
University of Central Florida University of Central Florida

STARS STARS

HIM 1990-2015

2015

Controlling Randomness: Using Procedural Generation to Controlling Randomness: Using Procedural Generation to

Influence Player Uncertainty in Video Games Influence Player Uncertainty in Video Games

Travis Fort
University of Central Florida

 Part of the Art and Design Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM

1990-2015 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Fort, Travis, "Controlling Randomness: Using Procedural Generation to Influence Player Uncertainty in
Video Games" (2015). HIM 1990-2015. 1707.
https://stars.library.ucf.edu/honorstheses1990-2015/1707

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236292063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses1990-2015
http://network.bepress.com/hgg/discipline/1049?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses1990-2015
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses1990-2015/1707?utm_source=stars.library.ucf.edu%2Fhonorstheses1990-2015%2F1707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

CONTROLLING RANDOMNESS:

USING PROCEDURAL GENERATION

TO INFLUENCE PLAYER UNCERTAINTY IN VIDEO GAMES

by

TRAVIS L. FORT

A thesis submitted in partial fulfillment of the requirements
for the Honors in the Major Program in Digital Media

in The School of Visual Arts and Design
and in The Burnett Honors College
at the University of Central Florida

Orlando, Florida

Spring Term 2015

Thesis Chair: Dr. Rudy McDaniel

ABSTRACT
As video games increase in complexity and length, the use of automatic, or procedural,

content generation has become a popular way to reduce the stress on game designers. However,

the usage of procedural generation has certain consequences; in many instances, what the

computer generates is uncertain to the designer. The intent of this thesis is to demonstrate how

procedural generation can be used to intentionally affect the embedded randomness of a game

system, enabling game designers to influence the level of uncertainty a player experiences in a

nuanced way. This control affords game designers direct control over complex problems like

dynamic difficulty adjustment, pacing, or accessibility. Game design will be examined from the

perspective of uncertainty and how procedural generation can be used to intentionally add or

reduce uncertainty. Various procedural generation techniques will be discussed alongside the

types of uncertainty, using case studies to demonstrate the principles in action.

ii

DEDICATIONS
For my parents, you are my strongest supporters.

Thank you for being there when I need you and for your unconditional love.

iii

ACKNOWLEDGMENTS
I owe the deepest gratitude to all of those who made this thesis possible and helped me along the

way. Thank you to my thesis chair, Dr. Rudy McDaniel, for bearing with me as I explored my
research topic, being a great mentor, and opening the door to many opportunities. Without you
none of this would have been possible. Thank you to my committee members, Dr. Peter Smith
and Dr. Sumanta Pattanaik, for inspiring me through your classes as well as with your advice.
Thank you to the members of the Games Research Group for providing interesting discussions
and literature, and for being a sounding board when I needed it. To the members of the Game
Development Club, thank you for your endless source of encouragement. Finally, to all of my

family, friends, and mentors, thank you for making the last four years at the University of
Central Florida an invaluable and memorable experience.

iv

TABLE OF CONTENTS
INTRODUCTION .. 1

Literature Review .. 3

Uncertainty .. 5

PRNG Techniques ... 6

Generative Grammars .. 7

Artificial Intelligence Techniques ... 9

ANALYSIS ... 11

Performative Uncertainty .. 12

Solver’s Uncertainty .. 13

Player Unpredictability ... 15

Randomness .. 16

Analytic Complexity ... 17

Hidden Information ... 18

Narrative Anticipation ... 20

Development Anticipation .. 21

Schedule Uncertainty .. 22

Uncertainty of Perception.. 22

Summary ... 23

CASE STUDIES ... 25

Left 4 Dead .. 25

Spelunky .. 29

DISCUSSION ... 33

Meaningful Play and Uncertainty ... 34

Games of Chance .. 36

Considerations for Future Work .. 38

REFERENCES ... 39

v

LIST OF FIGURES
Figure 1. Perlin Noise (left) and White Noise (right). Perlin Noise smoothly interpolates between

pixels to create meaningful structure. Static noise randomly generates pixels, and has no

meaningful structure. .. 6

Figure 2. An example of the evolution of a simple cellular automata. At the top are the rules,

where 0 defines an empty cell, 1 defines a full cell, and the patterns are the immediate neighbors

needed to activate a particular rule. Below, the evolution of a single black cell after 15 steps is

shown. ... 8

Figure 3. The evolution of an image in Picbreeder. Users evolve pictures from abstract shapes

(top-left) to something more defined (bottom left) by choosing between families of similar

images generated by NEAT-CPPN. Any of these images could “branch” and evolve along a

different path. .. 9

Figure 4. The red dots show potential enemy locations in a Left 4 Dead map. The green dot

represents the player. .. 27

Figure 5. The population of enemies is proportional to the intensity of the survivors. 28

Figure 6. An example of room type distribution in Spelunky. .. 31

Figure 7. An example of a level template in Spelunky. .. 32

vi

LIST OF TABLES
Table 1. Games with procedural content generation that have been mentioned in this thesis. 33

vii

INTRODUCTION
As game consoles and computer technology continue to evolve, the cost of manually

creating content for games is becoming prohibitively expensive. Game companies already

employ hundreds of employees, with production budgets for some AAA games being in the

hundreds of millions. The creation of content can cost up to 30-40% of a game’s production

budget (Hendrikx et al., 2013). Thus, there is a large demand for methods to reduce the time and

money it takes to create game content. One of the most popular ways to do this is through the

implementation of procedural content generation.

Procedural content generation (PCG) is the programmatic generation of variable content

(Merrick et al., 2013). PCG can reduce the burden on content designers by automating part or all

of the design process. Contrarily, devising a complex procedural algorithm can be time-

consuming and frustrating to configure precisely to meet a game’s needs. There are many

different genres of PCG, including content generated in real-time versus content generated

offline. Real-time PCG includes the dynamic creation of content in game, such as infinite terrain

that generates as the player moves. Offline PCG defines content that is created before the game

is released and is stored like any other content. This could include landscapes or textures. While

PCG techniques come in many forms, most suffer from a common issue: the lack of reliability

and creativity. In particular, Merrick et al. assert that it is challenging to ensure that content

generated using PCG is novel, useful, and of high quality (2013). Much of the research in PCG is

focused around addressing this issue.

While considered an issue, unreliability is also a paradoxical benefit of PCG. Unexpected

great content, as well as poor content, have potential to be created with PCG. Thus, it takes

1

careful design to create a successful PCG technique. Specifically, the algorithm needs to exist in

a state between a fixed or periodic system, where the results are completely predictable, and

boring, and a chaotic system, where the results are completely unpredictable, and often

undesirable (Salen & Zimmerman, 2004). Salen & Zimmerman define this space as a complex

system, or a system that exists in the gray area between predictability and unpredictability

(2004).

This lack of certainty is something that not only needs to be present in a PCG algorithm,

but is essential to the design of a game itself. In fact, Salen & Zimmerman claim that uncertainty

is a central feature of every game, as it’s a necessary ingredient in giving a game a feeling of

purpose (2004). For example, two players who know the logic to Tic-Tac-Toe derive no

satisfaction from playing, since the game will always end in a draw. Giving players meaningful

choices and consequence through action means that they must forge their path through uncertain

ground. PCG techniques in game design embrace uncertainty in a unique way. Some techniques

generate caves in a random way, like the level generator in Spelunky (2008). Others can create

interesting enemy behaviors or narratives for the player to experience by reacting directly to the

player’s input in real-time.

Procedural techniques in game design are becoming increasingly popular. The genre

“Roguelike,” whose namesake is taken from the classic game Rogue (1980), features games that

have, among other things, procedural level generation. Roguelikes have blossomed from a niche

field into the mainstream, with popular hits such as Minecraft (2009), Dwarf Fortress (2006),

and The Binding of Isaac (2011). In Minecraft (2009), each new game generates a new world for

the players to explore. In Dwarf Fortress (2006), the world and background is simulated to such

2

a depth that even the history of the generated civilizations is determined. And finally, in The

Binding of Isaac (2011), each room surprises the player with random bosses and loot. Game

developers have recognized that implementing broad, high-impact procedural design can

influence the feel of the game further than just the layout of the levels. For example, the terrain

generation in Minecraft (2009) does more than generate pleasing levels: the near-infinite

variability suggests a mysterious, expansive world in which the player can explore and survive.

While there are clear benefits of the properties of certain PCG techniques, like randomness

giving the player more variety, the full scope of how PCG, uncertainty, and game design work

together is not as obvious. PCG techniques, through the combination of randomness and a

ruleset, create various degrees and types of uncertainty that have profound effects on the design

of a game.

Thus, PCG-based design is an important topic, and the relationship between PCG and

uncertainty in games is a topic that has seen little discussion. The purpose of this thesis is to

explore and analyze common PCG techniques relative to principles of uncertainty in games.

First, there will be a technical overview of PCG techniques and uncertainty in the literature

review. Following that the techniques will be compared and analyzed in respect to their impact

on uncertainty. Next, there will be several case studies with games that include PCG techniques.

Then, PCG will be discussed holistically in respect to game design and conclusions will be made

regarding how their presence can influence game design decisions.

Literature Review

In this section, different PCG techniques will be discussed in relation to how they attempt

to solve the various challenges that inherently exist in the field. The purpose of this overview is

3

to provide a cursory introduction to each technique, so that simple references to how the

mechanics of an algorithm interact with design can be made. While some techniques may not be

often utilized in game design (instead, in game content like audio or textures), each one has the

potential to be, and the implementation will be discussed in the analysis section.

Many of these algorithms have particular or niche use in games. A new algorithm is often

developed to solve a specific problem. Thus, it’s more appropriate to consider the techniques

categorically. For the sake of this paper, PCG algorithms will be split into three categories:

PRNG techniques, axiomatic techniques, and AI techniques. PRNG techniques include random

generation as well as noise techniques. Axiomatic techniques involve the spectrum of generative

grammar algorithms, such as cellular automata, Lindenmeyer Systems, or Shape Grammars. AI

techniques include advanced algorithms such as genetic algorithms, self-learning algorithms like

NEAT, and other self-adaptive algorithms.

First, two perspectives on games as uncertain systems are introduced. Then, pseudo-

random-number-generation (PRNG) techniques will be discussed and how they use randomness

to create structure will be shown. Next, generative grammars, including axiomatic techniques

and cellular automata, will be surveyed, showing how different forms of content can be

abstracted into rules and starting values. Following, artificial-intelligence-based techniques are

discussed, especially the ones used in the website Picbreeder. Picbreeder provides a first-hand

example of using PCG techniques in the design process, and the benefits and detriments are

considered in relation to the goals of this paper.

4

Uncertainty

There are several ways to define what an uncertain system is. To Salen and Zimmerman,

a certain outcome is completed predetermined (2004). An uncertain outcome is completely

unknown to the player. In between, a risk is an outcome with a known probability. For example,

rolling a five on a six-sided dice has a 1/6 probability of happening. Therefore, an uncertain

system is one where actions involve some degree of risk. Salen and Zimmerman (2004) have

identified several interesting properties of uncertain systems that are relevant to PCG. First, it is

possible for a game to possess a “feeling of randomness” without actual random mechanisms

present in the game system. Second, even games of pure chance can provide meaningful

gameplay as long as players are given meaningful opportunities to take action within the game

system. Ultimately, uncertain systems are about obscuring the outcomes that the player can

predict while playing a game. Thus, the player must rely on taking risks in order to succeed

(Salen & Zimmerman, 2004).

Costikyan (2013) offers additional nuance to the proposed system of uncertainty. While

Salen and Zimmerman focus primarily on outcomes, Costikyan notes that the outcome of a game

does not need to be uncertain for the game to possess uncertainty (2013). Many games in the

arcade era, like Space Invaders (1978), have certain outcomes. In Space Invaders (1978), the

player always loses. However, the process of earning a high score in each game session. The

uncertainty lies in a mechanic within the game and not in the outcome itself. Additionally, the

game itself does not need to have a quantifiable outcome, as is suggested in Salen and

Zimmerman’s definition of a game system (2004). Some games never end, like Dungeons &

Dragons (1974) or World of Warcraft (2004), and they still keep player’s attention and interest

5

through systems of uncertainty. In Dungeons & Dragons, the players perpetually keep the

narrative going as their adventurers progress through the game. The uncertainty is in the path the

players follow while playing, not the outcome (Costikyan, 2013).

PRNG Techniques

As a creative process, game design relies on novelty and uncertainty to provide engaging

experiences to players (Zimmerman, Costikyan). This novelty needs to not only be unexpected

but also useful, valuable, and appropriate. (Merrick et al., 2013; Liapis et al., 2014). One of the

best ways a computer simulates variation and novelty is through random number generation.

However, images generated randomly pixel-by-pixel have no meaningful structure. Many

procedural techniques address this issue by finding the balance between iterative generation and

random generation. Hendrikx, Meijer, van der Velden, and Iosup (2013) define this category of

procedural content generation as PRNG techniques.

Figure 1. Perlin Noise (left) and White Noise (right). Perlin Noise smoothly interpolates between pixels to create
meaningful structure. Static noise randomly generates pixels, and has no meaningful structure.

Some of the most used PRNG techniques are noise functions. Noise is considered the

“random number generator of computer graphics” and is defined as an approximation to white

noise band-limited to a single octave (Lagae et al., 2010). One of the most popular noise

6

functions is Perlin noise, which involves using pseudo-random gradients at vertices on a cubic

lattice then doing a splined interpolation (Lagae et al., 2010). Noise functions are usually drawn

to a texture and then interpreted by the program implementing them. Common implementations

include heightmaps for terrain modeling and textures for things like sand or straw.

Generative Grammars

To avoid relying on randomness, many algorithms require the designer to specify an

axiom or starting value. Using the axiom, a specific procedure is applied to generate content.

Among these techniques is the category of generative grammars (Hendrikx et al., 2013).

Generative grammars define a rule-set then recursively generate content based on what kind of

grammar it is. So if the axiom is defined as A, and the rules defined were 1) A→AB and 2)

B→A, the iterations would be: 1) A 2) AB 3) ABA 4) ABAAB … and so on (van der Linden et

al., 2014). The designer would then generate content based off of the axiom and how many

iterations were defined. Other types of grammars, like shape grammars or graph grammars, build

upon this concept but utilize other content instead of letters and words. Graph grammars use an

algebraic approach to generation, while shape grammars use common shapes like triangles,

squares, and circles (Gips, 1999). Generative grammars are often used for sound, vegetation,

trees, and buildings (Hendrikx et al., 2013).

Additionally, there have been novel attempts to extend the idea of generative grammars

to other game content. To do this, a vocabulary must be defined, which can manifest as shapes,

letters, or any other form of modular visual representation. Then, rules must be specified that

define the relationship between these components. Finally, an initial configuration is defined to

start the generation process (Merrick et al., 2013). For example, gameplay can be generated by

7

defining atomic gameplay components (representing letters in a generative grammar), game loop

operators (the rules of the grammar), and an axiom combination of atomic gameplay components

and game loop operators (Francillette et al., 2012).

Another axiom-based generation technique is cellular automata. Like generative

grammars, there exists an axiom and a rule-set. However, cellular automata’s rules are applied

iteratively rather than recursively. For cellular automata, a finite grid of any dimension is first

specified. Next, the designer provides the initial state of the grid, which consists of the state of

the cell at each point in the grid. Then, the designer provides a rule to apply to each cell that is

dependent on their state (van der Linden et al., 2014). To create content, the designer then

provides a time t that represents the number of iterations. Cellular automata have been used to

generate sound and NPC (non-player character) behaviors as well as large caves.

Figure 2. An example of the evolution of a simple cellular automata. At the top are the rules, where 0 defines an
empty cell, 1 defines a full cell, and the patterns are the immediate neighbors needed to activate a particular rule.
Below, the evolution of a single black cell after 15 steps is shown.

8

Artificial Intelligence Techniques

Other algorithms use evolutionary techniques or artificial intelligence to generate unique

and interesting content. In Secretan et al.’s Picbreeder, users are introduced to a wide variety of

pictures evolved using Neuro-Evolution of Augmenting Topologies with Compositional Pattern

Producing Networks (NEAT-CPPN). This technique evolves the images from random starting

points by using the user’s input as new points of origin. The evolution happens by cross-breeding

two images and taking elements of each. The data structures that define these images become

increasingly complex as time progresses. Using this technique, complex, comprehensible, and

novel pictures have evolved from something completely nonsensical. Secretan et al. (2011) note

that in Picbreeder, users would lose interest within 10 to 20 generations, as they see no

significant change from the original iteration. In Picbreeder, this issue is addressed by providing

a feature called branching, which allows users to save their current state and have other users

pick up where they left off.

Figure 3. The evolution of an image in Picbreeder. Users evolve pictures from abstract shapes (top-left) to
something more defined (bottom left) by choosing between families of similar images generated by NEAT-CPPN.
Any of these images could “branch” and evolve along a different path.

9

When the designer is left out of the iteration cycle, as is the case with PCG, they are

unable to connect the stepping stones they need to get to their intended result. Stepping stones

are the iterations needed to get to the final objective (Lehman & Stanley, 2011), which in the

designer’s case is creating an intended experience. Say the designer was constructing a house –

the first stepping stone may be the door, followed by the foundation and walls, then finally

windows and a chimney. However, houses can be constructed in many different ways, and no

two designers would create the exact same house. In this way stepping stones are surprisingly

complex and inherently local to problem at hand (Lehman & Stanley, 2011). Picbreeder shows

that humans are quite good at finding and identifying stepping stones. There have been many

unique and identifiable images that have come from users selecting from meaningless pictures.

In practice, many procedural algorithms are carefully constructed from simpler

techniques like PRNG in order to generate “acceptable” results without risk of “catastrophic

failure” (Togelius et al., 2011). Togelius, Yannakakis, Stanley, and Brown demonstrate that most

algorithms fall under either the “generate-and-test” category or the “constructive” category. A

generate-and-test algorithm is split into two parts: generation and testing. Content is creating

during the generation phase, and then this content is tested to meet the designer’s standards.

Using the constructive method, the content is generated one time only, but the algorithm for

generation usually ensures the content is fail proof. In both of these categories, content is

generated all at once, and thus the designer has no input while the content is being generated.

Thus the designer must be incredibly careful when utilizing PCG techniques in a game.

Ultimately the designer is satisfied with the probable or guaranteed results of an algorithm, and it

is at this point where the consequences of having an uncertain system affect gameplay.

10

ANALYSIS
In this section, the algorithms mentioned in the literature review will be analyzed in

relation to their effect on a game’s uncertainty. Specifically, I will be analyzing PCG as it applies

to Greg Costikyan’s (2013) ten categories of uncertainty. The topic of uncertainty is a broad one,

and different perspectives can lend to highly varying metric. For example, some authors

approach uncertainty from a logical angle. Game theorists derive complex formulae to explain a

player’s decision-making process in games of strategy. These kinds of experiments draw deeply

from economics and mathematics to come to their conclusions. While the findings are applicable

to game design, they do not consider the full scope of a player’s involvement in a game. For

example, what happens when there is no discernable outcome, or the outcome is irrelevant to the

stated objectives of the game, as in a game of make-believe? What if the game does not include

more than one human player, like a single-player video game or solitaire?

To account for these questions, game scholars tend to draw more from sociology and

cultural history when analyzing gameplay elements. For example, to explain the relationship

between competition and chance, Callois (1958) draws upon the history of shamans in ancient

times, progressing to ancient Greece, and finally to modern France and the lottery. Using

mythological stories, accounts of rituals and games from the time, and an over-arching narrative,

he proposes a case for games of chance being a psychological equalizer in a world of inequity.

Avedon and Sutton-Smith (1971) survey children’s games to qualify their propositions for

defining games. Drawing too from other scholars of the time, they propose a dimensional

structure to games, ranging from skill requirements to bodily contact. In a similar way,

Costikyan (2013) surveys videos games to help frame his categorizations of uncertainty in

11

games. As with most generalizations, Costikyan’s (2013) categories do not completely envelop

the entirety of uncertainty in games. However, they do serve a strong point of reference, and

have a solid foundation in seminal works like Rules of Play (2004) and Man, Play, and Games

(1958). Thus, to analyze PCG techniques in respect to uncertainty, Costikyan’s (2013) categories

will be considered. The many ways in which PCG can adapt to each category demonstrates the

power and utility of introducing procedural content.

Performative Uncertainty

Costikyan (2013) considers performative uncertainty to be the “uncertainty of physical

performance.” This category deals with hand-eye coordination, challenge, and reflexes. Games

that have a large amount of performative uncertainty are games that require continuous attention

and excellent timing for success. These games manifest primarily in the genres of first-person-

shooters, real-time-strategies, or platformers. The uncertainty is derived from both the game and

the player. If the game is too easy, even a novice player will not feel the sense of uncertainty

while playing. Conversely, a game too challenging is unconquerable to the player, thus leading

to a feeling of certain defeat. Players who are experienced with a game eventually develop skill.

High skill leads to previous challenges becoming simple and thus losing uncertainty.

A solution to this progression is what Costikyan (2013) calls “dynamically adjusted

difficulty.” Difficulty adjustment is a common topic in procedural generation. In its simplest

form, difficulty could be adjusted based on the player’s achievement of game objectives. If the

player is doing well, increase the difficulty. If the player is struggling, reduce the challenge.

Scholars have found that a nuanced approach is necessary. For example, what if player A is

struggling with the games requirement for quick reactions, but player B is having difficulty with

12

the spatial navigation (Shaker et al., 2015)? Adaptive AI algorithms can analyze a player’s

experience and dynamically adjust the next level according to a predetermined formula. For

example, Shaker, Togelius, and Yannakakis (2015) modified the game Infinite Mario, a public

domain clone of Super Mario Bros., to dynamically record and quantify the experience of the

players. Then, personalized levels will be generated to best fit the player. The goal of this

algorithm is to maintain a state of constant uncertainty, so that even if the player’s skill is

unequal in different areas, there will always be a degree of uncertainty present. Ultimately, by

modifying the difficulty of the game, PCG can influence the performative uncertainty of a game

in a direct and impactful way.

Solver’s Uncertainty

 Puzzles are the basis of solver’s uncertainty. It’s the uncertain nature of trying to figure

out a solution, and of not immediately knowing the answer. Once the answer is discovered, the

challenge drastically reduces. Costikyan (2013) considers that many digital games provide “no

compelling reason to want to play a second time.” However, Solver’s uncertainty extends

beyond simple puzzles. Games often create complex puzzles through their own rules of

interaction. Consider a game where a player must jump onto a ledge to continue. First, the player

must reason how far from the ledge to jump, and how fast of a speed is required to make the

jump. If additional challenges are added, like a spike pit, or an enemy that must be avoided, it

further complicates the problem. Even in games not primarily concerned with puzzles, solver’s

uncertainty is present as an embedded element (Costikyan, 2013). Solving any challenge in a

game can be considered a puzzle to some degree.

13

 The main factor in solver’s uncertainty is whether or not the player has completed the

certain challenge. The bigger the focus on solver’s uncertainty, the more this becomes an issue.

For example, in a point-and-click adventure game, once the player knows the correct sequence to

complete the game, there will be no further challenge and the uncertainty will be lost. However,

in a game where there is a combination of puzzle and action elements, like a platforming game,

the player can still find enjoyment in previous levels if the skill requirement is tuned

appropriately.

 Thus, a good solution to create more uncertainty is to simply create more challenges.

With games that feature narrative-based challenges, like point-and-click adventure games, this is

nearly impossible. However, games that are more mechanical by nature find new levels easily

generated. This is the basis of the roguelike genre: endless level generation so that there is

always a new puzzle for the player to discover. In fact, procedural level generation is common

across almost all genres, including first-person-shooters, RPGs, and more. The types of

algorithms used to create levels is just as varied, including basic random generation, axiomatic

generation, and self-adaptive techniques. For example, the endless hills, mountains, and caves of

Minecraft are spawned using a seed value and a constructive algorithm. Cellular automata can

used to create cave structures or dungeons in 2D games. AI techniques can use AI agents

(sometimes called “miners”) to carve out a level from an initial block, with the algorithm

determining how the agents carve out the space (Shaker et al, 2015). Regardless of the method,

procedural level generation creates uncertainty in a game through the introduction of novel

content. While these levels may not match the design artistry of a game designer, the availability

of nearly infinite content is the basis for many successful games.

14

Player Unpredictability

 When designing games, predicting the player’s behavior is nearly impossible. There are

so many factors that go into how a player plays a particular game: how old they are, what gender

they are, how many games they have played, what kind of games they have played, what they

had for breakfast, etc. However, the player is not random, as player psychology is not random.

The quintessential example of player unpredictability is Rock/Paper/Scissors, as Costikyan

(2013) explains: “The reason Rock/Paper/Scissors is not a purely arbitrary game, and the reason

that an excellent player will win more often than chance would predict, is that human psychology

is not random, and some behaviors are – not necessarily predictable, but likely to occur more

often than chance would dictate.” Thus, for a player, any time another player is encountered in a

game, a degree of uncertainty that is associated with player unpredictability arises. Consequently

games that do not feature multiplayer do not have player unpredictability.

 Games mitigate or emphasize player unpredictability by how they let players interact.

Rock/Paper/Scissors is almost purely based on the unpredictability and pure player interaction.

On the other hand, Costikyan suggests Monopoly (1903) as a game that minimizes player

unpredictability. In Monopoly (1903), the players can not directly interact with each other, but

rather indirectly through the purchasing of property. While it may be unpredictable to determine

whether or not another player is going to purchase a property, it has no bearing on any decisions

a player might make. The player’s sole interaction is with the dice and the game systems.

 One way to control the level of player unpredictability in a game is to procedurally

dictate how players interact. Certain features that can increase or decrease the influence of other

players within a game, like friendly-fire in a FPS or the ability to disable an enemy player’s

15

controls, can be dynamically added and removed from the game. For example, in the game Dark

Souls (2011), the game is a single-player experience, with the exception of invasions. In an

invasion, a player enters the world of another player and attempts to defeat them. While the

system in the game is not procedural, one could imagine an algorithm to generate invasions,

based off of player experience or some other self-adaptive system.

Randomness

 Dice rolling games have been a part of human culture since the dawn of civilization

(Caillois, 1958). When randomness is integrated into video games, it involves different

variations of a simulated dice roll. According to Costikyan (2013), players are not fond of the

idea of randomness, especially players of strategy games, since they feel it invalidates any

accomplishment they make. Nonetheless, randomness is an integral part of many video games. In

FPS games, the way the shots of a shotgun scatter may be random. In RPGs, there is often a

chance to “critically hit” which drastically increases your damage for one attack. Through

uncertainty, randomness creates a sense of drama, when “the player otherwise commits himself

to a course of action the outcome of which is luck dependent.”

 In the case of video games, randomness is not truly random. Any random number a

computer generates is actually pseudo-random. As Salen and Zimmerman (2004) note,

“computers can never computer purely random numbers, because the numbers they provide are

always the result of algorithms.” What is more important is the feeling of randomness. As with

computer-generated random numbers, a sense of randomness can be created with an algorithmic,

sequential sequence. Salen and Zimmerman continue: “When four, five, or six players play

[Chinese Checkers], it can feel quite random. As the game unfolds and players move their pieces,

16

the center of the board becomes crowded with a seemingly random arrangement of pieces… This

feeling of randomness is only an illusion, however, as there is no formal chance mechanism in

the game” (2004).

 In a similar way, this is how PCG techniques function. They use a predetermined

algorithm to create a feeling of randomness and variety. This is particularly true with PRNG

techniques and noise functions, but the concept also extends to axiomatic algorithms and AI

techniques. For example, when an axiom grid has been determined, cellular automata are

completely deterministic. However, if someone were to look at certain random patterns in The

Game of Life (1970), a famous visualization of cellular automata, this person would likely

conclude that there is no structure. With Picbreeder, even though each new panel of images is

generated based on the user’s decisions, each modification is abstract and small enough to be

incomprehensible. Thus the user might conclude that each new panel is random. For any

algorithm to induce a feeling of randomness in a player, it needs to be perceived as random. If a

random number generator displayed the numbers 1, 2, 3, 4, 5 in sequence, it would not appear

random. Similarly, the player encounters any sort of content in a logically progressing way, it

appears less random. Ultimately, how the particular algorithm is designed and implemented is

what affects the degree of perceived randomness in a game.

Analytic Complexity

 Chess is a game that presents players with so many possible options, so many strategies,

and so many paths, that it is impossible reliably predict beyond a few moves. It is a game that is

so complex that supercomputers still have not mastered it. Analytic complexity is all providing

too much information for a player to keep track of. Tic-tac-toe is an example of a game that, for

17

most adults, has no analytic complexity. It is easy to keep track of the current state of the board

and predict future moves of other players. In the realm of video games, grand strategy games like

Dwarf Fortress (2006) or Civilization (1991) provide worlds simulated to meticulous detail. For

players, the uncertainty is in deciding where to place their attention or focus in making decisions.

 Crafting a world as deep as one found in Dwarf Fortress (2006), where weather patterns,

mineral deposits, family lineages, and much more are accounted for, is not something feasible to

do by hand. Dwarf Fortress (2006) is an excellent example of using procedural generation to

enhance the design of the game. Unencumbered from having to write the stories of hundreds of

thousands of dwarves, the creators of the game were free to experiment with the dynamics and

gameplay that emerged from such a detailed simulated world. While the nature of the generation

is not fully publicly available, worlds can be generated using a variety of techniques. This

includes some of the previous discussion: using cellular automata for level generation, for

example. However, this extends to other forms of content, such as sounds, text, and character

design. Specialized PRNG algorithms that contain configurable seeds, like in Dwarf Fortress

(2006), are popular among game developers, and scholars have devised other methods to

generate this kind of content. For example, generative grammars and Lindenmeyer systems are

often used to generate vegetation in games.

Hidden Information

 Often a player’s main source of uncertainty comes from a lack of information. Many

games, such as Poker, deliberately hide information from the player. In video games, the

implications of hidden information are especially apparent. The computer provides the role of

“games master” and controls how information is disseminated. To contrast, in most board games

18

and sports, every player reads the rules and knows the full scope of possibilities before

beginning. Costikyan (2013) calls this the difference between “known unknowns and unknown

unknowns.” An unknown unknown is some part of the game that the player is completely

unaware until they first encounter it. A known unknown is a part of the game that the player

knows exists but does not know where it exists in the game state yet. An example of an unknown

unknown is a secret boss encounter in The Binding of Isaac (2011). An example of a known

unknown is your opponents hand in a game of poker. The player knows it could be one of the 52

cards in a deck, but does not know which one. In other words, the player knows the range of

possibility.

 Hidden information is a procedural algorithm’s secret weapon. Even if the player knows

that a level is being generated procedurally, most of the time there is no possibility of the player

knowing the full range of possibilities when encountering generated content. With evolutionary

algorithms, novelty is reached right before the player’s eyes as the content is steered towards a

certain direction. In Picbreeder, no user knows what will be generated, or what even could be

generated. It is the payoff of the hidden information being revealed which is satisfying to the

player. Clever game designers hide special events in only a small amount of generated levels in

their game. For example, in Desert Golfing (2014), the player is exposed to hundreds of levels

featuring the exact same environment: sand, sky, and a hole. However, once every couple

hundred levels, something novel appears: a cloud, a rock, a cactus, and others. The result

transforms “an otherwise flat design into one that is quite compelling” (Costikyan, 2013).

19

Narrative Anticipation

 Uncertainty and narrative anticipation go hand in hand. If the player can anticipate what’s

going to happen next, there’s no uncertainty. While it’s important for story in games to have this

quality, it extends to the gameplay as well. For example, in Chess if a player has lost most of his

pieces and left with just a king, while the player’s opponent has multiple pieces remaining, the

game has a foregone conclusion. In Monopoly (1903), if a player is on the verge of bankruptcy

and does not own any properties, it’s just a matter of time before the game is over. Most games

want the outcome to be uncertain until the very last moment. Costikyan (2013) details games that

implement “negative reinforcement loops,” in which strength is dynamically move around

throughout the game in order to give weaker players a chance to affect the outcome.

 Within the domain of story, the concept of procedural narrative is one that is often

discussed. Façade, a game by Michael Mateas, is an interactive story that attempts “procedural

authorship” (2003). It uses player input (typing responses to character prompts) to determine

story “beats,” the small sub-plots in the overarching narrative. Within each beat the characters

react to the player’s input and transition to the next beat. Each beat is only a few seconds long,

facilitating intermixing of beat and allowing more divergent paths. New beats are chosen based

off of the player’s input or lack of input. In Façade, the player can not only play through a

different experience in two consecutive play sessions, but is entertained with a system that

directly reacts to his choices in the game (Mateas & Stern, 2003).

 Outside of story, unpredictability can be asserted in games through a variety of

procedural methods. Random events can occur that can drastically affect the current game state,

such as a major character falling in battle or a new member being added to the party. Players can

20

be given harder or different challenges based on their current progress in the game. For example,

the game Left 4 Dead (2008) includes an AI system called the “AI Director” (Booth, 2009). One

of the key systems of the AI Director is to have adaptive dramatic pacing. In other words,

creating peaks and valleys of intensity to develop drama on a moment-to-moment basis in game.

To do this, the AI Director would monitor the player state (called “Survivor Intensity”) and

dynamically add or remove zombies in the game to match a dramatic intensity scale (Booth,

2009). The AI Director is an example of a practical, local PCG algorithm built for one specific

game. While recreating algorithms is time consuming, it can pay great dividends by promoting

replayability, increasing output of the development team, and creates great, curated game

experiences.

Development Anticipation

 With the rise of the internet and the ubiquity of game industry practices such as “patches”

or online updates, new content can be delivered seamlessly to a player even after a game is

released. Downloadable content is becoming such a common practice that companies are

developing post-release content during the actual game’s development lifetime. This content is

sometimes added for free, whether as part of its business model or a feature that did not make it

to release. Just as often is paid downloadable content made available, and comes in the form of

additional characters or levels, or some sort of content that extends the gameplay.

 Along with this comes the need and expectation for more content. Offline procedural

techniques, like using noise to generate textures for a 3D model, are being used frequently in the

industry to speed up development time (Hendrikx et al., 2013). Sometimes procedural algorithms

are more accurate than designers could be, as they are based in real science or simulation

21

research. This is the case with terrain generation or foliage generation. The fact that games

change form as they are played is something that game players have to adapt to, and is certainly

shaping the game industry today.

Schedule Uncertainty

 Schedule uncertainty points to how long a player is allowed to play a game for. A young

child might only be able to play outside until supper. In the arcade, you only had a certain

amount of coins to spend. Many mobile games restrict play time, unless you pay for additional

lives or game time. Costikyan (2013) calls this kind of uncertainty “crude and fairly unaesthetic,”

yet “proven financial success.”

 Intentionally limited the amount of time a player can spend playing a game is a rarely

discussed topic in games scholarship, but it does raise an interesting point. Costikyan (2013)

notes that at the end of a limited session, “players typically have more things they wish to

accomplish than their available resources permit.” Perhaps a system similar to the AI Director in

Left 4 Dead (2008) could be appropriate; it would analyze the player’s current state and limit

content based on various criteria. This could be useful in order to guide player action and retain

players longer on platforms where users are more fickle such as mobile.

Uncertainty of Perception

 Without the ability to perceive what is happening on the screen, the player would not be

able to interact with a video game to any degree of success. Manipulating the difficulty of

perceiving what’s going on in is a common game mechanism. For example, there is a common

street trick where a performer asks someone to identify which cup (of three) holds a marble. The

performer then puts the marble in one of the cups, spins and moves the cups in a way that the

22

guesser loses track, then allows them to guess. Additionally, Costikyan (2013) mentions rhythm

games, like Guitar Hero (2005), or hidden object games, where a player has to visually identify

items on screen. These games involve overloading the player’s perceptual stimuli there by

making them uncertain of what they just perceived.

 The inherent perceived randomness of many PCG techniques benefits this type of design

well. Humans are superb at identifying patterns, so if there is any hint of a pattern to be found,

the player would no longer need to rely as heavily on their senses. As a counter point, in rhythm

games, the player is presented with the same sequence each time. However, songs can be

hundreds or thousands of notes long, and the player would have to play many hours to memorize

an entire piece. For these games, a generative grammar could be used to generate levels in a

logical way so that the gameplay of songs had an internal structure, as well as decreasing

development time if a large catalog of songs was needed. Games like AudioSurf (2008) are even

able to analyze user-supplied songs and generate gameplay automatically.

Summary

 As this section has shown, the utilization of PCG to impact uncertainty of games are

varied. There are, however, some trends to be discovered. Frequently, the design of level

generation algorithms are what have the biggest impact on uncertainty in various forms. Perhaps

this is due to the broad and malleable nature of a level. A level can represent a tiny puzzle or an

entire world. A level can include some gameplay or the entirety of it. Procedural techniques can

generate an infinite number of levels to create solver’s uncertainty or randomness. Entire worlds

can be generated in order to promote analytic complexity. In fact, level generation can impact the

23

entire spectrum of uncertainty, because levels are the fundamental parts of the game that the

player interacts with.

 Another common use of PCG with respect to uncertainty is to dynamically alter the

game. This is done by devising metrics that measure a certain quality of a player’s experience.

How many times have they died? How long did it take them to complete an objective? Which

route did they take? Compiled together, these form a statistic that a procedural algorithm uses to

alter the game in some way. This can be done through increasing or decreasing the difficulty of

the game, as found in the AI Director for Left 4 Dead (2008), or by choosing a different narrative

path to follow, like in Façade. This practice allows designers to deal with a wider variety of

players, and ultimately empowers designers with the ability to make their game accessible to

more people.

 Finally, a newer use of PCG is to deal with meta-uncertainty. This is when uncertainty

bridges the gap between reality and the gameplay experience. For example, how might a game

be designed differently if the designers knew about a potential update down the road? Perhaps

content might be generated in real time to match a new area that was just patched into the game.

This could be a street sign that generated text that matched the name of the city, or a texture of a

building dynamically changing color scheme for a special holiday event. As a whole, PCG is a

useful and practical tool in many situations to modify the amount of uncertainty in a game, and

already has found myriad uses in the games industry. In the next section, a few of those games

will be discussed.

24

CASE STUDIES
In this section two video games, Left 4 Dead (2008) and Spelunky (2008), will be

examined. These two games do not represent all of the PCG techniques in action, nor all the

types of uncertainty. What they do represent are two examples of intentional and thoughtful use

of PCG to enhance the design of a critically successful game. They used PCG in different ways

to influence uncertainty, therefore providing a good reference for seeing how PCG is applied in

practice. In each examination, an overview of how they implement PCG techniques will first be

discussed. Following that there will be a discussion on how the use of PCG impacts the game

and its development. Finally, uncertainty will be considered in relation to the PCG techniques

used and the design of the game.

Left 4 Dead

Made by the company that developed Half Life (1998) and Portal (2007), Left 4 Dead

(2008) is a co-op action horror game that “casts players in an epic struggle for human survival

against swarming zombie hordes and terrifying mutant monsters.” As a cooperative first-person

shooter, the player teams up with computer-controlled allies or player controlled allies as they

make their way through various environments. The game has a focus on teamwork and survival,

requiring players to band together and help each other out as the number of zombies can be

overwhelming at times. Thematically, each campaign is considered a “movie,” with the players

being the protagonists of the film (Booth, 2009). There is an additional “Versus Mode” where

players can play as survivors as well as zombies. If the survivors make it through the level alive,

they win. Otherwise, the zombies claim victory.

25

In Left 4 Dead (2008), one of the design goals was to promote “replayability.” This

means that a player needs to be able to play the same section of the game repeatedly without

losing interest.

The designers, when looking back on their previous successes with games like Counter Strike,

Team Fortress, and Day of Defeat, saw positive feedback with unpredictable experiences created

by interactions between players and comparatively few maps that remained memorable in the

player community (Booth, 2009). One of the tools the designers turned to was PCG. In Left 4

Dead, procedural population of enemies and loot strongly promotes replayability. The goal with

including procedural content was to tailor the game session to feel like a skill challenge rather

than a memorization exercise. In games that have static placement of enemies and items, players

simply memorize all of the static locations, thereby removing the suspense of not know what will

happen next. It is especially harmful for cooperative games, where players expect everyone to

have memorized all of the encounters and degenerates the experience into a race (Booth, 2009).

 To implement their procedural generation, they designed a system called the AI Director.

As mentioned previously, the AI Director manages the dramatic pacing of the game. It does this

by dynamically generating encounters for the players based on their current performance. To

populate the world, they use a “structured unpredictability,” which exists somewhere between

being purely random and deterministic (Booth, 2009). The system is a superposition of several

“population functions”, which are designed by hand and vary by space, time, and entity

generated. For example, a function could spawn a mob entity at a randomized interval between

90 and 180 seconds behind the survivor team. Other population functions include “wanderers”

who are enemies that wander around in a daze, weapon caches, scavenge items, and bosses

26

(Booth, 2009). To determine where an entity is placed, the AI Director breaks a level down into

“areas.” Enemies are not spawned in areas too close or too far away to the survivors.

Additionally, the AI Director can detect which areas are in front of or behind the survivors, in

order to create encounters like an ambush or a blockade (Booth, 2009). Procedural population of

enemies is a practical example of using PRNG techniques in sequence to create a desired effect.

Figure 4. The red dots show potential enemy locations in a Left 4 Dead map. The green dot represents the player.

 In addition to the procedural population of enemies, the AI Director also needs to manage

game pacing. The inspiration for the pacing of Left 4 Dead comes from Counter-Strike. In

observing Counter-Strike, designers found the natural pacing to be “spiky,” with periods of quiet

tension followed by unpredictable moments of intense combat (Booth, 2009). In fact, it was the

unpredictability of these spikes in intensity that create a compelling and replayable experience.

 In order to measure the pacing, metrics needed to be established. The AI Director

measures the “emotional intensity” of each survivor by representing it as a numeric value. This

value increases when a survivor takes damage, becomes incapacitated, is pushed off a ledge, or

27

killed a zombie. This intensity decays over time when a survivor is not actively fighting zombies

(Booth, 2009). With the metrics established, pacing can be dictated. When the AI Director

decides a peak in intensity is appropriate, it enters a “Build Up” phase, where the maximum

amount of enemies are created. This continues until the combined survivor intensity reaches a

threshold value. This peak is sustained for a few seconds, then it transitions into the “Relax”

phase, where a minimal amount of zombies are created (Booth, 2009). This system creates

natural ebbs and flows that are dictated by the player’s actions, and not a scripted event. The AI

Director’s use of adaptive procedural techniques creates a unique feeling to each play session.

Figure 5. The population of enemies is proportional to the intensity of the survivors.

 A term that often gets used in game design discussions is “replayability.” It has already

been used several times. Logically, it means the ability for an experience to be enjoyed multiple

times. In practice, it means maintaining a constant level of uncertainty for the player. In Left 4

Dead (2008), the answer was to create an experience that was catered to the player’s

performance. In this way, the player would always be adequately satisfied, and never feel bored

or overwhelmed. With the procedural population of enemies, the AI Director utilized

Costikyan’s (2013) ideas of randomness, performative uncertainty, and hidden information. The

players never exactly know where an enemy will spawn, and to them it feels random, even

though it is somewhat controlled by their actions in-game. With the control of pacing, the AI

Director took advantage of narrative anticipation and player unpredictability to create unique

28

experiences. The player’s never know when the next spike in intensity is going to occur. For a

player in the game, the performance of their teammates directly affects how often the spikes do

occur, and that unpredictability contributes to each play session feeling unique.

Spelunky

 In 2008, Derek Yu released a small “freeware” game named Spelunky (2008). It is a

“roguelike-inspired” 2D platformer where the goal is to explore underground tunnels, gathering

as much treasure as possible and not dying to spikes, snakes, and other hazards. The player is

equipped with bombs, ropes, and a whip by default, which can be used to both navigate the

tunnels and fight off enemies. Outside of hazards and treasure, and the default weapons, players

can find other items to assist in cave navigation. These can include a cape to avoid falling

damage, spiky shoes to climb up the sides of walls, and spiders’ webs to allow bombs to stick to

surfaces. Spelunky (2008) is a game notorious for its incredible difficulty and superb random

level generation. Critics praised the sense of discovery, and the difficulty is eased by potential to

find new and interesting things. One critic notes: “Even after you splay your guts on a patch of

insta-death spikes, ruining a long session of spelunking, the prospect of a new discovery is ready

to entice you back for more.”

 To generate its levels, Spelunky (2008) uses a domain-specific chunk-based approach.

Simply put, it splits the level into a grid, with each cell being an individual room or chunk. Each

room has is generated based off of a template created by the designer (Kazemi, 2013). Rooms are

selected from a pool based on criteria that ensures that it is possible to get from the start room to

the exit. Rooms can be split into 4 types: type 0, a side room that is not on the solution path (the

solution path being a traversable path from the start room to the exit); type 1, a room that has an

29

exit on the left and the right; type 2, a room that has exits on the top, right, and bottom; and type

3, a room that has exits on the left, right, and top (Kazemi, 2013). The criteria is as follows.

First, the level grid is considered. For the sake of this discussion, the level is made up of 16

rooms in a 4x4 grid. The first thing that is done is that a start room is placed somewhere on the

top row. This room is usually a type 1 or type 2 room. To decide where to place the next room, a

simple algorithm is followed. A random number is chosen from 1 to 5. If the number is 1 or 2,

the next room is placed to the left. If the number is 3 or 4, the next room is placed to the right. If

the number is 5, then the next room is placed below. If the next room is placed off of the grid to

the left or the right, it instead creates a room below the last room placed. The new room is

always a type 1 room. If the new room is placed underneath that last placed room, then the last

placed room is converted to a type 2 room, and the new room is a type 2 or 3. The final condition

is that if the new room is placed off the grid to the bottom, then the previous room placed

becomes the exit room and no new room is created (Kazemi, 2013). After this convoluted series

of events, the “solution path” has been created. All additional empty grid cells are filled with

type 0 rooms.

30

Figure 6. An example of room type distribution in Spelunky.

 Within each room, procedural generation of a similar style happens as well. As

mentioned before, rooms are generated based off of a template structure. The templates

determine the overall room layout; whether the room is wide open, full of platforms, or

claustrophobic. A template is a 10x8 grid of tiles. A tile can be a static type or a probabilistic

one. A static tile is guaranteed to be a certain type, while a probabilistic one is empty with a

chance to be a special tile. Each tile is represented by a character: “0”, an empty space; “1”,

100% chance of a solid block; “2”, a 50% chance of a solid brick; “L”, a ladder; “P”, a top-of-

ladder platform, “4”, a 25% chance that there is a block at the top of a ladder, etc (Kazemi,

2013). A level template might look like this:

31

Figure 7. An example of a level template in Spelunky.

 By combining simple, randomly generated functions, Spelunky (2008) creates rooms that

are well designed, random, and always traversable. The beauty in simplicity is that it becomes

trivial to modify the design without breaking the entire system. It does not require a team of

experts to design and implement new levels, and the time it took to develop this algorithm and

iterate on it is much less than in ones that use complex algorithms like NEAT. Ultimately,

however, the result of Spelunky’s (2008) level generation is an excellent level of uncertainty and

challenge. Each level is tuned to a satisfying level of performative uncertainty and solver’s

uncertainty, as the players must figure out the correct path of action to maximize their treasure

and minimize their chance of death. Additionally, each level has a chance of a special event, like

cutting out all of the lights, adding snake pits, adding a spider’s lair, or flooding the tunnels.

Events like these pepper the landscape of Spelunky’s (2008) levels, and emphasize the biggest

strength of the game: its use of hidden information to drive uncertainty. The player, even with

many hours played, is unaware of all the game’s tricks, and each play session introduces

something new. Thus, the player is continually engaged and interested.

32

DISCUSSION
This paper has looked at PCG techniques from certain perspectives. The literature review

contained a high-level technical overview of each technique. Next, the techniques were

categorized and analyzed in respect to the different types of uncertainty described by Costikyan

(2013). Finally, some of the techniques were described in practice in the case studies for Left 4

Dead (2008) and Spelunky (2008). The purpose of this has been to demonstrate how procedural

content generation can have a profound effect on the perception of uncertainty in games. It is

useful to look at the games relatively to see how they compare:

Table 1. Games with procedural content generation that have been mentioned in this thesis.

Game PCG Type Dominant Uncertainty Type

Minecraft PRNG Hidden Information

Dwarf Fortress PRNG Analytic Complexity

Binding of Isaac PRNG Hidden Information

Infinite Mario AI Performative Uncertainty

The Game of Life GG Randomness

Desert Golfing PRNG Solver’s Uncertainty

Façade AI Narrative Anticipation

Left 4 Dead PRNG, AI Narrative Anticipation

Spelunky PRNG Performative Uncertainty

AudioSurf AI Solver’s Uncertainty

 As a note, almost all PCG algorithms affect randomness, narrative anticipation, and

hidden information. Therefore, the uncertainty type that a game’s PCG had the most influence on

33

is a more useful metric. PCG proved to be a versatile modifier of uncertainty, with the type of

PCG not being an indicator of the dominant type of uncertainty it influenced. The most utilized

technique in practice is PRNG. For most of the games that implement it, the complexity of the

algorithm does not exceed using simple random number generators to decide what content is to

be displayed and where, as in Spelunky (2008). PRNG’s popularity is due to its simplicity,

allowing for quick iteration and a high amount of customization. GGs are not used as much in

the industry. While they are commonly used for vegetation, and they can be used for generating

levels, they lack the level of control needed for game designers to create an intended experience.

Finally, AI techniques are used more often than GGs, but have seen limited commercial use.

Infinite Mario and Façade are just two of many academic games that have been published. In

contrast to PRNG techniques, AI techniques are much more difficult to implement and take

considerable time to iterate on. Thus, it is less appealing to integrate them into commercial

games.

Meaningful Play and Uncertainty

Little discussion has been made on how uncertainty directly relates to game design.

Concepts like “engagement,” “accessibility,” and “replayability” have been cited as results of

procedural techniques adapting to the player or randomly generating new experiences. This does

not mean that any time a PCG algorithm is utilized, engagement or accessibility or replayability

occurs. To the contrary, it takes a deliberate and steady use of procedural generation to achieve

any noteworthy results. For example, if the generation is too loose and unorganized, excessive

uncertainty may result. With excessive uncertainty, the player has a lack of control over the

game state. This, for example, would include gambling games, like Roulette. In roulette, the

34

player’s fate is in the hands of the spin of the wheel. In a similar sense, procedural techniques

can have the same effect on the player. If a game chose to randomize player inputs, it would

introduce so much performative uncertainty that it would frustrate almost everyone. Excessive

uncertainty also includes poor design decisions. Costikyan (2013) mentions the camera system in

Disney’s Epic Mickey (2010), which would unexpectedly move around the player, drastically

increasing the difficulty of the jumping segments and resulting in player frustration. Since the

player doesn’t have fluid control over the camera, frustration can result. Bad design can result

from PCG, too. Generated levels can have no exit or be incredibly tedious to traverse. Difficulty

could be dynamically tuned to be too difficult or too easy, introducing too much challenge to the

player. Or, the generated systems could be needlessly complex, obfuscating the objectives of the

game and confusing the player rather than providing tools to play with.

On the other end of the spectrum, if a procedural technique does not introduce enough

variation, a lack of uncertainty arises. Salen and Zimmerman (2004) comment that if a game is

completely certain, meaningful play is impossible. One of the dangers of using procedural

generation is creating content that all feels similar. For example, in a game where the level

generator creates levels that all look the same, players would perceive the same experience over

and over, even with variation in the layout. This is why successful games that have used

procedural generation either focus on the non-procedural elements or introduce special events to

spice up the generative parts. Looking back to the case studies, Left 4 Dead (2008) made the

levels exciting by dynamically creating spikes of high-intensity generation. Spelunky (2008)

included rare level modifiers like removing the light from the cave or spawning a snake pit. A

game like Minecraft (2009), however, uses procedural level generation to create a new blank

35

canvas for the player to explore, but the true focus of the game is creative crafting and building.

Designers should evaluate a game on a case-by-case basis to determine what kind of procedural

generation is necessary.

Even if the uncertainty of a game is properly tuned, it is useless without meaningful

choices. According to Salen and Zimmerman, meaningful play has two definitions: first, it is a

relationship between player action and system outcome, and second, it is what occurs when the

relationships between actions and outcomes in a game are both discernable and integrated into

the larger context of the game (2004). All that uncertainty does is provide a platform for

meaningful play. Meaningful play itself is essential to the design of the game. It gives players

context and purpose to the act of playing. Thus, for any game, it is essential to have

fundamentally strong gameplay before the benefits of PCG can be applied in an impactful way.

Games of Chance

One of the most common associations of PCG with games is with randomness. Whenever

probability is involve so is the concept of luck, or alea by Callois’ terms (1958). Why is luck

such a pervasive element in games? As shown in previous sections, uncertainty in games can be

introduced in ways outside of a dice roll. The element of chance is one that is embedded in

cultures throughout history and modern times. It goes beyond the vices of gambling or the

lottery. To Callois, chance and competition, alea and agon, are paradoxically linked (1958).

Agon represents authority, structure, and government (Caillois, 1958). The best player wins, and

in a meritorious fashion the champion is crowned. However, the alea of life circumstances,

Callois argues, provides a counter balance. “Each man is conditioned by environment. He may

perhaps ameliorate conditions through merit, but he cannot transcend them. He is unable to

36

radically change his station in life. From this arises the nostalgia for crossroads, for immediate

solutions offering the possibility of unexpected success, even if only relative. Chance is courted

because hard work and personal qualifications are powerless to bring such success about”

(1958).

Many people can associate with feeling of inadequacy in life. One can entertain the

thought of buying a lottery ticket and never having to worry about money again. In this way,

there is a comfort in a game of chance, even on a minute level. Being presented with a string of

challenges that are followed by an easy encounter satisfies our need for feeling lucky, the

essence of Caillois’ alea (1958). In a way, it feels like cheating. For example, beating a level in

Spelunky (2008) is normally an intensive and challenging feat. Occasionally, however, the path

to the exit is direct and clear of hazards. In this way, the goal was achieved without hard work or

much effort at all. Caillois suggests that alea “seems like the resistance posed by nature against

the perfect equity of human institutional goals” (1958).

It is curious, perhaps, that uncertainty is such a source of anxiety in life, and a source of

relief in games. For example, the threat of a car accident or a heart attack is ever-present in daily

life. In many games, too, the threat of death and failure is pervasive. Costikyan (2013) suggests

that human culture has taken uncertainty and transformed it into a series of elaborate constructs

that present uncertainty in a fictive and nonthreatening way. PCG techniques in many forms

embody this mantra, these elaborate constructs, the endless labyrinths of Spelunky (2008) or the

endless hordes of zombies in Left 4 Dead (2008). For us to come to terms with reality - that not

everyone is born equal, that bad things can happen, and most importantly, unexpected things can

37

happen - is essential to the development of culture. Procedural generation allows us to explore

that space in a safe and equal manner, and it is a field that I hope continues to grow in the future.

Considerations for Future Work

 This paper approached procedural generation and uncertainty from a high level. The

application and development of procedural content generators is so vast that just the potential

uses could be the subject of an entire paper. To provide some examples, it would be interesting

to see further research in the fields of evolutionary algorithms. These algorithms have the

potential to be particularly interactive with players, learning along with them to provide

compelling interactions. Additionally, user-generated content is becoming more prevalent in the

games industry. How will games, especially those with carefully constructed procedural

algorithms, integrate user content in a seamless way?

 Within the topic of uncertainty, it would be a logical next step to relate uncertainty to

other perspectives on game design. How does a particular genre employ certain types of

uncertainty? Perhaps a formalized case study on a game that includes advanced PCG techniques,

like Galactic Arms Race, a game that takes user feedback to generate new weapons for space

ships in real time (Hastings, 2009). Regardless of where the scholarship on uncertainty in games

goes, its importance as a fundamental principle in game design makes it deserving of further

attention and discussion.

38

REFERENCES
Adams, T & Adams, Z. (2006). Dwarf Fortress [computer software]. Bay 12 Games.

Avedon, E., & Sutton-Smith, B. (1971). The Study of Games. New York, New York: John Wiley

& Sons.

Booth, M. (2009). The AI Systems of Left 4 Dead [PDF]. Retrieved from Valve Software:

http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf.

Caillois, R. (1958). Man, Play and Games. Urbana-Champaign, Illinois: University of Illinois

Press.

Cellular Automata. From Wolfram MathWorld. Retrieved November 19, 2014, from

http://mathworld.wolfram.com/Rule30.html. Copyright 2014 by Wolfram Research, Inc.

Conway, J. H. (1970). The Game of Life.

Costikyan, G. (2013). Uncertainty in Games. Cambridge, Massachusetts: The MIT Press.

Dark Souls [computer software]. (2011). Tokyo: From Software.

De Koven, B. (1978). The Well-Played Gamed: A Player's Philosophy. Garden City, New York:

Anchor Press.

Epic Mickey [computer software]. (2010). Austin: Junction Point Studios.

Flitterer, D. (2008). AudioSurf [computer software]. Invisible Handlebar.

Francillette, Y., Gouaich, A., Hocine, N., & Pons, J. (2012). A Gameplay Loops Formal

Language. 2012 17th International Conference on Computer Games (CGAMES), 94.

Gips, J. (1999). Computer Implementation of Shape Grammars. In NSF/MIT Workshop on Shape

Computation (Vol. 55, p. 56).

Guitar Hero [computer software]. (2005). Cambridge: Harmonics.

39

http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf
http://mathworld.wolfram.com/Rule30.html

Gygax, G & Arneson, D. (1974). Dungeons & Dragons. Lake Geneva: Tactical Studies Rules.

Half-Life [computer software]. (1998). Fresno: Sierra Software.

Hastings, E. J., Guha, R. K., Stanley, K. O. (2009). Evolving Content in the Galactic Arms Race

Video Game. Computational Intelligence and Games.

Hendrikx, M., Meijer, S., van der Velden, J., & Iosup, A. (2013). Procedural Content Generation

for Games: A Survey. ACM Transactions on Multimedia Computing Communications

and Applications, 9(1), 1-22.

Kazemi, D. (2013). Spelunky Generator Lessons, Part 1: Generating the Solution Path.

Retrieved from: http://tinysubversions.com/spelunkyGen/

Kazemi, D. (2013). Spelunky Generator Lessons, Part 2: Generating the Rooms. Retrieved from:

http://tinysubversions.com/spelunkyGen2/

Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D. S., Lewis, J. P., Perlin, K.

& Zwicker, M. (2010). A Survey of Procedural Noise Functions. Computer Graphics

Forum, 29(8), 2579-2600.

Left 4 Dead [computer software]. (2008). Bellevue: Valve Corporation.

Left 4 Dead Enemy Placement Map. Retrieved March 10th from

http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf.

Copyright 2009 by Valve Corporation.

Left 4 Dead Intensity Graph. Retrieved March 10th from

http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf.

Copyright 2009 by Valve Corporation.

40

http://tinysubversions.com/spelunkyGen/
http://tinysubversions.com/spelunkyGen2/
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf

Lehman, J., & Stanley, K. O. (2011). Abandoning Objectives: Evolution through the Search for

Novelty Alone. Evolutionary Computation, 19(2), 189-223.

Liapis, A., Yannakakis, G., Togelius, J. (2014). Computational Game Creativity. Proceedings of

the Fifth International Conference on Computational Creativity. 4(1).

Mateas, M., & Stern, A. (2003, March). Façade: An experiment in building a fully-realized

interactive drama. In Game Developers Conference (Vol. 2).

McMillen, E & Himsl, F. (2011). The Binding of Isaac [computer software].

Meier, S. (1991). Civilization [computer software]. Hunt Valley: MicroProse.

Merrick, K. E., Isaacs, A., Barlow, M., & Gu, N. (2013). A Shape Grammar Approach to

Computational Creativity and Procedural Content Generation in Massively Multiplayer

Online Role Playing Games. Entertainment Computing, 4(2), 115.

Monopoly. (1903). Pawtucket: Hasbro Incorporated.

Nishikado, T. (1978). Space Invaders [computer software]. Chicago: Midway.

Perlin Noise. (2014). In Wikipedia. Retrieved November 19, 2014, from

http://en.wikipedia.org/wiki/Perlin_noise.

Persson, M. (2009). MineCraft [computer software]. Stockholm: Mojang.

Picbreeder. (2014). From Picbreeder. Retrieved November 19, 2014, from http://picbreeder.org/.

Copyright 2007 by University of Central Florida.

Portal [computer software]. (2007). Bellevue: Valve Corporation.

Salen, K., & Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. Cambridge,

Massachusetts: The MIT Press.

Commented [TF1]:

41

http://en.wikipedia.org/wiki/Perlin_noise
http://picbreeder.org/

Secretan, J., Beato, N., D'Ambrosio, D. B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J. T.,

& Stanley, K. O. (2011). Picbreeder: A Case Study in Collaborative Evolutionary

Exploration of Design Space. Evolutionary Computation, 19(3), 373-403.

Shaker, N., Togelius, Nelson, M. J. (2015). Procedural Content Generation in Games: A

Textbook and an Overview of Current Research. Springer.

Smelik, R. M., De Kraker, K. J., Tutenel, T., Bidarra, R., & Groenewegen, S. A. (2009, June). A

Survey of Procedural Methods for Terrain Modelling. Proceedings of the CASA

Workshop on 3D Advanced Media in Gaming and Simulation (3AMIGAS) (pp. 25-34).

Smith, J. (2014). Desert Golfing [computer software]. Vancouver: Captain Games.

Spelunky Level Map. Retrieved March 14th from http://tinysubversions.com/spelunkyGen/.

Spelunky Room Template. Retrieved March 14th from

http://tinysubversions.com/spelunkyGen2/.

Stiny, G., Gips, J. (1972). Shape Grammars and the Generative Specification of Painting and

Sculpture. In C.V Freiman (Ed.), Proceedings of IFIP Congress 71. Amsterdam: North-

Holland, 1460-1465.

Togelius, J., Yannakakis, G., Stanley, K., & Browne, C. (2011). Search-Based Procedural

Content Generation: A Taxonomy and Survey. IEEE Transactions on Computational

Intelligence and AI in Games, 3(3), 172-186.

Toy, M. & Wichman, G. (1980) Rogue [computer software].

Van der Linden, R., Lopes, R., & Bidarra, R. (2014). Procedural Generation of Dungeons. IEEE

Transactions on Computational Intelligence and AI in Games, 6(1), 78-89.

42

http://tinysubversions.com/spelunkyGen/
http://tinysubversions.com/spelunkyGen2/

White Noise. (2014). In Wikipedia. Retrieved November 19, 2014, from

http://en.wikipedia.org/wiki/White_noise.

World of Warcraft [computer software]. (2004). Irvine: Blizzard Entertainment.

Yu, D. (2008). Spelunky [computer software].

43

http://en.wikipedia.org/wiki/White_noise

	Controlling Randomness: Using Procedural Generation to Influence Player Uncertainty in Video Games
	Recommended Citation

	ABSTRACT
	DEDICATIONS
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Literature Review
	Uncertainty
	PRNG Techniques
	Generative Grammars
	Artificial Intelligence Techniques

	ANALYSIS
	Performative Uncertainty
	Solver’s Uncertainty
	Player Unpredictability
	Randomness
	Analytic Complexity
	Hidden Information
	Narrative Anticipation
	Development Anticipation
	Schedule Uncertainty
	Uncertainty of Perception
	Summary

	CASE STUDIES
	Left 4 Dead
	Spelunky

	DISCUSSION
	Meaningful Play and Uncertainty
	Games of Chance
	Considerations for Future Work

	REFERENCES

