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ABSTRACT 

 

The main objective of the thesis is to propose the methods of determining vibration behavior of 

carbon nanotubes (CNTs) using continuum models and finite element models. Secondary 

objective is to find the effect of van der Waals force on vibration of multiwalled carbon 

nanotubes . The study of vibration behavior of CNTs is important because of their potential 

engineering applications such as nano-mechanical resonators and tips of scanning probe 

instruments where they are subjected to mechanical vibrations. Continuum modeling is based on 

an elastic beam model. The interlayer van der Waals interactions are represented by Lennard-

Jones potential. In finite element modeling, single walled nanotubes (SWNTs) are modeled as 

finite beam elements and multi-walled nanotubes (MWNTs) as finite solid elements. The 

interlayer van der Waals interactions are simulated by distributed springs. The proposed finite 

element approach and continuum approach for vibration analysis of CNTs are verified by 

comparing the results with experimental and analytical results available in the literature. The 

results from both continuum and finite element modeling show that the effect of van der Waals 

force on vibration of MWNTs are  high for smaller aspect ratios irrespective of boundary 

conditions and number of layers; fixed nanotube than cantilever nanotube for the same 

dimensions ; five-walled nanotube than a double walled nanotube for the same aspect ratio. 



 iv

ACKNOWLEDGMENTS 

 

I would like to take this opportunity to express my sincere appreciation to my professor and 

advisor, Dr. Quan A. Wang, who has helped and guided me throughout this research. 

 

I am grateful to Dr. David Nicholson who taught me finite element techniques and Dr. Richard P. 

Zarda who taught me the skills in finite element modeling. I would like to thank  

Dr. Ranganathan Kumar who helped with financial assistantship for my graduate studies. 

 

I would also like to thank my thesis defense committee members; Dr. Kuo-Chi “Kurt” Lin and 

Dr. Gangyi Zhou. Last but not least, I would like to thank my parents, my family and my friends’ 

for their enduring support in my academic pursuit. 

 

 



 v

TABLE OF CONTENTS 

 

LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES....................................................................................................................... viii 

CHAPTER 1 INTRODUCTION .................................................................................................... 1 

1.1 Structure of CNTs................................................................................................................. 2 

1.1.1 Types of CNTs............................................................................................................... 3 

1.2 Manufacture of CNTs ........................................................................................................... 5 

1.3 Applications of CNTs ........................................................................................................... 6 

CHAPTER 2 LITERATURE REVIEW ......................................................................................... 9 

2.1 Literature Review on Modeling Techniques ........................................................................ 9 

2.2 Need for Vibration Analysis ............................................................................................... 11 

2.3 Literature Review on Vibration Analysis of CNTs ............................................................ 11 

2.4 Proposed Research.............................................................................................................. 13 

CHAPTER 3 CONTINUUM MODELING.................................................................................. 14 

3.1 Introduction......................................................................................................................... 14 

3.2 Bulk Properties of CNTs..................................................................................................... 16 

3.2.1 Van der Waals Force.................................................................................................... 16 

3.2.2 Bending Rigidity.......................................................................................................... 18 

3.2.3 Mass Density................................................................................................................ 19 

3.3 Continuum Models of CNTs............................................................................................... 20 

3.3.1 Continuum Model of Single Walled CNTs.................................................................. 20 



 vi

3.3.2 Continuum Model of Double Walled CNTs................................................................ 22 

3.3.3 Continuum Model of Five Walled CNTs..................................................................... 25 

CHAPTER 4 FINITE ELEMENT ANALYSIS ........................................................................... 28 

4.1 Introduction......................................................................................................................... 28 

4.2 Bulk Properties of Nanotube in FE Modeling .................................................................... 30 

4.3 Finite Element Modeling .................................................................................................... 31 

4.3.1 FE Model of Single Walled CNT ................................................................................ 31 

4.3.2 FE Model of Double Walled CNT............................................................................... 33 

4.3.3 FE Model of Five Walled CNT.................................................................................... 35 

4.4 Eigen Value Extraction....................................................................................................... 37 

4.5 Frequency Calculation ........................................................................................................ 38 

4.5.1 Frequency of Single walled CNT ................................................................................ 38 

4.5.2 Frequency of Double walled CNT............................................................................... 39 

CHAPTER 5 RESULTS AND DISCUSSION............................................................................. 41 

5.1 Continuum Model Results .................................................................................................. 41 

5.2 Finite Element Model Results............................................................................................. 52 

CHAPTER 6 CONCLUSION....................................................................................................... 64 

CHAPTER 7 FUTURE WORK.................................................................................................... 66 

REFERENCES ............................................................................................................................. 67 

 



 vii

LIST OF FIGURES 

Figure I Single Walled CNT........................................................................................................... 2 

Figure II Single and Multi Walled Nanotube ................................................................................. 3 

Figure III Chiral Vector of a Nanotube........................................................................................... 4 

Figure IV Types of Single Walled CNTs ....................................................................................... 5 

Figure V Types of Modeling of CNTs.......................................................................................... 10 

Figure VI A beam in bending ....................................................................................................... 14 

Figure VII Interlayer Spacing of Adjacent Nanotube................................................................... 20 

Figure VIII  B23 Beam Element................................................................................................... 31 

Figure IX Finite Element Model of SWNT .................................................................................. 32 

Figure X C3D8 – Linear Brick Element ....................................................................................... 33 

Figure XI Axial Spring Element ................................................................................................... 33 

Figure XII Finite Element Model of DWNT ................................................................................ 34 

Figure XIII Finite Element Model of Five Walled Nanotube....................................................... 35 

Figure XIV FE models for Single and Multi walled nanotubes ................................................... 36 

Figure XV First five modes of cantilevered SWNT (diameter=1.50 nm and length = 36.8 nm). 54 

Figure XVI  First three modes of fixed - fixed double walled carbon nanotube .......................... 56 

Figure XVII First three modes of cantilevered double walled carbon nanotube.......................... 58 

Figure XVIII Frequencies of Fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 

1.4 nm) .......................................................................................................................................... 59 

Figure XIX Frequencies of Cantilever DWNT (with inner diameter 0.7 nm. and the outer diameter 

1.4 nm)........................................................................................................................................... 60 



 viii

LIST OF TABLES 

Table I Frequencies of fixed DWNT (with inner diameter 0.7nm, outer diameter 1.4nm and 

c1=1e20 N/m2)............................................................................................................................... 41 

Table II Frequencies of fixed DWNT (with inner diameter 0.7nm and outer diameter 1.4nm)... 42 

Table III Frequencies of fixed DWNT (with inner diameter 0.7nm and outer diameter 1.4nm) . 43 

Table IV Frequencies of cantilever DWNT (with inner diameter 0.7nm, outer diameter 1.4nm 

and c1=1e20 N/m2)........................................................................................................................ 44 

Table V Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 1.4nm)

....................................................................................................................................................... 45 

Table VI Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 

1.4nm) ........................................................................................................................................... 46 

Table VII Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer diameter 

3.5 nm and L/d5 = 10) ................................................................................................................... 48 

Table VIII Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer 

diameter 3.5 nm and L/d5 = 20) .................................................................................................... 49 

Table IX Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer diameter 

3.5 nm and L/d5 = 50) ................................................................................................................... 50 

Table X Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm and the outer 

diameter 3.5 nm) ........................................................................................................................... 51 

Table XI Frequency of cantilever SWNT..................................................................................... 52 

Table XII Frequency of cantilever SWNT.................................................................................... 52 

Table XIII Frequency of cantilever SWNT .................................................................................. 52 

Table XIV Frequencies of cantilever SWNT (diameter = 1.50 nm and length = 36.8 nm) ......... 52 



 ix

Table XV Frequencies of fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 

nm) ................................................................................................................................................ 55 

Table XVI Frequencies of fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 

nm) ................................................................................................................................................ 55 

Table XVII Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 

1.4nm ............................................................................................................................................ 57 

Table XVIII Frequencies of Cantilever DWNT (with inner diameter 0.7 nm. and the outer 

diameter 1.4 nm) ........................................................................................................................... 57 

Table XIX Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 

diameter 3.5 nm) ........................................................................................................................... 62 

Table XX Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 

diameter 3.5 nm) ........................................................................................................................... 62 

Table XXI Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 

diameter 3.5 nm) ........................................................................................................................... 63 



 1

CHAPTER 1 INTRODUCTION 

 

 

DREXLER says, “Coal and diamonds, sand and computer chips, cancer and healthy tissues: 

throughout the history, variations in the arrangement of atoms have distinguished the cheap from 

the cherished, the diseased from the healthy. Arranged one way the atoms make up soil, air and 

water: arranged other they make ripe strawberries. Arranged one way they make up homes and 

fresh air, arranged another they make up ash and smoke! Our ability to arrange atoms lies at the 

foundation of nanotechnology” 

 

Iijima discovered CNTs in 1991. The prefix “nano” corresponds to a basic unit on a length scale, 

meaning 10−9 meters, which is a hundred to a thousand times smaller than a typical biological 

cell or bacterium. At the nanometer length scale, the dimensions of the materials and devices 

begin to reach the limit of 10 to 100s of atoms, wherein entirely new physical and chemical 

effects are observed; and possibilities arise for the next generation of cutting-edge products 

based on the ultimate miniaturization or so called “nanoization” of the technology. CNTs have a 

variety of applications because of their distinctive molecular structure and their fascinating 

mechanical and electrical properties. 
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1.1 Structure of CNTs 

 

The structure of CNTs can be considered as arising from the folding of one or more layers of 

graphite to form a cylinder composed of carbon hexagons. These nanotubes have a hemispherical 

"cap" at each end of the cylinder as shown in the figure I. They are light, flexible, thermally 

stabile, and are chemically inert.  

 

 

Figure I Single Walled CNT 

 

Nanotubes are composed entirely of sp2 bonds, which are stronger than the sp3 bonds found in 

diamond. This bonding structure provides them with their unique strength. Nanotubes align 

themselves into ropes held together by van der Waals force. Under high pressure, nanotubes can 

merge together, trading some sp2 bonds for sp3 bonds, giving great possibility for producing 

strong, unlimited-length wires through high-pressure nanotubes linking. 
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1.1.1 Types of CNTs 

 

Basically nanotubes are two types depending upon the layers as shown in figure II. They are 

1. Single walled nanotube (SWNT) 

2. Multi walled nanotube (MWNT) 

 

Figure II Single and Multi Walled Nanotube 

 
 
 

Nanotubes can be categorized into three types according to their structure. They are  

1. Arm-Chair 

2. Chiral 

3. Zigzag 

Nanotubes form different types, which can be described by the chiral vector (n, m), where n and 

m are integers of the vector equation Ch = na1 + ma2. The chiral vector is determined as shown 

by the figure III.  
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Figure III Chiral Vector of a Nanotube 

 

Imagine that the nanotube is unraveled into a planar sheet. Draw two continuous lines along the 

tube axis where the separation takes place. In other words, if we cut along the two continuous 

solid lines and then match their ends together in a cylinder, you get the nanotube that you started 

with. Now, find any point on one of the red lines that intersects one of the carbon atoms (point 

A). Next, draw the Armchair line (n, n) which travels across each hexagon, separating them into 

two equal halves. Now that you have the armchair line drawn, find a point along the other tube 

axis that intersects a carbon atom nearest to the Armchair line (point B). Now connect A and B 

with our chiral vector Ch .The wrapping angle; (not shown) is formed between Ch and the 

Armchair line. If Ch lies along the Armchair line (=0°), then it is called an "Armchair" nanotube. 

If =30°, then the tube is of the "zigzag" type. Otherwise, if 0°<<30° then it is a "chiral" tube. The 
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values of n and m determine the chirality, or "twist" of the nanotube. The chirality in turn affects 

the conductance of the nanotube, its density, its lattice structure, and other properties. Figure IV 

shows the different types of carbon nanotubes according to their structure. 

 

 

Figure IV Types of Single Walled CNTs 

 

1.2 Manufacture of CNTs 

 

CNTs can be manufactured by the following methods 

a. Arc discharge 

b. Laser Ablation 

c. Chemical Vapour Deposition 
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Arc discharge involves an electrical discharge from a carbon-based electrode in a suitable 

atmosphere to produce both single and multi-wall tubes of high quality but in low quantities. 

Laser ablation uses a high-power laser to vaporise a graphite source loaded with a metal catalyst. 

The carbon in the graphite reforms as predominantly single-wall nanotubes on the metal catalyst 

particles. 

Chemical vapour deposition (CVD) is where a hydrocarbon feedstock is reacted with a suitable 

metal-based catalyst in a hot furnace to ‘grow’ nanotubes which are subsequently removed from 

the substrate and catalyst by a simple acid wash. In a typical chemical vapor deposition process 

the substrate is exposed to one or more volatile precursors, which react and/or decompose on the 

substrate surface to produce the desired deposit. The chemical vapor deposition method has 

shown the most promise in being able to produce larger quantities of nanotube (compared to the 

other methods) at lower cost. 

 

1.3 Applications of CNTs 

 

CNTs exhibit unique electronic and mechanical properties because of their curvature. Because of 

their inimitable properties, CNTs find a number of interesting applications in different fields of 

engineering. Some of the applications discussed by Ajayan et al. (2001) are as follows 

 

http://en.wikipedia.org/wiki/Substrate


 7

a. Carbon nanotubes have the right combination of properties – nanometer size diameter, 

structural integrity, high electrical conductivity, and chemical stability – that makes good 

electron emitters. 

b. Prototype matrix-addressable diode flat panel displays can be fabricated using CNTs as 

the electron emission source.  

c. Nanotubes can be used as reinforcements in composite materials. Nanotube 

reinforcements will increase the toughness of the composites by absorbing energy during 

their highly flexible elastic behavior. 

d. Nanotube filled polymers can be used in electromagnetic induction (EMI) shielding 

applications. 

e. Because of its hollow geometry and nano scale diameter, it has been predicted that the 

carbon nanotubes can store liquid and gas in the inner cores through a capillary effect. 

f. CNT’s because of their extremely small sizes, high conductivity, high mechanical 

strength and flexibility, they are used in STM, AFM instruments as well as other 

scanning probe instruments, such as an electrostatic force microscope. 

g. MWNT and SWNT tips were used in a tapping mode to image biological molecules such 

as amyloid-b-protofibrils with resolution never achieved before. 

h. Nanotubes with controlled helicities could be used as unique probes for molecular 

recognition, based on the helicity and dimensions, which are recognized by organic 

molecules of comparable length scales. 

i. CNTs have relatively straight and narrow channels in their cores which can be filled with 

foreign materials to fabricate one-dimensional nanowires. 
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j. Since the electrical resistivities of SNWTs were found to change sensitively on exposure 

to gaseous ambient, hence CNTs can be used as chemical sensors. 

 

They can be used to dissipate heat from tiny computer chips. Nanotube composite motor brushes 

are better lubricated, stronger and more accurately moldable. CNTs have already been used as 

composite fibers in polymers and concrete to improve their mechanical, thermal and electrical 

properties of the bulk product. Nanotubes are critical material that enables construction of space 

elevators from earth to geosynchronous orbit. 

 

Gao et al., (2000) found that CNTs have the highest reversible capacity of any carbon material 

for use in lithium-ion batteries. Because of their negligible weight, they find application in space 

applications. Since nanotubes are similar scale size of DNA, promising possibilities can be 

expected by introducing them to reinforce tissue scaffolds. CNTs have a high surface area and 

their ability to attach to any chemical species to their sidewalls provides an opportunity for 

unique catalyst supports.  
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Literature Review on Modeling Techniques 

 

Extensive research has been carried out in the field of nanotubes. The first method that has been 

used by researchers to study the properties of CNTs is experimental method (Poncharal et al., 

1999; Krishnan et al., 1998). Though the experimental method gave accurate results, it is very 

time consuming and costlier. The second method that has been used by researchers is atomic 

modeling like molecular dynamics (Iijma et al., 1996) since nanoeffects and accurate solutions 

for nano-scale size problems are possible by this modeling. But Molecular Dynamic (MD) 

simulations are only limited to systems with a smaller number of molecules and atoms. So only 

single walled nanotubes with small size can be simulated using molecular dynamics.  

 

The third method that has been used by researchers in studying CNT is continuum modeling  

(Yakobson et al., 1996; Ru et al., 2000; Yoon et al., 2002; Wang et al., 2005). The main issue in 

studying CNTs using continuum models was determining the bulk properties (at macroscopic 

level) corresponding to molecular properties of CNT. Wang et al. (2005) explored and developed 

benchmark for the applicability of shell model and beam model in CNT stability results. They 

also proposed an independent flexural stiffness constant of a nanotube when elastic beam model 

is used. Ru et al. (2000) used a continuum beam model to study the column buckling of nanotube.  

Yakobson et al. (1996) used a continuum shell model to study buckling of nanotubes. 
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 Different types of CNT models such as molecular dynamics model, continuum shell model and 

continuum solid model are shown in the figure V. 

 

Figure V Types of Modeling of CNTs 

 

Harik et al. (2002) studied about the applicability of continuum beam models for studying the 

behaviors of CNTs. He concluded that continuum beam model can be used for the qualitative 

analysis of CNTs when the ratio of length and diameter of nanotube is greater than 10. As the 

number of walls of CNTs increases it becomes complex to study its behavior using experiments, 

molecular dynamics and continuum models.   

 

The fourth method that has been used by researchers in studying CNT is finite element method. 

Very little work had been done in the field of finite element analysis of CNTs. 

Pantano et al. (2003) modeled individual tubes as shell finite elements and the effects of van der 

Waals forces were simulated using special interaction elements. He studied the mechanics of 
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wrinkling of multiwalled CNTs demonstrating the role of multiwalled shell structure and 

interwall van der Waals interactions in governing bucking and postbuckling behavior.  

Liu et al. (2004) used a solid cylindrical finite element model for studying the rippling of a 

nanobeam under pure bending.  

 

2.2 Need for Vibration Analysis 

 

CNTs are widely used as tips of AFM, STM instruments as well as other scanning probe 

instrument. As the nanotube tip touches the sample, it induces mechanical vibrations. Hence 

there is a greater need to study the vibration behavior of single and multi walled CNTs.  CNTs 

are also used as nanomechanical resonators. Snow et al (2002) studied the stability of imaging 

using single-wall CNTs as probes for atomic force microscopy. They suggested that thicker, 

multiwalled probes or very short single-wall probes extending from nanotube bundles might be 

better for imaging highly textured surfaces.   

 

2.3 Literature Review on Vibration Analysis of CNTs 

 

Researchers have been using two methods to study the vibration behavior of CNTs namely 

experimental method and continuum modeling method. Poncharal et al., 1999 and Krishnan et al., 

1998 used experimental method. Poncharal et al. (1999) measured the fundamental resonance 

frequency of multiwalled CNTs induced by an alternating electric field in a transmission electron 

microscope and they then calculated the axial elastic modulus using the modulus frequency 
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relation resulting from the classical analysis of linear elasticity for cantilevered beams. 

 Krishnan et al. (1998) estimated the stiffness of single walled CNTs by observing their free 

standing room temperature vibrations in a transmission on electron microscope. The nanotube 

dimensions and vibration amplitude were measured from electron micrographs and it was 

assumed that the vibration modes were driven stochastically and were chosen of a clamped 

cantilever. 

 

Yoon et al. (2002) and Wang et al. (2005) used continuum models for studying vibration 

behavior of CNTs. Yoon et al. (2002) used a multiple elastic model to study vibration behaviors 

of double and five-walled nanotube. They calculated non-coaxial resonant frequencies and the 

associated non-coaxial vibration modes. They found that the first few noncoaxial resonant 

frequencies are found to be insensitive to vibration modes, length of MWNT’s and the end 

conditions, while they decrease with the number of nested layers. They also found that internal 

non-coaxial resonance will be excited at the high natural frequencies, and MWNT’s cannot 

maintain their concentric structure at ultra high frequencies. Wang et al. (2005) found the 

frequencies of cantilever SWNT and compared the results with the experimental results of  

Krishnan et al. (1998). 
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2.4 Proposed Research 

 

The research in this thesis proposes two effective methods of determining natural frequencies of 

SWNT’s and MWNT’s. The first method is using continuum model. The proposed continuum 

model unlike continuum model of Yoon et al. (2002) doesn’t use straight normal postulate for 

finding the bending rigidity of CNT instead it calculates the bending rigidity by the method  

proposed by Wang et al. (2005). 

 

The second method proposed for determining natural frequencies of CNTs  is finite element 

modeling, where single walled nanotubes (SWNTs) are modeled as finite beam elements and 

multi-walled nanotubes (MWNTs) as finite solid elements. The proposed finite element model 

for MWNT is simple and effective. The model is simple because the van der Waals force is 

simulated using distributed springs and the model is effective because it also predicts the effect 

of van der Waals force on vibration of MWNTs. 
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CHAPTER 3 CONTINUUM MODELING 

 

3.1 Introduction 

 

CNTs can be considered as Euler-Bernoulli beam to study its vibration behavior. According to 

Euler-Bernoulli beam theory, the equation of motion for a forced vibration of a uniform beam as 

shown in figure VI is given by 

 

 

Figure VI A beam in bending  
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Where Eb is the young’s modulus, Ib is the moment of inertia of the beam cross-section about y-

axis, bρ is the mass density, ),( txfb  is the external force, ),( txwb  is the flexural deflection of 

the beam and A is the area of the cross-section of the beam. 

 

The governing equation for a SWNT to study its natural frequencies is given from  

Euler-Bernoulli beam model when 0),( =txf (no external force) is substituted in eq (1) 
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Where E is the young’s modulus of SWNT, I is the moment of inertia of SWNT, ρ  is the mass 

density of SWNT, ),( txw  is the flexural deflection of SWNT and A is the area of the cross-

section of SWNT 

 

For a MWNT, a multiple elastic beam model is suggested in which each of the nested nanotubes 

is described as an individual elastic beam and the deflections of all nested tubes are coupled 

through the van der Waals interaction between any two adjacent tubes. The force term is given 

by product of van der Waals interaction co-efficient and the deflection. The governing equations 

for a MWNT from Euler-Bernoulli beam model are given by 
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where subscript 1,2 and N stand for the variables in first (innermost) tube, second tube and the 

Nth tube. Where E is the young’s modulus of CNT, ρ  is the mass density of CNT, IN is the 

moment of inertia of Nth CNT, Nw  is the flexural deflection of Nth CNT and AN is the area of the 

cross-section of Nth CNT, Nc  is the van der Waals force between Nth CNT and (N+1)th CNT. 

 

3.2 Bulk Properties of CNTs 

 

3.2.1 Van der Waals Force 

 

The multiple layers of graphite sheets in a multi walled CNTs are held together by van der Waals 

forces. The van der Waals force is a non-bonded interaction, and it can be an attraction force or a 

repulsion force. The attraction occurs when a pair of atoms approaches each other within a 

certain distance. The repulsion occurs when the distance between the interacting atoms becomes 

less than the sum of their contact radii. The van der Waals force is modeled using Lennard-Jones 

potential. 
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van der Waals force (c1)between first (innermost) tube and second tube is given by 
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where ir  is the inter-atomic distance, )(rV  is Lennard-Jones Potential and ρ  is the density. 

 

Lennard-Jones Potential gives the potential energy between two physically interacting non-

bonded carbon atoms in graphite. Lennard-Jones Potential is given by 
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where σ ,ε  are Lennard-Jones constants  
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 r is the distance between two atoms having the Lennard-Jones interaction.  

 

The Lennard-Jones Potential is differentiated twice with respect to inter-atomic distance (r) 
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The density is given by 

⎥
⎦

⎤
⎢
⎣

⎡
= 29

)3(4
r

sqrtρ          (11) 

 

Substituting eq (10) and eq (11) in eq (4), van der Waals force between innermost tube ( id ) and 

outer tube ( od ) is given by 

)
2

(2.0647x10
9

)3(42 20
22

2

1
io

i
dd

r
sqrtx

r
Vrc

+
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=  N/m2    (12) 

 

3.2.2 Bending Rigidity 

 

Krishnan et al., (1998) used the straight normal postulate to calculate the bending stiffness of 

nanotubes. Straight normal postulate states that the longitudinal deformation at any point in the 

flexural direction is proportional to the distance between that point to the mid-plane of mid-

surface of the structure). However, the atomic layer in a SWNT cannot be divided into different 

layers and the flexural strain or deformation are actually concentrated on a narrow region around 

the center-line of the atom layer, rather than distributed linearly over the thickness direction. 



 19

Hence it is inappropriate to assume straight normal postulate for CNTs. Hence Wang et al. (2005) 

proposed that since the representative thickness of the nanotube layer is 0.066 nm 

(Yakobson et al., 1996) which is much smaller than the diameter of the tube, the stiffness of the 

nanotube beam structure for a SWNT can be expressed as follows 

( )44

64 io ddEEI −=
π            (13) 

 

Substituting the equality hdd io 2=−  and ddd io ≈≈  

33

88
dCdEtEI ππ

==          (14) 

Where od  is the outer diameter, id is the inner diameter, 2/360 mJCEt ==  is the in-plane 

stiffness of CNT. 

 

3.2.3 Mass Density 

 

Yoon et al., (2004) proposed 3/3.1 cmg=ρ . The cross area of the nanotube is given by dtA π= . 

Since a SWNT is rolled up from a sheet of graphite, the value of thickness in calculating the 

cross area of the CNT should be used from the equilibrium interlayer spacing of adjacent 

nanotubes, i.e.  nm34.0t = , which is shown in figure VII. 
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Figure VII Interlayer Spacing of Adjacent Nanotube 

 

3.3 Continuum Models of CNTs 

 

3.3.1 Continuum Model of Single Walled CNTs 

 

Equation for SWNT is given by 

0),(),(
2

2

4

4

=
∂

∂
+

∂
∂

x
txwA

x
txwEI ρ        (15) 

 

Substituting the bending stiffness proposed by Wang et al. (2004), where 3

8
dCEI π

=  

0),(),(
8 2

2

4

4
3 =

∂
∂

+
∂

∂
t

txwA
x

txwCd ρπ        (16) 

 

The free vibration solution can be found using the method of separation of variables 

)()(),( tTxWtxw =          (17) 
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Substituting in the eq (17) in eq (16) 

0)()()()(
8 2

2

4

4
3 =+ xW

dt
tTdAtT

dx
xWdCd ρπ       (18) 

2
4

43

)(
1)(

8
ω

ρ
π

=⎥
⎦

⎤
⎢
⎣

⎡
xWdx

xWd
A

Cd        (19) 

0)()(
8

2
4

43

=− xW
dx

xWd
A

Cd ω
ρ

π        (20) 

 

By substituting  04
4

4

=− W
dx

Wd β     ; Where 2

2
4

q
ωβ =   & 

A
Cdq
ρ

π
8

3
2 =    (21) 

0)()(
8

24
3

=− xWxW
A

Cd ωβ
ρ

π        (22) 

A
Cd
ρ

πβω
3

42

8
=          (23) 

 

Substituting Area, dtA π=  and ( )22 Lββ =  

td
Cd

L ρπ
πβω
8

3

2

2

=          (24) 

 

The natural frequency for a SWNT is given by 

t
Cd

L ρ
βω

8

2

2

2

=          (25) 

where β depends on end conditions and mode number. For fixed end conditions β  is 4.730041, 

7.853205, 10.995608, 14.137165 and 17.278 for first five mode shapes respectively. 
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 For cantilever end conditions β is 1.875104, 4.730041, 7.853205, 10.995608 and 14.137165 for 

first five mode shapes respectively. 

 

3.3.2 Continuum Model of Double Walled CNTs 

 

Equations for vibration of double walled CNTs are  

2
1

2

14
1

4

1121 )(
t
wA

x
wEIwwc

∂
∂

+
∂
∂

=− ρ        (26) 

2
2

2

24
2

4

2121 )(
t
wA

x
wEIwwc

∂
∂

+
∂
∂

=−− ρ       (27) 

 

Substituting the bending stiffness proposed by Wang et al. (2004), where 3

8
dCEI π

=  

2
1

2

14
1

4
3

1121 8
)(

t
wA

x
wCdwwc

∂
∂

+
∂
∂

=− ρπ       (28) 

2
2

2

24
2

4
3

2121 8
)(

t
wA

x
wCdwwc

∂
∂

+
∂
∂

=−− ρπ       (29) 

 

The free vibration solution can be found using the method of separation of variables 

)()(),( tTxWtxw II =          (30) 
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Substituting in the eq (30) into eqs (28) & (29) 

[ ] 0)()()()(
8 1

2
11214

1
4

3
1 =−−− xWAxWxWc

dx
xWdCd ωρπ     (31) 

[ ] 0)()()()(
8 2

2
21214

2
4

3
2 =−−+ xWAxWxWc

dx
xWdCd ωρπ     (32) 

 

 Assuming that all the nested tubes have the same vibration modes Wi(x), determined by     

0)(
)( 4

4

4

=− xW
dx

xWd
i

i β            (33) 

Assuming     )()(1 xaWxW =          (34) 

                    )()(2 xbWxW =         (35) 

 

Substituting the eqs (33) to (35) in eq (31) and eq (32), we have an Eigen value problem 

[ ] 0
8 1

2
11

43
1 =−⎥⎦

⎤
⎢⎣
⎡ −+ bcaAcCd ωρβπ       (36) 

[ ] 0
8

2
21

43
21 =⎥⎦

⎤
⎢⎣
⎡ −++− bAcCdac ωρβπ       (37) 

 

For a non-trivial solutions of a and b, the determinant of their co-efficient must be zero. 

0

8

8
2

21
43

21

1
2

112
43

1
=

−+−

−−+

ωρβπ

ωρβπ

AcCdc

cAcCd
    (38) 
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Expanding the determinant gives the frequency equation 

0
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)(8
8

8
8

8
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1
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⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
+⎟

⎟
⎠

⎞
⎜
⎜
⎝
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8
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ρπ
βπ

ρπ
βπ

ξ
+

+
+

=      (39a) 
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3
1

23
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3
11

44

64
)(8

ddtL
ddCddcCL

ρπ
βπβ

ζ
++

=      (39b) 

 

Substituting eq (39a) and eq (39b), eq (39) becomes 

024 =+− ζξωω          (40) 

 

The frequencies are given by 

)4(
2
1 22

0 ζξξω −−=n  & )4(
2
1 22

1 ζξξω −+=n     (41) 
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3.3.3 Continuum Model of Five Walled CNTs 

 

The governing equations for five walled carbon nanotube is given by  

2
1

2

14
1

4

1121 )(
t
wA

x
wEIwwc

∂
∂

+
∂
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=− ρ        (42) 

2
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2

24
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2121232 )()(
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x
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∂
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2
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4

3232343 )()(
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w
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2
4

2
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4

4
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wEIwwcwwc

∂
∂

+
∂
∂

=−−− ρ      (45) 

2
5

2
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4

5454 )(
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EIwwc
∂
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+
∂
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Substituting the bending stiffness proposed by Wang et al. (2004), where 3

8
dCEI π

=  

2
1

2

14
1

4
3

1121 8
)(

t
wA

x
wCdwwc

∂
∂

+
∂
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2
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2121232 8
)()(

t
wA

x
wCdwwcwwc

∂
∂

+
∂
∂

=−−− ρπ     (48)   

2
3

2

34
3

4
3

3232343 8
)()(

t
w

A
x
w

Cdwwcwwc
∂
∂

+
∂
∂

=−−− ρπ     (49) 

2
4

2

44
4

4
3

4343454 8
)()(

t
wA

x
wCdwwcwwc

∂
∂

+
∂
∂

=−−− ρπ     (50) 



 26

2
5

2

54
5

4
3

5454 8
)(

t
w

A
x
w

Cdwwc
∂
∂

+
∂
∂

=−− ρπ       (51) 

 

The free vibration solution can be found using the method of separation of variables 

)()(),( tTxWtxw II =          (52) 

 

Substituting in the eq (52) into eqs (47) to (51) 

[ ] 0)()()()(
8 1

2
11214

1
4

3
1 =−−− xWAxWxWc

dx
xWdCd ωρπ     (53) 

[ ] [ ] 0)()()()()()(
8 2

2
21212324

2
4

3
2 =−−+−− xWAxWxWcxWxWc

dx
xWdCd ωρπ  (54) 

[ ] [ ] 0)()()()()(
)(

8 3
2

32323434
3

4
3

3 =−−+−− xWAxWxWcxWxWc
dx

xWd
Cd ωρπ  (55) 

[ ] [ ] 0)()()()()()(
8 4

2
43434544

4
4

3
4 =−−+−− xWAxWxWcxWxWc

dx
xWdCd ωρπ  (56) 

[ ] 0)()()(
)(

8 5
2

54544
5

4
3

5 =−−+ xWAxWxWc
dx

xWd
Cd ωρπ     (57) 

 

 

 Assuming that all the nested tubes have the same vibration modes Wi(x), determined by     

0)(
)( 4

4

4

=− xW
dx

xWd
i

i β            (58) 

Assuming     )()(1 xaWxW =          (59) 

                    )()(2 xbWxW =         (60) 
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      )()(3 xcWxW =         (61) 

                  )()(4 xdWxW =         (62) 

      )()(5 xeWxW =         (63) 

 

Substituting the eqs (58) to (63) in eqs (53) to (57), we have an Eigen value problem 

[ ] 0
8 1

2
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1 =−⎥⎦

⎤
⎢⎣
⎡ −+ bcaAcCd ωρβπ       (64) 

[ ] [ ] 0
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2
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⎤
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[ ] [ ] 0
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2
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2
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[ ] 0
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2
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⎤
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⎡ −++− eAcCddc ωρβπ       (68) 

 

For a non-trivial solutions of a, b, c, d and e the determinant of their co-efficient must be zero. 

Expanding the determinant will give the frequency equation 
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 28

CHAPTER 4 FINITE ELEMENT ANALYSIS  

 

4.1 Introduction 

 

The finite element method (FEM) has become a powerful numerical method for analyzing 

physical phenomena in the fields of structural, solid and fluid mechanics. In the last almost four 

decades, the finite element method (FEM) has become the prevalent technique used for 

analyzing physical phenomena in the field of structural, solid and fluid mechanics as well as for 

solution of field problems. The FEM is a useful tool because one can use it to find out facts or 

study the process in a way not possible with any other tool. 

 

The computational approach is an important tool in the development of nano composites and 

their properties. It helps to understand and design these novel materials. By means of finite 

element method, it is possible to identify mechanical, thermal and electrical properties and to 

study their structural responses under various loads. 

 

Finite element analysis enables to create parameters and boundary conditions, which are not 

accessible experimentally, or analytically to be investigated. Finite element analysis has three 

basic stages. They are Pre-Processing, Analysis, Post-Processing 

 

Basically pre-processing involves discretization of domain of interest into finite elements. The 

elements are connected to each other through nodes. Discretization is one of the basic and 
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important steps in finite element analysis. The quality of output will depend upon the quality of 

the element and quality of meshing. The basic unknown parameter is the displacement at the 

nodal points. The next step is defining physical and material properties for the elements. All 

these steps come under meshing. Then loads and boundary conditions are applied. 

 

The analysis stage involves stiffness generation, mass generation, stiffness modification and 

solution of equations resulting in the evaluation of nodal variables. Other derived quantities such 

as gradients or stresses may be evaluated at this stage. A stiffness and mass matrix are formed for 

all the elements and are assembled to obtain the global matrices. Then by applying the boundary 

conditions, the global matrices are modified and the displacements are calculated by solving the 

finite element equations, which in turn is used to calculate the stresses and strains. The post-

processing stage is concerned with interrogating the results of the analysis. In case of free 

vibration this will be the natural frequencies and modes of free vibration. 

 

Pre-processing for all FE models of SWNT and MWNT are done using finite element software  

I-DEAS. Preprocessing includes discretization of the structure, applying material and physical 

properties, applying loads and boundary conditions. Analysis and Post-processing, where done 

using powerful finite element software called ABAQUS.  
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4.2 Bulk Properties of Nanotube in FE Modeling 

 

Material properties of CNTs should be chosen correctly to simulate the actual nano-effects. In 

continuum modeling, we use thickness (t) of 0.34 while calculating the area of the nanotube and 

thickness (t) of 0.066nm while calculating bending rigidity. The young’s modulus used in 

continuum modeling is 5 Tpa. In finite element modeling we can’t use two thicknesses so we 

have to use a constant thickness (ts) of 0.34 nm. The young’s modulus of nanotube is modified to 

1 Tpa so that in-plane stiffness(C) of nanotube is maintained as 360 J/m2. Since finite element 

codes cannot be directly applied to a nano-scale because of their smaller dimensions, so the 

nano-scale problem has to be scaled up for solving using finite element codes. The nano model is 

scaled to a model, which is in meter-scale. 
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4.3 Finite Element Modeling 

 

4.3.1 FE Model of Single Walled CNT 

 

The finite element modeling of single walled nanotube is easy since there is no van der Waals 

force.  Abaqus Euler-Bernoulli beams B23 (2 noded cubic beam) shown in figure VIII were used 

to model single walled nanotube.  

 

 

Figure VIII  B23 Beam Element 

 

This beam element is a one-dimensional line element that has stiffness associated with 

deformation of the line (Beam’s axis). These deformations consist of axial stretch; curvature 

change (Bending) and torsion. This element does not allow transverse shear deformation; plane 

section initially normal to the beam’s axis remains plane and normal to the beam axis. The Euler-

Bernoulli beam elements use cubic interpolation functions. The main advantage of this element 

is that they are geometrically simple, few degrees of freedom and computational time is less. 
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First step in finite element model of SWNT is to create a set of 20 nodes. Then Abaqus pipe 

section is selected as the beam cross-section. 

 

Second step is creating 19 beam elements between the nodes. The third step is to assign 

appropriate material properties to the elements. The fourth step is fixing the left most node of the 

beam so that it simulates cantilever boundary condition. The fifth step is to select Lanzcos Eigen 

value extraction method. The sixth step is to solve for Eigen values. The final step is to post 

process the results obtained. Figure IX shows the finite element model of SWNT. 

 

 

Figure IX Finite Element Model of SWNT 
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4.3.2 FE Model of Double Walled CNT 

 

For double walled nanotube, 8 noded linear solid brick elements shown in figure X were used for 

modeling the two tubes.  

 

Figure X C3D8 – Linear Brick Element 

 

From structural mechanics viewpoint, the effect of van der Waals force is like a distributed 

spring with stiffness Nc  attached at the interface of inner and outer tube. A special spring 

element called axial spring element are used to simulate the effect of van der Waals force. Figure 

XI shows the axial spring element. This special spring element’s line of action is the line joining 

the two nodes. This spring element introduces stiffness between two degrees of freedom without 

introducing an associated mass.  

 

 

Figure XI Axial Spring Element 
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First a quarter of the model is modeled and then it is reflected to make the complete model, by 

this way the model is symmetric. Once the model is reflected, then the procedure is same as 

SWNT. Appropriate material properties and boundary conditions are applied and then the model 

is solved for natural frequencies. Figure XII shows the finite element model of SWNT. 

 

 

Figure XII Finite Element Model of DWNT 
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4.3.3 FE Model of Five Walled CNT 

For multi walled nanotube, 8 noded solid brick elements were used for modeling the individual 

tubes of MWNT (modeling is similar to DWNT). Axial spring elements are used to simulate the 

effect of van der Waals force. First a quarter of the model is modeled and then it is reflected to 

make the complete model. Once the model is reflected, then the procedure is same as DWNT. 

Appropriate material properties and boundary conditions are applied and then the model is 

solved for natural frequencies. Figure XIII shows the finite element model of five walled 

nanotube 

 

 

Figure XIII Finite Element Model of Five Walled Nanotube 
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Figure XIV shows finite element models for single, double and five-walled nanotube. It also 

shows the axial spring between inner and outer tube of double walled nanotube 

 

Figure XIV FE models for Single and Multi walled nanotubes 

 

. 
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4.4 Eigen Value Extraction 

 

The Eigen value problem for the natural frequencies of an undamped finite element model is 

given by 

 

( ) 02 =+− xxyxy KM φω         (70) 

xyM  - Mass Matrix  

xyK  - Stiffness Matrix  

xφ  - Eigen Vector (Mode of Vibration) 

 ω  - Frequency 

 x and y – Degrees of freedom 

 

ABAQUS offers two methods for eigenvalue extraction. They are Lanczos and subspace 

eigenvalue extraction methods. I have used Lanczos method because it is generally faster when a 

large number of eigenmodes is required for a system with many degrees of freedom. 
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4.5 Frequency Calculation 

 

4.5.1 Frequency of Single walled CNT 

 

The frequencies obtained using finite element model has to be scaled down using scaling factors 

to get the natural frequencies of the nano-size problem.  

Frequency of actual model,  
t

Cd
L ρ
βω

8

2

2

2

=      (71) 

Frequency of scaled Model  
ss

ss

s
s A

IE
L ρ
βω 2

2

=      (72) 

Where ω  is the frequency, d  is the diameter, ρ  is the density, L  is the length of single walled 

nanotube (actual model). sω  is the frequency, sρ  is the density, sL is the length, sA is area, sE is 

the young’s modulus, sI is the moment of inertia of scaled (finite element) model. 

 

Ratio of frequencies of actual and scaled model is given by 
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s

A
IE
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Frequencies of actual model in terms of scaled model is given by 

A
A

IE
EI

L
L ss

ss

s
s ∗∗=

ρ
ρ

ωω ** 2

2

       (74) 
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4.5.2 Frequency of Double walled CNT 

 

Frequency of actual model is given by 

)4(
2
1 22
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2
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where 0nω  and 1nω  are the frequencies , d1 and d2 are the diameter of inner and outer tubes , C is 

the in-plane stiffness, L is the length,  ρ  is the mass density , 1c  is the van der Waals force 

between inner and outer tubes of the DWNT (actual model). 

 

Frequency of scaled model is given by 

( ) )4(
2
1 22
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where ( )sn0ω  and ( )sn1ω  are the frequencies, Es is the young’s modulus , sρ  is the mass density, 

I1s is the moment of inertia of , A1s and A2s are the area of the cross-section of inner and outer 

tubes, sc1  is the van der Waals force between inner and outer tubes of scaled DWNT (finite 

element model). 
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Ratio of frequencies of actual and scaled model is given by 
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Frequencies of actual model in terms of scaled model is given by 

( )
)4(

)4(
*

2

2
2

0
2

0

sss

snn
ζξξ

ζξξ
ωω

−−

−−
=    &     ( )

)4(

)4(
*

2

2
2

1
2

1

sss

snn
ζξξ

ζξξ
ωω

−+

−+
=  (78) 



 41

 

CHAPTER 5 RESULTS AND DISCUSSION 

5.1 Continuum Model Results 

Table I Frequencies of fixed DWNT (with inner diameter 0.7nm, outer diameter 1.4nm and 
c1=1e20 N/m2) 

Cases Modes 
Continuum 

Model 
(THz) 

Single Beam 
Theory 
(THz) 

% of Error 

1 ω11 1.39 1.39 0.00
2 ω21 3.84 3.84 0.00
3 ω31 7.54 7.54 0.00
4 ω41 12.47 12.47 0.00

L/d2=10 

5 ω51 18.63 18.63 0.00
1 ω11 0.35 0.35 0.00
2 ω21 0.96 0.96 0.00
3 ω31 1.88 1.88 0.00
4 ω41 3.11 3.11 0.00

L/d2=20 

5 ω51 4.65 4.65 0.00
1 ω11 0.06 0.06 0.00
2 ω21 0.15 0.15 0.00
3 ω31 0.30 0.30 0.00
4 ω41 0.49 0.49 0.00

L/d2=50 

5 ω51 0.75 0.75 0.00
 

 If the value of c1 is large, it can be verified that the effect of van der Waals force on MWNT is 

negligible and thus lower order frequency given by eq (41) will be equal to the frequency of 

single elastic beam model given by 
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Table I shows the natural frequencies of fixed double walled nanotube and an equivalent single 

beam. Fixed double walled CNTs should behave as a fixed single beam when the vanderwaals 
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force is very large (1e20 N/m2). From table I, it is clear that the proposed continuum model for a 

fixed double walled nanotube is valid, since the percentage of error is zero. 

Table II Frequencies of fixed DWNT (with inner diameter 0.7nm and outer diameter 1.4nm) 

Cases Modes 
Continuum 

Model 
(THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 1.39 1.4 -0.711 
ω12 10.62 10.3 3.10
ω21 3.79 3.8 -0.262 
ω22 11.03 10.7 3.08
ω31 7.05 7.2 -2.083 
ω32 12.52 12.3 1.78
ω41 10.31 10.6 -2.734 
ω42 16.27 16.2 0.43
ω51 13.46 14.1 -4.53

L/d2=10 

5 
ω52 22.55 22.5 0.22
ω11 0.35 0.35 0.001 
ω12 10.56 10.2 3.52
ω21 0.96 1.0 -4.002 
ω22 10.59 10.2 3.82
ω31 1.88 1.9 -1.053 
ω32 10.67 10.3 3.59
ω41 3.27 3.1 5.484 
ω42 10.87 10.5 3.52
ω51 4.55 4.6 -1.08

L/d2=20 

5 
ω52 11.27 11.0 2.45
ω11 0.06 0.06 0.001 
ω12 10.56 10.2 3.52
ω21 0.15 0.16 -6.252 
ω22 10.56 10.2 3.52
ω31 0.30 0.31 -3.223 
ω32 10.56 10.2 3.52
ω41 0.50 0.51 -2.154 
ω42 10.57 10.2 3.62
ω51 0.75 0.75 0.00

L/d2=50 

5 
ω52 10.58 10.2 3.72
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Table III Frequencies of fixed DWNT (with inner diameter 0.7nm and outer diameter 1.4nm) 

Cases Modes 
Continuum 

Model 
(THz) 

Single Beam 
Theory 
(THz) 

% of Error 

1 ω11 1.39 1.39 0.00
2 ω21 3.79 3.84 -1.30
3 ω31 7.05 7.54 -6.49
4 ω41 10.31 12.47 -17.3

L/d2=10 

5 ω51 13.46 18.63 -27.7
1 ω11 0.35 0.35 0.00
2 ω21 0.96 0.96 0.00
3 ω31 1.88 1.88 0.00
4 ω41 3.27 3.11 5.14

L/d2=20 

5 ω51 4.55 4.65 -2.15
1 ω11 0.06 0.06 0.00
2 ω21 0.15 0.15 0.00
3 ω31 0.30 0.30 0.00
4 ω41 0.50 0.49 2.04

L/d2=50 

5 ω51 0.75 0.75 0.00
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Table IV Frequencies of cantilever DWNT (with inner diameter 0.7nm, outer diameter 1.4nm 
and c1=1e20 N/m2) 

Cases Modes 
Continuum 

Model 
(THz) 

Single Beam 
Theory 
(THz) 

% of Error 

1 ω11 0.22 0.22 0.00
2 ω21 1.38 1.38 0.00
3 ω31 3.85 3.85 0.00
4 ω41 7.54 7.54 0.00

L/d2=10 

5 ω51 12.47 12.47 0.00
1 ω11 0.06 0.06 0.00
2 ω21 0.34 0.34 0.00
3 ω31 0.96 0.96 0.00
4 ω41 1.89 1.89 0.00

L/d2=20 

5 ω51 3.11 3.11 0.00
1 ω11 0.01 0.01 0.00
2 ω21 0.06 0.06 0.00
3 ω31 0.15 0.15 0.00
4 ω41 0.30 0.30 0.00

L/d2=50 

5 ω51 0.50 0.50 0.00
 
 

Table IV shows the natural frequencies of cantilevered double walled nanotube and an 

equivalent single beam. Cantilevered double walled CNTs should behave as an equivalent 

cantilevered single elastic beam model when the vanderwaals force is very large (1e20 N/m2).  

Since the percentage of error is zero it proves that the proposed continuum model for a fixed  

DWNT is valid.
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Table V Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 1.4nm) 

Cases Modes 
Continuum 

Model 
 (THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 0.21 0.2 5.001 
ω12 10.56 10.2 3.52
ω21 1.37 1.4 -2.142 
ω22 10.62 10.3 3.10
ω31 3.79 3.8 -0.263 
ω32 11.03 10.7 3.08
ω41 7.05 7.2 -2.084 
ω42 12.51 12.3 1.70
ω51 10.31 10.6 -2.73

L/d2=10 

5 
ω52 16.26 16.2 0.37
ω11 0.06 0.06 0.001 
ω12 10.56 10.2 3.52
ω21 0.34 0.35 -2.852 
ω22 10.56 10.2 3.52
ω31 0.96 1.0 -4.003 
ω32 10.59 10.2 3.82
ω41 1.89 1.9 -0.524 
ω42 10.67 10.3 3.59
ω51 3.08 3.1 -0.64

L/d2=20 

5 
ω52 10.87 10.5 3.52
ω11 0.01 .01 0.001 
ω12 10.56 10.2 3.52
ω21 0.06 0.06 0.002 
ω22 10.56 10.2 3.52
ω31 0.15 0.16 -6.253 
ω32 10.56 10.2 3.52
ω41 0.30 0.31 -3.224 
ω42 10.56 10.2 3.52
ω51 0.50 0.51 -1.96

L/d2=50 

5 
ω52 10.56 10.2 3.52
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Table VI Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 
1.4nm) 

Cases Modes 
Continuum 

Model 
 (THz) 

Single Beam 
Theory 
(THz) 

% of Error 

1 ω11 0.21 0.22 -4.54
2 ω21 1.37 1.38 -0.72
3 ω31 3.79 3.85 -1.55
4 ω41 7.05 7.54 -6.49

L/d2=10 

5 ω51 10.31 12.47 -17.3
1 ω11 0.06 0.06 0.00
2 ω21 0.34 0.34 0.00
3 ω31 0.96 0.96 0.00
4 ω41 1.89 1.89 0.00

L/d2=20 

5 ω51 3.08 3.11 -0.96
1 ω11 0.01 0.01 0.00
2 ω21 0.06 0.06 0.00
3 ω31 0.15 0.15 0.00
4 ω41 0.30 0.30 0.00

L/d2=50 

5 ω51 0.50 0.50 0.00
 

It is seen from tables II, III, V and VI that the lowest intertube frequencies are almost same for 

fixed DWNT’s and cantilever DWNT’s indicating that they are insensitive to the end conditions 

as predicted by Yoon et al. (2002). The first three intertube frequencies are around 10 THz as 

predicted by Yoon et al. (2002). The intertube resonant frequency (ωn1) is insensitive to the mode 

number and is much higher than the lowest natural frequency (ωn0) for larger aspect ratios as 

predicted by Yoon et al. (2002). The percentage of error between continuum model and Yoon et 

al. (2002) and for lowest natural frequency (ωn0) is almost negligible. But for cases L/d2>10 the 

intertube frequency (ωn1) is higher than the frequency calculated by Yoon et al. (2002) for both 

fixed and cantilever cases. 
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The continuum model is also compared with single beam theory.  The frequency of single beam 

theory is given by 
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The difference between frequencies of continuum model and single beam theory can be seen 

from the tables III and VI. The difference clearly shows the effect of van der Waals force on 

vibration of nanotube. There is no effect of van der Waals force on vibration if L/d2>=50. The 

highest effect of van der Waals force on vibration is 27 % for the fifth mode of fixed DWNT 

(L/d2=10). The effect of van der Waals force is high for smaller aspect ratios (L/d2<=10) and this 

effect decreases as the aspect ratio increases. 
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Table VII Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer diameter 
3.5 nm and L/d5 = 10) 

Cases Modes 
Continuum 

Model 
 (THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 0.49 0.49 0.00
ω12 5.45 5.30 2.83
ω13 9.36 9.00 4.00
ω14 12.5 12.2 2.45

1 

ω15 14.9 14.5 2.75
ω11 1.36 1.34 1.49
ω12 5.54 5.40 2.59
ω13 9.41 9.10 3.40
ω14 12.6 12.2 3.27

2 

ω15 15.0 14.5 3.44
ω11 2.59 2.55 1.56
ω12 5.87 5.70 2.98
ω13 9.59 9.30 3.11
ω14 12.7 12.3 3.25

3 

ω15 15.1 14.7 2.72
ω11 3.96 3.89 1.79
ω12 6.70 6.50 3.07
ω13 10.0 9.70 3.09
ω14 13.0 12.7 2.36

4 

ω15 15.5 15.0 3.33
ω11 5.14 5.05 1.78
ω12 8.24 8.00 3.00
ω13 10.8 10.6 1.88
ω14 13.6 13.3 2.25

L/d5 = 10 

5 

ω15 16.1 15.7 2.54
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Table VIII Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer 
diameter 3.5 nm and L/d5 = 20) 

Cases Modes 
Continuum 

Model 
 (THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 0.12 0.12 0.00
ω12 5.43 5.30 2.45
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

1 

ω15 14.9 14.5 2.75
ω11 0.34 0.34 0.00
ω12 5.44 5.30 2.64
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

2 

ω15 14.9 14.5 2.75
ω11 0.67 0.66 1.51
ω12 5.46 5.30 3.01
ω13 9.36 9.10 2.85
ω14 12.5 12.2 2.45

3 

ω15 14.9 14.5 2.75
ω11 1.10 1.09 0.91
ω12 5.51 5.30 3.96
ω13 9.39 9.10 3.18
ω14 12.5 12.2 2.45

4 

ω15 15.0 14.5 3.44
ω11 1.64 1.61 1.86
ω12 5.60 5.40 3.70
ω13 9.44 9.10 3.73
ω14 12.6 12.2 3.27

L/d5 = 20 

5 

ω15 15.0 14.5 3.44
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Table IX Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm, outer diameter 
3.5 nm and L/d5 = 50) 

Cases Modes 
Continuum 

Model 
 (THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 0.02 0.02 0.00
ω12 5.43 5.30 2.45
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

1 

ω15 14.9 14.5 2.75
ω11 0.05 0.05 0.00
ω12 5.43 5.30 2.45
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

2 

ω15 14.9 14.5 2.75
ω11 0.11 0.11 0.00
ω12 5.43 5.30 2.45
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

3 

ω15 14.9 14.5 2.75
ω11 0.17 0.18 -5.55
ω12 5.43 5.30 2.45
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

4 

ω15 14.9 14.5 2.75
ω11 0.26 0.26 0.00
ω12 5.44 5.30 2.64
ω13 9.35 9.00 3.88
ω14 12.5 12.1 3.30

L/d5 = 50 

5 

ω15 14.9 14.5 2.75
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Table X Frequencies of fixed five walled nanotube (with inner diameter 0.7 nm and the outer 
diameter 3.5 nm) 

Cases Modes 
Continuum 

Model 
 (THz) 

Single Beam 
Theory 
(THz) 

% of Error 

1 ω11 0.49 0.59 -16.9
2 ω21 1.36 1.62 -16.0
3 ω31 2.59 3.19 -18.8
4 ω41 3.96 5.28 -25.0

L/d5=10 

5 ω51 5.14 7.88 -34.7
1 ω11 0.12 0.14 -14.2
2 ω21 0.34 0.40 -15.0
3 ω31 0.67 0.79 -15.1
4 ω41 1.10 1.32 -16.6

L/d5=20 

5 ω51 1.64 1.97 -16.7
1 ω11 0.02 0.02 0.00
2 ω21 0.05 0.06 -16.6
3 ω31 0.11 0.12 -8.33
4 ω41 0.17 0.21 -19.0

L/d5=50 

5 ω51 0.26 0.31 -16.1
 

 

Tables VII, VIII and IX show the frequency of fixed five walled CNTs with aspect ratios of 10, 

20 and 50 respectively. From tables VII to IX it can be seen that the frequency of proposed 

continuum model is in agreement with the frequencies of Yoon et al. (2002). The percentage of 

error between these two models is almost negligible for the case L/d5=50. Table X shows the 

frequencies of fixed five walled nanotube and fixed equivalent single beam. The percentage of 

difference between frequencies of continuum model and single beam is very large for the case 

L/d5=10, which is 34% for the fifth mode. This effect decreases as the aspect ratio increases. 



 52

5.2 Finite Element Model Results 

 

Table XI Frequency of cantilever SWNT  

Length 
(nm) 

Diameter 
(nm) 

FE Model 
Frequency 

(THz) 

Krishnan[4]-
Method-I (THz) % of Error 

36.8 1.50 0.0391 0.0432 -9.49
24.3 1.52 0.0908 0.1040 -12.69
23.4 1.12 0.0722 0.0612 17.97

 
 
 

Table XII Frequency of cantilever SWNT  

Length 
(nm) 

Diameter 
(nm) 

FE Model 
Frequency 

(THz) 

Krishnan[4]-
Method-II 

(THz) 
% of Error 

36.8 1.50 0.0391 0.0451 -13.30
24.3 1.52 0.0908 0.0996 -8.83
23.4 1.12 0.0722 0.0744 -2.95

 
 
 
Table XIII Frequency of cantilever SWNT  

Length 
(nm) 

Diameter 
(nm) 

FE Model 
Frequency 

(THz) 
Wang (THz) % of Error 

36.8 1.50 0.0391 0.0394 -0.76
24.3 1.52 0.0908 0.0913 -0.54
23.4 1.12 0.0722 0.0726 -0.55

 

Table XIV Frequencies of cantilever SWNT (diameter = 1.50 nm and length = 36.8 nm) 
Mode FE Model 

Frequency (THz) 
1 0.0392 
2 0.2462 
3 0.6895 
4 1.3512 
5 2.2336 
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The validation of the proposed FE model for SWNT is done by comparing the results with 

Krishnan et al. (1998) and Wang et al. (2005) and for DWNT and MWNT is done by comparing 

the results with Yoon et al. (2002). Tables XI to XIII shows the comparison of finite element 

results of cantilever SWNT with the experimental results (Method – I & II) of Krishnan et al. 

(1998) and analytical results of Wang et al. (2005). The maximum percentage of error when 

compared with experimental results (Method – I) of Krishnan et al. (1998) is 17 %. The 

maximum and minimum percentage of error when compared with experimental results (Method 

– II) of Krishnan et al. (1998) is 13 % and 2 %. The maximum percentage of error when 

compared with analytical results of Wang et al. (2005) is 0.55 %. Hence the suggested finite 

element model for SWNT closely agrees with continuum model of Wang et al. (2005). Figure 

XV shows the first five mode shapes of cantilever SWNT predicted by proposed FE model. The 

mode shapes are similar to the mode shapes of any cantilever beam.  



 54

 

Figure XV First five modes of cantilevered SWNT (diameter=1.50 nm and length = 36.8 nm) 
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Table XV Frequencies of fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 
nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 1.39 1.4 -0.711 
ω12 9.95 10.3 -3.39
ω21 3.71 3.8 -2.362 
ω22 10.1 10.7 -5.60
ω31 6.99 7.2 -2.91

L/d2=10 

3 
ω32 11.01 12.3 -10.48
ω11 0.36 0.35 2.851 
ω12 10.11 10.2 -0.88
ω21 0.98 1.0 -2.002 
ω22 10.31 10.2 1.07
ω31 1.88 1.9 -1.05

L/d2=20 

3 
ω32 10.64 10.3 3.30
ω11 0.06 0.06 0.001 
ω12 10.13 10.2 -0.68
ω21 0.16 0.16 0.002 
ω22 10.32 10.2 1.17
ω31 0.31 0.31 0.00

L/d2=50 

3 
ω32 10.41 10.2 2.05

 
 
Table XVI Frequencies of fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 
nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

Single Beam 
Theory 
(THz) 

% of Error  

1 ω11 1.39 1.39 0.00
2 ω21 3.71 3.84 -3.38L/d2=10 
3 ω31 6.99 7.54 -7.29
1 ω11 0.36 0.35 2.85
2 ω21 0.98 0.96 2.08L/d2=20 
3 ω31 1.88 1.88 0.00
1 ω11 0.06 0.06 0.00
2 ω21 0.16 0.15 6.66L/d2=50 
3 ω31 0.31 0.30 3.33
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 Figure XVI  First three modes of fixed - fixed double walled carbon nanotube 
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Table XVII Frequencies of cantilever DWNT (with inner diameter 0.7nm and outer diameter 
1.4nm 

Cases Modes 
FE Model 
Frequency 

(THz) 

J. Yoon[9] 
(THz) % of Error 

ω11 0.22 0.22 0.001 
ω12 9.51 10.2 -6.76
ω21 1.38 1.4 -1.422 
ω22 9.53 10.3 -7.47
ω31 3.67 3.8 -3.42

L/d2=10 

3 
ω32 9.59 10.7 -10.37
ω11 0.06 0.06 0.001 
ω12 10.2 10.2 0.00
ω21 0.35 0.35 0.002 
ω22 10.5 10.2 2.94
ω31 0.99 1 -1.00

L/d2=20 

3 
ω32 10.6 10.2 3.92
ω11 0.01 0.01 0.001 
ω12 10.2 10.2 0.00
ω21 0.06 0.06 0.002 
ω22 10.4 10.2 1.96
ω31 0.16 0.16 0.00

L/d2=50 

3 
ω32 10.4 10.2 1.96

 
 
Table XVIII Frequencies of Cantilever DWNT (with inner diameter 0.7 nm. and the outer 
diameter 1.4 nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

Single Beam 
Theory] 
(THz) 

% of Error 

1 ω11 0.22 0.22 0.00
2 ω21 1.38 1.38 0.00L/d2=10 
3 ω31 3.67 3.85 -4.67
1 ω11 0.06 0.06 0.00
2 ω21 0.35 0.34 2.94L/d2=20 
3 ω31 0.99 0.96 3.12
1 ω11 0.01 0.01 0.00
2 ω21 0.06 0.06 0.00L/d2=50 
3 ω31 0.16 0.15 6.66

 



 58

 
Figure XVII First three modes of cantilevered double walled carbon nanotube 
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Figure XVIII Frequencies of Fixed DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 

nm) 
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Figure XIX Frequencies of Cantilever DWNT (with inner diameter 0.7 nm. and the outer diameter 1.4 nm) 

 

Table XVIII shows the frequencies of fixed DWNT with nmd 7.01 = and nmd 4.12 =  for 

different aspect ratios. Table XIX shows the frequencies of cantilever DWNT with 

nmd 7.01 = and nmd 4.12 =  for different aspect ratios. It is seen from tables XVIII and XIX that 

the lowest intertube frequencies are almost same for fixed DWNT and cantilever DWNT 

indicating that they are insensitive to the end conditions as predicted by Yoon et al. (2002). The 

first three intertube frequencies are around 10 THz as predicted by Yoon et al. (2002). The 

intertube resonant frequency (ωn1) is insensitive to the mode number and is much higher than 

the lowest natural frequency (ωn0) for larger aspect ratio’s as predicted by Yoon et al. (2002). 

The percentage of error between continuum method and Yoon et al. (2002) and for lowest 

natural frequency (ωn0) is almost negligible. The percentage of error between finite element 
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results for both cantilever DWNT and fixed DWNT with J. Yoon [9] is very high [up to 10%] for 

small aspect ratios ( 102 ≤dL ). The percentage of error for larger aspect ratio’s are within 3 

%.This result is also in agreement with Harik et al. (2002) who said that beam models can be 

used only if 10>dL .The finite element frequency for both cantilever DWNT’s and fixed 

DWNT’s where almost the same frequency of Yoon et al. (2002) for first mode for all aspect 

ratios.  

 

The FE model results are also compared with single beam theory.  The frequency of single beam 

theory for a DWNT is given by equation (150). Tables XVI and XVIII show the difference 

between DWNT finite element and single beam theory frequencies. The difference clearly shows 

the effect of van der Waals force on vibration of nanotube and the effect is high (up to 7 %) for 

smaller aspect ratios. For aspect ratios 502 ≥dL , the difference between DWNT frequency and 

single beam theory frequency is almost zero indicating that effect of van der Waals force on 

vibration of nanotube is negligible for larger aspect ratios. The other interesting result is there is 

no effect for the first mode shape in all aspect ratios.  

 

Figures XVIII shows the comparison of continuum model and finite element model frequencies 

of fixed DWNT. It can be seen that finite element model frequencies and continuum model 

frequencies are in good agreement for inner tube. Figures XIX shows the comparison of 

continuum model and finite element model frequencies of cantilever DWNT. It can be seen that 

finite element model frequencies and continuum model frequencies are in good agreement for 

inner tube. 
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Table XIX Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 
diameter 3.5 nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

J. Yoon 
(2002) 
(THz) 

% of Error 

ω11 0.45 0.49 -8.16
ω12 4.89 5.30 -7.73
ω13 8.40 9.00 -6.66
ω14 12.76 12.2 4.59

L/d5 = 10 1 

ω15 13.44 14.5 -7.31
ω11 0.12 0.12 0.00
ω12 5.43 5.30 2.45
ω13 9.34 9.00 3.77
ω14 12.55 12.1 3.71

L/d5 = 20 1 

ω15 14.96 14.5 3.17
ω11 0.02 0.02 0.00
ω12 5.41 5.30 2.07
ω13 9.21 9.00 2.33
ω14 12.43 12.1 2.72

L/d5 =5 0 1 

ω15 14.71 14.5 1.44
 
 
Table XX Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 
diameter 3.5 nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

Single Beam 
Theory 
(THz) 

% of Error  

ω11 0.45 0.59 -23.72
ω12 4.89  
ω13 8.40  
ω14 12.76  

L/d5 = 10 1 

ω15 13.44  
ω11 0.12 0.14 -14.28
ω12 5.43  
ω13 9.34  
ω14 12.55  

 
L/d5 = 20 1 

ω15 14.96  
ω11 0.02 0.02 0.00
ω12 5.41  
ω13 9.21  
ω14 12.43  

L/d5 = 50 1 

ω15 14.71  



 63

Table XXI Frequencies of five walled nanotube (with inner diameter 0.7 nm and the outer 
diameter 3.5 nm) 

Cases Modes 
FE Model 
Frequency 

(THz) 

Continuum 
Model 

Frequency 
(THz) 

% of Error 

ω11 0.45 0.49 -8.16
ω12 4.89 5.45 -10.2
ω13 8.40 9.36 -10.2
ω14 12.76 12.5 2.08

L/d5 = 10 1 

ω15 13.44 14.9 -9.79
ω11 0.12 0.12 0.00
ω12 5.43 5.43 0.00
ω13 9.34 9.35 -0.10
ω14 12.55 12.5 0.40

L/d5 = 20 1 

ω15 14.96 14.9 0.40
ω11 0.02 0.02 0.00
ω12 5.41 5.43 -0.36
ω13 9.21 9.35 -1.49
ω14 12.43 12.5 -0.56

L/d5 =5 0 1 

ω15 14.71 14.9 -1.27
 

Table XIX shows the finite element results for fixed five-walled nanotube in comparison with 

Yoon et al. (2002). The percentage of error is high (up to 8 %) for smaller aspect ratio 

( 105 =dL ). The percentage of error decreased as aspect ratio increased. Table XX shows the 

difference in frequencies of fixed five-walled nanotube and single beam theory. The van der 

Waals force has decreased the frequency of nanotube by 23 % for aspect ratio ( 105 =dL ). This 

effect decreases as the aspect ratio increases. There is no effect of van der Waals force on 

vibration of nanotube of aspect ratio 505 ≥dL . Table XXI shows the comparison of continuum 

model frequencies and finite element model frequencies. The finite element model is in good 

agreement with continuum model for aspect ratios 205 =dL and 505 =dL .  
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CHAPTER 6 CONCLUSION 

 

A methodology for constructing continuum models and finite element models of single and multi 

walled CNTs for vibration analysis is presented and validated with the existing results in the 

literature. Both continuum models and finite element models are validated with reference to 

single beam theory. Since the percentage of error is negligible, the models are concluded as valid. 

The lowest intertube frequencies are insensitive to the end conditions. The first three intertube 

frequencies are around 10 THz. The intertube resonant frequency (ωn1) is insensitive to the mode 

number and is much higher than the lowest natural frequency (ωn0) for larger aspect ratios. The 

mode shapes of cantilever SWNT is similar to the mode shapes of any elastic cantilever beam. 

The mode shapes for DWNT are co-axial for the first three mode shapes. 

 

In case of fixed DWNT, there is absolutely no effect of van der Waals force on vibration for the 

first vibration mode of all aspect ratios. Whereas in cantilever DWNT and fixed five walled 

nanotube there is considerable effect of van der Waals force for the first vibration mode of all 

aspect ratios. In case of fixed DWNT and cantilever DWNT, the effect of van der Waals force on 

vibration for higher aspect ratios (L/Dout>=50) is zero. Whereas in fixed five walled NT, there is 

considerable effect of van der Waals force for the aspect ratio (L/Dout=50). The effect of van der 

Waals force on vibration is high for aspect ratio (L/Dout=10) when compared to other aspect 

ratios respective of boundary conditions and number of layers. The effect of van der Waals force 

in case of fixed DWNT is large when compared to cantilever DWNT for all aspect ratios.  
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The effect of van der Waals force on vibration of five walled nanotube is much larger than 

DWNT for all aspect ratios.  

 

In summary, the effect of van der Waals force is high for  

♦ Smaller aspect ratios irrespective of boundary conditions and number of layers. 

♦ Fixed nanotube than cantilever nanotube for the same dimensions. 

♦ Five-walled nanotube than a double walled nanotube for the same aspect ratio. 
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CHAPTER 7 FUTURE WORK 

 

In the proposed finite element model the van der Waals force are represented by distributed 

springs and van der Waals force remains constant during deformation which is not in actual case. 

In future van der Waals force can be modeled as a pressure, approximated to be a linear function 

of change in inter-layer spacing. 

 

Abaqus user subroutine UINTER suggested by Pantano et al. (2003) can be used to define the 

constitutive interaction between two deforming surface. Master and slaves surfaces are defined 

and the subroutine is alled for each slave node at each time increment of the analysis. Inputs to 

the subroutine are the initial and incremental relative positions of each slave node with respect to 

its closest point on the master surface, and any material properties defined by the user. 



 67

REFERENCES 

 

1. Wang, Q., Varadan, V.K., 2005. Stability analysis of carbon nanotubes via continuum 

models. Smart Materials and Structures 14, 281. 

2. Wang, Q., Hu, T., Chen, G., Jing, Q., 2005. Bending instability characteristics of 

Double walled carbon nanotubes. Physical Review B 71,045403. 

3. Wang, Q., 2006. Wave propagation in carbon nanotubes via non-local continuum 

mechanics. Journal of Applied Physics. (In press). 

4. Wang, Q., Varadan, V.K., 2005. Stability analysis of carbon nanotube probes for 

atomic force microscopy via continuum models. Smart Materials and 

Structures 14, 1196. 

5. Wang, Q., 2005. Effect of van der Waals interaction on analysis of double walled 

carbon nanotubes. International Journal of Structural Stability and Dynamics 5(3) 457. 

6. Wang, Q., Varadan, V.K., 2005. Wave characteristics of carbon nanotubes. 

International Journal of Solids and Structures (In press). 

7. Wang, Q., Xu, F., and Zhou, G.Y., 2005. Continuum model for the stability analysis 

of carbon nanotubes under initial bend. International Journal of Structural Stability 

and Dynamics (In press). 

8. Wang, Q., 2004. Effective in-plane stiffness and bending rigidity of armchair and 

zigzag carbon nanotubes. International Journal of Solids and Structures 41, 5451. 

 



 68

9. Wang, X., Wang, X.Y., Xiao, J., 2004.  A Non-linear analysis of the bending 

modulus of carbon nanotubes with rippling deformations. Composite Structures, 

Article in press. 

10. Pantano, A., Boyce, M.C., Perks, D.M., 2003. Non-linear structural mechanics based 

modeling of CNT deformation. Physical Review Letter, 91, 145504. 

11. Poncharal, P., Wang, Z.L., Ugarte, D., De Heer, W.A., 1999. Electrostatic deflections 

and electromechanical resonances of CNTs. Science 283, 1513. 

12. Krishnan, A., Dujardin, E., Ebbesen, T., Vianlias, P.N., Treacy, M.M.J., 1998. 

Young’s modulus of single walled nanotubes, Physical Review B 58, 14043. 

13. Huang, X.M.H., Zorman, C.A., Mehregany, M., Roukes, M.L., 2003. Nanodevice 

Motion at Microwave Frequencies, Nature 421, 496. 

14. Liu, J.Z., Zheng, Q., and Jiang, Q., 2001. Effect of a rippling mode on resonances of 

carbon nanotubes. Physical Review Letters 86, No: 21, 4843. 

15. Yoon, J., Ru, C., Mioduchowski, A., 2002. Noncoaxial resonance of an isolated 

multiwall CNT. Physical Review B 66, 233402. 

16. Ru, C., 2000. Effect of van der Waals force on axial buckling of a double walled CNT. 

Journal of Applied Physics 87(10), 7227.  

17. Harik, V.M., 2002. Mechanics of carbon nanotubes: applicability of the continuum-

beam models. Computational Materials Science 24, 328. 

18. Govindjee, S., Sackman, J.L., 1999. On the use of continuum mechanics to estimate 

the properties of nanotubes. Solid State Communications 110, 227. 

19. Snow, E.S., Campbell, P.M., Novak, J.P., 2002. Single wall carbon nanotube force 

microscope probes. Applied Physics Letter 80(11). 



 69

20. Ru, C., 2000. Column buckling of multiwalled carbon nanotubes with interlayer 

radial displacements, Physical Review B 62 (24), 16962. 

21. Girifalco L.A., Lad R.A., 1956. Energy of Cohesion, Compressibility, and the 

Potential Energy Functions of the Graphite System, Journal of Chemical Physics 25, 

693. 

22. Yakobson B.I., Brabec C.J., Bernholc J., 1996. Nanomechanics of Carbon Tubes: 

Instabilities beyond Linear response, Physical Review Letters 76(14), 2511. 

23. Ajayan M., Zhou O.Z., 2001. Applications of Carbon Nanotubes, Applied Physics 

80,391. 

24. Gao B., 2000. Chemical Physics. Enhanced Saturation Lithium Composition in Ball-

Milled Single Walled Carbon Nanotubes. Chemical Physics Letters 327, 69. 

25. ABAQUS Documentation set. 

26. http://www.pa.msu.edu/cmp/csc/nanotube.html 

27. http://en.wikipedia.org/wiki/Carbon_nanotube 

28. http://www.azonano.com/details.asp?ArticleID=1108 

 

 

 

 

http://en.wikipedia.org/wiki/Carbon_nanotube
http://www.azonano.com/details.asp?ArticleID=1108

	Vibration Analysis Of Carbon Nanotube Using Continuum Model And Finite Element Model
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Structure of CNTs
	1.1.1 Types of CNTs

	1.2 Manufacture of CNTs
	1.3 Applications of CNTs

	CHAPTER 2 LITERATURE REVIEW
	2.1 Literature Review on Modeling Techniques
	2.2 Need for Vibration Analysis
	2.3 Literature Review on Vibration Analysis of CNTs
	2.4 Proposed Research

	CHAPTER 3 CONTINUUM MODELING
	3.1 Introduction
	3.2 Bulk Properties of CNTs
	3.2.1 Van der Waals Force
	3.2.2 Bending Rigidity
	3.2.3 Mass Density

	3.3 Continuum Models of CNTs
	3.3.1 Continuum Model of Single Walled CNTs
	3.3.2 Continuum Model of Double Walled CNTs
	3.3.3 Continuum Model of Five Walled CNTs


	CHAPTER 4 FINITE ELEMENT ANALYSIS
	4.1 Introduction
	4.2 Bulk Properties of Nanotube in FE Modeling
	4.3 Finite Element Modeling
	4.3.1 FE Model of Single Walled CNT
	4.3.2 FE Model of Double Walled CNT
	4.3.3 FE Model of Five Walled CNT

	4.4 Eigen Value Extraction
	4.5 Frequency Calculation
	4.5.1 Frequency of Single walled CNT
	4.5.2 Frequency of Double walled CNT


	CHAPTER 5 RESULTS AND DISCUSSION
	5.1 Continuum Model Results
	5.2 Finite Element Model Results

	CHAPTER 6 CONCLUSION
	CHAPTER 7 FUTURE WORK
	REFERENCES

