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ABSTRACT 

Fluorochromes such as tetracycline have been used to label bone for 

histomorphometric analysis, measuring bone formation, growth, maintenance, and 

pathology.  More recently, similar fluorescence has been observed in ancient human 

bone.  Attributed to tetracycline (TC) exposure, this phenomenon could affect various 

aspects of health during life and/or preservation of remains postmortem.  Standard 

epifluorescence microscopy is the most common tool employed in the analysis of these 

labels.  Though valuable, this technique is limited by its inability to penetrate bone three-

dimensionally and its inclusion of out-of-focus light, possibly disrupting accurate 

analysis.  Confocal Laser Scanning Microscopy (CLSM) has been demonstrated as a 

valuable tool for three-dimensional histology.  Its application to the study of compact 

bone fluorescence has been lacking, especially in archaeological and forensic sciences.  

In the following two papers, modern TC-controlled bone is compared to well preserved 

archaeological bone recovered from the Dakhleh Oasis, Egypt, using both standard wide-

field and more modern confocal techniques for imaging and analysis.  Spectral analysis 

via CLSM shows that both modern and ancient fluorescent labels in bone share the exact 

same fluorescence emission peak at 525 nm.  Differences in the shape of the spectral 

curve and photobleaching characteristics are discussed.  In addition, CLSM’s high-

resolution two- and three-dimensional imaging capabilities (in polarized light, scattered 

light, and fluorescence light) are found to increase the flexibility and creativity of 

investigations into the occurrence of tetracycline labels in archaeological bone and could 

have added benefits for modern medical and anatomical experimentation. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Originally, the intent of my investigations into ancient antibiotics and tetracycline 

labeling of bone was to reopen a line of studies begun in the 1980’s by Basset, 

Armelagos, Keith, Cook and several others (Bassett et al. 1980; Keith and Armelagos 

1983, 1988; Cook et al. 1989).  They discovered yellow-green fluorescent labels in 

human bone over a thousand years old, morphologically identical to those created during 

modern medical administration of tetracycline (TC).  Exposure TC could have affected 

populations’ health in various ways, including resistance to bacterial infection, bone 

degenerative processes, and disfigurement of fetal hard tissues.  Unfortunately, research 

on the subject has been scarce since this time period. 

Therefore, I designed a pilot project to test the skeletal samples from the Dakhleh 

Oasis, Egypt, providing evidence from a different region and time period.  Because 

bacterially infested grain products are the suggested source for TC consumption, I tested 

animal bone from the same area.  Fetal bone was also examined due to the transference of 

TC via placenta.  A more modern confocal laser scanning microscopy was used for 

fluorescence imaging of the bone.  Results of these pilot projects supported the findings 

of previous researchers (Maggiano et al. 2003).  Not only was the fluorescent substance 

morphologically similar to TC incorporated into human bone but it was also present in 

fetal and animal remains as well.   
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Immediately the most important realization made was that in all cases of ancient 

antibiotic so far published, over 90% of all examined individuals showed evidence for TC 

exposure.  The logical next step was to use population level analysis and demographics 

correlations to determine: 1) who was most affected, 2) what health effects were 

probable, and 3) what the most likely mechanism was for exposure.  Although previous 

researchers had attempted something similar, problems arose when others noted that 

natural processes of decomposition and postmortem bacterial infestation could account 

for fluorescence in bone (Piepenbrink 1983). 

Therefore, I decided that instead of rushing to achieve population level analysis, 

perhaps it was better to learn more about the specifics of ancient tetracycline 

fluorescence.  Along the way I wanted to collect support for the use of CLSM as a tool by 

which further investigation could discern the difference between 2000 year old Roman-

Egyptians on antibiotic regimens and microscopic fluorescence artifacts from soil 

bacteria.  In the process I found that CLSM may have benefits for general 

histomorphometric analysis in bone and could offer new three-dimensional perspectives 

to the structure of bone microarchitecture.  The first two steps of this process were to 

examine the use of CLSM for spectral analysis of fluorescent substances within bone and 

to demonstrate its capabilities for fluorescence, polarized light, and three-dimensional 

imaging of bone histology in general.  Therefore, the following two chapters detail the 

use of Confocal Laser Scanning Microscopy for spectral and image analysis of ancient 

tetracycline labels found in Roman-Egyptian human bone dating to roughly AD 100-400. 
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CHAPTER 2 

SPECTRAL AND PHOTOBLEACHING ANALYSIS USING 
CONFOCAL LASER SCANNING MICROSCOPY: A 

COMPARISON OF MODERN AND ARCHAEOLOGICAL 
BONE FLUORESCENCE 

Introduction 

Natural fluorescence of bone in response to ultraviolet to blue (UV-B) wavelength 

light is due to collagen autofluorescence, providing relatively faint, diffuse light, 

depending on the thickness of the sample observed.  However, Milch, Rall, and Tobie 

(1957, 1958) observed localized, bright, yellow-green fluorescence in microscopic bone 

structures formed during tetracycline administration.  Frost, Villanueva, and many others 

(Frost et al. 1961; Rush et al. 1966; Taylor and Frost 1966; Villanueva et al. 1983) used 

TC labeling and staining techniques to provide microfluorescence analysis of bone, 

measuring rates of bone growth between fluorescent “labels” and locating mineralization 

fronts.  These efforts have contributed greatly to the understanding of bone diseases and 

normal bone growth, healing, and adaptive response.  Fluorescent labels in bone could 

have implications for archaeological and forensic sciences as well.    

The histology of thin ground bone sections is an integral part of archaeological 

investigation into the health of ancient peoples.  Despite their age, archaeological bone 

maintains its microscopic architecture, in some cases for tens of thousands, even millions 
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of years (Stout and Teitelbaum 1976; Stout 1978; Schultz 2001).  In 1980, Basset and 

colleagues (Bassett et al. 1980, Keith and Armelagos 1983) were the first to report 

tetracycline-like fluorescence in archaeological human bone recovered from a site in 

Sudanese Nubia (circa AD 350).  They noted the most likely source for TC exposure was 

through the consumption of bacterially contaminated grain or ale (Armelagos 2000).   

Subsequently, similar bone fluorescence has been documented at ‘Ain Tirghi (Cook et al. 

1989) and the Kellis cemeteries of the Dakhleh Oasis, Egypt (Maggiano et al. 2003), 

supporting a local continuance of the phenomenon for over 1200 years.   Drastic health 

affects are possible in response to ingested TC, but reports disagree in the likelihood of 

therapeutic-blood concentrations in ancient times.  In addition to their antibiotic effects, 

TC and its isomers also inhibit bone degenerative diseases and cancerous growth 

(Gilbertson-Beadling 1995; Sadowski and Steinmeyer 2001) and can cause staining, 

growth interruption, and even disfigurement of forming hard tissues (Urist and Ibsen 

1963; Saxen 1966; Johnson and Mitchell 1966).   Placental and lactate transference of TC 

renders infants especially vulnerable to TC’s negative side effects (Skinner and 

Nalbandian 1975), prompting the recommendation that pregnant and nursing women 

avoid TC drug treatments (Walsh 2000).   

In vivo, TC labels form due to natural fluorescence and chemical affinities for 

hard tissues (Misra 1991).  Bone is a composite material comprised of two main 

structural elements: the mineral, hydroxyapatite, which lends bone its strength; and the 

organic, primarily collagen (type I), for flexibility (White 2000).  Formation, maturation, 

and maintenance of bone proceeds via localized cycles of bone resorption and 

appositional calcification of bone cell secretions.  In humans, periosteal growth results in 
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layers of lamellar bone running the whole or part of the circumference of a long bone.  

With maturation, however, the base structural unit of compact bone becomes the osteon 

(Eriksen et al. 1994), or Haversian system, a layered cylindrical tube surrounding bone 

vascular tissue (Figure 1).   

 

Figure 1.1: Basic Microstructure of Mature Cortical Bone. A) Cylindrical representations of layered 
Haversian systems, or osteons (courtesy of L. Williams).  B) Two-dimensional confocal laser scanning 
microscopic image of archaeological bone fluorescence from individual D7-8, from the Kellis town 
site, Dakhleh Oasis, Egypt, showing:  1) non-fluorescent osteon (white perimeter hand-drawn for 
clarification), 2) two completely fluorescent osteons, and 3) fluorescently labeled internal 
circumferential lamellae.  Scale notes 100µm at 100x total magnification. 

 

When viewed in cross section these structures appear “bulls-eye-like”, with a canal in the 

center.  Networks of osteons are responsible for the structural integrity and nutrient 

supply of mature human compact bone (Burr et al. 1998).  Differences in bone 

histomorphometry can be significant between mammal species and between individuals 

of differing ages, but the chemical and physical process of TC label formation remains 

similar. 
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Tetracycline, ingested or injected in sufficient doses pervades all body tissues, 

including bone, via the bloodstream (Van der Bijl and Pitigoi-Aron 1995).  Due to 

hydrogen bonding and other weak chemical forces, TC molecules settle within the 

calcium-phosphate crystalline lattice of hydroxyapatite  (Nielsen and Gyrd-Hansen 1996; 

Misra 1991).  This diffuse labeling is temporary and is lost to excretion within about 

three days unless new bone is being formed in that region (Frost 1965).  In areas of 

calcification, however, TC molecules are locked between apposing layers of bone.  A 

single exposure creates a thin band in lamellar bone, or a ring in an osteon.  Repeated 

exposures over time can result in the labeling of the entire structure (Cook et al. 1989).  

Six morphological forms of fluorescence have been identified in archaeological bone, 

based on the structures labeled and suspected exposure durations, including “ring”, 

“complete”, and “lamellar” labels (Maggiano et al. 2003).  In vivo, labels enduring for 

years will eventually be reabsorbed into the bloodstream.  Postmortem, labels fade 

depending on pH and light exposure; locked within bone, they can persist for many years 

(Frost 1965).  

Fluorescent labels in bone, whether modern or archaeological, are most 

commonly observed using epifluorescence microscopy.  This technique uses a high-

powered illumination source, normally a halogen or mercury arch lamp, to excite the 

fluorochrome.  A dichroic filter separates the emitted fluorescent light from the incident 

light, allowing the collection of certain fluorescence wavelengths.  To change the 

wavelengths of collected light, filters must be exchanged manually.  Like other wide-field 

microscopic systems, inclusion of out-of-focus light from above and below the focal 

plane clutters the field of view with fluorescent “noise”, diminishing achievable 

 7



resolution and confusing label analysis due to overlapping and obscured structures 

(Birkenhäger-Frenkel and Birkenhäger 1987).  This means samples must be made 

extremely thin, decreasing the volume of observable tissue and adding to the labor 

involved in sample preparation, especially when working with hard materials such as 

undecalcified bone.  Full spectral analysis of fluorochrome labels is not possible without 

additional equipment. 

Spectral characteristics of fluorescence: emission peak, maximum intensity, and 

fluorescence range, are specific both to the chemical structure of the fluorochrome(s) and 

its relative concentration within the observed sample (in three dimensions).   Under 

controlled lab conditions, TC concentrations in aqueous solution can be determined by 

analysis of fluorescence intensity (Horvath and Glazier 1993).   Standard microscopic 

techniques do not permit simultaneous image analysis and comparison of spectral data 

from specific regions of interest within or between fields of view.   

Eliminating many of the limitations of epifluorescence microscopy, modern 

confocal laser scanning microscopy (CLSM), provides greater z-axis resolution, 

simultaneous multi-wavelength fluorescence imaging, and 3-D reconstruction of tissues 

over 100 µm in thickness (Biggerstaff et al. 1997, 1998; Boyde et al. 1994).  Confocal 

microscopes use a system of intense, finely focused lasers (~0.2 µm in diameter) for 

incident illumination.  A computerized operating system manipulates mirrors, rapidly 

scanning the laser across the focal plane and inducing excitation in the target 

fluorochrome(s).  Diffuse out-of-focus fluorescence from above and below the focal 

plane, is refocused either before or after an adjustable pinhole.  Thus, only light from the 

focal plane passes through the pinhole.  The focal plane can be moved up or down within 
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the sample to generate 3-D stacks or to view any depth without the influence of out-of-

focus light.  An electronically controlled crystalline filter, called an acousto-optical 

tunable filter (AOTF), permits only light at chosen wavelengths to reach the photon 

detector(s).  The computer correlates photon impacts with the laser’s scanning position 

and to create a digital image of fluorescence in the sample. 

The only major limitation of CLSM for postmortem analysis of tissues is that, due 

to the strength of the light source and z-axis excitation depth, continued scanning induces 

fading in the fluorescence signal, or photobleaching (Cahalan et al. 2002).  This is caused 

by chemical modification of the fluorochrome due to repeated excitation/emission states.  

However, spectral detection and/or larger volume three-dimensional image reconstruction 

may require longer scanning times.  Consequently, the photobleaching effect could be 

more significant.  The rate at which a sample looses its fluorescence is determined by the 

amount of fluorochrome present, the intensity of the incident light, the refractive index of 

the medium or target, and the photochemical properties of the molecule itself; in some 

cases complete bleaching occurs in just seconds (Song 1997; Van Oostveldt et al. 1998).  

For our analysis, faded emission is unrecoverable and should be avoided.  Therefore, it is 

necessary to identify the photobleaching rate and the function of emission decay in order 

to avoid or correct for this phenomenon (Ono et al. 2001).   

Recent advances in CLSM technology permit real time, three-dimensional, 

spectral analysis of fluorescent material.  Despite its benefits, the use of CLSM for 

imaging in modern histomorphometric analysis of bone is only now gaining popularity 

and its application to archaeological investigation is rare.  The current study employed 

confocal laser scanning microscopy for in situ spectral analysis, quantifiably comparing 
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tetracycline fluorescence of modern and archaeological bone.  In addition, 

photobleaching tests were performed in order measure the decrease in fluorescent 

intensity over time for future CLSM bone analyses.  Three types of bone tissue were 

tested:  1) modern pig alveolar bone from individuals double-labeled with tetracycline via 

injection; 2) archaeological human humeral bone from the Dakhleh Oasis, Egypt (circa 

AD 100-400), and 3) a stained, decalcified dog femur.  We hypothesized that CLSM 

would provide an accurate means for spectral characterization and intensity 

measurement, compared with expected values from the literature.   Our preliminary 

CLSM experimentation also leads to the hypothesis that photobleaching effects are not 

problematic for standard two- and three-dimensional scanning. 

Materials and Methods 

Sample collection and processing 

The archaeological sample was recovered by the Dakhleh Oasis Project under the 

directorship of Anthony Mills.  Selected individuals are from the Kellis 2 cemetery and 

associated Kellis town site of the Dakhleh Oasis, Egypt, dating to approximately AD 

100-400 (Hope 2001; Molto 2001).  Studies from archaeological sites in the Sudan and 

Egypt report that nearly every tested individual displays some evidence of TC 

fluorescence (Basset et al. 1980; Keith and Armelagos 1983; Cook et al. 1989; 

Armelagos 2000; Maggiano et al. 2003).  Therefore no examination of individuals was 

necessary to predict the occurrence of fluorescent labeling prior to experimentation.  For 

the current study, four individuals were examined, B400, B427, B443, and D7-8.  
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Transverse cross sections were removed from these adult skeletons during sampling for 

DNA and stable-isotope analysis at the mid-diaphysis of the left humerus.  This location 

was considered ideal for its thick cortical bone and remoteness from areas important for 

estimations of age or sex.   

Previous studies have shown that autofluorescence of the label and the tissue itself 

is sufficient for CLSM imaging with no additional treatments or probes necessary 

(Maggiano et al. 2003).   Thin-ground sectioning was performed on the undecalcified 

archaeological bone as described by Schultz (Schultz 1988, 2001).  Samples were 

plastinated using the Biodur® preparation technique.  Reportedly, this technique offers 

optimum penetration of micro-porous structures and seamless joining with internal and 

external surfaces, eliminating artifacts that sometimes arise from faster curing epoxy 

resins and prologing the “lifetime” of the sample.  Slides produced were measured by 

micrometer at ~70 µm and cover-slipped.  Drawings were made from a magnifying 

projector and key features were micro-photographed using Hilfsobject red quartz 

compensator enhanced polarization.   

All samples were analyzed for pathology and diagenesis at the Zentrum 

Anatomie, Georg-August-Universität, Göttingen, Germany.  Slides selected for this study 

were negative for obvious metabolic, degenerative, or infectious disease and 

demonstrated excellent preservation with no signs of generalized chemical or biological 

destruction.  Original internal and external surfaces were intact and postmortem 

fragmentation and micro-fractures were absent.  Localized artifacts of diagenesis in 

ancient bone are unavoidable, but polarized light microscopy revealed that samples 
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contained well-organized collagen content, demonstrating that even the organic 

components of the bone were generally unaffected. 

Two modern sections from pig alveolar bone were used as positive controls for 

TC fluorescence.  These samples were prepared using standardized methods for 

histomorphometric investigation using TC double labeling (Carr et al. 1996a, 1996b).  

Pigs had been given two premortem doses of TC.  Thin-sectioned decalcified dog bone 

was also obtained.  These had been stained with hematoxylin and eosin, embedded in 

paraffin, and thin sectioned to 20 µm via microtome.  Both eosin stain and collagen are 

fluorescent under UV-B excitation.  However, since no mineral component remains for 

TC chelation (Fukutani et al. 1985), these samples serve as negative controls for 

tetracycline fluorescence.  

Microscopic detection and spectral analysis 

Fluorescence analysis was achieved using three techniques: 1) spectral analysis, 

which measures emitted light intensities at intervals of 7 nm across the total spectrum, 

generating curves via intensity profiles; 2) intensity comparison, demonstrating the 

difference in intensity between different structures within a sample; and 3) 

photobleaching tests, showing the decline in fluorescent intensity over time resulting 

from chemical alteration of the fluorochrome. 

A Leica SP2 confocal microscope with an argon ion laser light source was used 

for all fluorescence analysis.  Beam splitters ensured that the 458 nm laser line was used 

for excitation.  Due to its weakness in comparison with the natural line at 488nm, 

relatively high laser power was used (100% software setting, 25% manual) except during 
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photobleaching tests.  The excitation peak for TC is wide but roughly peaks around 390 

nm (Hoerman 1975).  Studies using CLSM have shown that laser excitation at 458 nm 

induces ample excitation of modern and ancient fluorescence in bone (Maggiano et al. 

2003; Boyde et al. 1994).  During scanning, fields of interest were preferred that 

contained both ring fluorescence and thicker labels, such as complete osteon fluorescence 

in the archaeological samples.  The “over/under” LUT (contrast stretching) option 

ensured system settings were not used to distort the dominance of features through over 

or under exposure (detector saturation or non-detection).  Imaging parameters such as 

objective, beam splitter, laser power, pinhole size, PMT sensitivity, z-position, pixel 

dimensions, emission detection range, and the number of scans were recorded for each 

image.   

Spectral analysis settings were standardized for all samples, notably:  10x 0.3 NA 

objective, 256 pixel resolution, 599 V PMT, and pinholes at 84.89 µm and 1.00 airy.  The 

focus was adjusted each time to reach the maximum plane of fluorescence (at an emitted 

range 500-600nm).  During each scan, the RD 70/30 intensity reduction mirror was used, 

permitting detection of the full range of emitted light.  Although the TD 488/543/633 

triple-dichroic mirror allows better image quality due to greater emission intensities, it 

filters out a large portion of the TC emission range from 520 nm to 570 nm.  This creates 

an artificially double-peaked spectrum and is therefore not suitable for spectral scanning 

of these fluorochromes.  The AOTF collected a range of emission 7 nm wide that was 

moved down-spectrum in 7 nm steps for each scan (35 scans total, from 471 nm to 708 

nm).   The process was repeated for each sample or field of view examined.   

 13



Preliminary observations suggested modern samples had only slight variation in 

label intensity between individuals (14).  This was expected due to the mechanics of label 

incorporation and standardization of lab techniques involved in TC double labeling.  

Therefore, for positive controls three different fields of view were chosen from pig BR3-

4#1.  Archaeological labels, however, have obviously variable intensities and therefore 

three different individuals (B427, B443, and D7-8) were sampled for fluorescence on the 

chances that the spectra were likewise variable.  In most archaeological fields of view, 

ring fluorescence was not bright enough for spectral analysis so thicker labels were 

chosen (complete osteon or circumferential lamellar labels).   

After the images were collected, regions of interest (ROI) were chosen for each 

field of view and replicated in each of the 35 images taken during spectral scanning.  

Three ROIs per field of view were selected to represent: 1) the fluorescent label, 2) the 

background fluorescence from bone not labeled with fluorochrome, and 3) the true 

baseline fluorescence from a region off the sample but in the same field of view.  The 

morphological feature labeled with the highest intensity was selected to represent 

fluorescence within that field of view.  Baseline values represented ROIs of only the 

slide, Biodur®, and cover slip.  Often the vacant center of a porous cavity in the bone 

section was used for the baseline ROI.  The mean intensity of pixels within each ROI was 

recorded per image, per sample.  Intensity values were plotted against the wavelength of 

emission to produce spectral curves.  

Designations were given to each ROI and resulting spectral curve as follows: 

decalcified dog bone fluorescence (ddFL), modern bone dentition with ROI on and off 

the fluorescent label (mdFL+ and mdFL- respectively), modern periosteal bone on and 
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off the fluorescent label (mpFL+ and mpFL- respectively), modern canal ring 

fluorescence on and off the label (mrFL+ and  mrFL- respectively), archaeological 

complete osteon fluorescence, on and off the label (B427FL+ and B427FL- respectively), 

archaeological laminar bone fluorescence on and off the label (B443FL+ and B443FL-) 

respectively, and archaeological complete osteon fluorescence on and off the label (D7-

8FL+ and D7-8FL- respectively).  For all designations “FL = “fluorescent label” and “+/-

“ = “on/off” the label. 

In addition, collected spectral scans from individual B443 were reanalyzed (not 

rescanned) to determine the variation in intensity between morphologically different 

sources of fluorescence.  Ten ROIs were investigated on each of the two dominant 

fluorescent structures within the field of view: the internal lamina and an osteon.  In this 

way ten spectra were generated for each morphological feature and the average spectra 

and average peak intensities of the two labels could be compared. 

Fluorescence decay at standard scanning parameters 

Photobleaching tests were performed on one modern (BR3-4#3) and one 

archaeological sample (B400) using each of the most common objectives for bone 

histomorphometric analysis: 10x, 20x, and 40x (NA = 0.3, 0.7, and 1.25 respectively).  

Photobleaching was accomplished by progressive scanning of images (N=2122) at 1.7 

second intervals (400 Htz scan).     

New fields of view were used for each photobleaching scan.  Again, ROIs were 

the area of brightest fluorescence and the background fluorescence off-label (two ROIs 

per field of view).  ROIs were designated modern or archaeological (“Mod” or “Arch”) 
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for each objective used (10xMod, 10xArch, etc).  The average pixel intensity within each 

ROI for each image was plotted against time.  This was repeated for each set of 

experiments.  Microscope settings were recorded and standardized for each magnification 

group, with the notable exception that the 10xMod test was run at lower PMT of 434.7 

(all others were at 530.8).  In order to speed up the bleaching process, a scanning zoom 

was used.  The 40x experiments were run at 4x scanning zoom and all others used 5x 

scanning zoom.  Results of photobleaching tests were standardized for intensity since the 

function and rate of photobleaching were the desired characteristics. 

 

Results 

CLSM spectral analysis 

Results of CLSM spectral analysis showed baseline fluorescence on all samples is 

below ~10 on a scale of intensity (measured in arbitrary intensity units, or “AIU”) 
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(Figure 2).  
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Figure 1.2: Confocal laser scanning microscopic spectral analysis of averaged baseline (black) and 
background (gray) fluorescence in modern (white-marked) and archaeological (black-marked) 
samples.  Modern samples show greater intensity at wavelengths approaching excitation (458 nm). 
Intensity measured in arbitrary units, AIU. 

 

The exception was that modern TC samples had higher intensity before 527 nm 

(25 AIU for mpBASE) dropping rapidly thereafter.  Modern baseline fluorescence 

reached 33 AIU at 471 nm (as it approached the excitation wavelength).  At higher 

wavelengths, modern non-label fluorescence decreased to two points lower than 

archaeological intensity.  Archaeological samples displayed baseline intensities steady at 

6-7 AIU across the spectrum and background fluorescence fluctuated from 6-11 AIU. No 

intensities below 3 AIU were reported for any measurement.   
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In response to 458 nm excitation, decalcified dog bone emission has a peak of 76 

AIU at 562 nm (range 527-687 nm, 160 nm long) (Figure 1.3).   
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Figure 1.3: Confocal laser scanning microscopic spectral analysis of modern and archaeological bone 
fluorescence.  During 458 nm laser excitation both modern (black solid, dashed, dotted) and 
archaeological TC labels (grey solid, dashed, dotted) have a fluorescence emission at 525 nm.  
Decalcified dog femur (light grey) stained with hematoxylin and eosin emits a single peak at 562 nm.  
Intensity measured in arbitrary units, AIU. 

 

Modern TC ROIs (mdFL+, mpFL+, and mrFL+) emit sharp peaks of fluorescence 

of 88 to 111 AIU at 525 nm (range 478 – 678 nm, 200 nm long).  Archaeological ROIs 

from the fluorescent label (B427FL+, B443FL+, and D7-8FL+) had lower and more 

variable averaged intensities (32 – 71 AIU).  Spectra originating from archaeological 

samples have very gradual peaks 500 – 540 nm, but generally the common peak is ~525 

nm.  The range of archaeological spectra varies most drastically between D7-8 and B427 
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(84 nm difference at the yellow end of the spectrum).  The average range for 

archaeological samples is from 471 – 665 nm, or 194 nm long. 

Comparison between average intensity curves produced by laminar and complete 

osteonal fluorescence from a single field of view (individual B443) showed both resulting 

curves had peaks at ~525 nm (Figure 4).  A z-test to compare intensity between the two 

means demonstrates a significant difference (P = 0.039) between the more intense 

fluorescence at the internal lamina (31 AIU maximum) and the completely labeled osteon 

(24 AIU maximum).  
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Figure 1.4: Compared average intensities from two fluorescent labels in individual B443 from the 
Kellis 2 cemetery of the Dakhleh Oasis, Egypt.  The gray line denotes fluorescence from the internal 
lamina, or circumferencial lamella, while black marks that of an internal, completely fluorescent 
osteon.  The dotted line notes background fluorescence off-label.  Laminar fluorescence is 
significantly more intense, P = 0.039.  Intensity measured in arbitrary units, AIU. 

 

Photobleaching tests 

After an hour of continuous scanning, a decrease in fluorescence intensity was 

detectable for all objectives (10x, 20x, and 40x) (Figures 5 and 6).   
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Figure 1.5: Photobleaching tests for modern TC controls.  Smooth lines represent the exponential fit 
for intensity data collected using each objective (light grey, 10x = R2 of 0.95, dark grey, 20x = R2 of 
0.99, and black, 40x = R2 of 0.96 respectively).  Inset shows that the distribution of residuals between 
experimental values and the fitted curve agree with a single-exponential function.  Intensity is 
standardized.  Total scanning-time was one hour.   
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Figure 1.6: Photobleaching tests for archaeological fluorescence.  Smooth lines represent the 
exponential fit for intensity data collected using each objective (light grey, 10x = R2 of 0.95, dark 
grey, 20x = R2 of 0.99, and black, 40x = R2 of 0.96 respectively).  Inset shows that the distribution of 
residuals between experimental values and the fitted curve notably deviates from a single-
exponential function.  Intensity is standardized.  Total scanning-time was one hour. 

 

Average background fluorescence decreased from 17 to 10 AIU by 20 min and never 

dropped below 8 AIU.  Total loss of the fluorescent signal was not achieved for any trial.  

However, the 40xArch trial displayed faint fluorescence at the end of its testing period, 

just a few points above the background fluorescence.  Conversely, the 10xArch test still 

showed bright fluorescence after the full duration of the experiment and was, overall, the 

least affected by photobleaching.  This was true despite the fact that its fading rate within 

the first 10 minutes was comparable to the 10x and 20x modern trials.  Regardless of the 

age of the fluorescent label, the loss of fluorescence intensity over time for each objective 

obeyed a simple first order single-exponential model (Table 1).  The trend’s fit was 
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evidenced by R2-values above 0.94, for all trials except 40xArch (R2=0.89).  Closer 

examination of residuals between the observed data and the fitted curve reveal that 

archaeological samples deviate somewhat from the expected single-exponential trend. 

 

Table 1.1: Photobleaching rates and R2 values for modern TC controls and archaeological 
fluorescence.  Data for all trials fit exponential trends over the total scanning time.  Residual plots 
however, demonstrate that photobleaching trends in archaeological trials deviates from a single-
exponential function. 

  Exponential  [y=ac-b(t)] 
Sample Set Objective Rate R2

Modern 10x 3.9e-4 min-1 0.95 
 20x 4.1e-4 min-1 0.99 
  40x 5.7e-4 min-1 0.96 
Archaeological 10x 2.5e-4 min-1 0.94 
 20x 2.9e-4 min-1 0.95 
 40x 3.8e-4 min-1 0.89 

 

For both archaeological and modern tests, higher-powered objectives induced 

more rapid rates of photobleaching.  The 10x objective induced photo bleaching of the 

modern label at a rate of 3.9e-4 min –1 and the archaeological at 2.5e-4 min –1.  The 20x 

objective induced photobleaching at a more rapid rate of 4.1e-4 min –1 in the modern and 

2.9e-4 min –1 in the archaeological samples.  In comparison, the most drastic 

photobleaching occurred using the 40x oil immersion objective at rates of 5.7e-4 min –1 

and 3.8e-4 min –1 for modern and archaeological samples respectively. 

Fluorescence from modern samples faded at a faster rate than archaeological 

samples regardless of the objective used.  Modern labels had an average photobleaching 

rate of 4.6e-4 min –1, whereas archaeological samples had an average rate of 3.1e-4 min –1.  

Though this is true over the total time measured, within about the first 10 min of scanning 
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the archaeological samples actually fade in intensity more rapidly, especially at higher 

objectives. 

Discussion and Conclusion 

These results verify our hypotheses and demonstrate that confocal laser scanning 

microscopic spectral analysis is a beneficial tool for fluorescence spectrum and intensity 

measurement in bone tissue.  CLSM spectral analysis allowed the identification and 

isolation of emitted light from fluorochromes present in dyed decalcified dog bone; 

tetracycline labeled modern pig bone; and archaeological, human bone from the Kellis 

sites of the Dakhleh Oasis, Egypt.  Spectra from modern samples and archaeological 

samples had the same peak fluorescent intensities, corresponding to expected values from 

the literature.  Background fluorescence was negligible during the comparison of 

fluorescent spectra and intensities and the archaeological slide preparation process was 

shown to be more suitable for fluorescence analysis.  Photobleaching tests demonstrated 

that for normal imaging (less than two minutes of required scanning time), fluorescence 

decay is minimal.   

In response to 458 nm laser excitation, fluorescence observed in the decalcified 

dog bone (negative for TC) should be representative of collagen or eosin, a chemical 

stain used in the sample preparation.  Collagen Type I has a peak at 364 nm in response 

to 218 nm excitation (Yu-Hua et al. 1997).  Stained decalcified dog bone displayed a 

spectrum sharply peaked at 562 nm (at 458 nm excitation), similar to that of eosin, 

reported to peak at 550-560 nm in response to 450 nm excitation (Raymo et al. 2004).  
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Therefore CLSM spectral analysis accurately described this fluorochrome’s spectrum.  

The contribution of collagen was not visible as a separate peak for any sample due to its 

inefficient excitation at 458 nm in comparison to other fluorochromes present. 

Modern, TC labeled pig bone and human archaeological bone fluorescence both 

displayed bright green-yellow fluorescence with emission peaks at 525 nm.  Other studies 

on the typical spectral characteristics of modern TC report peak emission wavelengths at 

520-530 nm (Fukutani et al. 1985) and for archaeological fluorescence at 525 nm (Cook 

et al. 1989).  Results of the current study provide quantitative corroboration for previous 

identifications of archaeological TC labels made by label morphology, standard UV-B 

epifluorescence microscopy, and spectroscopy, supporting the observation that 

tetracyclines were somehow incorporated into the skeletons of ancient Roman-Egyptians, 

in life or after death.  

The contribution of the baseline and background fluorescence to that of 

fluorescent labels was negligible in both modern and archaeological bone.  

Archaeological samples provided a more homogenous baseline and background emission.  

This was not expected because it was assumed that archaeological bone would be 

“dirtier” and that scattering of light from sedimentary and crystalline deposits within the 

bone could increase collection of meaningless light.  Also unexpected, intensity analysis 

shows most non-label light collected was not due to background fluorescence of bone but 

to the baseline.  Visually, baseline ROIs were solid black in the microscope.  This hints 

that for some reason the non-detection point is not at zero, but ~3 AIU for samples 

investigated here (likely due to an artifact generated by the detector specifications).   
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Though slight in general, contamination from background and baseline 

fluorescence was more significant in the modern samples at <527 nm, increasing in 

intensity it neared the laser line at 458 nm.  Because samples were nearly equal in 

thickness, and because CLSM only collects light from one focal plane, this effect is 

probably related to photochemical or optical properties of the embedding material used 

for these samples.  Therefore, during CLSM imaging and spectral analysis of bone, the 

Biodur® preparation technique could be preferable, contributing both more predictable 

and lower levels of non-label fluorescent “noise”. 

The current research showed photobleaching of TC labels in bone is possible 

during CLSM, especially while using increased laser power, stronger objectives, and 

scanning zoom.  The rate of photobleaching increased when more powerful objectives 

were used because they focus more light on a smaller area of sample, thereby inducing 

more excitation/emission cycles in fewer molecules.  Despite this observation, continuous 

scanning would have to take place at the same field of view for longer than 10 minutes in 

order to lose 50% of the intensity of a label, even at 400x magnification.  Power settings 

and scanning zoom were employed specifically to increase the rate of photobleaching; 

otherwise an hour of scanning time was not enough to observe trends.  Even under these 

circumstances, photobleaching is only a minor limitation for bone fluorescence analysis 

at objectives ≤40x because most imaging or spectral analysis can be accomplished in 

under two minutes of scanning.   

Despite similarities, measurable differences between modern and archaeological 

TC fluorescence exist.  Spectral curves for archaeological labels are less intense, less 

sharply peaked, and have a wider range of emission.  This could be due to the presence of 
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multiple forms of TC, several of which are naturally produced by different species of 

bacteria (for example chlortetracycline from Streptomyces aureofaciens versus 

oxytetracycline from S. rimosus) (Goodfellow et al. 1988).   Each form of TC has 

characteristic differences in emission peak or spectral curvature (Hoerman 1975), when 

combined, their effects could both account for the wider range of emission and the altered 

photobleaching rate seen in archaeological trials.  The current study suggests 

photobleaching trends for all samples fit the expected function for single-exponential 

decline (as each molecule fatigues the rate of photobleaching decreases because there are 

fewer left to bleach).  That being said, archaeological samples bleach at a function that is 

less exponential – nearly logarithmic.  This finding is especially clear during the first ten 

minutes of scanning where a first order function seems most inaccurate, as evidenced by 

the residuals plots for the photobleaching tests.  Song and fellow researchers found that 

one or several bimolecular photochemical reactions can cause significant deviations from 

single-exponential functions describing unimolecular processes (Song et al. 1997).  

However, bimolecular reactions in this complex solid media with low fluorochrome 

density may be unlikely.   

Another possibility is that over 1,700 years of environmental change, TC 

molecules have undergone chemical modification.  Originally cited in Keith and 

Armelagos (1988), Boothe suggested this likelihood in 1983 regarding the evidence from 

Sudan, but the manuscript was never published.  Though the byproducts of 

environmentally degraded, bone-bound TC are unknown, some could be fluorescent 

(though most alterations to fluorochromes reduce their photoreactivity), the environment 

would provide ample association with Ca2+ from bone, a known enhancer of steady-state 
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fluorescence intensity (Hoerman 1975; Schneider S et al. 2001).  Variations in observed 

photobleaching rates could also be due to slight changes in the refractive index of 

different embedding solutions (Van Oostveldt et al. 1998), but whether this alters the 

actual function of bleaching is unclear.  Further study using standardized sample 

preparation and bone type in a photo-kinetics assay would be necessary to definitively 

account for influences affecting variation in spectral characteristics and photobleaching 

decay during excitation. 

Future investigations could also utilize more versatile laser systems capable of 

inducing true UV excitation at the wavelength best suited for TC excitation (~390 nm) 

(Hoerman 1975), possibly for collagen excitation as well.  However, the current study 

corroborates previous research demonstrating that 458 nm laser excitation is fitting for 

TC fluorescence analysis and imaging.  In addition, the combined use of CLSM spectral 

identification and chemical TC extraction could allow distinction between different forms 

of bone-bound TC or aid in concentration determination. 

Despite evidence that TC labeling in ancient bone is premortem (Basset et al. 

1980; Keith and Armelagos 1983; Cook et al. 1989; Armelagos 2000; Maggiano et al. 

2003), other reports note that postmortem effects can account for bone fluorescence 

(Piepenbrink 1983).  More information should also be collected on “non-tunneling” 

bacterial and fungal bone invasion.  Not all microorganisms leave behind visible damage 

in the form of tunnels through the bone (Hackett 1982), tertiary decomposers like those 

producing TC included (Goodfellow et al. 1983).  In the future, CLSM could be useful 

for the quantification of trends in bone discoloration and fluorescence, targeted microbial 
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damage, and sedimentary deposits – enabling discrimination between postmortem and 

premortem TC exposure from archaeological skeletal remains. 

Confocal laser scanning microscopy has many advantages over standard forms of 

bone microscopy for fluorescence and morphological analysis of bone.  These include 

improved z-axis resolution, three-dimensional imaging, and spectral analysis.  

Measurement of bone fluorescence characteristics using CLSM removes artifacts from 

sample thickness and allows targeted identification of fluorochromes based on spectral 

characteristics.  Unfortunately its application to the investigation of hard tissues in 

general has been rare, especially in archaeology.  The results of this project encourage the 

development, standardization, and implementation of CLSM techniques for fluorescence 

spectral analysis and imaging in medical and anthropological sciences and suggest CLSM 

as an appropriate tool for the investigation of ancient tetracycline fluorescence in human 

bone. 
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CHAPTER 3 

CONFOCAL LASER SCANNING MICROSCOPY: A 
FLEXIBLE TOOL FOR POLARIZED LIGHT AND THREE-

DIMENSIONAL FLUORESCENCE IMAGING OF 
ARCHAEOLOGICAL COMPACT BONE HISTOLOGY 

_____________________________________________________________________

Introduction 

Understanding bone microarchitecture and histology is vital for the prevention, 

diagnosis, and treatment of modern disease, and for archaeological and forensic 

investigation including pathological examination, age estimation, and species 

identification.  The basic structural and functional unit of mature compact, or cortical, 

bone is the osteon.  Roughly 200-400 µm in diameter (Soames 1999), osteons can be 

visualized as layered cylindrical tubes surrounding bone vascular tissue (Figure 3.1).   
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Figure 3.1: Basic microstructure of mature compact bone. A) Cylindrical representations of osteons 
(courtesy of L. Williams).  B) Two-dimensional confocal laser scanning microscopic image of 
archaeological bone fluorescence from individual D7-8, from the Kellis town site, Dakhleh Oasis, 
Egypt, showing:  1) non-fluorescent osteon, or Haversian system (white perimeter hand-drawn for 
clarification), 2) lacunae, 3) Haversian canal wall, 4) alternating orientation of organic and mineral 
lamellae (as described by Ascenzi and Bonnuci in 1968), 5) two completely fluorescent osteons, 6) 
cement line or reversal line, and 7) fluorescently labeled internal circumferential lamellae.  Scale 
notes 100um, 100x total magnification. 

 

Osteons have well marked, highly mineralized boundaries in cross section, called cement 

lines, separating them from surrounding older bone tissue.  On a larger scale, they are 

organized into multiple generations of longitudinally organized networks dominated by 

branching events and horizontal connections called Volkmann’s canals (Stout et al. 1999; 

Cooper et al. 2003).  Each osteon is formed by concentric apposition of layers of calcified 

matrix called lamellae.  Lamellae form from the outside periphery of the osteon, the 

cement line or reversal line, toward the vascular canal at the center.  In life, osteon 

formation occurs in a multicellular unit referred to as a bone remodeling unit, or BRU 

(Eriksen et al 1994) (sometimes referred to as a basic multinuclear unit (Mohsin et al. 
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2002) which moves through less mature bone resorbing bone at the leading end, or 

cutting cone (Burr et al. 1998), and appositionally depositing new tissue around vascular 

structures at its closing cone (Jaworski 1992).  Some osteocytes lock themselves within 

cavities called lacunae positioned between lamellae.  Lacunae are connected via radially 

oriented crack-like tunnels, or canaliculi, thus supplying bone distant from vessels with 

nutrient.  In a normal individual, osteons result from a total modeling period lasting 

roughly 100 days (Eriksen et al. 1994) and have estimated lengths of 0.001 to 2.5 mm 

(Cohen and Harris 1958; Eriksen et al. 1994). 

An understanding of this anatomical system has been pieced together over many 

years of bone microscopy, or histomorphometry, during which morphologically distinct 

osteon types have been noted (Richman et al. 1979; Robling and Stout 1999; Stout et al. 

1999).  Some are now known to be artifacts of two-dimensional (2-D) thin sectioning and 

others are poorly understood, even from a structural perspective.  Compact bone is an 

optically dense, dynamically evolving, organic and mineral tissue comprised of multiple 

generations of layered tubular networks interconnected by branching and bridging; the 

fact that 2-D imaging of bone can be problematic should not be surprising. 

Taking advantage of the unique composition and formation characteristics of hard 

tissues, many techniques have been developed to gain insight into the microarchitecture 

of hard tissues.  Specifically, polarized light microscopy, epifluorescence microscopy, 

and seriated thin-ground sectioning have illuminated many aspects of bone formation, 

modeling, and remodeling as well as the processes of disease and biomechanical 

adaptation (Schultz 2001). 

 37



Polarized light microscopy creates an image based on the sample’s ability to 

refract light at multiple indices.  This property is called birefringence and in bone 

differentially illuminates lamellar structure, dependant on the orientation of collagen 

(positively birefringent) and mineral (negatively birefringent) (Boyde and Riggs 1990; 

Bromage et al. 2003).  The most common forms of this technique employ linearly 

polarized light resulting in an interference pattern in osteons that has been referred to as 

the “Maltese cross”.  This cross remains in place as the sample or polarizers are rotated, 

allowing illumination of all of the tissue but never all of the tissue at a single stationary 

position (Boyde et al. 1984). 

Wide-field epifluorescence microscopy is another invaluable tool used in bone 

histomophometry, marking living bone with fluorescent labels such as tetracycline (TC) 

(Milch et al. 1957, 1958).  Multiple labels can be created in bone, marking the time 

period between old and new bone growth, and measuring changes in bone structure over 

time (Frost et al. 1961; Frost 1965; Rush et al. 1966; Taylor and Frost 1966; Villanueva 

et al. 1983).  Tetracycline fluorescence has also been discovered in untreated human bone 

recovered from several archaeological sites in Egypt (ranging from around 100 B.C.E to 

A.D 400) (Cook et al. 1989; Maggiano et al. 2003) and in Sudan (A.D. 350) (Basset et al. 

1980; Keith and Armelagos 1983, 1988; Armelagos 2000).  However, many questions 

regarding these “ancient antibiotic” labels have been raised regarding the mechanism for 

premortem exposure (Armelagos 2000), possible health effects (Maggiano et al. 2003), 

and the degree of postmortem fluorescence contribution due to microbial diagenesis 

(Piepenbrink et al. 1983). 
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The major limitation of polarized light and standard epifluorescence microscopy 

is that the offered perspective is two-dimensional (2-D) in a quite literal sense.  

Laborious, serial thin sectioning, even when aided by computerized imaging techniques, 

destroys three-dimensional (3-D) information at a function of the distance between each 

slice.  High-resolution micro-computerized tomography (µCT) is bringing a more holistic 

perspective to analysis of bone porosity and strength (Wachter et al. 2001; Wachter et al. 

2002; Cooper et al. 2003).  Unfortunately µCT will never be able to label generations of 

bone growth as with fluorescence techniques, nor is it capable of imaging general 

collagen preservation or bone strength properties via polarized light.  In addition, µCT is 

limited by its inability to differentiate between solid structures and their interfaces 

(Cooper et al. 2003), whereas microscopic techniques allow internal structures such as 

cement lines, lamellae, lacunae, and canaliculi to be viewed easily.   

Encountering some of the same difficulties with wide-field microscopy and 

unable to use µCT, cell biologists and soft tissue histologists are turning to confocal laser 

scanning microscopy (CLSM) to reform standing assumptions regarding tissue and 

cellular structure (Jouk et al. 1995; Rodriguez et al 2003) and biochemical interaction 

(Biggerstaff 1997, 1998).  Between older forms of microscopy and newer tomographic 

techniques, rests a largely neglected application for confocal laser scanning microscopy 

(CLSM):  histomorphometry of compact bone.  

Despite potential benefits, CLSM is still rarely employed for bone tissue imaging 

and its application in archaeological and forensic sciences is especially neglected.  The 

intent of the current study is to call attention to some of the well-known but not well-

communicated benefits CLSM techniques could have for bone histomophometry.  Well 
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preserved archaeological bone from the Dakhleh Oasis, Egypt was examined using a 

confocal laser scanning microscope.  Results are compared with those of standard wide-

field epifluorescence and polarized light systems.  Modern alveolar pig bone labeled with 

tetracycline was used for fluorescence controls.  Of particular interest was determining 

what types of imaging techniques are simultaneously possible in separate “channels” of 

collected light, and what 3-D CLSM imaging may contribute to the study of compact 

bone microarchitecture. 

Materials and Methods 

Sample collection and processing 

Archaeological skeletal remains were selected from the Kellis 2 cemetery and 

Kellis town site of the Dakhleh Oasis, Egypt, circa AD 100-400 (Hope 2001; Molto 

2001).  Studies from sites in Sudan and Egypt report that nearly every individual skeleton 

displays some evidence of fluorescence (Bassett et al. 1980; Keith and Armelagos 1983, 

1988; Cook et al. 1989; Maggiano et al. 2003).  Six individuals were examined, B443, 

B431, B116, D7-8, B393, and B427.  Transverse cross sections were removed from these 

adult skeletons at the mid-diaphysis of the left humerus during DNA and stable-isotope 

sampling.  Slides were prepared from this location to ensure presence of ample compact 

bone and to limit the number of skeletal elements affected by sampling.   

Observation from previous studies suggested lacunar and Haversian wall 

fluorescence is prevalent in nearly every archaeological sample investigated, whether the 

osteon is otherwise labeled or not.  It was thought this could be some form of edge-effect 
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illumination due to imaging artifacts created by the embedding procedure (Maggiano et 

al. 2003).  Therefore, for this study, thin-ground sectioning was performed using Hagens’ 

Biodur® plastination technique as altered by Schultz and Brandt (Schultz 1988, 2001).   

This technique, though requiring more preparation time, provides optimum penetration of 

micro-porous structures and seamless joining with internal and external microscopic 

surfaces, eliminating many possible artifacts and prolonging the “lifetime” of the sample 

indefinitely (Schultz 1988, 2001).  Previous studies show background and TC label 

fluorescence alone is sufficient for CLSM imaging with no additional treatment 

necessary (Maggiano et al. 2003).  Slides produced were 70 µm or ~140 µm thick (as 

measured by micrometer before cover-slipping).   

All samples were analyzed for diagenesis and pathology at the Zentrum 

Anatomie, Geörg-August-Universität, Göttingen, Germany.  Original internal and 

external surfaces were intact, postmortem fragmentation and micro-fracture were absent, 

and no signs of generalized chemical or biological destruction were found.  Localized 

artifacts of diagenesis in ancient bone are unavoidable, but overall sample preservation 

was excellent.  Other studies on ancient bone from similar dry, sandy environs suggested 

organic and mineral preservation in bone could be similar in quality to that of modern 

biopsy tissue (Keith and Armelagos 1988).  Slides selected for this study were also 

negative for obvious infectious metabolic or degenerative disease.  Drawings were made 

from a magnifying projector and key features were microphotographed. 

In addition, sections from modern pig alveolar bone from were used as positive 

controls for fluorescence in bone due to tetracycline labeling (generously provided by Dr. 

David Gerard, University of Tennessee, Knoxville).  These samples were prepared using 
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standardized methods for TC double labeling techniques (Carr et al. 1996a, 1996b).  Dr. 

Richard Smith at the University of Tennessee, Memphis, contributed similar control 

sections from rabbit distal femora that were used for the optimization of current 

procedures.  

Confocal microscopic imaging of compact bone 

A Leica SP2 confocal laser scanning microscope was used for all CLSM imaging.   

In comparison with wide-field microscopy, modern CLSM provides greater z-axis 

resolution and 3-D reconstruction of tissues over 100 µm in thickness (Biggerstaff et al. 

1997, 1998; Boyde et al. 1994, Maggiano et al. 2003).  These feats are achievable due to 

several unique principles of confocal microscopy.  First, confocal systems use extremely 

bright and finely focused lasers (~0.2µm in diameter) to provide incident illumination.  A 

computerized operating system manipulates mirrors, rapidly scanning the laser across the 

focal plane and inducing excitation in the target fluorochrome(s).  Second, diffuse out-of-

focus light from above and below the focal plane, is refocused either before or after an 

adjustable pinhole, permitting collection of only light from the target focal plane.  This 

plane can be moved up or down within the sample, creating 3-D stacks or to simply view 

any depth without the influence of out-of-focus light.  An electronically controlled 

crystalline filter, called an acousto-optical tunable filter (AOTF), organizes collected 

light, permitting only desired wavelengths to reach the photon detector(s).  This 

component is increasingly common in CLSM systems and allows precise selection of 

desired wavelengths used for excitation of fluorochromes and detection of emitted light, 

whereas standard epifluorescent systems use non-tunable beam splitters and filters that 
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must be changed manually.  Finally, the computer correlates photon impacts with the 

laser’s scanning position and uses this information to create a digital image of the 

fluorescence in the sample, in this case fluorescence emitted by tetracycline. 

Fluorescence response of TC was achieved using an argon ion laser light source 

set for 458 nm excitation.  The excitation peak for TC is around 390 nm (Hoerman 1975).  

Studies using CLSM, however, have shown that laser excitation at 458 nm induces ample 

excitation of modern TC labels and ancient fluorescence in bone (Boyde et al. 1994; 

Takeshita et al. 1997; Maggiano et al. 2003).  Detection of multiple fluorescence and 

scattered light channels was accomplished using an acusto-optical tunable filter (AOTF).  

Relatively high laser power was used (100% software setting, 25% manual) in order to 

decrease the amount of photon multiplication necessary for image generation.  Contrast 

stretching using the Leica® “LUT” settings ensured systems configuration was not used 

to distort the dominance of features due to over or under exposure (detector saturation or 

non-detection). 

For efficiency, the CLSM system’s wide-field epifluorescence mode was used to 

locate fields of interest.   Preferred fields of interest contained, ring fluorescence or 

thicker labels such as complete osteon fluorescence or fluorescence of the 

internal/external circumferential or tangential lamellae.  Also of interest were: double 

zonal osteons, drifted osteons, Volkmann’s canals, non-Haversian canals, branching 

events and other structures particularly interesting for confocal imaging in three 

dimensions.   

Digital reconstruction of a volume of bone using CLSM is accomplished by 

stepping the focal plane and objective down through the sample, taking progressive scans 
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at sub-micron serial intervals.  These scans are combined to create a 3-d image, or “z-

stack”.  Roughly half to one third of the Leica® Confocalsoftware’s suggested number of 

scans was used during the creation of each three-dimensional bock, due to file size 

limitations (especially during high magnification, high resolution imaging).  Imaging 

parameters such as objective, beam splitter, laser power, pinhole size, photomultiplier 

sensitivity, z-position, pixel/voxel dimensions, emission detection range, and the number 

of scans were recorded for each image.  ImagePro® software was used for measurements 

and animation. 

Results 

Two-dimensional imaging 

CLSM was capable of generating images using multiple channels of detected 

light.  This could be accomplished for 2-D or 3-D imaging.  During CLSM fluoresence 

imaging, a separate channel of polarized light could also be collected.  Results of PLM 

using laser illumination were similar to images produced using standard bright-field 

incident light on a non-confocal microscope except that it seemed to produce higher in 

contrast images (Figure 3.2). 
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Figure 3.2: Polarized light imaging of undecalcified human compact bone from the left humerus of 
Burial 431, Kellis 2 Cemetery, Dakhleh Oasis Egypt (circa AD 100-400).  Digital images of “lamellar” 
fluorescence generated using A) red-quarts Hilfsobject enhanced cross-polarized microscopy and B) 
confocal laser scanning cross-polarized transmission.  C) Simultaneous overlay of fluorescence and 
polarized light channels from the confocal microscope. Cross section is ~70µm thick. Confocal 
excitation induced by an argon ion laser at 458nm. Scale marks 50 µm. 

 

Bone illuminated in this fashion displayed characteristic alternating laminations of 

positive and negative birefringence corresponding to predicted positions of organic and 

mineral bone components.  Also clearly visible were dark interference zones where no 

birefringence was visible depending on the orientation of the sample and polarizing 

filters.  In osteons, the typical “Maltese cross” was evident.  Regardless of the structure 

observed, individual lamellae were distinct and well lit.  Clarity of the polarized, laser-

scanned image was dependent on the thickness of the sample.  Birefringence was visible 

in samples ~140 µm thick, but samples 70 µm thick displayed better focus and image 

contrast.  As the sample increases in thickness, individual lamella revealed by 

polarization merge or become blurred using either technique.   

It was also possible to simultaneously produce an image in scattered light.  

Similar images of the same field of view were produced independent of the wavelength 

of incident light (458 nm, 476 nm 485 nm, 517 nm, 630 nm).  This was accomplished by 
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targeting the detection range five to ten nanometers from the laser’s wavelength and 

adjusting photon multiplication to avoid detector saturation (Figure 3.3).   

 

 

Figure 3.3: Scattered light imaging of a thin-ground section of undecalcified human compact bone 
from the left humerus of Burial 393, Kellis 2 Cemetery, Dakhleh Oasis Egypt (circa AD 100-400).  
Digital CLSM images of an oddly shaped osteon (probably due to 2-D artifact at a branching or 
Volkman’s event) in A) scattered light, showing distinct osteonal lamellae and cement lines, B) 
fluorescent light, and C) linear-polarized transmission.  Cross section is ~70 µm thick.  Confocal 
excitation induced by a 458 nm argon ion laser.  Scale marks 100µm (2.8x scanning zoom). 

 

The resulting image showed preferential illumination of cement line areas and 

osteonal lamellae.  No interference zones were observed.  Small pinpoints of bright light 

in this channel appeared frequently at the cement line and in lacunae.  Like fluorescence 

channels, scattered light could also be collected in three-dimensions without inclusion of 

out-of-focus light.  Scattered light features seemed to correlate with fluorescent labels. 
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Fluorescence labels in archaeological samples were more diffuse when imaged 

using epifluorescence microphotography compared to confocal imaging.  

Autofluorescence and light diffusion overpowered features such as fluorescent labels, 

lacunae, and cement lines, especially in thicker samples (~140 µm) (Figure 3.4). 

 

Figure 3.4: Thick-ground section of undecalcified human compact bone from the left humerus of 
Burial 393, Kellis 2 Cemetery, Dakhleh Oasis Egypt (circa AD 100-400).  Digital images of single 
osteonal “ring” fluorescence generated using UV-B photo-excitation epifluorecence 
microphotography in A) fluorescent light and B) transmitted light.  For comparison, a similar field of 
view in the same sample was imaged using confocal laser scanning microscopy in C) fluorescent light 
and D) linear-polarized transmission.  Cross section is ~140 µm thick.  Confocal excitation induced 
by a 458 nm argon ion laser.  Scale marks 50µm. 
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In wide-field epifluorescent microphotography, the void within the osteon canal itself 

was bright despite the fact that there was no bone or soft tissue present there.  

Independent of exposure time, this equipment could not be optimized optically or 

digitally to create the clarity produced by CLSM imaging.   

In comparison, however, confocal images of compact bone show microscopic 

fluorescent structures in high contrast and high-resolution.  Lacunae, canal walls, and 

cement lines were oftentimes clearly visible in addition to fluorescent labels.  Also, there 

is an obvious decrease in the number of lacunae within the confocal field of view 

compared to that of the epifluorescence image.  The apparent difference in quality 

between epifluorescence and CLSM imaging is observed in thin ground sections as well 

(~70 µm) (Figure 3.5). 
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Figure 3.5: Thin-ground section of undecalcified human compact bone from the left humerus of 
Burial 427, Kellis 2 Cemetery, Dakhleh Oasis Egypt (circa AD 100-400).  Digital images of 
“complete” osteonal fluorescence generated using UV-B epifluorecence microphotography A) in 
fluorescent light and B) in transmitted light.  For comparison, the same osteon was imaged using 
confocal laser scanning microscopy in C) fluorescent light and D) linear-polarized transmission. E) 
Simultaneous overlay of fluorescence and polarized light channels. Section is ~70 µm thick. Confocal 
excitation induced by an argon ion laser at 458 nm. Scale marks 50µm. 

 

This image demonstrates an example of complete fluorescence in one channel 

(blue) and polarized light in the other (gold).  Non-fluorescent structures were not visible 
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using either CLSM or wide-field epifluorescence microscopy. Overlaying fluorescence 

and polarized light channels clearly defines the direction of lamellar layers and structural 

boarders, increasing the visibility of cement lines, lacunae, and even canaliculi. 

Three-dimensional imaging 

Three-dimensional imaging was achieved to a maximum depth of 115 µm  

(Figure 3.6). 

 

Figure 3.6: Three-Dimensional reconstruction of thick-ground section of undecalcified human 
compact bone from the left humerus of Burial 393, Kellis 2 Cemetery, Dakhleh Oasis Egypt (circa 
AD 100-400).  Digital 3-D cube generated using confocal laser scanning microscopy and shown from 
five perspectives A) z-stack left tilt, B) z-stack direct, C) z-stack right tilt, D) Examples of sections 
from z-stack, E) Orthogonal digital section demonstrating longitudinal view.  Also note: 1) non-
Haversian canal branching events, 2) Volkman’s canals, and 3) “ring” fluorescence and/or double 
zonal osteon.  Digital cross section is ~115 µm thick and imaged using 150 stacked slices at 512x512 
pixel2 resolution. Confocal excitation induced by an argon ion laser at 458nm. Scale marks 200 µm. 

 

Signal intensity throughout that thickness was not equal.  As the focal plane neared the 

slide (bottom of the sample) the image faded appreciably, though structural elements 

such as osteon canals were still visible throughout the fully imaged volume.  Cement 

lines are also clearly visible for much of that depth, as well as lacunae; though both are 
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best viewed near the top of the z-section.  Even canaliculi can be viewed for an 

appreciable depth of ~30 µm (20x objective, 0.7 NA) and increasing depths (~50 µm) 

with higher power objectives or better numerical apertures.  During z-stack penetration 

(successive removal of layers from top down) lacunae appear and disappear.  Depending 

on the slice thickness and osteon viewed, sequentially revealed lacunae and canaliculi 

lend the impression that a single osteon has its own “twist” – not a positional change of 

the osteon’s about its axis of progression, but in its internal components.  In several cases 

“osteon twist” was clockwise in comparison with counter-clockwise neighbors.  Under 

higher power magnification, lightning-like canaliculi can be observed in 3-D radially 

extending lacuna.  Fluorescence in lacunae was normally dominant on one side of the 

lacunar wall.  Not all lacunae were fluorescent however, some appearing as black voids 

when their walls are not visible (again depending on the magnification). 

The most obvious architectural feature revealed by 3-D CLSM imaging is the 

canal system, the longitudinal Haversian canals and the horizontal Volkmann’s canals 

that connect them.  In several z-sections, branching events that connect three or more 

Haversian canals to a single large canal or resorption area are evident even within ~100 

µm of depth.  It is also possible to observe trends in osteonal angle across the field of 

view despite the fact that the cross section is taken perpendicular to the longitudinal axis 

of the bone.  Orthogonal images of z-stacks produce longitudinal sections of 3-D images 

that are especially suited for determining the angle of osteon continuation relative to the 

plane of section.  Because internal structures of the osteon and its cement lines are 

evident, distinction can be made between Haversian and non-Haversian canals and 

resorption areas. 
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 Discussion and Conclusion  

Comparison of standard epifluorescence and polarized light enhanced microscopy 

with confocal laser scanning microscopy (CLSM) demonstrates the advantages of CLSM 

in imaging undecalcified compact bone sections.  During two-dimensional scanning it 

was possible to detect multiple channels of light simultaneously, separating or 

overlapping polarized light, scattered light, and fluorescence channels in both two and 

three dimensions.   

Polarized light imaging in the transmission channel during CLSM produced 

results similar to standard non-laser illumination using a wide-field microscope with 

cross-polarized filters.  Three-dimensional reconstruction from polarized light images 

was unsuccessful.  This is because the transmission channel on the CLSM is not “pin-

holed”, and out-of-focus polarized light interrupts the image just as it would on a 

standard system.  The significant difference is that CLSM uses z-axis controlled stage 

and optics, permitting different layers of the sample to be imaged.  Though three-

dimensional polarized stacks would be out-of-focus, images could possibly be clarified 

using deconvolution techniques.  Deconvolution is the mathematical process of 

accounting for out-of-focus light without a confocal pinhole, and can even be used to add 

better definition to 2-D and 3-D CLSM images (McNally et al. 1999).  Application of this 

technique during CLSM imaging could reveal 3-D bone structure in polarized light, 

enhancing ongoing efforts to relate birefringence in bone to localized strength 

characteristics (Gebhardt 1905; Ascenzi and Bonucci 1967, 1968; Boyde et al. 1984; 

Martin et al. 1996; Bromage et al. 2003).  Images generated using circularly polarized 

 52



light have been linked more directly to bone biomechanical properties than those using 

cross-polarized light (Boyde et al. 1984; Martin et al. 1996; Bromage et al. 2003).  In 

future efforts, CLSM systems could be optimized for circularly polarized light and 

simultaneous florescence analysis.   

Scattered-light images can also be recorded during polarized-light and 

fluorescence scanning, but the significance of this phenomenon is not yet clear.  Scattered 

light images and bright points of intensity noted therein are likely related to the “grain” of 

the material(s) scattering the light.  Well-organized, larger particles will scatter light 

predictably, which is why osteonal lamellae were clearly visible.  Smaller, less well-

organized particles will scatter much more light however, creating points of detector 

saturation in the image.  Further research may more fully explain the cause for this type 

of imaging effect and possible applications.  

CLSM fluorescence imaging on this system could be accomplished on three 

separate channels simultaneously, each channel representing light collected at separate 

and customizable emission wavelengths.  Though some degree of emission separation is 

evident in archaeological fluorescence, for example between “green” and “yellow” 

channels (Figure 2.7), preliminary investigation shows that, under 458 nm excitation, 

fluorescent labels in modern and archaeological samples alike emit at a peak of 525 nm 

with only slight deviation in emission wavelength between given archaeological labels.  

Regions of the same label have not yet been compared.  Taking full advantage of CLSM 

multichannel fluorescence analysis awaits the development of new techniques in 

fluorescence histomorphometry.  Leading this effort are studies on implant incorporation 

that add accuracy to tetracycline double labeling techniques (i.e. Takeshita et al. 1997).   
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The most immediate benefit of two-dimensional CLSM imaging for bone 

histomorphometry is that it allows the use of samples two or three times thicker than 

those necessitated by older technology.  This decreases sample preparation time.  

Scratches on the surface can simply be digitally removed rather than labor-intensively 

sanded and polished.  More importantly, thickness artifacts from even thin-sections (~20 

µm) can cause error in fluorescence histomorphometric analyses, in comparison with 5 

µm sections (Birkenhäger-Frenkel and Birkenhäger 1987).  Using CLSM, however, 

thicker samples can be used without fear of artifacts affecting label intensity or the ease 

and accuracy of morphological measurement.  Despite the fact that a sample may be ~115 

µm in thickness, the acquired image is created as if the sample were less than 1 µm deep.   

Three-dimensional CLSM also has many advantages; most notably, the 

generation of a histological cube instead of a cross section or surface area representation.  

Pioneering work in seriated sectioning has lead to many alterations in ideas regarding the 

3-D structure of osteons and compact bone in general (Tapen 1977; Stout et al. 1999; 

Moshin et al. 2002).  A perfect example was Stout and colleagues’ observation (1999) 

that previously described “dumbbell” shaped osteons were actually cross-sectional 

artifacts single planes of focus cutting through an osteonal branching event.  Also notable 

was Robling and Stout’s observations that drifted osteon structure was far more complex 

than previously assumed (1999).  Likewise, questions have been raised as to whether 

osteon networks could be spiraled.  The osteon network, as a whole, may (Cohen and 

Harris 1958; Hert J et al. 1994; Moshin et al. 2002) or may not (Schumacher S. 1935; 

Koltze H. 1951; Tapen 1977; Stout et al. 1999) have a slight helical organization relative 

to the longitudinal axis of long bones.  In addition, Cohen and Harris (1958) noted that 
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individual osteons spiral about their own axes, although it is unclear as to whether they 

refer to spiral in the osteon’s position with reference to an ideal longitudinal axis or 

actual twist within the structure of the osteon itself.   

Results of 3-D CLSM imaging have not yet addressed network-level osteonal 

organization over large volumes of bone; the total image volume is not great enough 

currently.  As technology and technique in CLSM improve, however, useful information 

will be provided for Haversian network-level analysis of compact bone.  Whereas even 

high-resolution µCT detects only porous structures, CLSM and other 3-D optical 

reconstructions include the true paths of osteons by their cement line as well as their 

canal.  In the current research, however, it was found that some osteons demonstrate a 

perceivable degree of helical organization to internal components (lacunae and 

canaliculi), an effect referred to here as “osteonal twist”.  Osteonal twist may foster 

avoidance of microfracture propagation or ensure proper force distribution, especially if 

trends in clockwise versus counterclockwise orientation bear relation to osteon angle, 

position within the bone, or ultrastructural collagen and hydroxyapatite orientation in 

polarized light.  In addition, quantitative investigation could provide information on 

whether all osteons have similar twists or if there is some variation either in degree or 

direction.  In addition, maximum optical penetration should be tested using a variety of 

optics in order to achieve the best 3-D image depth, while maintaining a useful field of 

view.  Newer laser systems, high numerical aperture/low-power objectives, and even 

multiphoton techniques could expand the volume of viewable compact bone greatly.  

Multiphoton laser scanning microscopy has been found to penetrate nervous tissue at 

depths of around 200 µm (Rodriguez et al. 2003).  Preliminary experimentation with 
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MPLSM at the European Neuroscience Institute, Göttingen, Germany, suggests that 

either the Biodur@ plastination medium or dry undecalcified bone itself is infrared 

absorbent enough to cause heat induced separation of the cover slip or even complete 

laser ablation of bone at higher power objective continuous scanning (Maggiano et al. 

unpublished data). 

These types of anatomical observations provide benefits for all forms of bone 

histology.  Modern investigations of bone microarchitecture could use CLSM technology 

to bridge the gap between 2-D wide field histomorphometrics and µCT 3-D volumetrics.  

In physical and forensic anthropology, histological techniques of age estimation, species 

identification, or disease diagnosis would benefit from multiple sections per sample, but 

damaging the sample should be kept to a minimum.  CLSM allows more efficient use of 

precious archaeological bone samples, viewing many sections per sample rather than 

sanding and polishing information away.  In general, the 3-D capabilities of CLSM 

would be enhanced greatly if combined with deconvolution techniques. 

Also, of particular archaeological interest is the continued use of CLSM imaging 

and fluorescence analysis in investigations on ancient fluorescence in archaeological 

bone.  In addition to its use for biomechanical analysis, polarized light has been used as a 

rough estimate of the preservation state bone at the micro-site level (Schultz 2001).  Bone 

containing bound tetracycline is still active as a bacterial deterrent (Dornbusch 1976; 

Misra 1991).  It could be predicted that fluorescence labels would therefore be more 

resistant to bacterial diagenesis.  Co-localization of positive birefringence in the polarized 

channel with either the presence or absence of archaeological fluorescence could help 

determine the differences between intra vitam and postmortem tetracycline incorporation. 
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These are only a few of many research avenues opened by the application of 

confocal microscopy to bone histology.  Capabilities of CLSM imaging far exceed the 

observational conclusions of the current study and should be quantitatively applied to 

further efforts in medical, archaeological, and forensic bone sciences.  Rejection of out-

of-focus light ensures only light from the targeted focal plane is collected.  Deeper 

penetration in imaging means more tissue can be viewed and measured per histological 

preparation and 3-D microarchitecture is revealed in its true form.  CLSM is a more 

suitable tool for simultaneous fluorescence and polarized light imaging, capable of 

generating truly serial microscopic sections, providing sufficient detail for observation of 

cement lines, lamellae, lacunae, and even canaliculi in three dimensions.  This is not to 

say that CLSM replaces older microscopic systems, in fact, it is quite convenient that, in 

addition to confocal laser scanning, CLSM systems can also be used for standard wide-

field transmission, epifluorescence, and polarized light microscopy (in some cases, 

literally with a flip of the switch).  This setup offers the investigator nearly every tool 

necessary for study of bone histology in one package, a package becoming less and less 

expensive.  Results of the current imaging investigation mark confocal laser scanning 

microscopy as a preferable optics system for histomorphometric analysis of bone tissue, 

including archaeological fluorescence investigation. 
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CHAPTER 4 

GENERAL DISCUSSION 

The results of these studies support the use of confocal laser scanning microscopy 

for continued research on tetracycline labels in modern and ancient bone and encourage 

the use of this technique for histological imaging of dry undecalcified archaeological 

bone material.  Overflowing the boundaries of archaeological bone investigation, the 

combined advantages of simultaneous spectral analysis and improved two- and three-

dimensional fluorescence imaging, polarized light, and scattered light imaging, encourage 

extensive application of CLSM in anthropological, medical, and forensic bone 

investigation. 

During anthropological examination, when bone material is too precious for 

destruction, CLSM could be used to take an optical longitudinal section of the bone 

surface (~100 um thick), with no damage to the bone what so ever.  This could be very 

useful for the study of lesions in paleopathology for example since it seems clear that TC 

fluorescence (whether pre- or postmortem) should be bright enough to generate a clear 

image.  It would be interesting to compare this application of CLSM with currently 

improving high-resolution µCT scanning.  In medical research, µCT is able to resolve 

large volumes of bone microstructure to the level of the Haversian canal but cannot yet 

image cement lines, lacunae, or canaliculi or determine the difference between old and 

newly formed bone (Wachter et al. 2001; Wachter et al. 2002; Cooper et al. 2003).  

CLSM has the capability to do all this and simultaneously provide spectral, polarized 
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light, and scattered light data.  Its only limitation is that so far the volume of bone 

microstructure reconstructed is rather small.  Techniques developed in the future could 

increase the volume of bone that can be imaged using CLSM, piecing together multiple 

z-stacks to follow one or several osteons for greater depths.  This would have very 

interesting benefits for fluorochrome labeling techniques used in histomorphometry for 

fracture healing, osteoporosis, or surgical implant incorporation studies.  For application 

to forensics CLSM could be used to provide data on unexplored variables of bone 

microstructure for identification of skeletal remains or even contribute information on 

time since death via fluorescence identification of via microbe succession in 

decomposing bone material, as this has been achieved for other purposes in complex 

biofilm assays (Packeroff et al. 2002). 

Future exploration of these ideas requires a high level of multidisciplinary 

cooperation.  Especially in their more derived forms, confocal microscopy and 

multiphoton microscopy systems are still very expensive.  Collaboration is the key to not 

only to the successful procurement of the technology itself but for its correct application 

and interpretation.  These factors in mind, CLSM systems are marked as a worthy center 

post for future experimentation involving cooperative efforts in anthropology, medicine, 

and forensics. 
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