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ABSTRACT 

This study investigated the e ff ectiveness of t he magnesium co­

agulation process in reduction o f trihalome t hane (THM) precursors. 

The water was obtained from Lake Washing t on , a highly colored pota­

ble water supply which is used b y t h e City of Melbourne, Florida 

The THM concentrations in the finished wa t e r a t Melbourne currently 

exceed the THM standard of 0.1 mg/l. 

For Lake Washington water, treatment v a r ies according to sea­

sonal changes in water quality. During the dry per i od , the recycle 

magnesium does not perform e f fective ly as a c oagulant for THM pre­

cursor removal. This is because of t he high l evels of magnesium 

in the lake water at this time. During the we t p e r iod, when mag­

nesium concentrations are very low, it is much more effective . Mag­

nesium sulfate was found to be effective i n r e duc i ng THM precursors 

for both types of water. There was a direc t correlation observed 

between THMFP, TOC and color observed in treated water samples . The 

lack of effectiveness in THMFP, TOC and c olor r emovals by recycle 

magnesium was not found to be due to a lack o f magnesium precipita­

tion. Variations in rapid and s l ow mi x i ng times had no effect on 

THM precursor removal, but did affec t settling of the floe . Addition 

of alum as a po l ymer at high pH values was also very effective in 

reduc i ng the THMFP, TOC a nd color, and increasing floe sedimenta­

tion. 
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CHAPTER I 

INTRODUCTION 

Disinfection by Chlorination 

In the United States, chlorination of public water supplies 

has been practiced since the early 1900's for the purpose of bio­

logical disinfection. Disinfection is necessary because of the 

number of diseases for which the principal means of transmission 

is water. In 1849, Dr. John Snow first theorized that water was 

the mode of transmission for cholera. He later demonstrated his 

theory in the Broad Street pump episode in London in 1854. By 

removing a pump handle he stopped an epidemic of cholera which 

had already claimed 500 lives. The source of the epidemic was a 

broken sewer line contaminating the water drawn from the Broad 

Street Pump (White 1972). More recently there was an outbreak 

of typhoid fever in South Florida in 1973 due to an interuption 

in the disinfection process (Craun 1981). 

Chlorine is very effective in killing pathogens associated 

with many waterborne diseases. Typhoid, cholera, amoebic dysen­

tery, gastroenteritis, and even viral diseases are effectively 

eliminated by proper chlorination (White 1972). Besides pro­

viding security from waterborne diseases, chlorination is also 

responsible for destroying other nuisance organisms which cause 
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taste and odor problems, foul the filter media, and degrade the 

quality of water in the distribution system .• 

Trihalomethanes (THM's) 

Recently it has been shown that the chlorination process 

is responsible for the chemical formation of a group of organic 

compounds known as trihalomethanes (THM's). The general reaction 

for THM formation is: 

Organic precursor + Cl 2 -+ THM's (1) 

The four commonly occurring THM's are chloroform, bromodichloro­

methane, dibromochloromethane, and bromoform. Naturally occurring 

organics in water, such as those resulting from decaying vegeta­

tion are one of the important precursors for THM formation (Rook 

1976). These natural organics often impart a brownish color to 

the water when they are present. 

The widespread occurrence of THM's in the United States was 

identified by the National Organics Reconnaissance Survey (Symons, 

et al. 1·97 5). In this survey 80 water supplies were examined 

for the presence of several chlorinated organic compounds, in­

cluding THM's. The THM's found were chloroform, bromodichloro­

methane, dibromochloromethane, and bromoform, present in almost 

all waters investigated. These findings were supported by a la­

ter, more intensive study, the National Organics Monitoring Sur­

vey involving over 100 public utilities (U.S. EPA 1977) . 
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The presence of THM's in drinking water supplies has generated 

concern for public health. Laboratory studies conducted on ani-

mals have indicated chloroform may be carcinogenic to humans (U.S. 

NCI 1976). There have been conflicting reports where statistical 

correlations have been made between water containing THM's and 

cancer incidence (Cantor 1975). There is also suspicion tha t the 

brominated THM's found may also be toxic to humans. 

Due to the evidence of the widespread occurrence of THM's 

and their potentially harmful effects, the United States Environ-

mental Protection Agency (U.S. EPA) has promulgated a minimum 

contaminant level of 0.1 mg/l for total THM's. Many utilities 

currently exceed this level and must take steps to reduce their 

THM levels or seek an extension to the November 19, 1981 dead-

line. 

The Magnesium Process 

The use of magnesium salts for coagulation was not practiced 

until recently because of chemical cost. Magnesium sulfate (Mgso4 

• 7 H
2
o), the least expensive commercial source of magnesium, 

costs $0.22/lb compared to $0.18/lb for A12 (so4 )
3 

• 14 H20, alum 

The additional cost of lime, $72/ton, also increases the chemi-

cal cost of magnesium coagulation. If no additional alkalinity 

is required for alum coagulation an approximate chemical cost 

of $8.00 per mg/l Al+3 dosed per million gallons, usin g Al 2 (so4 ) 3 · 

14 H
2
o is incurred compared to $29.50 per mg/l Mg+z dosed per 
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million gallons using Mgso
4 

· 7 H
2

o and lime, Cao at pH 11 for 

typical raw waters. 

In recent years, a potable water treatment process was de­

veloped in which magnesium carbonate and lime are used as the treat­

ment chemicals and then recovered for reuse. This process is 

advantageous due to reduction in sludge disposal problems and 

chemical cost. 

Magnesium coagulation involves addition of lime slurry and 

magnesium carbonate to the water causing precipitation of magnesium 

hydroxide and calcium carbonate. This is accomplished at a pH 

of approximately 11. Both color and turbidity are effectively 

reduced by magnesium coagulation (Thompson, et al. 1972a). After 

settling, the water is stabilized by recarbonation, filtered, and 

then chlorinated before distribution. 

The sludge from coagulation contains magnesium hydroxide 

and calcium carbonate. Carbonation of this sludge selectively 

solubilizes the magnesium in the bicarbonate form. The magnesium 

is then separated from the calcium carbonate by sedimentation 

and recycled to the coagulation tank as supernatant. There is 

a significant amount of soluble organics which are also recycled 

in the supernatant if the water is taken from a highly naturally 

colored source. The calcium carbonate remains in the solid form 

and is thickened, vacuum filtered, and calcined producin g cal­

cium oxide, which is also reused . This ability to separate and 
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recycle the components of the sludge makes this process cost ef fec­

tive because of the high costs associated with sludge disposal 

(Thompson 1972a). 

The City of Melbourne, Florida utilizes the magnesium process 

to treat raw water from Lake Washington. The average color and 

total organic carbon (TOC) concentration is 80 cpu and 27 mg/l 

in Lake Washington (Mason and Belanger 1977). Seasonal changes 

in water quality of the lake occur due to rainfall occurrence. 

Melbourne was one of the cities chosen for evaluation in the Na­

tional Organics Monitoring Survey. Of all utilities examined, 

Melbourne had the highest concentrations of THM's, an average of 

550 µg/l (U.S. EPA 1977), in the finished water. The problem of 

complying with the standard is substantial, in view of their 

highly organic raw water supply and the organics recycled with 

the recovered magnesium to the coagulation tank in the magnesium 

process. 

Purpose 

The primary objective of this study was to optimize the re­

moval of Trihalomethane Formation Potential (THMFP) in the coagu­

lation unit operation in the magnesium process. Color and TOG 

removals were also documented and correlated to THMFP removal 

during the study. The effect of differing mixing energies during 

coagulation and flocculation on THMFP, TOC and color removal and 

floe sedimentation were also investigated. Finally, the abil ity 
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of aluminum to act as a polymer at high pH for floe, color, TOC 

and THMFP removal was evaluated. 

This study is part of a grant from the Environmental Protec­

tion Agency to investigate methods for reducing the THMFP in the 

drinking water of Melbourne, Florida. This study is of most 

interest to anyone interested in using the magnesium process to 

reduce THMFP, TOC and color from a highly colored surface water 

source, especially when different treatment variations may be 

necessary for different seasons. It is also of interest to any­

one using any lime softening process who is concerned with the 

effects of precipitation, mixing energies and alum polymer addi ­

tions on floe settling and Tffi1FP, TOC and color reduction during 

precipitation. 



CHAPTER II 

LITERATURE REVIEW 

Trihalomethanes in Drinking Water 

Discovery and Occurrence 

In 1974, numerous chlorinated organic compounds were identi­

fied in drinking water derived from the lower Mississippi River 

(Dowty, et al. 1975). Predominant among the chlorinated organics 

present was a group of organic compounds known as trihalomethanes 

(THM's). Chloroform (CHC1
3
), bromodichloromethane (CHC12Br), di­

bromochloromethane (CHC1Br
2
), and bromoform (CHBr

3
) were the 

THM's identified. The presence of these contaminants prompted 

the U.S. EPA to conduct a study to determine the occurrence of 

THM's in drinking water supplies from various regions of the 

United States. 

The National Organics Reconnaissance Survey examined 80 

drinking water supplies from a variety of locations (Symons, et 

al. 1975). Chloroform was the THM observed most frequently, 

being present in all supplies investigated. Due to the absence 

or extremely low concentrations of these compounds in the raw 

water source it was concluded that THM's were formed during the 

chlorination process in water treatment. These findings were 

7 
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supported by a later, more intensive study, the National Organic 

Monitoring Survey involving over 100 public utilities (U.S. EPA 

1977) . 

Public Health and Law 

Disinfection of potable water is an essential part of water 

treatment. Many waterborne diseases such as cholera, typhoid, 

amoebic dysentery, gastroenteritis and some viral invections can 

be transmitted in drinking water. The organisms which produce 

these diseases must be destroyed to protect the health of the 

public. In addition, there are other organisms which cause prob­

lems in water treatment processes, contributing to taste and odor 

problems, and fouling filter media (White 1972). 

The use of chlorine has been proven very effective in achieving 

biological disinfection. Since the 1900's, chlorination has been 

an integral part of water treatment practice. The recent findings 

that chlorination is responsible for the chemical formation of 

THM's is significant,. due to reports that chloroform, one of the 

THM's, may be carcinogenic to humans. 

In 1976, the United States National Cancer Institute (U.S. 

NCI) disclosed that chloroform had been found to cause cancer 

in rats and mice when administered orally. The potential risk 

to humans has been questioned by some investigators. Stokinger 

(1977) suggested that biological responses to a toxic agent are 

not identical at low and high doses, and extrapolation of data 
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from animals to humans is questionable. Tardiff (1977) defended 

the data from the U.S. NCI and stated that there may be a risk to 

bottle-fed infants. The kidney and liver were the major organs 

aff.ected by chloroform (U.S. NCI 1976 ) . The risk of cancer in 

these organs has been estimated by Tardiff to be between no risk 

and 1.6 per million population per year. 

To avoid problems with extrapolating data from animal studies 

to human populations, epidemiologic studies have been conducted 

relating cancer incidence to drinking waters containing chloroform. 

One such study of Massachusetts cormnunities supplied with water 

containing chloroform indicated that THM's and other by-products 

of chlorination were not significantly associated with cancer in­

cidence (Tuthill and Moore 1980). Investigations of this type 

are difficult to substantiate due to limitations including the 

long latent period for most cancers, difficulties in estimating 

dose, the definition of at-risk populations and the relatively 

low exposure to carcinogenic agents (Cantor 1975). 

Because of the widespread occurrence of THM's and their po­

tentially harmful effects the U.S. EPA has promulgated a minimum 

contaminant level of 0.1 mg/l for total THM's (U.S. EPA 1978). 

For many water utilities this standard means modifications or 

alterations of present treatment processes are necessary. By 

understanding conditions favorable to THM formation or THM pre­

cursor removal, it may be possible to limit their production to 

acceptable levels. 
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Factors Affecting Formation 

Trihalomethanes (THM's) are formed by the reaction of chlorine 

with organic compounds present in the water during treatment (Bel­

lar, et al. 1974). A general reaction describing THM formation 

is: 

Organic precursor + c1
2 
~ THM's (2) 

Although some THM's are formed immediately, this reaction is not 

instantaneous and typically continues for several days until 

either chlorine or organic precursors are exhausted (Rook 1976). 

The rate of formation of THM's as well as the particular THM spe­

cies formed have been shown to depend upon many factors including 

concentration and type of organic precursor, pH, temperature, pre­

sence of inorganic species such as bromide, chlorine contact time 

and chlorine dose. 

Higher concentrations of THM's have been detected in drinking 

water derived from surf ace waters than in those derived from 

groundwaters (Bellar, et al. 1974; Symons, et al. 1975). Because 

the potential for contamination of surface waters is somewhat 

greater than for groundwaters, higher levels of organic precursors 

are usually found. However, groundwater contamination is current­

ly a major national concern. 

There have been many investigations concerning the identifi­

cation of THM precursors and the mechanisms of THM formation. 

The classical halof orm reaction described in organic chemistry 
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texts involves the combination of methyl ketones with halogens and 

a base to form THM's as shown in equations 3 and 4 (March 1968). 

H Cl 
' H-C-C-R + Cl 
' " 2 

H+ or 
~~~-> Cl-C-C-R 

OH- ' " 
(3) 

H 0 Cl 0 

Cl Cl OH 

' ' Cl-C-C-R + OH -r Cl-C-C-R -r 

' " ' ' 
+ RCOOH -r CHC1

3 
+ RCOO (4) 

Cl 0 Cl o-

Bellar, et al. (1974) theorized ethanol as the compound with oxi-

dation by hypochlorite (OCl-) ion to acetaldehyde, followed by the 

classic haloform reaction to be the mechanism of formation, as 

shown in equation 5. 

CH -C-H -r Haloform reaction 
3 " 

0 

(5) 

Rook (1976) proposed that natural humic substances present in wa-

ter supplies were largely responsible for THM production. He 

observed that m-dihydroxyaromatic compounds, coIDIIlon building 

blocks of humic materials, produce high levels of chloroform when 

chlorinated. Although algae (Hoehn 1979) has been shown to pro-

duce THM's upon chlorination, in most instances humic materials 

appear to be the primary THM precursor (Oliver and Lawrence 1979; 

Oliver and Visser 1980). 

Surface waters are frequently brownish colored due to the 

presence of humic substances. These natural organic compounds 
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result from decay of vegetation, leaching of soil organic matter, 

and extraction of soluble substances from wood tissues. There 

are three types of compounds comprising humic substances. Fulvic 

acids are the predominant compounds found, followed by humic acid 

and hyatomelanic acid (Rook 1977). Furthermore, the relative 

amounts of each fraction observed in natural waters are fairly 

constant (Black and Christman 1968). 

There are several theories as to which fraction of the humic 

substances is most important as precursors in the THM reaction. 

Babcock and Singer (1979) found that chlorination of humic acids 

results in greater yields of chloroform than fulvic acids. 

Peters, et al. (1980) also determined that humic acids produce 

higher yields of chloroform due possibly to a greater number of 

active sites present on larger humic acid molecules. Other 

studies indicate humic and fulvic acids produce equal quantities 

of chloroform upon chlorination (Oliver and Lawrence 1979). Kava­

naugh, et al. (1979) proposed that the TOC concentration is the de­

termining factor affecting THM formation rather than the type of 

organic precursor present. 

The pH of the water during chlorination is directly propor­

tional to the THMFP of a given water if adequate chlorine and or­

ganics are present. In Figure 1 it can be seen that as the pH 

increases, the corresponding level of THM's formed also increases 

(Stevens, et al. 1975). From the shape of the curves one can 
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Fig. 1. Effect of pH on THM production from humic acid, 1 
mg/1. Conditions:chlorine dose, 10 mg/l; 25° C. 

SOURCE: Stevens, et al. 19 76. 
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assume that at pH 6.7 the reaction was nearly complete or pro­

ceeding at a very slow rate relative to the initial rate. At pH 

9.2there is almost a two-fold increase in final product concen­

tration. This is explained by the presence of certain reactive 

sites on the humic acid molecule that react at insignificant 

rates at the lower pH but are reactive at higher pH values. This 

effect could also be partially due to base hydrolysis. Peters, 

et al. (1980) indicates that pH may be a parameter which affects 

the particular route which is taken to chloroform production. 

Temperature of the water has been shown to have a direct ef­

fect on the levels of THM's formed, shown in Figure 2 (Stevens, 

et al. 1975). As the temperature was increased, the concentra­

tions of THM's formed also increased. This trend was also ob­

served by Arguello, et al. (1979) in a study on variations in 

THM levels for a water treatment plant over a period of one year. 

Lower levels of THM's were formed during the colder months than 

the warmer summer months, although lower precursor levels might 

also occur during colder months. 

The presence of bromide salts in the water has been shown 

to cause the formation of brominated THM's (Rook 1977). It has 

been proposed that the chlorine reacts with bromide to form bro­

mine, which is then able to react with organic precursors form­

ing brominated THM's (Arguello, et al. 1979). A strong correla­

tion existed between the concentration of inorganic bromide in 
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the raw water and the amount of brominated THM's present in the 

finished water. Stevens and Symons (1977) found that the ratio 

of chloroform to other THM's is highly dependent on the bromide 

content of the water. Kimes (1979) demonstrated that increasing 

doses of ozone to a high TOG water prior to chlorination signi-

ficantly increased the bromide containing THM compounds. 

Chlorine contact time is important in the reaction of chlo-

rine with organic precursors. Trihalomethanes continue to be pro-

duced until one of the reactants is exhausted. For this reason 

concentrations of THM's are greater at the consumer's tap than 

at the water treatment plant. The chlorine dose which is applied 

has been shown by Kimes (1979) and Kavanaugh, .et al. (1979) to 

strongly influence THM formation. The addition of large amounts 

of chlorine was believed to cause compotmds resistant to attack 

to become precursors for THM formation. 

Methods of Reduction 

By applying knowledge of the conditions favorable to THM 

formation it may be feasible to alter present water treatment 

practices to produce substantially lower levels of these compounds 

in the finished water. There are three principle strategies 

for control of THM's. These are: 

1. to reduce the potential for THM formation 
prior to chlorination 

2. to remove THM's after formation 
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3. to use an alternate disinfectant 

There are many methods of reducing the potential for THM for­

mation before chlorination. Changes in the location of chlorina­

tion, optimization of coagulation and flocculation, and adsorption 

of organic precursors are all important modifications in water 

treatment which can lower the THM levels in the finished water. 

Changes in the location of chlorination in the process train 

have been shown to be very effective in producing lower THM le­

vels. Elimination of pre-chlorination practices can reduce levels 

formed by up to 76% (Blanck 1979). A move from pre-chlorination 

to chlorination of the effluent from the settling basin produced 

this reduction in formation. Tifft, et al. (1979) achieved a 67% 

reduction in THM formation by changing the location of chlorina­

tion in an alum flocculation process. It is important to add 

chlorine to water with the lowest possible organic content. To 

prevent problems from arising in the plant from discontinuation of 

pre-chlorination an alternate pre-treatment disinfectant such as 

potassium permanganate may be used (Blanck 1979). In lime soften­

ing treatment plants it is advisable to delay chlorination until 

the effluent of the recarbonation basin since chlorination at the 

high pH encountered in lime softening will cause significantly 

higher levels of THM's to be formed (Harms and Looyenga 1980). 

The optimization of coagulation and flocculation processes 

for organics removal has been studied by some investigators. 

Stevens, et al. (1975) observed that alum coagulation removed 
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most organic precursors from Ohio River water. In coagulation 

of humic materials, Babcock and Singer (1979) achieved a 70% re­

duction in chloroform concentrations. Hall and Packham (1965) 

found there was a stoichiometric relationship between dose and 

50% removal of organics using alum and iron as coagulants. 

There have been studies indicating that lower pH levels and higher 

coagulant doses are necessary for efficient organics removal when 

alum or iron is used as the coagulant (Stevens, et al. 1975; 

Semmens and Field 1980). 

Studies conducted to determine the influence of operating 

variables on coagulation for organics removal indicate rapid mix 

time had no effect on organics removal. In an investigation by 

Albert (1979) neither the speed of addition of coaguLant nor the 

method of mixing had a significant effect on removal of humic 

acid. He used rapid mix times from a few seconds to 10 minutes. 

Semmens and Field (1980) found that in coagulation of Mississippi 

River Water mixing conditions were very important in turbidity 

removal but organics removal was unaffected. They also observed 

that the order of chemical addition was not significant in removal 

of organics. Flocculation times also seem not to affect precur­

sor reduction. Semmens and Field (1979) obtained no additional 

benefit in soluble organics removal by ferric sulfate if the 

flocculation time was extended to 10 hours. 

Efficient removal of organic compounds by coagulation pro­

cesses is important also if activated carbon is to be used 
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to further reduce the organic carbon content of the finished wa­

ter. By optimizing coagulation processes the reduced load on 

the activated carbon bed will extend its useful life. Adsorption 

by activated carbon is effective for removing organic precursors 

when it is fresh, but typically after about one month, its effec­

tiveness is limited to removal of only the larger organic com­

pounds, necessitating frequent regeneration (Symons 1976). 

Adsorption of precursors on weak base anion exchange resins 

was found to be effective but expensive (Rook 1976). Rook and 

Evans (1979) determined weak base resins in conjunction with co­

agulation, flocculation and filtration reduced the chloroform po­

tential of Meuse River water by 75%. The corresponding reduction 

in total THM's was approximately 65%. 

It is more difficult to remove THM's after their formation 

than it is to reduce their potential before chlorination (Rook 

and Evans 1979). Aeration of chlorinated water was not feasible 

due to the high air-water ratio necessary for THM removal for 

the water studied by Duke, et al. (1980). This high air-water 

ratio also leads to algal growth problems. However, aeration is 

being used to remove some volatile organics from groundwater in 

Miami, Florida at the Dade County Water Treatment Plant. Granu­

lar activated carbon has been investigated for THM removal but 

its effectiveness only lasts for a few weeks (Blanck 1979). The 

use of alternate disinfectants is a promising solution to the THM 
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problem. Ozone, chlorine dioxide and chloramines are being eval­

uated for use in disinfection both alone and in combination (Vogt 

and Regli 1981). 

Ozone does not produce THM's but it also does not produce 

a disinfectant residual to be carried throughout the distribution 

system (Symons 1976). The health hazard, if any, of the 

by-products of the reaction of ozone with organic matter is not 

known at this time (Greenberg 1981). Ozonation of water for dis­

infection is common in Europe, accompanied by small dosages of 

chlorine, chlorine dioxide or chloramines to prevent bacterial 

re-growth in the distribution system (Rice, et al. 1981). 

Chlorine dioxide has been used of ten for control of taste 

and odor problems. In Europe, it too is commonly used as a dis­

infectant in drinking water treatment. Although chlorine dioxide 

does not produce THM's, it produces other compounds which could 

be harmful. Chlorite and chlorate ions are inorganic reaction 

products of c10
2 

which may be toxic to humans (Greenberg 1981). 

Oxidation of hemoglobin in the blood to methemoglobin, which has 

a reduced capacity for oxygen transfer is one of the more striking 

effects (Symons 1976). 

The use of chloramines in place of chlorine also reduced 

THM formation but its use requires a longer contact time for ade­

quate biological control (Schull 1981). The greatest application 

for chloramines has been as a secondary disinfectant, providing 
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maintenance of a residual in the distribution system (Rice, et 

al. 1981). 

The Magnesium Process 

Magnesium Coagulation 

When lime-soda softening treatment is applied to a water with 

high levels of magnesium, magnesium hydroxide is precipitated in 

addition to calcium carbonate. The presence of magnesium hydrox­

ide, because of its voluminous nature, hindered sludge handling 

operations for many years. In studies conducted by Nelson (1944) 

and Black and iidsness (1957) it was demonstrated that by bubbling 

co2 gas through the lime softening sludge the magnesium hydroxide 

could be selectively dissolved, increasing sludge settleability 

and lowering sludge volume. Because of the reduced magnesium con­

tent of the sludge, recalcination of the lime became a feasible 

process. 

Stumm and O'Melia (1968) demonstrated that aluminum, magnesium 

and calcium perform effectively as coagulants. Because magnesium, 

in either the sulfate or chloride £orm is more expensive than 

alum, its potential use as a coagulant was often overlooked. The 

discovery that the magnesium hydroxide and calcium carbonate in 

lime-soda sludges could be separated generated interest in the use 

of magnesium as a coagulant. 

In 1972, a new potable water treatment process was propos ed 

combining lime softening and conventional coagulation ( Thomp son , 
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et al. 1972a). Magnesium was used as the primary coagulant and 

lime was used to raise the pH for magnesium hydroxide precipita-

tion. Important reactions taking place in the process are shown 

in equations 6 through 9. 

(6) 

(7) 

(8) 

MgC0
3 

+ Ca(OH)
2 
~ Mg(OH) 2 + Caco3 

(9) 

The resulting sludge was carbonated and magnesium was recovered 

for reuse. Lime could then be recovered by recalcination from 

the remaining solids. This ability to recycle magnesium and lime 

greatly reduces sludge handling problems and treatment chemical 

costs (Thompson, et al. 1972 b). In addition, the high pH of 

coagulation, usually above 11, should: 

1. provide complete disinfection when adequate 
contact time is provided 

2. eliminate the need for pre-chlorination in 
many plants 

3. provide essentially complete removal of iron 
and manganese, where present (Thompson, et 
al. 1972b) 

A flow diagram of the magnesium process is depicted in Figure 

3. 
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Magnesium and Lime Recovery 

In the carbonation process it is important to know the quan-

tity of magnesium which will be recovered, especially if this mag-

nesium is to be recycled as a coagulant. The concentration of 

co2 is the main £actor determining the solubility of magnesium in 

the sludge (Black and Eidsness 1957). Important reactions taking 

place during sludge carbonation are: 

E!. 
-4 .19 

-8.15 

3.95 

-12.12 

(10) 

(11) 

(12) 

(13) 

Reaction 10 is the overall reaction taking place. Reactions 11 

and 12 are consecutive and represent two steps in the overall 

reaction. Reaction 13 shows that as carbonation progresses, there 

will be an increasing tendency for undissolved Mg(OH) 2 to react 

with the dissolved Mg(HC0
3

)
2

, resulting in the precipitation of 

nesquehonite (Mgco3 · 3H2o)(Black, et al. 1971). 

Principles of equilibrium chemistry can be used to predict 

the quantity of magnesium which will sobulize upon carbonation. 

Peplin (1977) investigated this and found that nesquehonite was 

the controlling solid phase for the system considering only Mg, 

co
2 

and H
2

o . By considering the following reaction, the magnes­

ium available can be determined. 
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MgC03 . 3H20 + co2 = Mg+z + 2HC03 + 2H20 pK=2.91 (14) 

The ele~troneutrality condition is shown in reaction 15. 

From equation 14, one finds the following relationships: 

[Mg+2 ] [HCO -z] 
3 

[C02 ] 
aq 

K = 

For a 100% co2 solution: 

[Mg+2]IHC03-]2 = 10-2.91 

From the proton condition: 

and 

2[Mg+2J ; [HCO -] 
3 

(15) 

(16) 

(17) 

(18) 

(19) 

Peplin found that the equilibrium pH for this sytem was 7.34 

and using a 100% co2 , a saturation magnesium concentration of 

6850 mgfl as Caco
3 

was determined. Using a 25/75 co2 :air gas 

mixture, a theoretical saturation concentration of 4320 mg/1 as 

Caco
3 

was determined. An equilibrium diagram for magnesium in 

a 100% co2 system is shown in Figure 4. These values are con-

siderably less than the saturation concentrations actually re-

covered in carbonation. Black, et al. (1971) found that with 

pure co2 a saturation concentration of 25,000 mg/l as CaCo3 was 

achieved, and with a 25/75 co2 :air gas mixture, a concentration 
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of 16,500 mg/l as Caco
3 

was obtained. This is illustrated in 

Figure 5. Burris, et al. (1976) and Peplin (1977) obtained 

slightly lower concentrations. The discrepancy between predicted 

and actual values is considerable. The theoretical calculations 

do not typically consider complexation due to the many naturally 

occurring organic compounds and the corresponding lack of thermo-

dynamic data for these compounds. The formation of ion pairs and 

complexes with both organic and inorganic ligands will increase 

the solubility of magnesium (Black, et al. 1971). 

The recovery of quicklime from the calcium carbonate is 

accomplished by the burning of the material at a temperature of 

1600-2200° F (871-1204° C). This process produces a high quality 

chemical lime containing as high as 92-93% calcium oxide (Black, 

et al. 1971). In pilot plant studies conducted by Burris, et 

al. (1976), 86% purity was obtained with recalcination. Other 

benefits derived from lime recovery include: 

1. cost of water treatment has been reduced 

2. lime values present in the raw water are re­
covered along with lime used in treatment 

3. considerable co2 is produced for use in carbon­
ating the treated water and for use in carbon­
ating the magnesium hydroxide - calcium carhonate 
sludge (recovered in concentrations of 25% by 
volume) 

4. a continuous in-plant supply of lime is available 

5. land is not required for lime storage (Black, et 
al. 1971) 
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Effectiveness of Magnesium as a Coagulant 

Comparisons of the turbidity and color removal obtained by 

use of alum and magnesium carbonate have been made. Thompson, et 

al. (1972a) studied seventeen natural waters from various loca­

tions and in every case, coagulation by magnesium carbonate pro­

duced reductions in color and turbidity comparable to alum treat­

ment. In this investigation, the effectiveness of the recycle 

magnesium as a coagulant was also evaluated. Twice recovered 

magnesium performed as well as fresh magnesium carbonate. 

In 1975, Black and Thompson compared magnesium and alum 

treatment on soft turbid water at Montgomery, Alabama, and on 

highly colored, moderately hard waters in Melbourne, Florida. 

In both plants, full scale studies were conducted with parallel 

treatment by alum and magnesium occurring simultaneously. The 

results showed that the magnesium coagulation was as effective 

in color and turbidity reductions as alum treatment. There was 

a problem encountered in reducing the organic content of the 

finished water in the Melbourne plant. It seems that neither 

the alum process nor the magnesium process removed more than 50% 

of the total organic carbon (TOC) even though color removal was 

occurring. 

Hatcher (1979) compared the effectiveness of ferric sulfate, 

alum and magnesium sulfate for THMFP removal from a high TOC 

water. He found the optimum coagulation pH for the aluminum, 

iron and magnesium salts to be 5.0, 5.5, and 11.5, respectively. 
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Although ferric ion was the most effective coagulant in THM:FP 

removed/mmole coagulant dose, there was no significant difference 

in the final THMFP reduction from the raw water with each coagu­

lant achieving approximately 50% reduction. 

Taylor (1976) demonstrated that in the lime-magnesium pro­

cess, magnesium is responsible for color removal. This may be 

due to larger floe being produced in coagulation, providing more 

sites for interaction between magnesium and color. When highly 

colored waters have been treated with this process, problems have 

been encountered. When the sludge is carbonated, color molecules 

also solubilize, causing color buildup in the recycled magnesium. 

Taflin, et al. (1975) in Minneapolis was forced to discontinue 

recycling magnesium because the potable water produced was too 

colored to be acceptable. Burris, et al. (1976) found that the 

concentration of color is directly proportional to the quantity 

of magnesium dissolved in the supernatant, represented by alka­

linity. This relationship is shown in Figure & Black and Thomp­

son (1975) demonstrated in pilot plant studies that by treating 

the magnesium bicarbonate with either chlorine or activated car­

bon, followed by flotation, color was removed. Another method 

of removing color from the magnesium liquor is to incinerate the 

sludge before the magnesium is carbonated. This would cause 

the color bodies to be oxidized to co2 or removed as other gas­

eous products of incineration (Taylor 1976). 
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Pr·esent:ly, there are two water treatment plants using the mag­

nesium process. These are Melbourne, Florida and Montgomery, 

Alabama. 



CHAPTER III 

EXPERIMENTAL METHODS 

Introduction 

This chapter describes the methods of sample collection, 

laboratory experimentation, and data evaluation used in this study. 

All testing was conducted in the Environmental Engineering labor­

atories at the University of Central Florida (UCF). The exper­

imental procedures used in this study are in accord with Stan­

dard Methods or accepted engineering practice. 

Sample Collection 

Lake Washington water was collected from the raw water intake 

to the Melbourne water treatment plant. Each week, 55 gallon 

plastic-lined drums were filled with water and returned to the 

UCF laboratory. Before use, the water was mixed for approxi­

mately one hour to ensure homogeneity of the sample. Recycle 

magnesium supernatant was also collected in 55 gallon plastic­

lined drums on a biweekly basis from the plant recovery cell. 

The recycled magnesium samples were sealed in order to prevent 

precipitation due to the absence of 100% co2 gas used to recover 

Mg(HC03 ) 2 from the Mg(OH) 2 sludge. 

33 
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Jar Test Procedure 

A Phipps and Byrd jar testing apparatus was used for all jar 

testing experiments. For the experiments optimizing coagulation 

dose and pH, magnesium sulfate or recycled magnesium bicarbonate 

was used as the coagu1ant. Because the magnesium content in the 

1ake water was relatively high during the dry period, approxi­

mate1y 20 mg/1, coagulation was also evaluated with no magnesium 

addition. Reagent, commercial or recalcined lime was used for pH 

control. Reagent lime refers to pure reagent grade calcium hy-

droxide. Connnercial lime is lime bought by the Melbourne plant 

from a commercial source, and recalcined lime is calcium oxide, 

recovered by the lime kiln at the plant. The sequence of chem-

ical addition was lime fol.lowed by magnesium during rapid mix. 

Standard mixing conditions were 140 rpm for 45 seconds, then 35 

rpm for 19 minutes. These are the mixing conditions which 100st 

closely resemble actual mixing conditions in the Melbourne plant. 

These conditions correspond to velocity gradients (G) of 126 sec-l 

and 16 -1 
sec The equation used to determine G values was (Weber 

1972) : G = (P /CU) l/2 

where: 

P = useful power, ft-lb/sec 

C = fluid volume, ft 3 

u 2 proportionality factor, lbf-sec/ft 

(20) 

After settling for 30 minutes> the samples were filtered through 

a 0.4 micron Nucleopore filter, then adjusted to pH 7.6 with 
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sulfuric acid. The maximum dilution of the samples was alway s 

kept below 2%. 

The mixing study was conducted under various rapid and slow 

mixing conditions. Rapid mix conditions were 140 rpm with times 

varied from 0 to 15 minutes. Slow mix conditions were 35 rpm 

with times varied from 0 to 60 minutes. Values of velocity gra­

dient (G) and conjunction opportunity (Gtd) are shown in Table 1 

for the conditions evaluated. Recycled magnesium was used as 

the coagulant and recalcined lime was used for pH control. As 

in the optimization of dose and pH, jar tests involving only lime 

addition were also evaluated for all the mixing conditions. 

Because residual turbidity was measured in samples during set­

tling, two liter beakers were used with sampling ports 10 cm be­

low the water surface. After settling 30 minutes, samples were 

filtered, adjusted to pH 7.6 with sulfuric acid and evaluated 

for removal of THM precursors. 

When alum was investigated as a polymer at high pH, it was 

done with lime addition only because of the high magnesium content 

of the raw wa.ter. The sequence of chemical addition was lime, 

followed by alum during the rapid mix period. Standard mixing 

conditions were used as in the optimization of coagulant dose 

and pH. Two liter beakers were used to facilitate sampling for 

turbidity measurement during settling. Turbidity was measured 

to determine settling velocity dist ribut i on curves for various 

alum doses. 
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TABLE 1 

VALUES OF VELOCITY GRADIENT, G, AND CONJUNCTION 
OPPORTUNITY FOR JAR TESTS (WITH A PHIPPS 

AND BYRD JAR TEST MACHINE) TO DETERMINE THE 
EFFECT OF MIXING ON THMFP, TOC AND COLOR 

REDUCTION DURING MAGNESIUM COAGULATION 

Rapid Mix Slow Mix 

w G_l Gtd 
Time w G_l 

(rpm) . (sec ) (min) (rpm) (sec ) 
' . 

140 126 5,674 5. 35 16 

140 126 22,698 19. 35 16 

140 126 37,830 30. 35 16 

140 126 75,600 60. 35 16 

140 126 113,490 

Gtd 

4,725 

12,955 

28,350 

56,700 

pH was monitored with a research grade Corning Model ii 12 

pH meter with a sliding glass sleeve reference electrode for 

faster response. 

Measurement of Trihalomethane Formation Potential (THMFP) 

Finished water from the jar tests and raw filtered lake wa-

ter were chlorinated, then analyzed for THMFP to determine the 

efficiency of precursor removal attributable t o different treat-
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ment variations. Samples were chlorinated with 60 mg/1 of free 

chlorine for a period of 48 hours. This dose was necessary to 

provide a free chlorine residual in the raw lake water. Be­

cause the THMFP is influenced by chlorine dose, the finished 

water samples were also dosed with 60 mg/l of free chlorine. A 

contact time of 48 hours is the approximate detention time in 

the Melbourne distribution system before the water reaches the 

consumer. The pH of chlorination was 8.0 corresponding to Mel­

bourne finished water quality (pH 7.5 to 8.5). To prevent con­

tamination by organic matter, sample bottles and pipettes were 

prepared by washing and heating for 1 hour at 350° C. After 48 

hours, all remaining free chlorine was reduced to chlorides by 

0.1 N sodium thiosulfate. 

Samples for extraction were prepared by addition of 10 ml 

of sample and 2 ml of hexane into an extraction vial. The samples 

were carefully shaken for 30 seconds by hand, then allowed 1 min­

ute for separation of the phases. A 30 µ1 sample was taken from 

the upper hexane layer and injected into the gas chromatograph. 

Chlorinated samples of distilled water, filtered distilled wa-

ter and quenched (with sodium thiosulf ate) distilled water were 

analyzed to enable detection of possible contamination problems. 

Between injections the syringe was thoroughly rinsed with methanol, 

then hexane to prevent error in results. 
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The samples were analyzed on a Hewlett Packard model 5750 

research gas chromatograph. A six foot glass column with an in­

side diameter of 1/8 inch was used in conjunction with an electron 

capture detector. The column, manufactured by Supelco, Inc., was 

packed with 3% SP-1000 on a Supelco 100/120 mesh. The nickel 63 

electron capture detector was used with a pulse interval of 150 

microseconds. A mixture of 95% argon and 5% methane was used as 

the carrier gas. Table 2 lists operating conditions for the gas 

chromatograph. 

TABLE 2 

OPERATIONAL CONDITIONS FOR GAS CHROMATOGRAPH 

Parameter 

Carrier gas pressure 

Carrier gas flow rate 

Injection port 

Electron capture detector 

Column oven 

Condition 

40 psi 

30 ml/min 

275° c 

210° c 

70° c 

Each time the gas chromatograph was used, a standard curve 

was prepared by dilution of a stock standard THM mixture pur­

chased from Supelco, Inc. A blank sample of hexane and distilled 

+ deionized water was analyzed to detect possible contaminat i on 

of the hexane. To prevent differences due to extrac tion e ffi ­

ciency, the standard samples were prepared in an identical manner 



39 

to the experimental samples, using chloroform-free distilled and 

deionized water. By comparing peak heights of the samples to 

that of the standards, the concentration of the different THM's 

were determined. An example standard curve is shown in Figure 7. 

Total Organic Carbon (TOC) Determination 

Total Organic Carbon (TOC) levels were analyzed with a Dohr­

mann Envirotech DC-54 TOC analyzer. When the TOC analyzer was 

operated it was calibrated to a standard of known concentration. 

This standard was prepared each day from a stock reagent solution 

of potassium acid phthalate (KHC
8

H
4
o

4
), where: 

1 mg/l C = 2.125 mg/l KHC
8

H4o4 
(21) 

Following calibration, 50 ml samples were prepared for analysis. 

The samples were acidified by addition of 1 ml of a reagent 

solution of phosphoric acid and potassium permanganate. Each run 

uses a 10 ml aliquot of sample, 2 runs were performed for each 

sample, then the values were averaged together. 

The process of freeing carbon from the water sample for sub­

sequent measurement is divided into two sequential steps: The 

Purgeable Organic Carbon (POC) Step, and the Non-Purgeable Or­

ganic Carbon (NPOC) Step. In the POC step, helium gas flows 

through the sample in the POC sparger at 100 ml/min to purge C02 

well as purgeable organics from the sample. These gases next pass 

through a co2 scrubber where co2 is quantitatively removed, 

allowing the POC to be carried on to the Totalizer/Reaction model . 
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In the Totalizer/Reaction Module the gas stream i.s joined by 

hydrogen and passes over a nickel catalyst at 350° C where the 

POC is converted to methane (CH4). The gases then flow to the 

flame ionization detector (FID) which responds linearly to CH4 • 

The detector signal is integrated and the integrated value is dis­

played in mg/l. After measurement of POC, the sample is transfer­

red to th.e NPOC sparger by helium gas. During this transfer the 

sample passes through the UV reactor coil where it is exposed 

to intense ultraviolet radiation which, aided by the persulfate 

reagent added, oxidizes all remaining organic carbon to co2 . In 

the sparger helium gas removes the co2 from solution and into the 

Totalizer/Reaction Module. In the Totalizer/Reaction Modul!e the 

co2 is converted to CH4 and detected. The detector signal con­

tinues to be integrated and the integrated value displayed is com­

posed of the POC and NPOC and represents the TOC of the sample. 

Operating conditions for the TOC analyzer are shown in Table 3. 

TABLE 3 

OPERATIONAL CONDITIONS FOR TOG ANALYZER 

Parameter 

Hydrogen Pressure 

Helium Press.ure 

Air Pressure 

Furnace Temperature 

Cooling Water Flow 

Condition 

20 psi 

20 psi 

30 psi 

800° c 

500 ml/min 
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Color Determination 

Color was determined by use of a double beam spectrophoto-

meter, Beckman model DB-GT, at a wavelength of 460 nm using a 5 

cm cell. A standard curve of chloroplatinate solutions was con-

structed with each use. By comparing absorbance of samples to 

that of standards, color levels were determined. An example stan-

dard curve for color determination is shown in Figure 8. 

Each sample was analyzed at pH 7.6, since color is known to 

be pH dependent. Because color values of the water samples were 

low, dilution was not necessary. The recycle magnesium liquor was 

diluted when color measurements were performed. 

Metals Determination 

Metal concentrations were measured with a plasm.a emission 

spectrophotometer, a Spectraspan III, produced by Spectrametrics, 

Inc. Samples were acidified to a pH of 1 with nitric acid, then 

analyzed for dissolved metaJ. ·,. concentrations following Standard 

Methods Procedure for Total Metals Analysis, Section 301A. 

When analyzing the recycle liquor for magnesium content, 

dilutions of 250:1 were necessary because of the high magnesium 

++ content, approximately 2500 mg/1 Mg • An average value was de-

termined for this reason. 

Turbidity Measurement 

Turbidity was measured by use of a Hach model #2100A turbi-

dimeter. Using Formazin standards acquired from Hach Company, the 
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turbidimeter was calibrated. Turbidity was measured during settling 

of alum jar tests to determine settling v e locity distribution of 

the floe. 

Quality Assurance 

To ensure precision and accuracy of the data for THMFP, TOC 

and metals determinations, either a duplicate sample or a spiked 

sample was rtm for every 6 experimental samples. For color deter­

minations, duplicate samples were analyzed every 10 samples. In 

addition, unknown quality control samples for THM's and TOC were 

obtained from the U.S. EPA and analyzed to further ensure accur­

acy of the data. Precision and accuracy sample analyses for 

THMFP, TOC and metals determinations are shown in Tables 4 through 

9. 



Analysis 

870 

800 

660 

749 

1244 

1527 

1180 

1298 

1188 

1119 

2636 

1488 

943 

1125 

1006 

1008 

1039 

1039 

1009 

90,4 

851 
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TABLE 4 

SAMPLE ANALYSIS FOR THMFP PRECISION 
FOR DUPLICATE ANALYSIS 

1 .Analysis 2 % Difference 

840 3.4 

760 5.0 

650 1.5 

797 -6.4 

1234 0.8 

1537 0.7 

1204 -2.0 

1374 -5.8 

1212 -2.0 

1158 -3.5 

2721 
I 

-3.2 

1442 
1 1 

3.1 I 

952 -1.0 

1127 -0.2 

1019 -1.3 

954 5.4 

1044 -0.5 

1064 -2. 4 

1031 -2.2 

975 -7.9 

872 -2.5 



Analysis 1 

10. 35 

28.63 

33.26 

18.57 

24.40 

13.36 

17.62 

17.25 

18.57 

24.48 

12.50 

12.6 

18.46 

22.13 
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TABLE 5, 

SAMPLE ANALYSIS FOR TOC PRECISION 
FOR DUPLIGATE ANALYSIS 

Analysis 2 '% Difference 
I 

I 

l0.63 -2.7 

29.32 -:-2.4 

33 .. 46 0.6 

18.77 -1.1 

24.22 0.7 

13.32 0.3 

17.80 -LO 

17.32 -0.4 

,, 18 .. 69 -0.6 ,1 

24.85 -1.5 

12. 70 -1.6 

12.7 ~O.B 
I 

I 

18.39 3.8 

20.19 8.8 
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TABLE 6 

ACCURACY MEASUREMENTS FOR THM'S 

Sample Measurement CHC1 3 CHCl2Br CHClBr2 CHBr3 

1 True Value 30. 0 7.5 7.6 1.4 
Reported Value 2 7. 5 8.6 8.4 1.3 
Acceptance Limit 15. 8-41.2 . 3.0-11..9 3. 5-11. 9 C.4-2.4 

2 True Value 76.6 91.2 71.l 98.7 
Reported Value 74.6 88.1 75.1 106.3 
Acceptance Limit 61-92.0 73-110. 57-85 79-120 

3 True Value 10.2 22.8 11. 8 32.9 
Reported Value 10.7 25.5 13.65 37.5 
Acceptance Limit e..2-12.0 18.-27 9.4-14. 26-39 

TABLE 7 

ACCURACY MEASUREMENTS FOR TOC 

Sample True Value Reported Value 95% Confidence Ljmit 

1 6.l mg/1 6.12 mg/1 4.0 - 9.4 

2 91. 8 mg/l 91.40 mg/l 74.6 - 107 



Metal 

Magnesium 

Calcium 

48 

TABLE 8 

SAMPLE .ANALYSIS METALS PRECISION 
FOR DUPLICATE .ANALYSIS 

-
Analysis 1 Analysis 2 

51.2 49.4 

23.7 23.0 

7.51 7.31 

12.5 12.6 

.485 .479 

3.075 3:149 

41. 3 38.3 

30.9 30.8 

8.6 9.19 

2.58 2.57 

42.4 41.8 

36.1 35.6 

48.2 48.5 

% Difference 

2.5 

1.3 

2.7 

-0.8 

1.2 
I 

-2.3 

7.3 

0.3 

-6.4 

0.4 

1.4 

1.4 

0.6 



Metal 

Maguesiu:m 

Calcium 
I 

I 
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TABLE 9 

SAMPLE ANALYSIS MET_t..LS ACCURACY 
FOR SPIKED SAMPLES 

,, 

Expected Value Analyzed Value 

71.4 71.4 

80.2 78.2 

2.485 
,, 

2.563 11 

0.932 0.926 

54.0 51.1 

3.38 3.45 

0.583 0.611 

1.23 1. 25 

0.567 0.584 

34.2 35.1 

37.4 I 38.l 

59.0 62.9 

39.2 39.0 

I 
% Difference 

0.0 

2.5 

I -3.1 

0.6 

5.4 

-2.l 

-4.8 

-1.6 

-3 .. 0 

-2.6 

-1.9 

0.2 

o-. 5 



CHAPTER IV 

RESULTS AND DISCUSSION 

Lake Washington Water Quality 

Lake Washington serves as the source of potable water for the 

City of Melbourne, Florida. It is fed by the St. John's River, 

which flows through a region utilized for cattle grazing. In 

Figure 9, water quality parameters for the lake are shown for the 

years 1974-1981, obtained from the operating reports of the plant. 

Water quality was averaged over 3 month periods, and rainfall was 

expressed as a cumulative value over the 3 month periods. Although 

the author did J?.Ot analyze the chemical data presented in Figure 

9, this data was taken from three different sources and represents 

an original attempt to correlate water quality variations between 

high and low rainfall periods. This is obviously significant to 

the magnesium process because of magnesium recovery and lime re­

calcination and is presented here for this reason. 

The water quality of Lake Washington varies, depending on the 

season of the year. During the months of January through June, 

when there is little rainfall occurring, color levels are rela­

tively low, approximately 60 cpu and magnesium,. calcium and alka­

linity levels are relatively high, approximately 50 mg/l, 140 

mg/l, and 90 mg/l, all as Caco 3 • During this period, groundwater 

50 
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Fig .. 9. Lake Washington seasonal water quality. 
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seepage seems to exert an important influence on lake water qual­

ity. During the latter half of the year, there is conside rab l y 

more rainfall occurring and this increase in rainfall probably 

causes a significant change in water quality. Color levels are 

much higher, often over 200 cpu, and magnesium, calcium and alk a­

linity levels are much lower, approximately 20 mg/l, 60 mg/l and 

40 mg/l, all as Caco3 • An increase in surface rrmoff from the 

surrotmding land is responsible for this shift in water quality . 

From the Figure, one can see there is a lag period between rain­

fall and increased flow through the lake, corresponding to the 

change in water quality. Values of flow through the lake were 

obtained from U.S.G.S. records and also averaged over 3 month 

periods. 

During 1980, this seasonal change in lake water quality did 

not occur, due to the corresponding lack of rainfall during this 

year, a maximum of only 11 inches during the peak color period as 

opposed to 20 inches seen in other years. Color levels remained 

low, approximately 55 cpu until October 1981, but levels of mag­

nesium, calcium and alkalinity were very high, 100 mg/l, 200 mg/1 

and 120 mg/l, all as Caco
3

• In October, color levels rose to 

over 300 cpu following a period of increased rainfall. Correspond­

ing levels of magnesium, calcium and alkalin.ity dropped at thi s 

time to 10 mg/l, 120 mg/l , 85 mg/l, all as Caco3 • 

Chlorides, as seen f rom the fi gure, follow the same t ren d a s 

magnesium, calcium and alkalinity and have been steadily increasing 



53 

in the lake during 1980 and 1981 due to intrusion of salt water 

into the groundwater table, and then seepage of this mineralized 

gronndwater into the St. John's River and Lake Washington. The 

presence of canals constructed to drain the surronnding marshy 

land promotes seepage into the river and lake. 

Even when color levels in the lake are relatively low, the 

concentration of organic matter present is still significant. The 

TOC in the lake averages approximately 20 mg/l during this period, 

indicating the presence of organic compounds which do not produce 

much color. During the period when color levels are high, TOC 

levels are often over 40 mg/l. The presence of these high levels 

of organic compounds makes it difficult to produce a high quality 

potable water. In particular, there is a problem with THM levels 

in the finished water for the Melbourne water treatment plant. As 

shown in the figure, the level of THM's in the finished water sig­

nificantly exceed the standard of 0.1 mg/l, often as high as 0.4 

mg/l. 

Coagulation with Recycle Magnesium 

Using Lake Washington water, optimum coagulation dose and pH 

were determined for the low color water and the high color water 

using recycle magnesium supernatant from the carbonation basin as 

the coagulant. Three different types of lime were used for pH 

adjustment. These were pure reagen t l ime, commercial lime, and 

recalcined lime. Each series of jar tests were evaluated for 

reduction in THMFP, TOC and color. Isopleths were constructed 
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showing constant percentage lines of equivalent removal for these 

three parameters. More extensive testing was conducted on the 

low color, high magnesium lake water since the high color, low 

magnesium lake water was not available tmtil late in the study 

period. 

In Figures 10 through 12, the isopleths for the low color, 

high magnesium water are shown for treatment using recycle magnes-

ium as the coagulant and the various types of lime for pH adjust-

ment. Removal of THMFP during coagulation directly corresponds to 

color and TOC removal during coagulation. Regardless of the type 

of lime used, maximum removal of THMFP, TOC and color was obtained 

with a dose of 0 mg/1 Mg+2 at pH 12. As the dose of recycle mag-

nesium was increased, or as pH decreased, corresponding removal 

of THM precursors is decreased. In practice, at pH values below 

11, inadequate magnesium hydroxide precipitation occurs. As seen 

in Figure 13, a solubility diagram for magnesium hydroxide only 

++ 0.39 mg/l Mg remain at pH 11, however, absolute equilibrium is 

not attained in practice and the Mg++ remaining is actually 

10 mg/1 or more at pH 11. Because of this lack of precipitation, 

levels of THMFP, TOC and color were actually higher in some cases 

than levels fotmd in the raw lake water. 

Maximum reductions in THMFP, TOC and color wer,e 46%, 49% 

and 85% for the optimum dose and pH. This corresponds to levels 

of THMFP, TOC and color in the treated water of 830 µg/l, 10.8 

mg/l and 8 cpu. The average magnesium concentration in the raw 
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Fig. 10. Isopleths for removal of (a) THMFP, (b) TOC, and 
(c) color for a low color, high magnesium Lake Washington water 
treated by coagulation with recycle magnesium and pure reagent 
lime. Magnesium concentration in the raw water was 15 mg/1 as 
ion. 
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Fig. 11. Isopleths for removal of (a) THMFP, (b) TOC, and 
(c) color for a low color, high magnesium Lake Washington water 
treated by coagulation with recycle magnesium and commercial lime. 
Magnesium concentration in the raw water was 26 mg/l as ion. 
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Fig. 12. Isopleths for removal of (~ THMPF~ (b) TOC, and 
(c) color for a low color, high magnesium Lake Washington water 
treated by coagulation with recycle magnesium and recalcined 
lime. Magnesium concentration in the raw water was 20 mg/l as 
ion. 
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++ water was 20 mg/1 Mg • At pH 12, virtually a11 this magnesium, 

Or 0. 84 mmole Mg++ . d b u1 is reilX>ve y coag ation. Therefore, the 

ratios of THMFP, TOC and color removed to Mg++- removed are 7. 94 

µmole THMFP/nnnole Mg++, 0.83 nnnole TOC/:mmole Mg++ and 56 cpu/mmole 

++ Mg • To determine the moles of THMFP, an average molecular weight 

of 128 was used corresponding to the percentage of each THM observed 

in the samples. These percentages were 80% CHC1
3

, 17% CHC1 2Br 

and 3% CHC1Br
2

. 

Variations in different treatment efficiencies using the dif-

ferent types of lime were investigated because it was thought that 

the magnesium solids present in the recalcined lime would provide 

for better treatment. From metal analyses done on the recalcined 

lime, the magnesium portion of the recalcined lime represents 

appx-oximately 5. 7 percent by weight. Because not much variation 

was observed, it was concluded that the magnesium was not in a 

form which could aid treatment. Maximum THMFP reduction varied 

from 41% to 46% with the connnercial lime achieving slightly better 

removal than recalcined lime, a difference of 75 µg/l, from 607 

-µg/l to 682 µ g/1 THMFP removed. The maximum TOC reduction varied 

from 38% to 49%, with less TOC removal occurring with the use of 

the commercia1 lime, a difference of 2.3 mg/l, from 8.1 mg/l 

to 10.4 mg/1 TOC removed. The maximum color reduction varied from 

78% to 85%, with commercial lime again achieving less reduction 

than either reagent or recalcined lime, a difference of 3 cpu 

from 46 cpu to 43 cpu color removed. This small variation is 
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attributed to variation in experimental results, since no clear 

trend exists. 

The ineffectiveness of the recycle magnesium supernatant in 

removing organic matter during treatment is due to the high concen-

trations of organic matter in the recycle itself. Because car-

bonation of the sludge is practiced intermittently at the Melbourne 

plant, it is misleading to refer to average quality of the recycle; 

++ 
but measured Mg , THMFP, TOG and color were approximately 2500 mg/l 

-t+ 
Mg , 48,0QO µg/l, 500 mg/l, and 3200 cpu. During carbonation of 

the sludge, as the magnesium becomes soluble, the color also becomes 

soluble, probably due to the formation of organo-magnesium complexes 

during coagulation. This is substantiated by the fact that higher 

concentrations of magnesium were found in the recycle, 1000 to 3600 

++ mg/l Mg , than that which was predicted by equilibrium relation-

++ ships 1050 mg/1 to 1670 mg/l Mg . The addition of this recycle 

magnesium, as is, does not appear to have the capability to remove 

THM precursors for this low color, high magnesium lake water. The 

contribution of the magnesium ions to the coagulation process is 

outweighed by the organic loading on it. For every mg/l of re-

cycled magnesium used in the coagulation process, 19.2 µg/l THMFP, 

0.2 mg/l TOG and 1.3 cpu color are recycled to the raw water being 

treated. For the typical Melbourne flow of 12 MGD and an optimum 

dose of 30 mg/l Mg++, this means an additional 570 µg/l THMFP, 6 

mg/l TOC and 39 cpu color are being loaded in every liter of water 

treated. This accounts for the measured color, TOG and THMFP of 
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the treated water when recycled magnesium is used. The ineffective-

ness of the recycle magnesium is also due to the high magnesium 

concentration in the raw water. Because of the high magnesium level, 

best treatment occurs without magnesium addition. In the treatment 

of the high color, low magnesium water this is not the case since 

the level of magnesium is considerably lower, approximately 5 mg/l 

-H-
Mg , and the levels of THMFP, TOC and color in the raw water are 

much higher, approximately 2700 µg/l, 42 mg/l and 365 cpu. 

In Figure 14, isopleths are shown for the high color ., low 

magnesium Lake Washington water treated by coagulation with re-

cycle magnesium with recalcined lime used for pH adjustment. The 

recycle magnesium was very effective in reduction of THMFP, TOC 

and color. As opposed to the isopleths for the low color water, 

the constant percentage lines now migrate to the right upper cor-

ner instead of the left, which indicates the optimum treatment is 

attained at the maximum pH and recycle magnesium dose utilized. 

The maximum removal of THMFP was 52%, at a recycle magnesium dose 

of 40 mg/1 Mg-H- at pH 12. The TOC and color reductions were also 

optimum at this same dose and pH. Maximum TOC removal was 62%, 

and maximum color removal was 94%. These removals correspond to 

THMFP, TOG and color levels of 1440 µg/l, 16.5 mg/l, 20 cpu in the 

treated water. 

The fact that addition of recycle magnesium increases THM pre-

cursor reduction for the high color lake water is possibly due to 

the method of carbonation treatment. The recycle used in this 
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Fig. 14. Isopleths for removal of (a) THMPF , (b) TOC, and 
(c) color for a high color, low magnesium Lake Washington water 
treated by coagulation with recycle magnesium and recalcined lime. 
Magnesium concentration in the raw water was 5 mg/1 as ion. 
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part of the study was generated in the laboratory because the car-

bonation process was not in operation in Melbourne. This sludge 

was taken from the coagulation tank and never had been carbonated 

previous to this time. The magnesium concentration was 1500 mg/l 

Mg++, and the TOC and color concentrations were 541 mg/l and 2500 

cpu. The color is somewhat lower than usual, but TOC is approx-

imately the same level indicating little variation between the UCF 

generated and Melbourne recycle magnesium. 

The most important factor in the effectiveness of the treat-

ment with recycle magnesium for the high color water is the low con­

centration of magnesium present in the raw water, only 5 mg/l Mg++. 

A ratio of 213 cpu/mmole Mg++ was found by Hatcher (1979) for opti-

mum color removal with magnesium sulfate. The water he investigated 

also had a high color, 320 cpu. To achieve this ratio, an addi­

tional 36 mg/l Mg++ is required for the high color water used in 

this study. The optimum recycle Mg++ dose found was 40 mg/l Mg++ 

and corresponds well to Hatcher's work. The ratio found in the 

raw water for the low color condition was found to be 72 cpu/mmole 

Mg++ and, therefore, no magnesium addition was necessary. 

At pH 12 and a dose of 40 mg/l Mg++, virtually all of the 

magnesium or 1.88 mmole Mg++ is removed by coagulation. The ra­

~ios of THMFP, TOC and color removed to Mg++ removed was 6.5 µmole 

++ ++ ++ THMFP/mmole Mg , 1.2 mmole TOC/mmole Mg , and 163 cpu/mmole Mg 

++ 
for the high color water compared to 7.94 µmole THMFP/unnole Mg , 

++ ++-0. 83 mmole TOC/mmole Mg , and 56 cpu/mmole Mg for the low color 
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water. The ratio for THMFP removal is lower and the ratios for TOG 

and color removal are higher than those determined for the low color 

water. This indicates for the high color water the THMFP does not 

increase as much as the color and TOG, which is verified by the 

data. For example, a 5.4-fold increase in color from 60 cpu to 325 

cpu was accompanied by a 2.5-fold increase in THMFP, from 1200 µg/l 

to 3000 µg/l. For the case of the high color, low magnesium Lake 

Washington water, the addition of recycle magnesium is beneficial 

in reducing levels of THM precursors .. 

Coagulation with Magnesium Sulfate 

Magnesium sulfate was evaluated for its capability in removing 

THM precursors for the low and high color Lake Washington water. 

In Figure 15, isopleths are shown depicting optimum coagulant dose 

and pH for low color, high magnesium water treated by coagulation 

with magnesium sulfate and recalcined lime. The addition of mag-

nesium sulfate was effective in reduction of THM precursors. Max-

iimlm removals for THMFP, TOC and color were 46%, 50% and 85%. Op­

timum coagulant dose and pH were 20 mg/l Mg+t- at pH 12. These 

removals are not much higher than that obtained with the 0 mg/l 

-++ Mg dose because of the high concentration of magnesium in the raw 

water. As compared with Hatcher's optimum arithmetic ratio of 213 

cpu/nnnole Mg-t+ needed for color removal, the low color water with 

++ O mg/l dose has a ratio of only 72 cpu/mmole Mg . This indi cates 

that adequate or excess magnesium is in Lake Washington water. If 
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(c) color for a low color, high magnesium Lake Washington water 
treated by coagulation with magnesium sulfate and recalcined 
lime. Magnesium concentration in the raw water was 18 mg/l as ion. 
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Hatcher's ratio of 213 cpu/mmole Mg++ is used, only 5 mg/l Mg++ is 

required to remove the 60 cpu in the raw water and 15 mg/l Mg++ 

are in excess. It is possible that the optimum ratio which Hatcher 

determined for the high color water he treated may not correspond 

to the optimum ratio obtained in the case of low color water. 

In Figure 16, isopleths are shown depicting optimum coagula-

tion conditions for treating the high color, low magnesium lake 

water with magnesium sulfate and recalcined lime. Magnesium sul-

fate was also effective in reduction of THMFP, TOC and color in 

the highly organic lake water. Maximum removal occurred at a co­

agulant dose of 40 mg/l Mg++ and pH 12, but significant removals 

occur at a dose of 20 mg/l. Best removals obtained for THMFP, TOC 

and color were 65%, 69% and 98%, an increase of 9% (230 µg/l), 4% 

(1.6 mg/l), and 3% (12 cpu) over the remvovals obtained by use of 

++ a 20 mg/l Mg dose. The maximum removals obtained are not much 

greater than that observed by use of recycle magnesium to this wa-

ter. Comparing magnesium sulfate to recycle magnesium, the mag-

nesium sulfate removed 13% more THMFP (340 µg/l), 7% more (2.8 

mg/l), and 4% more color (16 cpu) at optimum pH and dose (12 and 

++ 40 mg/l Mg ) than did recycled magnesium at the same conditions. 

For this highly colored water, some magnesium addition is neces-

sary, whether in the form of magnesium sulfate, or recycle mag-

nesium. The ratio of raw water color to magnesium dose applied was 

220 cpu/nnnole Mg++- in this case, comparing well to Hatcher's opti­

mum ratio of 213 cpu/nnnole Mg++ for high color water. 
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The increased cost in using an operating pH of 12 in this 

process is seen in Figure 17 for low color, high magnesium Lake 

Washington water, using no magnesium addition. In raising the 

pH from 11.5 to 12, the cost is more than doubled, from $70 to 

$150 per million gallons (MG). This is based on a lime cost of 

$75/ton, with 85% purity. Furthermore, for every 10 mg/1 Mg++-

applied as coagulant, an additional lime cost of $19/MG is incur-

red. Because of this, the pH of coagulation is chosen to be 11.5, 

since the additional removal of THMFP, TOG and color is not that 

great, approximately 2% (30 µg/1), 10% (1.8 mg/1) and 2% (1 cpu) 

for the low color water and 7% (180 µg/l), 4% (1.6 mg/1) and 2% 

(8 cpu) for the high color water treated with magnesium sulfate 

~ 
coagulation at a 40 mg/l Mg dose. 

It is important for the reader to note that for either low 

or high color water quality, the optimum treatment is achieved at 

maximum pH and magnesium dose. An interpretation of optimum con-

ditions might be infinite pH and magnesium dose. Moreover, the 

selection of operating conditions for coagulation must be made 

with cost considerations and with regard to the water treatment 

system of which coagulation is a unit process. The final water 

quality must meet the 0.1 mg/l THMFP and 2 cpu 1 s. However, at 

Melbourne, the coagulation process is currently the major process 

for removing THMFP and requires at least an operating pH of 11 .5 

and a coagulant dose of 20 mg /1 Mg~ to be effective. 
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tion for low color, high magnesium Lake Washington water treated 
by magnesium coagulation, bas,ed on lime at $75/ton, 85% purity. 
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Correlation of THMFP , TOC and Color 

A relationship was observe d b e t ween THMFP, TOC and color 

removal in the isopleths wh ich were p r esented . To further deter­

mine the correlation between THMFP , TOC and color levels for a 

given water, linear regression a n alyses were performed for Lake 

Washington water treated by coagu lat ion with addition of either 

no magnesium, recycle magnesium, or magnesium sulfate at pH 11.5. 

In Figure 18, one can see that ther e is a correlation between 

THMFP and color levels (r = .920); TOC a nd color levels (r = . 834); 

and TOC and THMFP levels (r = .950) for treated Lake Washington 

water. When color of the treated and f iltered water is projected 

to zero via the regression equation i n F i gur e 18 a and b, the THMFP 

is 803 µg/l and TOC is 11 .7 mg/ l . Th i s indicates that there is 

organic matter present which does n ot produ ce color . The TOG and 

THMFP relationship in Figure 18c indicates t hat t here is some TOC 

which does not produce THM ' s. This is signi ficant because by 

analyzing a given water in this manner one may be capable of pre­

dicting THMFP in a general manner b y meas u ring either color or TOC, 

saving time and expense, since me asureme nt of THMFP is more dif f i­

cult. Certainly this is valid f o r t he Melbourne water. 

Solubil ity o f Magne sium 

The fact that better r e moval of THM precursors occurred at 

pH 12 was significan t, s ince most of the magnesium has precipi­

tated from solution a t pH 11 . 5. This is shown in Figure 19, where 
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only an average of 2.5 mg/l Mg++ is remaining in low color, high 

magnesium water treated with recycle magnesium and recalcined or 

commercial lime at pH 11.5. It is possible that the small amounts 

++-of magnesium, approxima te·ly 2 mg/1 Mg (O. 083 mmole) removed be-

tween pH 11.5 and 12 could be responsible for the average increases 

in THMFP, TOC and color removal observed (1.12 mole THMFP, .09 

mmole TOC and 1 cpu) for treatment with recycled magnesium coagula-

tion and commercial or recalcined lime. As magnesium dose is in-

creased, the ratio of THMFP, TOC and color is removed to magnesium 

removed decreases. Best treatment at the 0 dose, pH 12 condition 

with recalcined lime corresponds to a removal ratio of 5.2 µmole 

THMFP/mmole Mg++, .884 mmole TOC/mmole Mg++ and 60 cpu/mmole Mg++. 

From these isopleths one can see that prior to pH 11, very little 

of the magnesium has precipitated. Because little THM precursor 

removal occurs below this pH, this supports the hypothesis that 

magnesium is responsible for organics removal in coagulation. The 

solubility for both types of lime follow similar trends, little 

variation observed in magnesium removal. 

To further investigate the reason for increased reduction of 

THM precursors at pH 12, a series of jar tests were executed for 

the low color water in which sodium hydroxide instead of lime was 

used for pH adjustment and recycle Mg* doses of 0 mg/l Mg* and 

9 mg/l Mg++ were utilized. The results shown in Figure 20 indi-

cate that while almost all of the magnesium is precipitated, cal-

cium levels are increased as pH of coagulation is increased. This 
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is unusual since lime was not used. This calcium solubility was 

attributed to ion-pair or complex formation at the higher pH values. 

+ For example, the CaOH complex increases in concentration as pH in-

creases. Some of Caco
3 

that had formed earlier at pH 9 to 10.5 

was evidently not forming at pH values above 11.5. This may be due 

also to the extremely high organics in Lake Washington water. 

It was suspected that incomplete magnesium precipitation was 

being realized when the data shown in Figure 10, 11 and 12 were 

analyzed. This data showed clearly for the low color, high magnes-

ium water that increasing the dose of recycle magnesium to the jars 

increased the finished THMFP, TOC and color. The data shown in 

Figure 19 show clearly that complete magnesium precipitation was 

realized at the higher pH's represented in Figures 10, 11 and 12. 

Moreover, the reason for increasing recycle magnesium dose corre-

spending to increasing THMFP, TOC and color in the finished water 

is not due to incomplete magnesium precipitation but due to the 

high color (3200 cpu), TOC (500 mg/l), and THMFP (48,000 µg/l) in 

the recycle. 

Variation in Mixing Conditions 

Mixing during the rapid mix (coagulation) phase and the slow 

mix (flocculation) phase are important to the efficiency of any 

coagulation process. Using low color, high magnesium Lake Washing-

ton water, the effects of varying both slow and rapid mix t'mes on 

THMFP, TOC and color are presented in Figures 21 through 23. 
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-++ Recycle magnesium doses of 0 and 9 mg/l Mg were used with recal-

cined lime at pH 11.5. Rapid mixing times were varied from 0 to 15 

minutes and slow mixing times were varied from 0 to 60 minutes. 

Constant removal lines were not drawn on these figures because of 

lack of variability of the data. Variations of mixing times did 

not significantly affect TOC or color removal but it appears that 

some combination of both rapid and slow mixing is necessary for 

optimum THMFP removal. The THMFP removal varied from 42 to 49% 

when both rapid and slow mix periods were used and varied from 29-

35% when only one or the other mixing periods were utilized. 

-H-
Another signi.ficant finding is that small doses of Mg recycle do 

not significantly affect quality of the treated water compared to 

the 0 dose condition. 

Turbidity removal was determined at 10 minutes settling time 

following flocculation for the various mixing conditions. An op­

timum recycle dose of 0 mg/1 Mg-H- for the low color water was 

used, at pH 11.5, with recalcined lime for pH adjustment. As seen 

in Figure 24, mixing conditions do affect settling of the floe, 

represented by turbidity removal, which varied from 78% to 97% 

Optimum settling of the floe occurs when the rapid mix is short, 

45 seconds or less; and the slow mix time is at least 19 minutes. 

The use of optimum mixing conditions will result in longer filter 

runs due to an .increased efficiency in sedimentation of the floe 

produced by coagulation. 
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Alum Use as a Polymer 

Alum was evaluated for its effectiveness in THM precursor 

reduction for the low color, high magnesium Lake Washington water. 

Th t . 1 · d of 0 mg/l Mg++ 1 d H f · e op imum coagu ation ose recyc e an a p o 

+3 11.5 was utilized. Alum dose was varied from 0 to 5 mg/l Al . 

In Figure 25, percent removal of THMFP, TOC and color are shown as 

a function of alum dose applied. The addition of alum was effec-

tive in increasing reductions of all three parameters. For THMFP, 

TOC and color, the increases in removal obtained with a minimum 

alum dose of 2 mg/l Al+3 were 10%, 20% and 15%; or, 50 µg/l THMFP, 

4.2 mg/l TOC and 9 cpu. For the low color water, alum addition is 

much more effective than magnesium addition. 

The removals obtained with alum addition appear to follow an 

adsorption isotherm of the Langmuir type. These removals are at 

first linear then level off to a limiting amount where no further 

removal is obtainable. To evaluate this relationship, a modified 

form of the Langmuir equation was used (Weber 1972): 

(22) 

where: 

p = percent removal 

Al+3 = aluminum concentration, mg/l 

kl = rate constant for adsorption 

k2 = rate constant for desorption 
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This model is based on the assumption that maximum adsorption occurs 

on the surface of the adsorbent. To linearize this equation, it 

was inverted, and then l/P was plotted as a function of l/[Al+3 ] 

dose. (See Figure 26). 

1- 1 
P = -k-

1
-[A-1-....+-3-] (23) 

The fit for this relationship was good for all three parameters, 

THMFP (r = .936), TOC (r = .934) and color (r = .916); indicating 

that the alum was possibly adsorbing onto the floe formed in coagu-

lation. It is evident that the alum was effective as a polymer 

to reduce THM precursors in the finished water. 

The effect of alum addition on settling velocity of the floe 

formed during coagulation was also investigated. Turbidity was 

measured at various times during settling and by dividing the dis-

tance settled by the time settled, floe settling velocity was de-

termined. Addition of alum increased the settling rate of the floe, 

as seen in Figure 27. Poorest sedimentation was observed when no 

alum was used, and optimum sedimentation was obtained with a dose 

+3 of 2 mg/l Al . At pH 11.5, aluminum is soluble. In the solu-

bility diagram for aluminum hydroxide, Al(OH)
3

, Figure 28, one can 

see that at pH 11.5, aluminum exists as an anionic species, 

Al(OH
4

) . Because of this, aluminum would not appear to be effec­

tive as a polymer in precursor reduction at high pH values, ou t 

of the range of aluminum hydroxide precipitation, pH 5 to 8. It 

appears that the aluminum is adsorbed onto the surface of the 
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floe, thus causing the floe to become heavier. This could cause 

faster settling of the floe, and thus, more of a sweep-enmeshment 

type of sedimentation. 

Because aluminum is in soluble form at pH 11 .. 5, the concen-

trations in the treated water were measured, and are shown in Fig-

ure 29. It was observed that there is no significant increase in 

+3 aluminum levels in the treated water at a dose of 2 mg/1 Al . 

Above this dose, there is a direct relationship between the alumi-

num dose applied and the residual level of aluminum in the treated 

water. The ratio of moles Al+3 dosed to moles Al+3 leaving in the 

+3 water was found to be 3 to 1 above the 2 mg/1 Al dose. It is 

significant that alum at high pH values can promote organics remo-

val and settling during treatment while not significantly increas-

ing the aluminum residual in the finished water. This is especially 

so when the coagulat .ion pH is 11.5 and the allowable Al(OH4) 4 

solubility at that pH is 10-l.Z mole/l, or approximately 6000 mg/l 
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CHAPTER V 

CONCLUSIONS 

Lake Washington, the potable water source for the City of 

Melbourne, Florida experiences a seasonal change in water quality 

corresponding to rainfall occurrence. The dry period is charac-

terized by a low color, high magnesium water due to groundwater 

influence, and the wet period is characterized by a high color, 

low magnesium water due to an increase in surface runoff and di-

rect precipitation. Average color levels range from 50 cpu to 

over 200 cpu and average magnesium levels range from 20 to 5 

mg/l Mg++ during the dry and wet periods, respectively. The poor 

quality of this water, with its high organic content, make it 

difficult to treat efficiently. 

For the low color, high magnesium lake water, the recycle 

magnesium supernatant is ineffective as a coagulant to remove THM 

precursors. Because of the poor quality of the recycle, the or-

ganic loading on the coagulation process outweighs the benefits 

of increasing the magnesium ion concentration. Best treatment of 

the water occurred with no addition of recycle magnesium because 

-++ of the high levels of magnesium, approximately 20 mg/1 Mg pre-

sent in the raw water. The optimum pH for coagulation is 12 but 

89 
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11.S is recommended because of the increase in cost for lime needed 

to operate at pH 12, $80/MG is not justified by the small in-

creases in THMFP, TOC and color removal, approximately 30 µg/l 

THMFP, 1. 8 mg/l TOC and 1 cpu color. There was very little varia-

tion in the color, TOC and THMFP removal by magnesium coagulation 

when either connnercial, recalcined or reagent lime was used for 

pH control. 

In the case of the high color, low magnesium water, recycle 

magnesium was effective in reduction of THMFP, TOC and color le­

vels in the treated water. A recycle dose of 40 mg/1 Mg++ at pH 

12 was optimum for this water. Because the magnesium concentration 

++ in the raw water is low, approximately 5 mg/l Mg , the magnesium 

ions contributed by the recycle aid in coagulation. The effect 

of the organics also present in the recycle are less detrimental 

due to such a high level of organics present in this water. During 

the wet period, the recycling of the magnesium would be beneficial 

in reduction of THM precursors. 

Magnesium sulfate i .s effective as a coagulant for reduction 

of THMFP, TOC and color in the low color and high color waters 

but it is expensive. For the low color, high magnesium water, a 

minim.um dose of 20 mg/l Mg+t- achieved maximum removals of THMFP, 

TOC and color levels of 46%, 50% and 85%. The best removal of 

THMFP, TOC and color was achieved with a coagulant dose of 40 mg / 1 

Mg++ at pH 12 for the high color, low magnesium water ach ieving 

maximum removals of 65%, 69% and 98%. Because magnesium sulfate 
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is expensive~ $.22/lb, a minimum dose of 20 mg/1 Mg-++ is sufficient 

for the low color case, but more is needed in the case for high 

color. For the high color water the magnesium sulfate is not much 

more effective than the recycle magnesium, indicating recycling 

the magnesium may be beneficial for this part of the year. 

Linear relationships were found to exist between THMFP levels, 

TOC levels and color levels in water treated by recycle magnesium 

and magnesium sulfate at doses from 0 to 40 mg/l and pH 11.5. By 

performing an analysis such as this for a given water, it may be 

possible to estimate the THMFP by measuring color or TOC. Also, 

it was concluded that there is THMFP and TOC present in the water 

which does not produce color, and possibly some TOC which does not 

produce THM's. 

The increase in THM precursor removal obtained with coagula­

tion above pH 11.5 was determined to be due to an additional small 

amount of magnesium, approximately 2 mg/l which is also removed. 

There was no significant variation between the solubility of mag­

nesium when different lime sources were used. 

Variation in mixing conditions was determined to have no ef­

fect on reduction of THMFP, TOC or color levels, but it is an 

important factor in floe sedimentation. A maximum rapid mix 

(coagulation) of 45 seconds, and a minimum slow mix (flocculation) 

of 19 minutes was optimum for sedimentation. 

Alum used as a polymer at pH 11.5 with magnesium coagulation 

increased the removal of color, TOC and THMFP. This removal can 
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accurately modeled by a Langmuir iso t her m. A dose of 2 mg/l Al+ 3 

achieved significant reductions of organics without significantly 

increasing the level of aluminum i n t h e fin i shed water . The use of 

alum at pH 11.5 also increas e d floe s ed i mentation rates in addition 

to increasing THMFP, TOC and color removal. 

Even though significant reductions i n t he levels of THM pre­

cursors was observed in this study , using t he magnesium-lime coagu­

lation process, this treatment alone i s not sufficient to produce 

a high quality potable water capable o f meeting the THM standard of 

0.1 mg/l. Further reduction in the levels o f organi c compounds is 

necessary to accomplish this objective . The use of activated 

carbon and alternate disinfectants, currently under investigation, 

may be effective in further reducing the l evels of THM ' s in the 

finished water. By optimizing all aspects of the treatment process 

for THM precursor removal, the levels of THM ' s will be kept at a 

minimum. 



CHAPTER VI 

RECOMMENDATIONS 

1. In coagulation of the low color, high magnesium Lake 

Washington water, THM precursor removal is optimized with the use 

of either fresh magnesium sulfate or alum at a pH of at least 

11.5. Because magnesium sulfate is expensive, the use of alum 

should be considered. Because of the poor quality of the recycle 

magnesium supernatant, it should not be used in treatment of this 

type of water. 

2. For the high color, low magnesium water, the use of the 

recycle magnesium in coagulation was beneficial in reducing le­

vels of THM precursors in the finished water. The use of alum 

in coagulation for this water at high pH needs to be investigated 

also. 

3. Minimum mixing conditions found to be most .effective 

in sedimentation of the floe were 45 seconds rapid mix and 19 

minutes slow mix periods. 

4. By improving the quality of the recycle magnesium super­

natant, it may be more effective as a coagulant for THM precur­

sor removal, in both the low color and high color water. 

5. By following these guidelines, maximum removals of THM 

pr.ecursors will be obtained for the magnesium process. These 
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reductions, although significant, are still not great enough to 

bring Melbourne's finished water into compliance with the standard 

of 0.1 mg/1 THM's. Other methods of reducing levels of THM pre­

cursors are needed to accomplish this objective. An investigation 

of activated carbon adsorption and the use of alternate disinfec­

tants is recommended to further reduce levels of THM precursors. 
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