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ABSTRACT

String theory imposes slight modifications to Einstein’s equations of general relativity

(GR). In [4] the authors claim that the gravitational field equations in empty space, which in

GR are just Rµν = 0, should hold one extra term which is first order in the string constant α′

and proportional to the Riemann curvature tensor squared. They do admit, however, that

this simple modification is just schematic. In [1] the authors use modified equations which

are coupled to the dilaton field. We show that the equations given in [4] do not admit an

isotropic solution; justification of these equations would require sacrificing isotropy. We thus

investigate the consequences of the coupled equations from [1] and the black-hole solution

they give there. We calculate the additional perihelion precession of Mercury, the added

deflection of photons by the sun, and the extra gravitational redshift which should be present

if these equations hold. We determine that additional effects due to string theory in each of

these cases are quite minuscule.
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INTRODUCTION

In Steven Weinberg’s classic text [5], he makes a strong effort to develop general relativity

logically from a minimal set of assumptions. To begin, he quickly develops special relativity

by (i) assuming Newtonian mechanics governs the behavior of a particle in its rest frame

and (ii) imposing Lorentz covariance to determine the laws obeyed by moving particles. To

make the transition to general relativity, he imposes the Principle of Equivalence, in which he

states that “at every spacetime point in an arbitrary gravitational field it is possible to choose

a locally inertial coordinate system such that, within a sufficiently small region [around] the

point in question, the laws of nature take the same form [as in] special relativity.” Thus the

dynamics of a particle in a given gravitational field lies on strong logical foundations.

However, upon “derivation” of the differential equations that determine the gravita-

tional field created by matter, Weinberg notes that the logical footing is not quite as strong.

His method of choice for the derivation involves first choosing a locally inertial frame around

the matter, in which the gravitational field is weak near the matter and hence described

by linear partial differential equations. Then we can use a coordinate transformation to

find, with respect to an arbitrary frame, the field in the vicinity of matter. This field obeys

nonlinear partial differential equations in general since the gravitational field itself carries

energy and momentum, thus acting as its own source. Since our empirical information about

the weak field equations is limited due to the extreme weakness of gravitational waves, some

guess work is inevitable in carrying out the first step in the derivation.

Indeed, for a metric gµν , Newton’s law of gravitation for nonrelativistic mass amounts

to

∇2g00 = −8πGT00 ,

from which we guess that for a general distribution Tαβ of energy and momentum, the
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weak-field equations take the form

(G0)µν = −8πG (T0)µν ,

where (G0)µν is a linear combination of gµν and its first and second derivatives. Using the

Principle of Equivalence to move to the second step of the derivation, we find

Gµν = −8πGTµν

in an arbitrary frame, where Gµν → (G0)µν for weak fields. A few further considerations

detailed in [5], including the scale invariance of gravity (which is by no means well established)

and the symmetry of Tµν , lead to the implication that

Gµν = Rµν −
1

2
gµν R ,

so that in regions devoid of matter, we have Einstein’s field equations reducing simply to

Rµν = 0 . (1)

Now, the guesswork in the above derivation has not been ignored by relativists, and

many alternative theories of gravity have been proposed throughout the decades. Perhaps

the easiest one to state is the so-called f(R) gravity. It turns out that (1) can be derived

from an action principle, in which gµν must extremize

S = − 1

16πG

∫ √
−g R d4x .

Instead, one might choose to take an action with a more general scalar acting as the La-

2



grangian density:

S = − 1

16πG

∫ √
−g f(R) d4x .

This leads to the field equations

(
Rµν −

1

2
gµν R− ∂µ∂ν

)
f ′(R) +

1

2
gµν f(R) = 0

in the absence of matter [2]. Such equations can remove gravity’s scale invariance. For

instance, if we choose f(R) = R+ cR2 for some constant c , dimensional analysis shows that

this will only cause changes to classical gravity on small length scales, since [R] = L−2 .

Alternatively, Brans and Dicke postulated the existence of a scalar field φ which me-

diates long-range forces; after all, we have a vector field Aµ associated with electrodynamics

and a second-rank tensor field gµν corresponding to gravity. In fact, their theory is inspired

by Mach’s principle, which states that an object’s inertia may depend on its motion with

respect to the mass distribution of the entire universe. The Brans-Dicke theory is outlined

in [5, 2], with field equations given by

�2φ =
8π

3 + 2ω
T µµ ,

Rµν −
R

2
gµν =

8π

φ
Tµν +

ω

φ2
(∂µφ ∂νφ−

1

2
gµν ∂αφ ∂

αφ)

+
1

φ
(∇µ∇νφ− gµν �2φ) .

The first term on the right of the second equation above makes it clear that φ plays the role

of 1/G , so that the strength of gravitational coupling becomes a dynamical variable.

Thus it is no surprise that string theory imposes its own modifications to Einstein’s

theory of gravitation. String theory postulates that our universe is actually a manifold with
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several extra dimensions in addition to the three spatial and one temporal directions we

experience with our senses. The modifications to Einstein’s equations come about when we

seek effective four-dimensional equations that govern phenomena in spacetime when the extra

dimensions are considered to have negligible effect. Green, Schwarz, and Witten suggested

one modification to Einstein’s equations in [4]; we spend a portion of this thesis investigating

consequences of that modification. We then move on to determine the effects of the generally

accepted equations written in [1] on well-studied phenomena in our solar system.
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BACKGROUND RELATIVITY

Einstein’s theory of general relativity, along with any modification thereof, is written in the

language of differential geometry. Here we include a short summary of Riemannian geometry

(as it relates to gravity) in which we review all formulae which will become necessary for

calculations presented later in this thesis.

We remind the reader that spacetime is postulated to be a smooth manifold, i.e. a

topological space endowed with a cover (called an atlas) consisting of open sets (called

coordinate charts) homeomorphic to open balls in R4 . On the intersection of two charts, the

two corresponding homeomorphisms may be combined to become a map from one open set

of R4 to another; such transition maps are required to be smooth.

A vector is associated with a point on the manifold and lives in a vector space called

the tangent plane at that point. Thus we do not picture vectors as arrows on the manifold

but instead as arrows tangent to the manifold. Such vectors can be defined as equivalence

classes of directional derivatives along curves, as agrees with our intuition. In addition, there

exists a dual vector space at each point which consists of all linear maps of vectors at that

point to the field of real numbers; such is called the cotangent plane. Instead of stopping

here, we can consider multi-linear maps from any number of vectors and covectors to the

reals; such objects are called tensors.

Choosing a coordinate chart at any given point defines a coordinate basis for the

vectors at that point. This in turn specifies a dual basis for the covectors, and we can

continue the trend to find a coordinate basis for any tensor at that point. Tensors then

have components written T µν···ρλ··· with respect to the coordinate basis, where we label the

coordinates xµ or xν , etc., with Greek indices taking values 0, 1, 2, 3 .

We notice an immediate problem when we go to differentiate a vector field on a

manifold: the definition of partial differentiation requires us to subtract vectors at two
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different points — from two different vector spaces. This has no meaning. We thus require

a structure on the manifold which allows us to transport a vector from one tangent space to

another; then we can perform the subtraction. The connection coefficients Γµνλ allow us to

do this, and we end up with a way to perform covariant differentiation:

∇µA
ν = ∂µA

ν + ΓνλµA
λ .

In this equation, we have employed the Einstein summation convention in which Greek

indices that are repeated (once upstairs, once downstairs) in a term are implicitly summed

from 0 to 3. A connection allows us to define a geodesic, i.e. a curve whose tangent vector

is parallel-transported into itself along the curve. In symbols:

d2xµ

dp2
+ Γµνλ

dxν

dp

dxλ

dp
= 0 ,

where p parametrizes the path. In fact, this is the equation that governs the motion of a

particle through curved spacetime, i.e. in the presence of gravitational fields. The second

derivative present allows us to make analogy with Newtonian mechanics and associate the

Γµνλ’s with a sort of force.

With the concept of parallel transport, there also follows a notion of curvature. If a

vector is parallel-transported around a parallelogram on the manifold, it may not return to

its initial state when it finds its way back to the starting point. Such a discrepancy between

the initial and final vectors in this process is determined by the Riemann-curvature tensor:

∆Aµ =
1

2
Rσ

µνρAσ

∮
xρ dxν

in which the integration is along the closed path and
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Rλ
µνκ ≡

∂Γλµκ
∂xν

−
∂Γλµν
∂xκ

+ Γηµκ Γλνη − Γηµν Γλκη .

Repeatedly contracting indices of the Riemann-curvature tensor produces first the Ricci

tensor, then the scalar curvature:

Rµκ ≡ Rλ
µλκ , Rµ

µ ≡ R .

In general relativity, it is conventional to put additional structure on the spacetime manifold:

a smooth tensor field gµν which is traditionally associated with defining infinitesimal lengths

on the manifold through

ds2 = gµν dx
µ dxν .

For covariant differentiation to be compatible with this metric on the manifold, our connec-

tion coefficients must be given by

Γµνλ =
gµρ

2

(
∂gρν
∂xλ

+
∂gρλ
∂xν

− ∂gνλ
∂xρ

)
.

The derivatives in this equation show that, since we make the association Γµνλ ∼ gravitational

force, we also interpret gµν ∼ gravitational potential. Since specifying Γµνλ in turn defines

Rµ
νλρ , the metric gµν pins down all geometric objects we have discussed here.

This brings us to the results stated in the Introduction: Einstein’s field equations.

The geometry of spacetime in the presence of matter is given by a metric which satisfies

Rµν −
R

2
gµν =

8πG

c4
Tµν

where Tµν is the energy-momentum tensor for the matter in question. In empty space we

simply have the vanishing of the Ricci tensor.
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A SCHEMATIC MODIFICATION TO GRAVITY

According to [4], in a region of spacetime devoid of mass Einstein’s field equations become

Rµν + λRµκρτ R
κρτ
ν = O(λ)2 , (2)

where λ = α′/2 is proportional to the string parameter; there they dealt with bosonic string

theory. Though the authors have since admitted that this equation is merely schematic of

the modifications imposed on classical gravity, it is nonetheless interesting to study.

No Static Isotropic Solution

We first prove there is no static, isotropic solution to (2). The most general such metric can

be written

ds2 = −B(r) dt2 + A(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2 . (3)

Putting this into the left side of (2) we find that only the diagonal elements do not vanish

identically; they are

Rtt + λ

 −B′(r)2

r2A(r)2B(r)
−

{
A(r)B′(r)2 + B(r)

[
A′(r)B′(r)− 2A(r)B′′(r)

]}2

8A(r)4B(r)3

 , (4)

Rrr + λ

 A′(r)2

r2A(r)3
+

{
A(r)B′(r)2 + B(r)

[
A′(r)B′(r)− 2A(r)B′′(r)

]}2

8A(r)3B(r)4

 , (5)

Rθθ +
λ

2A(r)4

[
4
[
A(r)− 1

]2
A(r)2

r2
+ A′(r)2 +

A(r)2B′(r)2

B(r)2

]
, (6)

Rφφ +
λ sin2 θ

2A(r)4

[
4
[
A(r)− 1

]2
A(r)2

r2
+ A′(r)2 +

A(r)2B′(r)2

B(r)2

]
; (7)
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we will call these expressions (tt), (rr), (θθ), and (φφ) respectively. Here Rµν has nonvan-

ishing components which are given in [5] :

Rtt =
B′′(r)

2A(r)
− A′(r)B′(r)

4A(r)2
− B′(r)2

4A(r)B(r)
+
B′(r)

r A(r)
,

Rrr = − B′′(r)

2B(r)
+
A′(r)B′(r)

4A(r)B(r)
+

B′(r)2

4B(r)2
+

A′(r)

r A(r)
,

Rθθ = 1− 1

A(r)
+
r A′(r)

2A(r)2
− r B′(r)

2A(r)B(r)
,

Rφφ = Rθθ sin2 θ .

Right away, we see that we can disregard the (φφ) component of (2) as redundant, leaving

three equations for us to solve. Through (2), (4), and (5) we also see that

O(λ)2 =
(rr)

A(r)
+

(tt)

B(r)
=
A′(r)B(r) +B′(r)A(r)

r A(r)2B(r)
+ λ

A′(r)2B(r)2 −B′(r)2A(r)2

r2A(r)4B(r)2
. (8)

At this point, we move from the general metric (3) to a more specific form. The Schwarzschild

metric

ds2 = −
(

1− 2M G

r

)
dt2 +

(
1− 2M G

r

)−1
dr2 + r2 dθ2 + r2 sin2 θ dφ2 (9)

solves (2) to zeroth order in λ ; we seek a static, isotropic solution to (2) correct to first order

in λ . This must have the form

ds2 = −
[
1− 2M G

r
+ λ b(r)

]
dt2+

[
1− 2M G

r
+ λ a(r)

]−1
dr2+r2 dθ2+r2 sin2 θ dφ2 (10)
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which amounts to setting

B(r) = 1− 2M G

r
+ λ b(r) and A(r) =

[
1− 2M G

r
+ λ a(r)

]−1
(11)

in (3) . Plugging these into (8) we find that

λ
A′(r)2B(r)2 −B′(r)2A(r)2

r2A(r)4B(r)2
= O(λ2) .

Thus to enforce (8) it suffices to set

0 = A′(r)B(r) + A(r)B′(r) so that A(r)B(r) = 1 + λ k = const . (12)

The constant of integration must be be unity to first order in λ ; this comes by direct

calculation using (11) or by requiring spacetime to be asymptotically Minkowskian (at least

approximately). Some might argue that spacetime should become exactly Minkowskian at

infinity — this is done in [1] . Being interested in the most general case now, we can simply

set k = 0 later if desired.

Now, (11) and (12) imply that

b(r) = a(r) + k

(
1− 2GM

r

)
. (13)

With this relationship between b(r) and a(r) enforced, (4) is simply a consequence of (5), so

we can henceforth disregard the former, leaving us with two equations.

We are thus left with the (rr) and (θθ) components of (2). Using (11) and (13) in

(6) yields

r a′(r) + a(r) =
12G2M2

r4

10



with solution

a(r) =
c

r
− 4G2M2

r4
, (14)

keeping the constant of integration c for now arbitrary. This determines b(r) through (13) :

b(r) =
c

r
− 4G2M2

r4
+ k

(
1− 2GM

r

)
. (15)

This should conclude the calculation; however, we must check to see whether this solution

is consistent with the equation (rr) = 0 . Plugging (11) into (5) using (14) and (15) gives

(rr) =
36λ

r4

(
GM

r

)2 (
1− 2GM

r

)−1
6= 0 .

It thus appears we have an inconsistent system of differential equations.

This result may surprise the reader, but keep in mind that we attempted to solve a set

of three differential equations with two unknown functions. Let us remember the analogous

calculation in classical gravity, where we can plug the general metric (3) into Rµν = 0 and

find the Schwarzschild solution (9). In that case, after determining that A(r) = 1/B(r)

(i.e. our equation (12) with λ set to zero), one can determine that

Rrr −
1

2 r B(r)

dRθθ

dr
= 0 ,

reducing the number of independent equations to two. In our problem, if we plug

A(r) =
1 + λ k

B(r)

11



from (12) above into (5) and (6) we find that

(rr)− 1

2 r B(r)

d(θθ)

dr
=

λ

2 r4B(r)

{
4 + 4B(r)2 + 2 r2B′(r)2 − 4B(r)

[
r B′(r) + 2

]
− k r4B′′(r) + r4B′′(r)2 − 2 r B′(r)

[
r2B′′(r) + k r2 − 2

]}
,

which does not vanish but is of order λ . It thus seems that we have three independent equa-

tions to solve. In contrast to the classical problem of determining the static, isotropic metric

which obeys Einstein’s equations, our system in the perturbed problem is overdetermined.

Analogue to Birkhoff’s Theorem

We can take this result one step further by proving that, in fact, no isotropic solution of (2)

exists, dropping the static condition. We do this by showing that any isotropic solution of

(2) must necessarily be static. The analogous result in classical general relativity is known

as Birkhoff’s theorem; we prove it here for this theory of modified gravity.

The most general isotropic metric can be written

ds2 = −B(r, t) dt2 + A(r, t) dr2 + r2 dθ2 + r2 sin2 θ dφ2 .

Since we know that Birkhoff’s theorem holds true to zeroth order in λ , any isotropic solution

to (2) can be written as

ds2 = −
[
1− 2M G

r
+ λ b(r, t)

]
dt2 +

[
1− 2M G

r
+ λ a(r, t)

]−1
dr2 + r2 dθ2 + r2 sin2 θ dφ2 ;

this defines more A(r, t) and B(r, t) more specifically. Plugging this metric into the left side

12



of (2) gives some nonvanishing off-diagonal components, e.g.

O(λ)2 = (tr) = λ
ȧ(r, t)

2GM − r
;

we let dots denote differentiation with respect to time, primes with respect to the radial

coordinate. This equation is very convenient, as it implies a = a(r) and A = A(r) , thus

simplifying remaining equations. Now expanding

O(λ)2 =
(tt)

B(r, t)
+

(rr)

A(r)
,

we find again something proportional to

A′(r)B(r, t) + A(r)B′(r, t) = O(λ)2 ;

this time we get A(r)B(r, t) = f(t) , for some function of t. But no matter the functional

form of f(t), through a change of coordinates in which

dt′ =
dt

f(t)
,

this function may be absorbed into B(r, t) . Let us assume we began the calculation in

such a coordinate system (so we can avoid an overflow of primes) ; we are then left with

A(r)B(r, t) = const. This can only hold when B = B(r) , leaving us with a static field.

We move now to the generally accepted gravitational equations in the next section

and abandon (2) for the remainder of this thesis.
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MODIFICATION WITH DILATON COUPLING

According to [1], string theory imposes modifications to Einstein’s field equations of general

relativity, which to leading order in the string parameter α′ take the form

Rµν + 2∇µ∇ν Φ + λRµαβγ R
αβγ
ν = O(λ)2 (16)

�Φ− (∇Φ)2 +
1

4
R +

1

8
λRαβγδ R

αβγδ = O(λ)2 . (17)

Here, the gravitational field is coupled to the scalar dilaton field, and variations in the two

cannot be separated [3]. Again, we are using λ = α′/2 for bosonic string theory, but in [1]

it is noted that λ = α′/4 in heterotic string theory and λ = 0 for supersymmetric strings.

The corresponding static isotropic spacetime metric outside a mass m is determined in [1]

as well. They begin by assuming

ds2 = −f(r)2 dt2 + g(r)2 dr2 + r2 dθ2 + r2 sin2 θ dφ2 (18)

with

f(r) = f0(r)
[
1 + λµ(r)

]
, (19)

g(r) = g0(r)
[
1 + λ ε(r)

]
, (20)

Φ(r) = Φ0 + λϕ(r) , (21)

where

f0(r)
2 =

1

g0(r)2
= 1− 2Gm

r
and Φ0 = const.

To solve (16)-(17) it is beneficial to obtain an equation containing only ϕ(r), its derivatives,

and known functions of r. To do this we contract (16) to obtain an expression for the scalar
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curvature R, then plug that into (17) to get

�2Φ− 2 (∇Φ)2 − λ

4
Rαβγδ R

αβγδ = O(λ)2 . (22)

Plugging in (21) we get the ordinary differential equation

r − 2Gm

r
ϕ′′(r) +

2r − 2Gm

r2
ϕ′(r) =

12G2m2

r6

with solution

ϕ(r) = −2Gm

3r3
− 1

2r2
− 1

2Gmr
.

Constant of integration are eliminated throughout by requiring spacetime to be asymptoti-

cally Minkowskian and keeping the Schwarzschild radius at r = 2Gm . The second require-

ment can always be imposed through a rescaling of the radial coordinate; the first condition

seems to be the most reasonable behavior at infinity

Having solved for ϕ(r) , we are left with the equations (16), of which only the diagonal

components do not vanish identically. We follow the exact same routine to solve these

equations as we tried in the previous section, only here there is no inconsistency. We get the

result:

f(r) =

√
1− 2Gm

r

[
1− λ

r2

(
23 r

24Gm
+

11

12
+
Gm

r

)]
(23)

g(r) =
1√

1− 2Gm
r

[
1− λ

r2

(
r

24Gm
+

7

12
+

5Gm

3 r

)]
. (24)

In passing, we can ask what would have happened if we had searched for an isotropic

solution which is not necessarily static. Would we discover another analogue to Birkhoff’s
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theorem? Plugging in a general static metric

ds2 = −
(

1− 2GM

r

) (
1 + α′ µ(r, t)

)
dt2 +

(
1− 2GM

r

)−1 (
1 + α′ ε(r, t)

)
dr2 + r2 dΩ2 .

into (16), we get nonvanishing off-diagonal again. But this time

O(λ)2 = (tr) = λ

[
2GM ϕ̇

(2GM − r) r
+

2 ε̇

r
+ 2

∂2ϕ

∂x ∂t

]
;

we cannot isolate the time derivative of ε(r, t) since ϕ(r, t) may depend on time. Indeed,

(22) becomes

r7 ϕ̈− r5 (r − 2Gm)2 ϕ′′ − 2r4 (2G2m2 − 2Gmr + r2)ϕ′ + 12G2m2r − 24G3m3 = 0 .

Thus we conjecture that no analogue to Birkhoff’s theorem exists for the gravitational field

equations (16)-(17) .

Now in classical general relativity, Birkhoff’s theorem implies that a pulsating star,

for instance, causes no gravitational radiation. With the new possibility for “isotropic gravi-

tational radiation”, perhaps it will one day be possible to search in the radiation from the Big

Bang, when string theory would have had large effect on physics, for a component matching

the prediction given by string theory.
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CLASSICAL TESTS OF GENERAL RELATIVITY

We are interested in using this result to calculate the deviations from Einstein’s theory

that should occur in phenomena know as the classical tests of general relativity. All these

calculations deal with bodies moving in the geometry given by (18) with (23) and (24). Thus

we will recall here from [5] how to determine the trajectory of a particle in a static, isotropic

geometry.

Consider, once again, the metric given by

ds2 = −B(r) dt2 + A(r) dr2 + r2 dΩ2 (25)

where we leave A(r) and B(r) arbitrary for now and write dΩ2 instead of dθ2 + sin2 θ dφ2

for brevity. To determine a particle’s motion in this geometry, we need to solve the geodesic

equations

d2xµ

dp2
+ Γµνλ

dxν

dp

dxλ

dp
= 0 (26)

with Γµνλ computed in terms of A(r) and B(r) from the metric. By the spherical symmetry

of the problem, we can choose θ = π/2 for all times, simplifying the equations. This leaves

three components of (26):

0 =
d2t

dp2
+
B′(r)

B(r)

dt

dp

dr

dp
,

0 =
d2r

dp2
+

A′(r)

2A(r)

(
dr

dp

)2

− r sin2 θ

A(r)

(
dφ

dp

)2

+
B′(r)

2A(r)

(
dt

dp

)2

,

0 =
d2φ

dp2
+

2

r

dφ

dp

dr

dp
.

The t- and φ-equations can each be written as the vanishing of a total derivative. One of

the constants of motion resulting from these equations is absorbed into the parametrization

17



of the path, while the other becomes

J = r2
dφ

dp
. (27)

Manipulation of the r-equation then produces

A(r)

(
dr

dp

)2

+
J2

r2
− 1

B(r)
= − E = const. (28)

where, upon computation of the interval ds2, we discover that E is strictly positive for

massive particles and zero for massless particles. Since we are primarily concerned with the

shapes of trajectories, we trade dp for dφ in (28) using (27) to find

A(r)

r4

(
dr

dφ

)2

+
1

r2
− 1

J2B(r)
= − E

J2
. (29)

Rearrangement and integration gives the equation we will use when considering the first two

classical tests:

φ− φ0 = ±
∫
dr

r2

√
A(r)

1
J2B(r)

− E
J2 − 1

r2

. (30)

We are henceforth concerned with situations in which the gravitational potential

Gm/r is quite small. Indeed, just outside our sun, we have Gm/r ' 2× 10−6 in units where

c = 1 . Thus, keeping only the leading-order corrections to the Schwarzschild metric, we will

use

ds2 = −
(

1− 2Gm

r
− 23λ

12Gmr

)
dt2 +

(
1

1− 2Gm
r

− λ

12Gmr

)
dr2 + r2 dΩ2 (31)

instead of (23) and (24). This defines the functions A(r) and B(r) to substitute in (30).
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Deflection of Light

Let us begin by calculating the additional deflection of light by a star that should occur

due to string theory. This is a scattering problem in which we are interested in the total

change in φ as a photon approaches the sun from infinity, then returns to infinity. We use

(30) to calculate this. Since we deal with light, we must use E = 0 . We can also find J

from (29) since dr/dφ = 0 when r = r0, the minimum distance between the photon and the

star’s center. Since the geodesic equation (26) is invariant under “time reversal” p 7→ −p,

the trajectory of the photon is also symmetric around its point of closest approach to the

sun. Hence, we only need to calculate the change in φ over the half the path, then double it.

If the sun did not deflect light at all, we would expect a change in φ of precisely π radians.

Putting all these considerations together, the total deflection of a photon as it passes the

sun is

∆φ = 2

∣∣∣∣∣∣∣
∫ ∞
r0

dr

r

√√√√ A(r)(
r
r0

)2 (
B(r0)
B(r)

)
− 1

∣∣∣∣∣∣∣− π ,
using A(r) and B(r) from (31). Consider expanding this integrand in powers of λ. The λ0

term would integrate to give the classical result of

∆φ =
4mG

r0
;

this is correct to zeroth order in λ and first order in the potential. For light passing near the

surface of our sun, this gives 1.75′′. Now integrating the λ1 term gives the small deviation

δφ from the classical result. To leading order in the potential,

δφ =
λ

12Gmr0

∫ ∞
r0

(
23 r2 − r r0 − r20

)
dr

(r + r0)

√(
r
r0

)2
− 1

=
11λ

6Gmr0
. (32)
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Since δφ is positive, the total deflection is slightly greater than the classical deflection. For

light just grazing our sun, δφ is of order 10−82 radians. Therefore, stringy effects should shift

the reception point of the photon on Earth by an additional 10−71 meters. We will comment

on the size of these corrections in the Conclusions, after considering all phenomena.

Precession of Perihelia

We proceed to calculate in a similar way the additional precession of planetary orbits due

to string theory. We determine E and J from (29) since dr/dφ = 0 when r = r±, the radii

corresponding to the aphelion and perihelion of planet’s orbit. As above, we integrate over

only half the path length and double the result. In this case we subtract 2π from the integral,

because deviation from 2π implies a precession in the orbit-ellipse. Using these ideas, we

determine from (30) that the total precession of an orbit perihelion is given by

∆φ = 2

∣∣∣∣∣
∫ r+

r−

√
A(r) dr

r2

/√
r2−
[
1/B(r) − 1/B(r−)

]
− r2+

[
1/B(r)− 1/B(r+)

]
r2+ r

2
−
[
1/B(r+)− 1/B(r−)

] − 1

r2

∣∣∣∣∣−2π

with substitution for A(r) and B(r) from (31). Again, consider expanding this integrand in

powers of λ. The λ0 term would integrate to give the classical result of

∆φ = 3πmG

(
1

r+
+

1

r−

)
radians

revolution
;

this is correct to zeroth order in λ and first order in the potential. For Mercury orbiting our

sun, this gives 43.03′′ per century. Now integrating the λ1 term gives the small deviation δφ

from the classical result. To leading order in the potential,

δφ =
λ

12Gm
√
r− r+

∫ r+

r−

(23 r r− + 23 r r+ − r− r+) dr

r2
√

(r+ − r) (r − r−)
=

15 (r− + r+)π λ

8Gmr+ r−
. (33)
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Since δφ is positive, string theory implies a slightly faster precession than classical general

relativity. For Mercury, δφ is of order 10−83 radians per revolution. It would take roughly

1026 times the age of the universe for Mercury to advance an extra Planck-length due to

stringy effects.

Gravitational Redshift

We now move on to calculate the gravitational redshift of light as it travels away from a

massive body, which is a consequence of gravitational time dilation. Proper time

∆t =
√
−gµν dxµ dxν

governs the ticking of clocks, beating of hearts, and frequency of light waves. For a clock at

rest, only time-components of dxµ do not vanish, leaving

dt =
∆t√
−g00

.

Now consider two atoms in a static gravitational field, one at x1 and the other at x2, separated

by some spatial distance. If we sit at x1 we measure the frequency of light coming from atomic

transitions at x1 and x2 to be

1

ν1
=

∆t√
−g00(x1)

and
1

ν2
=

∆t√
−g00(x2)

respectively, where here we take ∆t as the proper period of light from the transitions. To

be sure, 1/ν2 (equivalently, dt2) must be given by the second expression above; the static

field ensures the travel time for wavefronts between x1 and x2 is constant, so the difference

between arrival times at x1 is just the difference between departure times at x2. Thus the
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ratio of frequencies received at x1 is

ν2
ν1

=

√
g00(x2)

g00(x1)
.

To zeroth order in λ, we find the classical result

∆ν

ν
= φ(x2)− φ(x1)

where φ(x) here is the gravitational potential at x ; this result is correct to first order in

the potential. For light received on Earth from atomic transitions on the sun, this becomes

roughly −2×10−6 ; here, the negative result signifies the decrease in frequency as light travels

away from the sun. To lowest order in the potential, the λ1 term in this expression gives the

small correction

δν

ν
= − 23λ

24GM

(
1

r
− 1

R

)
(34)

due to string theory; here r is the radius of the sun, while R is the distance between Earth’s

surface and the sun’s center. The negativity of δφ shows that, once again, the extra shift

due to string theory is in the same direction as the classical effect. From Sun to Earth, this

result becomes of order 10−82 .
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CONCLUSIONS

We have investigated consequences of two modifications to classical general relativity. For

the schematic change in Einstein’s field equations

Rµν + λRµαβγ R
αβγ
ν = O(α′)2

suggested in [4], we showed not only that no static isotropic solution exists, but also that

a parallel to Birkhoff’s theorem holds for these equations. Together, these facts imply that

the above equations do not even have an isotropic solution.

While discomforting that no isotropic solutions exist for the above equations, this

alone is no proof for their invalidity. With the tiny anisotropies found in the cosmic microwave

background, one could always claim that we have no need for perfectly isotropic geometry,

since it does not exist in our universe.

We then calculated the small changes in the results of the classical tests of general

relativity that we should expect if the equations coming out of string theory are indeed

true. The results (32), (33), (34) we found in each case were unimaginably small, and

unfortunately, there are not many options to rescue them and make observation possible.

Even if, instead of near the sun, we let these phenomena occur in the vicinity of a black hole

at the center of the observable universe, this will not change our chances at measuring any of

these effects. Indeed, the observable universe is about 1026 meters across and MG/r = 1/2

at the event horizon of a black hole. In the best cases, these will increase the effects we see

on Earth “only” by a factor of about 1021. This does not get us into the measurable region

above the Planck length. To increase the effects we must consider very small black holes to

decrease the radii present in (32), (33), and (34). Still, the radius required is many orders of

magnitude smaller than the proton’s radius. It is a safe claim, then, that these effects can
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never be observed in our present universe.

In fact, while the calculations given in the previous section are fine mathematically,

there is a physical inconsistency hiding there. The four-dimensional gravitational field equa-

tions we have used are effective equations, assuming the extra dimensions have negligible

effects on our systems. What we have found is that these calculations lie outside the re-

gion of validity of such an approximation. But even though the precise values of the shifts

we calculated above may lack physical meaning, they show that modifications imposed on

the classical tests of general relativity are not observable above the Planck scale. These

phenomena thus are not the right place to look for experimental tests of string theory.
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