyzer (2DDDA) which is highly optimized to rapidly traverse a regularly spaced grid. This LOS routine checks the ray against height of terrain against culling grids which it crosses, starting with the largest grid and calculating child nodes (smaller grids) only if the ray is lower than the terrain height of the parent grid.

Within LTF features (trees, buildings, etc.) are represented as nodes in a bounding volume hierarchy $(\mathrm{BVH})$ tree. Each node in a BVH tree is a spatial volume that fully contains all of it child nodes. Geometry of individual nodes can be basic or complex geometry types: ellipsoids, columns, triangle meshes, etc. Higher level culling volumes use simple solid geometry types to allow faster intersection checks. The feature intersection algorithm detects root node intersections and if the intersected node is defined as a culling node then its child nodes will be checked for intersection. The BVH tree is optimized for attenuated LOS calculations and will always check closest nodes first. Material attributes can be assigned to features in order to calculate attenuation of the LOS ray (Borkman et al., 2007).

Ongoing efforts funded by the Army continue to improve and expand the LTF capabilities. These efforts include the addition of dynamic terrain capabilities, and extension of compatibility to other Army simulations systems.

### 2.3 Application of LTF in NASA Products

LTF appears to be uniquely well-suited for modeling an arbitrary planetary body. The terrain database representation and runtime reasoning services operate entirely in Cartesian coordinates, with no assumptions whatsoever about the planetary reference ellipsoid. All calculations are performed in local Cartesian coordinate systems tangent to the reference ellipsoid; a global Cartesian system is used to coordinate between different local systems. Due to the Cartesian representation, LTF has no difficulty handling highlatitude or polar regions. The offline terrain compiler generates both the local and global Cartesian coordinate system and would require some minor modifications to properly create the local Cartesian coordinate systems for non-Earth planetary ellipsoids.

Elongated ellipsoids combined with this Cartesian coordinate approach will also permit the modeling of non-spherical bodies such as near earth objects.

The difference in curvature of a celestial body vs. the Earth surface may require changes in the terrain data storage structure. LTF was originally implemented to support full round-earth coverage, but where each defined flat earth terrain tile $(1 \mathrm{~km} \times 1 \mathrm{~km})$ is normal to the systems local Z vector. This introduces a minimal error (within the 10 cm accuracy requirements) at the edges of the tile. One approach being considered to deal with the greater curvature of the lunar surface is requiring terrain tile sizes to be reduced in order to minimize errors at tile edges. The primary challenge is to ensure that the gravity vector in each LTF local Cartesian system does not significantly differ from the system's local Z vector, since the assumption that the two are interchangeable is key to the performance of the line-of-sight and height of terrain services.

Based on the preceding review of NASA simulations and the stated LTF capabilities, there are several functional areas identified below which may benefit from LTF: Communications Simulation: The 2009 Desert RATS utilized LSOS line of site calculation capabilities to generate communication coverage maps between planned sortie locations and the fixed antenna locations. These maps were not generated in realtime, rather they were generated the night preceding each mission test due to the execution time required. LTF's optimized LOS capabilities can be utilized to perform this task in or near real-time. This becomes even more critical for the planned 2010 Desert RATS tests where movable LCTs, or rover mounted communication relay devices
will be used to extend excursion ranges. LTF also provides the capability to calculate attenuated LOS values - a capability not provided by LSOS. Within LTF, regolith attributes causing RF transmission attenuation could be captured in a newly defined feature layer. Attenuation algorithms can then be executed against line of site queries to provide a more realistic simulation of short wavelength radio transmission across the lunar surface.

Navigation Simulation: Because navigation on the lunar surface is highly dependent on communications for both time and location reference, the same real-time LOS issues are present.

Embedded Navigation Aid: LTF's small memory and processing footprint make it a candidate for embedding into target lunar surface hardware where the LOS capabilities could be used for terrain referenced navigation functions. Within this context, another potential benefit of LTF is the capability to wirelessly stream database updates. The streaming capability would allow pre-mission generated terrain (LRO resolution) databases to be augmented with locally collected terrain data. Although wireless streaming is only currently implemented for features, the on-going RDECOM financed SHADE program is researching additional capabilities for dynamic LTF databases.

Coverage Maps for other Electromagnetic Signals and Interference Sources: LTF layers could be created to identify location specific areas affected by interference from natural
or manmade sources, such as a power generation station, or identify areas shielded from radiations sources external to the celestial body.

Routing Plans for Explorations: LTF could provide route planning for either manned or robotic missions. Routing could be optimized to either minimize exposure to heliophysical elements by staying in areas shadowed by mountains or craters, or maximize solar exposure in order to keep power array output at its peak. Path planning could also consider multiple LTF layers - for example providing a route to maximize data transmission to earth while exploring known mineral deposit areas.

Geographic Resource Mapping: Location specific resource data gathered through robotic, manned, or satellite sensor exploration can be embedded within LTF layers to provide future mission or future task reference to celestial body geographic resources.

## LMMP User Interface: NASA's Lunar Mapping and Modeling Project LMMP is

 intended to be a repository of Lunar data acquired from many sources. The data will be available to researchers via public outreach programs. The repository will provide tools to allow viewing of the lunar data, and while no specific tools are mentioned, the georegistered requirements for the bulk of the data requirements suggest that a GIS or virtual Earth type system such as Google Earth could be used. While the current focus of this research project will involve Earth based terrain modeling as a case-based analog, the end goal of the LTF research is to identify a suitable multi-layer celestial body database where layers can be visualized and easily applied by humans or robots in the conduct ofreal-time tasks. The source data for any future lunar LTF databases will likely come from LMMP or other sources such as SELENE data. Table 2 below identifies a subset of the draft Level 2 requirements for the LMMP project which are of interest to the proposed research (Cohen, Nall, French, Muery, Lavoie, 2008).

Table 2 LMMP Requirement Subset

| Requirement |
| :--- |
| The LMMP shall provide geo-registered global and local albedo (visible image) <br> base maps of the Moon |
| The LMMP shall provide geo-registered global and local surface roughness and rock <br> size frequency and distribution maps of the Moon |
| The LMMP shall provide geo-registered terrain feature maps of the Moon (e.g., <br> mountains, rilles, craters). |
| The LMMP shall provide tools with the capability to superimpose, based upon user <br> input, human associated activities such as architectural elements, surface <br> modifications, surface debris, chemicals, organics, and logistical information such as <br> route planning to support lunar surface mission planning and operations. |
| The LMMP shall provide geo-registered global and local surface digital elevation <br> models (DEM) of the Moon. |
| The LMMP shall provide geo-registered lunar lighting maps and models that provide <br> lunar lighting information for any location at or near the lunar surface for any lunar <br> time reference. |
| The LMMP shall provide geo-registered lunar temperature maps and <br> models that provide lunar temperature information for any location and for any lunar <br> time reference |
| The LMMP shall provide geo-registered global resource maps of the Moon. |

As these requirements indicate, in addition to basic topography, there are other lunar attributes such as surface elements and resource data which could be embedded into an LTF database within the communications layer or as feature attributes.

As previously mentioned, one of the stated basic goals of the LMMP is to provide a set of tools which allow users to visualize the collected lunar data. The LTF database and
viewer tool could be leveraged as both a visualization tool and an experimentation tool for LMMP lunar and other celestial body scientific information.

### 2.4 Lunar Space Communications Architecture

Apollo missions required complete planning of every mission detail prior to launch plus continuous monitoring by hundreds of experts throughout each flight. Continuous communications were maintained with the flight systems and crew except on the far side in lunar orbit through the use of 12-15 Earth based Communications and Tracking (C\&T) stations geographically dispersed to maintain 3-4 stations with continuous coverage. The next lunar generation needs to allow the crew or robotic vehicle much more autonomy and opportunity to do their own planning and to perform exploration and scientific operations with limited oversight from controllers on Earth. Continuous Earth-based coverage for real-time control is not an option for the eventual human missions to Mars (Schier, 2007).

NASA's Evolutionary Space Communications Architecture Model defines components that provide robotic and human exploration elements access to high speed data communications throughout the solar system through an envisioned deployment of communications relay satellite constellations at or between the earth and celestial bodies of exploration interest (Bhasin, Hayden, 2004). The return to the moon by manned or robotic missions will be much more of than just a lunar exploration event. The lunar missions will all be testing grounds for analyzing system architectures and operation concepts that will be used in the future voyages to Mars and other celestial bodies. The communications systems deployed to support the future Lunar missions will serve to
validate the overall Space Communications Architecture approach. Table 3 lists the major communications components defined by NASA's current lunar communications architecture.

Table 3 Lunar Communications Architecture Major Components

| COMPONENT | FUNCTION | COMMENT |
| :--- | :--- | :--- |
| Earth Based Ground System <br> (EBGS) | Fixed position <br> transmitter/receiver |  |
| Lunar Relay Satellite (LRS) | Relay from lunar surface <br> devices to EBGS or other <br> lunar surface device | Placed in Earth Moon <br> LaGrangian Orbits |
| Lunar Communication <br> Terminal (LCT) | Base station for wireless <br> LAN, Navigation tracking <br> and time services, <br> Communication relay <br> between surface network <br> and LRS or EBGS |  |
| User Radios | Common family of <br> interoperable radios <br> supporting of S and Ka <br> band communication | fixed base radio, mobile <br> user radio, EVA Radio |

While the necessity for constant communication links between the Earth and Moon is expected to be less critical, availability of constant communication between lunar surface elements is critical for both coordination of surface exploration sorties, control of robotic elements, and navigation. Surface elements currently under development by NASA include:

- Habitats - modular elements similar to International Space Station nodes that provide living quarter and lab space. Habitats are located at fixed sites.
- Pressurized Rover - Transports crew and equipment on lunar surface.
- Chariot - six wheel drivable platform - used as chassis for Pressurized Rover
- ATHLETE - all terrain cargo handling device capable of unloading, transporting and manipulating cargo. The Athlete is remotely controlled. (NASA Fact Sheet, ATHLETE)

On the lunar surface LCTs and user radios provide communications over an 802.16 mesh network within a line of site range of approximately 6 km on flat terrain. The actual effective range of the surface LAN will be dependent on the local lunar terrain. When LOS to the LCT is unavailable the user radios can link to the LRS to communicate over S/Ka band radios with other surface based users or to the EBGS. However the LRS satellites are only available during 14 hours of the lunar day. Satellite in the loop communications are also less desirable due to higher power consumption. Among the most significant issues listed by Schier for near term research, is the LOS limitation for surface communication due to use of S-band and realistic Lunar terrain (Schier, 2007).

Navigation systems provided for lunar surface elements cannot rely on the GPS technologies employed on Earth. Lunar navigation will be supported by hybrid systems that use radio signals from fixes site antennas, satellite signals when available and will incorporate terrain referenced navigation capabilities. Passive optical navigation will be available to augment radio-based navigation yielding a system that can operate in the event of communications faults. Coronal Mass Ejection (CME) is a credible risk that could cause interference preventing the radio-based navigation system from working. The need for a radio-free navigation system on-board future space exploration elements
implies that surface mobile systems need to be able to determine their location relative with sufficient accuracy to return to base safely without mission support (Shier, 2007).

### 2.5 Lunar and Earth Based Communications Models

Currently, NASA is using the Lunar Surface Operations Simulator (LSOS) to simulate lunar surface operations including LOS communications. LSOS is a visual simulator that enables assessment of lunar surface operations. The functional requirements of the LSOS are:

- To provide a virtual environment that represents the best knowledge of the lunar surface in which to simulate operations (Surface, Lighting, Radiation, Environmental features)
- To incorporate surface elements at their currently-known level of detail into that environment (Rovers, habitats,crew), (Correct geometry, structure, function and behavior)
- To accurately portray exploration and science operations (conops/scenarios) performed by those elements in that environment, assessing how well the elements can perform the operations (rover driving, towing, digging/hauling,assembly/disassembly)
- To enable analysts to expose limitations imposed by element functionality and/or environment on the success of the operations at an early time in the design cycle so that the analysts/designers can address them
- To gain experience in simulation of mock lunar operations at terrestrial sites (Validates simulations, systems and conops) (Wall, 2007)

LSOS was build upon Dshell++, a NASA Jet Propulsion Laboratory simulation framework (Nayar, 2009). Dshell++ is a physics based framework that was developed to support simulation needs across multiple space exploration domains including cruise vehicles, planetary rovers, and orbiting spacecraft. Dshell++ provides realistic visual rendering at 30 frames per second and can support multiple viewports via its OpenGL based rendering engine. Due to the 3-D visualization computation requirements Dshell++ is capable of running in a distributed mode across multiple cores or workstations.

In addition to scene rendering, Dshell++ provides a number of functions which are heavily used by LSOS including Power Analysis, Horizon Detection, Camera Modeling, and Line of Site Computation. The LOS computations are performed by attaching (during simulation setup) specially colored ornamental geometry to a specific LOS query location, such as a communications antenna. At run time during an LOS query, the ornamental geometry object is enabled and the scene is rendered from the point of view at the other coordinate (such as a vehicle sensor). If the ornamental geometry object is detected at the center of the scene then LOS is assumed to be valid. LOS calculations are described as being computationally expensive within the Dshell++ framework (Pomerantz, 2009).

LSOS does not perform RF signal attenuation, only a line of site check between the transmitting and receiving antennas, providing an indication of transmissions that are
likely to be blocked by terrain. The current architecture of LTF and the proposed communications layer provide the same line of site check for terrain blockage, and also with the addition of the proposed communications layer, the capability to determine RF signal attenuation for transmissions not blocked by terrain.

The need to define what source data must be input to the LTF layers is the premise of several specific research questions:
(RQ1A) For the Black Point lunar analog database, what Terra Firma elevation model accuracy and resolution levels are significant to the accurate estimation of the actual signal strength attenuation within an LTF Communication Layer?

And looking specifically at replicating the terrain blockage capability currently provided by NASA's LSOS:
(RQ1B) For the Black Point lunar analog database and without regard to terra firma material or atmospheric properties, what Terra Firma elevation model accuracy and resolution levels are significant to the accurate estimation of signal attenuation due to terrain blockage?

These first two question address the accuracy of the source data used to generate the LTF terrain topography (terrain layer). They respond in part to Shier's call for further research into the effects of realistic terrain on Lunar communications architecture (section 1.3). In addition to the selection of applicable levels of resolution and accuracy of topographic source data, selection of RF attenuation models to be embedded within the LTF simulation is critical. Earth-based attenuation models must account for multiple sources of attenuation including (McLarnon, 1997):

- Free space path loss - The loss of power as the RF signal propagates over a distance without any interfering objects or atmospheric effects.
- Reflections - Radio waves that are reflected off of some object, terrain, or atmospheric temperature inversion and eventually arrive at the receiving antenna. Depending on the distance that the reflected wave travels it may be phase shifted from the primary transmission wave. If the reflected and primary waves are in sync, reflections can produce up to a 6 DB gain over a pure free space path transmission. If out of phase the signal loss can be as high as 20 DB .
- Refractions - Earth's atmosphere causes radio wave path to bend slightly downwards toward Earth rather than propagating in a straight line. This property can actually permit line of site RF to transmit beyond the optical LOS. Atmospheric refraction is affected by weather.
- Diffraction - Diffraction effects occur from object near the direct LOS path that disturb the RF wave resulting in uneven power density across the wave front.

The LTF database is capable of representing localized attributes of both terrain and features that would affect attenuation of RF transmissions. These specific attenuation sources thus provide further research questions:
(RQ1C) For the Black Point lunar analog database, what terra firma material properties are significant to the accurate modeling of RF transmission signal attenuation within an LTF Communications layer?
(RQ1D) For the Black Point lunar analog database, what feature and object properties are significant to the accurate modeling of RF transmission communications signal attenuation within an LTF Communications layer?
(RQ1E) For the Black Point lunar analog database, what atmospheric attenuation properties are significant to the accurate modeling of RF transmission communications signal attenuation within an LTF Communications layer?

Beyond specifying the feature and terrain attributes contributing to signal attenuation, the attenuation algorithm(s) must be selected. There are numerous RF attenuation models available which are designed for outdoor transmission in the GHz range. Ray-tracing based radio propagation models have gained popularity for simulation of accurate mobile communications. These models use multiple rays to model the paths of both the LOS signal as well as reflected signals to determine the total propagation gain or loss at the receiver. However execution of these models is processor intensive and would likely require parallel processing capability to meet the near real-time goals for coverage prediction of this experiment (Cavalcante, Jose de Sousa, Costa, Frances, Cavalcante, 2007).

A recent study by Hwu (Hwu, Upanavage, Sham, 2008) of lunar surface attenuation of high frequency RF signals, found that propagation loss was dependant on antenna height, lunar surface material and terrain geometry. Specifically, the path loss is found to be a function of the square of the transmission range $\left(\mathrm{R}^{2}\right)$ up to a breakpoint where it becomes a function of $\mathrm{R}^{4 .}$ The defining breakpoint is dependent on antenna height. For S-band transmission. the breakpoint for two meter antennas is round 50 meters, for ten meter tall antennas the breakpoint moves out to 300 meters (Hwu, 2008).

In order to minimize the execution time impact of attenuation calculation, we will focus on single ray models which incorporate more than just free space loss, among them are the ITU Terrain Model, the Egli Model, and the Longley-Rice Model.

The ITU Terrain Model is expressed mathematically as:
$A=10-20 C_{N}$, where A = Diffraction Loss in DB
$C_{N}=\frac{h}{F_{1}}$, where $\mathrm{C}_{\mathrm{N}}=$ is the normalized terrain clearance
$h=h_{L}-h_{O}$, where h is the difference of the height of LOS link and obstruction height
$F_{1}=\sqrt{\frac{d_{1} d_{2}}{f d}}, \mathrm{~F}_{1}=$ height of first Fresnel zone.
$\mathrm{d}_{1}=$ distance of obstruction from one antenna
$\mathrm{d}_{2}=$ distance of obstruction from the other antenna
$d=$ distance from transmitter to receiver in meters
$\mathrm{f}=$ frequency in MHz .
The ITU model uses a normalized terrain clearance and would not be a good candidate for the Black Point 2 area because of the high terrain irregularities (The propagation Model, 2008; Seybold, 2005).

The Elgi model is expressed mathematically as:
$L=G_{B} G_{M}\left[\frac{h_{B} h_{M}}{d^{2}}\right]^{2}\left[\frac{40}{f}\right]^{2} \quad$ where,
$\mathrm{G}_{\mathrm{B}}=$ Gain of base station antenna, $\mathrm{G}_{\mathrm{M}}=$ Gain of mobile antenna $(\mathrm{db})$
$\mathrm{h}_{\mathrm{B}}=$ Height of base station antenna, $\mathrm{h}_{\mathrm{M}}=$ height of mobile station antenna (meters)
$\mathrm{d}=$ distance from base station antenna to mobile antenna (meters)
$\mathrm{f}=$ frequency in MHz .
The Elgi model calculates path loss in one expression rather than summing losses from free space and the other attenuation sources presented above. A listed limitation of this model is its lack of accounting for vegetative obstruction; however this limitation should
not impact calculations for either Black Point or the lunar surface (Lavergnat \& Sylvain, 2000).

The Longley-Rice Model, also known as the Irregular Terrain Model (ITM), is a complex set of models each accounting for specific propagation loss sources (Seybold, 2005).

Foore and Ida used the ITM to determine a set of fade depth values (dependant on frequency and antenna heights) which could be used in conjunction with a simpler path loss model to calculate expected loss for lunar surface radio transmission (Foore and Ida, 2007). Their recommended path loss equation follows:
$\mathrm{L}=G_{T} G_{R}\left(\frac{h_{T} h_{R}}{d^{2}}\right)^{2}$, where
$\mathrm{L}=$ path loss
$\mathrm{GT}=$ Transmitter Gain (db)
GR $=$ Receiver Gain (db)
$\mathrm{h}_{\mathrm{T}}=$ height of transmitting antenna (meters)
$\mathrm{h}_{\mathrm{R}}=$ height of receiving antenna (meters)
$\mathrm{d}=$ distance between transmitter and receiver (meters)

The research will analyze the performance of multiple attenuation algorithms in predicting the actual signal strength values measured at the Black Point test site in order to answer the following research question:
(RQ1F) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, what LTF S and Ka signal based generation and attenuation models and representational techniques are significant to the accurate estimation of the actual signal strength attenuation that are related to the distance between the transmitting and receiving stations?

NASA has requested that the communications signal strength indication provided to the user in a 3 level format, in order to reduce the contribution to user information overload. Current discussions with NASA scientists have focused on using (for coverage maps) green shading for good reception areas, yellow for lower transmission capability, and clear (no shading) for locations where signal transmission are predicted to be blocked. Considering this user interface requirement, it is possible that LTF communications prediction may not need to accurately match measured signal strengths in order to provide the correct indication to the user. This is the premise of the next research question:
(RQ1G) For the Black Point lunar analog database as represented within an LTF Communication layer, what LTF S band signal based generation and attenuation models and representational techniques are significant to the display of accurate signal strength prediction information to the user?

The graphical presentation of communications prediction information could be displayed in multiple formats depending on the available user interface. Since Google Earth is a current interface provided to the astronaut analogs, Keyhole Markup Language (KML) overlays are probable. However since EVA suits do not have the Google Earth interface, presentation for EVA analogs will likely be on a heads up type overlay and could consist of various formats. The following questions specifically address the end user display types, and display generation capabilities which are beneficial to both vehicle mounted and dismounted astronauts.
(RQ2A) For the Black Point lunar analog database, what graphical characterization in LTF is significant to the successful usability of the communications attenuation model to an astronaut analog?
(RQ2B) For the Black Point lunar analog database, what algorithmic techniques are significant to the rapid and accurate transfers of the chosen LTF communications attenuation model to active formats and venues with the greatest number of end-user systems such as Google Earth(Moon)?

## 3 RESEARCH METHOD

Chapter 3 provides details to inferential statistical research methodology used in this dissertation. The scope and limitations of the proposed research are defined in section 3.1. Section 3.2 reviews the general research questions posed in chapter 1 which are the basis for the derived specific research questions. Section 3.3 reviews each of the specific research questions, develops hypotheses for each, and proposes the specific test method for each. A summary of research questions and test methods is presented at the end of this chapter in Table 5.

### 3.1 Scope and Research Limitations

While the general research questions proposed above address celestial body exploration, the specific research questions address estimation and representation of a communications attenuation model of the BP2 lunar analog database. The scope of the analog research will be limited by available data and access to current NASA activities which support execution of the proposed experiments. Specifically, NASA is conducting lunar analogs at Black Point Lava Flow, Arizona because the terrain characteristics are similar to those encountered on the lunar surface. The ability to have line of sight between two points is thought to be a component to attenuation of a RF signal between the points. Line of Sight calculations executed within the LTF simulation are dependent upon accuracy of the modeled terrain and other factors that may not be available such as atmospheric conditions and material properties of the terra firma between transmitting and receiving stations. A coverage map layer that addresses solely signals blocked by
terrain may be produced by showing line-of-sight from a given point to surrounding points.

Additionally, RF signal attenuation is also thought to be related to the type of signal and distance between the transmitting and receiving sites. Distance may contribute to the dissipation of strength signal as may other factors related to distance such as moisture in the air and minerals. A coverage map layer may be produced to show signal strength levels resulting from signal blockage and signal strength level distance attenuation. NASA scientists have requested three color indicators. Less than 78 decibels no coloration. Less than 82 decibels transparent yellow coloration. Above 82 decibels transparent green coloration.

For this research, a number of analysis will be performed as indicated below. In general, the signal strength predictions generate by LTF will be compared to actual signal strength measurements taken at Black Point for particular cells in and around scientific points of interest and along routes to and from those points. Routes to and from points of scientific interest will be pre-determined using LTF. Pre-determination of routes will be based on optimizing continuous communication coverage with analog earth and local base or relay stations.

Additional analysis will involve converting both actual and LTF estimated signal strength into the three categories Green, Yellow, and None for signal coverage maps and Green, Yellow, and Red for route signal coverage.. Analysis will involve categorical inferential
analysis of the frequency distribution between correct colorations and incorrect colorations between LTF signal estimates and actual signal strengths converted into colorations.

Measurement of signal attenuation at Black Point will be done as part of operations and not experimentally designed to test the level of each factor influencing attenuation. Confounding of the factors can not be avoided given the fore mentioned limitations. Therefore, a single attenuation algorithm to be embedded within LTF will be focused on free space path loss. The classic path loss equation for energy dissipation is $\mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{T}}\left(\frac{\lambda}{4 \pi d}\right)^{2}$, where $\lambda=$ frequency, $\mathrm{d}=$ distance, $\mathrm{P}_{\mathrm{R}}=$ power at receiver, $\mathrm{P}_{\mathrm{T}}=$ Transmitter power (McLarnon, 1997). The Friis transmission equation adds transmitting antenna gain (G1) and receiving antenna gain (G2) to the path loss equation to yield: $\mathrm{P}_{\mathrm{R}}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{P}_{\mathrm{T}}\left(\frac{\lambda}{4 \pi d}\right)^{2}$.

For high frequency signals (100Mhz and above) with distances greater than a cutoff distance $\mathrm{d}_{\mathrm{c}}=\frac{4}{\lambda} h_{T} h_{R}$, the equation can be rewritten as the fourth power distance law (Linmartz, 1996):
$\mathrm{P}_{\mathrm{R}}=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{P}_{\mathrm{T}}\left(\frac{h_{T} h_{R}}{d^{2}}\right)^{2}$.
For our case the $S$ band wavelength ( 0.128 meters), transmit antenna height (10 meters) and receiver antenna height ( 2 meters) provide a $\mathrm{d}_{\mathrm{c}}=625$ meters. Since NASA has indicated that the range of the surface communications is 7 km , we assume the majority of transmissions will occur beyond the cutoff distance, so the fourth power distance equation is selected for the embedded LTF attenuation model.

It is important to note that this model is also a component of both the Elgi model and the Foore and Ida model discussed in Chapter 3. This will allow us to calculate the loss results of these alternate models using the output data from LTF and addition known variables. The Elgi and Foore and Ida models will be required for one of the tests define later in this chapter. The additional loss factors in these alternate models partially account for confounded losses resulting from reflections, refractions, and diffractions.

### 3.2 General Research Questions:

The general research question posed in chapter 1 are repeated here for reference. The following section 3.3 will review the specific research question derived from each general question, as well as hypotheses and test approach proposed for each. Table 5, at the end of this chapter, provides a summarized relational view of the research questions, hypotheses, and tests.
(RQ1) As analogs to Planetary and Heliophysic effects, what factors must the LTF database represent and at what resolution must the LTF database model these factors in order to represent attenuation of various communications signals due to geospatial and atmospheric effect to the extent that they influence planning and execution of analog lunar surface operations?
(RQ2) What are the human systems integration/interface components and what should their characteristics be so that astronauts receive spatial representations of various communications signal attenuations to affect timely and effective planning and execution of analog lunar surface operations?

RQ2 is not formally evaluated as part of this research. The research question and related research hypotheses are posed for expository purposes only. Insights on the research question and hypotheses will guide gathering of antidotal observations. It is hoped that the antidotal observations will guide interface improvements and refine the usability research question and hypotheses should this become a priority and resources be made available to investigate them.

### 3.3 Specific Research Questions

The following sections provide detailed discussion of the specific research questions arrived at in chapter 2. The discussion includes the development of hypotheses for each research question, and provides plans for testing the hypotheses where feasible given the research limitations provided in section 3.1.

### 3.3.1 Question RQ1A

(RQ1A) For the Black Point lunar analog database, what Terra Firma elevation model accuracy and resolution levels are significant to the accurate estimation of the actual signal strength attenuation within an LTF Communication Layer? The resolution (post spacing distance) and elevation accuracy of the source topography data used to generate the LTF database is likely significant to the accurate prediction of terrain blockage and terrain based attenuation of RF transmissions. The following hypotheses are generated to express the expected outcome of each source data parameter. (RQ1AH1) Source data elevation accuracy is correlated to the accurate prediction of signal attenuation; greater elevation accuracy will yield more accurate attenuation predictions within the LTF communications layer.
(RQ1AH2) Source data elevation post spacing is correlated with the accurate prediction of signal attenuation; smaller post spacing will yield more accurate attenuation predictions within the LTF communications layer.
(RQ1AH3) Generated database elevation post spacing is correlated with the accurate prediction of signal attenuation; smaller post spacing in the generated database will yield more accurate predictions within the LTF communications layer.

RQ1AH1, RQ1AH2, RQ1AH3 are not tested due to the confounding of the DB attributes which will not allow us to evaluate the influence of either individual attribute on the predicted signal attenuation. In order to perform these tests a minimum of 4 databases having the following characteristics would be required:

DB1 : A post spacing, X elevation accuracy
DB2 : A post spacing, Y elevation accuracy
DB3: B post spacing, X elevation accuracy
DB4: B post spacing, Y elevation accuracy.

### 3.3.2 Question RQ1B

(RQ1B) For the Black Point lunar analog database and without regard to effects arising from terra firma material or atmospheric properties, what terra firma elevation model accuracy and resolution levels are significant to the accurate estimation of signal attenuation due to terrain blockage?

Greater accuracy and resolution in the simulated terrain database should provide a more accurate simulation of signals blocked by terrain. The following hypotheses are derived from RQ1B.
(RQ1BH1) For S band signal types and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on the first elevation post height along a line-of-sight azimuth between the signal source and the receiving station that is greater than both the elevation height of the signal source and the receiving station elevation post.

For the purposes of this experiment there are two terrain database sources available for the Black Point exercise area: SRTM DTED Level 2 and the NASA provided DEM derived from LIDAR data. These two source files have different post spacing, and different elevation accuracy. The SRTM source data has both lower resolution and lower elevation accuracy than the NASA provided source. Therefore hypothesis RQ1BH1 can be tested.

Data collection was planned as follows: During the Black Point March 2010 site visit, RF signal strength data would be collected for this hypothesis and hypotheses as applicable below. Signal strength readings would be taken between a fixed location (Base) antenna and a mobile radio moving along a route and/or within exploration interest areas. At each data collection point, GPS location and S band signal strength would be recorded. The RF data collection points were to be in and around specific points of interest identified by NASA based on planned activities for the 2010 Desert RATS analogs. Equipment required for collection of signal strength data included:

- GPS receiver
- RF signal measurement.

NASA had provided a set of Black Point coordinates which identified locations to be explored during the 2010 Desert RATS analogs currently scheduled for late May. At NASA's request, these data points are not published. NASA had also provided the coordinates for a base station transmitter. The data collection plan was to transmit a fixed strength S-band signal from a fixed antenna location. The data collection team would then traverse the Black Point site to each of the identified exploration points. RF signal strength measurements would be recorded along the traverse path, and at multiple location in the immediate vicinity of each exploration point. A NASA communications representative would accompany the data collection team to provide additional guidance on measurement locations.

NASA had also provided location coordinates for a point which represents the Earth low on the lunar horizon (as it would be for a lunar south pole exploration mission). For this hypothesis, signal strength at each given terrain coordinate would be compared to simulation results in each database. The comparison of simulated results against measured field results would determine which database best predicted transmissions blocked by terrain.

A Chi Square Test with the following parameters would be used: Medium effect size, $\alpha$ $=0.05, \beta=0.02,188$ independent samples from each treatment. (Cohen, 1992).

Table 4 Proposed Test Matrix for RQ1BH1
$\left.\begin{array}{|r|l|l|}\hline \text { Prediction } & \text { LIDAR predicts blockage } & \text { SRTM predicts blockage } \\ \hline \text { Measured signal matched } \\ \text { prediction }\end{array}\right) \quad$.

Null hypothesis $\left(\mathrm{H}_{0}\right)$ : Observed = Expected.
Alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : Observed $\neq$ expected.

### 3.3.3 Question RQ1C

(RQ1C) For the Black Point lunar analog database, what terra firma material properties are significant to the accurate modeling of RF transmission signal attenuation within an LTF Communications layer?
(RQ1CH1) Completeness and accuracy of source and generated terrain material properties is correlated with the accuracy of predicted communications attenuation within the LTF communications layer.

Attenuation due to material properties cannot be removed from the collected actual RF signal strength data, or collected separately from other attenuation factors, so this hypotheses is not tested.

### 3.3.4 Question RQ1D

(RQ1D) For the Black Point lunar analog database, what feature and object properties are significant to the accurate modeling of RF transmission communications signal attenuation within an LTF Communications layer? (RQ1DH1) Completeness and accuracy of source and generated objects near the communications line of sight is correlated with the accuracy of predicted communications attenuation within the LTF communications layer. Attenuation due to features and objects cannot be removed from the collected actual RF signal strength data, or collected separately from other attenuation factors, so this hypotheses is not tested.

### 3.3.5 Question RQ1E

(RQ1E) For the Black Point lunar analog database, what atmospheric attenuation properties are significant to the accurate modeling of RF transmission communications signal attenuation within an LTF Communications layer? (RQ1EH1) Completeness and accuracy of source and generated atmospheric conditions are correlated with the accuracy of predicted communications attenuation within the LTF communications layer.

Attenuation due to atmospheric conditions cannot be removed from the collected actual RF signal strength data, or collected separately from other attenuation factors, so this hypothesis is not tested.

### 3.3.6 Question RQ1F

(RQ1F) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, what LTF S and Ka signal based generation and attenuation models and representational techniques are significant to the accurate estimation of the actual signal strength attenuation that are related to the distance between the transmitting and receiving stations?

LTF communications attenuation algorithms will include components representing attenuation due to free space path loss, reflection, diffraction, and refraction. The LTF communications layer is capable of storing terrain material parameters which affect the attenuation algorithms. The following hypotheses are derived from RQ1F.
(RQ1FH1) The LTF communication layer signal generation and attenuation algorithm and related models account for all generation and attenuation sources including signal source power, frequency, free space path loss, reflection, diffraction, and refraction with
respect to each earth-based RF communication signal that significantly influences astronaut communications during the Black Point analog exercises.

Terrain material properties which may affect attenuation are not available for the Black Point analog locations, therefore this hypothesis is not tested.
(RQ1FH2) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, the LTF S band generation and attenuation model will predict signal strength reception for transmissions which are not blocked by the terrain.

The attenuation model implemented within LTF will be a fourth power distance model of free space path loss:
$L=G_{B} G_{M}\left[\frac{h_{B} h_{M}}{d^{2}}\right]^{2} \quad$ where,
$\mathrm{G}_{\mathrm{B}}=$ Gain of base station antenna, $\mathrm{G}_{\mathrm{M}}=$ Gain of mobile antenna
$\mathrm{h}_{\mathrm{B}}=$ Height of base station antenna, $\mathrm{h}_{\mathrm{M}}=$ height of mobile station antenna
$\mathrm{d}=$ distance from base station antenna to mobile antenna
The LTF Signal Strength predictions based on the embedded loss model above will be compared to the actual signal strength measurements recorded at Black Point. This test is only run against the higher fidelity LIDAR derived LTF database since it is believed that this database will be more accurate than the SRTM derived database.

Two tailed Independent t Test with $\alpha=0.01$, and $\beta=0.01$, requiring a sample size of 64 .
The degrees of freedom $=128-2=126$. (Faul, Erdfelder, Buchner, Lang, 2009).
$\mu_{\text {LTFSS }}=$ mean LTF signal strength prediction error

Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\text {LTFSS }}=0$
The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu_{\text {LTFSS }} \neq 0$
(RQ1FH3) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, the LTF Ka band generation and attenuation models will predict signal strength reception for transmissions which are not blocked by the terrain. The required assets to transmit and receive Ka band transmissions will not be available during the data collection trip, hence this hypothesis is not tested.
(RQ1FH4) For S band signal types tested and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on greater distance between the signal source and the receiving station for signals not blocked by terrain.

This hypothesis will be tested for S band signal transmissions which are not blocked by the terrain for each terrain model. The LTF predicted signal strength will be based on the embedded attenuation algorithm defined in RQ1F2 above.

Independent T Test with $\alpha=0.05$, and $\beta=0.2$, requiring a sample size for each group of 64. The degrees of freedom $=128-2=126$. (Faul et al., 2009).

For each terrain model prediction error will be calculated as:
PE $=$ Prediction error $=$ Predicted signal strength - Actual Signal Strength
$\mu_{\mathrm{DBIPE}}=$ mean error for predictions from database 1 (LIDAR source)
$\mu_{\text {DB2PE }}=$ mean error for predictions from database 2 (SRTM source)
Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\text {DBIPE }}=\mu_{\text {DB2PE }}$
The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu_{\mathrm{DB} 1 \mathrm{PE}} \neq \mu_{\mathrm{DB} 2 \mathrm{PE}}$
(RQ1FH5) For Ka band signal types tested and without regard to signal source power, terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on greater distance between the signal source and the receiving station for signals not blocked by terrain. The required assets to transmit and receive Ka band transmissions will not be available during the data collection trip, therefore this hypothesis is not tested.

### 3.3.7 Question RQ1G

(RQ1G) For the BP2 lunar analog database as represented within an LTF Communication layer, what LTF S band signal based generation and attenuation models and representational techniques are significant to the display of accurate signal strength prediction information to the user? (RQ1GH1) Given the 3 level RF signal strength depiction scheme requested by NASA, LTF signal attenuation models may not need to account for all attenuation sources (free space path loss, reflection, refraction, and diffraction) to accurately depict signal strength predictions to the user.

Each measured and predicted signal strength will be assigned a depiction level ( 0,1 , or 2 ) to represent the 3 levels of graphical depiction desired by NASA. The DB ranges to be assigned to each depiction level will be determined by NASA. This hypothesis will be
tested with the non-parametric Cochran test. The degrees of freedom $=2$, and $\alpha=0.05$. 52 samples will be used for each treatment. The Critical region will be $\mathrm{T}>\chi^{2}{ }_{950}$ $=0.012587$. (Mendenhall, 1995). The 3 treatments are - Free space model, Elgi model, and Free Space + Fade Depth values. The free space model will be based on the embedded LTF attenuation model. Since the free space loss is a component of the Elgi loss model, Elgi loss will be calculated as:

Free Space Path Loss * $\left[\frac{40}{f}\right]^{2}$ where, $\mathrm{f}=$ frequency in Mhz
For the Free space + Fade Depth loss, the Fade Depth values developed by Foore and Ida (Foore and Ida, 2007) for 2 meter antenna will be summed with the LTF calculated free space path loss. The value assigned each sample will be 0 if calculated signal strength provides the same color value as the black point measured signal strength, otherwise a 1 will be assigned. Null hypothesis $\left(\mathrm{H}_{0}\right)$ : the three models do not provide equivalent graphical output. The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : the three models do provide equivalent graphical output.

### 3.3.8 Questions RQ2A and RQ2B

Research questions RQ2A and RQ2B investigate the user needs related to graphical depiction of LTF output data. The initial test approach was to include collection and analysis of user surveys to test the related hypotheses. However rescheduling of the 2010 Black Point field trials has precluded the survey as only two NASA participant were available. These questions/hypotheses are retained here for any future researchers interested in pursuing such study.
(RQ2A) For the Black Point lunar analog database, what graphical characterization in LTF is significant to the successful usability of the communications attenuation model to an astronaut analog?
(RQ2AH1) The LTF communications predictions depicted as coverage maps will provide useful input for the user when antenna repositioning or relay antenna deployment is required to maintain LOS to the base antenna.
(RQ2AH2) The LTF communication predictions depicted as metered scales will provide useful input for determining current self or own vehicle communication capability while minimizing data load on the operator.
(RQ2B) For the Black Point lunar analog database, what algorithmic techniques are significant to the rapid and accurate transfers of the chosen LTF communications attenuation model to active formats and venues with the greatest number of end-user systems such as Google Earth(Moon)?
(RQ2BH1) LTF will need to support generation of KML coverage maps, for Google Earth end users, and will need to support extraction of query of location specific signal strength through the native API to accommodate all requirements of the NASA end users.

### 3.4 Post Processing of Collected Black Point Data

Post processing of the collected Black Point data was performed to create an LTF format LOS Ray Query configuration file. The LOS Ray Query file is a list of coordinate pairs (in geocentric coordinates) which are used by the LTF Viewer to executions a batch of LOS queries against an LTF terrain database. The list created from Black Point data will use the base antenna location as the first coordinate and the receiver location recorded for
each measurement as the second coordinate. Where relay antennas are deployed, two coordinate pairs will be created (base antenna location, relay location) and (relay location, receiver location). When the configuration file queries are executed within the LTF Viewer tool, a signal strength value (at the receiver) will be calculated for each query using the (user input) transmit power value and the signal loss attenuation algorithm embedded in the LTF code. The calculated signal strength output is tested against the measured signal strength as defined earlier in this chapter.

Additional attenuation loss factors, used for the Elgi model, and the Foore and Ida fade depths, will be calculated within an excel spreadsheet and summed with the LTF calculated signal strength for use in the RQ1G hypothesis testing.

A second configuration file will be generated using the provided "Earth" location data in place of the base antenna location to allow generation of visual coverage maps indicating direct Earth communication capability. The generated Direct Earth coverage map will be shown in the usability concept demonstration.

### 3.5 Discussion of Reliability of LTF

Reliability specifications for LTF were a parameter requested by NASA at one of the research related meetings. Reliability is a numeric attribute which describes the average amount of time a component or system will operate between failures. Typically, the failure rate of hardware component is specified as the quantity of failures per 1 million hours of operation or 1 million cycles of operation dependant on the hardware being tested. Failure rates of individual components are summed up to determine failure rate of a higher level component/system and Mean Time Between Failures (MTBF), which is the mathematical inverse of failure rate, has become a commonly collected or required
parameter in Government procurements. When dealing with a non-hardware system such as LTF, failures do not manifest themselves with the same clarity and certainty as with hardware. Software will inherently not fail - it does not age or fatigue with time as hardware does. Failure attributed to software systems more generally are the result of operator errors or errant input data. One approach to address reliability of a non-hardware system is to look at its potential to provide a desired correct output. Specifically, the "functional reliability" of a system can be defined as the percentage of time the system produces the correct output when tasked to perform. For LTF, the task is predicting RF signal reception given two antenna locations; output can be specified as a color (red/yellow/green) indication to the user of the predicted signal strength; and correct output being one that matches measured data. Reliability within the context of LTF performance will be calculated as: (number of correct predictions)/(total number of predictions). While this functional reliability approach, based on our limited data set, may not provide the equivalent confidence level of a 1 million hour test of hardware, it does provide a benchmark by which other systems performing similar functions can be compared, or which could be used to determine reliability improvements to LTF resulting from future ARA product line enhancements or research based modifications.

Table 5 Summary of Research Questions, Hypotheses, and Test Methods

| Research Question | Specific Research Question | Hypotheses | Test Method or Not Tested. |
| :---: | :---: | :---: | :---: |
| (RQ1) As analogs to Planetary and Heliophysic effects, what factors must the LTF database represent and at what resolution must the LTF database model these factors in order to represent attenuation of various communications signals due to geospatial and atmospheric effect to the extent that they influence planning and execution of analog lunar surface operations? | (RQ1A) For the Black Point lunar analog database, what Terra Firma elevation model accuracy and resolution levels are significant to the accurate estimation of the actual signal strength attenuation within an LTF Communication Layer? | (RQ1AH1) Source data elevation accuracy is correlated to the accurate prediction of signal attenuation; greater elevation accuracy will yield more accurate attenuation predictions within the LTF communications layer. | Not tested. |
|  |  | (RQ1AH2) Source data elevation post spacing is correlated with the accurate prediction of signal attenuation; smaller post spacing will yield more accurate attenuation predictions within the LTF communications layer. | Not tested. |
|  |  | (RQ1AH3) Generated database elevation post spacing is correlated with the accurate prediction of signal attenuation; smaller post spacing in the generated database will yield more accurate predictions within the LTF communications layer. | Not tested. |
|  | (RQ1B) For the Black Point lunar analog database and without regard to effects arising from Terra Firma material or atmospheric properties, what Terra Firma elevation model accuracy and resolution levels are significant to the accurate estimation of signal attenuation due to terrain blockage? | (RQ1BH1) For all signal types tested and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will | Chi Square Test with one degree of freedom. $\alpha=0.05$ |
|  |  | demonstrate lower accuracy for signal strength attenuation based on the first elevation post | Correct <br> Incorrect |
|  |  | height along a line-of-sight azimuth between the signal source and the receiving station that is greater than both the elevation height of the signal source and the receiving station elevation post. | Null hypothesis (H0): <br> NumberCorrectDB1 >= <br> NumberCorrectDB2 <br> Alternative hypothesis (Ha): <br> NumberCorrectDB1 < <br> NumberCorrectDB2 |


| Research Question | Specific Research Question | Hypotheses | Test Method or Not Tested. |
| :--- | :--- | :--- | :--- |
|  | $\begin{array}{l}\text { (RQ1C) For the Black Point lunar } \\ \text { analog database, what terra firma } \\ \text { material properties are significant } \\ \text { to the accurate modeling of RF } \\ \text { transmission signal attenuation } \\ \text { within an LTF Communications } \\ \text { layer? }\end{array}$ | $\begin{array}{l}\text { (RQ1CH1) Completeness and accuracy of } \\ \text { source and generated terrain material properties } \\ \text { is correlated with the accuracy of predicted } \\ \text { communications attenuation within the LTF } \\ \text { communications layer. }\end{array}$ | Not tested. |$]$| (RQ1) As analogs to |
| :--- |


| Research Question | Specific Research Question | Hypotheses | Test Method or Not Tested. |
| :---: | :---: | :---: | :---: |
| (RQ1) As analogs to Planetary and Heliophysic effects, what factors must the LTF database represent and at what resolution must the LTF database model these factors in order to represent attenuation of various communications signals due to geospatial and atmospheric effect to the extent that they influence planning and execution of analog lunar surface operations? | (RQ1F) For the Black Point lunar analog database as represented within an LTF communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, what LTF S and Ka signal based generation and attenuation models and representational techniques are significant to the accurate estimation of the actual signal strength attenuation that are related to the distance between the transmitting and receiving stations? | (RQ1FH1) The LTF communication layer signal generation and attenuation algorithm and related models account for all generation and attenuation sources including signal source power, frequency, free space path loss, reflection, diffraction, and refraction with respect to each earth-based RF communication signal that significantly influences astronaut communications during the Black Point analog exercises. | Not tested. |
|  |  | (RQ1FH2) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, the LTF S band generation and attenuation models will predict signal strength reception for transmissions which are not blocked by the terrain. | Independent One SampleT Test $\mu_{\text {LTFSS }}=$ mean LTF signal strength prediction error <br> Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\text {LTFSS }}=0$ <br> The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : $\mu_{\text {LTFSS }} \neq 0$ |
|  |  | (RQ1FH3) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, the LTF Ka band generation and attenuation models will predict signal strength reception for transmissions which are not blocked by the terrain. | Not tested. |


| Research Question | Specific Research Question | Hypotheses | Test Method or Not Tested. |
| :---: | :---: | :---: | :---: |
| (RQ1) As analogs to Planetary and Heliophysic effects, what factors must the LTF database represent and at what resolution must the LTF database model these factors in order to represent attenuation of various communications signals due to geospatial and atmospheric effect to the extent that they influence planning and execution of analog lunar surface operations? | (RQ1F) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring terrain elevation variability, what LTF S and Ka signal based generation and attenuation models and representational techniques are significant to the accurate estimation of the actual signal strength attenuation that are related to the distance between the transmitting and receiving stations? | (RQ1FH4) For S band signal types tested and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on greater distance between the signal source and the receiving station for signals not blocked by terrain. | Independent T Test <br> $\mathrm{PE}=$ Prediction error $=$ Predicted signal strength - Actual Signal Strength <br> $\mu_{\mathrm{DBIPE}}=$ mean error for predictions <br> from database 1 <br> $\mu_{\text {DB2PE }}=$ mean error for predictions from database 2 <br> Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\text {DB } 1 P E}<=\mu_{\text {DB2PE }}$ The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : $\mu_{\text {DBIPE }}$ $>\mu_{\text {DB2PE }}$ |
|  | (RQ1G) For the Black Point lunar analog database as represented within an LTF Communication layer, what LTF $S$ band signal based generation and attenuation models and representational techniques are significant to the display of accurate signal strength prediction information to | (RQ1GH1) Given combined Black Point LTF database and Friis transmission model, predicted Green/Red Coloration for either resolution terrain database are equivalent to observed signal reception. | Chi-Square Test of homogeneity Medium Effect size, $\beta=0.02, \alpha=0.05$. 188 independent LIDAR and 188 independent SRTM predicted signal receptions <br> Null hypothesis $\left(\mathrm{H}_{0}\right)$ : Treatments are equivalent <br> The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : <br> Treatments are not equivalent |
|  |  | (RQ1GH2) Given the 3 level RF signal strength depiction scheme requested by NASA, LTF signal attenuation models may not need to account for all attenuation sources (free space path loss, reflection, refraction, and diffraction) to accurately depict signal strength predictions to the user. | Analysis of Variance <br> 3 Treatments - Free space model, Elgi model, and Free space + Fade depth values developed by Foore and Ida Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\mathrm{FS}} \neq \mu_{\text {Elgin }} \neq$ $\mu_{\mathrm{FS}+\mathrm{FD}}$ <br> The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ : $\mu_{\mathrm{FS}}=$ $\mu_{\mathrm{Elgin}}=\mu_{\mathrm{FS}+\mathrm{FD}}$ |


| Research Question | Specific Research Question | Hypotheses | Test Method or Not Tested. |
| :---: | :---: | :---: | :---: |
| (RQ2) What are the human systems integration/interface components and what should their characteristics be so that astronauts receive spatial representations of various communications signal attenuations to affect timely and effective planning and execution of analog lunar surface operations? | (RQ2A) For the Black Point lunar analog database, what graphical characterization in LTF is significant to the successful usability of the communications attenuation model to an astronaut analog? | (RQ2AH1) The LTF communications predictions depicted as coverage maps will provide useful input for the user when antenna repositioning or relay antenna deployment is required to maintain LOS to the base antenna. | Not tested. |
|  |  | (RQ2AH2) The LTF communication predictions depicted in a non-map format, such as metered scales, alpha-numeric reception power values, or colored alpha-numeric characters, will provide useful input for determining current EVA or own vehicle communication capability while minimizing data load on the operator. | Not tested. |
|  | (RQ2B) For the Black Point lunar analog database, what algorithmic techniques are significant to the rapid and accurate transfers of the chosen LTF communications attenuation model to active formats and venues with the greatest number of end-user systems such as Google Earth(Moon)? | (RQ2BH1) LTF will need to support generation of KML coverage maps, for Google Earth end users, and will need to support extraction of query of location specific signal strength through the native API to accommodate all requirements of the NASA end users. | Not tested. |

## 4 DATA COLLECTION AND ANALYSIS

Chapter 4 presents the communication coverage data collected during the two days of experiments executed at the Black Point Lava Flow site in Arizona. This field data was processed and filtered as required to provide specific data sets needed for evaluation with respect to LTF predicted communication coverage. The statistical tests and hypotheses used in the evaluation were those proposed in Chapter 3. Results of these statistical tests are discussed in detail including any anomalies noted during the experiment which may affect validity of the collected data or test results.

### 4.1 Raw Data

- The data collected in Black Point was recorded on NASA PC assets, therefore the raw data is provided in the format in which it was delivered by NASA to the UCF team. Black Point Lava Flow data collection trip occurred March 16-19, 2010.
- NASA provided Tropos Networks radios and data logging hardware, points of interest as defined in 2010 Desert RATS planning sessions, and Engineering support for execution of data collection and processing of collected data.
- Data collection consisted of deploying a fixed site antenna and then traversing a preplanned path with a mobile antenna (Figures 1 and 2).
- Data points recorded:
- Fixed and Mobile antenna location (GPS)
- Transmission Signal Strength (DB), noise and modulation rate
- Transmit Power, Antenna Gains


Figure 1 Fixed Tropos Radio Deployment


Figure 2 Mobile Tropos Radio Deployment

The delivered files were provided in Comma Separated Variable format to allow easy import to both Microsoft Excel and the LTF Viewer application. The files provided and their contents are summarized in Table 6. The numeric suffix on the file name is a timestamp that identifies related files. Appendix A provides the printed files.

Table 6 Tropos Output Data Files

| Tropos.500 - 69Kb - Data for mobile radio on path1 |  |  |  |  | Max |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Data | Min | Median | Average | Mode |  |  |  |  |  |  |  |
| Time (epoch) | 1268847841 | 1268863304 | 1268852914 | 1268854730 | 1268849285 |  |  |  |  |  |  |
| Latitude (degrees) | 35.58922 | 35.63641 | 35.60538 | 35.60883 | 35.59746 |  |  |  |  |  |  |
| Longitude (degrees) | -111.61611 | -111.53287 | -111.5924 | -111.58697 | -111.60172 |  |  |  |  |  |  |
| Altitude (meters) | 1680.196 | 1813.871 | 1754.57 | 1755.962 | 1796.204 |  |  |  |  |  |  |
| Distance (meters) | 0.783 | 6638.120 | 1614.764 | 2168.706 | 0.783 |  |  |  |  |  |  |
| Signal Strength (dB) | -87 | -22 | -73 | -70.34 | -73 |  |  |  |  |  |  |
| Noise (dB) | -100 | -69 | -91.5 | -89.32 | -95 |  |  |  |  |  |  |
| Modulation (sym/sec) | 2 | 108 | 36 | 47.6 | 108 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Tropos.505 -21Kb - Data for mobile radio on path 2 |  |  |  |  |  |  |  |  |  |  |  |
| Data | Min | Max | Median | Average | Mode |  |  |  |  |  |  |
| Time (epoch) | 1268868583 | 1268871339 | 1268870019 | 1268870022 | 1268871339 |  |  |  |  |  |  |
| Latitude (degrees) | 35.65891 | 35.71626 | 35.66452 | 35.67821 | 35.65999 |  |  |  |  |  |  |
| Longitude (degrees) | -111.53053 | -111.46451 | -111.50096 | -111.49952 | -111.53052 |  |  |  |  |  |  |
| Altitude (meters) | 1551.488 | 1629.644 | 1590.66 | 1590.545 | 1629.644 |  |  |  |  |  |  |
| Distance (meters) | 0.908 | 15601.066 | 4033.890 | 3793.869 | 6605.184 |  |  |  |  |  |  |
| Signal Strength | -87 | -20.5 | -75.69 | -70.84 | -81 |  |  |  |  |  |  |
| Noise (dB) | -99 | -88 | -95.62 | -94.59 | -96 |  |  |  |  |  |  |
| Modulation (sym/sec) | 2 | 108 | 33.62 | 37.87 | 48 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Tropos.727 - 19Kb - Data for mobile radio on path 3 |  |  |  |  |  |  |  |  |  |  |  |
| Data | Min | Max | Median | Average | Mode |  |  |  |  |  |  |
| Time (epoch) | 1268940836 | 1268945075 | 1268942993 | 1268942904 | \#N/A |  |  |  |  |  |  |
| Latitude (degrees) | 35.55099 | 35.59464 | 35.56379 | 35.56665 | 35.55140 |  |  |  |  |  |  |
| Longitude (degrees) | -111.65929 | -111.62151 | -111.63949 | -111.63820 | -111.63950 |  |  |  |  |  |  |
| Altitude (meters) | 1844.511 | 1976.33 | 1923.508 | 1919.046 | 1972.104 |  |  |  |  |  |  |
| Distance (meters) | 0 | 5124.993 | 1876.340 | 2047.113 | 0.941 |  |  |  |  |  |  |
| Signal Strength (dB) | -89 | -20 | -74.88 | -67.75 | -85.89 |  |  |  |  |  |  |
| Noise (dB) | -98 | -84.8 | -96 | -96 |  |  |  |  |  |  |  |
| Modulation (sym/sec) | 2 | 108 | 22.975 | 38.841 | 22 |  |  |  |  |  |  |

### 4.2 LTF Communication Coverage Predictions and Signal Strength Predictions

The LTF Viewer communication coverage prediction maps were generated using the target antenna locations provided in the target.xxx files (reference Table 6). The output
maps are generated in a KML format allowing them to be imported/displayed in Google Earth (or equivalent GIS tool). For each antenna location two maps were generated as discussed further below, one using the LIDAR derived LTF database and the second using the SRTM derived LTF database. Figures 3 provides a Google Earth screenshot showing the coverage map generated with the LIDAR derived LTF database DB for the path 1 fixed antenna position. The green and yellow shading indicate the minimal signal strength levels of -71 db and -96 db respectively. 71 db is the minimum signal strength which supports IEEE 801.11 G data rates, -96 db is the minimum signal strength which supports IEEE $801.11 \mathrm{~A} / \mathrm{B}$ data rates. For coverage maps generated with the SRTM derived LTF database, the colors used are blue and orange. LTF is a proprietary product of Applied Research Associates (ARA). Details on LTF should be sought from ARA.


Figure 3 LIDAR Communications Coverage Prediction Map

Figures 4 through 6 show the superimposed SRTM and LIDAR coverage maps for fixed antenna locations for paths 1,2 , and 3 . These over-laid graphical coverage maps provide a general indication of the difference in predicted coverage resulting from different resolution and accuracy levels of the LTF terrain database source.


| LIDAR Predicts Green |  |
| :--- | :--- |
| SRTM Predicts Green |  |
| LIDAR/SRTM Predict Green |  |
|  | LIDAR Predicts Yellow |
|  | SRTM Predicts Yellow |
|  | LDIAR/SRTM Predict Yellow |

Figure 4 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 1


|  | LIDAR Predicts Green |
| :--- | :--- |
| SRTM Predicts Green |  |
| LIDAR/SRTM Predict Green |  |
|  | LIDAR Predicts Yellow |
|  | SRTM Predicts Yellow |
|  | LDIAR/SRTM Predict Yellow |

Figure 5 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 2

$+$

LIDAR Predicts Green
SRTM Predicts Green
LIDAR/SRTM Predict Green
LIDAR Predicts Yellow
SRTM Predicts Yellow
LDIAR/SRTM Predict Yellow

Figure 6 Overlaid SRTM and LIDAR Communications Coverage Prediction Maps for Path 3

In addition to generation of fixed antenna coverage maps, the LTF tool provides the capability to calculate signal strength between given antenna locations. Antennas locations may be manually entered in the viewer tool or positioned in the rendered view
via mouse click. Antenna pairs can also be parsed in from a file. For the analysis of the Black Point data, the fixed antenna locations are entered into the tool manually via the user GUI, and the mobile antenna GPS locations provided in the tropos.xxx files are parsed in. LTF calculates the elevation and received signal strength for each location specified in the file. The results are output (along with the input data) to a user specified file.

The generation of communications coverage maps is a new capability in LTF that was funded through UCF and added by ARA to facilitate this research. To support the coverage map generation, UCF also funded ARA to implement the LTF Communications layer. The communications layer provides the capability to model antennas and provides an RF Signal attenuation algorithm which previously did not exist in LTF.

Additional modifications to the LTF Viewer (user interface) application funded by UCF and performed by ARA in support of the NASA defined case study include:

- GUI controls for coverage map generation capability. Coverage maps may be displayed as overlays within the LTF Viewer. LTF GUI also now supports export of coverage maps as saved images in a variety of formats with appropriate Google Earth KML to import into Google Earth
- GUI control for antenna deployment and antenna parameter setup. The relevant properties required and able to be supported when adding a radio model are: antenna height above surface, antenna gain ( dBi ), frequency, and transmit power ( dBm ).

Radio specs for specific devices (LER / PCT / PUP) can be entered through the LTF

GUI. Antenna/Relay configuration can also be exported to Google Earth so users can show where the relays were that generated a coverage map.

- GUI control for dynamic antenna movement and RF relay placement with real time graphical signal-link updates. Capability to switch between embedded signal models including Friis Transmission Equation and Geometric Line-Of-Site on the fly was also added.

The modifications funded by UCF and performed by ARA included no changes to Database Storage Architecture. Where possible, current capabilities were leveraged for the needs of NASA, such as the LTF high-performance ray tracer which is used to predict area radio coverage with millions of LOS queries.

The Google Earth export capabilities were added because the NASA Lunar Surface System team heavily uses Google Earth for mapping, coverage analysis, and manual route planning. With funding by UCF, ARA developed LTF / RAVEN support for export of coverage map to standard color image files with corresponding KML metadata for correct rendering in Google Earth. UCF also funded ARA to produce multiple LTF terrain databases of region using GOTS software (RUGUD 1.4) from varying resolution and fidelity source data. SRTM and LIDAR databases were built successfully of roughly a $27 \mathrm{~km} \times 27 \mathrm{~km}$ section of the Black Point area. SRTM DB used 30m (DTED2) +/- 16 meter source data. LIDAR DB used $1 \mathrm{~m}+/-10$ Centimeters source data.

During testing of the LTF modifications, LTF radio prediction overlays matched well to the prediction overlays that were developed by a NASA LSS radio engineer, but were much higher resolution ( 10 m grid vs. 100 m radial sampling) and also took less time to generate. A coverage map based on sampled 10 meter post drawn from the one meter LIDAR database took overnight to generate. ( $27 \mathrm{~km} \times 27 \mathrm{~km}$ ). A coverage map for INTERPOLATED 10 meter post drawn from the 30 meter SRTM took a little over 2 hours to calculate. $(27 \mathrm{~km} \times 27 \mathrm{~km})$. A LIDAR coverage map created using ONE meter posts WAS NOT attempted by ARA for the 27 Km by 27 Km area. The stated rationale was that it would take approximately " 100 x longer" (1200 hours) in a worst case scenario and thereby overrun the amount time available prior to the Arizona data collection trip and available funding. The databases were tested with approximately 36 million LOS queries, most of which are over a much longer distance than ever tested before, since typical Army LTF databases are $2 \mathrm{Km} \times 2 \mathrm{Km}$. The LTF software is capable of processing and producing the coverage maps needed for experiment. Radio specifications used for generating these coverage maps for each database were based on specifications from the Tropos Network radios: 36 dBm transmit power, 7.4 dBi antenna gain (Tropos 5320).

### 4.3 Statistical Analysis

For the proposal phase of the dissertation process, the size of the sample population for the statistical tests were designed using a traditionally accepted beta value of 0.2 and an alpha value of 0.05 , as selected from the recommendations in Table 2 of Cohen (1992). These ESTIMATED parameters were used in conjunction with Table 2 of Cohen and the EXPECTED evaluable data to determine sample sizes required for each test, so that a
data collection plan could be developed. Since projected reception or non-reception of a data signal and signal reception measures are above or below threshold are dichotomous and ordinal, predictive and observed data can be categorized in a 2 X 2 matrix. The Chi-square test for homogeneity is more broadly used in inferential statistics to evaluate two independent samples whereas the McNemar test is used to evaluate tworelated samples in such cases (Daniel, 1978, p $174 \& 146$ ). Cochran's Q test is used to test the homogeneity of three or more related samples (Daniel, 1978, p 241). One or two sample t-tests are used when comparing means of interval data (Cohen, 1992).

During ACTUAL analysis, a statistical tool, G*Power (Faul, Erdfelder, Buchner, Lang, 2007) was used to calculate exact alpha, beta and power parameters for each test. $\mathrm{G} *$ Power allows the user to specify test type and multiple parameters to calculate a specific parameter such as required sample size. In all cases, the sample size estimates indicated by Cohen's tables were larger than the samples calculated by G*Power, given the same alpha, beta, and effect size values. Rather than using fewer samples, the tests performed used the larger sample sizes initially estimated, thus providing better resulting values of beta, alpha and power. For each test discussed in chapter 4, the final test parameters as calculated by $\mathrm{G}^{*}$ Power are provided.

### 4.4 RQ1BH1 Test and Analysis

(RQ1BH1) For S band signal type and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on the first elevation post height along a line-of-sight azimuth between the signal source and the receiving station that is greater than both the elevation height of the signal source and the receiving station elevation post.

The simplified RQ1BH1 null hypothesis states: Higher (LIDAR) and lower (SRTM) resolution terrain databases will predict blockage using a go/no go standard of within range RF signal pairings with equal accuracy. Field data required to test hypothesis RQ1BH1, including the Tropos radio output data and the LTF signal strength predictions using both the LIDAR and SRTM databases. Both databases are combined in the data table provided in Appendix C. The LIDAR data was generated at the one meter post accuracy but sampled at 10 meter intervals in order to make the coverage map. Therefore the effective resolution of the LIDAR coverage map calculation was 10 meter posts. The SRTM database was generated at posts every meter but the values were based on post accuracy of every 30 meters. Furthermore, the SRTM coverage map was generated by sampling the interpolated posts every 10 meters. As this test is concerned with blockage of the radio signal by the terrain, Appendix C only contains the data for which the LIDAR and SRTM predictions indicated a blocked signal.

Data collected to test this hypothesis is ordinal and categorical and can be expressed in a 2X2 matrix. As explained above, the broadly accepted Chi-square test of homogeneity was implemented with the following estimated parameters.Using Cohen Table 2 designed for one degree of freedom (Colums-1)*(Rows -1$)=1$; a estimated medium effect size, $\beta$ $=0.2$, alpha of 0.05 yields a sample size of 87 for each sample. The medium effect size (0.3) is estimated based on the expectation that the difference in elevation accuracy of the two sample databases would provide significant differences in prediction accuracy, however these differences would be less apparent when looking at signal strength color assignments or terrain blockage than when looking at raw signal strength. In a worse
case scenario where the actual effect size was small, 785 samples would be needed for each sample population. With our data collection limitations we were able to standardize on 188 data points in each sample population which would be more than enough to meet the expected parameter levels with medium effect size. The 188 independent LIDAR and 188 independent SRTM data points were selected randomly from all blocked predictions within each database group. The LTF predictions were then compared to actual Black Point signal measurements for each receiver location to determine if a blocked signal ( $<71 \mathrm{dBM}$ ) was recorded.

Figure 7 provides the statistical test parameters as calculated within the G*Power tool (Faul et al., 2009).
$\mathrm{H}_{0}$ : Observed $=$ Expected.
$\mathrm{H}_{\mathrm{a}}$ : Observed $\neq$ expected.
The critical value of $X^{2}$ is 3.8415 .
The full test data are provided in Appendix C. The chi-square test matrix shown in Table 7 provides the results of the observations.


Figure 7 Statistical Test Parameters

Table 7 Chi Square Test Matrix for RQ1BH1

|  | Treatments |  |  |
| :--- | :---: | :---: | :--- |
|  | LIDAR predicts <br> blockage | SRTM predicts <br> blockage | Row Totals |
| Measured value <br> matches prediction | 149 | 140 | 289 |
| Measured value <br> does not match <br> prediction | 39 | 48 | 87 |
| Column Totals | 188 | 188 |  |

Expected frequencies are calculated as follows:
$\mathrm{E}_{11}=188 * 289 / 376=144.5$
$\mathrm{E}_{12}=188 * 289 / 376=144.5$
$E_{21}=188 * 87 / 376=43.5$
$\mathrm{E}_{22}=188 * 87 / 376=43.5$
The formula for chi-square is

$$
\mathrm{X}^{2}=\sum \frac{(O-E)^{2}}{E}
$$

$X^{2}=(149-144.5)^{2} / 144.5+(140-144.5)^{2} / 144.5+$

$$
(39-43.5)^{2} / 43.5+(48-43.5)^{2} / 43.5
$$

$X^{2}=0.14014+014014+0.46552+0.46552=1.21132, \quad \mathrm{p}-$ value $=0.2711$.
As shown by the test criteria calculations in Figure 7, the actual calculated Power is 0.983 , yielding a beta value of 0.017 .

The test to reject $\mathrm{H}_{0}$ is if $X^{2}>3.8415$ : We cannot reject $\mathrm{H}_{0}$ because the calculated $X^{2}$ value is not greater than the Critical value. The results of the Chi-square test performed
on the collected RF signal measurements and generated LTF signal strength calculations do not show a statistical difference in the prediction of blocked signals between: (a) the 10 meter post LIDAR communication coverage map generated on the LTF LIDAR database that is extrapolated by sampling from one meter spaced elevation post source data, and (b) the 10 meter post SRTM communication coverage map generated on the LTF SRTM database that is interpolated from thirty meter spaced elevation source data. The formula for static reliability for a single component system is $\mathrm{R}_{\mathrm{s}}=1-\mathrm{q}$ (Kapu \& Lamberson, 1977, p 57). The static reliability of the communication coverage predictions were:

- Reliability $($ LIDAR $)=0.793$
- Reliability $(S R T M)=0.745$


### 4.5 RQ1FH2 Test and Analysis

(RQ1FH2) For the Black Point lunar analog database as represented within an LTF Communications layer and ignoring effects due to terrain elevation variability, signal reflection, signal refraction, and Fresnel effect, the LTF S band generation and attenuation models will predict signal strength reception for transmissions which are not blocked by the terrain.

The simplified RQ1FH2 null hypothesis states: Using the LIDAR LTF database, the Friis $S$ band generation and attenuation model will predict individual unblocked signal strength measurements that are statistically equal to values measured in the field test. Since both the Friis model and actual signal strength measured in the field are interval data, the statistical test is used to evaluate this hypothesis that a two tailed Independent One Sample T Test with the following estimated design parameters: Medium effect size, power $=0.8, \beta=0.2, \alpha=0.05$ yields a sample size of 64 . The large effect size ( 0.8 ) is
likely based on the expectation that the large difference in elevation accuracy of the two test databases would provide significant differences in prediction accuracy. The test looks for the mean error for predicted signal strengths on an interval scale to be zero. Data required to test hypothesis RQ1BH2 included the Tropos radio signal strength measurements and LTF LIDAR database signal strength predictions (see Appendix D). A total of 64 sample measurements are provided. $\mu_{\text {LTFSS }}=$ mean LTF signal strength prediction error Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\text {LTFSS }}=0$

The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \quad \mu_{\text {LTFSS }} \neq 0$.

Figure 8 provides the statistical test parameters as output by the $\mathrm{G}^{*}$ Power software program. With a large effect size value, the resulting alpha and beta error probabilities are 0.0015 . For a given transmitter location, 64 receiver locations where signal strength was unblocked were randomly selected. The resulting 64 antenna pairs were executed in the LIDAR LTF database. Resulting signal strength predictions are provided in Appendix D. The mean of the predictions is -2.4334 , standard deviation is 11.36 . The t value is calculated as:

$$
t=\frac{-2.4334}{11.36 / \sqrt{64}}=1.7137
$$



Figure 8 Statistical Test Parameters

Critical $t=3.32$, but observed $t=1.714$, $p$-value $=0.0915$. Cannot reject $\mathrm{H}_{0}$; since the calculated sample $t$ is less than the critical t (3.32) the null hypothesis of equivalence could not be rejected. This finding infers that the attenuation model accurately attenuated the signal, which is good; however, our transmission distances were all below 10 KM which did not exceed the distance capabilities of Tropos transmission ranges meaning we were unable to test the attenuation model for accuracy beyond the theoretical range of the signal. A regression analysis that examines signal strength with distance will be performed to partially make up for this short coming.

### 4.6 RQ1FH4 Test and Analysis

(RQ1FH4) For $S$ band signal types tested and without regard to terra firma material or atmospheric properties, databases generated from lower elevation accuracy and lower resolution (larger post spacing) source data will demonstrate lower accuracy for signal strength attenuation based on greater distance between the signal source and the receiving station for signals not blocked by terrain.

The simplified RQ1FH4 null hypothesis states that the higher resolution LIDAR database and the lower resolution SRTM database will predict unblocked signal strength with equal accuracy. The Two Sample T-Test was used to evaluate the hypotheses and based on Cohen used the following parameters: Medium effect size, Power= $0.80, \beta=0.2$, $\alpha=0.05$, and 64 samples per treatment. A large effect size (0.8) is likely based on the expectation that the large difference in elevation accuracy of the two test databases would provide significant differences in prediction accuracy. Data required to test hypothesis RQ1FH4, including the Tropos radio signal strength measurements, LTF LIDAR database signal strength predictions and LTF SRTM predictions are provided in Appendix E.

PE $=$ Prediction error $=$ Predicted signal strength - Actual Signal Strength $\mu_{\mathrm{DB} \text { IPE }}=$ mean error for predictions from database 1 (LIDAR database) $\mu_{\text {DB2PE }}=$ mean error for predictions from database 2 (SRTM database)

Null hypothesis $\left(\mathrm{H}_{0}\right): \mu_{\mathrm{DB} 1 \mathrm{PE}}=\mu_{\mathrm{DB} 2 \mathrm{PE}}$
The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu_{\mathrm{DB} 1 \mathrm{PE}} \neq \mu_{\mathrm{DB} 2 \mathrm{PE}}$
64 samples are provided for each group providing 128 total samples and 126 degrees of freedom. Figure 9 provides the statistical parameters for this test.


Figure 9 Statistical Test Parameters

The formula for the independent t -test is,

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$\bar{X}_{1}=9.9315$, is the mean error of the LIDAR prediction samples $\left(\mu_{\mathrm{DBIPE}}\right)$
$\bar{X}_{2}=9.8436$, is the mean error of the SRTM prediction samples $\left(\mu_{\text {DB2PE }}\right)$
$n_{1}=64$, number of samples in LIDAR predictions
$n_{2}=64$, number of samples in LIDAR predictions
The Sum of Squares formula is,

$$
S S_{1}=\sum X_{1}^{2}-\frac{\left(\sum X_{1}\right)}{n_{1}}
$$

$S S_{1}=8871.193-(404007.597 / 64)=2558.575$, is the SS for LIDAR samples
$S S_{2}=8635.003-(396890.172 / 64)=2433.594$, is the SS for SRTM samples
The t -test value is calculated as

$$
\begin{gathered}
t=\frac{9.9315-9.8436}{\sqrt{\left(\frac{2558.575+2433.594}{64+64-2}\right)\left(\frac{1}{64}+\frac{1}{64}\right)}} \\
t=\frac{0.088}{2.476}=0.0355
\end{gathered}
$$

Cannot reject $\mathrm{H}_{0}$, Critical $\mathrm{t}=2.267, \mathrm{t}=0.0355$, p -value $=0.4858$. The results indicated that there was NOT a significant difference in the predicted signal strength accuracy between: (a) the signal strength predictions generated on the LTF LIDAR database that is extrapolated from one meter spaced elevation post source data and (b) the signal strength predictions generated on the LTF SRTM database that is interpolated from thirty meter spaced elevation source data.

### 4.7 RQ1GH1 Test and Analysis

(RQ1BH1) Given combined Black Point LTF database and Friis transmission model, predicted Green/Red Coloration for either resolution terrain database are equivalent to observed signal reception.

The simplified RQ1GH1 null hypothesis states: Higher (LIDAR) and lower (SRTM) resolution terrain database will predict using a go/no go standard within range RF signal pairings equally accurately. Regardless to distance or blockage, each BP observed reception/no reception is compared to LTF predicted reception/no reception (excluding yellow areas) as assigned a colored depiction level with a corresponding signal strength level $(1,2$, or 3$)$ to represent the 3 levels of graphical depiction of signal strength desired by NASA.

Data collected to test this hypothesis is categorical and ordinal and can be expressed in a 2X2 matrix. As explained above, the Chi-square test of homogeneity may be used as inferential statistical test purposes. Again a Medium Effect size, $\beta=0.2, \alpha=0.05$ was estimated yielding a target data sample of a 87. The medium effect size $(0.3)$ is expected based on the expectation that the difference in elevation accuracy of the two test databases would provide significant differences in prediction accuracy; however these differences would be less apparent when looking at signal strength color assignments or terrain blockage than when looking at raw signal strength. If a small effect size were to occur, then 785 samples would be required for each sample population. For our test, 188 independent LIDAR and 188 independent SRTM predicted signal receptions or no reception (NO Yellow) within range receiver locations were available and randomly selected as discussed previously.

Figure 10 shows the statistical test parameters as calculated in the $\mathrm{G}^{*}$ Power tool.
Predictions were compared to actual Black Point signal measurement to determine if a blocked signal (<-71 dBm) had occurred. The chi-square test matrix shown in Table 8 provides the results of the observations. The full data tables are provided in Appendix F.


Figure 10 Statistical Test Parameters

Table 8 Chi Square Test Matrix

|  | Treatments |  |  |
| :--- | :---: | :---: | :---: |
|  | LIDAR Predicted <br> Signal | SRTM Predicted <br> Signal | Row Totals |
| Measured value <br> matches predicted | 136 | 150 | 286 |
| Measured value <br> does not match <br> predicted | 52 | 38 | 90 |
| Column Totals | 188 | 188 | 376 |

Expected frequencies are calculated as follows:
$\mathrm{E}_{11}=188 * 286 / 376=143$
$\mathrm{E}_{12}=188 * 286 / 376=143$
$E_{21}=188 * 90 / 376=45$
$\mathrm{E}_{22}=188 * 90 / 376=45$
The chi-square value is

$$
\begin{aligned}
& X^{2}=(136-143)^{2} / 143+(150-143)^{2} / 143+ \\
& \qquad(52-45)^{2} / 45+(38-45)^{2} / 45 \\
& X^{2}=0.3427+03427+1.0889+1.0889=2.8632, \quad \text { p-value }=0.09063 .
\end{aligned}
$$

Reject $\mathrm{H}_{0}$ if $X^{2}>3.8416$ : We cannot reject $\mathrm{H}_{0}$ because the calculated $X^{2}$ value is not greater than the Critical value. The results of the Chi-square test performed on the collected RF signal measurements and generated LTF signal strength calculations do not show a statistical difference in the prediction signal strength color indication between the signal strength color predictions generated on the LTF LIDAR database that is extrapolated from one meter spaced elevation post source data, and the signal strength
color predictions generated on the LTF SRTM database that is interpolated from thirty meter spaced elevation source data. No difference is statistically shown between the higher resolution (LIDAR) database and the lower resolution (SRTM) database predictions.

### 4.8 RQ1GH2 Test and Analysis

(RQ1GH2) Given the 3 level RF signal strength depiction scheme requested by NASA, LTF signal attenuation models may not need to account for all attenuation sources (free space path loss, reflection, refraction, and diffraction) to accurately depict signal strength predictions to the user.

The simplified RQ1GH2 null hypothesis states: The Egli, Foore \& Ida, and Friis transmission models are equivalent for signal strength prediction. Data required to test hypothesis RQ1GH2, including the Tropos radio signal strength measurements, LTF LIDAR database signal strength predictions and modified LTF attenuation model signal strength calculated values are provided in Appendix G. The modified LTF attenuation model signal strengths are calculated using the alternative Elgi model and Foore and Ida fade depth approach discussed in Chapter 2. The Cochran Q Test is the appropriate statistical test to analyze three or more related samples with a binary success-failure outcomes . Again using Cohen and the following estimated parameters:

Medium effect size, Power $=0.80, \beta=0.2, \alpha=0.05$. Degrees of freedom $=2$.
Table 2 indicates 52 samples are used for each treatment.
Critical region will be $\mathrm{T}>\chi^{2}{ }_{.950}=0.012587$ (Mendenhall, 1995).

For a given transmitter location, 52 receiver locations where signal strength was unblocked were randomly selected. The resulting 52 antenna pairs were executed in LTF
database for the Friis model and then computed for Egli and Foore \& Ida in an Excel spreadsheet. The test matrix provided in Table 9 details the test values as calculated within the spreadsheet in Table 21 (Appendix G).

Table 9 Cochrans Q Test Matrix

|  | Friis | Elgi | Foore and Ida |
| :--- | :---: | :---: | :---: |
| Agree with <br> Measured <br> Signal Color | 36 | 24 | 23 |
| Do not Agree <br> with Measured <br> Signal Color | 16 | 28 | 29 |

This test revealed that there was a statistical difference between color indication between the three models with the Friis model matching observed more often than the other two. Cochran critical region $\mathrm{T}>\chi^{2} .950=0.012587, T=24.15 \mathrm{p}$-value $=0.0006$.

### 4.9 Additional Analysis Beyond What Was Proposed

### 4.9.1 Regression Analysis of LIDAR Predictions

To further investigate the influence of the selected Friis algorithm a regression analysis was performed. The 64 sample LIDAR signal strength predictions used in the test RQ1FH2 are charted (Figure 11) against the distance of the transmission range. Since the algorithm is implemented within LTF is a logarithmic calculation of signal strength (decibels) the resulting of curve is expected. Data tables for the test are provided in appendix H .


Figure 11 Signal Strength Prediction (dB) vs. Distance (meters)

Figure 12 provides a graph of the predicted signal strength error (predicted signal strength - measured signal strength) also plotted against distance of transmission. The distribution of points appears to be suitable for linear regression analysis. The calculation of Pearson's product moment coefficient of correlation (r) executed in excel provides a value $r=0.689$, suggesting that a linear trend may exist between prediction error and distance of transmission. The equation for the least square line is $Y=-14.049+0.004399 X$. The coefficient of determination $\left(r^{2}=0.476\right)$ indicates that approximately $50 \%$ of the signal strength error could be attributable to this increasing distance. Therefore as distance increases, error increases. This would also indicate that at least $50 \%$ of the signal strength error is from other sources, such as signal reflection, refraction, and diffraction that are not accounted for by the Friis equation, or by errors in
antenna gain or transmit power values which were are modeled in the Friis equation and were assumed constant throughout the experiments.


Figure 12 Predicted Signal Strength Error (dB) vs. Distance (meters)

### 4.9.2 Chi-Square Analysis of LIDAR Blocked and Unblocked predictions

 An additional hypothesis was considered that impacted on those proposed above. Specifically, there is no difference between LIDAR prediction of blocked signals and actual measured signal strength. Data collected to test this hypothesis is categorical and ordinal and can be expressed in a 2 X 2 matrix. The Chi-square test of homogeneity may be used for two independent samples. The following test looks for a statistical difference in the capability of LTF to correctly predict blocked vs. unblocked transmissions. Thistest was performed using the LTF LIDAR database. Using the same parameters as other categorical evaluations, Medium Effect size, $\beta=0.2, \alpha=0.05$ yields a requirement for 87 samples. The medium effect size (0.3) was selected based on the expectation that the large difference in elevation accuracy of the two test databases would provide significant differences in prediction accuracy, however these differences would be less apparent when looking at signal strength color assignments or terrain blockage than when looking at raw signal strength. The statistical test criteria is the same as show in Figure 10. For this test and given the availability of additional data, 188 independent LIDAR Blocked predictions and 188 independent LIDAR Unblocked predictions were randomly selected. Predictions were compared to actual Black Point signal measurement to determine if a blocked signal (<-71 dBm) had occurred. The chi-square test matrix shown in Table 10 provides the results of the observations. The full data tables are provided in Appendix I.

Table 10 Chi Square Test Matrix

|  | Treatments |  |  |
| :--- | :---: | :---: | :---: |
|  | LIDAR Blocked | LIDAR Unblocked | Row Totals |
| Field <br> measurement <br> threshold Blocked | 143 | 109 | 252 |
| Field <br> measurement <br> threshold <br> Unblocked | 45 | 79 | 124 |
| Column Totals | 188 | 188 | 376 |

Expected frequencies are calculated as follows:
$\mathrm{E}_{11}=188 * 252 / 376=126$
$\mathrm{E}_{12}=188 * 252 / 376=126$
$\mathrm{E}_{21}=188 * 124 / 376=62$
$\mathrm{E}_{22}=188 * 124 / 376=62$

The chi-square value is $X^{2}=(143-126)^{2} / 126+(109-126)^{2} / 126+(45-62)^{2} / 62+(79-62)^{2} / 62$
$X^{2}=2.2937+2.2937+4.6613+4.6613=13.91, \quad \mathrm{p}$-value $=0.000192$.

Reject $\mathrm{H}_{0}$ if $X^{2}>3.8416$ : We reject $\mathrm{H}_{0}$ because the calculated $X^{2}$ value is greater than the Critical value. The results of the Chi-square test performed on the collected RF signal measurements and generated LTF signal strength calculations show a statistical difference in the capability of LTF to prediction correct signal strength color indication and the capability to predict terrain blockage of signals. The results of this test indicate that for the tested LIDAR database, the LTF prediction of blocked terrain is more accurate than the LTF prediction of unblocked signal strength.

# 5 SUMMARY, CONCLUSIONS, RESEARCH LIMITATIONS, LESSONS LEARNED AND SUGGESTED FUTURE RESEARCH 

### 5.1 Summary

The following paragraphs provide a brief review of the motivation for this research, the planned research tasks and the efforts performed in support of this research.

### 5.1.1 Motivation

The primary question posed in this dissertation questions the feasibility of applying the U.S. Army developed, uniquely architected LTF database to the general problem of celestial body representation. A number of more specific research questions were developed as the scope, limitations, and specific use case proposed for the research were defined.

- What levels of terrain source data are required for the database to accomplish the given communications prediction task?
- What communications attenuation algorithms are appropriate for this application?
- What user interfaces can be supported to display the LTF prediction data?

The level of research in this dissertation devoted to the above three questions was limited by resources. What was addressed is described in Chapter 3 and 4 above and summarized below. The motivation to do this research was largely driven by NASA's planned current and future space exploration missions defined in The Vision for Space Exploration. For any celestial body exploration endeavor, realistic validated terrain databases will be necessary to provide mission planning and rehearsal capability as well as to aid mission execution. The terrain fidelity level necessary for constituting models and simulations that are realistic enough to meet operational and safety concerns is at the
heart of this dissertation. The technology embedded in LTF theoretically provides additional benefit in its small computational footprint - potentially allowing it to be embedded in robotic platforms and/or man wearable computers. Portable access theoretically provides REAL-TIME modeling and simulation support to REAL-TIME celestial operations. Past NASA history of celestial operations indicate a need for (a) accuracy and (b) real-time response from support models and simulation.

### 5.1.2 Research Design

This case study research design involved assessment through hypothesis testing and regression analysis of models and simulation based on high resolution LIDAR and lower resolution SRTM databases produced through LTF and compared with data collected at the NASA Black Point Lava Flow lunar analog 2010 Desert RATS exercise area. NASA commissioned a flyover of the Black Point area to collect the LIDAR data. This data was then processed by NASA to create a Digital Elevation Model which was provided for this research. SRTM data was available free, on-line in a format already usable by RUGUD, the LTF database generation tool. Each terrain source file was processed by RUGUD to produce a $27 \mathrm{Km} \times 27 \mathrm{Km}$ LTF terrain database. The LTF databases have a one meter post spacing - in the case of the SRTM source which has 27 meter post spacing, all intermediate posts are interpolated based on known post heights and calculated slopes. The final size of each LTF database is: SRTM - 1.25 MB ; LIDAR 131 MB . The two databases were used in combination with the Friis transmission and attenuation algorithm to generate two sets of communication coverage maps - LIDAR and SRTM - for the $27 \times 27 \mathrm{~km}$ section of the Black Point site.

Within to these generated databases, data layers were added to accommodate the specific data types required for communications simulation. The Army version of LTF already contained layers for representation of terrain and features. Three specific data layers were added for this research. The Radio Tower layer contains antenna data including height, gain and location, and also contains the transmit power value for transmitting antennas. The Link Grid layer stores the attenuated transmission links between antennas which have been specified. These links are visible as colored lines within the RAVEN viewer. The Map layer contains coverage map data including the attenuated signal color value assigned at each coverage map grid point. These colored points grids can be viewed as Communication Map overlays within RAVEN, or exported to KML format data for display in Google Earth. Figure 13 illustrates the communications specific layers added to LTF, identifying interaction with the embedded Friis algorithm.


Figure 13 LTF Communication Layers Diagram

Figure 14 provides an Entity Relationship Diagram identifying the data and data type stored in each layer. Colored blocks provide an indication of references between layers.


Figure 14 LTF Communication Layers Entity Relationship Diagram

The research required several changes to the RAVEN LTF Viewer application to allow access to the new LTF communication layers, specification of output characteristics for coverage map creation, and input of radio/antenna parameters. Figure 15 provides a flowchart showing the capabilities progression of the LTF Database and RAVEN (LTF Viewer) based on the identified NASA needs and the design efforts of both the researcher and ARA personnel. ARA implemented the code changes required for the RAVEN GUI interface modifications.


Figure 15 LTF Capability Modification Flowchart

The Friis transmission equation was used to model S-band signal strength attenuation within the LTF simulation. The selection of the Friis Transmission equation as the embedded LTF attenuation algorithm was made because it could be easily implemented in the code and would not be computationally expensive to execute. The Friis algorithm is a free space path loss equation modified with factors to account for antenna gains and transmit power. The addition of a different RF attenuation algorithm would require modification and recompilation of the RAVEN Radio Services DLL, or creation of a new DLL and registration of that DLL with the LtfServices DLL. Typically, no code changes to the database would be required.

The RAVEN viewer controls added for map generation and RF link visualization provide the capability to specify colors associated with attenuated signal levels. For coverage map generation, simulated transmissions are performed between a single transmitting antenna (positioned by the user) and a grid of points covering the entire database, each representing a receiving antenna. The distance between the nodes of the grid is user specified before the mapping function is started. A sample coverage map generated within LTF and rendered in RAVEN is shown in Figure 16.


Figure 16 Coverage Map Overlay of BP Mountain as Shown in LTF Viewer

### 5.1.3 Data Collection

Actual communications signal power readings samples were collected in mid March 2010 from the site of NASA's planned 2010 Desert RATS analog tests, using the points of interest and antenna locations provided by NASA. The data collection team included two University of Central Florida graduate students and two NASA Communications Engineers. Communications signal parameters including signal strength, noise, and
modulation were recorded between fixed antennas and mobile antennas following both preplanned and arbitrary routes. Fixed antenna locations and planned routes were selected based on points of interest defined by NASA in 2010 Desert Rats planning events. The communications data layer added to the LTF database provided the capability to generate S-Band communications coverage prediction maps for antenna locations of interest at the Black Point site. The RAVEN interactive interface, specified by this research, funded by UCF, and developed by ARA for the case study, proved useful in determining routes in real time. The raw data collected at black point, as well as data used for each statistical analysis are provided in the appendices. Table 11 below summarizes the content of each appendix.

Table 11 Test Data Provided in Appendices

| Appendix A | Raw Data collected at Black Point Lava Flow |
| :---: | :--- |
| Appendix B | Test data for LTF LIDAR and SRTM elevation <br> comparisons |
| Appendix C | Test data for LTF Prediction of signal blockage by <br> terrain |
| Appendix D | Test data for LIDAR database error in signal strength <br> prediction |
| Appendix E | Test data for comparison of accurate signal strength <br> coloration matching of LIDAR and SRTM databases |
| Appendix F | Test data for |
| Appendix G | Test data for comparison of three attenuation models |
| Appendix H | Test data for linear regression analysis of LIDAR error |
| Appendix I | Test data for LIDAR Blocked vs LIDAR unblocked <br> accuracy |

### 5.1.4 Findings and Analysis

Chapter 4 and related appendices present the detailed data and analysis. Analysis involved inferential statistical analysis of hypotheses testing and regression on recorded and LTF predicted communications coverage maps, signal strength, and blockage of communications signals by terrain.

It was expected that for the case study of modeling 2.4 Ghz S-band communications that the higher fidelity database would provide better performance in terms of identifying signals that were blocked by the terrain. However the hypothesis test showed no significant statistical difference in the performance of the two databases. Further, both databases predicted equally accurate point reliability of predicted blockage of communications of within range S -band signal using a go/no go standard and the Black Point LIDAR and SRTM database.

Reliability $($ LIDAR $)=0.793$
Reliability $(S R T M)=0.745$
Likewise, LIDAR and SRTM database predicted overall signal coverage of within range S-band signal using a go/no go standard equally accurately.

Reliability $($ LIDAR $)=0.723$
Reliability $(S R T M)=0.798$
Hence the interpolated 10 meter post versus the sampled 10 meter post proved to be equally accurate in predicting communications. However, from the real-time operational requirements point of view, the SRTM coverage map could be generated in approximately one sixth of the time (2 hours versus overnight) as the LIDAR coverage
map. Additionally, creation of a coverage map at 1 meter resolution proved to be not possible from the perspective of the experiment or for real-time purposes as it theoretically would have taken 1200 hours to create using the same hardware and nonoptimized algorithms. A further analysis of the height returned for 100 random points between the largely interpolated (SRTM) and the precise (LIDAR) database found that the mean height difference of actual elevation posts between the two databases to be 1.75 meters.

The statistical analysis of the LTF signal strength predictions for unblocked transmissions indicate that the Friis equation provides a good representation of actual signal strength attenuation seen a Black Point. The LTF technology used the LTF generated databases with the Friis algorithm and NASA specified antenna position and attribute data to create visual representations of communication coverage for the Black Point Lava Flow analog lunar test site. Limited hypothesis testing and regression analysis was conduct using the SRTM and LIDAR coverage maps to predict communications and the field data gathered from the Black Point Lava Flow site.

The fourth analyses performed investigated the capability of LTF predictions to match measured signal strength in terms of the 3 level (green, yellow, red) user indication desired by NASA. The results show no statistical difference in the performance of the SRTM and LIDAR source LTF databases.

In the final proposed analysis, the Friss algorithm was further evaluated against the Egli algorithm and the Foore and Ida model for determining signal strength color indication. This analysis was performed in Excel. Among these alternative attenuation models, results were shown to be not statistically equivalent. The Friis algorithm provided the most matches to actual signal strength measurements.

### 5.2 Conclusions

The results of the statistical tests as well as the experience gained at the data collection event, where the LTF generated coverage maps were used to derive routes and predict coverage in real time, suggest that the modeling of a celestial body, or in this specific case the analog of a celestial body, within the LTF layered database framework was successful and, for the specific case of communications predictions, is a feasible alternative to current tools in use by NASA.

The results indicate that for terrain surface, similar to the Lunar analog test site, an LTF generated communication coverage map that used interpolated SRTM data was faster to produce than either the LTF LIDAR coverage maps or coverage maps generated by NASA using the Mobile Radio (ITU model) product. The Mobile Radio tool using SRTM 100 meter source data takes overnight to generate a coverage map vs. 2 hours for the LTF database sourced from 30 meter SRTM data. Neither the Mobile Radio product nor NASA's LSOS simulation will provide real-time radio link updates allowing for dynamic antenna movement or relay deployment as was demonstrated with LTF. Collected Black Point RF transmission data was not loaded into the LTF database - the LTF database is a terrain database - the LIDAR and SRTM terrain source was used to
create LIDAR and SRTM terrain databases. The location data recorded for a single Black Point transmission event (transmitting antenna location, receiving antenna location) can be used to position virtual radio/antennas within the added LTF communications layer. Additionally, the radio transmission power and antenna gains can be specified within the LTF communications layer. The LTF can then execute the Friis attenuation algorithms and line-of-sight algorithms against the communications layer data (and terrain layers) to predict the signal strength of the RF signal at the receiving antenna location, or blockage of the RF signal by terrain.

The accuracy of LTF predicted signal strength using the Friis transmission algorithm was not compared with Mobile Radio results, however when compared with actual measured signals no statistical difference was found. However, these results may not apply to terrain surfaces with greater variability in elevation than the Black Point Lava Point segment that was tested such as those surfaces more densely populated with canyons, ravines, or boulders of sizes under the 30 meter post spacing of the SRTM source data.

The RAVEN viewer, as modified for this research, provides the same visualization of coverage maps as can be viewed in Google Earth, but also provides user interaction not currently available through Google Earth, such as movement of an already positioned antenna or deployment of new antennas. These features allow real-time visibility of communications link impact when antennas are placed, moved, or parameters such as antenna height, gain or transmit power are changed.

LTF provides a unique set of capabilities that fulfill needs specified by NASA scientists involved in celestial body communications design. The capabilities provided by LTF can benefit space exploration mission planning and mission execution tasks as depicted in Figure 17. The following scenario provides an example of how LTF could be employed for a mission execution task.

Scenario: An astronaut is driving a rover towards a defined location of interest to collect mineral samples. The route he follows has been selected to keep him within LOS of the base radio tower based on LTF communications coverage maps generated when the tower was erected. As he traverses the route, he notices a surface feature which he would like to inspect. The feature is about 200 meters off route, this will take him outside of the communication coverage of the base station. Using his LTF visual interface, he places a 2 meter antenna icon at the location he wishes to explore. The base station antenna's position is already represented by a fixed icon. He places a relay antenna icon on a nearby ridge and moves its position around until visible linkage lines connect the three antennas, indicating a successful communications link can be achieved. He then radios his controllers at the base station, notifies them that he desires to go off route, but will maintain radio contact through a verified relay location.


Figure 17 LTF Application in Mission Planning and Execution

Based on the statistical analyses performed, the SRTM source database provides the most logical choice given the current LTF capabilities. It provides accuracy, in terms of user output, statistically equivalent to the LIDAR source database, it has a lower cost, and generation of coverage maps can be accomplished much quicker. In the future, optimization of LTF line-of-sight algorithms, limiting the coverage map area, and increased hardware processing speeds may significantly decrease the computation time required to produce an LTF communication coverage map. These advances may also allow the greater resolution, that corresponds precisely to the LIDAR one meter elevation post source data, for the generated map. However, there is also increasing cost involved in the collection, processing, and storage of more detailed terrain data. The execution time required to generate cover maps on the SRTM database was demonstrated to take
approximately $1 / 6$ of the time required for the LIDAR database. Although ARA SME indicates advancements in LTF optimization and hardware capabilities will reduce both times, the SRTM generation will likely still be faster, and the benefit of having a higher resolution map will have to be weighed against the additional execution time. From the results experienced in this research, it is suggested that a careful review of the intended use case should be performed before determining what resolution of database source is elected for a specific application.

### 5.3 Potential Research Benefits and Inferences

Specific benefits of this research can be generalized beyond the communications use case posed by NASA. Discussions have been presented showing that the proprietary LTF architecture has the capability to represent celestial bodies of various sizes and shapes, including polar regions which are problematic for many simulation terrain database architectures. This research infers that celestial body terrain databases represented within LTF could be added to existing simulation systems, such as DSES, to allow those simulations to access geo-specific information not currently represented, or capable of being represented, in their native databases architectures.

Robotic exploration is another possible domain which has been mentioned throughout this text as potentially benefiting from LTF technology. Autonomous robots, including celestial or earth based explorers, would benefit from having an detailed yet compact embedded GIS. The LTF's high resolution (1-meter) terrain representation could be used to perform terrain referenced navigation in environments (celestial, underwater, under
terrain) where GPS signals are not available. Geo-specific data such as soil type, hardness, and slope embedded in an LTF layer would permit trafficability calculations to aid in route planning decisions. An embedded mineralogy layer could allow mining robots to quickly locate elements of interest based on remote sensor readings from premission satellite scans.

Robotic teams or flocks using LTF could include layers preloaded with satellite information that would be updated as discoveries and surface samples are explored. The ability to wirelessly stream these data updates between robotic platforms (a capability currently being developed for LTF under an RDECOM effort) provides a very unique architecture for a shared robotic information system. This approach would also minimize the loss of discovered data due to loss of a robot platform, reducing the risk to the exploration mission.

Finally, the LTF architecture was designed and optimized, by the US Army, to perform rapid LOS type simulations. Additionally, LTF allows users specification of attenuation parameters, if desired. Use cases which can be simulated using line of site models may benefit from the LTF capabilities. The modeling of solar radiation for instance could support simulations of both solar power collection arrays, as well as radiation exposure for equipment and personnel. These models could include radiation reflected off of surface elements as well as attenuation of radiation by atmospheric or shielding layers.

- Benefit to NASA in having a database and visualization tool for celestial body terrain and geo-specific data representation.
- Validated representation of celestial body within simulations is key to exploration planning and execution activities
- Rehearsal \& Assessment of Manned \& Robotic Celestial Body Missions needs analogs (Black Point Lava Flow for the Moon) of the actual environment in order for learning transfer to occur accurately
- In order for mission aspects to be rehearsed in a synthetic environment, the synthetic environment must have evidence that it correlates to known analogs (Black Point Lava Flow for the Moon) for the target mission environments
- Inquiry into the resolution required for the terrain database source data in order to provide useful output (prediction/planning) capabilities.
- Benefit to future robotic and manned space exploration missions through access to a terrain and geo-specific database which requires a small computational footprint and can be updated through wireless interaction.
- Benefit to future LTF researchers or adopters of LTF technology via ongoing Army development activities which will continue to enhance the current LTF capabilities.


### 5.4 Scope and Limitations

The scope of the research was defined both by the general research question - creating a celestial body representation within a layered terrain database, and by the specific case study - determine if the LTF celestial body representation could be used to fulfill a
communications coverage prediction gap identified by NASA. While the initial plan was to create a database of a future planned lunar exploration site, the scope of the research was limited by a lack of lunar terrain data sources and lunar RF transmission data. At NASA's request, the LTF database was developed for Black Point Lava Flow, Arizona which is a site used by NASA for conducting lunar analogs. The communication coverage maps generated for the test were limited to 10 meter posts due the fact that the computational time required exceed the time available prior to the experiment.

The selection of an RF attenuation model to be embedded into LTF was limited to simplistic models due to a concern that more complex models such as ray tracing models would overwhelm the CPU and severely slow down generation of coverage maps, signal strength predictions, and LOS queries.

In addition to blockage by terrain or surface features that are modeled well within LTF there are a number of additional attenuation sources which could not be modeled due to lack of data, or could not be controlled for designed experiments such as atmospheric conditions and material properties of the terrain. The physical location of Black Point and availability of NASA and UCF personnel (students) limited the data collection to a single 2 day event. Addition data collection time may have permitted additional testing of LTF functions such as determination of LCT antenna deployments.

Time and budget constraints also limited the extent to which the LTF RAVEN Viewer could be modified to accommodate the requirements of the case study and the needs of

NASA. Modification were made to fulfill the use case functions desired by NASA, however little work was performed in optimizing the performance of these new capabilities.

### 5.5 Lessons Learned

There are two experiences from this research appropriate to define as lessons learned. For the Black Point data collection trip, the initial plan was to generate LTF coverage maps and determine routes to be followed for each day of the data gathering event. Although the team had two four wheel drive vehicles, the terrain on some of these preplanned routes was not drivable due to washouts, including washed out roads, and tire hazards such as volcanic rock. These hazards could not be seen on either the LTF View of the database or from Google Earth views of the Black Point location.

The SRTM source data turned out to be much more accurate than the advertised +/- 16 meters as advertised on the source website. A discussion with scientists at the Flagstaff AZ USGS office following the data collection event provided a likely reason. SRTM data was collected by the Space Shuttle using radar returns from ground - the quality of return data is highly dependent on terrain properties such as roughness and slope. The +/- 16 number is likely the worst case accuracy collected. The USGS personnel, who are very familiar with the Black Point Lava Flow area stated that they believed the SRTM data for this area was with $+/-2$ meters - which was validated by the terrain height analysis performed.

### 5.6 Applicability of Current Research Findings and Suggested Future Research Opportunities

This research has demonstrated that it is feasible to represent planetary or celestial body terrain data within LTF in order to provide capabilities beneficial for space exploration mission planning and execution. As Lunar terrain data becomes available from NASA's ongoing LRO mission, it is now possible to create LTF Lunar databases and support communications related mission planning and analysis tasks beneficial to either manned or robotic exploration. The research has shown that the LTF layered architecture is suitable for representation of geo-specific data, such as radio and antenna position and related attributes, beyond the terrain representation for which it was originally intended. This capability allows LTF to be employed as a Geographic Information System housing user specified data of interest for the celestial body being explored.

This research and the specific case study provide the following contribution to Interactive Simulation Science. The research has identified the LTF architecture as an appropriate terrain architecture for the representation of celestial body terrain surface simulation. This capability makes possible follow on research for non-spheroid celestial body modeling, lunar and Martian mobility maps, solar radiation maps, other planetary and heliophysic effects modeling, etc. The research has implemented an interactive simulation model executing across multiple data type layers in a layered terrain database, taking advantage of algorithms optimized for specific data layers to improve performance and execution speed. The specific case study was focused on communications capabilities, but the technical approach has been generalized to other domains. The research has implemented of a real-time and portable celestial body geographic
information system within the terrain database. The specific data layers added to the LTF represented location specific non-terrain data of interest to the users, in addition to the terrain layers. The potential to employ LTF as a celestial body information system has been shown. Findings of this research will be disseminated through:

- Florida Space Grant Consortium Final Report
- Article Submitted to Journal of Geographic Information Systems.
- Publication of this dissertation document,
- Final NASA Presentation

Enhancement of LTFs current communications predictions capabilities would likely result from addition research including the investigation of more robust RF attenuation models which account for terrain material and environment properties and additional RF transmission bands which are being considered for use. As this project had very limited funding for NASA specific LTF enhancements, further development work related to the LTF Viewer GUI interface could provide additional use cases or streamline execution of current functions. Appendix J provides a section from the Final Report to NASA which details additional product improvements to the LTF Viewer as identified by Applied Research Associates, Inc. (Proctor, Guise, and Peele, 2010).

Follow-on research and improvement opportunities exist and are discussed below: High-Fidelity Radio Physics: The LTF radio prototype uses a low-fidelity standardized radio physics model - the Friis Transmission Equation. Reliability predictions might
improve by adapting LTF to use first-principles near-earth radio propagation model developed and validated by ARA Southeast Division to model...

- ... atmospheric and humidity effects
- ... terrain dielectric and conductivity properties
- ... multipath effects
- ... frequency-specific effects

Real-time Performance: The prototype LTF coverage mapping engine is completely unoptimized and purely relies on LTF LOS speed for performance. Modern ray tracing techniques might be employed to improve speed, as well as:

- Aggressive multithreading and SIMD optimizations
- Adaptive culling and problem partitioning
- Coherent ray tracing and other scene graph optimizations for analyzing large numbers of rays
- GPGPU processing via CUDA or OpenCL

Predict Optimal Relay Configurations: NASA and many other applications have very limited number of relays and must determine how to obtain optimal coverage with available resources. The development or integration of optimization algorithms that use LTF radio coverage prediction to suggest optimal relay placement could provide added functionality to:

- Maintain visibility to points or areas of interest
- Maintain direct or indirect uplink to "home" transmitter
- Maintain radio connection along a desired route plan
- Develop a route planner capability which takes into account radio coverage and suggests route plan to maximize coverage or bandwidth

Other Applications: LTF can be applied to terrestrial applications; analyzes of color camera placement, cell phone signals, or any other type of sensor coverage or wave propagation

- Signal processing model is very flexible - it supports adding new types of signals and algorithms without modifying current code
- Signal processing model does not assume direct line of sight and could be adapted to support multipath effects and other complex paths from emitter to receiver
- Low-level C++ SDK exposes all LTF ray tracing primitives used by signal models to third party developers
- Coverage mapping engine currently implements "point to point" relay configurations, but would be easy to extend to "infrastructure" configurations where connection to a "home" relay is important


## APPENDIX A COLLECTED FIELD DATA

Table 12 Tropos. 500 Raw Data

| Time(epoch) | Lat(degrees) | Long(degrees) | Alt <br> (meters) | Distance (meters) | $\begin{aligned} & \text { Signal } \\ & \text { (dB) } \\ & \hline \end{aligned}$ | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268847841 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -22.63 | -88.26 | 18.74 |
| 1268847852 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -22.63 | -88.26 | 18.74 |
| 1268847874 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -25 | -89 | 108 |
| 1268847885 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -25 | -89 | 108 |
| 1268847895 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -30 | -89 | 108 |
| 1268847906 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -27.33 | -89 | 108 |
| 1268847917 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -27.33 | -89 | 108 |
| 1268847929 | 35.59746758 | -1 | 1796.786 | 1.311250696 | -28.75 | -88.75 | 108 |
| 1268847939 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -28.75 | -88.75 | 108 |
| 1268847950 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -27.4 | -88.6 | 108 |
| 1268847960 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -28.5 | -88.67 | 108 |
| 1268847971 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -28.5 | -88.67 | 108 |
| 1268847982 | 35.5 | -1 | 1796.786 | 1.311250696 | -27.86 | -88.71 | 108 |
| 126 | 35 | -1 | 17 | 1.311250696 | -27.86 | -88.71 | 108 |
| 12688480 | 35.597460 | -1 | 17 | 0.78329967 | 27.62 | -88.75 | 108 |
| 1268848014 | 35.59746758 | -111.6017296 | 1796.786 | 1.311250696 | -27.11 | -88.78 | 108 |
| 1268848025 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -27.11 | -88.78 | 108 |
| 1268848036 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.5 | -88.8 | 108 |
| 1268848047 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.5 | -88.8 | 108 |
| 1268848058 | 35.59746026 | -111.60172 | 1796.2 | 0.78329967 | -27.09 | -88.73 | 108 |
| 1268848068 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.67 | -88.67 | 108 |
| 1268848079 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.67 | -88.67 | 108 |
| 1268848090 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.46 | -88.69 | 108 |
| 1268848101 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.46 | -88.69 | 108 |
| 1268848113 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -27 | -88.71 | 108 |
| 1268848123 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.6 | -88.67 | 107.2 |
| 1268848134 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.6 | -88.67 | 107.2 |
| 1268848145 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -26.19 | -88.62 | 106.5 |
| 1268848155 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -25.88 | -88.59 | 105.88 |
| 1268848167 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -25.88 | -88.59 | 105.88 |
| 1268848178 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -25.83 | -88.61 | 106 |
| 1268848188 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -25.83 | -88.61 | 106 |
| 1268848199 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -25.63 | -88.63 | 106.11 |
| 1268848209 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -22 | -89 | 108 |
| 1268848221 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -22 | -89 | 108 |
| 1268848232 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -27.5 | -88.5 | 108 |
| 1268848243 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -27.5 | -88.5 | 108 |
| 1268848253 | 35.59746026 | -111.6017296 | 1796.204 | 0.78329967 | -30.22 | -90 | 108 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268848505 | 35.59803547 | -111.6025437 | 1799.796 | 98.35219885 | -30.53 | -90.21 | 108 |
| 1268848516 | 35.5980374 | -111.6025334 | 1799.497 | 97.7932574 | -30.53 | -90.21 | 108 |
| 1268848527 | 35.5980374 | -111.6025334 | 1799.497 | 97.7932574 | -31.35 | -90.4 | 108 |
| 1268848538 | 35.59810676 | -111.6025783 | 1799.052 | 105.9861607 | -31.35 | -90.4 | 108 |
| 1268848548 | 35.59826837 | -111.6026332 | 1799.767 | 122.2780152 | -31.48 | -90.62 | 108 |
| 1268848559 | 35.59842916 | -111.6027824 | 1800.608 | 144.6147357 | -32.05 | -90.82 | 108 |
| 1268848570 | 35.59854602 | -111.6029194 | 1801.3 | 162.5764458 | -32.05 | -90.82 | 108 |
| 1268848581 | 35.59863876 | -111.6029478 | 1800.754 | 172.0576491 | -47 | -96 | 108 |
| 1268848592 | 35.59863876 | -111.6029478 | 1800.754 | 172.0576491 | -47 | -96 | 108 |
| 1268848602 | 35.5987003 | -111.6029743 | 1801.522 | 178.8578208 | -49 | -96 | 108 |
| 1268848613 | 35.59878 | -111.6031483 | 1803.09 | 196.6419067 | -46 | -95.67 | 108 |
| 1268848623 | 35.59882 | -111.6034105 | 1805 | 215.3778734 | 6 | -95.67 | 08 |
| 1268848634 | 35.59886067 | -111.6037219 | 1807.582 | 239.108514 | -48.5 | -95.5 | 108 |
| 1268848646 | 35.59896502 | -111.6039553 | 1810.302 | 262.7390977 | -48.5 | -95.5 | 108 |
| 1268848657 | 35.59917087 | -111.6039219 | 1809.313 | 275.7458624 | -49 | -95.4 | 108 |
| 1268848667 | 35.5993384 | -111.6037863 | 1807.381 | 280.6389064 | -49 | -94.67 | 108 |
| 1268848678 | 35.5995694 | -111.6036074 | 1805.93 | 290.5096877 | -49 | -94.67 | 108 |
| 1268848688 | 35.59977519 | -111.6035147 | 1804.95 | 304.7836641 | -47 | -94.14 | 108 |
| 1268848700 | 35.6000503 | -111.6034668 | 1803.539 | 329.0048796 | -45.38 | -94 | 108 |
| 1268848711 | 35.60025228 | -111.603454 | 1803.149 | 348.3715718 | -45.38 | -94 | 108 |
| 1268848721 | 35.60046555 | -111.6034801 | 1802.728 | 370.7336068 | -44.11 | -93.78 | 108 |
| 1268848733 | 35.600713 | -111.6034693 | 1802.099 | 395.4338066 | -44.11 | -93.78 | 108 |
| 1268848743 | 35.60095738 | -111.6034789 | 1802.069 | 420.7956072 | -43.2 | -93.6 | 108 |
| 1268848754 | 35.60121642 | -111.6034475 | 1801.424 | 446.6228458 | -42.09 | -92.73 | 108 |
| 1268848766 | 35.60142959 | -111.6034142 | 1801.018 | 467.9312617 | -42.09 | -92.73 | 108 |
| 1268848777 | 35.60160717 | -111.6033933 | 1800.976 | 486.0593187 | -42.17 | -92 | 108 |
| 1268848787 | 35.60181108 | -111.6033702 | 1800.287 | 507.061869 | -42.17 | -92 | 108 |
| 1268848798 | 35.60203361 | -111.6033861 | 1800.149 | 531.1911884 | -42.46 | -92 | 108 |
| 1268848809 | 35.6022542 | -111.6034122 | 1800.31 | 555.4290966 | -43.07 | -92 | 108 |
| 1268848820 | 35.60243371 | -111.603381 | 1799.969 | 573.9196819 | -43.07 | -92 | 108 |
| 1268848832 | 35.60260517 | -111.6035034 | 1799.158 | 595.269899 | -44.27 | -91.67 | 108 |
| 1268848842 | 35.60271012 | -111.6035359 | 1798.35 | 607.3131739 | -45.38 | -91.62 | 108 |
| 1268848853 | 35.60271012 | -111.6035359 | 1798.35 | 607.3131739 | -45.38 | -91.62 | 108 |
| 1268848864 | 35.60271745 | -111.6035359 | 1798.932 | 608.0983566 | -46.47 | -91.59 | 108 |
| 1268848874 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -47.61 | -91.67 | 108 |
| 1268848886 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -47.61 | -91.67 | 108 |
| 1268848897 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -48.74 | -91.74 | 107.37 |
| 1268848907 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -48.74 | -91.74 | 107.37 |
| 1268848918 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -49.7 | -91.8 | 106.8 |
| 1268848929 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -49.7 | -91.8 | 106.8 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268848940 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -66 | -93 | 96 |
| 1268848952 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -66 | -93 | 96 |
| 1268848962 | 35.60272284 | -111.6035462 | 1799.814 | 608.9277883 | -66 | -93 | 96 |
| 1268848973 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -65 | -92.67 | 96 |
| 1268848984 | 35.60272284 | -111.6035462 | 1799.814 | 608.9277883 | -64.5 | -92.5 | 96 |
| 1268848994 | 35.60271797 | -111.6035421 | 1800.569 | 608.3055447 | -64.5 | -92.5 | 96 |
| 1268849005 | 35.60271797 | -111.6035421 | 1800.569 | 608.3055447 | -64.4 | -92.6 | 96 |
| 1268849016 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -64.4 | -92.6 | 96 |
| 1268849027 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -64.83 | -92.67 | 96 |
| 1268849037 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -64.43 | -92.71 | 96 |
| 1268849048 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -64.43 | -92.71 | 96 |
| 1268849059 | 35.60271 | -111.6035421 | 1800.569 | 608.3055447 | -64.5 | -92.75 | 96 |
| 1268849071 | 35.60271797 | -111.6035421 | 1800.569 | 608.3055447 | -64.5 | -92.75 | 96 |
| 1268849081 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -64.56 | -92.78 | 96 |
| 1268849092 | 35.60271797 | -111.6035421 | 1800.569 | 608.3055447 | -64.7 | -92.8 | 96 |
| 1268849102 | 35.60271797 | -111.6035421 | 1800.569 | 608.3055447 | -64.7 | -92.8 | 96 |
| 1268849113 | 35.6027179 | -111.6035421 | 1800.56 | 608.3055447 | -64.55 | -92.82 | 96 |
| 1268849124 | 35.60271064 | -111.6035421 | 1799.987 | 607.5205524 | -64.5 | -92.83 | 96 |
| 1268849136 | 35.60271552 | -111.6035462 | 1799.231 | 608.1428712 | -64.5 | -92.83 | 96 |
| 1268849147 | 35.60286725 | -111.6035458 | 1798.042 | 624.4061588 | -64.62 | -92.85 | 96 |
| 1268849168 | 35.60322921 | -111.6034977 | 1796.904 | 662.2815199 | -65.07 | -93.07 | 96 |
| 1268849178 | 35.60334178 | -111.6037085 | 1796.633 | 679.244471 | -65.87 | -93.27 | 96 |
| 1268849189 | 35.6035224 | -111.6037613 | 1796.12 | 699.8993894 | -65.87 | -93.27 | 96 |
| 1268849200 | 35.60371624 | -111.6038427 | 1795.277 | 722.6591077 | -65.75 | -92.62 | 96 |
| 1268849210 | 35.60387265 | -111.6040062 | 1795.081 | 743.4393336 | -65.76 | -92.06 | 96 |
| 1268849221 | 35.60409629 | -111.6041061 | 1794.772 | 769.8676206 | -65.76 | -92.06 | 96 |
| 1268849231 | 35.60416168 | -111.6041121 | 1794.942 | 777.0090457 | -65.61 | -91.33 | 96 |
| 1268849242 | 35.60415436 | -111.6041121 | 1794.359 | 776.225811 | -65.63 | -90.68 | 96 |
| 1268849252 | 35.60417144 | -111.6041202 | 1793.43 | 778.2569154 | -65.63 | -90.68 | 96 |
| 1268849264 | 35.6041929 | -111.604114 | 1793.539 | 780.3954666 | -65.9 | -90.45 | 96 |
| 1268849274 | 35.60419778 | -111.6041181 | 1792.783 | 781.0191019 | -66.24 | -90.1 | 96 |
| 1268849285 | 35.6041929 | -111.604114 | 1793.539 | 780.3954666 | -66.24 | -83 | 96 |
| 1268849285 | 35.6041929 | -111.604114 | 1793.539 | 780.3954666 | -73 | -83 | 96 |
| 1268849300 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849311 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849321 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849333 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849343 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849354 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849364 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt <br> (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268849375 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849386 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849396 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849407 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849418 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849429 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849439 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849450 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849461 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849471 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849482 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849492 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849504 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849514 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849525 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849536 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849546 | 35.6041782 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849557 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849568 | 35.60418557 | -111.604114 | 1792.957 | 779.611999 | -73 | -83 | 96 |
| 1268849579 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849590 | 35.60417825 | -111.604114 | 1792.374 | 778.8285973 | -73 | -83 | 96 |
| 1268849735 | 35.6047308 | -111.6021989 | 1787.46 | 810.7794567 | -81 | -85 | 2 |
| 1268849746 | 35.60476407 | -111.6019591 | 1787.456 | 813.6151737 | -81 | -85 | 2 |
| 1268849756 | 35.60477811 | -111.6018935 | 1786.998 | 815.042057 | -81 | -85 | 2 |
| 1268849767 | 35.60477811 | -111.6018935 | 1786.998 | 815.042057 | -80.33 | -87.33 | 2 |
| 1268849777 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -81.5 | -88.5 | 4.5 |
| 1268849788 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -81.5 | -88.5 | 4.5 |
| 1268849799 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -82.4 | -89.2 | 6 |
| 1268849810 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -83 | -89.83 | 7 |
| 1268849820 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -83 | -89.83 | 7 |
| 1268849831 | 35.60478298 | -111.6018976 | 1786.242 | 815.5919668 | -83.29 | -90.29 | 7.71 |
| 1268849841 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.75 | -90.75 | 8.25 |
| 1268849852 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.75 | -90.75 | 8.25 |
| 1268849862 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.67 | -91.11 | 8.67 |
| 1268849873 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.6 | -91.3 | 9 |
| 1268849883 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.6 | -91.3 | 9 |
| 1268849894 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.36 | -91.45 | 9.27 |
| 1268849904 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82.36 | -91.45 | 9.27 |
| 1268849915 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -82 | -91.58 | 9.5 |
| 1268849926 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -81.85 | -91.69 | 9.69 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt <br> (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268849936 | 35.60477566 | -111.6018976 | 17 | 8 | -81.85 | -91.69 | 69 |
| 1268849947 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -81.57 | -91.79 | 9.86 |
| 1268849957 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -80 | -93 | 12 |
| 1268849968 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -80 | -93 | 12 |
| 1268849978 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -79.5 | -93 | 12 |
| 12 | 35 | -111.6018976 | 17 | 814.7765921 | -79.33 | -93.33 | 12 |
| 1268849999 | 35.60477566 | -111.6018976 | 1785.66 | 814.7765921 | -79.33 | -93.33 | 12 |
| 1268850010 | 35.60477648 | -111.6018033 | 1785.533 | 814.7454459 | -79.75 | -93.5 | 12 |
| 1268850021 | 35.60475197 | -111.6017358 | 1785.896 | 811.9849248 | -80.4 | -93.8 | 12 |
| 1268850032 | 35.604845 | -111.6016105 | 178 | 822.4501934 | -80.4 | -93.8 | 12 |
| 1268850042 | 35 | -111.6014851 | 17 | 841.1038073 | -80.83 | 4 | 12 |
| 1268850053 | 35 | -111.6012695 | 17 | 862.5104304 | -81.71 | 9 | 12 |
| 1268850064 | 35.60536657 | -111.6010641 | 1779.955 | 882.4097279 | -81.71 | -94.29 | 12 |
| 1268850074 | 35.60538682 | -111.6009145 | 1780.252 | 885.6723617 | -82.38 | -94.5 | 12 |
| 1268850085 | 35.6053820 | -111.6006912 | 17 | 887.0396521 | -82.89 | -94.67 | 12 |
| 1268850095 | 35 | -111.6005356 | 17 | 882.8322247 | -82.89 | -94.67 | 12 |
| 1268850106 | 35 | -111.6002979 | 17 | 885.6615588 | -83.3 | -94.8 | 12 |
| 1268850116 | 35.60534392 | -111.6000786 | 1778.31 | 890.3852058 | -83.64 | -94.91 | 12 |
| 1268850127 | 35.6053487 | -111.6000233 | 1777.571 | 891.759681 | -83.64 | -94.91 | 12 |
| 1268850137 | 35.6053487 | -111.6000233 | 1777.571 | 891.759681 | -83.64 | -94.91 | 12 |
| 1268850148 | 35.60538145 | -111.5997773 | 1775.93 | 899.4409427 | -83.64 | -94.91 | 12 |
| 1268850158 | 35.60541125 | -111.599517 | 1774.746 | 907.5821523 | -83.64 | -94.91 | 12 |
| 1268850170 | 35.60548682 | -111.5991992 | 1773.33 | 922.4853778 | -83.64 | -94.91 | 12 |
| 1268850180 | 35.60549516 | -111.598945 | 1772.046 | 929.339199 | -83.64 | -94.91 | 12 |
| 1268850191 | 35.60548001 | -111.598648 | 1770.959 | 935.3576501 | -83.64 | -94.91 | 12 |
| 1268850201 | 35.6054517 | -111.5983817 | 1770.187 | 939.8270539 | -83.64 | -94.91 | 12 |
| 1268850212 | 35.60537263 | -111.59805 | 1770.426 | 941.6639752 | -83.64 | -94.91 | 12 |
| 1268850222 | 35.60530591 | -111.5978412 | 1770.46 | 941.6042978 | -83.64 | -94.91 | 12 |
| 1268850233 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.5 | -94.92 | 11.17 |
| 1268850243 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.54 | -95 | 10.46 |
| 1268850254 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.54 | -95 | 10.46 |
| 1268850265 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.57 | -95.07 | 9.86 |
| 1268850275 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.57 | -95.07 | 9.86 |
| 1268850286 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.53 | -95.13 | 10 |
| 1268850296 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.62 | -95.44 | 10.12 |
| 1268850307 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.62 | -95.44 | 10.12 |
| 1268850317 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -86 | -100 | 12 |
| 1268850328 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.5 | -98 | 12 |
| 1268850338 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.5 | -98 | 12 |
| 1268850349 | 35.60531079 | -111.5978452 | 1769.704 | 941.9710709 | -83.33 | -97.33 | 12 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt <br> (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268850359 | 35.60529859 | -111.5978412 | 1769.878 | 940.8476794 | -83.75 | -97.75 | 12 |
| 1268850370 | 35.60517309 | -111.59778 | 1770.435 | 930.0102235 | -83.75 | -97.75 | 12 |
| 1268850380 | 35.60514308 | -111.5976428 | 1769.932 | 931.7771817 | -83.4 | -98 | 12 |
| 1268850391 | 35.60515204 | -111.5974543 | 1770.261 | 939.5766302 | -82.67 | -97.67 | 12 |
| 1268850402 | 35.60518733 | -111.5972637 | 1769.944 | 950.3561923 | -82.67 | -97.67 | 12 |
| 1268850413 | 35.60524409 | -111.5970668 | 1769.736 | 963.7343079 | -82.14 | -97.43 | 12 |
| 1268850423 | 35.60526809 | -111.5968373 | 176 | 975.377401 | -81.5 | -97.25 | 12 |
| 1268850434 | 35.60523981 | -111.596571 | 1768.68 | 983.7633928 | -81.5 | -97.25 | 12 |
| 1268850444 | 35.6052208 | -111.5962944 | 1768.192 | 994.028482 | -81 | -97.11 | 12 |
| 1268850455 | 35.60521489 | -111.5959871 | 1767.389 | 1007.50228 | -80.8 | -97 | 12 |
| 1268850466 | 35.60517543 | -111.5957413 | 1766.635 | 1015.421875 | -80.8 | -97 | 12 |
| 1268850476 | 35.605 | -1 | 1766.63 | 1015.421875 | -80.64 | -96.91 | 12 |
| 1268850487 | 35.6051681 | -111.5957413 | 1766 | 1014.731981 | -80.64 | -96.91 | 12 |
| 1268850497 | 35.60513525 | -111.5956492 | 1765.991 | 1016.126177 | -80.5 | -96.92 | 12 |
| 1268850508 | 35.60505592 | -111.5954895 | 1764.546 | 1016.65527 | -80.38 | -96.85 | 12 |
| 1268850518 | 35.60495848 | -111.5952972 | 1764.189 | 1017.497972 | -80.38 | -96.85 | 12 |
| 1268850529 | 35.604 | -111.5950557 | 176 | 1019.877017 | -80.21 | -96.79 | 12 |
| 1268850539 | 35.6047682 | -111.5947977 | 1762.7 | 1027.138718 | -79.93 | -96.73 | 12 |
| 1268850550 | 35.6048586 | -111.5945393 | 1762.493 | 1049.446701 | -79.93 | -96.73 | 12 |
| 1268850560 | 35.60501634 | -111.5943361 | 1762.092 | 1074.6332 | -79.75 | -96.69 | 12 |
| 1268850572 | 35.60525269 | -111.5941675 | 1761.529 | 1104.736977 | -79.35 | -96.65 | 12 |
| 1268850583 | 35.6053844 | -111.5939253 | 1759.995 | 1129.855196 | -79.35 | -96.65 | 12 |
| 1268850593 | 35.60538306 | -111.5936631 | 1760.216 | 1144.70741 | -79 | -96.61 | 13.33 |
| 1268850605 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.74 | -96.58 | 14.53 |
| 1268850615 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.74 | -96.58 | 14.53 |
| 1268850626 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.55 | -96.55 | 15.6 |
| 1268850637 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.29 | -96.48 | 16.57 |
| 1268850648 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.29 | -96.48 | 16.57 |
| 1268850659 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -78.14 | -96.41 | 17.45 |
| 1268850670 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -76 | -96 | 36 |
| 1268850680 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -76 | -96 | 36 |
| 1268850692 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.5 | -96 | 36 |
| 1268850703 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.67 | -96 | 36 |
| 1268850713 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.67 | -96 | 36 |
| 1268850724 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.5 | -96 | 36 |
| 1268850735 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.4 | -96 | 36 |
| 1268850746 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.4 | -96 | 36 |
| 1268850757 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.5 | -96 | 36 |
| 1268850767 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.57 | -95.86 | 36 |
| 1268850779 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.57 | -95.86 | 36 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268850790 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.62 | -95.75 | 36 |
| 1268850800 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.67 | -95.67 | 36 |
| 1268850811 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -75.67 | -95.67 | 36 |
| 1268850823 | 35.60538286 | -111.5935442 | 1760.248 | 1151.573107 | -75.6 | -95.6 | 36 |
| 1268850833 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -75.55 | -95.55 | 36 |
| 1268850844 | 35.60538479 | -111.593534 | 1759.949 | 1152.33474 | -75.55 | -95.55 | 36 |
| 1268850855 | 35.6053735 | -111.5934951 | 17 | 1153.641903 | -75.58 | -95.5 | 36 |
| 1268850866 | 35.60535194 | -111.5934419 | 1759.887 | 1154.929352 | -76.08 | -95.46 | 36 |
| 1268850877 | 35.6052843 | -111.5932679 | 1760.064 | 1159.540918 | -76.08 | -95.46 | 36 |
| 1268850887 | 35.60526274 | -111.5932147 | 1759.971 | 1160.927685 | -76.14 | -95.21 | 36 |
| 1268850899 | 35.60519226 | -111.5930858 | 1760.5 | 1162.875971 | -75.93 | -95 | 35.2 |
| 1268850910 | 35 | -1 | 1760.232 | 1166.722263 | -75.93 | 95 | 35.2 |
| 1268850920 | 35.6049 | -111.5927073 | 1760.93 | 1169.980762 | -74.56 | -94.06 | 33.69 |
| 1268850931 | 35.60487798 | -111.5924966 | 1761.204 | 1174.513218 | -73.88 | -92.71 | 32.35 |
| 1268850942 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -73.88 | -92.71 | 32.35 |
| 1268850953 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -71.94 | -91.44 | 30.78 |
| 126885096 | 35.604833 | -1 | 17 | 1175.700021 | -71.37 | -90.26 | 29.37 |
| 1268850974 | 35.6048339 | -111.592425 | 1761.15 | 1175.700021 | -71.37 | -90.26 | 29.37 |
| 1268850985 | 35.60483882 | -111.592429 | 1760.403 | 1175.816272 | -69.85 | -89.3 | 28.1 |
| 1268850996 | 35.60483882 | -111.592429 | 1760.403 | 1175.816272 | -69.19 | -88.33 | 26.95 |
| 1268851007 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -69.19 | -88.33 | 26.95 |
| 1268851018 | 35.6048412 | -111.59242 | 1761.742 | 1176.269705 | -68.77 | -87.45 | 25.91 |
| 1268851039 | 35.60484127 | -111.592425 | 1761.742 | 1176.269705 | -58 | -69 | 4 |
| 1268851049 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -54 | -69 | 4 |
| 1268851061 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -54 | -69 | 4 |
| 1268851072 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -56 | -69 | 4 |
| 1268851082 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -58.75 | -70.25 | 4 |
| 1268851094 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -58.75 | -70.25 | 4 |
| 1268851104 | 35.60484127 | -111.592425 | 1761.742 | 1176.269705 | -59.4 | -70 | 4 |
| 1268851115 | 35.60483394 | -111.592425 | 1761.159 | 1175.700021 | -59.83 | -69.83 | 4 |
| 1268851126 | 35.604831 | -111.5924107 | 1761.616 | 1176.398988 | -59.83 | -69.83 | 4 |
| 1268851137 | 35.60480923 | -111.5922386 | 1761.555 | 1185.93108 | -60.14 | -69.71 | 4 |
| 1268851148 | 35.60480058 | -111.5920358 | 1761.178 | 1198.627778 | -60.62 | -69.62 | 4 |
| 1268851159 | 35.60480504 | -111.5918022 | 1760.486 | 1214.51273 | -60.62 | -69.62 | 4 |
| 1268851169 | 35.60480656 | -111.5915543 | 1760.251 | 1231.30629 | -61 | -69.89 | 3.78 |
| 1268851180 | 35.60479882 | -111.5913166 | 1759.732 | 1246.900731 | -61 | -69.89 | 3.78 |
| 1268851191 | 35.60479932 | -111.5910441 | 1759.655 | 1265.668798 | -61 | -69.89 | 3.78 |
| 1268851202 | 35.60478954 | -111.5907573 | 1759.452 | 1284.909623 | -61.7 | -70.1 | 3.6 |
| 1268851213 | 35.60479035 | -111.5906631 | 1759.326 | 1291.56695 | -62.36 | -70.27 | 3.45 |
| 1268851223 | 35.60479035 | -111.5906631 | 1759.326 | 1291.56695 | -62.36 | -70.27 | 3.45 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268851234 | 35.60479035 | -111.5906631 | 1759.326 | 1291.56695 | -63 | -70.83 | 3.33 |
| 1268851245 | 35.60479035 | -111.5906631 | 1759.326 | 1291.56695 | -63.62 | -71.31 | 4.46 |
| 1268851256 | 35.60478842 | -111.5906733 | 1759.626 | 1290.711552 | -63.62 | -71.31 | 4.46 |
| 1268851267 | 35.60478842 | -111.5906733 | 1759.626 | 1290.711552 | -64.07 | -71.71 | 6.71 |
| 1268851277 | 35.6047933 | -111.5906774 | 1758.87 | 1290.770297 | -64.53 | -72.07 | 8.67 |
| 1268851289 | 35.6047933 | -111.5906774 | 1758.87 | 1290.770297 | -64.53 | -72.07 | 8.67 |
| 1268 | 35.60478842 | -111.5906733 | 17 | 1290.711552 | -64.94 | -72.38 | . 88 |
| 1268851310 | 35.60478842 | -111.5906733 | 1759 | 1290.711552 | -65 | -72.65 | 9.06 |
| 1268851321 | 35.6047933 | -111.5906774 | 1758.87 | 1290.770297 | -65 | -72.65 | 9.06 |
| 1268851332 | 35.6047933 | -111.5906774 | 1758.87 | 1290.770297 | -65.06 | -72.89 | 9.22 |
| 1268851343 | 35.60479 | -111.5906631 | 1759.326 | 1291.56695 | -65.16 | -73.11 | 9.37 |
| 12 | 35 | -111.5905442 | 1759.359 | 89 | -65.16 | -73.11 | 37 |
| 1268851365 | 35.6047 | -111.5903209 | 1758.384 | 1315.368859 | -65.15 | -73.3 | 9.5 |
| 1268851376 | 35.60478493 | -111.5900832 | 1758.448 | 1332.282935 | -65.19 | -73.48 | 9.57 |
| 1268851387 | 35.60478105 | -111.589825 | 1757.332 | 1350.574905 | -65.19 | -73.48 | 9.57 |
| 1268851398 | 35.604785 | -111.589532 | 1756.65 | 1372.101659 | -68 | -77 | 11 |
| 1268851409 | 35 | -111.5892104 | 17 | 1395.519239 | -69 | 79 | 11 |
| 1268851420 | 35.6047760 | -111.5889133 | 1756.39 | 1416.923468 | 9 | 9 | 11 |
| 1268851430 | 35.60477651 | -111.5886408 | 1756.317 | 1437.204787 | -69.67 | -79.67 | 11.33 |
| 1268851442 | 35.60477395 | -111.5882946 | 1756.714 | 1462.970732 | -71.75 | -81.5 | 14.5 |
| 1268851453 | 35.60477535 | -111.5879872 | 1756.496 | 1486.245656 | -71.75 | -81.5 | 14.5 |
| 1268851463 | 35.6047739 | -111.587725 | 1756.71 | 1506.068483 | -73.4 | -82.6 | 16.4 |
| 1268851475 | 35.6047753 | -111.5874177 | 1756.50 | 1529.62522 | -75 | -84.5 | 17.67 |
| 1268851487 | 35.60476655 | -111.5871554 | 1756.142 | 1549.254355 | -75 | -84.5 | 17.67 |
| 1268851498 | 35.60476266 | -111.5868973 | 1755.027 | 1568.964626 | -75.86 | -85.86 | 30.57 |
| 1268851508 | 35.6047675 | -111.5869013 | 1754.27 | 1568.93197 | -75.86 | -85.86 | 30.57 |
| 1268851520 | 35.60476754 | -111.5869013 | 1754.27 | 1568.93197 | -76.5 | -86.38 | 40.25 |
| 1268851531 | 35.60476754 | -111.5869013 | 1754.27 | 1568.93197 | -76.33 | -86.56 | 47.78 |
| 1268851541 | 35.60476754 | -111.5869013 | 1754.27 | 1568.93197 | -76.33 | -86.56 | 47.78 |
| 1268851553 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -76.1 | -86.7 | 50.2 |
| 1268851563 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.91 | -86.82 | 52.18 |
| 1268851574 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.91 | -86.82 | 52.18 |
| 1268851585 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.58 | -86.92 | 53.83 |
| 1268851596 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.46 | -87 | 55.23 |
| 1268851607 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.46 | -87 | 55.23 |
| 1268851618 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.43 | -87.07 | 58.14 |
| 1268851629 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.33 | -87.13 | 60.67 |
| 1268851640 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.33 | -87.13 | 60.67 |
| 1268851651 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.25 | -87.19 | 59.88 |
| 1268851662 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.18 | -87.24 | 59.18 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268851673 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.18 | -87.24 | 59.18 |
| 1268851685 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75.11 | -87.28 | 58.56 |
| 1268851696 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75 | -87.32 | 58 |
| 1268851706 | 35.60476561 | -111.5869116 | 1754.57 | 1568.026661 | -75 | -87.32 | 58 |
| 1268851717 | 35.60476561 | -111.5869116 | 1754 | 1568.026661 | -75 | -87.4 | 57.5 |
| 1268851729 | 35 | -111.5869116 | 17 | 1568.026661 | -74.95 | -87.48 | . 05 |
| 126 | 35 | 6 | 175 | 1568.026661 | -74.86 | -87.5 | 56.09 |
| 1268851761 | 35.60475716 | -111.5868276 | 1754.162 | 1574.045079 | -74 | -88 | 36 |
| 1268851782 | 35.60472255 | -111.5865859 | 1752.654 | 1590.861776 | -67.5 | -86.5 | 36 |
| 1268851793 | 35.604 | -111.58 | 175 | 1605.494894 | -64.67 | -86 | 36 |
| 1268851805 | 35 | -1 | 17 | 1621.447083 | -64.67 | 86 | 36 |
| 1268851816 | 35 | -1 | 1750.978 | 1637.286415 | -62.75 | 75 | 54 |
| 1268851826 | 35 | -111.5860338 | 1751.399 | 94 | -61.4 | 84 | 64.8 |
| 1268851838 | 35.60519847 | -111.5858715 | 1751.032 | 1673.516417 | -61.4 | -84 | 64.8 |
| 1268851849 | 35.60532457 | -111.5857196 | 1750.382 | 1692.542431 | -60.5 | -82.83 | 72 |
| 1268851859 | 35.605446 | -111.5855881 | 1750.3 | 1709.772868 | -60.43 | -82 | 75.43 |
| 12 | 35 | -111.5854156 | 17 | 1 | -60.88 | -81.5 | 78 |
| 1268851882 | 35.605 | -1 | 17 | 1751.46278 | -60.88 | -81.5 | 78 |
| 1268851892 | 35.6058548 | -111.5850912 | 1748.931 | 1771.878005 | -61.22 | -81.11 | 80 |
| 1268851904 | 35.60588449 | -111.5850501 | 1749.481 | 1776.777497 | -62.1 | -80.9 | 81.6 |
| 1268851915 | 35.60588937 | -111.5850542 | 1748.725 | 1776.752253 | -62.1 | -80.9 | 81.6 |
| 1268851925 | 35.6058 | -111.5850542 | 1748.72 | 1776.752253 | -62.91 | -80.73 | 82.91 |
| 1268851937 | 35.6058893 | -111.5850542 | 1748.72 | 1776.752253 | -63.58 | -80.58 | 78 |
| 1268851948 | 35.60588256 | -111.5850604 | 1749.7 | 1775.875425 | -63.58 | -80.58 | 78 |
| 1268851958 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -64.23 | -80.46 | 73.85 |
| 1268851970 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -64.71 | -80.36 | 70.29 |
| 1268851981 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -64.71 | -80.36 | 70.29 |
| 1268851991 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -65.2 | -80.27 | 67.2 |
| 1268852003 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -65.44 | -80.19 | 64.5 |
| 1268852014 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -65.44 | -80.19 | 64.5 |
| 1268852024 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -65.82 | -80.18 | 62.12 |
| 1268852036 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.22 | -80.17 | 60 |
| 1268852047 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.22 | -80.17 | 60 |
| 1268852057 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.47 | -80.11 | 58.11 |
| 1268852069 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.6 | -80.05 | 56.4 |
| 1268852080 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.6 | -80.05 | 56.4 |
| 1268852090 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.76 | -80 | 54.86 |
| 1268852102 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.91 | -79.95 | 53.45 |
| 1268852113 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -66.91 | -79.95 | 53.45 |
| 1268852123 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -72 | -79 | 24 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268852135 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -71.5 | -79 | 24 |
| 1268852146 | 35.60588256 | -111.5850604 | 1749.78 | 1775.875425 | -71.5 | -79 | 24 |
| 1268852156 | 35.60587768 | -111.5850563 | 1750.536 | 1775.900797 | -71.33 | -79.33 | 24 |
| 1268852168 | 35.60587768 | -111.5850563 | 1750.536 | 1775.900797 | -71 | -79.5 | 24 |
| 1268852179 | 35.60587768 | -111.5850563 | 1750.536 | 1775.900797 | -70.8 | -79.4 | 24 |
| 1268852189 | 35.60587768 | -111.5850563 | 1750.536 | 1775.900797 | -70.8 | -79.4 | 24 |
| 1268852201 | 35.60587768 | -111.5850563 | 1750.536 | 1775.900797 | -70.67 | -79.33 | 24 |
| 1268852212 | 35.6059926 | -111.5849249 | 1749.902 | 1792.763506 | -71 | -79.29 | 24 |
| 1268852222 | 35.60611869 | -111.5847729 | 1749.253 | 1811.872701 | -71 | -79.29 | 24 |
| 1268852234 | 35.60629788 | -111.5845634 | 1748.963 | 1838.550857 | -71 | -79.25 | 24 |
| 1268852245 | 35.60631832 | -111.5845326 | 1749.23 | 1842.121967 | -71.22 | -79.44 | 24 |
| 1268852255 | 35.6063232 | -111.5845367 | 1748.474 | 1842.102512 | -71.22 | -79.44 | 24 |
| 1268852267 | 35.60631587 | -111.5845367 | 1747.89 | 1841.665786 | -71.6 | -79.6 | 24 |
| 1268852279 | 35.6063232 | -111.5845367 | 1748.474 | 1842.102512 | -71.64 | -79.73 | 24 |
| 1268852290 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.64 | -79.73 | 24 |
| 1268852300 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.83 | -79.83 | 24 |
| 1268852312 | 35.6063 | -111.5845367 | 17 | 1841.665786 | -71.85 | -79.92 | 24 |
| 1268852323 | 35.6063158 | -111.5845367 | 1747.89 | 1841.665786 | -71.85 | -79.92 | 24 |
| 1268852334 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.93 | -80 | 24 |
| 1268852345 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -72.07 | -80.07 | 24 |
| 1268852366 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -72 | -80.12 | 24 |
| 1268852378 | 35.6063109 | -111.5845326 | 1748.648 | 1841.685486 | -71.76 | -80.18 | 23.88 |
| 1268852389 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.76 | -80.18 | 23.88 |
| 1268852399 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.83 | -80.28 | 23.78 |
| 1268852411 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.84 | -80.37 | 23.68 |
| 1268852422 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.75 | -80.4 | 23.6 |
| 1268852432 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.75 | -80.4 | 23.6 |
| 1268852444 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.71 | -80.43 | 23.52 |
| 1268852455 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.64 | -80.45 | 23.45 |
| 1268852466 | 35.60631587 | -111.5845367 | 1747.892 | 1841.665786 | -71.64 | -80.45 | 23.45 |
| 1268852477 | 35.60640353 | -111.5844422 | 1748.047 | 1854.116111 | -71 | -81 | 22 |
| 1268852488 | 35.60655007 | -111.5842594 | 1747.664 | 1876.835966 | -72.5 | -81.5 | 22 |
| 1268852499 | 35.60672 | -111.5840602 | 1747.092 | 1902.230869 | -72.5 | -81.5 | 22 |
| 1268852510 | 35.60691331 | -111.5838445 | 1746.331 | 1930.313522 | -73 | -81.67 | 22 |
| 1268852521 | 35.60711049 | -111.5836083 | 1744.971 | 1960.213259 | -73.25 | -81.75 | 22.5 |
| 1268852532 | 35.60730086 | -111.5833783 | 1744.666 | 1989.249676 | -73.25 | -81.75 | 22.5 |
| 1268852543 | 35.60747271 | -111.5831689 | 1743.795 | 2015.618477 | -73.6 | -81.8 | 22.8 |
| 1268852554 | 35.60763878 | -111.5829902 | 1743.822 | 2039.327624 | -73.83 | -82.17 | 23 |
| 1268852565 | 35.60782375 | -111.5827499 | 1742.637 | 2068.854507 | -73.83 | -82.17 | 23 |
| 1268852576 | 35.60799907 | -111.5825609 | 1742.947 | 2093.945226 | -74.29 | -82.43 | 23.14 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268852588 | 35.60812516 | -111.5824089 | 17 | 2113.207265 | -74.75 | -82.75 | 75 |
| 1268852609 | 35.60812323 | -111.5824192 | 174 | 2112.318485 | -74.89 | -82.89 | 26 |
| 1268852620 | 35.60812323 | -111.5824192 | 1742.597 | 2112.318485 | -74.9 | -83 | 27 |
| 1268852641 | 35.60812323 | -111.5824192 | 1742.59 | 2112.318485 | -75 | -83.09 | 27.82 |
| 1268852652 | 35.60812323 | -111.5824192 | 17 | 2112.318485 | -75.08 | -83.17 | 28.5 |
| 12 | 35 | -1 | 1742.597 | 2112.318485 | 5 | -83.23 | . 08 |
| 12 | 35.60812323 | -111.5824192 | 1742.597 | 5 | 21 | -83.29 | 57 |
| 1268852696 | 35.60812323 | -111.5824192 | 1742.597 | 2112.318485 | -75.07 | -83.33 | 30 |
| 1268852707 | 35.60812079 | -111.5824233 | 1741.259 | 2111.861476 | -75.07 | -83.33 | 30 |
| 1268852717 | 35 | -1 | 17 | 2111.861476 | -74.94 | -83.38 | 30.38 |
| 12 | 35 | -1 | 17 | 2111.860272 | -74.76 | -83.35 | 30.71 |
| 12 | 35.60811591 | -1 | 1742.015 | 2 | 6 | -83.35 | 71 |
| 12 | 35.60812323 | -111.5824192 | 1742.597 | 5 | 1 | -83.33 | 31 |
| 1268852762 | 35.60813004 | -111.582413 | 1741.542 | 2113.208633 | -74.58 | -83.37 | 31.26 |
| 1268852773 | 35.6080296 | -111.5822063 | 1741.64 | 2122.487199 | -74.58 | -83.37 | 31.26 |
| 1268852784 | 35.60783687 | -111.5819302 | 1740.60 | 2131.624591 | -74.55 | -83.4 | 31.5 |
| 12 | 35 | -111.5816501 | 1740.899 | 2 | -74.33 | -83.48 | 71 |
| 126885280 | 35 | -1 | 17 | 2150.845687 | -74.33 | -83.48 | 71 |
| 1268852817 | 35.60723905 | -111.5810857 | 1740.502 | 2161.991965 | -74.05 | -83.55 | 31.91 |
| 1268852828 | 35.60702818 | -111.5807769 | 1740.548 | 2174.589876 | -73.65 | -83.52 | 32.09 |
| 1268852840 | 35 | -111.5804681 | 1740.013 | 2187.336122 | -73.65 | -83.52 | 32.09 |
| 1268852852 | 35 | -111.5801512 | 17 | 2200.781744 | -63 | 83 | 96 |
| 1268852863 | 35.606374 | -111.5798567 | 1740 | 2213.990527 | -63 | -83.5 | 102 |
| 1268852874 | 35.6061940 | -111.5795908 | 1741.003 | 2226.700295 | -63 | -83.5 | 102 |
| 1268852885 | 35.60599346 | -111.5792964 | 1741.176 | 2241.151294 | -63.67 | -85 | 104 |
| 1268852896 | 35.60578553 | -111.5790019 | 1740.76 | 2255.71054 | -63.25 | -85.75 | 105 |
| 1268852908 | 35.6055541 | -111.5786645 | 1740.565 | 2273.254182 | -63.25 | -85.75 | 105 |
| 1268852919 | 35.60535645 | -111.5783843 | 1740.281 | 2288.012483 | -64.6 | -87 | 105.6 |
| 1268852930 | 35.60523378 | -111.5782781 | 1740.4 | 2291.697972 | -65 | -87.83 | 106 |
| 1268852941 | 35.60522158 | -111.5782741 | 1740.573 | 2291.525447 | -65 | -87.83 | 106 |
| 1268852952 | 35.6052215 | -111.5782741 | 1740.573 | 2291.525447 | -65.86 | -88.71 | 106.29 |
| 1268852975 | 35.60522453 | -111.5782884 | 1740. | 2290.449104 | -66.5 | -89.38 | 106.5 |
| 1268852986 | 35.60522453 | -111.5782884 | 1740.116 | 2290.449104 | -66.44 | -89.89 | 105.33 |
| 1268852996 | 35.60522453 | -111.5782884 | 1740.116 | 2290.449104 | -66.44 | -89.89 | 105.33 |
| 1268853008 | 35.60522453 | -111.5782884 | 1740.116 | 2290.449104 | -66.4 | -90.3 | 104.4 |
| 1268853019 | 35.60523185 | -111.5782884 | 1740.699 | 2290.756982 | -66.36 | -90.64 | 103.64 |
| 1268853031 | 35.6053018 | -111.5781202 | 1740.163 | 2307.795709 | -66.36 | -90.64 | 103.64 |
| 1268853042 | 35.60557992 | -111.5778551 | 1739.998 | 2341.797922 | -65.83 | -90.75 | 104 |
| 1268853053 | 35.60594956 | -111.577475 | 1739.39 | 2389.54285 | -65.31 | -90.85 | 104.31 |
| 1268853064 | 35.60628655 | -111.5771216 | 1738.689 | 2433.851766 | -65.31 | -90.85 | 104.31 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268853075 | 35.60656558 | -111.5768217 | 1738.383 | 2471.287926 | -64.79 | -91 | 104.57 |
| 1268853087 | 35.6068261 | -111.5765423 | 1737.512 | 2506.297462 | -64.47 | -91.13 | 104.8 |
| 1268853098 | 35.60707056 | -111.5762793 | 1737.412 | 2539.302491 | -64.47 | -91.13 | 104.8 |
| 1268853110 | 35.60735885 | -111.5759692 | 1737.39 | 2578.341609 | -64.06 | -91.38 | 105 |
| 1268853121 | 35.60763594 | -111.5756795 | 1737.385 | 2615.279741 | -63.76 | -91.59 | 105.18 |
| 1268853131 | 35.6078858 | -111.5754268 | 1738.167 | 2647.982959 | -63.76 | -91.59 | 105.18 |
| 1268 | 35. | -111.5750939 | 17 | 2691.026631 | -63.78 | -91.94 | 105.33 |
| 1268853155 | 35.6 | -111.5747775 | 173 | 2732.069593 | -63.84 | -92.05 | 105.47 |
| 1268853166 | 35.60881989 | -111.5744816 | 1737.678 | 2771.008746 | -63.84 | -92.05 | 105.47 |
| 1268853177 | 35.609115 | -111.5741714 | 1738.24 | 2811.054478 | -63.75 | -92.15 | 105.6 |
| 1268853188 | 35 | -111.5738817 | 1738.236 | 2848.590046 | -63.62 | -92.19 | 105.71 |
| 1268853200 | 35 | -111.5735591 | 17 | 2890.903367 | 9 | 93 | 08 |
| 1268853212 | 35.6 | -111.5732468 | 1736 | 2932.012861 | 9 | -93 | 108 |
| 1268853223 | 35.6103101 | -111.5729468 | 1736 | 2971.502251 | -61 | -93 | 108 |
| 1268853245 | 35.61091684 | -111.5723037 | 1735.605 | 3055.189199 | -60.67 | -93 | 108 |
| 1268853255 | 35.61118906 | -111.57201 | 1736.35 | 3093.245452 | -61.5 | -93.5 | 108 |
| 1268853267 | 35.6115035 | -111.5716382 | 17 | 3139.826428 | -61.5 | -93.5 | 108 |
| 1268853278 | 35.6117580 | -111.5712707 | 1735.77 | 3182.785008 | -61.8 | -93.8 | 08 |
| 1268853290 | 35.61198711 | -111.5708705 | 1736.347 | 3226.902718 | -61.5 | -93.67 | 108 |
| 1268853301 | 35.61217825 | -111.5705462 | 1735.925 | 3262.966135 | -61.5 | -93.67 | 108 |
| 1268853311 | 35.61230126 | -111.5703204 | 1735.755 | 3287.510879 | -61.14 | -93.57 | 108 |
| 1268853323 | 35.6123031 | -111.5703102 | 1735.45 | 3288.421671 | -61 | -93.75 | 108 |
| 1268853335 | 35.61230126 | -111.5703204 | 1735.75 | 3287.510879 | -61 | -93.75 | 108 |
| 1268853346 | 35.61229638 | -111.5703164 | 1736.511 | 3287.555473 | -61.33 | -93.89 | 108 |
| 1268853357 | 35.61229638 | -111.5703164 | 1736.511 | 3287.555473 | -60.8 | -93 | 108 |
| 1268853368 | 35.612301 | -111.5703204 | 1735.75 | 3287.510879 | -60.8 | -93 | 108 |
| 1268853379 | 35.61229638 | -111.5703164 | 1736.511 | 3287.555473 | -60.73 | -92.36 | 108 |
| 1268853391 | 35.61230126 | -111.5703204 | 1735.75 | 3287.510879 | -61.08 | -91.83 | 105 |
| 1268853401 | 35.61229638 | -111.5703164 | 1736.511 | 3287.555473 | -61.08 | -91.83 | 105 |
| 1268853413 | 35.61230126 | -111.5703204 | 1735.755 | 3287.510879 | -60.31 | -91.31 | 104.31 |
| 1268853424 | 35.61231245 | -111.5702999 | 1735.739 | 3289.742253 | -60.14 | -90.86 | 103.71 |
| 1268853435 | 35.61237029 | -111.570187 | 1735.363 | 3301.809983 | -60.14 | -90.86 | 103.71 |
| 1268853446 | 35.61241888 | -111.5700844 | 1734.703 | 3312.557149 | -60.13 | -90.53 | 103.2 |
| 1268853458 | 35.61248161 | -111.5699756 | 1733.571 | 3324.580738 | -60.62 | -90.25 | 101.25 |
| 1268853469 | 35.61253997 | -111.5698689 | 1734.832 | 3336.192221 | -60.62 | -90.25 | 101.25 |
| 1268853479 | 35.61261002 | -111.5697601 | 1734.281 | 3348.626939 | -61.29 | -90 | 99.53 |
| 1268853491 | 35.61267467 | -111.569641 | 1732.85 | 3361.562093 | -62 | -89.78 | 98 |
| 1268853502 | 35.61273546 | -111.5695425 | 1732.017 | 3372.676815 | -62 | -89.78 | 98 |
| 1268853513 | 35.61273739 | -111.5695322 | 1731.718 | 3373.587146 | -62.95 | -89.79 | 96.63 |
| 1268853524 | 35.61275345 | -111.5695157 | 1730.946 | 3375.775591 | -64.05 | -89.85 | 93.6 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268853536 | 35.61284587 | -111.5693659 | 1730.365 | 3392.676138 | -64.05 | -89.85 | 93.6 |
| 1268853547 | 35.61293198 | -111.5692406 | 1729.044 | 3407.303848 | -65.05 | -89.9 | 90.86 |
| 1268853558 | 35.61303751 | -111.5690599 | 1728.149 | 3427.34875 | -85 | -91 | 36 |
| 1268853569 | 35.61313866 | -111.5688936 | 1726.214 | 3446.03072 | -85 | -91 | 36 |
| 1268853581 | 35.61313866 | -111.5688936 | 1726.214 | 3446.03072 | -85 | -91 | 36 |
| 1268853592 | 35.61313866 | -111.5688936 | 1726.214 | 3446.03072 | -85 | -91 | 36 |
| 1268853603 | 35.61313185 | -111.5688998 | 17 | 3445.162729 | -85 | -91 | 36 |
| 1268853614 | 35.61313866 | -111.5688936 | 1726.214 | 3446.03072 | -85 | -91 | 36 |
| 1268853625 | 35.61313866 | -111.5688936 | 1726.214 | 3446.03072 | -85 | -91 | 36 |
| 1268853636 | 35.61340216 | -111.5684091 | 1723.167 | 3498.691384 | -85 | -91 | 36 |
| 1268853647 | 35.6137726 | -111.5677154 | 1720.722 | 3573.717544 | -85 | -91 | 36 |
| 1268853659 | 35.61416196 | -111.5669479 | 1720.5 | 3655.563568 | -85.33 | -91.5 | 30.33 |
| 1268853670 | 35.61449 | -111.5663506 | 1718.244 | 3721.133333 | -85.33 | -91.5 | 30.33 |
| 1268853680 | 35.61483739 | -111.5657737 | 1717.168 | 3785.309338 | -85 | -91.86 | 26.29 |
| 1268853692 | 35.615302 | -111.5650797 | 1715.589 | 3865.745125 | -85.25 | -92.38 | 23.25 |
| 1268853700 | 35.61557152 | -111.5646711 | 1715.046 | 3912.887146 | -65.25 | -94.75 | 2 |
| 1268857268 | 35.618031 | -111.5328819 | 168 | 6637.963943 | -65.25 | -94.75 | 2 |
| 1268857280 | 35.6180310 | -111.5328819 | 1684.27 | 6637.963943 | -65.31 | -94.77 | 2 |
| 1268857303 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.36 | -94.71 | 9.57 |
| 1268857313 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.27 | -94.67 | 16.13 |
| 1268857325 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.44 | -94.69 | 21.88 |
| 1268857337 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.44 | -94.69 | 21.88 |
| 1268857348 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.59 | -94.71 | 26.94 |
| 1268857359 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.67 | -94.72 | 31.44 |
| 1268857370 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.67 | -94.72 | 31.44 |
| 1268857382 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.63 | -94.74 | 35.47 |
| 1268857393 | 35.61802618 | -111.5328779 | 1685.034 | 6638.120811 | -65.7 | -94.8 | 39.1 |
| 1268857405 | 35.61802618 | -111.5328779 | 1685.034 | 6638.120811 | -65.7 | -94.8 | 39.1 |
| 1268857415 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.86 | -94.86 | 42.38 |
| 1268857427 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.86 | -94.86 | 45.36 |
| 1268857438 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -65.86 | -94.86 | 45.36 |
| 1268857449 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -66 | -96 | 108 |
| 1268857460 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -67.5 | -96 | 108 |
| 1268857472 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -67.5 | -96 | 108 |
| 1268857483 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -67.67 | -95.67 | 108 |
| 1268857494 | 35.61803107 | -111.5328819 | 1684.278 | 6637.963943 | -67.25 | -95.5 | 108 |
| 1268857505 | 35.61803159 | -111.5331196 | 1684.196 | 6617.796266 | -67.25 | -95.5 | 108 |
| 1268857517 | 35.61812443 | -111.534269 | 1685.269 | 6523.936681 | -66.8 | -95.4 | 108 |
| 1268857528 | 35.618235 | -111.5357235 | 1685.312 | 6405.346768 | -67.83 | -95.33 | 102 |
| 1268857540 | 35.61830585 | -111.5373358 | 1681.206 | 6272.402049 | -67.83 | -95.33 | 102 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268857550 | 35.61832256 | -111.5376165 | 1680.335 | 6249.501974 | -70.14 | -95.29 | 94.29 |
| 1268857562 | 35.61831961 | -111.5376022 | 1680.793 | 6250.582776 | -71.38 | -95.25 | 88.5 |
| 1268857573 | 35.61831961 | -111.5376022 | 1680.793 | 6250.582776 | -71.38 | -95.25 | 88.5 |
| 1268857585 | 35.61832153 | -111.5375919 | 1680.494 | 6251.524907 | -72.67 | -95.56 | 84 |
| 1268857595 | 35.61832153 | -111.5375919 | 1680.494 | 6251.524907 | -73.8 | -95.8 | 78 |
| 1268857607 | 35.61832153 | -111.5375919 | 1680.494 | 6251.524907 | -73.8 | -95.8 | 78 |
| 1268857618 | 35.61832346 | -111.5375816 | 1680.19 | 6252.466999 | -74.82 | -96 | 73.09 |
| 1268857630 | 35.61834326 | -111.5381554 | 1680.563 | 6205.112804 | -75.58 | -96.17 | 69 |
| 1268857651 | 35.61839906 | -111.5404668 | 1682.223 | 6014.073822 | -76.15 | -96.38 | 65.54 |
| 1268857662 | 35.61842321 | -111.5417085 | 1681.917 | 5911.698274 | -76.57 | -96.5 | 64.29 |
| 1268857673 | 35.61844929 | -111.5427084 | 1683.03 | 5829.818526 | -76.57 | -96.5 | 64.29 |
| 1268857684 | 35.618472 | -111.5435158 | 1684.6 | 5763.973803 | -77.07 | -96.6 | 63.2 |
| 1268857696 | 35.6 | -111.5443478 | 1686.13 | 5696.325092 | -77.44 | -96.56 | 62.25 |
| 1268857706 | 35.61851862 | -111.5449952 | 1686.028 | 5644.014196 | -77.94 | -96.53 | 61.41 |
| 1268857718 | 35.61854879 | -111.545862 | 1688.224 | 5574.16069 | -77.94 | -96.53 | 61.41 |
| 1268857729 | 35.61855187 | -111.5459358 | 1687.747 | 5568.252673 | -78.5 | -96.56 | 60.67 |
| 1268857740 | 35.618548 | -111.5459215 | 1688.20 | 5569.289056 | -78.5 | -96.56 | 60.67 |
| 1268857751 | 35.6185440 | -111.5459174 | 1688.9 | 5569.392799 | 9 | -96.58 | 60 |
| 1268857763 | 35.61854596 | -111.5459072 | 1688.662 | 5570.325615 | -79.35 | -96.55 | 59.4 |
| 1268857774 | 35.61854108 | -111.5459031 | 1689.418 | 5570.429374 | -79.71 | -96.52 | 58.86 |
| 1268857785 | 35.61856137 | -111.5462637 | 1689.71 | 5541.80433 | -79.71 | -96.52 | 58.86 |
| 1268857796 | 35.6185885 | -111.5468969 | 1690.64 | 5491.254073 | -79.91 | -96.5 | 58.36 |
| 1268857808 | 35.61858522 | -111.5471551 | 1691.16 | 5469.984517 | -78 | -96 | 48 |
| 1268857819 | 35.61859203 | -111.5471489 | 1690.111 | 5470.817764 | -78 | -96 | 48 |
| 1268857830 | 35.61859203 | -111.5471489 | 1690.111 | 5470.817764 | -78 | -96 | 42 |
| 1268857841 | 35.6185877 | -111.547442 | 1690.77 | 5446.678336 | -78.33 | -96.33 | 40 |
| 1268857853 | 35.61844255 | -111.5482191 | 1690.947 | 5376.287584 | -78.33 | -96.33 | 40 |
| 1268857864 | 35.61821597 | -111.5490661 | 1691.706 | 5296.296743 | -79.5 | -96.5 | 39 |
| 1268857875 | 35.61800712 | -111.5499869 | 1693.153 | 5211.19464 | -80.6 | -97 | 38.4 |
| 1268857886 | 35.61794165 | -111.5508826 | 1692.994 | 5135.242037 | -80.6 | -97 | 38.4 |
| 1268857898 | 35.61790532 | -111.5519504 | 1693.471 | 5047.012287 | -82.17 | -97.33 | 38 |
| 1268857909 | 35.61789 | -111.5523234 | 1694.128 | 5016.129806 | -83 | -97.29 | 37.71 |
| 1268857920 | 35.61789244 | -111.5523193 | 1695.466 | 5016.580133 | -83.75 | -97.25 | 37.5 |
| 1268857931 | 35.61788368 | -111.5525673 | 1695.107 | 4996.144603 | -83.75 | -97.25 | 37.5 |
| 1268857943 | 35.61784852 | -111.5534876 | 1697.121 | 4920.320536 | -84.22 | -97.22 | 37.33 |
| 1268857954 | 35.61784123 | -111.5544365 | 1699.968 | 4843.906432 | -84.6 | -97.2 | 37.2 |
| 1268857965 | 35.61775735 | -111.5553999 | 1702.661 | 4762.605344 | -84.6 | -97.2 | 37.2 |
| 1268857976 | 35.61753714 | -111.5562818 | 1704.15 | 4680.749634 | -84.82 | -97.45 | 37.09 |
| 1268857987 | 35.61739819 | -111.5568028 | 1706.789 | 4631.943923 | -85.08 | -97.67 | 37 |
| 1268857998 | 35.61729407 | -111.5571864 | 1707.466 | 4595.929417 | -85.08 | -97.67 | 37 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268858009 | 35.6171353 | -111.5578159 | 1708.022 | 4537.482704 | -85.46 | -97.77 | 6.92 |
| 1268858021 | 35.61685737 | -111.5588701 | 1709.87 | 4439.037736 | -85.71 | -97.86 | 36.86 |
| 1268858032 | 35.61662274 | -111.5598587 | 1713.594 | 4348.217846 | -85.87 | -97.8 | 36.8 |
| 1268858043 | 35.6165333 | -111.5607524 | 1715.431 | 4272.96207 | -85.87 | -97.8 | 36.8 |
| 1268858054 | 35.61653165 | -111.5613918 | 1715.687 | 4222.754172 | -85.38 | -97.75 | 36.75 |
| 1268858066 | 35 | -111.5613855 | 171 | 4223.620719 | -84.47 | -97.41 | 38.82 |
| 12 | 35 | -111.5613712 | 1715.089 | 4224.575756 | -84.47 | -97.41 | 38.82 |
| 1268858089 | 35.61654626 | -111.5616232 | 1715.141 | 4205.478488 | -83.72 | -97.11 | 40.67 |
| 1268858099 | 35.61657748 | -111.5623547 | 1715.456 | 4150.264712 | -83.21 | -96.89 | 42.32 |
| 1268858111 | 35.61 | -111.5632091 | 17 | 4086.608491 | -83.21 | -96.89 | 42.32 |
| 1268858122 | 35 | -1 | 17 | 4082.028944 | -82.85 | -96.7 | 43.8 |
| 12 | 35 | -111.5637172 | 17 | 7 | -82.62 | -96.57 | 43 |
| 1268858145 | 35 | -111.5644999 | 1718.469 | 9 | -82.62 | -96.57 | . 43 |
| 1268858156 | 35.6167464 | -111.56534 | 1720.198 | 3930.999046 | -82.59 | -96.55 | 43.09 |
| 1268858167 | 35.61680933 | -111.5660795 | 1720.75 | 3878.988479 | -75 | -96 | 36 |
| 1268858179 | 35.6168815 | -111.566808 | 172 | 3828.80248 | -75 | -96 | 36 |
| 12 | 35 | -1 | 17 | 3787.936758 | 5 | -94.5 | 36 |
| 1268858201 | 35 | -1 | 17 | 3761.38264 | -76.33 | 4 | 36 |
| 1268858213 | 35.6170240 | -111.5678391 | 1720.11 | 3761.38264 | -77.25 | -92.75 | 36 |
| 1268858224 | 35.61702404 | -111.5678391 | 1720.116 | 3761.38264 | -77.25 | -92.75 | 36 |
| 1268858235 | 35.6170240 | -111.5678391 | 1720.116 | 3761.38264 | -77.4 | -92 | 36 |
| 1268858246 | 35.61702597 | -111.5678288 | 1719 | 3762.264183 | -77.5 | -91.5 | 36 |
| 1268858258 | 35.6170259 | -111.5678288 | 1719.8 | 3762.264183 | -77.5 | -91.5 | 36 |
| 1268858269 | 35.6170313 | -111.5678391 | 1720.69 | 3761.85477 | -77.43 | -91.14 | 36 |
| 1268858280 | 35.61715734 | -111.5681379 | 1720.071 | 3748.029623 | -77.5 | -90.75 | 36 |
| 1268858291 | 35.6173445 | -111.5685758 | 1718.54 | 3728.295004 | -77.5 | -90.75 | 36 |
| 1268858303 | 35.6175470 | -111.5688006 | 1718.08 | 3725.42479 | -77.44 | -90.44 | 36 |
| 1268858314 | 35.61754213 | -111.5687966 | 1718.842 | 3725.392413 | -77.9 | -90.7 | 37.2 |
| 1268858326 | 35.61754406 | -111.5687863 | 1718.543 | 3726.264264 | -77.9 | -90.7 | 37.2 |
| 1268858337 | 35.61753673 | -111.5687863 | 1717.961 | 3725.775127 | -78.36 | -90.91 | 35.45 |
| 1268858348 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -79 | -91.17 | 33.42 |
| 1268858359 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -79.38 | -91.38 | 31.69 |
| 1268858370 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -79.38 | -91.38 | 31.69 |
| 1268858382 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -79.79 | -91.57 | 30.21 |
| 1268858393 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -80.13 | -91.73 | 28.47 |
| 1268858405 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -80.13 | -91.73 | 28.47 |
| 1268858416 | 35.61753185 | -111.5687822 | 1718.717 | 3725.743047 | -80.25 | -91.88 | 26.94 |
| 1268858428 | 35.61774638 | -111.5689517 | 1718.108 | 3727.900626 | -80.29 | -92 | 25.59 |
| 1268858439 | 35.61806832 | -111.5691495 | 1718.03 | 3735.570559 | -80 | -92.11 | 24.39 |
| 1268858450 | 35.61852542 | -111.5693571 | 1715.902 | 3752.344272 | -80 | -92.11 | 24.39 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268858462 | 35.61906348 | -111.5695359 | 1714.971 | 3777.572357 | -79.95 | -92.26 | 25 |
| 1268858473 | 35.61954976 | -111.5696841 | 1715.191 | 3802.021458 | -79.9 | -92.4 | 25.55 |
| 1268858484 | 35.62003593 | -111.5697728 | 1715.43 | 3831.176317 | -79.9 | -92.4 | 25.55 |
| 1268858495 | 35.62061628 | -111.5698614 | 1716.533 | 3867.881431 | -79.62 | -92.48 | 26.05 |
| 1268858507 | 35.62123989 | -111.5701158 | 1717.804 | 3897.555816 | -79.23 | -92.55 | 26.5 |
| 1268858518 | 35.62169416 | -111.5703563 | 1719.552 | 3916.264309 | -79.23 | -92.55 | 26.5 |
| 1268858529 | 35.62190251 | -111.5705976 | 1721.619 | 3916.540789 | -82 | -95 | 22 |
| 1268858540 | 35.621954 | -111.5707287 | 1722.228 | 3912.013525 | -78.5 | -95 | 22 |
| 1268858552 | 35.62195695 | -111.570743 | 1721.771 | 3911.313389 | -78.5 | -95 | 22 |
| 1268858563 | 35.62198789 | -111.5708454 | 1722.129 | 3907.08264 | -76.67 | -95 | 22 |
| 1268858575 | 35.62205352 | -111.5709702 | 1722.266 | 3904.130025 | -75.75 | -95 | 22 |
| 1268858585 | 35.62205352 | -111.5709702 | 17 | 3904.130025 | -75.2 | 5 | 22 |
| 1268858597 | 35.62205352 | -111.5709702 | 1722.266 | 3904.130025 | -75.2 | -95 | 22 |
| 1268858609 | 35.62205352 | -111.5709702 | 1722.266 | 3904.130025 | -74.83 | -95 | 22 |
| 1268858620 | 35.62205352 | -111.5709702 | 1722.266 | 3904.130025 | -74.57 | -95 | 22 |
| 1268858631 | 35.62204619 | -111.5709702 | 1721.684 | 3903.558378 | -74.57 | -95 | 22 |
| 1268858642 | 35.6220461 | -111.5709702 | 17 | 3903.558378 | -74.57 | 9 | 22 |
| 1268858654 | 35.62204619 | -111.5709702 | 1721.68 | 3903.558378 | -74.57 | 5 | 22 |
| 1268858665 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858676 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858687 | 35.62204619 | -111.5709702 | 1721.684 | 3903.558378 | -74.57 | -95 | 22 |
| 1268858699 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858710 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858722 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858732 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858744 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858755 | 35.622053 | -111.570964 | 1720.629 | 3904.490173 | -74.57 | -95 | 22 |
| 1268858767 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858777 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858789 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858801 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858812 | 35.62204812 | -111.5709599 | 1721.385 | 3904.371122 | -74.57 | -95 | 22 |
| 1268858823 | 35.62212146 | -111.5710437 | 1720.326 | 3904.704284 | -74.57 | -95 | 22 |
| 1268858834 | 35.62234087 | -111.5712172 | 1718.963 | 3910.812798 | -74.57 | -95 | 22 |
| 1268858846 | 35.62258968 | -111.5714623 | 1716.48 | 3914.92683 | -74.57 | -95 | 22 |
| 1268858867 | 35.62303372 | -111.5719917 | 1712.946 | 3917.336416 | -74.57 | -95 | 22 |
| 1268858922 | 35.62469129 | -111.5735546 | 1708.597 | 3960.934316 | -80 | -86 | 2 |
| 1268858933 | 35.62488231 | -111.5736811 | 1708.198 | 3969.903258 | -80 | -86 | 2 |
| 1268858945 | 35.62488424 | -111.5736708 | 1707.899 | 3970.662236 | -78 | -88 | 2 |
| 1268858956 | 35.62488424 | -111.5736708 | 1707.899 | 3970.662236 | -80.67 | -89 | 13.33 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268858968 | 35.62487936 | -111.5736667 | 1708.655 | 3970.479347 | -80.67 | -89 | 3.33 |
| 1268858979 | 35.62487936 | -111.5736667 | 1708.655 | 3970.479347 | -81.75 | -89.5 | 19 |
| 1268858990 | 35.62487936 | -111.5736667 | 1708.655 | 3970.479347 | -82 | -89.8 | 22.4 |
| 1268859002 | 35.62492625 | -111.5736932 | 1708.26 | 3972.961958 | -82 | -89.8 | 22.4 |
| 1268859013 | 35.62510751 | -111.5738116 | 1709.373 | 3981.705501 | -82.33 | -90 | 24.67 |
| 1268859025 | 35 | -1 | 17 | 3992.398545 | -82.29 | -90.29 | 57 |
| 12 | 35 | 68 | 17 | 31 | -82.29 | -90.29 | 24.57 |
| 1268859047 | 35.62603981 | -111.5742475 | 1707.478 | 4038.049966 | -82.38 | -90.5 | 24.5 |
| 1268859059 | 35.62649345 | -111.5744224 | 1707.611 | 4068.318694 | -82.56 | -90.78 | 24.44 |
| 1268859070 | 35.626938 | -111.5745728 | 1707 | 4099.636436 | -82.8 | -91 | 23.1 |
| 1268859081 | 35 | -1 | 17 | 4138.196405 | -82.8 | 1 | 23.1 |
| 1268859092 | 35 | -1 | 17 | 46 | -83.27 | -91.36 | 18 |
| 1268859104 | 35 | -111.5746629 | 17 | 67 | -83.67 | -91.67 | 3.25 |
| 1268859116 | 35.62841347 | -111.5746629 | 1705.545 | 4227.45967 | -83.67 | -91.67 | 23.25 |
| 1268859127 | 35.62840615 | -111.5746629 | 1704.963 | 4226.795259 | -84 | -91.92 | 23.31 |
| 1268859138 | 35.6284061 | -111.5746629 | 1704.96 | 4226.795259 | -84.29 | -92.14 | 23.36 |
| 12 | 35 | -111.5746629 | 17 | 42 | -84.53 | -92.33 | 23.4 |
| 1268859161 | 35.628398 | -111.5746629 | 17 | 4226.130811 | -84.53 | -92.33 | 23.4 |
| 1268859172 | 35.62840615 | -111.5746629 | 1704.963 | 4226.795259 | -84.53 | -92.33 | 23.4 |
| 1268859183 | 35.62839394 | -111.5746588 | 1705.136 | 4225.900858 | -84.53 | -92.33 | 23.4 |
| 1268859195 | 35.62840615 | -111.5746629 | 1704.963 | 4226.795259 | -84.53 | -92.33 | 23.4 |
| 1268859206 | 35.6286725 | -111.5746314 | 1704.91 | 4252.638173 | -84.53 | -92.33 | 23.4 |
| 1268859217 | 35.6290745 | -111.5746159 | 1704.45 | 4290.083016 | -84.53 | -92.33 | 23.4 |
| 1268859229 | 35.62958705 | -111.5747025 | 1704.06 | 4332.575453 | -84.53 | -92.33 | 23.4 |
| 1268859240 | 35.62995576 | -111.5748675 | 1703.614 | 4358.174999 | -84.53 | -92.33 | 23.4 |
| 1268859661 | 35.6323216 | -111.583168 | 1716.642 | 4228.670651 | -86 | -96 | 2 |
| 1268859671 | 35.6323216 | -111.583168 | 1716.642 | 4228.670651 | -86 | -96 | 2 |
| 1268859683 | 35.63232164 | -111.583168 | 1716.642 | 4228.670651 | -86 | -96 | 2 |
| 1268859694 | 35.63232164 | -111.583168 | 1716.642 | 4228.670651 | -86 | -96 | 2 |
| 1268859704 | 35.63232164 | -111.583168 | 1716.642 | 4228.670651 | -86 | -96 | 2 |
| 1268859716 | 35.6323729 | -111.5831802 | 1717.288 | 4233.471409 | -86 | -96 | 2 |
| 1268859727 | 35.6327213 | -111.5832039 | 1718.265 | 4268.267757 | -86 | -96 | 6.4 |
| 1268859737 | 35.63330707 | -111.5833028 | 1720.265 | 4324.851248 | -86 | -96 | 9.33 |
| 1268859749 | 35.63404111 | -111.5836595 | 1721.618 | 4388.234851 | -86 | -96 | 9.33 |
| 1268859760 | 35.63457705 | -111.5842874 | 1724.463 | 4423.071537 | -86.14 | -96.14 | 11.43 |
| 1268859770 | 35.63488861 | -111.5846904 | 1726.003 | 4442.70619 | -86.38 | -96.25 | 13 |
| 1268859782 | 35.63522316 | -111.585118 | 1729.133 | 4464.481763 | -86.38 | -96.25 | 13 |
| 1268859793 | 35.63561151 | -111.5856131 | 1734.232 | 4490.468257 | -86.22 | -96.22 | 11.78 |
| 1268859803 | 35.63595531 | -111.5860304 | 1737.647 | 4514.662942 | -86.1 | -96.2 | 10.8 |
| 1268859815 | 35.63618183 | -111.5863639 | 1738.622 | 4529.253908 | -86.1 | -96.2 | 10.8 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268859826 | 35.63617695 | -111.5863599 | 1739.378 | 4528.849471 | -86 | -96.18 | 10 |
| 1268859836 | 35.63617695 | -111.5863599 | 1739.378 | 4528.849471 | -85.92 | -96.17 | 11.17 |
| 1268859848 | 35.63616962 | -111.5863599 | 1738.795 | 4528.073656 | -85.92 | -96.17 | 11.17 |
| 1268859859 | 35.63616962 | -111.5863599 | 1738.795 | 4528.073656 | -85.85 | -96.15 | 12.15 |
| 1268859869 | 35.63617156 | -111.5863496 | 1738.496 | 4528.563571 | -85.79 | -96.14 | 13 |
| 1268859881 | 35.63617156 | -111.5863496 | 1738.496 | 4528.563571 | -85.79 | -96.14 | 13 |
| 1268859892 | 35.63616423 | -111.5863496 | 173 | 4527.787709 | -85.79 | -96.14 | 13 |
| 1268859902 | 35.63616423 | -111.5863496 | 1737.913 | 4527.787709 | -85.79 | -96.14 | 13 |
| 1268859914 | 35.63616423 | -111.5863496 | 1737.913 | 4527.787709 | -85.79 | -96.14 | 13 |
| 1268859925 | 35.63616423 | -111.5863496 | 1737.913 | 4527.787709 | -85.79 | -96.14 | 13 |
| 1268859935 | 35.63616423 | -111.5863496 | 1737.913 | 4527.787709 | -85.79 | -96.14 | 13 |
| 1268859947 | 35 | -111.5863926 | 17 | 4529.084277 | -85.79 | -96.14 | 13 |
| 1268859958 | 35.63641803 | -111.5869371 | 1736.383 | 4538.725344 | -85.79 | -96.14 | 13 |
| 1268860842 | 35.62767042 | -111.6006262 | 1745.102 | 3364.726282 | -87 | -98 | 2 |
| 1268860853 | 35.62760197 | -111.6005464 | 1745.401 | 3357.33137 | -87 | -98 | 2 |
| 1268860864 | 35.62759668 | -111.6005956 | 1744.504 | 3356.604418 | -87 | -98 | 2 |
| 1268860875 | 35.6275046 | -111.6007044 | 17 | 3346.076894 | -86.67 | -97.33 | 2 |
| 1268860886 | 35.62743302 | -111.6007824 | 1742.38 | 3337.921485 | -86.67 | -97.33 | 2 |
| 1268860898 | 35.62724641 | -111.6006416 | 1743.814 | 3317.505116 | -86 | -97 | 2 |
| 1268860909 | 35.62716455 | -111.6004143 | 1744.474 | 3309.067754 | -86 | -96.8 | 2 |
| 1268860919 | 35.62711991 | -111.6002649 | 1746.237 | 3304.613708 | -86 | -96.8 | 2 |
| 1268860931 | 35.6271272 | -111.6002649 | 1746.81 | 3305.428367 | -85.67 | -96.67 | 2 |
| 1268860942 | 35.62713404 | -111.6002587 | 1745.76 | 3306.208488 | -85.71 | -96.86 | 3.43 |
| 1268860953 | 35.62713404 | -111.6002587 | 1745.764 | 3306.208488 | -85.71 | -96.86 | 3.43 |
| 1268860964 | 35.62713404 | -111.6002587 | 1745.764 | 3306.208488 | -86 | -97.25 | 4.5 |
| 1268860975 | 35.62713404 | -111.6002587 | 1745.764 | 3306.208488 | -86.22 | -97.56 | 5.33 |
| 1268860996 | 35.62712672 | -111.6002587 | 1745.182 | 3305.393835 | -85 | -97 | 12 |
| 1268861008 | 35.62713892 | -111.6002627 | 1745.008 | 3306.736594 | -85.5 | -97 | 12 |
| 1268861029 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -85 | -97 | 12 |
| 1268861039 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -85 | -97 | 12 |
| 1268861061 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -85.4 | -97.6 | 12 |
| 1268861072 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -86.17 | -98 | 12 |
| 1268861084 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -86.17 | -98 | 12 |
| 1268861095 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -86 | -97.86 | 12 |
| 1268861106 | 35.6271316 | -111.6002627 | 1744.426 | 3305.921936 | -85.88 | -97.75 | 12 |
| 1268861117 | 35.62713648 | -111.6002668 | 1743.67 | 3306.450087 | -85.56 | -97.56 | 12 |
| 1268861128 | 35.62710811 | -111.6002198 | 1744.63 | 3303.466719 | -85.56 | -97.56 | 12 |
| 1268861139 | 35.62696074 | -111.600218 | 1743.419 | 3287.081664 | -85.4 | -97.4 | 12 |
| 1268861150 | 35.62687784 | -111.6002571 | 1742.523 | 3277.7169 | -85.18 | -97.36 | 12 |
| 1268861161 | 35.62687591 | -111.6002674 | 1742.822 | 3277.464588 | -85.18 | -97.36 | 12 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268861172 | 35.62673901 | -111.6003989 | 1741.706 | 3261.778714 | -85 | -97.33 | 12 |
| 1268861183 | 35.62654474 | -111.6006616 | 1739.175 | 3239.375677 | -84.92 | -97.31 | 12 |
| 1268861194 | 35.6263286 | -111.6009716 | 1738.313 | 3214.611237 | -84.92 | -97.31 | 12 |
| 1268861205 | 35.62607157 | -111.6013431 | 1736.917 | 3185.466419 | -85.07 | -97.29 | 12 |
| 1268861216 | 35.62575993 | -111.6017292 | 1737.113 | 3150.590416 | -85.2 | -97.27 | 12 |
| 1268861237 | 35.62501717 | -111.6019585 | 1737.123 | 3067.981131 | -85.31 | -97.25 | 12 |
| 1268861249 | 35.6 | -111.6017705 | 1737.213 | 2951.851345 | -85.41 | -97.24 | 12 |
| 1268861260 | 35.62305501 | -111.6015761 | 1738.861 | 2849.508721 | -85.5 | -97.22 | 12 |
| 1268861271 | 35.62220365 | -111.6013426 | 1740.243 | 2754.919128 | -85.5 | -97.22 | 12 |
| 1268861282 | 35.62160646 | -111.6010736 | 174 | 2688.865644 | -85.58 | -97.21 | 12 |
| 1268861293 | 35.621 | -111.6009005 | 174 | 2647.142807 | -85.58 | -97.21 | 12 |
| 1268861304 | 35 | -1 | 17 | 2599.976312 | -85.58 | -97.21 | 12 |
| 1268861315 | 35.62047289 | -111.6007159 | 17 | 2563.653142 | -85.58 | -97.21 | 12 |
| 1268861326 | 35.6201566 | -111.6006471 | 1746.558 | 2528.69765 | -85.58 | -97.21 | 12 |
| 1268861337 | 35.62014439 | -111.600643 | 1746.731 | 2527.354278 | -85.58 | -97.21 | 12 |
| 1268861380 | 35.61822098 | -111.6003693 | 1751.07 | 2314.59272 | -86 | -96 | 2 |
| 1268861 | 35 | -1 | 17 | 2268.773364 | -85.5 | -95.5 | 2 |
| 1268861402 | 35.6178066 | -111.60032 | 1751.726 | 2268.773364 | -85.5 | -95.5 | 2 |
| 1268861413 | 35.61780858 | -111.6003109 | 1751.427 | 2269.040157 | -85.67 | -94.67 | 2 |
| 1268861424 | 35.61780858 | -111.6003109 | 1751.427 | 2269.040157 | -85.5 | -94.75 | 2 |
| 1268861435 | 35.61781346 | -111.6003149 | 1750.671 | 2269.561776 | -85.5 | -94.75 | 2 |
| 1268861446 | 35.61781346 | -111.6003149 | 1750.671 | 2269.561776 | -85.4 | -94.8 | 2 |
| 1268861457 | 35.61782078 | -111.6003149 | 1751.25 | 2270.375912 | -85.5 | -94.83 | 2 |
| 1268861468 | 35.61782078 | -111.6003149 | 1751.254 | 2270.375912 | -85.5 | -94.83 | 2 |
| 1268861479 | 35.61754211 | -111.6002829 | 1751.497 | 2239.571004 | -85.57 | -94.86 | 2 |
| 1268861490 | 35.61705557 | -111.6002349 | 1753.036 | 2185.765116 | -85.5 | -94.88 | 2 |
| 1268861501 | 35.61635625 | -111.6001793 | 1753.197 | 2108.39749 | -85.5 | -94.88 | 2 |
| 1268861513 | 35.61528888 | -111.6000243 | 1755.431 | 1990.887226 | -85.33 | -94.89 | 2 |
| 1268861524 | 35.61440497 | -111.599877 | 1756.717 | 1893.928598 | -85.3 | -94.9 | 2 |
| 1268861545 | 35.61375447 | -111.6001163 | 1757.905 | 1819.950017 | -85.27 | -94.91 | 2 |
| 1268861556 | 35.61375254 | -111.6001266 | 1758.205 | 1819.661731 | -85.25 | -94.92 | 2 |
| 1268861567 | 35.61372914 | -111.600143 | 1758.394 | 1816.948341 | -85.23 | -94.92 | 2 |
| 1268861578 | 35.61338443 | -111.6011664 | 1760.287 | 1773.661145 | -85.23 | -94.92 | 2 |
| 1268861589 | 35.61290819 | -111.6026102 | 1763.671 | 1721.813945 | -85.21 | -94.93 | 2 |
| 1268861600 | 35.61233368 | -111.6039559 | 1766.824 | 1668.28335 | -85.21 | -94.93 | 2 |
| 1268861611 | 35.61166054 | -111.6049658 | 1769.805 | 1608.082195 | -85.21 | -94.93 | 2 |
| 1268861622 | 35.61106774 | -111.6058811 | 1772.359 | 1561.132758 | -85.21 | -94.93 | 2 |
| 1268861633 | 35.61005495 | -111.6074675 | 1776.454 | 1495.645108 | -85.21 | -94.93 | 2 |
| 1268861644 | 35.60908707 | -111.6090907 | 1780.459 | 1456.290427 | -85.21 | -94.93 | 2 |
| 1268861656 | 35.60823026 | -111.6106029 | 1784.43 | 1443.692785 | -85.21 | -94.93 | 2 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268861666 | 35.60751746 | -111.611877 | 1786.693 | 1448.775127 | -85.21 | -94.93 | 2 |
| 1268861678 | 35.60666448 | -111.6133686 | 1790.073 | 1470.284734 | -85.21 | -94.93 | 2 |
| 1268861689 | 35.60587862 | -111.6147371 | 1793.357 | 1505.519937 | -85.21 | -94.93 | 2 |
| 1268861700 | 35.60507616 | -111.6161159 | 1795.779 | 1554.578954 | -85.21 | -94.93 | 2 |
| 1268862271 | 35.58964535 | -111.6048365 | 1813.871 | 914.257051 | -67 | -82 | 2 |
| 1268862283 | 35.58964535 | -111.6048365 | 1813.871 | 914.257051 | -69 | -82 | 25 |
| 1268862295 | 35.58963609 | -111.6048468 | 1813.588 | 915.5239263 | -69 | 82 | 25 |
| 1268862306 | 35.58964096 | -111.6048509 | 1812.832 | 915.1214338 | -69.67 | -82 | 32.67 |
| 1268862318 | 35.58964096 | -111.6048509 | 1812.832 | 915.1214338 | -69.5 | -82 | 36.5 |
| 1268862329 | 35.58964096 | -111.6048509 | 1812.832 | 915.1214338 | -69.5 | -82 | 36.5 |
| 1268862341 | 35.58964096 | -111.6048509 | 1812.832 | 915.1214338 | -69.6 | -82 | 38.8 |
| 1268862353 | 35.589640 | -111.6048509 | 1812.832 | 915.1214338 | -69.17 | -81.83 | 40.33 |
| 1268862365 | 35.58964 | -111.6048509 | 1812.832 | 915.1214338 | -68.71 | -81.71 | 41.43 |
| 1268862377 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -68.71 | -81.71 | 41.43 |
| 1268862389 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -68.5 | -81.75 | 42.25 |
| 1268862400 | 35.5896336 | -111.6048509 | 1812.25 | 915.897159 | -68.44 | -81.78 | 42.89 |
| 1268862412 | 35.5896336 | -111.6048509 | 1812 | 915.897159 | -68.44 | -81.78 | 42.89 |
| 1268862424 | 35.5896336 | -111.6048509 | 1812.25 | 915.897159 | -68.2 | -81.8 | 43.4 |
| 1268862436 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -68 | -82 | 48 |
| 1268862448 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -68.5 | -82 | 48 |
| 1268862460 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -68.5 | -82 | 48 |
| 1268862471 | 35.5896336 | -111.6048509 | 1812.25 | 915.897159 | -67.67 | -82 | 48 |
| 1268862483 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.75 | -82 | 48 |
| 1268862495 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.75 | -82 | 48 |
| 1268862506 | 35.58962631 | -111.6048509 | 1811.668 | 916.6728478 | -67.6 | -82 | 48 |
| 1268862518 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.67 | -82 | 48 |
| 1268862531 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.57 | -81.86 | 48 |
| 1268862542 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.57 | -81.86 | 48 |
| 1268862554 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.62 | -81.75 | 48 |
| 1268862566 | 35.58962631 | -111.6048509 | 1811.668 | 916.6728478 | -67.67 | -81.89 | 48 |
| 1268862578 | 35.58963364 | -111.6048509 | 1812.25 | 915.897159 | -67.67 | -81.89 | 48 |
| 1268862590 | 35.58963648 | -111.6048058 | 1811.809 | 914.3412381 | -67.7 | -82 | 48 |
| 1268862602 | 35.58963841 | -111.6047955 | 1811.509 | 913.8534276 | -67.55 | -82 | 48 |
| 1268862614 | 35.58963841 | -111.6047955 | 1811.509 | 913.8534276 | -67.58 | -82 | 48 |
| 1268862625 | 35.58963841 | -111.6047955 | 1811.509 | 913.8534276 | -67.58 | -82 | 48 |
| 1268862637 | 35.58964849 | -111.604691 | 1811.665 | 909.9460125 | -67.69 | -82.08 | 48 |
| 1268862649 | 35.58966031 | -111.6044575 | 1811.55 | 902.6614508 | -67.71 | -82.14 | 48 |
| 1268862661 | 35.58967589 | -111.604144 | 1810.853 | 893.610687 | -67.71 | -82.14 | 48 |
| 1268862673 | 35.58966899 | -111.6038122 | 1810.204 | 887.4675536 | -67.6 | -82.2 | 48 |
| 1268862685 | 35.58967125 | -111.6034107 | 1809.852 | 880.1853612 | -67.25 | -82.25 | 48 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal <br> (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268862697 | 35.58967341 | -111.6029497 | 1809.517 | 873.6650114 | -66.82 | -82.41 | 48 |
| 1268862709 | 35.58966337 | -111.6024848 | 1809.355 | 870.4258938 | -66.82 | -82.41 | 48 |
| 1268862721 | 35.58943211 | -111.6022068 | 1809.135 | 894.5024959 | -66.72 | -82.56 | 50.67 |
| 1268862732 | 35.58922536 | -111.6019963 | 1808.551 | 916.7769511 | -66.74 | -82.58 | 53.05 |
| 1268862744 | 35.5892743 | -111.6015025 | 1807.834 | 911.2072459 | -66.74 | -82.58 | 53.05 |
| 1268862756 | 35.58931682 | -111.6009738 | 1806.393 | 908.7811823 | -66.45 | -82.45 | 55.2 |
| 1268862768 | 35.58930229 | -111.6004638 | 180 | 914.9858944 | -66.14 | -82.33 | 56 |
| 1268862779 | 35.58931632 | -111.6001195 | 1803.033 | 917.8408607 | -62 | 79 | 72 |
| 1268862791 | 35.58934459 | -111.5998285 | 1800.368 | 919.2787383 | -62 | -79 | 72 |
| 1268862803 | 35.58935047 | -111.5995785 | 1797.737 | 923.124129 | -65 | -79 | 72 |
| 1268862815 | 35.58935 | -111.5995785 | 1797.737 | 923.124129 | -66 | -79 | 72 |
| 1268862827 | 35 | -1 | 17 | 921.2205468 | 6 | 9 | 72 |
| 1268862838 | 35.58936 | -111.5997178 | 1799.469 | 919.3567718 | -66.5 | 79 | 72 |
| 1268862850 | 35.58936157 | -111.5997772 | 1799.453 | 918.3001108 | -66.8 | -79 | 72 |
| 1268862862 | 35.58946989 | -111.5997708 | 1799.838 | 906.5813556 | -67 | -79 | 72 |
| 1268862874 | 35.5895213 | -111.5999018 | 1800.44 | 898.7142997 | -67 | -79 | 72 |
| 1268862885 | 35.5 | -1 | 18 | 898.7142997 | -67.57 | -78.57 | 72 |
| 1268862898 | 35.5895213 | -111.59990 | 1800. | 898.7142997 | -68 | -78.25 | 72 |
| 1268862909 | 35.58952135 | -111.5999018 | 1800.449 | 898.7142997 | -69.44 | -78.89 | 68 |
| 1268862921 | 35.58952135 | -111.5999018 | 1800.449 | 898.7142997 | -69.44 | -78.89 | 68 |
| 1268862932 | 35.58948098 | -111.5999695 | 1801.555 | 902.0343814 | -70.6 | -79.4 | 64.8 |
| 1268862944 | 35.5893475 | -111.5998428 | 1799.91 | 918.7157557 | -70.82 | -79.82 | 62.18 |
| 1268862956 | 35.5893513 | -111.5995437 | 1797.59 | 923.6922087 | -71.58 | -80.17 | 60 |
| 1268862968 | 35.5893646 | -111.5992937 | 1795.545 | 927.3564064 | -71.58 | -80.17 | 60 |
| 1268862980 | 35.58966555 | -111.5992253 | 1795.269 | 896.3848129 | -72.23 | -80.46 | 58.15 |
| 1268862992 | 35.58984303 | -111.5997022 | 1798.674 | 867.1631065 | -72.79 | -80.71 | 56.57 |
| 1268863003 | 35.58986643 | -111.6002431 | 1801.92 | 855.6066494 | -72.79 | -80.71 | 56.57 |
| 1268863015 | 35.58979188 | -111.600864 | 1804.89 | 856.8972534 | -71.73 | -80 | 55.2 |
| 1268863027 | 35.58945279 | -111.6014467 | 1807.646 | 891.4688774 | -70.94 | -79.56 | 54 |
| 1268863039 | 35.58925333 | -111.6020843 | 1809.368 | 913.9161458 | -70.41 | -79.18 | 52.94 |
| 1268863051 | 35.58967315 | -111.6022021 | 1809.556 | 867.6817155 | -70.41 | -79.18 | 52.94 |
| 1268863063 | 35.59020893 | -111.602213 | 1808.947 | 808.1740315 | -70.56 | -79.44 | 51.33 |
| 1268863074 | 35.59069782 | -111.6021975 | 1808.735 | 753.7574611 | -70.47 | -79.68 | 49.89 |
| 1268863086 | 35.59125596 | -111.6021674 | 1808.094 | 691.5708425 | -70.05 | -79.8 | 48.6 |
| 1268863098 | 35.59183171 | -111.6021516 | 1808.16 | 627.5087887 | -70.05 | -79.8 | 48.6 |
| 1268863110 | 35.59200275 | -111.6026059 | 1807.411 | 612.5148842 | -69.24 | -79.9 | 47.43 |
| 1268863123 | 35.59213766 | -111.6033451 | 1807.11 | 610.2048447 | -68.82 | -79.55 | 49.64 |
| 1268863134 | 35.59252575 | -111.6037334 | 1808.786 | 578.4560171 | -68.82 | -79.55 | 49.64 |
| 1268863146 | 35.5930837 | -111.6035845 | 1808.176 | 515.3044371 | -67.74 | -79.22 | 51.65 |
| 1268863159 | 35.59384129 | -111.6032077 | 1804.102 | 424.474485 | -38 | -73 | 96 |


| Time(epoch) | Lat(degrees) | Long(degrees) | Alt (meters) | Distance (meters) | Signal (dB) | Noise (dB) | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268863171 | 35.59459878 | -111.6027714 | 1800.045 | 332.1548154 | -38 | -73 | 96 |
| 1268863183 | 35.59529018 | -111.6024705 | 1799.364 | 250.6480767 | -39 | -73 | 102 |
| 1268863195 | 35.5959641 | -111.6022742 | 1797.94 | 173.638234 | -38.67 | -74.33 | 104 |
| 1268863207 | 35.5965 | -1 | 17 | 104.807217 | -39.75 | 76 | 105 |
| 1268863219 | 35.59703003 | -111.601829 | 1794.186 | 48.60608369 | -39.75 | -76 | 105 |
| 1268863232 | 35.59743766 | -111.601664 | 1792.836 | 5.666999926 | -38.2 | -77 | 105.6 |
| 1268863244 | 35.5974713 | -111.6016619 | 1792.77 | 5.601393129 | -37.33 | -78.67 | 106 |
| 1268863256 | 35.59746 | -111.6016619 | 1792.188 | 5.439757195 | -37.33 | -78.67 | 106 |
| 1268863268 | 35.59745667 | -111.6016619 | 1791.606 | 5.397825546 | -36.86 | -79.86 | 106.29 |
| 1268863280 | 35.59745179 | -111.6016578 | 1792.362 | 5.80292779 | -36.38 | -80.75 | 106.5 |
| 1268863292 | 35.59745179 | -111.6016578 | 1792.362 | 5.80292779 | -36.38 | -80.75 | 106.5 |
| 1268863304 | 35.59744986 | -111.6016681 | 1792.662 | 4.916114305 | -36.11 | -81.44 | 106.67 |

Table 13 Tropos. 505 Raw Data

| Time | Lat | Long | Alt | Dist | Signal | Noise | Modu- <br> lation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268868583 | 35.69075255 | -111.4680497 | 1583.217 | 1.144608457 | -20.7 | -93.2 | 2 |
| 1268868596 | 35.69075255 | -111.4680497 | 1583.217 | 1.144608457 | -20.73 | -93.27 | 8.36 |
| 1268868618 | 35.69075255 | -111.4680497 | 1583.217 | 1.144608457 | -20.83 | -93.25 | 16.67 |
| 1268868630 | 35.69074766 | -111.4680456 | 1583.973 | 0.908880616 | -21.62 | -93.23 | 23.69 |
| 1268868641 | 35.69071977 | -111.468017 | 1583.14 | 4.195681845 | -21.57 | -93.29 | 29.71 |
| 1268868654 | 35.69088429 | -111.4676943 | 1583.432 | 36.11116548 | -21.57 | -93.29 | 29.71 |
| 1268868666 | 35.69097335 | -111.4669064 | 1585.099 | 106.8587554 | -22.87 | -93.27 | 34.93 |
| 1268868678 | 35.691646 | -111.4662923 | 1584.019 | 188.3348799 | -24 | -93.25 | 39.5 |
| 1268868690 | 35.69278322 | -111.4660455 | 1583.155 | 290.7895856 | -24 | -93.25 | 39.5 |
| 1268868702 | 35.69377462 | -111.4660002 | 1580.826 | 385.1976737 | -25.12 | -93.29 | 43.53 |
| 1268868714 | 35.69473839 | -111.4656655 | 1574.198 | 494.4239933 | -27.22 | -93.33 | 47.11 |
| 1268868726 | 35.69601135 | -111.4656188 | 1567.799 | 626.445413 | -30.26 | -93.42 | 45.58 |
| 1268868737 | 35.69641243 | -111.4650858 | 1565.829 | 685.8128696 | -30.26 | -93.42 | 45.58 |
| 1268868749 | 35.69628448 | -111.4645243 | 1566.741 | 694.5356682 | -32.9 | -93.5 | 43.85 |
| 1268868761 | 35.69627524 | -111.4645346 | 1566.454 | 693.1950616 | -35.48 | -93.57 | 42.29 |
| 1268868773 | 35.69627524 | -111.4645346 | 1566.454 | 693.1950616 | -35.48 | -93.57 | 42.29 |
| 1268868784 | 35.69626792 | -111.4645346 | 1565.871 | 692.4714017 | -37.82 | -93.64 | 40.86 |
| 1268868796 | 35.69619955 | -111.4645144 | 1566.149 | 686.56992 | -87 | -95 | 11 |
| 1268868808 | 35.69634477 | -111.4649712 | 1565.997 | 683.0483848 | -87 | -95 | 11 |
| 1268868819 | 35.69659968 | -111.465565 | 1566.041 | 689.7185172 | -87 | -95 | 11 |
| 1268868832 | 35.69659775 | -111.4655753 | 1566.338 | 689.213341 | -85.67 | -95.33 | 11 |
| 1268868843 | 35.69676271 | -111.4659355 | 1564.851 | 696.9610679 | -84.75 | -95.5 | 11 |
| 1268868855 | 35.69740165 | -111.4670567 | 1560.418 | 746.722308 | -85.4 | -95.4 | 13.6 |
| 1268868867 | 35.69749285 | -111.4672143 | 1560.042 | 755.2372079 | -85.4 | -95.4 | 13.6 |
| 1268868879 | 35.69748745 | -111.467204 | 1559.161 | 754.7339345 | -85 | -95.33 | 15.33 |
| 1268868891 | 35.69748256 | -111.4671999 | 1559.917 | 754.2293964 | -85 | -95.43 | 14.71 |
| 1268868903 | 35.69748256 | -111.4671999 | 1559.917 | 754.2293964 | -85 | -95.62 | 14.25 |
| 1268868915 | 35.69748256 | -111.4671999 | 1559.917 | 754.2293964 | -85 | -95.62 | 14.25 |
| 1268868927 | 35.69747524 | -111.4671999 | 1559.333 | 753.4190387 | -85.11 | -95.78 | 13.89 |
| 1268868939 | 35.69747035 | -111.4671959 | 1560.089 | 752.9147711 | -85 | -95.8 | 13.6 |
| 1268868952 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.91 | -95.82 | 13.36 |
| 1268868963 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.91 | -95.82 | 13.36 |
| 1268868999 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.86 | -95.93 | 12.86 |
| 1268868975 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.92 | -95.83 | 13.17 |
| 1268868987 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.85 | -95.85 | 13 |
| 1268869011 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.86 | -95.93 | 12.86 |
| 1268869023 | 35.69747767 | -111.4671959 | 1560.673 | 753.7250822 | -84.87 | -96 | 12.73 |
| 1268869035 | 35.69748064 | -111.4672102 | 1560.214 | 753.9216568 | -84.81 | -96 | 12.62 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268869047 | 35.6977204 | -111.4676256 | 1559.17 | 777.7094909 | -84.81 | -96 | 12.62 |
| 1268869059 | 35.69813662 | -111.4683274 | 1558.291 | 823.4510649 | -84.47 | -96 | 13.18 |
| 1268869070 | 35.69862434 | -111.4691232 | 1556.651 | 882.6840907 | -84.28 | -96.06 | 13.78 |
| 1268869082 | 35.6991823 | -111.4700891 | 1556.16 | 957.3351754 | -83.89 | -96.11 | 14.32 |
| 1268869094 | 35.69975245 | -111.471059 | 1555.499 | 1039.104474 | -83.89 | -96.11 | 14.32 |
| 1268869106 | 35.70035677 | -111.472033 | 1556.418 | 1129.07383 | -82.75 | -95.8 | 14.8 |
| 1268869118 | 35.7009004 | -111.4729457 | 1556.427 | 1214.157688 | -81.38 | -95.52 | 17.52 |
| 1268869130 | 35.70151657 | -111.473977 | 1555.515 | 1313.455813 | -81.38 | -95.52 | 17.52 |
| 1268869142 | 35.7021362 | -111.4750289 | 1555.785 | 1416.427472 | -80.18 | -95.41 | 20 |
| 1268869154 | 35.70276611 | -111.4760951 | 1556.181 | 1523.125773 | -46 | -93 | 72 |
| 1268869167 | 35.7034774 | -111.4773109 | 1557.718 | 1646.212711 | -48.5 | -94 | 72 |
| 1268869179 | 35.70419278 | -111.4782332 | 1558.625 | 1757.457424 | -48.5 | -94 | 72 |
| 1268869191 | 35.7051285 | -111.4790745 | 1556.351 | 1886.050943 | -46.33 | -91.33 | 84 |
| 1268869203 | 35.70604222 | -111.4799037 | 1555.762 | 2012.036183 | -48 | -90 | 90 |
| 1268869215 | 35.70690747 | -111.4806756 | 1554.09 | 2130.734525 | -48 | -90 | 90 |
| 126886922 | 35.70773802 | -111.4814252 | 1552.64 | 2245.111595 | -50.4 | -90.6 | 93.6 |
| 1268869239 | 35.70856664 | -111.482185 | 1551.488 | 2359.835273 | -52.5 | -91 | 94 |
| 1268869251 | 35.70934971 | -111.4828897 | 1552.23 | 2467.621588 | -52.5 | -91 | 94 |
| 1268869263 | 35.71027122 | -111.4837252 | 1553.873 | 2594.788224 | -54 | -91.57 | 96 |
| 1268869275 | 35.7112553 | -111.4846118 | 1556.135 | 2730.333001 | -55 | -92 | 97.5 |
| 1268869287 | 35.71231473 | -111.4855719 | 1557.047 | 2876.554542 | -55 | -92.11 | 98.67 |
| 1268869299 | 35.7133384 | -111.4864851 | 1558.342 | 3017.130371 | -55 | -92.11 | 98.67 |
| 1268869346 | 35.71612492 | -111.4877278 | 1559.898 | 3338.661733 | -57.75 | -92.25 | 101 |
| 1268869312 | 35.71446871 | -111.487129 | 1560.308 | 3154.241528 | -56.2 | -92.4 | 99.6 |
| 1268869323 | 35.7154797 | -111.4874799 | 1558.425 | 3266.00012 | -57.18 | -92.64 | 100.36 |
| 1268869359 | 35.71612789 | -111.4877421 | 1559.44 | 3339.631317 | -58.08 | -91.92 | 98.77 |
| 1268869370 | 35.7161225 | -111.4877318 | 1558.559 | 3338.628479 | -58.14 | -91.5 | 96.86 |
| 1268869382 | 35.7161176 | -111.4877278 | 1559.314 | 3337.972557 | -58.14 | -91.5 | 96.86 |
| 1268869394 | 35.71621594 | -111.4878259 | 1559.553 | 3351.960958 | -58.27 | -91.13 | 95.2 |
| 1268869406 | 35.71626405 | -111.4879365 | 1558.979 | 3361.826219 | -58.25 | -90.88 | 93.75 |
| 1268869419 | 35.71514766 | -111.4888949 | 1558.287 | 3306.079576 | -58.25 | -90.88 | 93.75 |
| 1268869430 | 35.71334888 | -111.490139 | 1556.727 | 3212.281852 | -58.12 | -90.65 | 92.47 |
| 1268869442 | 35.71093686 | -111.4918142 | 1555.621 | 3109.21486 | -59.06 | -90.5 | 91.33 |
| 1268869454 | 35.70880306 | -111.4933426 | 1554.401 | 3044.415472 | -60.21 | -90.37 | 90.32 |
| 1268869466 | 35.70705638 | -111.4945638 | 1553.384 | 3006.910836 | -60.21 | -90.37 | 90.32 |
| 1268869478 | 35.70525155 | -111.4957668 | 1556.211 | 2980.842332 | -61.25 | -90.25 | 89.4 |
| 1268869490 | 35.70350857 | -111.4969309 | 1564.917 | 2972.345967 | -62.19 | -90.14 | 88.57 |
| 1268869502 | 35.7017536 | -111.4979902 | 1572.051 | 2971.049073 | -81 | -88 | 72 |
| 1268869513 | 35.70019304 | -111.4989296 | 1574.872 | 2983.0362 | -81 | -88 | 72 |
| 1268869526 | 35.69837325 | -111.5000135 | 1576.608 | 3011.670519 | -81 | -88 | 72 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268869537 | 35.69684288 | -111.5009301 | 1578.205 | 3048.879785 | -81 | -88 | 2 |
| 1268869549 | 35.69517413 | -111.5019354 | 1580.614 | 3102.681858 | -81 | -88 | 72 |
| 1268869561 | 35.69349807 | -111.5029407 | 1582.446 | 3169.012259 | -81 | -88 | 72 |
| 1268869573 | 35.69186876 | -111.5039129 | 1583.916 | 3244.487352 | -81 | -88 | 72 |
| 1268869585 | 35.691725 | -111.5039914 | 1583.843 | 3251.002198 | -81.67 | -89 | 48.67 |
| 1268869597 | 35.69189703 | -111.5039004 | 1582.976 | 3243.484614 | -81.67 | -89 | 48.67 |
| 1268869609 | 35.69190435 | -111.5039004 | 1583.56 | 3243.516839 | -81.75 | -89.5 | 37 |
| 1268869621 | 35.69191359 | -111.5038902 | 1583.845 | 3242.629528 | -81 | -89.6 | 31.8 |
| 1268869633 | 35.69191359 | -111.5038902 | 1583.845 | 3242.629528 | -80.67 | -89.67 | 28.33 |
| 1268869645 | 35.69192091 | -111.5038902 | 1584.429 | 3242.662225 | -80.67 | -89.67 | 28.33 |
| 1268869657 | 35.69192091 | -111.5038902 | 1584.429 | 3242.662225 | -80.57 | -89.71 | 25.86 |
| 1268869669 | 35.69192091 | -111.5038902 | 1584.429 | 3242.662225 | -80.5 | -89.75 | 25.62 |
| 1268869681 | 35.69187607 | -111.5039129 | 1584.5 | 3244.518776 | -80.44 | -89.78 | 25.44 |
| 1268869693 | 35.69108163 | -111.504285 | 1583.828 | 3275.941987 | -80.44 | -89.78 | 25.44 |
| 1268869705 | 35.69002866 | -111.5046951 | 1585.391 | 3313.777125 | -80.5 | -89.8 | 25.3 |
| 12688697 | 35.68858729 | -111.5051086 | 1585.259 | 3358.819787 | -80.55 | -89.82 | 25.18 |
| 1268869729 | 35.68691581 | -111.505607 | 1586.403 | 3421.964066 | -80.58 | -90 | 25.08 |
| 1268869741 | 35.68670369 | -111.5056653 | 1586.609 | 3430.206804 | -80.58 | -90 | 25.08 |
| 1268869777 | 35.68665397 | -111.5056839 | 1587.436 | 3432.611868 | -79.79 | -90.86 | 26.5 |
| 1268869753 | 35.68671833 | -111.5056653 | 1587.776 | 3429.993293 | -80 | -90.46 | 24.85 |
| 1268869765 | 35.68672322 | -111.5056693 | 1587.02 | 3430.285089 | -79.79 | -90.86 | 26.5 |
| 1268869789 | 35.68502525 | -111.5061105 | 1588.836 | 3499.269254 | -79.33 | -91.2 | 27.93 |
| 1268869802 | 35.68244286 | -111.5068502 | 1590.189 | 3627.475908 | -79.06 | -91.5 | 29.19 |
| 1268869813 | 35.68022277 | -111.507488 | 1592.136 | 3752.950652 | -78.76 | -91.76 | 30.29 |
| 1268869826 | 35.67750482 | -111.5082712 | 1593.89 | 3923.681405 | -78.76 | -91.76 | 30.29 |
| 1268869837 | 35.67540089 | -111.5089208 | 1595.05 | 4070.80069 | -78.83 | -92 | 30.61 |
| 1268869849 | 35.67447584 | -111.5091682 | 1595.731 | 4135.186723 | -78.89 | -92.21 | 30.89 |
| 1268869862 | 35.67232395 | -111.5097667 | 1597.457 | 4293.064109 | -78 | -96 | 36 |
| 1268869874 | 35.66992782 | -111.5104564 | 1600.942 | 4479.969328 | -78 | -96 | 36 |
| 1268869886 | 35.66732396 | -111.511202 | 1602.262 | 4692.494593 | -78 | -96 | 42 |
| 1268869898 | 35.66468256 | -111.5119703 | 1604.252 | 4917.982916 | -75.67 | -95.67 | 44 |
| 1268869910 | 35.66168568 | -111.5128341 | 1604.635 | 5182.719417 | -74.75 | -95.5 | 45 |
| 1268869922 | 35.65947028 | -111.513404 | 1609.376 | 5379.34744 | -74.75 | -95.5 | 45 |
| 1268869934 | 35.65931028 | -111.51322 | 1608.394 | 5378.248006 | -75.8 | -95.6 | 45.6 |
| 1268869946 | 35.65932441 | -111.5132138 | 1607.923 | 5376.796857 | -76.83 | -95.67 | 44 |
| 1268869958 | 35.65934394 | -111.5132179 | 1608.333 | 5375.660717 | -77.86 | -96 | 40.86 |
| 1268869970 | 35.65935319 | -111.5132076 | 1608.618 | 5374.285568 | -77.86 | -96 | 40.86 |
| 1268869983 | 35.65935808 | -111.5132116 | 1607.862 | 5374.209987 | -78.62 | -96.25 | 38.75 |
| 1268869995 | 35.65934159 | -111.5130498 | 1608.697 | 5364.291621 | -79.44 | -96.56 | 37.11 |
| 1268870007 | 35.65924363 | -111.5122874 | 1608.41 | 5319.372501 | -79.6 | -96.8 | 35.8 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268870019 | 35.6591235 | -111.511234 | 1608.122 | 5257.061999 | -79.6 | -96.8 | 35.8 |
| 1268870031 | 35.65903459 | -111.5101825 | 1606.436 | 5193.546228 | -79.73 | -96.73 | 34.73 |
| 1268870043 | 35.65903548 | -111.5101476 | 1606.298 | 5191.166546 | -79.75 | -96.67 | 33.83 |
| 1268870055 | 35.65904036 | -111.5101516 | 1605.542 | 5191.065022 | -79.77 | -96.77 | 33.08 |
| 1268870067 | 35.65898672 | -111.5093603 | 1603.547 | 5142.922717 | -79.77 | -96.77 | 33.08 |
| 1268870079 | 35.6589158 | -111.5078904 | 1600.793 | 5052.740787 | -80.29 | -96.86 | 32.43 |
| 1268870115 | 35.66025937 | -111.5046089 | 1595.383 | 4737.360377 | -79.88 | -96.88 | 31.25 |
| 1268870091 | 35.65934185 | -111.5069211 | 1600.074 | 4957.059314 | -79.73 | -96.87 | 31.87 |
| 1268870103 | 35.66001509 | -111.5058749 | 1597.145 | 4837.138256 | -79.88 | -96.88 | 31.25 |
| 1268870127 | 35.66060106 | -111.5034758 | 1593.991 | 4638.847587 | -80 | -96.88 | 30.82 |
| 1268870139 | 35.66074046 | -111.5030201 | 1593.014 | 4599.204055 | -80.22 | -96.89 | 30.44 |
| 1268870151 | 35.66127301 | -111.5021139 | 1592.979 | 4499.848628 | -80.22 | -96.89 | 30.44 |
| 1268870163 | 35.66212443 | -111.5015037 | 1591.654 | 4393.042772 | -79.84 | -96.89 | 30.11 |
| 1268870175 | 35.66301684 | -111.5008914 | 1590.853 | 4282.955759 | -79.65 | -96.85 | 30.4 |
| 1268870187 | 35.66387172 | -111.5003018 | 1590.711 | 4177.489559 | -79.57 | -96.81 | 31.24 |
| 12688 | 35.6646 | -111.4995403 | 1590 | 4069.949075 | -79.57 | -96.81 | 31.24 |
| 126887021 | 35.66 | -1 | 1591 | 4031.052613 | -79.5 | -96.91 | 32 |
| 1268870223 | 35.66454192 | -111.4988374 | 1591.689 | 4031.849067 | -76 | -99 | 48 |
| 1268870235 | 35.66453267 | -111.4988476 | 1591.403 | 4033.235187 | -74.5 | -97.5 | 48 |
| 1268870247 | 35.66453756 | -111.4988517 | 1590.647 | 4033.094142 | -74.5 | -97.5 | 48 |
| 1268870259 | 35.66453563 | -111.498862 | 1590.945 | 4033.890725 | -74.33 | -97 | 48 |
| 1268870271 | 35.66453563 | -111.498862 | 1590.945 | 4033.890725 | -73.75 | -97 | 48 |
| 1268870284 | 35.66453563 | -111.498862 | 1590.945 | 4033.890725 | -73.6 | -97 | 48 |
| 1268870297 | 35.66452831 | -111.498862 | 1590.362 | 4034.480176 | -73.6 | -97 | 48 |
| 1268870309 | 35.66452831 | -111.498862 | 1590.362 | 4034.480176 | -73.83 | -96.83 | 48 |
| 1268870321 | 35.66452831 | -111.498862 | 1590.362 | 4034.480176 | -73.71 | -96.71 | 48 |
| 1268870333 | 35.66452831 | -111.498862 | 1590.362 | 4034.480176 | -73.71 | -96.71 | 48 |
| 1268870345 | 35.66452831 | -111.498862 | 1590.362 | 4034.480176 | -73.38 | -96.62 | 48 |
| 1268870358 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.38 | -96.62 | 48 |
| 1268870369 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.44 | -96.56 | 48 |
| 1268870382 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.44 | -96.56 | 48 |
| 1268870394 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.5 | -96.6 | 43.4 |
| 1268870406 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.64 | -96.64 | 39.64 |
| 1268870418 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.64 | -96.64 | 39.64 |
| 1268870430 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.67 | -96.58 | 40.33 |
| 1268870443 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.67 | -96.58 | 40.33 |
| 1268870455 | 35.66452639 | -111.4988722 | 1590.66 | 4035.276772 | -73.54 | -96.62 | 40.92 |
| 1268870467 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.5 | -96.71 | 38.14 |
| 1268870480 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.67 | -96.93 | 35.73 |
| 1268870492 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.67 | -96.93 | 35.73 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268870504 | 35.6645215 | -111.4988682 | 1591.416 | 4035.41774 | -73.88 | -97.12 | 33.62 |
| 1268870516 | 35.66440423 | -111.4986123 | 1590.684 | 4028.966035 | -73.65 | -97.06 | 31.76 |
| 1268870562 | 35.66388791 | -111.4962685 | 1588.204 | 3930.209956 | -73.15 | -96.8 | 27.3 |
| 1268870538 | 35.66394195 | -111.4975704 | 1590.138 | 4003.148025 | -73.22 | -97 | 30.11 |
| 1268870550 | 35.6639133 | -111.4968528 | 1589.423 | 3962.58371 | -73.16 | -96.89 | 28.63 |
| 1268870574 | 35.66399918 | -111.4962763 | 1588.147 | 3921.252563 | -73.15 | -96.8 | 27.3 |
| 1268870586 | 35.66398033 | -111.4967295 | 1589.348 | 3949.634344 | -71 | -96 | 2 |
| 1268870598 | 35.66393003 | -111.4972936 | 1590.266 | 3987.499162 | -72.5 | -96 | 2 |
| 1268870610 | 35.66412789 | -111.4979654 | 1590.542 | 4011.741672 | -76 | -96.33 | 2 |
| 1268870622 | 35.66451403 | -111.4988087 | 1590.856 | 4032.309093 | -76 | -96.33 | 2 |
| 1268870634 | 35.66450525 | -111.4997806 | 1590.5 | 4094.116494 | -74.75 | -96.5 | 2 |
| 1268870647 | 35.66369549 | -111.5004665 | 1590.522 | 4201.935495 | -75 | -96.6 | 2 |
| 1268870658 | 35.66298872 | -111.5009633 | 1591.772 | 4289.721166 | -75.33 | -96.5 | 2 |
| 1268870671 | 35.6621279 | -111.5015243 | 1592.833 | 4394.042168 | -75.33 | -96.5 | 2 |
| 1268870683 | 35.66109011 | -111.5023442 | 1593.823 | 4528.95262 | -75.14 | -96.43 | 5.14 |
| 1268870695 | 35.66043546 | -111.5039932 | 1595.59 | 4684.536784 | -75.38 | -96.38 | 10.5 |
| 1268870708 | 35.65998327 | -111.5060268 | 1598.637 | 4849.362399 | -75.78 | -96.33 | 14.67 |
| 1268870720 | 35.65896316 | -111.5077037 | 1600.328 | 5037.007968 | -75.78 | -96.33 | 14.67 |
| 1268870732 | 35.65900297 | -111.5096228 | 1604.464 | 5158.944318 | -75.6 | -96.4 | 18 |
| 1268870744 | 35.65913585 | -111.5112975 | 1607.927 | 5260.408899 | -76.09 | -96.45 | 20.73 |
| 1268870756 | 35.65934248 | -111.5130149 | 1608.559 | 5361.835825 | -76.33 | -96.42 | 21 |
| 1268870768 | 35.65935394 | -111.5131133 | 1608.502 | 5367.753659 | -76.33 | -96.42 | 21 |
| 1268870780 | 35.65938596 | -111.5132403 | 1608.695 | 5374.160975 | -76.62 | -96.38 | 21.23 |
| 1268870792 | 35.65947456 | -111.5135619 | 1608.714 | 5389.92813 | -77.21 | -96.43 | 21.43 |
| 1268870814 | 35.66003543 | -111.5154913 | 1611.16 | 5485.157483 | -77.53 | -96.47 | 21.6 |
| 1268870827 | 35.66068258 | -111.5165716 | 1612.269 | 5517.893128 | -77.56 | -96.62 | 21.75 |
| 1268870839 | 35.66147899 | -111.5174238 | 1612.592 | 5526.626503 | -77.88 | -96.76 | 21.88 |
| 1268870851 | 35.662019 | -111.5179836 | 1611.404 | 5532.629756 | -77.88 | -96.76 | 21.88 |
| 1268870863 | 35.66246018 | -111.518427 | 1611.781 | 5537.316919 | -77.61 | -96.78 | 22 |
| 1268870876 | 35.66308708 | -111.519206 | 1612.594 | 5556.426529 | -77.32 | -96.79 | 23.37 |
| 1268870912 | 35.66366226 | -111.5214435 | 1623.123 | 5691.770345 | -76.67 | -96.9 | 25.71 |
| 1268870888 | 35.66335292 | -111.5199987 | 1614.361 | 5600.060981 | -77 | -96.85 | 24.6 |
| 1268870900 | 35.66360334 | -111.5208735 | 1618.513 | 5651.620962 | -77 | -96.85 | 24.6 |
| 1268870924 | 35.6636579 | -111.5214578 | 1622.082 | 5693.12619 | -76.14 | -96.91 | 26.73 |
| 1268870937 | 35.66365494 | -111.5214435 | 1622.54 | 5692.20222 | -76.14 | -96.91 | 26.73 |
| 1268870949 | 35.66365494 | -111.5214435 | 1622.54 | 5692.20222 | -75.78 | -96.83 | 30.26 |
| 1268870961 | 35.66364762 | -111.5214435 | 1621.957 | 5692.634179 | -64 | -95 | 108 |
| 1268870973 | 35.66364954 | -111.5214332 | 1621.659 | 5691.732791 | -64 | -95 | 108 |
| 1268870985 | 35.66364954 | -111.5214332 | 1621.659 | 5691.732791 | -64.5 | -95 | 108 |
| 1268870998 | 35.66364954 | -111.5214332 | 1621.659 | 5691.732791 | -68.33 | -95 | 108 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modu- <br> lation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268871011 | 35.66364954 | -111.5214332 | 1621.659 | 5691.732791 | -68.33 | -95 | 108 |
| 1268871023 | 35.66368108 | -111.5217735 | 1621.928 | 5715.998524 | -71 | -95.5 | 108 |
| 1268871035 | 35.6637021 | -111.5222121 | 1620.393 | 5748.519232 | -69.8 | -95.4 | 108 |
| 1268871047 | 35.66372284 | -111.5225318 | 1618.9 | 5771.965675 | -70.17 | -95.33 | 108 |
| 1268871059 | 35.66378136 | -111.5229356 | 1620.142 | 5799.784282 | -70.17 | --95.33 | 108 |
| 12688 | 35.66379861 | -111.5232226 | 1620.904 | 5821.018527 | -71.43 | -95.43 | 102.86 |
| 1268871083 | 35.66379861 | -111.5232226 | 1620.904 | 5821.018527 | -72.25 | -95.5 | 99 |
| 1268871096 | 35.66380054 | -111.5232124 | 1620.606 | 5820.111889 | -72.89 | -95.44 | 93.33 |
| 1268871108 | 35.66380054 | -111.5232124 | 1620.606 | 5820.111889 | -72.89 | -95.44 | 93.33 |
| 1268871120 | 35.66380786 | -111.5232124 | 1621.189 | 5819.691763 | -73.6 | -95.4 | 88.8 |
| 1268871131 | 35.6637949 | -111.5233026 | 162 | 5827.432814 | -74.18 | -95.36 | 85.09 |
| 12688 | 35.66369245 | -111.5239489 | 1621.886 | 5883.440972 | -74.58 | -95.33 | 82 |
| 1268871156 | 35.66355545 | -111.5246321 | 1622.492 | 5944.359829 | -74.58 | -95.33 | 82 |
| 1268871168 | 35.66339327 | -111.5254016 | 1623.562 | 6013.478325 | -74.77 | -95.23 | 81.23 |
| 1268871182 | 35.66320513 | -111.5261322 | 1623.502 | 6081.077691 | -75.14 | -95.14 | 80.57 |
| 1268871193 | 35.66262474 | -1 | 1624 | 6189.731669 | -75.47 | -95.13 | 80 |
| 1268871206 | 35.66192073 | -111.5280086 | 162 | 6299.848446 | -75.47 | -95.13 | 80 |
| 1268871218 | 35.66192265 | -111.5279984 | 1624.599 | 6298.939783 | -75.69 | -95.12 | 79.5 |
| 1268871230 | 35.66192997 | -111.5279984 | 1625.182 | 6298.524515 | -76 | -95.18 | 77.65 |
| 1268871242 | 35.6619319 | -111.5279881 | 1624.884 | 6297.615889 | -76.17 | -95.22 | 76 |
| 1268871254 | 35.66161663 | -111.5283952 | 1625.618 | 6347.187991 | -76.17 | -95.22 | 76 |
| 1268871266 | 35.6611287 | -111.5290468 | 1627.329 | 6425.631837 | -76.32 | -95.21 | 74.53 |
| 1268871278 | 35.66051718 | -111.5298588 | 1627.572 | 6523.6325 | -76.1 | -95.15 | 73.2 |
| 1268871301 | 35.6599844 | -111.5305332 | 1629.359 | 6606.512354 | -75.95 | -95.1 | 73.14 |
| 1268871312 | 35.65998633 | -111.5305229 | 1629.061 | 6605.606827 | -76 | -96 | 72 |
| 1268871325 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -76 | -96 | 72 |
| 1268871337 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -76 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.46 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.36 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.36 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.47 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.5 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.5 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.53 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.61 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.53 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.53 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 6605.184225 | -71.45 | -96 | -93.54 |
| 1268871339 | 35.65999365 | -111.5305229 | 1629.644 | 15601.06677 | -20.5 | -96 | -93.54 |

Table 14 Tropos. 727 Raw Data

| Time | Lat | Long | Alt | Dist | Signal | Noise | Modu- <br> lation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268940836 | 35.55141312 | -111.6395048 | 1971.048 | 0 | -20.4 | -84.8 | 2 |
| 1268940851 | 35.55141312 | -111.6395048 | 1971.048 | 0 | -20 | -86 | 24 |
| 1268940864 | 35.55140632 | -111.639511 | 1972.104 | 0.941631069 | -20 | -86 | 24 |
| 1268940877 | 35.55140632 | -111.639511 | 1972.104 | 0.941631069 | -22.5 | -86 | 66 |
| 1268940890 | 35.55140632 | -111.639511 | 1972.104 | 0.941631069 | -22 | -86 | 80 |
| 1268940904 | 35.55140632 | -111.639511 | 1972.104 | 0.941631069 | -22.75 | -86 | 87 |
| 1268940918 | 35.55140579 | -111.6395048 | 1970.466 | 0.816087154 | -22.75 | -86 | 87 |
| 1268940931 | 35.55140579 | -111.6395048 | 1970.466 | 0.816087154 | -23 | -86 | 91.2 |
| 1268940944 | 35.55140579 | -111.6395048 | 1970.466 | 0.816087154 | -23.5 | -86.17 | 94 |
| 1268940958 | 35.55140092 | -111.6395008 | 1971.223 | 1.407145763 | -23.86 | -86.29 | 96 |
| 1268940971 | 35.55140092 | -111.6395008 | 1971.223 | 1.407145763 | -23.86 | -86.29 | 96 |
| 1268940985 | 35.55143265 | -111.6395089 | 1971.454 | 2.205142575 | -23.25 | -86.12 | 97.5 |
| 1268940998 | 35.55151898 | -111.6395026 | 1970.087 | 11.78615561 | -24.33 | -86 | 97.33 |
| 1268941011 | 35.5515799 | -111.6394635 | 1969.225 | 18.93965569 | -24 | -86.3 | 97.2 |
| 1268941025 | 35.5518554 | -111.6393748 | 1965.997 | 50.62295222 | -24 | -86.3 | 97.2 |
| 1268941039 | 35.55225552 | -111.6394415 | 1962.334 | 93.95172449 | -25.45 | -86.55 | 97.09 |
| 1268941052 | 35.5527981 | -111.6395181 | 1957.187 | 154.1815735 | -26.5 | -86.58 | 98 |
| 1268941064 | 35.55339433 | -111.6395434 | 1954.028 | 220.5768176 | -27.77 | -86.62 | 98.77 |
| 1268941079 | 35.55419154 | -111.6395315 | 1950.618 | 309.3032239 | -27.77 | -86.62 | 98.77 |
| 1268941092 | 35.55450726 | -111.6395943 | 1948.024 | 344.5358608 | -30.07 | -86.64 | 99.43 |
| 1268941106 | 35.55508251 | -111.6396442 | 1942.967 | 408.6718063 | -31.8 | -87.2 | 100 |
| 1268941118 | 35.55559784 | -111.6397577 | 1938.615 | 466.4058737 | -34.5 | -87.69 | 100.5 |
| 1268941132 | 35.55617007 | -111.6397339 | 1934.028 | 529.9500081 | -34.5 | -87.69 | 100.5 |
| 1268941145 | 35.55682722 | -111.6397202 | 1930.012 | 603.0138262 | -36.82 | -88.18 | 100.94 |
| 1268941159 | 35.55759902 | -111.6396756 | 1927.112 | 688.7888238 | -37.89 | -88.61 | 101.33 |
| 1268941172 | 35.55766148 | -111.6396673 | 1927.733 | 695.7235045 | -38.74 | -89 | 101.68 |
| 1268941186 | 35.55765415 | -111.6396673 | 1927.151 | 694.9076001 | -38.74 | -89 | 101.68 |
| 1268941199 | 35.55766148 | -111.6396673 | 1927.733 | 695.7235045 | -39.2 | -89.35 | 102 |
| 1268941213 | 35.55786934 | -111.6396832 | 1926.413 | 718.8881137 | -47 | -96 | 108 |
| 1268941226 | 35.55786447 | -111.6396791 | 1927.169 | 718.3379361 | -47.5 | -96 | 108 |
| 1268941267 | 35.55800145 | -111.6399573 | 1926.536 | 734.5574472 | -47 | -96 | 108 |
| 1268941241 | 35.55786447 | -111.6396791 | 1927.169 | 718.3379361 | -47.5 | -96 | 108 |
| 1268941254 | 35.55786447 | -111.6396791 | 1927.169 | 718.3379361 | -47.33 | -96 | 108 |
| 1268941280 | 35.55838204 | -111.6406957 | 1925.912 | 783.2420508 | -50.6 | -96 | 108 |
| 1268941294 | 35.55889281 | -111.6417185 | 1925.713 | 856.4344941 | -50.6 | -96 | 108 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268941307 | 35.55939044 | -111.642772 | 1925.834 | 936.0332425 | -50 | -96 | 98 |
| 1268941320 | 35.5599594 | -111.6439196 | 1925.198 | 1031.971741 | -51 | -96 | 90.86 |
| 1268941334 | 35.56058364 | -111.6451776 | 1924.579 | 1142.84858 | -51.25 | -96 | 85.5 |
| 1268941347 | 35.56104642 | -111.64609 | 1924.954 | 1227.054954 | -53.11 | -96.33 | 80 |
| 1268941361 | 35.56163883 | -111.6472806 | 1924.119 | 1338.537182 | -53.11 | -96.33 | 80 |
| 1268941400 | 35.56307456 | -111.6501098 | 1926.487 | 1614.8069 | -54 | -96.5 | 72 |
| 1268941373 | 35.56216327 | -111.6483382 | 1925.24 | 1439.471563 | -54 | -96.6 | 76.8 |
| 1268941387 | 35.56268569 | -111.6493468 | 1926.673 | 1539.196512 | -53.73 | -96.55 | 74.18 |
| 1268941414 | 35.56337388 | -111.650699 | 1924.727 | 1673.484075 | -54.62 | -96.46 | 70.15 |
| 1268941426 | 35.56357021 | -111.6512453 | 1923.481 | 1721.042904 | -54.62 | -96.46 | 70.15 |
| 1268941439 | 35.56364185 | -111.6515769 | 1922.677 | 1745.964638 | -56.57 | -96.5 | 68.57 |
| 1268941451 | 35.56364185 | -111.6515769 | 1922.677 | 1745.964638 | -58.27 | -96.53 | 67.2 |
| 1268941463 | 35.56365312 | -111.6516158 | 1922.647 | 1749.149026 | -59.75 | -96.5 | 66 |
| 1268941475 | 35.56375957 | -111.6520886 | 1921.598 | 1785.416508 | -59.75 | -96.5 | 66 |
| 1268941487 | 35.56379181 | -111.6525124 | 1921.751 | 1812.883352 | -60.82 | -96.47 | 64.94 |
| 1268941499 | 35.56379375 | -111.6525022 | 1921.451 | 1812.443985 | -61.72 | -96.5 | 64 |
| 1268941513 | 35.56374044 | -1 | 1922.848 | 1824.342156 | -62.58 | -96.53 | 63.16 |
| 1268941526 | 35.56374237 | -111.6527685 | 1922.548 | 1823.892599 | -63.1 | -96.5 | 62.4 |
| 1268941538 | 35.56374237 | -111.6527685 | 1922.548 | 1823.892599 | -63.1 | -96.5 | 62.4 |
| 1268941552 | 35.56374237 | -111.6527685 | 1922.548 | 1823.892599 | -63.71 | -96.48 | 60.48 |
| 1268941565 | 35.56363524 | -111.6533154 | 1923.705 | 1848.091847 | -75 | -96 | 22 |
| 1268941577 | 35.56371724 | -111.654118 | 1924.731 | 1904.589245 | -73 | -96 | 22 |
| 1268941589 | 35.5639007 | -111.6549326 | 1923.763 | 1970.921546 | -75.67 | -97 | 22 |
| 1268941603 | 35.5642266 | -111.6556856 | 1924.755 | 2044.971456 | -75.67 | -97 | 22 |
| 1268941615 | 35.56430327 | -111.6557306 | 1924.891 | 2053.840903 | -74.75 | -97.5 | 22.5 |
| 1268941628 | 35.56467486 | -111.6559694 | 1923.949 | 2098.267333 | -72.8 | -97.4 | 22.8 |
| 1268941641 | 35.56498936 | -111.6566364 | 1921.552 | 2165.89043 | -71.67 | -97.33 | 23 |
| 1268941664 | 35.56534867 | -111.6576186 | 1920.798 | 2257.764893 | -71.86 | -97.14 | 23.14 |
| 1268941775 | 35.56709657 | -111.6578038 | 1914.265 | 2407.131271 | -74.57 | -96.79 | 23 |
| 1268941676 | 35.56536087 | -111.6576227 | 1920.624 | 2258.965874 | -73 | -97 | 23.25 |
| 1268941690 | 35.56571501 | -111.6579661 | 1918.954 | 2308.656169 | -73.22 | -97 | 23.33 |
| 1268941712 | 35.56591413 | -111.6579985 | 1918.994 | 2326.1084 | -73.6 | -97 | 23.4 |
| 1268941725 | 35.56591413 | -111.6579985 | 1918.994 | 2326.1084 | -73.73 | -96.91 | 23.27 |
| 1268941738 | 35.56616257 | -111.6580533 | 1919.975 | 2348.934881 | -73.83 | -96.83 | 23.17 |
| 1268941750 | 35.56669594 | -111.6581281 | 1917.994 | 2395.573433 | -73.83 | -96.83 | 23.17 |
| 1268941762 | 35.56697699 | -111.6581685 | 1915.632 | 2420.444921 | -74.31 | -96.77 | 23.08 |
| 1268941787 | 35.56710237 | -111.657773 | 1913.364 | 2405.683955 | -74.87 | -96.8 | 22.93 |
| 1268941799 | 35.56735591 | -111.6572033 | 1913.555 | 2391.366909 | -74.87 | -96.8 | 22.93 |
| 1268941811 | 35.56766879 | -111.6569017 | 1913.13 | 2399.304724 | -75.44 | -96.75 | 22.88 |
| 1268941823 | 35.56810282 | -111.656735 | 1911.095 | 2426.212838 | -75.76 | -96.71 | 22.82 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268941835 | 35.56833057 | -111.6562451 | 1910.131 | 2417.61818 | -75.83 | -96.67 | 22.78 |
| 1268941874 | 35.56838969 | -111.6559378 | 1907.833 | 2405.430171 | -75.3 | -96.65 | 22.7 |
| 1268941848 | 35.56839162 | -111.6559275 | 1907.533 | 2405.025189 | -75.47 | -96.63 | 22.74 |
| 1268941862 | 35.56839162 | -111.6559275 | 1907.533 | 2405.025189 | -75.47 | -96.63 | 22.74 |
| 1268941886 | 35.56838481 | -111.6559337 | 1908.589 | 2404.776159 | -75.14 | -96.67 | 22.67 |
| 1268941900 | 35.56846346 | -111.6556305 | 1906.698 | 2394.814776 | -75.05 | -96.68 | 22.64 |
| 1268941912 | 35.5686435 | -111.6552799 | 1902.822 | 2391.63028 | -75.05 | -96.68 | 22.64 |
| 1268941925 | 35.56904417 | -111.6549433 | 1902.528 | 2409.734351 | -75.35 | -96.7 | 22.61 |
| 1268941936 | 35.56923928 | -111.6548774 | 1903.192 | 2424.025204 | -85 | -96 | 22 |
| 1268941949 | 35.56962007 | -111.6550467 | 1902.546 | 2467.556226 | -85.5 | -96 | 22 |
| 1268941961 | 35.57020276 | -111.6551439 | 1901.508 | 2526.029739 | -86 | -96.33 | 22 |
| 1268941973 | 35.57093764 | -111.6551876 | 1900.922 | 2596.334042 | -86 | -96.33 | 22 |
| 1268941985 | 35.57178025 | -111.6551594 | 1899.091 | 2673.989229 | -85.75 | -96.5 | 22 |
| 1268941999 | 35.57284589 | -111.6551534 | 1898.749 | 2775.001526 | -85.8 | -96.6 | 22 |
| 1268942011 | 35.57384561 | -111.6551351 | 1896.605 | 2870.429206 | -85.83 | -96.67 | 22 |
| 1268942023 | 35.57484866 | -111.6550186 | 1895.667 | 2963.057586 | -85.83 | -96.67 | 22 |
| 126894203 | 35.57596645 | -111.6550021 | 189 | 3072.496582 | -85.86 | -96.71 | 22 |
| 1268942048 | 35.57736576 | -111.6549729 | 1888.422 | 3210.695386 | -85.88 | -96.75 | 22 |
| 1268942060 | 35.57868847 | -111.6549581 | 1884.302 | 3343.240623 | -85.89 | -96.78 | 22 |
| 1268942083 | 35.58099758 | -111.6555846 | 1878.407 | 3600.864013 | -85.89 | -96.78 | 22 |
| 1268942095 | 35.58214035 | -111.6560515 | 1874.713 | 3734.326136 | -85.89 | -96.78 | 22 |
| 1268942108 | 35.58330711 | -111.6565675 | 1872.457 | 3872.052503 | -85.89 | -96.78 | 22 |
| 1268942120 | 35.58412555 | -111.6571068 | 1872.677 | 3975.084082 | -85.89 | -96.78 | 22 |
| 1268942132 | 35.58418075 | -111.6571579 | 1872.707 | 3982.56904 | -85.89 | -96.78 | 22 |
| 1268942144 | 35.5846077 | -111.6571571 | 1873.503 | 4026.118043 | -85.89 | -96.78 | 22 |
| 1268942156 | 35.58515728 | -111.656853 | 1875.902 | 4071.636967 | -85.89 | -96.78 | 22 |
| 1268942168 | 35.58599396 | -111.656411 | 1869.857 | 4142.760828 | -85.89 | -96.78 | 22 |
| 1268942182 | 35.58720684 | -111.6571789 | 1863.895 | 4293.935023 | -85.89 | -96.78 | 22 |
| 1268942194 | 35.58854317 | -111.6579588 | 1857.69 | 4458.305044 | -85.89 | -96.78 | 22 |
| 1268942206 | 35.58977144 | -111.658104 | 1854.501 | 4590.159259 | -85.89 | -96.78 | 22 |
| 1268942218 | 35.59099916 | -111.6581715 | 1853.119 | 4719.742418 | -85.89 | -96.78 | 22 |
| 1268942231 | 35.59220138 | -111.6585564 | 1850.54 | 4857.199831 | -85.89 | -96.78 | 22 |
| 1268942243 | 35.59331688 | -111.6590603 | 1847.665 | 4989.483178 | -85.89 | -96.78 | 22 |
| 1268942257 | 35.59454429 | -111.6592998 | 1844.621 | 5124.993378 | -85.89 | -96.78 | 22 |
| 1268942269 | 35.59464472 | -111.6588182 | 1844.511 | 5120.413048 | -85.89 | -96.78 | 22 |
| 1268942908 | 35.58442545 | -111.6237097 | 1881.123 | 3943.449786 | -80 | -96 | 2 |
| 1268942920 | 35.58449462 | -111.6236358 | 1880.704 | 3953.054071 | -78 | -95.5 | 2 |
| 1268942933 | 35.58450682 | -111.6236398 | 1880.53 | 3954.185724 | -77 | -95.33 | 2 |
| 1268942946 | 35.58450682 | -111.6236398 | 1880.53 | 3954.185724 | -77 | -95.33 | 2 |
| 1268942960 | 35.58450682 | -111.6236398 | 1880.53 | 3954.185724 | -76.75 | -95.5 | 7 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268942974 | 35.58450682 | -111.6236398 | 1880.53 | 3954.185724 | -76.2 | -95.6 | 10 |
| 1268942987 | 35.58443506 | -111.623937 | 1881.351 | 3937.028974 | -76.17 | -96 | 12 |
| 1268942999 | 35.58419468 | -111.6240788 | 1879.111 | 3907.448283 | -89 | -98 | 22 |
| 1268943011 | 35.58377879 | -111.624012 | 1874.879 | 3866.438362 | -89 | -98 | 22 |
| 1268943023 | 35.58338533 | -111.623892 | 1874.045 | 3829.654784 | -89 | -97 | 22 |
| 1268943037 | 35.58301704 | -111.6236143 | 1876.178 | 3801.032029 | -89 | -96.67 | 22 |
| 1268943049 | 35.58282233 | -111.6235555 | 1880.603 | 3783.01082 | -89 | -96.5 | 22 |
| 1268943061 | 35.5825391 | -111.6236853 | 1885.011 | 3749.383908 | -86.4 | -96.4 | 22 |
| 1268943074 | 35.58228958 | -111.6238845 | 1885.908 | 3716.827396 | -86.4 | -96.4 | 22 |
| 1268943088 | 35.58226273 | -111.6238804 | 1884.918 | 3714.202984 | -83.67 | -96.33 | 22 |
| 1268943101 | 35.58227005 | -111.6238804 | 1885.5 | 3714.957224 | -82.14 | -96.14 | 22 |
| 1268943113 | 35.58227005 | -111.6238804 | 1885.5 | 3714.957224 | -81.12 | -96 | 22 |
| 1268943137 | 35.58227738 | -111.6238804 | 1886.082 | 3715.71149 | -80.56 | -96 | 22 |
| 1268943151 | 35.58232772 | -111.6239275 | 1886.866 | 3719.276682 | -79.9 | -96 | 22 |
| 1268943163 | 35.58248652 | -111.6237489 | 1886.293 | 3741.773871 | -78.82 | -96 | 22 |
| 1268943176 | 35.58281553 | -111.6235617 | 1881.658 | 3782.096639 | -78.5 | -96 | 22 |
| 1268943188 | 35.582 | -111.6235981 | 1878.039 | 3798.071624 | -78.5 | -96 | 22 |
| 1268943201 | 35.58303271 | -111.6236389 | 1877.185 | 3801.804796 | -79.23 | -96 | 22 |
| 1268943213 | 35.58327937 | -111.6238349 | 1875.013 | 3820.612912 | -79.86 | -96 | 22 |
| 1268943226 | 35.58389159 | -111.6240507 | 1876.287 | 3876.874504 | -80.4 | -96 | 22 |
| 1268943238 | 35.58443878 | -111.6241357 | 1882.492 | 3931.010311 | -80.4 | -96 | 22 |
| 1268943251 | 35.58489947 | -111.6248087 | 1886.649 | 3958.110983 | -80.81 | -96 | 22 |
| 1268943263 | 35.58529256 | -111.6250535 | 1882.388 | 3992.026693 | -81.18 | -96 | 22 |
| 1268943275 | 35.58552987 | -111.6252004 | 1879.948 | 4012.680765 | -81.5 | -96 | 22 |
| 1268943313 | 35.58661848 | -111.6259311 | 1874.356 | 4107.275519 | -82.05 | -96 | 22 |
| 1268943287 | 35.58587537 | -111.6255601 | 1879.633 | 4038.798454 | -81.79 | -96 | 22 |
| 1268943300 | 35.58619862 | -111.6257417 | 1877.613 | 4067.927542 | -81.79 | -96 | 22 |
| 1268943325 | 35.58683603 | -111.6262338 | 1873.264 | 4122.318377 | -82.29 | -96 | 22 |
| 1268943337 | 35.58705327 | -111.6266368 | 1873.939 | 4135.024487 | -82.29 | -96 | 22 |
| 1268943350 | 35.58749225 | -111.6272216 | 1871.155 | 4167.489512 | -82.29 | -96 | 22 |
| 1268943362 | 35.58776375 | -111.6277228 | 1868.571 | 4184.824551 | -82.29 | -96 | 22 |
| 1268943912 | 35.57855114 | -111.6217981 | 1905.579 | 3420.149418 | -69 | -94 | 2 |
| 1268943926 | 35.57853701 | -111.6218043 | 1906.053 | 3418.496975 | -69 | -94 | 2 |
| 1268943938 | 35.57855114 | -111.6217981 | 1905.579 | 3420.149418 | -63.5 | -92 | 2 |
| 1268943953 | 35.57855307 | -111.6217878 | 1905.279 | 3420.774727 | -62 | -91.33 | 17.33 |
| 1268943966 | 35.57809048 | -111.6220797 | 1906.581 | 3362.898798 | -61.25 | -90.75 | 25 |
| 1268943980 | 35.57754138 | -111.6226094 | 1907.553 | 3286.445684 | -60 | -90.4 | 29.6 |
| 1268943993 | 35.57679793 | -111.6227012 | 1909.46 | 3209.484026 | -60.17 | -90.17 | 32.67 |
| 1268944006 | 35.57579255 | -111.6225315 | 1910.757 | 3118.947621 | -60.17 | -90.17 | 32.67 |
| 1268944019 | 35.57539688 | -111.6222435 | 1910.27 | 3093.790385 | -62.71 | -90 | 31.14 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modu- <br> lation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268944032 | 35.57540421 | -111.6222435 | 1910.852 | 3094.49445 | -64.38 | -90.75 | 30 |
| 1268944046 | 35.57540228 | -111.6222538 | 1911.151 | 3093.839928 | -76 | -96 | 22 |
| 1268944059 | 35.57516181 | -111.621986 | 1910.648 | 3083.170974 | -76.5 | -96 | 22 |
| 1268944097 | 35.57351349 | -111.621617 | 1910.296 | 2945.612187 | -76.25 | -95.5 | 22 |
| 1268944072 | 35.57474836 | -111.621565 | 1909.482 | 3063.844044 | -76.67 | -96 | 22 |
| 1268944085 | 35.57415546 | -111.6215131 | 1910.379 | 3010.631502 | -76.25 | -95.5 | 22 |
| 1268944111 | 35.57272856 | -111.6216925 | 1913.488 | 2869.186572 | -77.6 | -95.2 | 22 |
| 1268944123 | 35.57214378 | -111.621825 | 1916.566 | 2808.736086 | -77.5 | -94.83 | 22 |
| 1268944137 | 35.57160911 | -111.6218979 | 1917.024 | 2756.222169 | -76 | -94.57 | 22 |
| 1268944150 | 35.57101498 | -111.6223313 | 1918.115 | 2679.576447 | -75.12 | -93.88 | 22 |
| 1268944164 | 35.57020105 | -111.622923 | 1920.656 | 2574.714233 | -74.89 | -93.33 | 22 |
| 1268944176 | 35.5695826 | -111.6230576 | 1923.805 | 2511.867959 | -74.89 | -93.33 | 22 |
| 1268944190 | 35.56900708 | -111.6231798 | 1927.168 | 2453.892918 | -75.6 | -93.3 | 22 |
| 1268944231 | 35.56638634 | -111.6245309 | 1923.037 | 2148.762577 | -75.69 | -93.54 | 19.69 |
| 1268944202 | 35.56837999 | -111.6234739 | 1924.783 | 2382.221279 | -75.45 | -93.27 | 21.09 |
| 1268944217 | 35.56739111 | -111.6239348 | 1923.535 | 2269.768509 | -75 | -93.42 | 20.33 |
| 1268944244 | 35.56545127 | -111.6250592 | 1923.758 | 2038.026052 | -75.69 | -93.54 | 19.69 |
| 1268944258 | 35.56453463 | -111.6255077 | 1925.057 | 1934.02374 | -75.14 | -93.71 | 19.14 |
| 1268944271 | 35.56357397 | -111.6258845 | 1926.315 | 1831.42752 | -75 | -93.8 | 19.33 |
| 1268944285 | 35.56280323 | -111.6256753 | 1927.321 | 1782.218319 | -74.75 | -93.88 | 19.5 |
| 1268944297 | 35.56221142 | -111.6257073 | 1928.062 | 1733.8778 | -74.47 | -94.06 | 19.65 |
| 1268944310 | 35.56146341 | -111.6256947 | 1928.98 | 1678.08297 | -74.47 | -94.06 | 19.65 |
| 1268944323 | 35.56061165 | -111.6257928 | 1930.532 | 1609.549675 | -74.67 | -94.22 | 19.89 |
| 1268944336 | 35.55970703 | -111.6261265 | 1931.693 | 1523.294181 | -74.26 | -94.32 | 22.63 |
| 1268944349 | 35.55877416 | -111.6264726 | 1933.804 | 1436.835527 | -73.95 | -94.4 | 22.7 |
| 1268944364 | 35.55776821 | -111.6265752 | 1935.225 | 1368.097913 | -73.62 | -94.48 | 22.76 |
| 1268944377 | 35.55681704 | -111.6264319 | 1936.74 | 1328.028933 | -73.62 | -94.48 | 22.76 |
| 1268944390 | 35.5559152 | -111.6263111 | 1939.196 | 1295.762909 | -62 | -96 | 24 |
| 1268944403 | 35.55516233 | -111.6262943 | 1940.88 | 1267.145875 | -67.5 | -96 | 24 |
| 1268944415 | 35.55448292 | -111.62613 | 1943.193 | 1258.605925 | -71 | -96 | 24 |
| 1268944428 | 35.5536841 | -111.626052 | 1945.135 | 1244.351711 | -74.25 | -95.75 | 24 |
| 1268944441 | 35.55302348 | -111.6260453 | 1947.974 | 1232.120995 | -74.25 | -95.75 | 24 |
| 1268944453 | 35.55303081 | -111.6260453 | 1948.555 | 1232.239923 | -76.6 | -95.6 | 24 |
| 1268944466 | 35.55303568 | -111.6260494 | 1947.799 | 1231.955153 | -78.33 | -95.67 | 24 |
| 1268944478 | 35.55304494 | -111.6260391 | 1948.08 | 1233.024846 | -79.29 | -95.71 | 24 |
| 1268944490 | 35.55304494 | -111.6260391 | 1948.08 | 1233.024846 | -79.29 | -95.71 | 24 |
| 1268944503 | 35.55275325 | -111.6260971 | 1948.662 | 1223.451056 | -80.12 | -95.75 | 24 |
| 1268944516 | 35.55225186 | -111.6262088 | 1950.853 | 1207.821945 | -81 | -95.78 | 24 |
| 1268944529 | 35.55164435 | -111.6261447 | 1954.045 | 1210.292109 | -81.4 | -95.7 | 24 |
| 1268944541 | 35.55099212 | -111.6258841 | 1955.583 | 1234.515858 | -81.73 | -95.64 | 24 |


| Time | Lat | Long | Alt | Dist | Signal | Noise | Modulation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1268944553 | 35.55107748 | -111.626191 | 1956.086 | 1206.405086 | -81.73 | -95.64 | , |
| 1268944566 | 35.55154711 | -111.6270376 | 1955.387 | 1129.247233 | -82 | -95.58 | 24 |
| 1268944579 | 35.55204184 | -111.6280173 | 1955.951 | 1042.770734 | -82.23 | -95.54 | 24 |
| 1268944591 | 35.55252678 | -111.629001 | 1954.598 | 959.3649537 | -82.43 | -95.5 | 24 |
| 1268944629 | 35.55396006 | -111.6319584 | 1950.441 | 739.938717 | -82.44 | -95.5 | 22.62 |
| 1268944604 | 35.55304698 | -111.6300727 | 1954.646 | 873.4001374 | -82.53 | -95.53 | 24 |
| 1268944616 | 35.55353576 | -111.631036 | 1952.696 | 802.5819555 | -82.53 | -95.53 | 24 |
| 1268944643 | 35.55394979 | -111.6319441 | 1950.315 | 740.6998029 | -81.94 | -95.71 | 21.41 |
| 1268944657 | 35.55393952 | -111.6319298 | 1950.19 | 741.464137 | -81.72 | -95.89 | 22.22 |
| 1268944672 | 35.55410109 | -111.6323348 | 1949.178 | 714.9973369 | -81.16 | -95.89 | 22.95 |
| 1268944685 | 35.5543686 | -111.6327969 | 1947.193 | 690.8864164 | -81.16 | -95.89 | 22.95 |
| 1268944699 | 35.55468122 | -111.6334146 | 1945.083 | 660.7540952 | -80.5 | -95.9 | 23.6 |
| 1268944713 | 35.55489066 | -111.6338707 | 1943.516 | 640.4993704 | -79.71 | -95.9 | 24.19 |
| 1268944727 | 35.55527664 | -111.6346315 | 1940.334 | 616.264146 | -79.05 | -95.91 | 25.27 |
| 1268944740 | 35.55557217 | -111.635241 | 1939.157 | 602.8936126 | -78.35 | -96 | 26.26 |
| 126894475 | 35.555559271 | -1 | 1939.408 | 602.9984463 | -64 | -98 | 48 |
| 126894476 | 35.55553843 | -1 | 1939.238 | 603.3642661 | -64 | -98 | 48 |
| 1268944781 | 35.5554802 | -111.6350589 | 1939.681 | 605.8953375 | -67.5 | -98 | 36 |
| 1268944796 | 35.55538529 | -111.6348626 | 1940.661 | 610.1554668 | -67 | -98 | 32 |
| 1268944809 | 35.55532763 | -111.6351535 | 1941.015 | 587.5351681 | -65 | -97.5 | 30 |
| 1268944823 | 35.55569866 | -111.6356646 | 1940.153 | 590.3893063 | -64.2 | -97.2 | 28.8 |
| 1268944837 | 35.5560897 | -111.6361981 | 1937.904 | 600.5919985 | -63.67 | -97 | 32 |
| 1268944850 | 35.55650507 | -111.6370183 | 1937.038 | 609.9327293 | -63.67 | -97 | 32 |
| 1268944865 | 35.55691217 | -111.6378733 | 1935.736 | 629.7366129 | -63.43 | -96.86 | 34.29 |
| 1268944878 | 35.55710831 | -111.6382414 | 1934.516 | 644.2324376 | -63.38 | -96.75 | 36 |
| 1268944892 | 35.55760923 | -111.6392088 | 1932.406 | 690.2722455 | -63.56 | -96.67 | 37.33 |
| 1268944907 | 35.55773518 | -111.6396263 | 1931.766 | 703.8581739 | -62.8 | -96.6 | 40.8 |
| 1268944920 | 35.55773711 | -111.639616 | 1931.466 | 704.0593314 | -61.09 | -96.55 | 43.64 |
| 1268944934 | 35.55772491 | -111.639612 | 1931.641 | 702.696186 | -61.09 | -96.55 | 43.64 |
| 1268944948 | 35.55710391 | -111.6396911 | 1933.482 | 633.7237042 | -59.67 | -96.5 | 46 |
| 1268944962 | 35.55600913 | -111.6397323 | 1938.381 | 512.0428075 | -58.69 | -96.46 | 50.77 |
| 1268944976 | 35.55538077 | -111.6397398 | 1943.086 | 442.1915983 | -58.93 | -96.64 | 54.86 |
| 1268944989 | 35.55451219 | -111.6395861 | 1950.699 | 345.0670156 | -58.33 | -96.8 | 58.4 |
| 1268945004 | 35.55365004 | -111.6395389 | 1955.595 | 249.0329465 | -58.33 | -96.8 | 58.4 |
| 1268945018 | 35.55255664 | -111.6394921 | 1962.008 | 127.3020447 | -58.06 | -96.75 | 61.5 |
| 1268945032 | 35.5516482 | -111.6394123 | 1972.376 | 27.48002477 | -57.29 | -96.71 | 64.24 |
| 1268945046 | 35.55145662 | -111.6394865 | 1976.33 | 5.121403694 | -55.67 | -96.39 | 66.67 |
| 1268945060 | 35.55146882 | -111.6394905 | 1976.155 | 6.335493289 | -54.05 | -96.11 | 68.84 |
| 1268945075 | 35.55147369 | -111.6394946 | 1975.399 | 6.807020963 | -54.05 | -96.11 | 68.84 |

Table 15 Fixed Antenna Locations

| Tropos File | Latitude | Longitude | Altitude |
| :--- | :---: | :---: | :---: |
| Tropos. 500 | 35.597457831 | -111.601721503 | 1798.298 |
| Tropos. 505 | 35.69074281 | -111.468053706 | 1581.295 |
| Tropos. 727 | 35.551413116 | -111.639504849 | 1971.048 |

## APPENDIX B LTF LIDAR DATABASE AND SRTM DATABASE ELEVATION COMPARISONS

Table 16 Height Error Comparison

| Sample Number | LAT LONG Coordinates |  | LIDAR DB Height | SRTM DB Height | Delta height | ABS () |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 35.59747884 | -111.6016945 | 1798.484983 | 1798.13739 | -0.347593 | 0.347593 |
| 1 | 35.59843253 | -111.6027714 | 1803.892442 | 1798.164445 | -5.727997 | 5.727997 |
| 2 | 35.59879324 | -111.6031372 | 1806.407946 | 1800.580776 | -5.82717 | 5.82717 |
| 3 | 35.59896836 | -111.6039441 | 1813.6942 | 1811.931287 | -1.762913 | 1.762913 |
| 4 | 35.60005348 | -111.6034557 | 1807.807646 | 1806.057307 | -1.750339 | 1.750339 |
| 5 | 35.60071649 | -111.6034582 | 1807.087037 | 1807.51369 | 0.426653 | 0.426653 |
| 6 | 35.60203653 | -111.6033751 | 1804.735883 | 1803.617436 | -1.118447 | 1.118447 |
| 7 | 35.60271834 | -111.6035351 | 1802.984821 | 1803.365345 | 0.380524 | 0.380524 |
| 8 | 35.60272079 | -111.603531 | 1802.970964 | 1803.322416 | 0.351452 | 0.351452 |
| 9 | 35.60287005 | -111.6035347 | 1802.390788 | 1803.04003 | 0.649242 | 0.649242 |
| 10 | 35.60371892 | -111.6038317 | 1799.550844 | 1798.650324 | -0.90052 | 0.90052 |
| 11 | 35.60416431 | -111.6041011 | 1798.609813 | 1795.657614 | -2.952199 | 2.952199 |
| 12 | 35.60418819 | -111.6041029 | 1798.512894 | 1795.535282 | -2.977612 | 2.977612 |
| 13 | 35.60477819 | -111.6018868 | 1792.572304 | 1788.572678 | -3.999626 | 3.999626 |
| 14 | 35.6050136 | -111.6014745 | 1789.894781 | 1789.09164 | -0.803141 | 0.803141 |
| 15 | 35.60549755 | -111.5989348 | 1778.022671 | 1777.54884 | -0.473831 | 0.473831 |
| 16 | 35.6053132 | -111.5978352 | 1775.81106 | 1773.472503 | -2.338557 | 2.338557 |
| 17 | 35.60522322 | -111.5962846 | 1773.949731 | 1771.168477 | -2.781254 | 2.781254 |
| 18 | 35.60496092 | -111.5952876 | 1770.020067 | 1768.058379 | -1.961688 | 1.961688 |
| 19 | 35.60538543 | -111.5936537 | 1765.853794 | 1766.043273 | 0.189479 | 0.189479 |
| 20 | 35.60538523 | -111.5935348 | 1765.668787 | 1766.337742 | 0.668955 | 0.668955 |
| 21 | 35.60537587 | -111.5934857 | 1765.67438 | 1766.488327 | 0.813947 | 0.813947 |
| 22 | 35.60483637 | -111.5924158 | 1766.571698 | 1765.229302 | -1.342396 | 1.342396 |
| 23 | 35.60483344 | -111.5924015 | 1766.574202 | 1765.188819 | -1.385383 | 1.385383 |
| 24 | 35.60479198 | -111.5907483 | 1764.755413 | 1765.358358 | 0.602945 | 0.602945 |
| 25 | 35.60479574 | -111.5906684 | 1764.604712 | 1765.820091 | 1.215379 | 1.215379 |
| 26 | 35.60478779 | -111.5903119 | 1763.942791 | 1765.428375 | 1.485584 | 1.485584 |
| 27 | 35.60477635 | -111.5877164 | 1762.10716 | 1760.09711 | -2.01005 | 2.01005 |
| 28 | 35.60476996 | -111.5868928 | 1760.981436 | 1759.954932 | -1.026504 | 1.026504 |
| 29 | 35.60476805 | -111.5869031 | 1761.001022 | 1759.964376 | -1.036646 | 1.036646 |
| 30 | 35.60588484 | -111.5850521 | 1754.465269 | 1749.195547 | -5.269722 | 5.269722 |
| 31 | 35.60599486 | -111.5849167 | 1753.994384 | 1750.371878 | -3.622506 | 3.622506 |
| 32 | 35.60632542 | -111.5845286 | 1752.670334 | 1753.296068 | 0.625734 | 0.625734 |
| 33 | 35.60655225 | -111.5842513 | 1752.011438 | 1750.816316 | -1.195122 | 1.195122 |
| 34 | 35.60800107 | -111.5825531 | 1747.07693 | 1746.322312 | -0.754618 | 0.754618 |
| 35 | 35.6081179 | -111.5824114 | 1746.717454 | 1746.28808 | -0.429374 | 0.429374 |
| 36 | 35.60724114 | -111.581078 | 1745.812562 | 1747.260556 | 1.447994 | 1.447994 |
| 37 | 35.60522686 | -111.5782811 | 1746.721772 | 1744.155458 | -2.566314 | 2.566314 |


| Sample Number | LAT LONG Coordinates |  | LIDAR DB Height | SRTM DB <br> Height | Delta height | ABS () |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | 35.6078878 | -111.5754198 | 1742.885226 | 1741.819391 | -1.065835 | 1.065835 |
| 39 | 35.61119068 | -111.5720035 | 1740.050138 | 1737.930524 | -2.119614 | 2.119614 |
| 40 | 35.61248307 | -111.5699693 | 1737.654152 | 1737.866046 | 0.211894 | 0.211894 |
| 41 | 35.61275487 | -111.5695095 | 1735.151508 | 1733.975521 | -1.175987 | 1.175987 |
| 42 | 35.61314003 | -111.5688875 | 1731.037307 | 1730.485093 | -0.552214 | 0.552214 |
| 43 | 35.61377389 | -111.5677095 | 1725.967738 | 1724.676209 | -1.291529 | 1.291529 |
| 44 | 35.61803183 | -111.53288 | 1686.032492 | 1685.026713 | -1.005779 | 1.005779 |
| 45 | 35.61823573 | -111.5357213 | 1686.489415 | 1684.135929 | -2.353486 | 2.353486 |
| 46 | 35.61842392 | -111.5417057 | 1684.696569 | 1684.179851 | -0.516718 | 0.516718 |
| 47 | 35.61844326 | -111.5482156 | 1690.26474 | 1688.444803 | -1.819937 | 1.819937 |
| 48 | 35.61788446 | -111.5525633 | 1694.76699 | 1692.959646 | -1.807344 | 1.807344 |
| 49 | 35.61713618 | -111.5578112 | 1707.64014 | 1704.557406 | -3.082734 | 3.082734 |
| 50 | 35.61666311 | -111.5637118 | 1716.898376 | 1717.301384 | 0.403008 | 0.403008 |
| 51 | 35.6175449 | -111.5687803 | 1718.019903 | 1715.720674 | -2.299229 | 2.299229 |
| 52 | 35.61906415 | -111.5695299 | 1714.403818 | 1712.833832 | -1.569986 | 1.569986 |
| 53 | 35.62061678 | -111.5698554 | 1714.735142 | 1711.449866 | -3.285276 | 3.285276 |
| 54 | 35.62195435 | -111.5707225 | 1721.18589 | 1719.077608 | -2.108282 | 2.108282 |
| 55 | 35.62469133 | -111.5735482 | 1708.929006 | 1708.72019 | -0.208816 | 0.208816 |
| 56 | 35.6284131 | -111.5746564 | 1704.323131 | 1702.907417 | -1.415714 | 1.415714 |
| 57 | 35.63330614 | -111.5832952 | 1721.597418 | 1720.558894 | -1.038524 | 1.038524 |
| 58 | 35.63616294 | -111.5863414 | 1741.399253 | 1739.887259 | -1.511994 | 1.511994 |
| 59 | 35.62713867 | -111.6002528 | 1750.321708 | 1753.942674 | 3.620966 | 3.620966 |
| 60 | 35.69739523 | -111.467061 | 1564.448509 | 1565.137593 | 0.689084 | 0.689084 |
| 61 | 35.69747421 | -111.4672145 | 1564.107413 | 1564.46274 | 0.355327 | 0.355327 |
| 62 | 35.70150984 | -111.4739807 | 1559.452653 | 1560.854819 | 1.402166 | 1.402166 |
| 63 | 35.70855932 | -111.4821879 | 1557.214799 | 1559.343274 | 2.128475 | 2.128475 |
| 64 | 35.70524446 | -111.4957685 | 1562.353719 | 1561.070807 | -1.282912 | 1.282912 |
| 65 | 35.69190741 | -111.5038913 | 1587.776874 | 1582.555065 | -5.221809 | 5.221809 |
| 66 | 35.69002266 | -111.5046961 | 1587.233712 | 1587.267223 | 0.033511 | 0.033511 |
| 67 | 35.67749992 | -111.5082719 | 1594.441301 | 1594.09274 | -0.348561 | 0.348561 |
| 68 | 35.66731997 | -111.5112024 | 1601.561932 | 1599.588003 | -1.973929 | 1.973929 |
| 69 | 35.65912024 | -111.5112344 | 1607.710808 | 1605.436946 | -2.273862 | 2.273862 |
| 70 | 35.66001181 | -111.5058758 | 1597.254349 | 1597.176496 | -0.077853 | 0.077853 |
| 71 | 35.66454017 | -111.4988287 | 1590.926064 | 1594.193948 | 3.267884 | 3.267884 |
| 72 | 35.66451783 | -111.4988697 | 1590.838198 | 1594.414747 | 3.576549 | 3.576549 |
| 73 | 35.6639097 | -111.4968545 | 1589.562219 | 1587.706548 | -1.855671 | 1.855671 |
| 74 | 35.66298519 | -111.5009646 | 1590.566908 | 1587.848623 | -2.718285 | 2.718285 |
| 75 | 35.66003207 | -111.5154913 | 1611.306947 | 1607.567832 | -3.739115 | 3.739115 |
| 76 | 35.66245658 | -111.5184267 | 1611.486014 | 1611.525928 | 0.039914 | 0.039914 |
| 77 | 35.66377758 | -111.5229349 | 1620.867082 | 1619.095302 | -1.77178 | 1.77178 |


| Sample Number | LAT LONG Coordinates |  | LIDAR DB <br> Height | SRTM DB <br> Height | Delta height | ABS () |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | 35.66338952 | -111.5254006 | 1623.312468 | 1620.286227 | -3.026241 | 3.026241 |
| 79 | 35.65999019 | -111.5305214 | 1628.688741 | 1625.734618 | -2.954123 | 2.954123 |
| 80 | 35.55142459 | -111.6394856 | 1990.628951 | 1993.665458 | 3.036507 | 3.036507 |
| 81 | 35.55159133 | -111.6394444 | 1988.124035 | 1990.274881 | 2.150846 | 2.150846 |
| 82 | 35.55280918 | -111.6394992 | 1975.427447 | 1975.163158 | -0.264289 | 0.264289 |
| 83 | 35.55340528 | -111.6395245 | 1971.195419 | 1972.458341 | 1.262922 | 1.262922 |
| 84 | 35.55509309 | -111.6396256 | 1960.066843 | 1958.708038 | -1.358805 | 1.358805 |
| 85 | 35.55618038 | -111.6397155 | 1951.272537 | 1949.412635 | -1.859902 | 1.859902 |
| 86 | 35.55760905 | -111.6396573 | 1944.25728 | 1942.676633 | -1.580647 | 1.580647 |
| 87 | 35.55890263 | -111.6416998 | 1943.341372 | 1940.952706 | -2.388666 | 2.388666 |
| 88 | 35.56164823 | -111.6472612 | 1942.114148 | 1941.067305 | -1.046843 | 1.046843 |
| 89 | 35.56365094 | -111.6515569 | 1940.136575 | 1939.782145 | -0.35443 | 0.35443 |
| 90 | 35.56710507 | -111.6577831 | 1931.581623 | 1931.352174 | -0.229449 | 0.229449 |
| 91 | 35.56698553 | -111.6581477 | 1933.654584 | 1931.890696 | -1.763888 | 1.763888 |
| 92 | 35.56811115 | -111.6567145 | 1929.171815 | 1929.540867 | 0.369052 | 0.369052 |
| 93 | 35.56865167 | -111.6552598 | 1919.515829 | 1920.008862 | 0.493033 | 0.493033 |
| 94 | 35.57285342 | -111.6551334 | 1915.51828 | 1912.127965 | -3.390315 | 3.390315 |
| 95 | 35.58413128 | -111.6570871 | 1888.77251 | 1890.391985 | 1.619475 | 1.619475 |
| 96 | 35.58599941 | -111.6563914 | 1885.78256 | 1882.783319 | -2.999241 | 2.999241 |
| 97 | 35.59454842 | -111.6592804 | 1859.981323 | 1857.182743 | -2.79858 | 2.79858 |
| 98 | 35.58451251 | -111.6236247 | 1891.39433 | 1885.012339 | -6.381991 | 6.381991 |
| 99 | 35.58684135 | -111.6262185 | 1883.885419 | 1882.299401 | -1.586018 | 1.586018 |
|  |  |  |  |  |  |  |
|  |  |  |  |  | sum | 175.3562 |
|  |  |  |  |  | mean delta | 1.753562 |
|  |  |  |  |  |  |  |

## APPENDIX C LTF PREDICTION OF TERRAIN BLOCKAGE

Table 17 Chi Square Test Data RQ1BH1

| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.60260517 | -111.6035034 | 1799.158 | -44.27 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271012 | -111.6035359 | 1798.35 | -45.38 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271012 | -111.6035359 | 1798.35 | -45.38 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -47.61 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -64.83 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271797 | -111.6035421 | 1800.569 | -64.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60322921 | -111.6034977 | 1796.904 | -65.07 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60387265 | -111.6040062 | 1795.081 | -65.76 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.6041929 | -111.604114 | 1793.539 | -65.9 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477811 | -111.6018935 | 1786.998 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60478298 | -111.6018976 | 1786.242 | -81.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60478298 | -111.6018976 | 1786.242 | -82.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60478298 | -111.6018976 | 1786.242 | -83 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.36 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -81.85 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.60538145 | -111.5997773 | 1775.93 | -83.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60541125 | -111.599517 | 1774.746 | -83.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60548682 | -111.5991992 | 1773.339 | -83.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.62 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.62 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60514308 | -111.5976428 | 1769.932 | -83.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60517543 | -111.5957413 | 1766.635 | -80.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60513525 | -111.5956492 | 1765.991 | -80.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60525269 | -111.5941675 | 1761.529 | -79.35 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.74 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.29 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.14 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -76 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60526274 | -111.5932147 | 1759.971 | -76.14 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60483394 | -111.592425 | 1761.159 | -73.88 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60483882 | -111.592429 | 1760.403 | -69.19 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60484127 | -111.592425 | 1761.742 | -58 | G | 0 | Blocked | 0 | 0 | 1 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.60483394 | -111.592425 | 1761.159 | -54 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60483394 | -111.592425 | 1761.159 | -58.75 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60480504 | -111.5918022 | 1760.486 | -60.62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60479035 | -111.5906631 | 1759.326 | -62.36 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60478535 | -111.5903209 | 1758.384 | -65.15 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588449 | -111.5850501 | 1749.481 | -62.1 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588937 | -111.5850542 | 1748.725 | -62.1 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588937 | -111.5850542 | 1748.725 | -62.91 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.91 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.91 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -71.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60587768 | -111.5850563 | 1750.536 | -71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60587768 | -111.5850563 | 1750.536 | -70.67 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.83 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -72 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.76 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.84 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60640353 | -111.5844422 | 1748.047 | -71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60711049 | -111.5836083 | 1744.971 | -73.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60812323 | -111.5824192 | 1742.597 | -74.61 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60802964 | -111.5822063 | 1741.644 | -74.58 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.61273546 | -111.5695425 | 1732.017 | -62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.6137726 | -111.5677154 | 1720.722 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61858858 | -111.5468969 | 1690.646 | -79.91 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61859203 | -111.5471489 | 1690.111 | -78 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61794165 | -111.5508826 | 1692.994 | -80.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61775735 | -111.5553999 | 1702.661 | -84.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61739819 | -111.5568028 | 1706.789 | -85.08 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6171353 | -111.5578159 | 1708.022 | -85.46 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61685737 | -111.5588701 | 1709.87 | -85.71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61662274 | -111.5598587 | 1713.594 | -85.87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61654626 | -111.5616232 | 1715.141 | -83.72 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61662126 | -111.5632685 | 1715.543 | -82.85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -76.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -77.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -77.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61703136 | -111.5678391 | 1720.699 | -77.43 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61753185 | -111.5687822 | 1718.717 | -79.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62204619 | -111.5709702 | 1721.684 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62204619 | -111.5709702 | 1721.684 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62234087 | -111.5712172 | 1718.963 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62488231 | -111.5736811 | 1708.198 | -80 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62487936 | -111.5736667 | 1708.655 | -81.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62510751 | -111.5738116 | 1709.373 | -82.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62798611 | -111.5747051 | 1706.491 | -83.27 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62841347 | -111.5746629 | 1705.545 | -83.67 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.62840615 | -111.5746629 | 1704.963 | -84 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62839394 | -111.5746588 | 1705.136 | -84.53 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62995576 | -111.5748675 | 1703.614 | -84.53 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6323729 | -111.5831802 | 1717.288 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63330707 | -111.5833028 | 1720.265 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63617695 | -111.5863599 | 1739.378 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63617695 | -111.5863599 | 1739.378 | -85.92 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63616423 | -111.5863496 | 1737.913 | -85.79 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62750463 | -111.6007044 | 1743.309 | -86.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62716455 | -111.6004143 | 1744.474 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62712723 | -111.6002649 | 1746.819 | -85.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62713404 | -111.6002587 | 1745.764 | -85.71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6271316 | -111.6002627 | 1744.426 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62696074 | -111.600218 | 1743.419 | -85.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62575993 | -111.6017292 | 1737.113 | -85.2 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62501717 | -111.6019585 | 1737.123 | -85.31 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6201566 | -111.6006471 | 1746.558 | -85.58 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61822098 | -111.6003693 | 1751.071 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61780664 | -111.6003211 | 1751.726 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61781346 | -111.6003149 | 1750.671 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61635625 | -111.6001793 | 1753.197 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61290819 | -111.6026102 | 1763.671 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61166054 | -111.6049658 | 1769.805 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60908707 | -111.6090907 | 1780.459 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60666448 | -111.6133686 | 1790.073 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.58963364 | -111.6048509 | 1812.25 | -68.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.57 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963841 | -111.6047955 | 1811.509 | -67.58 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58966337 | -111.6024848 | 1809.355 | -66.82 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58922536 | -111.6019963 | 1808.551 | -66.74 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58936147 | -111.5997178 | 1799.469 | -66.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58935139 | -111.5995437 | 1797.595 | -71.58 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58966555 | -111.5992253 | 1795.269 | -72.23 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.59020893 | -111.602213 | 1808.947 | -70.56 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.69641243 | -111.4650858 | 1565.829 | -30.26 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.69676271 | -111.4659355 | 1564.851 | -84.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69740165 | -111.4670567 | 1560.418 | -85.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69749285 | -111.4672143 | 1560.042 | -85.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69747767 | -111.4671959 | 1560.673 | -84.92 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.70035677 | -111.472033 | 1556.418 | -82.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.71093686 | -111.4918142 | 1555.621 | -59.06 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.7017536 | -111.4979902 | 1572.051 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69186876 | -111.5039129 | 1583.916 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69189703 | -111.5039004 | 1582.976 | -81.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69190435 | -111.5039004 | 1583.56 | -81.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66168568 | -111.5128341 | 1604.635 | -74.75 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.65935319 | -111.5132076 | 1608.618 | -77.86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65934159 | -111.5130498 | 1608.697 | -79.44 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65903548 | -111.5101476 | 1606.298 | -79.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66127301 | -111.5021139 | 1592.979 | -80.22 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66454384 | -111.4988271 | 1591.391 | -79.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66452831 | -111.498862 | 1590.362 | -73.71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66452831 | -111.498862 | 1590.362 | -73.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66452639 | -111.4988722 | 1590.66 | -73.44 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66452639 | -111.4988722 | 1590.66 | -73.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66452639 | -111.4988722 | 1590.66 | -73.54 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6645215 | -111.4988682 | 1591.416 | -73.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66398033 | -111.4967295 | 1589.348 | -71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66451403 | -111.4988087 | 1590.856 | -76 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6621279 | -111.5015243 | 1592.833 | -75.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65913585 | -111.5112975 | 1607.927 | -76.09 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66369245 | -111.5239489 | 1621.886 | -74.58 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66192265 | -111.5279984 | 1624.599 | -75.69 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.56357021 | -111.6512453 | 1923.481 | -54.62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.56365312 | -111.6516158 | 1922.647 | -59.75 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.56374237 | -111.6527685 | 1922.548 | -63.71 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.56571501 | -111.6579661 | 1918.954 | -73.22 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.56591413 | -111.6579985 | 1918.994 | -73.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.56616257 | -111.6580533 | 1919.975 | -73.83 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.5686435 | -111.6552799 | 1902.822 | -75.05 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.56923928 | -111.6548774 | 1903.192 | -85 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell A | Cell C |
| 35.56962007 | -111.6550467 | 1902.546 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57093764 | -111.6551876 | 1900.922 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57484866 | -111.6550186 | 1895.667 | -85.83 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58099758 | -111.6555846 | 1878.407 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58214035 | -111.6560515 | 1874.713 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.59220138 | -111.6585564 | 1850.54 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.59454429 | -111.6592998 | 1844.621 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58377879 | -111.624012 | 1874.879 | -89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58389159 | -111.6240507 | 1876.287 | -80.4 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58529256 | -111.6250535 | 1882.388 | -81.18 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57415546 | -111.6215131 | 1910.379 | -76.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57272856 | -111.6216925 | 1913.488 | -77.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57020105 | -111.622923 | 1920.656 | -74.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.55303568 | -111.6260494 | 1947.799 | -78.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.55099212 | -111.6258841 | 1955.583 | -81.73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.55204184 | -111.6280173 | 1955.951 | -82.23 | R | 0 | Blocked | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 153 | 149 | 39 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Cell A | Cell C |
|  |  |  |  |  |  |  |  |  |  |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.6022542 | -111.6034122 | 1800.31 | -43.07 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271012 | -111.6035359 | 1798.35 | -45.38 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -47.61 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -49.7 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60272284 | -111.6035462 | 1799.814 | -66 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -65 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60271797 | -111.6035421 | 1800.569 | -64.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60286725 | -111.6035458 | 1798.042 | -64.62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.6041929 | -111.604114 | 1793.539 | -65.9 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.6041929 | -111.604114 | 1793.539 | -66.24 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477811 | -111.6018935 | 1786.998 | -80.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60478298 | -111.6018976 | 1786.242 | -81.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.36 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.36 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -79.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60536657 | -111.6010641 | 1779.955 | -81.71 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.60532917 | -111.6002979 | 1778.88 | -83.3 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6053487 | -111.6000233 | 1777.571 | -83.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.62 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6052208 | -111.5962944 | 1768.192 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60517543 | -111.5957413 | 1766.635 | -80.8 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60495848 | -111.5952972 | 1764.189 | -80.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60476829 | -111.5947977 | 1762.75 | -79.93 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60525269 | -111.5941675 | 1761.529 | -79.35 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.74 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -75.55 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -75.55 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6052843 | -111.5932679 | 1760.064 | -76.08 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60487798 | -111.5924966 | 1761.204 | -73.88 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60483882 | -111.592429 | 1760.403 | -69.19 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60478954 | -111.5907573 | 1759.452 | -61.7 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60478842 | -111.5906733 | 1759.626 | -65 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60479014 | -111.5905442 | 1759.359 | -65.16 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60478535 | -111.5903209 | 1758.384 | -65.15 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60477651 | -111.5886408 | 1756.317 | -69.67 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60477532 | -111.5874177 | 1756.501 | -75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60476754 | -111.5869013 | 1754.27 | -76.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.91 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.25 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.60476561 | -111.5869116 | 1754.57 | -75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -74.86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60519847 | -111.5858715 | 1751.032 | -61.4 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60532457 | -111.5857196 | 1750.382 | -60.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60558409 | -111.5854156 | 1749.664 | -60.88 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.6058548 | -111.5850912 | 1748.931 | -61.22 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588937 | -111.5850542 | 1748.725 | -62.91 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -64.71 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -65.2 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -65.44 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.22 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.22 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.47 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.6 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.76 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60587768 | -111.5850563 | 1750.536 | -71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.76 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60640353 | -111.5844422 | 1748.047 | -71 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60711049 | -111.5836083 | 1744.971 | -73.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60812323 | -111.5824192 | 1742.597 | -75.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60802964 | -111.5822063 | 1741.644 | -74.58 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.60783687 | -111.5819302 | 1740.602 | -74.55 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60764655 | -111.5816501 | 1740.899 | -74.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60535645 | -111.5783843 | 1740.281 | -64.6 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.60557992 | -111.5778551 | 1739.998 | -65.83 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.61303751 | -111.5690599 | 1728.149 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61313866 | -111.5688936 | 1726.214 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61313866 | -111.5688936 | 1726.214 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61340216 | -111.5684091 | 1723.167 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61831961 | -111.5376022 | 1680.793 | -71.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61832153 | -111.5375919 | 1680.494 | -72.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61849577 | -111.5443478 | 1686.133 | -77.44 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61855187 | -111.5459358 | 1687.747 | -78.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61854891 | -111.5459215 | 1688.204 | -78.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61858858 | -111.5468969 | 1690.646 | -79.91 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61859203 | -111.5471489 | 1690.111 | -78 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61844255 | -111.5482191 | 1690.947 | -78.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61775735 | -111.5553999 | 1702.661 | -84.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61729407 | -111.5571864 | 1707.466 | -85.08 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61669105 | -111.5644999 | 1718.469 | -82.62 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -76.33 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61754406 | -111.5687863 | 1718.543 | -77.9 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61753185 | -111.5687822 | 1718.717 | -79.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62123989 | -111.5701158 | 1717.804 | -79.23 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62190251 | -111.5705976 | 1721.619 | -82 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62205352 | -111.5709702 | 1722.266 | -75.75 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.62204619 | -111.5709702 | 1721.684 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62204812 | -111.5709599 | 1721.385 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62204812 | -111.5709599 | 1721.385 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62258968 | -111.5714623 | 1716.48 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62303372 | -111.5719917 | 1712.946 | -74.57 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62488231 | -111.5736811 | 1708.198 | -80 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6256111 | -111.5740868 | 1708.636 | -82.29 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62840615 | -111.5746629 | 1704.963 | -84.53 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63232164 | -111.583168 | 1716.642 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63522316 | -111.585118 | 1729.133 | -86.38 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63617695 | -111.5863599 | 1739.378 | -85.92 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63616962 | -111.5863599 | 1738.795 | -85.85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63616423 | -111.5863496 | 1737.913 | -85.79 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.63616423 | -111.5863496 | 1737.913 | -85.79 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62760197 | -111.6005464 | 1745.401 | -87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62743302 | -111.6007824 | 1742.381 | -86.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62712723 | -111.6002649 | 1746.819 | -85.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6271316 | -111.6002627 | 1744.426 | -85.88 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62673901 | -111.6003989 | 1741.706 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62305501 | -111.6015761 | 1738.861 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.62122803 | -111.6009005 | 1743.705 | -85.58 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61822098 | -111.6003693 | 1751.071 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61780858 | -111.6003109 | 1751.427 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61781346 | -111.6003149 | 1750.671 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61705557 | -111.6002349 | 1753.036 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.61635625 | -111.6001793 | 1753.197 | -85.5 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61375254 | -111.6001266 | 1758.205 | -85.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61338443 | -111.6011664 | 1760.287 | -85.23 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61290819 | -111.6026102 | 1763.671 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.61166054 | -111.6049658 | 1769.805 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.60908707 | -111.6090907 | 1780.459 | -85.21 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58964535 | -111.6048365 | 1813.871 | -67 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.44 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.67 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.75 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.57 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -67.62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58963841 | -111.6047955 | 1811.509 | -67.58 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58964849 | -111.604691 | 1811.665 | -67.69 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58967589 | -111.604144 | 1810.853 | -67.71 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58934459 | -111.5998285 | 1800.368 | -62 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58948098 | -111.5999695 | 1801.555 | -70.6 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58934753 | -111.5998428 | 1799.911 | -70.82 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.58935139 | -111.5995437 | 1797.595 | -71.58 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69641243 | -111.4650858 | 1565.829 | -30.26 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.69619955 | -111.4645144 | 1566.149 | -87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69634477 | -111.4649712 | 1565.997 | -87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69659968 | -111.465565 | 1566.041 | -87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69748256 | -111.4671999 | 1559.917 | -85 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.69748256 | -111.4671999 | 1559.917 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69747035 | -111.4671959 | 1560.089 | -85 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69747767 | -111.4671959 | 1560.673 | -84.92 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69747767 | -111.4671959 | 1560.673 | -84.87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69813662 | -111.4683274 | 1558.291 | -84.47 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6991823 | -111.4700891 | 1556.16 | -83.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.70690747 | -111.4806756 | 1554.09 | -48 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.69684288 | -111.5009301 | 1578.205 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69189703 | -111.5039004 | 1582.976 | -81.67 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69191359 | -111.5038902 | 1583.845 | -81 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.69187607 | -111.5039129 | 1584.5 | -80.44 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.68671833 | -111.5056653 | 1587.776 | -80 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.67540089 | -111.5089208 | 1595.05 | -78.83 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.6591235 | -111.511234 | 1608.122 | -79.6 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66060106 | -111.5034758 | 1593.991 | -80 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66301684 | -111.5008914 | 1590.853 | -79.65 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65896316 | -111.5077037 | 1600.328 | -75.78 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65913585 | -111.5112975 | 1607.927 | -76.09 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.66003543 | -111.5154913 | 1611.16 | -77.53 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65998633 | -111.5305229 | 1629.061 | -76 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -71.46 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -71.36 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -71.47 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -71.53 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -71.53 | R | 0 | Blocked | 1 | 1 | 0 |


| Black Point Measured Data |  |  |  |  | LTF SRTM <br> Predictions |  | Actual SS | Chi Square Matrix Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | is red | Cell B | Cell D |
| 35.65999365 | -111.5305229 | 1629.644 | -71.45 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.65999365 | -111.5305229 | 1629.644 | -20.5 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.56375957 | -111.6520886 | 1921.598 | -59.75 | G | 0 | Blocked | 0 | 0 | 1 |
| 35.56697699 | -111.6581685 | 1915.632 | -74.31 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.56710237 | -111.657773 | 1913.364 | -74.87 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57093764 | -111.6551876 | 1900.922 | -86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57596645 | -111.6550021 | 1892.397 | -85.86 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58330711 | -111.6565675 | 1872.457 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.59331688 | -111.6590603 | 1847.665 | -85.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58450682 | -111.6236398 | 1880.53 | -76.75 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.58705327 | -111.6266368 | 1873.939 | -82.29 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57351349 | -111.621617 | 1910.296 | -76.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.57020105 | -111.622923 | 1920.656 | -74.89 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.55302348 | -111.6260453 | 1947.974 | -74.25 | R | 0 | Blocked | 1 | 1 | 0 |
| 35.55304494 | -111.6260391 | 1948.08 | -79.29 | R | 0 | Blocked | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 144 | 140 | 48 |
|  |  |  |  |  |  |  |  | Total | Total |
|  |  |  |  |  |  |  |  | Cell B | Cell D |

## APPENDIX D TEST 2 - LIDAR CALCULATED SIGNAL STRENGTH ERROR

Table 18 LTF Predicted Signal Strength Error

| Measured Data |  |  |  |  | LTF SS <br> Prediction | SS Delta | ABS (SS <br> Delta) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Lat | Long | Distance | SS |  |  |  |
| 1268848538 | 35.59810676 | -111.6025783 | 1799.052 | -31.35 | -11.9492 | -19.4008 | 19.4008 |
| 1268848581 | 35.59863876 | -111.6029478 | 1800.754 | -47 | -20.2334 | -26.7666 | 26.7666 |
| 1268848623 | 35.59882061 | -111.6034105 | 1805.204 | -46 | -24.1469 | -21.8531 | 21.8531 |
| 1268848657 | 35.59917087 | -111.6039219 | 1809.313 | -49 | -30.0653 | -18.9347 | 18.9347 |
| 1268848700 | 35.6000503 | -111.6034668 | 1803.539 | -45.38 | -31.3926 | -13.9874 | 13.9874 |
| 1268848733 | 35.6007134 | -111.6034693 | 1802.099 | -44.11 | -34.5633 | -9.5467 | 9.5467 |
| 1268848766 | 35.60142959 | -111.6034142 | 1801.018 | -42.09 | -37.4714 | -4.6186 | 4.6186 |
| 1268848798 | 35.60203361 | -111.6033861 | 1800.149 | -42.46 | -39.6666 | -2.7934 | 2.7934 |
| 1268851475 | 35.60477532 | -111.5874177 | 1756.501 | -75 | -58.7491 | -16.2509 | 16.2509 |
| 1268851520 | 35.60476754 | -111.5869013 | 1754.27 | -76.5 | -59.1833 | -17.3167 | 17.3167 |
| 1268851553 | 35.60476561 | -111.5869116 | 1754.57 | -76.1 | -59.1735 | -16.9265 | 16.9265 |
| 1268851596 | 35.60476561 | -111.5869116 | 1754.57 | -75.46 | -59.1735 | -16.2865 | 16.2865 |
| 1268851685 | 35.60476561 | -111.5869116 | 1754.57 | -75.11 | -59.1735 | -15.9365 | 15.9365 |
| 1268851750 | 35.60476561 | -111.5869116 | 1754.57 | -74.86 | -59.1735 | -15.6865 | 15.6865 |
| 1268852828 | 35.60702818 | -111.5807769 | 1740.548 | -73.65 | -64.8713 | -8.7787 | 8.7787 |
| 1268852863 | 35.60637411 | -111.5798567 | 1740.58 | -63 | -65.1948 | 2.1948 | 2.1948 |
| 1268852896 | 35.60578553 | -111.5790019 | 1740.767 | -63.25 | -65.5329 | 2.2829 | 2.2829 |
| 1268852930 | 35.60523378 | -111.5782781 | 1740.4 | -65 | -65.8258 | 0.8258 | 0.8258 |
| 1268852975 | 35.60522453 | -111.5782884 | 1740.116 | -66.5 | -65.817 | -0.683 | 0.683 |
| 1268853008 | 35.60522453 | -111.5782884 | 1740.116 | -66.4 | -65.817 | -0.583 | 0.583 |
| 1268853042 | 35.60557992 | -111.5778551 | 1739.998 | -65.83 | -66.1793 | 0.3493 | 0.3493 |
| 1268853075 | 35.60656558 | -111.5768217 | 1738.383 | -64.79 | -67.0606 | 2.2706 | 2.2706 |
| 1268853110 | 35.60735885 | -111.5759692 | 1737.39 | -64.06 | -67.7603 | 3.7003 | 3.7003 |
| 1268853143 | 35.6082116 | -111.5750939 | 1737.484 | -63.78 | -68.469 | 4.689 | 4.689 |
| 1268853177 | 35.6091155 | -111.5741714 | 1738.24 | -63.75 | -69.1951 | 5.4451 | 5.4451 |
| 1268853212 | 35.61001643 | -111.5732468 | 1736.024 | -59 | -69.899 | 10.899 | 10.899 |
| 1268853255 | 35.61118906 | -111.57201 | 1736.359 | -61.5 | -70.7968 | 9.2968 | 9.2968 |
| 1268853311 | 35.61230126 | -111.5703204 | 1735.755 | -61.14 | -72.0295 | 10.8895 | 10.8895 |
| 1268853357 | 35.61229638 | -111.5703164 | 1736.511 | -60.8 | -72.0298 | 11.2298 | 11.2298 |
| 1268853391 | 35.61230126 | -111.5703204 | 1735.755 | -61.08 | -72.0295 | 10.9495 | 10.9495 |
| 1268853446 | 35.61241888 | -111.5700844 | 1734.703 | -60.13 | -72.1566 | 12.0266 | 12.0266 |
| 1268853479 | 35.61261002 | -111.5697601 | 1734.281 | -61.29 | -72.4527 | 11.1627 | 11.1627 |
| 1268857303 | 35.61803107 | -111.5328819 | 1684.278 | -65.36 | -84.2274 | 18.8674 | 18.8674 |
| 1268857405 | 35.61802618 | -111.5328779 | 1685.034 | -65.7 | -84.2278 | 18.5278 | 18.5278 |
| 1268857460 | 35.61803107 | -111.5328819 | 1684.278 | -67.5 | -84.2274 | 16.7274 | 16.7274 |
| 1268857517 | 35.61812443 | -111.534269 | 1685.269 | -66.8 | -83.9312 | 17.1312 | 17.1312 |
| 1268857630 | 35.61834326 | -111.5381554 | 1680.563 | -75.58 | -83.0156 | 7.4356 | 7.4356 |


| Measured Data |  |  |  |  | LTF SS <br> Prediction | SS Delta | ABS (SS Delta) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Lat | Long | Distance | SS |  |  |  |
| 1268857662 | 35.61842321 | -111.5417085 | 1681.917 | -76.57 | -82.1916 | 5.6216 | 5.6216 |
| 1268858179 | 35.61688152 | -111.5668089 | 1721.589 | -75 | -74.6613 | -0.3387 | 0.3387 |
| 1268858439 | 35.61806832 | -111.5691495 | 1718.03 | -80 | -74.234 | -5.766 | 5.766 |
| 1268858484 | 35.62003593 | -111.5697728 | 1715.43 | -79.9 | -74.6505 | -5.2495 | 5.2495 |
| 1268858495 | 35.62061628 | -111.5698614 | 1716.533 | -79.62 | -74.7819 | -4.8381 | 4.8381 |
| 1268858744 | 35.62204812 | -111.5709599 | 1721.385 | -74.57 | -74.9684 | 0.3984 | 0.3984 |
| 1268862685 | 35.58967125 | -111.6034107 | 1809.852 | -67.25 | -48.8728 | -18.3772 | 18.3772 |
| 1268863086 | 35.59125596 | -111.6021674 | 1808.094 | -70.05 | -44.7819 | -25.2681 | 25.2681 |
| 1268863159 | 35.59384129 | -111.6032077 | 1804.102 | -38 | -35.8632 | -2.1368 | 2.1368 |
| 1268869142 | 35.7021362 | -111.4750289 | 1555.785 | -80.18 | -57.4221 | -22.7579 | 22.7579 |
| 1268869382 | 35.7161176 | -111.4877278 | 1559.314 | -58.14 | -72.2466 | 14.1066 | 14.1066 |
| 1268869753 | 35.68671833 | -111.5056653 | 1587.776 | -80 | -72.423 | -7.577 | 7.577 |
| 1268869862 | 35.67232395 | -111.5097667 | 1597.457 | -78 | -76.5951 | -1.4049 | 1.4049 |
| 1268941039 | 35.55225552 | -111.6394415 | 1962.334 | -25.45 | -9.51738 | -15.9326 | 15.93262 |
| 1268941092 | 35.55450726 | -111.6395943 | 1948.024 | -30.07 | -32.4478 | 2.3778 | 2.3778 |
| 1268941226 | 35.55786447 | -111.6396791 | 1927.169 | -47.5 | -45.7511 | -1.7489 | 1.7489 |
| 1268941361 | 35.56163883 | -111.6472806 | 1924.119 | -53.11 | -56.4453 | 3.3353 | 3.3353 |
| 1268941565 | 35.56363524 | -111.6533154 | 1923.705 | -75 | -62.2884 | -12.7116 | 12.7116 |
| 1268941874 | 35.56838969 | -111.6559378 | 1907.833 | -75.3 | -66.9235 | -8.3765 | 8.3765 |
| 1268942920 | 35.58449462 | -111.6236358 | 1880.704 | -78 | -75.7605 | -2.2395 | 2.2395 |
| 1268942960 | 35.58450682 | -111.6236398 | 1880.53 | -76.75 | -75.7654 | -0.9846 | 0.9846 |
| 1268943074 | 35.58228958 | -111.6238845 | 1885.908 | -86.4 | -74.6262 | -11.7738 | 11.7738 |
| 1268943151 | 35.58232772 | -111.6239275 | 1886.866 | -79.9 | -74.6384 | -5.2616 | 5.2616 |
| 1268943993 | 35.57679793 | -111.6227012 | 1909.46 | -60.17 | -72.1076 | 11.9376 | 11.9376 |
| 1268944046 | 35.57540228 | -111.6222538 | 1911.151 | -76 | -71.4806 | -4.5194 | 4.5194 |
| 1268944137 | 35.57160911 | -111.6218979 | 1917.024 | -76 | -69.3889 | -6.6111 | 6.6111 |
| 1268944323 | 35.56061165 | -111.6257928 | 1930.532 | -74.67 | -60.1925 | -14.4775 | 14.4775 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  | Total | -155.736 |  |
|  |  |  |  | Average | Error | -2.43337 |  |

## APPENDIX E SIGNAL STRENGTH ERROR FOR SRTM AND LIDAR PREDICTIONS

Table 19 LIDAR and SRTM Prediction Errors

| TROPOS DATA |  |  | LIDAR PREDICTIONS |  |  |  | SRTM PREDICTIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Altitude | SS | Distance | SS | SS Err | ABS (SS Error) | Distance | Predicted SS | SS Err | ABS (SS Error) |
| 1268848766 | 1801.018 | -42.09 | 466.674 | -37.4714 | -4.6186 | 4.6186 | 466.527 | -37.3249 | -4.7651 | 4.7651 |
| 1268848570 | 1801.39 | -32.05 | 163.557 | -19.2671 | -12.7829 | 12.7829 | 163.239 | -19.0803 | -12.9697 | 12.9697 |
| 1268848602 | 1801.522 | -49 | 179.661 | -20.8974 | -28.1026 | 28.1026 | 179.359 | -20.7163 | -28.2837 | 28.2837 |
| 1268848678 | 1805.932 | -49 | 290.961 | -29.2719 | -19.7281 | 19.7281 | 290.689 | -29.1072 | -19.8928 | 19.8928 |
| 1268869346 | 1559.898 | -57.75 | 3333.94 | -72.2501 | 14.5001 | 14.5001 | 3333.71 | -71.74 | 13.99 | 13.99 |
| 1268869430 | 1556.727 | -58.12 | 3209.13 | -71.5898 | 13.4698 | 13.4698 | 3208.86 | -71.0919 | 12.9719 | 12.9719 |
| 1268853290 | 1736.347 | -61.5 | 3225.46 | -71.7191 | 10.2191 | 10.2191 | 3225.88 | -71.2498 | 9.7498 | 9.7498 |
| 1268852828 | 1740.548 | -73.65 | 2173.13 | -64.8713 | -8.7787 | 8.7787 | 2173.55 | -64.2348 | -9.4152 | 9.4152 |
| 1268852863 | 1740.58 | -63 | 2212.89 | -65.1948 | 2.1948 | 2.1948 | 2213.33 | -64.5424 | 1.5424 | 1.5424 |
| 1268852896 | 1740.767 | -63.25 | 2254.92 | -65.5329 | 2.2829 | 2.2829 | 2255.37 | -64.8632 | 1.6132 | 1.6132 |
| 1268852930 | 1740.4 | -65 | 2291.19 | -65.8258 | 0.8258 | 0.8258 | 2291.64 | -65.1351 | 0.1351 | 0.1351 |
| 1268852975 | 1740.116 | -66.5 | 2289.95 | -65.817 | -0.683 | 0.683 | 2290.4 | -65.1257 | -1.3743 | 1.3743 |
| 1268853008 | 1740.116 | -66.4 | 2289.95 | -65.817 | -0.583 | 0.583 | 2290.4 | -65.1257 | -1.2743 | 1.2743 |
| 1268869191 | 1556.351 | -46.33 | 1884.03 | -62.3568 | 16.0268 | 16.0268 | 1883.79 | -61.9167 | 15.5867 | 15.5867 |
| 1268853075 | 1738.383 | -64.79 | 2470.64 | -67.0606 | 2.2706 | 2.2706 | 2471.08 | -66.4347 | 1.6447 | 1.6447 |
| 1268853110 | 1737.39 | -64.06 | 2577.59 | -67.7603 | 3.7003 | 3.7003 | 2578.03 | -67.1662 | 3.1062 | 3.1062 |
| 1268853143 | 1737.484 | -63.78 | 2690.14 | -68.469 | 4.689 | 4.689 | 2690.57 | -67.9036 | 4.1236 | 4.1236 |
| 1268853177 | 1738.24 | -63.75 | 2810 | -69.1951 | 5.4451 | 5.4451 | 2810.43 | -68.6561 | 4.9061 | 4.9061 |
| 1268853212 | 1736.024 | -59 | 2930.85 | -69.899 | 10.899 | 10.899 | 2931.28 | -69.3833 | 10.3833 | 10.3833 |
| 1268853255 | 1736.359 | -61.5 | 3091.88 | -70.7968 | 9.2968 | 9.2968 | 3092.31 | -70.307 | 8.807 | 8.807 |
| 1268853311 | 1735.755 | -61.14 | 3286.06 | -72.0295 | 10.8895 | 10.8895 | 3286.49 | -71.5664 | 10.4264 | 10.4264 |
| 1268853391 | 1735.755 | -61.08 | 3286.06 | -72.0295 | 10.9495 | 10.9495 | 3286.49 | -71.5664 | 10.4864 | 10.4864 |
| 1268853446 | 1734.703 | -60.13 | 3311.13 | -72.1566 | 12.0266 | 12.0266 | 3311.55 | -71.6959 | 11.5659 | 11.5659 |


| TROPOS DATA |  |  | LIDAR PREDICTIONS |  |  |  | SRTM PREDICTIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Altitude | SS | Distance | SS | SS Err | $\begin{gathered} \text { ABS } \\ \text { (SS Error) } \end{gathered}$ | Distance | Predicted SS | SS Err | ABS (SS Error) |
| 1268869251 | 1552.23 | -52.5 | 2464.7 | -67.0915 | 14.5915 | 14.5915 | 2464.46 | -66.5359 | 14.0359 | 14.0359 |
| 1268857303 | 1684.278 | -65.36 | 6641.73 | -84.2274 | 18.8674 | 18.8674 | 6642.18 | -83.7217 | 18.3617 | 18.3617 |
| 1268857405 | 1685.034 | -65.7 | 6641.87 | -84.2278 | 18.5278 | 18.5278 | 6642.33 | -83.7221 | 18.0221 | 18.0221 |
| 1268857460 | 1684.278 | -67.5 | 6641.73 | -84.2274 | 16.7274 | 16.7274 | 6642.18 | -83.7217 | 16.2217 | 16.2217 |
| 1268857517 | 1685.269 | -66.8 | 6527.45 | -83.9312 | 17.1312 | 17.1312 | 6527.9 | -83.4217 | 16.6217 | 16.6217 |
| 1268857630 | 1680.563 | -75.58 | 6208.05 | -83.0156 | 7.4356 | 7.4356 | 6208.5 | -82.5554 | 6.9754 | 6.9754 |
| 1268857662 | 1681.917 | -76.57 | 5914.04 | -82.1916 | 5.6216 | 5.6216 | 5914.48 | -81.7191 | 5.1491 | 5.1491 |
| 1268869898 | 1604.252 | -75.67 | 4915.95 | -78.9486 | 3.2786 | 3.2786 | 4915.6 | -78.5697 | 2.8997 | 2.8997 |
| 1268870827 | 1612.269 | -77.56 | 5515.29 | -80.9451 | 3.3851 | 3.3851 | 5514.95 | -80.5443 | 2.9843 | 2.9843 |
| 1268870888 | 1614.361 | -77 | 5599.3 | -81.2119 | 4.2119 | 4.2119 | 5598.94 | -80.8118 | 3.8118 | 3.8118 |
| 1268870985 | 1621.659 | -64.5 | 5691.43 | -81.4895 | 16.9895 | 16.9895 | 5691.07 | -81.0946 | 16.5946 | 16.5946 |
| 1268862685 | 1809.852 | -67.25 | 879.259 | -48.8728 | -18.3772 | 18.3772 | 879.16 | -48.3323 | -18.9177 | 18.9177 |
| 1268863159 | 1804.102 | -38 | 425.344 | -35.8632 | -2.1368 | 2.1368 | 425.174 | -35.7112 | -2.2888 | 2.2888 |
| 1268869142 | 1555.785 | -80.18 | 1414.96 | -57.4221 | -22.7579 | 22.7579 | 1414.75 | -56.9982 | -23.1818 | 23.1818 |
| 1268869382 | 1559.314 | -58.14 | 3333.26 | -72.2466 | 14.1066 | 14.1066 | 3333.02 | -71.7365 | 13.5965 | 13.5965 |
| 1268871047 | 1618.9 | -70.17 | 5771.91 | -81.7274 | 11.5574 | 11.5574 | 5771.54 | -81.3374 | 11.1674 | 11.1674 |
| 1268943938 | 1905.579 | -63.5 | 3409.88 | -73.1678 | 9.6678 | 9.6678 | 3410.22 | -72.1439 | 8.6439 | 8.6439 |
| 1268941039 | 1962.334 | -25.45 | 95.7906 | -9.51738 | -15.9326 | 15.93262 | 96.8245 | -8.9829 | -16.4671 | 16.4671 |
| 1268941092 | 1948.024 | -30.07 | 343.811 | -32.4478 | 2.3778 | 2.3778 | 344.215 | -31.8745 | 1.8045 | 1.8045 |
| 1268941226 | 1927.169 | -47.5 | 716.541 | -45.7511 | -1.7489 | 1.7489 | 716.825 | -45.1665 | -2.3335 | 2.3335 |
| 1268941361 | 1924.119 | -53.11 | 1337.82 | -56.4453 | 3.3353 | 3.3353 | 1337.71 | -55.8521 | 2.7421 | 2.7421 |
| 1268941565 | 1923.705 | -75 | 1848.44 | -62.2884 | -12.7116 | 12.7116 | 1848.21 | -61.4237 | -13.5763 | 13.5763 |
| 1268941874 | 1907.833 | -75.3 | 2404.26 | -66.9235 | -8.3765 | 8.3765 | 2404.05 | -65.9222 | -9.3778 | 9.3778 |
| 1268942920 | 1880.704 | -78 | 3940.94 | -75.7605 | -2.2395 | 2.2395 | 3941.24 | -74.74 | -3.26 | 3.26 |
| 1268944019 | 1910.27 | -62.71 | 3084.56 | -71.4802 | 8.7702 | 8.7702 | 3084.92 | -70.4229 | 7.7129 | 7.7129 |


| TROPOS DATA |  |  | LIDAR PREDICTIONS |  |  |  | SRTM PREDICTIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | Altitude | SS | Distance | SS | SS Err | ABS (SS Error) | Distance | Predicted SS | SS Err | ABS (SS Error) |
| 1268944231 | 1923.037 | -75.69 | 2142.41 | -65.2383 | -10.4517 | 10.4517 | 2142.86 | -64.2028 | -11.4872 | 11.4872 |
| 1268944258 | 1925.057 | -75.14 | 1928.22 | -63.2705 | -11.8695 | 11.8695 | 1928.69 | -62.4188 | -12.7212 | 12.7212 |
| 1268943993 | 1909.46 | -60.17 | 3199.67 | -72.1076 | 11.9376 | 11.9376 | 3200.01 | -71.0583 | 10.8883 | 10.8883 |
| 1268944046 | 1911.151 | -76 | 3084.58 | -71.4806 | -4.5194 | 4.5194 | 3084.95 | -70.4232 | -5.5768 | 5.5768 |
| 1268944390 | 1939.196 | -62 | 1292.9 | -55.9858 | -6.0142 | 6.0142 | 1293.53 | -55.2591 | -6.7409 | 6.7409 |
| 1268871278 | 1627.572 | -76.1 | 6523.92 | -83.839 | 7.739 | 7.739 | 6523.56 | -83.4447 | 7.3447 | 7.3447 |
| 1268941641 | 1921.552 | -71.67 | 2166.62 | -64.9717 | -6.6983 | 6.6983 | 0 | -91 | 19.33 | 19.33 |
| 1268941664 | 1920.798 | -71.86 | 0 | -91 | 19.14 | 19.14 | 2258.34 | -64.8758 | -6.9842 | 6.9842 |
| 1268941775 | 1914.265 | -74.57 | 2407.18 | -66.9511 | -7.6189 | 7.6189 | 0 | -91 | 16.43 | 16.43 |
| 1268941712 | 1918.994 | -73.6 | 0 | -91 | 17.4 | 17.4 | 2326.52 | -65.3837 | -8.2163 | 8.2163 |
| 1268941725 | 1918.994 | -73.73 | 0 | -91 | 17.27 | 17.27 | 2326.52 | -65.3837 | -8.3463 | 8.3463 |
| 1268941738 | 1919.975 | -73.83 | 0 | -91 | 17.17 | 17.17 | 2349.18 | -65.5489 | -8.2811 | 8.2811 |
| 1268941787 | 1913.364 | -74.87 | 2405.74 | -66.9408 | -7.9292 | 7.9292 | 0 | -91 | 16.13 | 16.13 |
| 1268942946 | 1880.53 | -77 | 3942.07 | -75.7654 | -1.2346 | 1.2346 | 0 | -91 | 14 | 14 |
| 1268871266 | 1627.329 | -76.32 | 6425.99 | -83.5872 | 7.2672 | 7.2672 | 0 | -91 | 14.68 | 14.68 |
| 1268871193 | 1624.073 | -75.47 | 0 | -91 | 15.53 | 15.53 | 6189.86 | -82.5431 | 7.0731 | 7.0731 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | AVG err | 9.93149875 |  |  | AVG err | 9.84362813 |

## APPENDIX F CHI-SQUARE TEST DATA RQ1GH1A

Table 20 Chi Square Test Data RQ1GH1A

| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.60160717 | -111.6033933 | 1800.976 | -42.17 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60271552 | -111.6035462 | 1799.231 | -48.74 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.6035224 | -111.6037613 | 1796.12 | -65.87 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60387265 | -111.6040062 | 1795.081 | -65.76 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60418557 | -111.604114 | 1792.957 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60417825 | -111.604114 | 1792.374 | -73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.6 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.36 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -82.36 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -81.85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60477566 | -111.6018976 | 1785.66 | -81.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60484544 | -111.6016105 | 1785.15 | -80.4 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.54 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60531079 | -111.5978452 | 1769.704 | -83.53 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60515204 | -111.5974543 | 1770.261 | -82.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60505592 | -111.5954895 | 1764.546 | -80.38 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.55 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538479 | -111.593534 | 1759.949 | -78.29 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.60538479 | -111.593534 | 1759.949 | -78.29 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -76 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -76 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60538286 | -111.5935442 | 1760.248 | -75.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60487798 | -111.5924966 | 1761.204 | -73.88 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60483394 | -111.592425 | 1761.159 | -71.37 | R | 0 | Blocked | R | 1 |  |  | 1 | 1 |
| 35.60484127 | -111.592425 | 1761.742 | -68.77 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60483394 | -111.592425 | 1761.159 | -58.75 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60483394 | -111.592425 | 1761.159 | -59.83 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60480058 | -111.5920358 | 1761.178 | -60.62 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60479882 | -111.5913166 | 1759.732 | -61 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60479932 | -111.5910441 | 1759.655 | -61 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60479035 | -111.5906631 | 1759.326 | -62.36 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60478842 | -111.5906733 | 1759.626 | -64.07 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60477395 | -111.5882946 | 1756.714 | -71.75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476655 | -111.5871554 | 1756.142 | -75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476266 | -111.5868973 | 1755.027 | -75.86 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.91 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.46 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.33 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -75.18 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60476561 | -111.5869116 | 1754.57 | -74.95 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.60588449 | -111.5850501 | 1749.481 | -62.1 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -64.71 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -65.44 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.47 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -66.76 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.60588256 | -111.5850604 | 1749.78 | -72 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60588256 | -111.5850604 | 1749.78 | -71.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.6059926 | -111.5849249 | 1749.902 | -71 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60629788 | -111.5845634 | 1748.963 | -71 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631832 | -111.5845326 | 1749.23 | -71.22 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.6063232 | -111.5845367 | 1748.474 | -71.22 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.83 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631099 | -111.5845326 | 1748.648 | -71.76 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60631587 | -111.5845367 | 1747.892 | -71.64 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60812323 | -111.5824192 | 1742.597 | -74.89 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60812323 | -111.5824192 | 1742.597 | -75.15 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60802964 | -111.5822063 | 1741.644 | -74.58 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60764655 | -111.5816501 | 1740.899 | -74.33 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60557992 | -111.5778551 | 1739.998 | -65.83 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.61303751 | -111.5690599 | 1728.149 | -85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61313866 | -111.5688936 | 1726.214 | -85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.61313185 | -111.5688998 | 1727.269 | -85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61557152 | -111.5646711 | 1715.046 | -65.25 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.61858858 | -111.5468969 | 1690.646 | -79.91 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61858522 | -111.5471551 | 1691.166 | -78 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61859203 | -111.5471489 | 1690.111 | -78 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61859203 | -111.5471489 | 1690.111 | -78 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61858778 | -111.547442 | 1690.77 | -78.33 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61794165 | -111.5508826 | 1692.994 | -80.6 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61790532 | -111.5519504 | 1693.471 | -82.17 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61788368 | -111.5525673 | 1695.107 | -83.75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61784852 | -111.5534876 | 1697.121 | -84.22 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61753714 | -111.5562818 | 1704.15 | -84.82 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61729407 | -111.5571864 | 1707.466 | -85.08 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61653846 | -111.5613855 | 1714.632 | -84.47 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61669105 | -111.5644999 | 1718.469 | -82.62 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61680933 | -111.5660795 | 1720.752 | -75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -77.25 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -77.25 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61702404 | -111.5678391 | 1720.116 | -77.4 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61753185 | -111.5687822 | 1718.717 | -80.25 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62061628 | -111.5698614 | 1716.533 | -79.62 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62123989 | -111.5701158 | 1717.804 | -79.23 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62198789 | -111.5708454 | 1722.129 | -76.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62205352 | -111.5709702 | 1722.266 | -75.75 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.62205352 | -111.5709702 | 1722.266 | -75.2 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62204619 | -111.5709702 | 1721.684 | -74.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62204812 | -111.5709599 | 1721.385 | -74.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.622053 | -111.570964 | 1720.629 | -74.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62204812 | -111.5709599 | 1721.385 | -74.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62488231 | -111.5736811 | 1708.198 | -80 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62840615 | -111.5746629 | 1704.963 | -84 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62839882 | -111.5746629 | 1704.38 | -84.53 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62840615 | -111.5746629 | 1704.963 | -84.53 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63232164 | -111.583168 | 1716.642 | -86 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63232164 | -111.583168 | 1716.642 | -86 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63330707 | -111.5833028 | 1720.265 | -86 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63616962 | -111.5863599 | 1738.795 | -85.85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63617156 | -111.5863496 | 1738.496 | -85.79 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63617156 | -111.5863496 | 1738.496 | -85.79 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.63616423 | -111.5863496 | 1737.913 | -85.79 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62750463 | -111.6007044 | 1743.309 | -86.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62743302 | -111.6007824 | 1742.381 | -86.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62712723 | -111.6002649 | 1746.819 | -85.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.6271316 | -111.6002627 | 1744.426 | -86.17 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62696074 | -111.600218 | 1743.419 | -85.4 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62607157 | -111.6013431 | 1736.917 | -85.07 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62220365 | -111.6013426 | 1740.243 | -85.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.62080139 | -111.6007888 | 1744.546 | -85.58 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.62047289 | -111.6007159 | 1745.639 | -85.58 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61780664 | -111.6003211 | 1751.726 | -85.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61780858 | -111.6003109 | 1751.427 | -85.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61754211 | -111.6002829 | 1751.497 | -85.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61440497 | -111.599877 | 1756.717 | -85.3 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.61233368 | -111.6039559 | 1766.824 | -85.21 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.60666448 | -111.6133686 | 1790.073 | -85.21 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58964096 | -111.6048509 | 1812.832 | -69.67 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58964096 | -111.6048509 | 1812.832 | -69.5 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.71 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58963364 | -111.6048509 | 1812.25 | -68.44 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58963648 | -111.6048058 | 1811.809 | -67.7 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58963841 | -111.6047955 | 1811.509 | -67.55 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58967589 | -111.604144 | 1810.853 | -67.71 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.5892743 | -111.6015025 | 1807.834 | -66.74 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58934459 | -111.5998285 | 1800.368 | -62 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58935047 | -111.5995785 | 1797.737 | -65 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58952135 | -111.5999018 | 1800.449 | -67 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.58934753 | -111.5998428 | 1799.911 | -70.82 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.5893646 | -111.5992937 | 1795.545 | -71.58 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58979188 | -111.600864 | 1804.89 | -71.73 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58925333 | -111.6020843 | 1809.368 | -70.41 | G | 912.353 | -48.9772 | G | 1 |  |  | 1 | 0 |
| 35.59020893 | -111.602213 | 1808.947 | -70.56 | G | 806.983 | -46.8447 | G | 1 |  |  | 1 | 0 |
| 35.59596417 | -111.6022742 | 1797.946 | -38.67 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.69377462 | -111.4660002 | 1580.826 | -25.12 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.69626792 | -111.4645346 | 1565.871 | -37.82 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.69748256 | -111.4671999 | 1559.917 | -85 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69747524 | -111.4671999 | 1559.333 | -85.11 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69747767 | -111.4671959 | 1560.673 | -84.91 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69748064 | -111.4672102 | 1560.214 | -84.81 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.70690747 | -111.4806756 | 1554.09 | -48 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.70350857 | -111.4969309 | 1564.917 | -62.19 | G | 0 | Blocked | R | 0 |  |  | 0 | 1 |
| 35.7017536 | -111.4979902 | 1572.051 | -81 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69684288 | -111.5009301 | 1578.205 | -81 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69517413 | -111.5019354 | 1580.614 | -81 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.691725 | -111.5039914 | 1583.843 | -81.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.69187607 | -111.5039129 | 1584.5 | -80.44 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.68502525 | -111.5061105 | 1588.836 | -79.33 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.66468256 | -111.5119703 | 1604.252 | -75.67 | R | 4915.6 | -78.5697 | R | 1 |  |  | 1 | 0 |
| 35.65934394 | -111.5132179 | 1608.333 | -77.86 | R | 5371.38 | -80.0875 | R | 1 |  |  | 1 | 0 |
| 35.65903459 | -111.5101825 | 1606.436 | -79.73 | R | 5188.43 | -79.4906 | R | 1 |  |  | 1 | 0 |
| 35.66461785 | -111.4995403 | 1590.238 | -79.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.66453756 | -111.4988517 | 1590.647 | -74.5 | R | 4027.57 | -75.0212 | R | 1 |  |  | 1 | 0 |
| 35.66453563 | -111.498862 | 1590.945 | -74.33 | R | 4028.37 | -75.0247 | R | 1 |  |  | 1 | 0 |
| 35.6645215 | -111.4988682 | 1591.416 | -73.5 | R | 4029.89 | -75.0312 | R | 1 |  |  | 1 | 0 |
| 35.65998327 | -111.5060268 | 1598.637 | -75.78 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.65896316 | -111.5077037 | 1600.328 | -75.78 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.65935394 | -111.5131133 | 1608.502 | -76.33 | R | 5363.46 | -80.0621 | R | 1 |  |  | 1 | 0 |


| Measured Black Point Data |  |  |  |  | LTF SRTM Predictions |  |  | SRTM <br> Matches | Chi Square Matrix Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Color |  | Cell A | Cell B | Cell C | Cell D |
| 35.6637949 | -111.5233026 | 1621.479 | -74.18 | R | 5827.21 | -81.5035 | R | 1 |  |  | 1 | 0 |
| 35.66355545 | -111.5246321 | 1622.492 | -74.58 | R | 5944.33 | -81.8465 | R | 1 |  |  | 1 | 0 |
| 35.65998633 | -111.5305229 | 1629.061 | -76 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.56709657 | -111.6578038 | 1914.265 | -74.57 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.56591413 | -111.6579985 | 1918.994 | -73.6 | R | 2326.52 | -65.3837 | G | 0 |  |  | 0 | 1 |
| 35.56710237 | -111.657773 | 1913.364 | -74.87 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.56846346 | -111.6556305 | 1906.698 | -75.05 | R | 2393.32 | -65.8438 | G | 0 |  |  | 0 | 1 |
| 35.57284589 | -111.6551534 | 1898.749 | -85.8 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58854317 | -111.6579588 | 1857.69 | -85.89 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.59220138 | -111.6585564 | 1850.54 | -85.89 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58450682 | -111.6236398 | 1880.53 | -77 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58450682 | -111.6236398 | 1880.53 | -76.2 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58419468 | -111.6240788 | 1879.111 | -89 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58248652 | -111.6237489 | 1886.293 | -78.82 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58281553 | -111.6235617 | 1881.658 | -78.5 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58443878 | -111.6241357 | 1882.492 | -80.4 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.58529256 | -111.6250535 | 1882.388 | -81.18 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.56061165 | -111.6257928 | 1930.532 | -74.67 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.55303568 | -111.6260494 | 1947.799 | -78.33 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.55164435 | -111.6261447 | 1954.045 | -81.4 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
| 35.55304698 | -111.6300727 | 1954.646 | -82.53 | R | 0 | Blocked | R | 1 |  |  | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 154 |  |  | 150 | 39 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX G COLOR ASSIGNMENT COMPARISONS FOR THREE ATTENUATION MODELS

Table 21 Friis, Egli, and Foore and Ida Model Results for Cochran's Q Test

| Measured Data |  | LTF Friis Model |  |  | Elgi Model |  |  | Foore and Ida |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Strength | Color | Signal Strength | Color | Match | Signal Strength | Color | Match | Signal Strength | Color | Match |
| -42.09 | G | -11.9492 | G | 1 | -17.4492 | G | 1 | -17.9492 | G | 1 |
| -32.05 | G | -20.2334 | G | 1 | -25.7334 | G | 1 | -26.2334 | G | 1 |
| -49 | G | -24.1469 | G | 1 | -29.6469 | G | 1 | -30.1469 | G | 1 |
| -49 | G | -30.0653 | G | 1 | -35.5653 | G | 1 | -36.0653 | G | 1 |
| -57.75 | G | -31.3926 | G | 1 | -36.8926 | G | 1 | -37.3926 | G | 1 |
| -58.12 | G | -34.5633 | G | 1 | -40.0633 | G | 1 | -40.5633 | G | 1 |
| -61.5 | G | -37.4714 | G | 1 | -42.9714 | G | 1 | -43.4714 | G | 1 |
| -73.65 | R | -39.6666 | G | 0 | -45.1666 | G | 0 | -45.6666 | G | 0 |
| -63 | G | -58.7491 | G | 1 | -64.2491 | G | 1 | -64.7491 | G | 1 |
| -63.25 | G | -59.1833 | G | 1 | -64.6833 | G | 1 | -65.1833 | G | 1 |
| -65 | G | -59.1735 | G | 1 | -64.6735 | G | 1 | -65.1735 | G | 1 |
| -43.2 | G | -35.6376 | G | 1 | -41.1376 | G | 1 | -41.6376 | G | 1 |
| -73.65 | R | -64.9762 | G | 0 | -70.4762 | G | 0 | -70.9762 | G | 0 |
| -65.86 | G | -65.8251 | G | 1 | -71.3251 | R | 0 | -71.8251 | R | 0 |
| -64.79 | G | -64.8713 | G | 1 | -70.3713 | G | 1 | -70.8713 | G | 1 |
| -64.06 | G | -65.1948 | G | 1 | -70.6948 | G | 1 | -71.1948 | R | 0 |
| -63.78 | G | -65.5329 | G | 1 | -71.0329 | R | 0 | -71.5329 | R | 0 |
| -63.75 | G | -65.8258 | G | 1 | -71.3258 | R | 0 | -71.8258 | R | 0 |
| -59 | G | -65.817 | G | 1 | -71.317 | R | 0 | -71.817 | R | 0 |
| -60.67 | G | -70.5889 | G | 1 | -76.0889 | R | 0 | -76.5889 | R | 0 |
| -61.14 | G | -66.1793 | G | 1 | -71.6793 | R | 0 | -72.1793 | R | 0 |
| -61.08 | G | -67.0606 | G | 1 | -72.5606 | R | 0 | -73.0606 | R | 0 |


| Measured Data |  | LTF Friis Model |  |  | Elgi Model |  |  | Foore and Ida |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Strength | Color | Signal Strength | Color | Match | Signal Strength | Color | Match | Signal Strength | Color | Match |
| -60.13 | G | -67.7603 | G | 1 | -73.2603 | R | 0 | -73.7603 | R | 0 |
| -52.5 | G | -68.469 | G | 1 | -73.969 | R | 0 | -74.469 | R | 0 |
| -65.36 | G | -69.1951 | G | 1 | -74.6951 | R | 0 | -75.1951 | R | 0 |
| -65.7 | G | -69.899 | G | 1 | -75.399 | R | 0 | -75.899 | R | 0 |
| -67.5 | G | -70.7968 | G | 1 | -76.2968 | R | 0 | -76.7968 | R | 0 |
| -66.8 | G | -72.0295 | R | 0 | -77.5295 | R | 0 | -78.0295 | R | 0 |
| -75.58 | R | -72.0298 | R | 1 | -77.5298 | R | 1 | -78.0298 | R | 1 |
| -76.57 | R | -72.0295 | R | 1 | -77.5295 | R | 1 | -78.0295 | R | 1 |
| -75.67 | R | -72.1566 | R | 1 | -77.6566 | R | 1 | -78.1566 | R | 1 |
| -77.56 | R | -72.4527 | R | 1 | -77.9527 | R | 1 | -78.4527 | R | 1 |
| -77 | R | -84.2274 | R | 1 | -89.7274 | R | 1 | -90.2274 | R | 1 |
| -64.5 | G | -84.2278 | R | 0 | -89.7278 | R | 0 | -90.2278 | R | 0 |
| -77.88 | R | -80.9758 | R | 1 | -86.4758 | R | 1 | -86.9758 | R | 1 |
| -38 | G | -83.9312 | R | 0 | -89.4312 | R | 0 | -89.9312 | R | 0 |
| -80.18 | R | -83.0156 | R | 1 | -88.5156 | R | 1 | -89.0156 | R | 1 |
| -58.14 | G | -82.1916 | R | 0 | -87.6916 | R | 0 | -88.1916 | R | 0 |
| -70.17 | G | -74.6613 | R | 0 | -80.1613 | R | 0 | -80.6613 | R | 0 |
| -63.5 | G | -74.234 | R | 0 | -79.734 | R | 0 | -80.234 | R | 0 |
| -25.45 | G | -74.6505 | R | 0 | -80.1505 | R | 0 | -80.6505 | R | 0 |
| -30.07 | G | -74.7819 | R | 0 | -80.2819 | R | 0 | -80.7819 | R | 0 |
| -47.5 | G | -74.9684 | R | 0 | -80.4684 | R | 0 | -80.9684 | R | 0 |
| -53.11 | G | -48.8728 | G | 1 | -54.3728 | G | 1 | -54.8728 | G | 1 |
| -75 | R | -44.7819 | G | 0 | -50.2819 | G | 0 | -50.7819 | G | 0 |
| -75.3 | R | -35.8632 | G | 0 | -41.3632 | G | 0 | -41.8632 | G | 0 |
| -78 | R | -57.4221 | G | 0 | -62.9221 | G | 0 | -63.4221 | G | 0 |


| Measured Data |  | LTF Friis Model |  |  | Elgi Model |  |  | Foore and Ida |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal Strength | Color | Signal Strength | Color | Match | Signal Strength | Color | Match | Signal Strength | Color | Match |
| -62.71 | G | -72.2466 | R | 0 | -77.7466 | R | 0 | -78.2466 | R | 0 |
| -75.69 | R | -72.423 | R | 1 | -77.923 | R | 1 | -78.423 | R | 1 |
| -75.14 | R | -76.5951 | R | 1 | -82.0951 | R | 1 | -82.5951 | R | 1 |
| -60.17 | G | -9.51738 | G | 1 | -15.01738 | G | 1 | -15.51738 | G | 1 |
| -76 | R | -32.4478 | G | 0 | -37.9478 | G | 0 | -38.4478 | G | 0 |
| -62 | G | -45.7511 | G | 1 | -51.2511 | G | 1 | -51.7511 | G | 1 |
| -76.1 | R | -56.4453 | G | 0 | -61.9453 | G | 0 | -62.4453 | G | 0 |
| -71.67 | R | -62.2884 | G | 0 | -67.7884 | G | 0 | -68.2884 | G | 0 |
| -71.86 | R | -66.9235 | G | 0 | -72.4235 | R | 1 | -72.9235 | R | 1 |
| -74.57 | R | -75.7605 | R | 1 | -81.2605 | R | 1 | -81.7605 | R | 1 |
| -73.6 | R | -75.7654 | R | 1 | -81.2654 | R | 1 | -81.7654 | R | 1 |
| -73.73 | R | -74.6262 | R | 1 | -80.1262 | R | 1 | -80.6262 | R | 1 |
| -73.83 | R | -74.6384 | R | 1 | -80.1384 | R | 1 | -80.6384 | R | 1 |
| -74.87 | R | -72.1076 | R | 1 | -77.6076 | R | 1 | -78.1076 | R | 1 |
| -77 | R | -71.4806 | R | 1 | -76.9806 | R | 1 | -77.4806 | R | 1 |
| -76.32 | R | -69.3889 | G | 0 | -74.8889 | R | 1 | -75.3889 | R | 1 |
| -75.47 | R | -60.1925 | G | 0 | -65.6925 | G | 0 | -66.1925 | G | 0 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Matches | 43 |  | Matches | 33 |  | Matches | 32 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX H LINEAR REGRESSION ANALYSIS

Table 22 Linear Regression Analysis

| Measured Data |  |  | LIDAR Data |  | Distance meters(X) | (x)* ${ }^{*}$ ( ${ }^{\text {) }}$ | ( $\mathrm{x}^{*} \mathrm{x}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lat | Long | SS | Predicted SS | Error (Y) |  |  |  |
| 35.59810676 | -111.6025783 | -31.35 | -11.9492 | -19.4008 | 106 | -2056.4848 | 11236 |
| 35.59863876 | -111.6029478 | -47 | -20.2334 | -26.7666 | 172.1 | -4606.53186 | 29618.41 |
| 35.59882061 | -111.6034105 | -46 | -24.1469 | -21.8531 | 215.4 | -4707.15774 | 46397.16 |
| 35.59917087 | -111.6039219 | -49 | -30.0653 | -18.9347 | 275.7 | -5220.29679 | 76010.49 |
| 35.6000503 | -111.6034668 | -45.38 | -31.3926 | -13.9874 | 329 | -4601.8546 | 108241 |
| 35.6007134 | -111.6034693 | -44.11 | -34.5633 | -9.5467 | 395.4 | -3774.76518 | 156341.16 |
| 35.60095738 | -111.6034789 | -43.2 | -35.6376 | -7.5624 | 420.8 | -3182.25792 | 177072.64 |
| 35.60142959 | -111.6034142 | -42.09 | -37.4714 | -4.6186 | 467.9 | -2161.04294 | 218930.41 |
| 35.60203361 | -111.6033861 | -42.46 | -39.6666 | -2.7934 | 532 | -1486.0888 | 283024 |
| 35.60477532 | -111.5874177 | -75 | -58.7491 | -16.2509 | 1529 | -24847.6261 | 2337841 |
| 35.60476754 | -111.5869013 | -76.5 | -59.1833 | -17.3167 | 1569 | -27169.9023 | 2461761 |
| 35.60476561 | -111.5869116 | -76.1 | -59.1735 | -16.9265 | 1568 | -26540.752 | 2458624 |
| 35.60702818 | -111.5807769 | -73.65 | -64.8713 | -8.7787 | 2163 | -18988.3281 | 4678569 |
| 35.60680999 | -111.5804681 | -73.65 | -64.9762 | -8.6738 | 2187 | -18969.6006 | 4782969 |
| 35.60637411 | -111.5798567 | -63 | -65.1948 | 2.1948 | 2214 | 4859.2872 | 4901796 |
| 35.60578553 | -111.5790019 | -63.25 | -65.5329 | 2.2829 | 2256 | 5150.2224 | 5089536 |
| 35.60523378 | -111.5782781 | -65 | -65.8258 | 0.8258 | 2292 | 1892.7336 | 5253264 |
| 35.60522158 | -111.5782741 | -65.86 | -65.8251 | -0.0349 | 2291 | -79.9559 | 5248681 |
| 35.60522453 | -111.5782884 | -66.5 | -65.817 | -0.683 | 2290 | -1564.07 | 5244100 |
| 35.60557992 | -111.5778551 | -65.83 | -66.1793 | 0.3493 | 2342 | 818.0606 | 5484964 |
| 35.60656558 | -111.5768217 | -64.79 | -67.0606 | 2.2706 | 2471 | 5610.6526 | 6105841 |
| 35.60735885 | -111.5759692 | -64.06 | -67.7603 | 3.7003 | 2578 | 9539.3734 | 6646084 |
| 35.6082116 | -111.5750939 | -63.78 | -68.469 | 4.689 | 2691 | 12618.099 | 7241481 |


| Measured Data |  |  | LIDAR Data |  | Distance meters(X) | $(\mathrm{x})^{*}(\mathrm{y})$ | ( $\mathrm{x}^{*} \mathrm{x}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lat | Long | SS | Predicted SS | Error (Y) |  |  |  |
| 35.6091155 | -111.5741714 | -63.75 | -69.1951 | 5.4451 | 2811 | 15306.1761 | 7901721 |
| 35.61001643 | -111.5732468 | -59 | -69.899 | 10.899 | 2932 | 31955.868 | 8596624 |
| 35.61091684 | -111.5723037 | -60.67 | -70.5889 | 9.9189 | 3055 | 30302.2395 | 9333025 |
| 35.61118906 | -111.57201 | -61.5 | -70.7968 | 9.2968 | 3093 | 28755.0024 | 9566649 |
| 35.61230126 | -111.5703204 | -61.14 | -72.0295 | 10.8895 | 3287 | 35793.7865 | 10804369 |
| 35.61229638 | -111.5703164 | -60.8 | -72.0298 | 11.2298 | 3287 | 36912.3526 | 10804369 |
| 35.61241888 | -111.5700844 | -60.13 | -72.1566 | 12.0266 | 3312 | 39832.0992 | 10969344 |
| 35.61261002 | -111.5697601 | -61.29 | -72.4527 | 11.1627 | 3348 | 37372.7196 | 11209104 |
| 35.61803107 | -111.5328819 | -65.36 | -84.2274 | 18.8674 | 6637 | 125222.9338 | 44049769 |
| 35.61802618 | -111.5328779 | -65.7 | -84.2278 | 18.5278 | 6638 | 122987.5364 | 44063044 |
| 35.61803107 | -111.5328819 | -67.5 | -84.2274 | 16.7274 | 6638 | 111036.4812 | 44063044 |
| 35.61812443 | -111.534269 | -66.8 | -83.9312 | 17.1312 | 6524 | 111763.9488 | 42562576 |
| 35.61834326 | -111.5381554 | -75.58 | -83.0156 | 7.4356 | 6204 | 46130.4624 | 38489616 |
| 35.61842321 | -111.5417085 | -76.57 | -82.1916 | 5.6216 | 5911 | 33229.2776 | 34939921 |
| 35.61688152 | -111.5668089 | -75 | -74.6613 | -0.3387 | 3829 | -1296.8823 | 14661241 |
| 35.61806832 | -111.5691495 | -80 | -74.234 | -5.766 | 3735 | -21536.01 | 13950225 |
| 35.62003593 | -111.5697728 | -79.9 | -74.6505 | -5.2495 | 3831 | -20110.8345 | 14676561 |
| 35.62061628 | -111.5698614 | -79.62 | -74.7819 | -4.8381 | 3867 | -18708.9327 | 14953689 |
| 35.62204812 | -111.5709599 | -74.57 | -74.9684 | 0.3984 | 3904 | 1555.3536 | 15241216 |
| 35.58967125 | -111.6034107 | -67.25 | -48.8728 | -18.3772 | 880 | -16171.936 | 774400 |
| 35.59125596 | -111.6021674 | -70.05 | -44.7819 | -25.2681 | 692 | -17485.5252 | 478864 |
| 35.59384129 | -111.6032077 | -38 | -35.8632 | -2.1368 | 425 | -908.14 | 180625 |
| 35.7021362 | -111.4750289 | -80.18 | -57.4221 | -22.7579 | 1416 | -32225.1864 | 2005056 |
| 35.7161176 | -111.4877278 | -58.14 | -72.2466 | 14.1066 | 3338 | 47087.8308 | 11142244 |
| 35.68671833 | -111.5056653 | -80 | -72.423 | -7.577 | 3471 | -26299.767 | 12047841 |


| Measured Data |  |  | LIDAR Data |  | Distance meters(X) | $(x)^{*}(y)$ | ( $\mathrm{x}^{*} \mathrm{x}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lat | Long | SS | Predicted SS | Error (Y) |  |  |  |
| 35.67232395 | -111.5097667 | -78 | -76.5951 | -1.4049 | 4293 | -6031.2357 | 18429849 |
| 35.66147899 | -111.5174238 | -77.88 | -80.9758 | 3.0958 | 5526 | 17107.3908 | 30536676 |
| 35.55225552 | -111.6394415 | -25.45 | -9.51738 | -15.9326 | 93 | -1481.73366 | 8649 |
| 35.55450726 | -111.6395943 | -30.07 | -32.4478 | 2.3778 | 344 | 817.9632 | 118336 |
| 35.55786447 | -111.6396791 | -47.5 | -45.7511 | -1.7489 | 718 | -1255.7102 | 515524 |
| 35.56163883 | -111.6472806 | -53.11 | -56.4453 | 3.3353 | 1338 | 4462.6314 | 1790244 |
| 35.56363524 | -111.6533154 | -75 | -62.2884 | -12.7116 | 1848 | -23491.0368 | 3415104 |
| 35.56838969 | -111.6559378 | -75.3 | -66.9235 | -8.3765 | 2405 | -20145.4825 | 5784025 |
| 35.58449462 | -111.6236358 | -78 | -75.7605 | -2.2395 | 3953 | -8852.7435 | 15626209 |
| 35.58450682 | -111.6236398 | -76.75 | -75.7654 | -0.9846 | 3954 | -3893.1084 | 15634116 |
| 35.58228958 | -111.6238845 | -86.4 | -74.6262 | -11.7738 | 3716 | -43751.4408 | 13808656 |
| 35.58232772 | -111.6239275 | -79.9 | -74.6384 | -5.2616 | 3719 | -19567.8904 | 13830961 |
| 35.57679793 | -111.6227012 | -60.17 | -72.1076 | 11.9376 | 3209 | 38307.7584 | 10297681 |
| 35.57540228 | -111.6222538 | -76 | -71.4806 | -4.5194 | 3094 | -13983.0236 | 9572836 |
| 35.57160911 | -111.6218979 | -76 | -69.3889 | -6.6111 | 2756 | -18220.1916 | 7595536 |
| 35.56061165 | -111.6257928 | -74.67 | -60.1925 | -14.4775 | 1609 | -23294.2975 | 2588881 |
|  |  |  |  | SumY | Sum x | Sum ( $\mathrm{x}^{*} \mathrm{Y}$ ) | Sum( ${ }^{*}$ X) |
|  |  |  | Total | -155.736 | 168995.3 | 467760.4167 | 646060802 |
|  |  |  | AVGerr | -2.43337 | 2640.552 |  |  |

## APPENDIX I CHI SQUARE TEST OF LIDAR BLOCKED VS UNBLOCKED PREDICTIONS

Table 23 Chi Square Analysis of LTF Prediction of Blocked/Unblocked Signals

| Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | LTF SRTM Predictions | LIDAR | Actual SS | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Dist | Blocked | is red | Cell A | Cell C |
| 35.60271 | -111.60354 | 1798.35 | -45.38 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60272 | -111.60355 | 1799.231 | -47.61 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60272 | -111.60355 | 1799.231 | -48.74 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60271 | -111.60354 | 1799.987 | -66 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60272 | -111.60355 | 1799.814 | -64.5 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60272 | -111.60354 | 1800.569 | -64.4 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60271 | -111.60354 | 1799.987 | -64.43 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60271 | -111.60354 | 1799.987 | -64.43 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60271 | -111.60354 | 1799.987 | -64.56 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60272 | -111.60354 | 1800.569 | -64.55 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60387 | -111.60401 | 1795.081 | -65.76 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60415 | -111.60411 | 1794.359 | -65.63 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.6042 | -111.60412 | 1792.783 | -66.24 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60419 | -111.60411 | 1792.957 | -73 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60419 | -111.60411 | 1792.957 | -73 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60418 | -111.60411 | 1792.374 | -73 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60419 | -111.60411 | 1792.957 | -73 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60478 | -111.6019 | 1785.66 | -82.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60478 | -111.6019 | 1785.66 | -82.36 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60478 | -111.6019 | 1785.66 | -81.57 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60478 | -111.6019 | 1785.66 | -80 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60478 | -111.6018 | 1785.533 | -79.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR Predictions |  | LTF SRTM Predictions | LIDAR | Actual SS <br> is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Dist | Blocked |  | Cell A | Cell C |
| 35.60475 | -111.60174 | 1785.896 | -80.4 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6052 | -111.60127 | 1782.169 | -81.71 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60539 | -111.60091 | 1780.252 | -82.38 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.60069 | 1779.274 | -82.89 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60535 | -111.60002 | 1777.571 | -83.64 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60541 | -111.59952 | 1774.746 | -83.64 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60531 | -111.59785 | 1769.704 | -83.53 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60531 | -111.59785 | 1769.704 | -83.62 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60531 | -111.59785 | 1769.704 | -83.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60531 | -111.59785 | 1769.704 | -83.33 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6053 | -111.59784 | 1769.878 | -83.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60517 | -111.59778 | 1770.435 | -83.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60524 | -111.59707 | 1769.736 | -82.14 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60525 | -111.59417 | 1761.529 | -79.35 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59366 | 1760.216 | -79 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59353 | 1759.949 | -78.14 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59354 | 1760.248 | -75.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59354 | 1760.248 | -75.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59354 | 1760.248 | -75.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59354 | 1760.248 | -75.57 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59354 | 1760.248 | -75.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60538 | -111.59353 | 1759.949 | -75.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60499 | -111.59271 | 1760.93 | -74.56 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60483 | -111.59242 | 1761.159 | -73.88 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | LTF SRTM Predictions <br> Dist | LIDAR <br> Blocked | Actual SS is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred |  |  |  | Cell A | Cell C |
| 35.60483 | -111.59242 | 1761.159 | -71.94 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60483 | -111.59242 | 1761.159 | -54 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60483 | -111.59242 | 1761.159 | -56 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60481 | -111.59224 | 1761.555 | -60.14 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60481 | -111.59155 | 1760.251 | -61 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60479 | -111.59067 | 1759.626 | -64.07 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60479 | -111.59068 | 1758.87 | -64.53 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60479 | -111.59054 | 1759.359 | -65.16 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60478 | -111.58921 | 1756.895 | -69 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60478 | -111.58799 | 1756.496 | -71.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60532 | -111.58572 | 1750.382 | -60.5 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60572 | -111.58525 | 1749.298 | -60.88 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60589 | -111.58505 | 1748.725 | -63.58 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60588 | -111.58506 | 1749.78 | -65.82 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60588 | -111.58506 | 1749.78 | -66.22 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60588 | -111.58506 | 1749.78 | -66.6 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60588 | -111.58506 | 1749.78 | -66.76 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.60588 | -111.58506 | 1750.536 | -71 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60599 | -111.58492 | 1749.902 | -71 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60632 | -111.58453 | 1749.23 | -71.22 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60632 | -111.58454 | 1747.892 | -71.6 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60632 | -111.58454 | 1747.892 | -72 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60632 | -111.58454 | 1747.892 | -71.71 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60632 | -111.58454 | 1747.892 | -71.64 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR <br> Predictions |  | LTF SRTM Predictions <br> Dist | LIDAR <br> Blocked | Actual SS is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred |  |  |  | Cell A | Cell C |
| 35.60747 | -111.58317 | 1743.795 | -73.6 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60782 | -111.58275 | 1742.637 | -73.83 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.608 | -111.58256 | 1742.947 | -74.29 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60813 | -111.58241 | 1742.298 | -74.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60812 | -111.58242 | 1742.597 | -75.21 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60812 | -111.58242 | 1741.259 | -75.07 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60812 | -111.58242 | 1742.015 | -74.76 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61293 | -111.56924 | 1729.044 | -65.05 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.61314 | -111.56889 | 1726.214 | -85 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61484 | -111.56577 | 1717.168 | -85 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6153 | -111.56508 | 1715.589 | -85.25 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61832 | -111.53759 | 1680.494 | -72.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61832 | -111.53759 | 1680.494 | -73.8 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61847 | -111.54352 | 1684.66 | -77.07 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61855 | -111.54586 | 1688.224 | -77.94 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61855 | -111.54592 | 1688.204 | -78.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61789 | -111.55232 | 1694.128 | -83 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61776 | -111.5554 | 1702.661 | -84.6 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61686 | -111.55887 | 1709.87 | -85.71 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61658 | -111.56235 | 1715.456 | -83.21 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61675 | -111.56534 | 1720.198 | -82.59 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61702 | -111.56784 | 1720.116 | -77.25 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61702 | -111.56784 | 1720.116 | -77.25 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61702 | -111.56784 | 1720.116 | -77.4 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR Predictions |  | LTF SRTM Predictions | LIDAR | Actual SS | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred | Dist | Blocked | is red | Cell A | Cell C |
| 35.61753 | -111.56878 | 1718.717 | -79.38 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61753 | -111.56878 | 1718.717 | -80.13 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61753 | -111.56878 | 1718.717 | -80.13 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61753 | -111.56878 | 1718.717 | -80.25 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6219 | -111.5706 | 1721.619 | -82 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62212 | -111.57104 | 1720.326 | -74.57 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62303 | -111.57199 | 1712.946 | -74.57 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62488 | -111.57367 | 1707.899 | -80.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62488 | -111.57367 | 1708.655 | -80.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62694 | -111.57457 | 1707.32 | -82.8 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62744 | -111.57469 | 1706.479 | -82.8 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62841 | -111.57466 | 1705.545 | -83.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62841 | -111.57466 | 1705.545 | -83.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62841 | -111.57466 | 1704.963 | -84 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62841 | -111.57466 | 1704.963 | -84.53 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62841 | -111.57466 | 1704.963 | -84.53 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.63404 | -111.58366 | 1721.618 | -86 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.63618 | -111.58636 | 1738.622 | -86.1 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.63617 | -111.58635 | 1738.496 | -85.79 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.63616 | -111.58635 | 1737.913 | -85.79 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.63619 | -111.58639 | 1737.709 | -85.79 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6276 | -111.6006 | 1744.504 | -87 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62713 | -111.60026 | 1744.426 | -86 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.62696 | -111.60022 | 1743.419 | -85.4 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR Predictions |  | LTF SRTM Predictions Dist | LIDAR <br> Blocked | Actual SS is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred |  |  |  | Cell A | Cell C |
| 35.62633 | -111.60097 | 1738.313 | -84.92 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6208 | -111.60079 | 1744.546 | -85.58 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61781 | -111.60031 | 1751.427 | -85.67 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61781 | -111.60031 | 1751.427 | -85.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61782 | -111.60031 | 1751.254 | -85.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61754 | -111.60028 | 1751.497 | -85.57 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61529 | -111.60002 | 1755.431 | -85.33 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61375 | -111.60012 | 1757.905 | -85.27 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61375 | -111.60013 | 1758.205 | -85.25 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.61373 | -111.60014 | 1758.394 | -85.23 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60823 | -111.6106 | 1784.43 | -85.21 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.60588 | -111.61474 | 1793.357 | -85.21 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.58964 | -111.60485 | 1812.832 | -69.5 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58963 | -111.60485 | 1812.25 | -68.44 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58963 | -111.60485 | 1812.25 | -68 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58964 | -111.6048 | 1811.509 | -67.58 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58966 | -111.60446 | 1811.55 | -67.71 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58923 | -111.602 | 1808.551 | -66.74 | G | 0 | Blocked | 915.174 | 1 | 0 | 0 | 1 |
| 35.58932 | -111.60012 | 1803.033 | -62 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58952 | -111.5999 | 1800.449 | -67 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.58979 | -111.60086 | 1804.89 | -71.73 | R | 0 | Blocked | 0 | 0 | 1 | 0 | 1 |
| 35.58925 | -111.60208 | 1809.368 | -70.41 | G | 0 | Blocked | 912.353 | 1 | 0 | 0 | 1 |
| 35.69628 | -111.46452 | 1566.741 | -32.9 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.69628 | -111.46453 | 1566.454 | -35.48 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |


| Measured Data |  |  |  |  | LTF LIDAR Predictions |  | LTF SRTM Predictions <br> Dist | LIDAR <br> Blocked | Actual SS <br> is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred |  |  |  | Cell A | Cell C |
| 35.6962 | -111.46451 | 1566.149 | -87 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69634 | -111.46497 | 1565.997 | -87 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69676 | -111.46594 | 1564.851 | -84.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69748 | -111.4672 | 1559.917 | -85 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69748 | -111.4672 | 1559.333 | -85.11 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69747 | -111.4672 | 1560.089 | -85 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69748 | -111.46721 | 1560.214 | -84.81 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69772 | -111.46763 | 1559.17 | -84.81 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69975 | -111.47106 | 1555.499 | -83.89 | R | 0 | Blocked | 1038.05 | 1 | 1 | 1 | 0 |
| 35.71094 | -111.49181 | 1555.621 | -59.06 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.70525 | -111.49577 | 1556.211 | -61.25 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.69837 | -111.50001 | 1576.608 | -81 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.69187 | -111.50391 | 1583.916 | -81 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.6919 | -111.5039 | 1583.56 | -81.75 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.65935 | -111.51321 | 1608.618 | -77.86 | R | 0 | Blocked | 5370.01 | 1 | 1 | 1 | 0 |
| 35.65934 | -111.51305 | 1608.697 | -79.44 | R | 0 | Blocked | 5359.98 | 1 | 1 | 1 | 0 |
| 35.65903 | -111.51018 | 1606.436 | -79.73 | R | 0 | Blocked | 5188.43 | 1 | 1 | 1 | 0 |
| 35.66127 | -111.50211 | 1592.979 | -80.22 | R | 0 | Blocked | 4493.72 | 1 | 1 | 1 | 0 |
| 35.66453 | -111.49885 | 1591.403 | -74.5 | R | 0 | Blocked | 4027.71 | 1 | 1 | 1 | 0 |
| 35.66453 | -111.49886 | 1590.362 | -73.71 | R | 0 | Blocked | 4028.95 | 1 | 1 | 1 | 0 |
| 35.66391 | -111.49685 | 1589.423 | -73.16 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.66213 | -111.50152 | 1592.833 | -75.33 | R | 0 | Blocked | 4388.14 | 1 | 1 | 1 | 0 |
| 35.65934 | -111.51301 | 1608.559 | -76.33 | R | 0 | Blocked | 5357.51 | 1 | 1 | 1 | 0 |
| 35.65947 | -111.51356 | 1608.714 | -77.21 | R | 0 | Blocked | 5385.79 | 1 | 1 | 1 | 0 |


| Measured Data |  |  |  |  | LTF LIDAR Predictions |  | LTF SRTM Predictions <br> Dist | LIDAR <br> Blocked | Actual SS is red | Chi Square Matrix |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lat | Long | Elevation | SS | Color | Dist | SS Pred |  |  |  | Cell A | Cell C |
| 35.6638 | -111.52322 | 1620.904 | -72.25 | R | 0 | Blocked | 5820.78 | 1 | 1 | 1 | 0 |
| 35.66262 | -111.52711 | 1624.073 | -75.47 | R | 0 | Blocked | 6189.86 | 1 | 1 | 1 | 0 |
| 35.66192 | -111.528 | 1624.599 | -75.69 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.66193 | -111.52799 | 1624.884 | -76.17 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.66162 | -111.5284 | 1625.618 | -76.17 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.56357 | -111.65125 | 1923.481 | -54.62 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.56365 | -111.65162 | 1922.647 | -59.75 | G | 0 | Blocked | 0 | 1 | 0 | 0 | 1 |
| 35.5667 | -111.65813 | 1917.994 | -73.83 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.56736 | -111.6572 | 1913.555 | -74.87 | R | 0 | Blocked | 2390.82 | 1 | 1 | 1 | 0 |
| 35.57094 | -111.65519 | 1900.922 | -86 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.57385 | -111.65514 | 1896.605 | -85.83 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.58721 | -111.65718 | 1863.895 | -85.89 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.591 | -111.65817 | 1853.119 | -85.89 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.59464 | -111.65882 | 1844.511 | -85.89 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.58378 | -111.62401 | 1874.879 | -89 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.58298 | -111.6236 | 1878.039 | -78.5 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.58662 | -111.62593 | 1874.356 | -82.05 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.57273 | -111.62169 | 1913.488 | -77.6 | R | 0 | Blocked | 2861.4 | 1 | 1 | 1 | 0 |
| 35.55304 | -111.62604 | 1948.08 | -79.29 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.55155 | -111.62704 | 1955.387 | -82 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.55204 | -111.62802 | 1955.951 | -82.23 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
| 35.55396 | -111.63196 | 1950.441 | -82.44 | R | 0 | Blocked | 0 | 1 | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 143 | 45 |



| Measured Signal Strength Data |  |  |  |  | LIDAR Prediction |  |  | $\frac{\text { LIDAR }}{\text { UnBlocked }}$ | Actual SS is green | Cell B | Cell D |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 111.651 |  |  |  |  |  |  |  |  |  |  |  |
| 35.56372 | 111.654 | 1924.731 | -73 | R | 1905.14 | -62.7974 | G | 1 | 0 | 0 | 1 |  |
| 35.5639 | 111.655 | 1923.763 | -75.67 | R | 1971.68 | -63.3769 | G | 1 | 0 | 0 | 1 |  |
| 35.5643 | 111.656 | 1924.891 | -74.75 | R | 2054.58 | -64.0732 | G | 1 | 0 | 0 | 1 |  |
| 35.56499 | 111.657 | 1921.552 | -71.67 | R | 2166.62 | -64.9717 | G | 1 | 0 | 0 |  | 1 |
| 35.5671 | 111.658 | 1913.364 | -74.87 | R | 2405.74 | -66.9408 | G | 1 | 0 | 0 |  | 1 |
| 35.56839 | 111.656 | 1907.833 | -75.3 | R | 2404.26 | -66.9235 | G | 1 | 0 | 0 |  | 1 |
| 35.56839 | 111.656 | 1907.533 | -75.47 | R | 2403.86 | -66.9206 | G | 1 | 0 | 0 |  | 1 |
| 35.58449 | 111.624 | 1880.704 | -78 | R | 3940.94 | -75.7605 | R | 1 | 0 | 0 |  | 1 |
| 35.58451 | 111.624 | 1880.53 | -77 | R | 3942.07 | -75.7654 | R | 1 | 0 | 0 |  | 1 |
| 35.58451 | 111.624 | 1880.53 | -76.75 | R | 3942.07 | -75.7654 | R | 1 | 0 | 0 |  | 1 |
| 35.58227 | 111.624 | 1885.5 | -82.14 | R | 3703.54 | -74.6175 | R | 1 | 0 | 0 |  | 1 |
| 35.58227 | 111.624 | 1885.5 | -81.12 | R | 3703.54 | -74.6175 | R | 1 | 0 | 0 |  | 1 |
| 35.58228 | 111.624 | 1886.082 | -80.56 | R | 3704.28 | -74.621 | R | 1 | 0 | 0 |  | 1 |
| 35.58233 | - | 1886.866 | -79.9 | R | 3707.8 | -74.6384 | R | 1 | 0 | 0 |  | 1 |



| Measured Signal Strength Data |  |  |  |  | LIDAR Prediction |  |  | LIDARUnBlocked | Actual SS <br> is green | Cell B | Cell D |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 111.635 |  |  |  |  |  |  |  |  |  |  |  |
| 35.55557 | 111.635 | 1939.157 | -78.35 | R | 599.753 | -43.0675 | G | 1 | 0 | 0 |  | 1 |
| 35.55559 | 111.635 | 1939.408 | -64 | G | 599.828 | -43.0767 | G | 1 | 1 | 1 |  | 0 |
| 35.55554 | 111.635 | 1939.238 | -64 | G | 600.226 | -43.0697 | G | 1 | 1 | 1 |  | 0 |
| 35.55548 | 111.635 | 1939.681 | -67.5 | G | 602.732 | -43.119 | G | 1 | 1 | 1 |  | 0 |
| 35.55539 | 111.635 | 1940.661 | -67 | G | 606.934 | -43.2063 | G | 1 | 1 | 1 |  | 0 |
| 35.55533 | 111.635 | 1941.015 | -65 | G | 584.356 | -42.5992 | G | 1 | 1 | 1 |  | 0 |
| 35.5557 | 111.636 | 1940.153 | -64.2 | G | 587.166 | -42.796 | G | 1 | 1 | 1 |  | 0 |
| 35.55691 | 111.638 | 1935.736 | -63.43 | G | 626.93 | -43.5184 | G | 1 | 1 | 1 |  | 0 |
| 35.55711 | 111.638 | 1934.516 | -63.38 | G | 641.579 | -43.9009 | G | 1 | 1 | 1 |  | 0 |
| 35.55774 | -111.64 | 1931.766 | -62.8 | G | 701.723 | -45.406 | G | 1 | 1 | 1 |  | 0 |
| 35.55774 | -111.64 | 1931.466 | -61.09 | G | 701.943 | -45.4109 | G | 1 | 1 | 1 |  | 0 |
| 35.55772 | -111.64 | 1931.641 | -61.09 | G | 700.572 | -45.378 | G | 1 | 1 | 1 |  | 0 |
| 35.55601 | -111.64 | 1938.381 | -58.69 | G | 510.853 | -39.3779 | G | 1 | 1 | 1 |  | 0 |
| 35.55538 | -111.64 | 1943.086 | -58.93 | G | 441.156 | -36.8193 | G | 1 | 1 | 1 |  | 0 |
| 35.55451 | -111.64 | 1950.699 | -58.33 | G | 343.987 | -32.4742 | G | 1 | 1 | 1 |  | 0 |
| 35.55256 | 111.639 | 1962.008 | -58.06 | G | 127.998 | -14.9559 | G | 1 | 1 | 1 |  | 0 |





| Measured Signal Strength Data |  |  |  |  | LIDAR Prediction |  |  | LIDARUnBlocked | Actual SS is green | Cell B | Cell D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 35.59811 | 111.603 | 1799.052 | -31.35 | G | 107.352 | -11.9492 | G | 1 | 1 | 1 | 0 |
| 35.59827 | 111.603 | 1799.767 | -31.48 | G | 123.351 | -14.3642 | G | 1 | 1 | 1 | 0 |
| 35.59864 | 111.603 | 1800.754 | -47 | G | 172.922 | -20.2334 | G | 1 | 1 | 1 | 0 |
| 35.5987 | 111.603 | 1801.522 | -49 | G | 179.661 | -20.8974 | G | 1 | 1 | 1 | 0 |
| 35.59978 | 111.604 | 1804.958 | -47 | G | 304.914 | -30.0836 | G | 1 | 1 | 1 | 0 |
| 35.60096 | 111.603 | 1802.069 | -43.2 | G | 419.896 | -35.6376 | G | 1 | 1 | 1 | 0 |
| 35.60122 | 111.603 | 1801.424 | -42.09 | G | 445.525 | -36.6663 | G | 1 | 1 | 1 | 0 |
| 35.60143 | 111.603 | 1801.018 | -42.09 | G | 466.674 | -37.4714 | G | 1 | 1 | 1 | 0 |
| 35.60203 | 111.603 | 1800.149 | -42.46 | G | 529.567 | -39.6666 | G | 1 | 1 | 1 | 0 |
| 35.60477 | 111.587 | 1754.27 | -76.33 | R | 1566.94 | -59.1833 | G | 1 | 0 | 0 | 1 |
| 35.60477 | 111.587 | 1754.27 | -76.33 | R | 1566.94 | -59.1833 | G | 1 | 0 | 0 | 1 |
| 35.60477 | 111.587 | 1754.57 | -76.1 | R | 1566.02 | -59.1735 | G | 1 | 0 | 0 | 1 |
| 35.60477 | 111.587 | 1754.57 | -75.91 | R | 1566.02 | -59.1735 | G | 1 | 0 | 0 | 1 |
| 35.60477 | 111.587 | 1754.57 | -75.58 | R | 1566.02 | -59.1735 | G | 1 | 0 | 0 | 1 |






| Measured Signal Strength Data |  |  |  |  | LIDAR Prediction |  |  | $\begin{gathered} \text { LIDAR } \\ \hline \text { UnBlocked } \end{gathered}$ | Actual SS is green | Cell B | Cell D |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 111.603 |  |  |  |  |  |  |  |  |  |  |  |
| 35.59214 | $111.60{ }^{-}$ | 1807.11 | -68.82 | G | 610.301 | -42.7116 | G | 1 | 1 | 1 | 0 |  |
| 35.59253 | 111.604 | 1808.786 | -68.82 | G | 578.959 | -41.8415 | G | 1 | 1 | 1 | 0 |  |
| 35.59703 | 111.602 | 1794.186 | -39.75 | G | 50.6377 | 1.27128 | G | 1 | 1 | 1 | 0 |  |
| 35.59744 | 111.602 | 1792.836 | -38.2 | G | 9.10808 | 44.9637 | G | 1 | 1 | 1 | 0 |  |
| 35.59747 | 111.602 | 1792.77 | -37.33 | G | 8.60838 | 52.9507 | G | 1 | 1 | 1 | 0 |  |
| 35.59746 | 111.602 | 1791.606 | -36.86 | G | 9.79292 | 51.3892 | G | 1 | 1 | 1 | 0 |  |
| 35.59745 | 111.602 | 1792.362 | -36.38 | G | 9.26675 | 48.1163 | G | 1 | 1 | 1 | 0 |  |
|  |  |  |  |  |  |  |  |  |  | Cell B | Cell D |  |
|  |  |  |  |  |  |  |  |  |  | 109 | 79 |  |

## APPENDIX J NASA LTF VIEWER POTENTIAL IMPROVEMENTS

## Modeling Multipath Effects and Fresnel Diffraction

The current LTF prototype only models the direct path from transmitter to receiver, taking into account blockage by solid objects (such as terrain) and free space path loss using the Friis Transmission Equation.
This assumption only truly applies to a specific range of frequencies when modeling paths longer than a frequency-dependent cutoff distance where Fresnel diffraction can be considered negligible - roughly 150 m for 2.4 Ghz signals that were tested in this effort. It also ignores the effects of constructive and destructive interference due to reflected and diffracted radio waves, which might not be negligible in complex terrain such as craters and canyons.
This gap can be addressed by integrating a high-fidelity radio model that takes into account multipath effects. There are multiple government-purpose radio modeling packages (for example EMPIRE) that could potentially be adapted to use LTF as their terrain representation; these packages would benefit from the much higher fidelity of terrain that LTF provides, while providing a much more accurate radio prediction. The existing direct path model would still be important for real time predictions as performance may be an issue with more complex models and in open terrain the direct path model may be sufficient.

## Modeling Antenna Directionality

The current LTF prototype assumes optimal alignment and polarization between transmitter and receiver. For omnidirectional antennas this may be sufficient - though no antenna is perfectly omnidirectional - but for sector and directional antennas this assumption is problematic. This gap can be addressed by including properties characterizing antenna directionality on radio asset definitions, and by including antenna orientation as a property on individual antenna instances. The radio model would then take into account directionality of transmitter and receiver and predict correspondingly lower signals for misaligned antennas.

## Electromagnetic Interference

The current LTF prototype does not take into account any sources of electromagnetic interference. This would be a nontrivial gap to fully address; a characterization of the severity of various effects would be needed to understand which effects are relevant and which are negligible. Solar / cosmic radiation and high-powered Earth-based transmitters would be the most likely candidates for interference in lunar environments; many more factors would be relevant on Earth itself, and likely only solar / cosmic radiation would be relevant on a Martian environment.

## Traverse Planning Support

The current LTF prototype does not provide any support for traverse planning. Such a capability would be extremely useful for mission planning. rehearsal, and operation, especially if recommended traverse plans could take into account the communications layer to attempt to stay within radio coverage.
Traverse planning functionality is scheduled to be implemented under US Army RDECOM funding by April 2011; however there is currently some uncertainty as to when or whether the funding will be available. The scheduled functionality would take into account terrain mobility issues - e.g. steepness of terrain and surface material properties - as well as user-defined criteria. Ideally the interaction with the communications layer could be implemented via the user-defined criteria interface. The RAVEN linear feature capability could be used to easily provide support for interactive traverse planning guided by the automated LTF traverse planning algorithm the GUI would enable the user to interactively place waypoints via the same mechanism that radio relays are currently placed, and then use the scheduled LTF traverse planning functionality to suggest what LTF believes to be the optimal traverse plan through those waypoints.

## Analyzing Traverse Plans for Radio Coverage

The LTF prototype as delivered does not support displaying traverse plans, nor analyzing them for radio coverage along the traversal, though this functionality was initially demonstrated as proof of concept in the legacy LTF viewer. The two software baselines are entirely separate so porting the capability from one to the other was not feasible in this initial study.
To address this gap, use the RAVEN linear feature toolkit to display and create route plans, and re-implement the traversal radio coverage analysis using similar functionality as coverage mapping. This could even take a corridor width to analyze small corridors around the traverse plan. It would also be helpful to be able to import traverse plans from Google Earth, flat text records, and ESRI Shape Files, and to be capable of exporting traverse plans to these formats.

## Interaction Between Displayed and Saved Coverage Maps

The LTF prototype currently supports displaying coverage maps in the LTF/RAVEN viewer, and exporting them to standard image formats capable of being loaded in Google Earth. However, the two capabilities are entirely disjoint - maps generated for display cannot be saved, and maps saved to disk cannot be displayed within LTF/RAVEN. To accomplish both, the same map must be recalculated twice; a very expensive operation. To address this usability issue, the two coverage map calculations must be reconciled into a common framework where they both accept the same input data. Additionally, an interface for loading saved coverage maps must be developed, as well as an interface to save coverage maps originally only generated for display.

## Coverage Map Decal Display within LTF/RAVEN

The LTF prototype exports coverage maps to Google Earth as terrain surface decal textures, but is currently incapable of displaying such decals itself. Coverage maps are displayed within LTF/RAVEN as a cloud of sampled points, which when zoomed out obstruct the underlying terrain. This functionality was not available in the version of RAVEN used for the delivery, but recent development in RAVEN has made this functionality possible. Addressing this gap should be very straightforward.

## Change Colors Without Recalculating Maps

The LTF prototype supports specifying which colors to use for each signal range to be displayed. However, changing the colors currently requires completely recalculating the coverage map; an expensive operation. If coverage maps were generated as palette images rather than RGB images, changing the colors would be an instantaneous operation as long of the number of different colors did not change.

## Color Code Individual Relays

The LTF prototype applies the same signal color gradient to all relays. This is sufficient to show users what quality of signal is predicted, but not to which particular relay that signal originates from. Managing signal colors per relay would make it clear on the overall composite coverage map which particular relay provides the best coverage at each point.
To support this, a separate coverage map would be developed for each relay using its own color scheme. The final coverage map displayed to the user would be the composite view of all individual coverage maps. It would even be possible to show each relay coverage map as its own layer and enable/disable without recalculating any coverage maps.

## Radio Relay Placement Missing Some Interactions in LTF/RAVEN

The LTF prototype supports placing radio relays by interactive mouse selection or by entering coordinates. However, some other useful operations are only partially supported. For example, moving an existing relay can be accomplished by mouse dragging but not by coordinate entry. It is also not possible to use the mouse to select coordinates by clicking on the map or 3D view - coordinates can only be entered by hand. New relays support choosing which radio asset to use, but existing relays cannot be reassigned to use a different radio asset type; RAVEN itself supports this, but it was not implemented for the LTF Radio Tool.

## Switch Between Databases in LTF/RAVEN

The LTF prototype does not implement a way to close the current database and open a different one, requiring users to exit and restart the program to load a different database. This should not be difficult to implement but would require testing of the various LTF/RAVEN tools to make sure they do not attempt to hold onto database-specific resources.
Once this capability is in place, it would be helpful to add the capability to have multiple databases open at the same time so you can see the same locations side by side and compare correlation issues. However this would likely place severe strain on graphics resources and would require better terrain paging capability to be capable of unloading unseen terrain data from the graphics card, which may be nontrivial to implement.

## LIST OF REFERENCES

Baer, W., Campbell, T. R., Campos, J., Powell, W. (2008). Modeling Terrain for Geopairing and Casualty Assessment in OneTESS. Modelling and Simulation for Military Operations III, Proceedings of SPIE, 6965, 11 April 2008. doi:10.1117/12.777165.

Beran, B., Piasecki, M. (2009). Engineering New Paths to Water Data. Computers \& Geosciences,35(4). 753-760. doi:10.1016/j.cageo.2008.02.017.

Bhasin, K., Hayden, J. L. (2004). Evolutionary Space Communication Architecture for Human/Robotic Exploration and Science Missions. NASA Technical Manual - 2440213074, April 2004. AIP Conference Proceedings, 699. 893. doi:10.163/1/1649654.

Borkman, S., Peele, G., Cambell, C. (2007). An Optimized Synthetic Environment Representation Developed for OneTESS Live Training. Interservice/Industry Training, Simulation, and Education Conference, 2007.

Boulos, M. N. K., Scotch, M., Cheung, K.-H., Burden, D. (2008). Web GIS in Practice VI: A Demo Playlist of Geo-mashups for Public Health Neogrographers. International Journal of Health Geographic, 7(38). doi:10.1186/1476-072X-7-38

Campos, J., Borkman, S., Peele, G., Cambell, C. (2008). Toward Cross Domain Terrain Services. Interservice/Industry Training, Simulation, and Education Conference,2008.

Cavalcante, A. M., Jose de Sousa, M., Costa, J. C. W., Albuquerque, Frances, C. R. L., Cavalcante, G. P. (2007). A Parallel Approach for 3D Ray-Tracing Techniuqes in the Radio Propagation Prediction. Journal of Microwaves and Optoelectronics, Vol. 6(1).

Chen, A., Leptoukhm, G., Kempler, S., Di, L.. (2008). Visualization of NASA Earth Science Data in Google Earth. Conference Chairs Lin Liu, Xia LI, Kai Liu, Xinchang Zhang, Ajun Chen. Geoinformatics 2008 and Joint Conference on GIS and Built Environment: GeoSimulation and Virtual GIS Environments, Proceedings of SPIE, (7143). doi:10.1117/12.812610

Cohen, B. A., Nall, M. E., French, R. A., Muery, G., Lavoie, A. R. (2008). The Lunar Mapping and Modeling Project. Proceedings of Lunar and Planetary Science XXXIX, 2008. Retrieved January 16 from www.lpi.usra.edu/meetings/lpsc2008/pdf/1640.pdf.

Cohen, J. (1992). A Power Primer. Psychological Bulletin, Vol. 112(1), 155-159. doi:10.1016/0301-0511(92)90028-S

Connolly, J. F. (2006). Constellation Program Overview. NASA Presentation, 2006. http://www.nasa.gov/pdf/163092main_constellation_program_overview.pdf

Crues, E. Z. (2006). Distributed Simulation for Space Exploration. SISO Spring Simulation Interoperability Workshop 2006, Huntsville, AL, 2-7 April 2006. Retrieved December 132009 from http://hdl.handle.net/2060/20080031615.

Crues, E. Z., Chung, V. I., Blum, M. G., Bowman, J. D. (2007). The Distributed Space Exploration System (DSES). 2007 Spring Simulation Interoperability Workshop, Norfolk, VA, 25-30 Mar. 2007. Retrieved December 13, 2009 from http://hdl.handle.net/2060/20070006475

Daniel, Wayne W. (1978). Applied Nonparametric Statisitcs. Boston, MA: Houghton Mifflin Company.

Faul, F., Erdfelder, E., Buchner, A., \& Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160.

Faul, F., Erdfelder, E., Lang, A.-G., \& Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191.

Foore, Larry, Ida, Nathan. (July 2007). Path Loss Prediction Over the Lunar Surface Utilizing a Modified Longley-Rice Irregular Terrain Model, NASA/TM—2007-214825. Retrieved January 122009 from gltrs.grc.nasa.gov/reports/2007/TM-2007-214825.pdf

Hwu, S. U., Upanavage, M., Sham, C. C. (2008). Lunar Surface Propagation Modeling and Effects on Communications. $28^{\text {th }}$ Internation Communications Satellite Systems Conference, 10-12 June 2008, San Diego, CA.

Kamadjeu, R. (2009). Tracking the polio virus down the Congo River: a case study on the use of Google Earth in public health planning and mapping. International Journal of Health Graphics, 8(4). doi:10.1186/1476-072X-8-4

Kapur, K.C and Lamberson, L.R, (1977). Reliability in Engineering Design. New York, NY: John Wiley \& Sons.

Lavergnat, J., Sylvain, M.. (2000). Radio Wave Propagation Principles and Techniques. West Sussex, England: John Wiley \& Sons, Ltd.

Linmartz, J.-P. M. G. (1996). Wireless Communication, The Interactive Multimedia CD-ROM. Baltzer Science Publishers.

Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures. $28^{\text {th }}$ Internation Communications Satellite Systems Conference, 10-12 June 2008, San Diego, CA.

McLarnon, B. (1997). VHF/UHF/Microwave Radio Propagation: A Primer for Digital Experimenters. Proceedings of the 16th AARL and TAPR Digital Communications Conference (Baltimore MD, October 10-12, 1997).

Mendenhall, W., Sincich, T. (1995). Statistics for Engineering and the Sciences, (Fourth Ed). Upper Saddle River, NJ: Prentice-Hall, Inc.

Monell, D. (2007). NASA Constellation Program Modeling and Simulation (NASA presentation). Retrieved January 12, 2010 from www.msco.mil/files/DMSC/2007/Monell_NASA.ppt

NASA Fact Sheet, ATHLETE (All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer) Fact Sheet. (undated). Retrieved August 22, 2009 from http://www.nasa.gov/pdf/390539main_Athlete\ Fact\ Sheet.pdf

NASA Fact Sheet, LOLA Fact Sheet. (2009). Retrieved August 22, 2009 from http://lunar.gsfc.nasa.gov/lola/images/LOLA_Fact_Sheet.pdf.

NASA's Desert Research and Technology Studies (D-RATS), Retrieved December 8 2010 from http://science.ksc.nasa.gov/d-rats.

NASA/SP-2004-6113, Bioastronautics Roadmap, A Risk Reduction Strategy for Human Space Exploration. NASA Scientific and Information Program Office. (February 2005). Retrieved January 12 from http://bioastroroadmap.nasa.gov/\\Documents\\baselinedocument.pdf

Nath, S., Liu, J., Zhao, F. (2007). SensorMap for Wide-Area Sensor Webs. Computer, 40(7). 90-93.

National Aeronautics and Space Administration Small Business Innovation Research \& Technology Transfer 2009 Program Solicitations, Topic: X6 Lunar Operations (2009), Retrieved January 122010 from http://sbir.nasa.gov/SBIR/sbirsttr2009/solicitation/SBIR/TOPIC_X6.html

National Aeronautics and Space Administration The Vision for Space Exploration, (February 2004). Retrieved October 29 from http://www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf.

National Aeronautics and Space Administration PRESS Kit, Lunar Reconnaissance Orbiter (LRO): Leading NASA's Way Back to the Moon; Lunar Crater Observation and Sensing Satellite (LCROSS): NASA's Mission to Search for Water on the Moon. (June 2009). Retrieved February 2, 2010 from http://lunar.gsfc.nasa.gov/images/LRO_LCROSS_presskit.pdf

Simulation-based Engineering Science Final Report. (May 2006). National Science Foundation. Retrieved January 12 from
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf
Nayar, H., Jain, A., Balaram, J., Cameron, J., Lim, C., Mukherjee, R., Pomerantz, M., Reder, 1., Myint, S. , Serrano, N., Wall, S. (2009). Recent Developments on a Simulator for Lunar Surface Operations, AIAA SPACE 2009 Conference \& Exposition, September 2009.

PEO STRICOM, STRICOM Omnibus Contract Lot II (STOCII). Retrieved January 5 2010 from www.northropgrumman.com/contracts/pdf/STOC-II-Web-data.pdf.

Pomerantz, M. I., Jain, A., Myint, S.. (2009). Dspace: Real-time 3D Visualization System for Spacecraft Dynamics Simulation. Third IEEE International Conference on Space Mission Challenges for Information Technology, 2009. 237-245.
doi:10.1109/SMC-IT. 2009.36
Proctor, M., Guise, B., Peele, G. (2010). Feasibility of Rehearsal \& Assessment of Manned \& Robotic Celestial Body Missions. Final Report to Florida Space Grant Consortium.

Schier, J. (2008). NASA's Lunar Space Communication and Navigation Architecture. American Institute of Aeronautics and Astronautics 26th International Communications Satellite Systems Conference, September 242008.

Seybold, J. (2005). Introduction to RF Propagation. Hoboken, NJ: John Wiley \& Sons.
The Propagation Model. (2008). Retrieved July 29, 2010 from http://www.itu.int/ITU-D/tech/digital-broadcasting/MoscowDec2008/Presentations/Moscow_Dec08_File11.pdf

Tomayko, J. E., (1988). Computers in Space Flight: The NASA Experience. NASA Contract Report 182505, March 1988, Chapter9-2. Retrieved November 23, 2009 from http://history.nasa.gov/computers/Ch9-2.html

Tropos 5320 Outdoor Mesh Router Specification Sheet. (2009). Retrieved February 26, 2010 at http://www.tropos.com/pdf/datasheets/tropos_datasheet_5320.pdf.

Wall, S. (2007). Lunar Surface Operations Simulator Overview (NASA presentation), October 2007.

