
University of Central Florida University of Central Florida 

STARS STARS 

HIM 1990-2015 

2012 

Physiological relevance of a trna-dependent mechanism for Physiological relevance of a trna-dependent mechanism for 

membrane modification in enterococcus faecium membrane modification in enterococcus faecium 

Jesse Harrison 
University of Central Florida 

 Part of the Microbiology Commons, and the Molecular Biology Commons 

Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015 

University of Central Florida Libraries http://library.ucf.edu 

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM 

1990-2015 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Harrison, Jesse, "Physiological relevance of a trna-dependent mechanism for membrane modification in 
enterococcus faecium" (2012). HIM 1990-2015. 1778. 
https://stars.library.ucf.edu/honorstheses1990-2015/1778 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236292566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses1990-2015
http://network.bepress.com/hgg/discipline/48?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses1990-2015
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses1990-2015/1778?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

PHYSIOLOGICAL RELEVANCE OF A tRNA-DEPENDENT MECHANISM FOR 
MEMBRANE MODIFICATION IN ENTEROCOCCUS FAECIUM 

 
 

by 
 
 

JESSE HARRISON 
 
 

A thesis submitted in partial fulfillment of the requirements 
for the Honors in the Major Program in Molecular Biology and Microbiology 

in the College of Medicine 
University of Central Florida 

Orlando, Florida 
 
 

Fall Term 2012 
 
 

Thesis Chair: Dr. Hervé Roy 



 
Abstract 

Enterococci were once thought to be harmless, commensal organisms that colonize 

the gastrointestinal tract of humans and other mammals. In the last 30 years, however, 

concern has grown in the clinical setting over two particular species, Enterococcus faecalis 

and Enterococcus faecium, which are frequently found to be the etiologic agents of 

nosocomial infections. Aminoacyl-phosphatidylglycerol synthases (aaPGSs) are integral 

membrane proteins that add amino acids to phosphatidylglycerol (PG) in the cellular 

envelope of bacteria. Addition of amino acids to PG confers resistance to various 

therapeutic antimicrobial agents, and contributes to evasion of the host immune response 

in a number of clinically relevant microorganisms. E. faecium possesses two distinct 

aaPGSs: aaPGS1 and aaPGS2. In addition, another gene coding for a putative hydrolase 

(pHyd) is located in the same operon as aaPGS2, and has no known function. To investigate 

the physiological relevance of aa-PG formation, and the function of aaPGS1, aaPGS2, and 

pHyd in E. faecium, we generated individual knockouts of these genes using a markerless 

deletion strategy. Deletion of aaPGS1 did not noticeably alter lipid aminoacylation, whereas 

deletion of aaPGS2 led to a loss of aa-PG synthesis. Deletion of pHyd also led to a loss of 

lipid aminoacylation; however, additional experiments are needed to verify that expression 

of aaPGS2 (which resides just downstream in the same operon) is unaffected in the pHyd-

deletion strain. Development of the mutant strains described here will enable us to 

investigate additional phenotypes associated with these genes, and to determine whether 
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aa-PG formation contributes to antibiotic resistance in E. faecium as in several other 

pathogenic microorganisms. 
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I. Chapter One: Introduction 

I.1 Background 

The cell wall of Gram-positive bacteria, such as enterococci, contains a thick layer of 

peptidoglycan, which presents a significant barrier to the environment. Underneath the 

peptidoglycan is the cytoplasmic membrane, a complex, composite structure containing a 

variety of phospholipids including the anionic component phosphatidylglycerol (PG) that 

contributes to the net negative charge of the membrane (Roy, 2009). There are several 

known mechanisms of modification of the inner cell envelope that confer protection to the 

cell against a variety of environmental stresses. One such mechanism involves addition of 

amino acids (aa) to PG by aminoacyl-phosphatidylglycerol synthases (aaPGSs). aaPGSs are 

integral membrane proteins that utilize aa-tRNAs as substrates to aminoacylate PG in the 

bacterial membrane (Figure 1). Addition of certain aa to PG lowers the net negative charge 

of the cell envelope, which in turn decreases the permeability of the membrane to cationic 

antimicrobial peptides (CAMPs) produced during the host immune response, and to 

various therapeutic antimicrobial agents such as vancomycin (for review see Roy, 2009). 
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Alanylation and lysinylation of PG in the cytoplasmic membrane using aa-tRNAs as 

amino acid donors was initially discovered in the 1960’s, but it wasn’t until recently that a 

correlation was established between a gene called mprF (multiple protein resistance 

factor) and this process (Peschel et. al., 2001). The mprF pathway was first investigated in 

Staphylococcus aureus, where lysinylation of PG in the membrane was shown to decrease 

bacterial susceptibility to the host immune response, and confer resistance to different 

classes of cationic bactericidal agents such as daptomycin (a lipopeptide) and vancomycin 

(a glycopeptide) (for review see Roy, 2009). Recently, it was discovered that 

aminoacylation of membrane PG produces similar effects in a number of clinically relevant 

organisms such as Bacillus anthracis (Samant et. al., 2009), Mycobacterium tuberculosis 

(Maloner et. al., 2009), and Listeria monocytogenes (Thedieck et. al., 2006). 

Figure 1: tRNA-dependent mechanism for membrane lipid aminoacylation. aaPGSs are integral 
membrane proteins that transfer amino acids (i.e., Lys, Ala, or Arg) from aa-tRNA to 
phosphatidylglycerol (PG) in the membrane, thereby reducing the net negative charge of the cellular 
envelope and providing resistance to various cationic antimicrobial peptides (CAMPs). (Adapted 
from Roy, 2009). 
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aaPGSs consist of a C-terminal hydrophilic domain and an N-terminal integral 

membrane domain. It was previously established that the hydrophilic C-terminal domain, 

which protrudes into the cytoplasm, is the location of the catalytic site of the enzyme (Roy, 

2009). aaPGSs use aa-tRNAs located in the cytoplasm to covalently attach aa to the polar 

head of PG in the membrane, and it has been shown that these enzymes are able to 

compete equitably with the protein biosynthesis machinery for the cell’s available pool of 

aa-tRNAs (Roy & Ibba, 2008). The main lipid constituents of the bacterial membrane are 

either anionic or neutrally charged, depending on the identity of the phospholipid polar 

head, which is determined by directing lipid biosynthesis through one of two biosynthesis 

pathways. The aaPGS pathway is known to branch from the biosynthesis pathway that 

produces anionic phospholipids (Figure 2)(Roy, 2009). Modification of pre-existing PG by 

aaPGSs is an efficient way for bacteria to adapt the electrostatic properties of their 

membrane without the need for de novo lipid synthesis (for review see Roy, 2009). 
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Figure 2: Pathways for lipid biosynthesis and aminoacylation in bacteria. The structure of the 
polar head groups of common membrane phospholipids in bacteria. Addition of amino acids to pre-
existing anionic components (PG, CL) allows for modification of the electrostatic properties of the 
membrane without de novo lipid synthesis. Numbers in parentheses represent net charge at neutral 
pH. CDP, cytidine diphosphate; PG, phosphatidylglycerol; aaPGS, aminoacyl-phosphatidylglycerol 
synthase; pgs, phosphatidylglycerophosphate synthase; PS, phosphatidylserine; pss, PS synthase; 
psd, PS decarboxylase; pgp, phosphatidylglycerophosphatase; CL, cardiolipin; cls, CL synthase. 
(Adapted from Roy, 2009). 
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Currently, 348 aaPGS homologs have been identified that are distributed in over 200 

species of bacteria. There are three substrate aa-tRNAs that have been described for 

aaPGSs: Ala-tRNAAla, Lys-tRNALys, and Arg-tRNALys  (Roy & Ibba, 2009). Interestingly, many 

of the available genome sequences for aaPGS-containing organisms encode two or more 

aaPGS paralogs. Recent work has shown that two aaPGS paralogs found in Clostridium 

perfringens exhibit distinct substrate specificities: one enzyme uses Lys-tRNALys to transfer 

Lys to PG, while the other uses Ala-tRNAAla to transfer Ala (Roy et. al., 2008). In contrast, 

investigations have shown that some aaPGSs have a relaxed specificity, which enables the 

transfer of a variety of aa by a single enzyme. Specifically, the aaPGS in Bacillus subtilis is 

able to catalyze the addition of either Lys or Ala to PG, and aaPGS2 in Enterococcus faecium 

is able to transfer Lys, Arg, or Ala (Roy et. al., 2009). 

I.2 Relevance 

Enterococci are commensal organisms that inhabit the gastrointestinal tracts of 

humans and other mammals. In the last 30 years concern has grown in the clinical setting 

over two particular species, E. faecalis and E. faecium, which are frequently identified as the 

etiologic agents of nosocomial infections, including urinary tract infections, intra-

abdominal, pelvic and soft tissue infections, and bacteremia and endocarditis (Malani et. al., 

2002). Until recently, nosocomial infections caused by E. faecalis far outnumbered other 

enterococcal infections; however, E. faecium is now responsible for over 40% of such 

infections (Zhang et. al., 2012). In U.S. hospitals, a primary concern is that a growing 

number of E. faecium isolates are resistant to vancomycin (referred to as vancomycin-
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resistant enterococci, or VRE), which is often used as a last-resort antimicrobial agent. In 

addition, over 80% of clinical isolates worldwide are now found to be resistant to 

ampicillin (Zhang et. al., 2012). A sophisticated understanding of enterococcal physiology 

and genetics is needed to facilitate the development of new antimicrobials to combat multi-

drug resistant strains (Kristich et. al., 2007). 

The current project focused on two aaPGS paralogs found in E. faecium, aaPGS1 and 

aaPGS2, as well as a gene encoding a putative hydrolase (pHyd) that is located in an operon 

with aaPGS2. Recent work in E. faecium showed that aaPGS2 is triple-specific for Ala, Lys, 

and Arg in vitro; however, the activity of aaPGS1 could not be reconstituted and its function 

remains unclear (Roy et. al., 2009). aaPGS1 displays 32% identity with aaPGS2, indicating 

that both proteins may exhibit similar functions. Among the five species of enterococci for 

which the genomes are available, aaPGS2 and pHyd are conserved and organized in a single 

operon. In contrast, aaPGS1 is present in only two of the species (E. faecium and E. faecalis), 

and the genetic context of aaPGS1 is not conserved between these two species.

Currently, the physiological relevance of aaPGS1, aaPGS2, and pHyd in E. faecium 

remains unknown, and the phenotypes associated with these genes have yet to be 

described. Despite the establishment that aaPGS2 modifies PG with Ala, Arg, and Lys in 

vitro, it is not known whether these modifications provide antibiotic resistance in vivo. Only 

within the last several years have effective tools for targeted mutagenesis in enterococci 

been developed. Our research has focused on the establishment of genetic techniques for 

the markerless deletion of aaPGS1, aaPGS2, and pHyd in E. faecium. A markerless deletion 

 6 



strategy was selected in order to avoid detection of phenotypical changes resulting from 

polar effects, or antibiotic resistances associated with insertion of a selection marker into 

the genome. We characterized preliminary phenotypes associated with these genes using 

pre-established biochemical techniques and comparative analysis of growth in a variety of 

conditions.
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II. Chapter Two: Materials and Methods 

II.1 Bacterial Strains and Growth Media 

 E. faecium strains were stored at -80°C in Todd-Hewitt broth (THB; prepared 

according to the manufacturer’s instructions) supplemented with 15% glycerol. Bacto agar 

was used as the solidifying agent in all semi-solid media. p-Cl-phenylalanine was obtained 

from Alfa Aesar. When required for selective growth, gentamycin (RPI) was used at a 

concentration of 25 mg/l for E. coli and 250 mg/l for E. faecium. 

II.2 Construction of Integrative Plasmids 

 pTEX5500ts is an E. coli – E. faecium shuttle vector that contains two markers for 

antibiotic resistance (chloramphenicol and gentamicin), and a thermosensitive origin of 

replication for Gram-positive hosts (Nallapareddy et. al., 2006). In E. faecium, this plasmid 

exhibits optimal replication at the permissive temperature of 28°C, with dramatic loss of 

replication at 42°C. We added a mutated version of the gene pheS, which has been used 

successfully as a counterselectable marker in the context of E. faecalis (Kristish et. al., 

2007). Specifically, the chloramphenicol resistance gene of the plasmid pTEX5500ts was 

substituted with pheSA294G, which encodes for the α-subunit of the E. faecium 

phenylalanyl-tRNA synthetase (PheRS) carrying a mutation in its active site. The mutated 

α-subunit reconstitutes with the genome-encoded β-subunit to form a functional 

heterotetrameric PheRS (α2β2). This mutated version of PheRS allows for tRNA 

misacylation with the substrate analog para-chloro-phenylalanine (pCl-Phe), which results 
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in growth inhibition. The plasmid containing the pheSA294G gene was named pTEX5500ts-

pheSA294G.  

The upstream and downstream regions of the targeted aaPGS1, aaPGS2, and pHyd 

loci were individually amplified and ligated using PCR. pTEX5500ts-pheSA294G contains 

two multiple cloning sites (MCS) that include digestion sites for the restriction enzymes 

NheI and HindIII. These restriction sites were also included at the terminal ends of each of 

the amplicons corresponding to the upstream and downstream regions of the targeted 

genes. The PCR products and pTEX5500ts-pheSA294G were digested with NheI and HindIII, 

and the digested plasmid was dephosphorylated with antarctic phosphatase. Following 

phenol-chloroform extraction and ethanol precipitation, the PCR products were ligated into 

pTEX5500ts-pheSA294G using T4 DNA ligase. 

II.3 Transformation of E. coli XL1B Competent Cells 

 Transformation solutions were prepared by adding 60 µl H2O and 20 µl KCM (0.5 M 

KCl, 0.15 M CaCl2, 0.25 M MgCl2) to 20 µl of each ligation product. Competent cells (E. coli 

strain XL1B) were thawed on ice, and 100 µl were added to each transformation solution. 

The cells were placed on ice for 20 minutes, followed by room temperature for 10 minutes. 

800 µl LB (Lauria-Bertani) broth was added and the cells were allowed to recover at 37°C 

for 1 h with no agitation. Cells were plated on LB agar with 25mg/l gentamycin. 12 colonies 

exhibiting gentamycin resistance were selected and used for isolation of plasmid DNA.  
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II.4 DNA Preparation  

II.4.1 E. coli and Plasmid Preparation 

 Cells harvested from 1.5 ml of an overnight culture, grown in LB broth 

supplemented with gentamycin, were resuspended in 150 µl Solution I (50 mM glucose, 25 

mM Tris-Cl pH 8.0, 10 mM EDTA pH 8.0). Cells were lysed by addition of 300 µl Solution II 

(0.2 M NaOH, 1% SDS; made fresh) and neutralized by addition of 200 µl of Solution III (5 

M potassium acetate, 2M glacial acetic acid). Cellular debris, genomic DNA, and proteins 

were precipitated for 5 min on ice and removed by centrifugation at 20,000 x g for 10 min 

at 4°C. Plasmid in 400 µl of supernatant was retrieved by precipitation after addition of 

isopropanol (270 µl) and centrifugation. The pellet was washed with 80% ethanol, dried, 

and resuspended in 50 µl of water containing 25 mg/l of RNase A. Plasmids were screened 

by restriction digest and verified by sequencing (Genewiz, Inc.), and positive clones were 

selected for large-scale plasmid preparation.  

II.4.2 Large-Scale Preparation of Plasmid Suitable for E. faecium 
Electroporation 

Cells harvested from 500 ml of an overnight culture were resuspended in 20 ml of 

Solution I (see above). Cells were lysed in 40 ml of Solution II (made fresh; see above). 

Cellular debris, proteins, and genomic DNA were precipitated for 10 min on ice following 

addition of 20 ml of ice-cold Solution III (see above), and removed by centrifugation at 

7000 x g for 15 min. The supernatant was filtered through gauze, and plasmid DNA in 80 ml 

of supernatant was retrieved by precipitation with 48 ml (0.6 vol) of isopropanol and 

 10 



centrifugation. The pellet was washed with 70% ethanol, dried, and resuspended in 6 ml 

TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). RNA was precipitated by addition of 6 ml of 5 M 

LiCl and subsequent centrifugation at 4°C. Plasmid in 12 ml supernatant was retrieved by 

precipitation and centrifugation following addition of 12 ml (1 vol) of isopropanol. The 

pellet was again washed with 70% ethanol, dried, and resuspended in 1 ml TE containing 

25 mg/l RNase A. Following incubation for 30 min at room temperature, 1 ml of Solution IV 

(1.6 M NaCL, 13% PEG 8000; made fresh) was added. After incubation for 30 min on ice, 

the plasmid was collected by centrifugation at 4°C, resuspended in 400 µl TE, and extracted 

with phenol-chloroform. Plasmid was precipitated with 0.25 volume of 10 M ammonium 

acetate, and 2 volumes 100% ethanol and washed in 70% ethanol.  The dried pellet was 

dissolved in 300 µl ddH2O, which yielded a final concentration of approximately 3 mg/ml 

for each construct. Samples were resolved on a 0.8% agarose gel, along with previously 

prepared plasmid containing insert, and plasmid with no insert as controls.  

II.5 Generation of E. faecium knockout strains 

II.5.1 Preparation of Competent E. faecium TX1330 Cells 

Enterococci are known to exhibit poor transformability. However, E. faecium 

TX1330, a community derived fecal isolate, is one of a few strains that are efficiently 

transformable by electroporation (Nallapareddy et. al., 2006). Previous studies have 

reported a relatively high transformation yield, with transformants ranging from 1,200 to 

4,000 cfu/μg of plasmid. Methods that have been previously described were used to 

prepare and transform E. faecium TX1330 (Nallapareddy et. al., 2006).  
 11 



Electrocompetent cells were prepared in THB liquid media supplemented with 0.25 

M sucrose, by incubation with slow agitation for 24 h at 37°C. These culture conditions 

promote weakening of the bacterial cell wall, which occurs naturally during the late 

stationary phase of cell growth. Viability of the weakened cells was maintained in a 

hypertonic medium (containing sucrose) with low mechanical stress (low agitation). After 

growth, 1 L of cells was harvested by centrifugation at 7000 x g for 10 minutes at 4°C. The 

cells were sequentially washed with 400 ml, 200 ml, 100 ml, 50 ml, and 30 ml of ice cold 

10% glycerol, and centrifuged at 5000 x g for 10 min at 4°C. The pellets were resuspended 

in 50 ml 10% glycerol and transferred to 50 ml conical tubes, which were centrifuged at 

3220 x g for 15 minutes at 4°C. The pellets were then washed with 10% glycerol and 0.25 

M sucrose, and frozen at -80°C. Freezing the cells is an essential step in the preparation of 

the E. faecium competent cells, as it further weakens the cell wall (Friesenegger et. al., 

1991).  

II.5.2 Electrotransformation of E. faecium TX1330 Cells 

 E. faecium TX1330 cells were electroporated according to a protocol adapted from 

Friesenegger et. al., 1991. Competent cells were thawed on ice, and 45 µl of cells were 

transferred to a 0.1 cm cuvette. 1.2 ng of plasmid DNA (pTEX5500ts-pheSA294G) was 

added to the cuvette and placed on ice. Electrotransformation was performed at 1.8 kV 

potential, 200 Ω resistance, and 25 µF capacitance. No arcing was observed, and 0.8 ml of 

ice-cold THB, supplemented with 0.25 M sucrose, was immediately added to the cuvette 

and placed on ice. As a control, THB with 0.25 M sucrose was added to 45 µl E. faecium cells 
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that had not been electroporated. The cells were allowed to recover for 2 h at room 

temperature, and then plated on THB agar supplemented with 0.25 M sucrose and 

gentamycin (250 mg/l). Plates were incubated at 28°C for 72 h.  

II.5.3 Plasmid Integration 

 Isolated colonies were used to inoculate 5 ml cultures of THB (supplemented with 

gentamycin) and grown overnight at the non-permissive temperature (i.e., 42°C, a 

temperature that inhibits plasmid replication) to allow for plasmid integration into the 

genome by a single homologous recombination event. Genomic DNA was extracted using 

the same protocol described above for purification of plasmid DNA from E. coli, with the 

modification of agitating the cells by vortexing after addition of solutions I, II, and III. 

Diagnostic PCR was performed using appropriate oligonucleotides, and the products were 

resolved on a 0.8% agarose gel to determine where the plasmid had integrated. Controls of 

wild-type E. faecium genomic DNA, as well as free plasmid DNA, were included for 

comparison. Once it was determined that plasmid integration had taken place, either in the 

upstream or downstream region of the targeted loci, stock solutions of the corresponding 

cultures were placed at -80°C for storage after addition of 15% (v/v) glycerol.  

II.5.4 Plasmid Curing and Excision 

 Isolated colonies from clones in which plasmid integration had been verified were 

used to inoculate 5 ml cultures of THB media supplemented with gentamycin and grown at 

42°C. These cultures were subjected to five serial passages in THB (supplemented with 

gentamycin) to completely cure the cells of remaining free plasmid. Following this step, 
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plasmid excision by homologous recombination was allowed during three additional 

passages in 5 ml THB with no gentamycin. Various types of minimal media, containing low-

level amounts of peptone and yeast extract as a source of amino acids (ranging from 60 to 

250 mg/l), were screened to test the efficacy of using pCl-Phe (provided at 15 mM) as a 

counterselectable marker. Our investigations revealed that 125 mg/l of peptone and yeast 

extract was sufficient to allow for efficient growth of wild-type E. faecium, but inhibit 

growth of one of the deletion strains. The cells were washed several times with 100 mM 

NaCl, and 500 cfu were plated on minimal media supplemented with 15mM pCl-Phe.  

II.5.5 Replica Plating 

 After it was determined that the pheS counterselection strategy was not an efficient 

tool for markerless mutation in E. faecium (see Chapter Three: Results, Generation of 

Knockout Strains of E. faecium), replica plating and negative screening were employed to 

identify clones in which the integrated plasmid had been excised. Once the cells had been 

subjected to three serial passages in the absence of selective pressure (i.e., gentamycin), 

500 cfu were plated on a master plate of THB agar (no gentamycin) and incubated 

overnight at 42°C. Clones were replica plated on THB agar (no gentamycin), and THB agar 

supplemented with gentamycin (250mg/l), and incubated overnight at 42°C. Colonies 

present on the THB (no gentamycin) plate, but absent on the THB + gentamycin plate were 

assumed to have lost the plasmid (as well as the targeted loci) in a second recombination 

event during the non-selective serial passages. Several colonies were selected and screened 

using PCR analysis.  
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II.6 Lipid Analysis 

II.6.1 Lipid Extraction 

 To monitor the biosynthesis of aa-PG in E. faecium, we first tested the wild-type 

strain in several different growth conditions. E. faecium strain TX1330 was grown in Brain 

Heart Infusion (BHI) broth, THB, and a minimal media adjusted to different pH values (6.4, 

6.8, and 6.7 respectively). The minimal media contained 70 mM of a KH2PO4/Na2HPO4 

buffer (pH 7.3 or 5.8), 15 mM NH4Cl, 0.4% glucose, 1 g/l of yeast extract, 1 g/l of peptone. 

E. faecium deletion strains (ΔaaPGS1, ΔaaPGS2, or ΔpHyd) were grown in minimal media 

adjusted to pH 6.7, since these growth conditions yielded a satisfactory level of lipid 

aminoacylation with the wild-type strain. Total lipids were extracted and analyzed using 1-

dimensional thin-layer chromatography (1D TLC). The total lipids were extracted using the 

Bligh-Dyer method (Bligh, E.G., Dyer, W.J., 1959) with the following modifications (Roy, H., 

Ibba, M., 2007). The harvested cell pellets were resuspended in 0.2 ml of 120 mM sodium 

acetate, pH 4.5. 0.75 ml of chloroform:methanol (1:2, v:v) was added to the resuspended 

cells, and mixed by vortexing for 10 min at room temperature. Subsequently, 0.25 ml of 

chloroform and 0.25 ml of 120 mM sodium acetate, pH 4.5, were added and mixed 

thoroughly by vortexing. The organic phase (containing the lipids) and the aqueous phase 

were separated by centrifugation, and the organic phase was collected and dried. Finally, 

the dried lipids were resuspended in 50 µl of chloroform:methanol (2:1, v:v). 
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II.6.2 Thin-layer Chromatography (TLC) 

 5 µl of lipid extract preparations were spotted on 10 cm, 250 micron HLF silicagel 

TLC plates, which were developed with chloroform:methanol:water (14:6:1, v:v:v) for 20 

min in 1-dimension. For detection of phospholipids the TLC plates were first stained with 

primuline, followed by ninhydrin staining to detect aminoacylated phospholipids. 

II.7 Growth Kinetics 

 Growth curves of wild-type E. faecium and the deletion mutants were compared in 

96-well plates containing 100 µl M9 minimal media, pH 6.7. 5 ml starter cultures were 

grown in THB at 37°C, the OD600 was determined, and the cultures were washed with 100 

mM NaCl to remove residual media. The cultures were then diluted in M9 minimal media 

(pH 6.7) and 10,000 cfu were used to inoculate each well (1 OD = 185,000 cfu/µl). Cell 

plates were incubated in a 96-well plate reader (Synergy H1 Hybrid Microplate Reader, 

BioTek) at 37°C for 20 h with high agitation, and the OD600 was measured every 6 mins. 

 16 



 

III. Chapter Three: Results 

III.1 Generation of E. faecium Knockout Stains 

Phenotypical microarray (PM) is a powerful method used to investigate gene 

function. This technique allows comparison of the respiration rates of wild-type and knock-

out strains in an array of nearly 2000 different growth conditions to detect phenotypical 

changes induced by specific genetic modifications. To generate knockouts of aaPGS1, 

aaPGS2, and pHyd, we employed a markerless deletion strategy to circumvent the use of 

antibiotic markers that could interfere with PM analysis. We started with an established 

protocol for allelic exchange in the genome of E. faecium that uses a shuttle plasmid with a 

thermosensitive origin of replication (pTEX5500ts) harboring a mutated copy of the target 

gene (in this case a deletion). This procedure (developed by Nallapareddy et. al., 2006) 

involves a two-step process to first integrate the mutated allele into the genome by 

homologous recombination, followed by a second recombination event between duplicated 

regions in the chromosome to yield a recombinant strain carrying either the wild-type 

allele or the mutated allele, depending on the site of recombination (Figure 2A). Since the 

frequency of plasmid excision is low (<1/1200, Nallapareddy et. al., 2006), and selection of 

recombinants is more convenient than laborious screening, we first investigated the 

efficacy of using a counterselectable marker, pheSA294G, to select for recombinant strains 

in which plasmid had been successfully excised (Figure 2B).  
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Figure 3: Allelic replacement strategies in E. faecium. A. Allelic replacement method as developed by 
Nallapareddy et. al. B. Modification of the method described in panel A yielding a markerless allelic 
replacement strategy. Both strategies involve the two-step integration-excision of the thermosensitive 
replicating plasmid pTEX5500ts (Nallapareddy et. al., 2006). Plasmid replication is maintained at permissive 
temperature (28°C), and is inhibited at restrictive temperature (42°C). U and D indicate the upstream and 
downstream regions of the target gene (X). Chromosomal and plasmid DNA is represented by black and gray 
lines, respectively, and recombination events are indicated by dashed lines. GenR, gene for gentamycin 
resistance; CamR, gene for chloramphenicol resistance. The successive steps of both methods are indicated in 
the figure (1-5). GenR, GenS, and CamR indicate the resistance (R) or sensitivity (S) phenotypes used for 
selection of the recombinants at the various steps of the methods.  
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 The counterselectable marker pheSA294G has been successfully utilized in the 

context of E. faecalis (Kristich et. al., 2007). We introduced pheSA294G into the plasmid 

pTEX5500ts to yield the plasmid pTEX5500ts-pheSA294G. Specifically, the open reading 

frame of the chloramphenicol resistance gene of pTEX5500ts, which is under the control of 

the synthetic promoter aad9 and constitutively expressed in E. faecium (Podbielski et. al., 

1996), was replaced with that of pheSA294G. The pheSA294G gene encodes for a mutated 

version of the α-subunit of the E. faecium phenylalanyl-tRNA synthetase (PheRS), which, 

when reconstituted with the genome-encoded β-subunit to form a functional 

heterotetrameric PheRS, allows for tRNAPhe misacylation with the substrate analog para-

chloro-phenylalanine (pCl-Phe). Misacylation results in mis-incorporation of pCl-Phe 

instead of Phe during protein synthesis, which, in turn, inhibits bacterial growth. pCl-Phe 

toxicity is mainly determined by the relative abundance of PheRS and PheRSA294G, and the 

relative availability of Phe and pCl-Phe in the cell. Therefore, it was critical to use a medium 

containing a low concentration of Phe in order to observe toxicity conferred by pCl-Phe 

incorporation. To this end we screened media supplemented with 15 mM pCl-Phe and 

containing variable amounts (from 60 to 250 mg/l; see Chapter Two: Materials and 

Methods) of yeast extract and peptone as sources of amino acids. Our initial investigations 

revealed that a medium containing 15 mM pCl-Phe and 125 mg/l peptone and yeast extract 

allowed for efficient growth of wild-type E. faecium, but inhibited growth of a strain 

electrotransformed with the plasmid pTEX5500ts-pheSA294G-ΔaaPGS1 (designed to delete 

aaPGS1; Clone 1, Figure 4). Further investigations demonstrated that pCl-Phe toxicity
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 varied depending on the integration state of the plasmid, making the use of pheSA294G  

impractical as a counterselectable marker in E. faecium. Chromosomal analysis of several 

integrants revealed that integration of the plasmid pTEX5500ts-pheSA294G-ΔaaPGS1 at the 

pheS locus induced sensitivity to pCl-Phe. In contrast, integration of the plasmid at the 

aaPGS1 locus resulted in pCl-Phe resistance instead of sensitivity. Upon determining that 

pheSA294G could not be used for the counterselection of recombinants that have lost the 

integrated plasmid, a screening strategy using replica plating was used as an alternative 

approach. 

Figure 4: Growth inhibition of E. faecium mediated by pCl-Phe and the marker PheSA294G. E. faecium 
was transformed with the plasmid pTEX5500ts-pheSA294G-ΔaaPGS1. Wild-type E. faecium and several 
transformants (clones 1 – 7) were cultured in Todd-Hewitt broth during 8 h at 37°C. Cells were washed and 
adjusted to density OD600nm =3. 4 µl of ten-fold serial dilutions were sequentially spotted (left to right) on 
minimal media in the absence or presence of 15 mM pCl-Phe. Analysis of plasmid integration by PCR showed 
that clone 1 has a double insertion of the plasmid in the upstream and downstream region of the aaPGS1 
locus; clones 2 and 3 exhibit integration of the plasmid in the pheS locus; clones 4-7 exhibit single integration 
of the plasmid in either the upstream or downstream region of aaPGS1. 
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III.2 Replica Plating/Negative Selection 

The pTEX5500ts-pheSA294G plasmids harboring the targeted loci with the desired 

mutations (ΔaaPGS1, ΔaaPGS2, or ΔpHyd) were electrotransformed in E. faecium. 

Transformants (~100 cfu/µg of plasmid) were selected on semi-solid media containing 

gentamycin and incubated at permissive temperature (i.e., 28°C, a temperature that allows 

for plasmid replication) for 72 h. Integration of each plasmid into the chromosome was 

accomplished by inoculation of a single transformant in liquid media (THB) in the presence 

of gentamycin, and by incubation overnight at restrictive temperature (i.e., 42°C, a 

temperature that inhibits plasmid replication). Individual clones were isolated, and 

successful integration of each plasmid at the desired loci in the chromosome was verified 

using PCR. Free plasmid was cured from the integrants by five serial passages of the strains 

in liquid THB, in the presence of gentamycin at restrictive temperature. Excision of plasmid 

by a second round of homologous recombination between duplicated regions in the 

chromosome was accomplished by three additional serial passages in THB without 

gentamycin. 500 cfu were plated on THB without antibiotics, and then replica plated on 

THB containing gentamycin. Inspection of both plates allowed for identification of clones 

sensitive to gentamycin, from which the plasmid had been excised from the targeted loci. 

The rates for the second recombination event ranged from approximately 1/100 to 

1/1000. Depending on the site of recombination, gentamycin sensitive recombinants 

carried either the wild-type allele, or the mutated alleles (Figure 2B). Identification of 

recombinants carrying the mutated alleles was performed using PCR. 
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III.3 Lipid Analysis of ΔaaPGS1, ΔaaPGS2, and ΔpHyd Strains 

The main lipid constituents of the cytoplasmic membrane of E. faecium are PG, 

phosphatidylethanolamine (PE), cardiolipin (CL), glycolipids, and aa-PGs (dos Santos Mota 

et. al., 1970). Previous work revealed that aaPGS2 modifies PG with Ala, Lys, and Arg (Roy, 

2009). Similar attempts to reconstitute the activity of aaPGS1 using several different aa-

tRNAs were unsuccessful (unpublished results). These previous studies were limited by the 

fact that aaPGS function was investigated in vitro using E. faecium membrane extracts 

expressed in E. coli. It was not clear whether the lack of aaPGS1 activity was due to lack of 

expression in E. coli, or whether the wrong aa-tRNAs were provided as substrates in vitro. 

Hence, there was a need to investigate the function of these genes directly in E. faecium. 

In the current study, we first screened media such as THB, BHI, and minimal media (at 

a variable pH values), for use in determining the level of aa-PG synthesis in the wild-type 

strain (see Materials and Methods). It was previously shown that aa-PG synthesis is 

enhanced in response to acidic pH in multiple organisms, e.g., Staphylococcus aureus, 

(Gould & Lennarz, 1970); Rhizobium tropici (Vinuesa et. al., 2003); B. subtilis (Houtsmuller 

& van Deenen, 1965). Figure 5 indicates that lipid aminoacylation is lower when E. faecium 

is grown in rich media such as BHI or THB, and higher when cultured in minimal media. 

The pH values of these cultures were similar, ranging from 6.4 for BHI to 6.7 for the 

minimal media, indicating that differences in media composition outside of pH can also 

affect aa-PG synthesis. However, lipid aminoacylation was further enhanced when the pH 

of the minimal media was decreased from 6.7 to 4.1. One ninhydrin-reactive spot that was

 22 



observed is consistent with that of Lys-PG and Arg-PG (Roy et. al., 2009); however, it could 

not be determined if the spot was due to the presence of one of these aminoacylated PGs, or 

both. Further analysis by 2D TLC will be required to identify the precise aa acylating the 

PG. It is worth mentioning that a very weak spot corresponding to that of Ala-PG was 

detected in samples extracted from E. faecium grown in either rich or minimal media 

(Figure 5).   

Following identification of a suitable medium for enhancing lipid aminoacylation, 

wild-type and mutant strains were compared to determine if the mutations affected 

synthesis of aa-PG in vivo. As can be seen in figure 6, aa-PG synthesis was abolished in the 

∆aaPGS2 and ∆pHyd mutants, whereas no apparent change in lipid composition was

Figure 5: TLC analysis of membrane lipids from E. faecium cultured in various conditions. E. 
faecium was cultured overnight at 37°C in THB, BHI or minimal media (prepared at pH 6.8, pH 6.4, 
and pH 6.7, respectively) as described in materials and methods. The pH of each culture (indicated 
in figure) was measured just prior to harvesting the cells. Membrane lipids were prepared and 
analyzed on TLC silica gel as described in materials and methods. Total lipids were visualized by 
spraying the TLC plates with primuline, and amino containing lipids were visualized using 
ninhydrine. CL, cardiolipin; PG, phosphatidylglycerol; APG, Ala-PG; KPG, Lys-PG; RPG, Arg-PG; O, 
origin. 
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 observed in the ∆aaPGS1 mutant. In light of the fact that aaPGS2 activity can be efficiently 

reconstituted in E. coli without expression of pHyd, we hypothesized that deletion of pHyd 

is not likely to directly affect aaPGS2 activity. Therefore, we considered the possibility that 

expression of aaPGS2 may have been affected by the genetic manipulation we performed 

on pHyd. Re-examination of the operon revealed that there are alternative putative start 

codons for translation of aaPGS2 and pHyd, and that deletion of pHyd may have removed 

the actual start site for aaPGS2 expression (Figure 7). 

Figure 6: TLC analysis of lipids from E. faecium wild-type and mutant strains. Lipid extracts from E. 
faecium strains cultured in minimal media (prepared at pH 6.7) were analyzed by TLC (see Figure 5). Total 
lipids were visualized by spraying with primuline (A), and amino lipids were revealed with ninhydrin (B). CL, 
cardiolipin; PG, phosphatidylglycerol; APG, Ala-PG; KPG, Lys-PG; RPG, Arg-PG; O, origin. 
 

Figure 7: pHyd-aaPGS2 operon in E. faecium TX1330. Amino acid sequences are those 
predicted by NCBI. Alternative initiator codons are boxed, and putative Shine-Dalgarno sequences 
are shaded. A dashed line indicates the sequence that has been deleted in the ∆pHyd construct. 
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Therefore, the pHyd mutant may, in fact, be a double knockout of both pHyd and aaPGS2. 

Further work is needed to verify that aaPGS2 expression is unaffected in the ∆pHyd strain, 

and/or to generate a pHyd deletion strain in which the aaPGS2 start site remains intact. 

Nevertheless, our findings, with respect to ∆aaPGS2 and ∆aaPGS1 are consistent with 

previous results (Roy, 2009) and with data recently obtained in E. faecalis (Bao et. al., 

2012). Also, our work towards generating E. faecium knockout strains will facilitate 

construction of additional mutants that can be used to study the aaPGS pathway. 

III.4 Bacterial Growth Kinetics of ∆aaPGS1, ∆aaPGS2, and ∆pHyd Strains 

 None of mutant strains (∆aaPGS1, ∆aaPGS2, or ∆pHyd) exhibited an altered growth 

rate compared to wild-type. However, only the ∆pHyd mutant, which may in fact be a 

double knock-out (∆pHyd/∆aaPGS2), exhibited a 20% increase of the maximal growth in 

comparison to the wild-type strain (P < 0.05)(Figure 8 and Table 1). 

Figure 8: Growth kinetics of E. faecium wild-type and mutant strains. Bacterial growth was 
measured in a 96-well microplate as described in Materials and Methods. 
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Table 1: Parameters for the growth of E. faecium wild-type and mutant strains. 
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IV.  Chapter Four: Discussion 

 We modified the method previously described by Nallapareddy et. al. to construct 

the markerless deletions of the genes aaPGS1, aaPGS2, and pHyd in E. faecium. This strategy 

uses a two-step integration-excision of the shuttle plasmid pTEX5500ts, which harbors a 

cloned copy of the targeted gene with the desired mutation. In this strategy we evaluated 

the efficacy of the counterselectable marker pheSA294G, which exerts toxicity when 

bacteria are cultured in the presence of pCl-Phe. We found that pheSA294G cannot be used 

as a counterselectable marker when placed under the control of the synthetic promoter 

aad9 found in pTEX5500ts. pheSA294G exhibited different levels of toxicity in the presence 

of pCl-Phe, which depended on how the plasmid was integrated in the genome of E. 

faecium. Only multi-copy insertions, or insertions of the plasmid at the wild-type pheS locus 

displayed the expected toxicity. Our results suggest that pheSA294G was not expressed in 

sufficient quantities to outcompete wild-type pheS expression, and that the synthetic 

promoter controlling expression of pheSA294G on the plasmid (aad9) may be weaker than 

the natural promoter of pheS. This problem may be fixed by placing pheSA294G under the 

control of the E. faecium pheS promoter. 

As an alternative to the counterselection strategy using pheSA294G, we used 

negative-selection by replica plating to accomplish markerless deletion of aaPGS1, aaPGS2, 
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and pHyd from E. faecium. Phenotypical changes associated with these mutations were 

determined by investigating bacterial growth and lipid synthesis.  

We first examined the influence of growing conditions on lipid aminoacylation 

levels in E. faecium. Aminoacylated lipids were present when E. faecium was cultured in 

minimal media, and were absent when cells were cultured in richer media such as THB or 

BHI. More work is needed to determine whether the aaPGS pathway may be triggered 

under starvation conditions, or if a specific compound in the minimal media, not present in 

BHI or THB, is responsible for triggering lipid aminoacylation. In addition, we showed that 

lipid aminoacylation is enhanced when the pH of the culture is lower, which is consistent 

with previous observations made in several other organisms such as S. aureus (Gould et. al., 

1970) and B. subtilis (Houtsmuller et. al., 1965).  

Mutant and wild-type strains were grown in minimal media and total lipids were 

extracted. Analysis of the extracts by TLC revealed that aaPGS2 aminoacylates PG in vivo, 

while the function of aaPGS1 could not be determined. Since the ninhydrin reaction spot 

observed from the wild-type extract is consistent with that seen when PG is acylated with 

either Lys or Arg, further analysis by 2D TLC will be necessary to positively identify the aa-

PG.  

Deletion of pHyd from E. faecium resulted in a similar loss of aa-PG as compared to 

wild-type; however, as mentioned above, this may have been due to the absence of aaPGS2 

expression in the ∆pHyd mutant. A clean ∆pHyd mutant will need to be obtained in order to 

determine the physiological relevance of the putative hydrolase.  
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We found that deletion of the targeted loci in E. faecium did not affect the growth 

rates of the mutant strains during exponential growth. However, ∆pHyd, which may in fact 

be a double mutant (∆pHyd-∆aaPGS2), exhibited a 20% increase in maximal growth in 

comparison to the wild-type strain and the single deletion strain ∆aaPGS2. Further analysis 

of a clean ∆pHyd mutant is needed to determine if the observed increase was due to the 

double knockout of pHyd and aaPGS2, or if deletion of pHyd alone conferred this effect. 

Of particular interest is the fact that the function and phenotype associated with 

aaPGS1 remains unknown. For the next step in characterization of aaPGS1, aaPGS1 activity 

will be assayed using [14C]aa-tRNAs and E. faecium ∆aaPGS2 crude membrane extracts. The 

∆aaPGS2 strain will be useful for this assay as it will allow detection, with greater 

sensitivity, of aaPGS1 activity without it being obfuscated by activity associated with 

aaPGS2. 

In conclusion, the goal of this project was to achieve markerless deletion of aaPGS1, 

aaPGS2, and pHyd in E. faecium. Although substantial progress was made towards the 

generation of the mutant strains (with the exception of perhaps ∆pHyd), there is more 

work to do in the future. A ∆pHyd mutant that does not interfere with the translation start 

site of aaPGS2 needs to be obtained and/or verified. In addition, all of the strains will be 

analyzed using phenotypic microarrays. This method will allow us to identify phenotypes 

(including antibiotic resistances) outside of those already investigated, and will allow us to 

establish relationships between pHyd, aaPGS1, aaPGS2. Further, these investigations may 
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provide intimations of the functions of aaPGS1 and pHyd, two genes for which the 

physiological relevance is currently not known. 
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